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Preface

This volume constitutes the proceedings of the 15th International Conference on Arti-
ficial Intelligence and Soft Computing, ICAISC 2016, held in Zakopane, Poland, during
June 12–16, 2016. The conference was organized by the Polish Neural Network Society
in cooperation with the University of Social Sciences in Łódź and the Institute of
Computational Intelligence at the Częstochowa University of Technology. Previous
conferences took place in Kule (1994), Szczyrk (1996), Kule (1997) and Zakopane
(1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2013, 2014, and 2015) and attracted
a large number of papers and internationally recognized speakers: Lotfi A. Zadeh,
Hojjat Adeli, Rafal Angryk, Igor Aizenberg, Shun-ichi Amari, Daniel Amit,
Piero P. Bonissone, Jim Bezdek, Zdzisław Bubnicki, Andrzej Cichocki, Ewa
Dudek-Dyduch, Włodzisław Duch, Pablo A. Estévez, Jerzy Grzymala-Busse, Martin
Hagan, Yoichi Hayashi, Akira Hirose, Kaoru Hirota, Adrian Horzyk, Eyke Hüllermeier,
Hisao Ishibuchi, Er Meng Joo, Janusz Kacprzyk, Jim Keller, Laszlo T. Koczy, Tomasz
Kopacz, Adam Krzyzak, James Tin-Yau Kwok, Soo-Young Lee, Derong Liu, Robert
Marks, Evangelia Micheli-Tzanakou, Kaisa Miettinen, Krystian Mikołajczyk, Henning
Müller, Ngoc Thanh Nguyen, Andrzej Obuchowicz, Erkki Oja, Witold Pedrycz,
Marios M. Polycarpou, José C. Príncipe, Jagath C. Rajapakse, Šarunas Raudys, Enrique
Ruspini, Jörg Siekmann, Roman Słowiński, Igor Spiridonov, Boris Stilman,
Ponnuthurai Nagaratnam Suganthan, Ryszard Tadeusiewicz, Ah-Hwee Tan, Shiro Usui,
Fei-Yue Wang, Jun Wang, Bogdan M. Wilamowski, Ronald Y. Yager, Syozo Yasui,
Gary Yen, and Jacek Zurada. The aim of this conference is to build a bridge between
traditional artificial intelligence techniques and so-called soft computing techniques.
It was pointed out by Lotfi A. Zadeh that “soft computing (SC) is a coalition of
methodologies which are oriented toward the conception and design of
information/intelligent systems. The principal members of the coalition are: fuzzy logic
(FL), neurocomputing (NC), evolutionary computing (EC), probabilistic computing
(PC), chaotic computing (CC), and machine learning (ML). The constituent method-
ologies of SC are, for the most part, complementary and synergistic rather than com-
petitive.” These proceedings present both traditional artificial intelligence methods and
soft computing techniques. Our goal is to bring together scientists representing both
areas of research. This volume is divided into five parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Evolutionary Algorithms and Their Applications
– Agent Systems, Robotics and Control
– Pattern Classification



The conference attracted 343 submissions from 35 countries and after the review
process, 133 papers were accepted for publication. The ICAISC 2016 hosted the
workshop “Visual Information Coding Meets Machine Learning: Large-Scale Chal-
lenges” (VICML 2016) organized by:

– Marcin Korytkowski, Częstochowa University of Technology, Poland
– Krystian Mikolajczyk, Imperial College, UK
– Rafał Scherer, Częstochowa University of Technology, Poland
– Sviatoslav Voloshynovskiy, University of Geneva, Switzerland

The workshop was supported by the project “Innovative Methods of Retrieval and
Indexing Multimedia Data Using Computational Intelligence Techniques” funded by
the National Science Centre. I would like to thank our participants, invited speakers,
and reviewers of the papers for their scientific and personal contribution to the con-
ference. I would also like to thank all the additional reviewers for their helpful reviews.

Finally, I thank my co-workers Łukasz Bartczuk, Piotr Dziwiński, Marcin Gabryel,
and Marcin Korytkowski and the conference secretary, Rafał Scherer, for their enor-
mous efforts that helped make the conference a very successful event. Moreover,
I would like to appreciate the work of Marcin Korytkowski, who designed the Internet
submission system.

June 2016 Leszek Rutkowski
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Abstract. In this paper, we demonstrate how complex deep learn-
ing structures can be understood by humans, if likened to isolated
but understandable concepts that use the architecture of Nonnegativity
Constrained Autoencoder (NCAE). We show that by constraining most
of the weights in the network to be nonnegative using both L1 and L2

nonnegativity penalization, a more understandable structure can result
with minute deterioration in classification accuracy. Also, this proposed
approach yields a more sparse feature extraction and additional out-
put layer sparsification. The concept is illustrated using MNIST and the
NORB datasets.

Keywords: Deep architecture · Semi-supervised learning · White-box
model · Part-based representation

1 Introduction

In challenging recognition tasks, deep neural network architectures have shown
unique properties in learning complex distributions of data without losing their
generalization capabilities [1]. In addition, the multi-level abstraction involved
in deep architectures affords us the fancy to represent data at multiple levels of
hierarchies. Although deep architectures are capable of learning highly nonlinear
mappings, they are difficult to train, and it is usually hard to interpret what
each layer has learnt. In addition, gradient-based optimization with random
initialization used in training the network is susceptible to poor local optima [2].

By pre-training each layer separately in an unsupervised manner and then
fine-tuning the stacked layers with a supervised learning approach, the greedy
layer-wise algorithm came onboard to ameliorate the efficiency of the train-
ing phase [2,3]. With an unsupervised pre-training, patterns in high dimen-
sional data can be captured and represented in low dimensional encoding space.
The contrastive-divergence trained restricted Boltzmann machines (RBMs) and
autoencoders are the two commonly used unsupervised learning paradigms for

c© Springer International Publishing Switzerland 2016
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extracting rich features in deep architecture. In this work, we focus on learning
features using autoencoders.

The motivation behind the autoencoding is to reconstruct the input from
its encoded representation with desired attributes, in an unsupervised fash-
ion. With layerwise stacking and unsupervised pre-training of autoencoders fol-
lowed by a supervised fine-tuning phase, an autoencoder-based deep network is
unearthed [2]. It must be remarked that one of the key factors that contributes
to the success of deep network training is the appropriate initialization, which is
generally achieved by pre-training each autoencoding layer with minimum recon-
struction error. The conceived representation of the input to each autoencoding
layer serves as the input to the succeeding autoencoding layer, and so on. In
deep architectures, a learning system that invariably results in lower layerwise
reconstruction error will not only create a better representation of the input, but
also a better parameter initialization and improved prediction accuracy [4].

One principal way of improving the classification accuracy as well as the
robustness to noise in high dimensional space is to enforce sparseness in the
autoencoding [5]. The problem we address in this work is in two-fold: (i) we
make an attempt to give a better interpretability to autoencoder-based deep
layer architecture by encouraging nonnegative weights in the network, and (ii) we
demonstrate how to use Nonnegativity Constrained Sparse Autoencoder (NCSA)
to extract meaningful representation that unearths the hidden structure of a high
dimensional data.

It is a general belief that humans analyze complex interactions by break-
ing them into isolated and understandable hierarchical concepts. The emergence
of part-based representation in human brain has been conceptually tied to the
nonnegativity constraints [6]. One way to foster the understandability problem
is to constrain the network’s weights to be nonnegative, and this will inevitably
enable easier human interpretation, since the cancelation of terms in the scalar
product summation is eliminated [7]. In this work and in practice, the cance-
lations are discouraged rather than eliminated. Drawing inspiration from the
idea of Nonnegative Matrix Factorization (NMF) and sparse coding [6,8], the
hidden structure of data can be unfolded by learning features that have capa-
bilities to model the data in parts. Although NMF enforces the encoding data
and features to be nonnegative thereby resulting in additive data representation,
however, incorporating sparse coding within NMF for the purpose of encoding
test data is computationally expensive, and with autoencoders, this incorpora-
tion is learning-based and fast [9]. In addition, the performance of a deep network
can be enhanced using NCSA with part-based data representation capability [1].

It must be remarked that weight penalization is a concept that has been
employed both in the understandability and generalization context. It is used
to suppress magnitude of the weights by reducing the sum of their squares.
Enhancement in sparsity can also be achieved by penalizing sum of absolute
values of the weights rather than the sum of their squares [10–14]. We extend
the work proposed in [1] by adding an extra penalty term to the cost function
to encourage nonnegativity of the network weights and enhance the understand-
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ability of the data. Other related work is the Nonnegative Sparse Autoencoder
(NNSA) trained with an online algorithm and tied weights and linear output
activation function to ameliorate the training hassle [15]. To sum up, this adopts
the general autoencoder model with trainable weights and nonlinear activation
function, and this inevitably enhances the model flexibility.

A multi-layer perceptron network with strictly non-negative weights and soft-
max output was shown to extract understandable latent features like character-
istic parts of handwritten digits as well as extracting semantic features from
text categorization data [7]. Although the understandability of the network is
enhanced by constraining the weights in the network to be strictly nonnega-
tive, the transparency trades off a bit of the classification accuracy. Besides,
the random initialization used in training the network makes it difficult to scale
this approach to large deep network. Nonnegative constrained RBMs have been
shown to possess the capability of shattering data in distinct parts, and can be
used to enhance classification accuracy [16]. Also, in contrast with the deter-
ministic approach used by autoencoders to minimize the reconstruction error,
RBMs use stochasticity to minimize the joint probabilities between the hidden
and visible units.

In this work, we visualize part-based representation of data in a deep network
using stacked nonnegativity constrained autoencoders. The rest of the paper is
structured as follows: Section 2 introduces the network configurations and the
notation used in the paper. Section 3 discusses the experimental designs and
presents the results. Finally, conclusions are drawn in Sect. 4.

x1

x2

xn−1

xn

+1

σ1(.)

σn′(.)

+1

σ1(.)

σ2(.)
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Fig. 1. Schematic diagram of (a) a three-layer autoencoder and (b) a deep network

2 Network Details and Notation

The mathematical representation (model) of the neural network autoencoder,
which aims to reconstruct its input vector using unsupervised learning, is given
in (1) and depicted in Fig. 1(a).

x̂ = fW,b(x) ≈ x (1)
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where x is a normalized input vector, W = {W1,W2}, and b = {b1,b2}
respectively represent the weights and biases of the network

h = gθ1(x) = σ(W1x + b1) (2)

where h ∈ [0, 1]n
′
, W1 ∈ Rn′×n, b ∈ Rn′×1, and σ(x) denotes an element-wise

application of the logistic sigmoid, σ(x) = 1/(1+exp(−x)). The resulting hidden
representation, h, is then mapped back to a reconstructed vector, x̂ ∈ [0, 1]n, by
a similar mapping function, parameterized by θ2 = {W2,b2},

x̂ = gθ2(h) = σ(W2h + b2) (3)

for the purpose of optimizing the parameters in (1), i.e. θ = {θ1, θ2}, the average
reconstruction error is the cost of the optimization objective:

JE(W,b) =
1
m

m∑

i=1

1
2
||x̂(i) − x(i)|| (4)

where m is the number of examples in the training set.

ρ̂j =
1
m

m∑

i=1

hj(x(i)) (5)

JKL(ρ||ρ̂) =
n′∑

j=1

ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(6)

The overall cost function for a conventional Sparse Autoencoder (SAE) then
becomes:

JSAE(W,b) = JE(W,b) + βJKL(ρ||ρ̂) +
λ

2
||w(l)||22 (7)

2.1 Part-Based Representation Using a Nonnegativity Constrained
Autoencoder

We replace the weight penalty term in (7) with a quadratic function [1,16–18]
in order to encourage nonnegativity in W; thus resulting in the cost function
expression for L1/L2-NCAE as given in (8):

JL1/L2−NCAE

(
W,b

)
= JE

(
W,b

)
+ βJKL(p||p̂) +

α

2

2∑

l=1

sl∑

i=1

sl+1∑

j=1

f
(
w

(l)
ij

)
(8)

where

f(wij) =
{

w2
ij + |wij | wij < 0

0 wij ≥ 0 (9)

and α ≥ 0. The consequences of minimizing (8) are that: (i) the average recon-
struction error is reduced (ii) the sparsity of the hidden layer activation is
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increased, and (iii) the number of nonnegative weights is also increased. In order
to encourage negative weights to be positive, the weights are regularized by min-
imizing their absolute value (L1 norm) and their Euclidean norm (L2 norm) [10].
The resultant effect of penalizing the weights with L1 and L2 norm is that impor-
tant connections are selected and their magnitudes are shrunk. The gradient of
(8) is computed in (12) for the purpose of updating the network parameters
using the backpropagation algorithm [19].

w
(l)
ij = w

(l)
ij − ξ

∂

∂w
(l)
ij

JL1/L2−NCAE(W,b) (10)

b
(l)
i = b

(l)
i − ξ

∂

∂b
(l)
i

JL1/L2−NCAE(W,b) (11)

where ξ > 0 is the learning rate.

∂

∂w
(l)
ij

JL1/L2−NCAE(W,b) =
∂

∂w
(l)
ij

JE

(
W,b

)
+ β

∂

∂w
(l)
ij

JKL

(
p ‖ p̂

)

+ αg
(
w

(l)
ij

)
(12)

where

g(wij) =
{

wij + sign(wij) wij < 0
0 wij ≥ 0 (13)

2.2 Deep Learning Using L1/L2 Nonnegative Constrained
Autoencoder (L1/L2-NCAE)

In building the deep network, we use a greedy layer-wise training approach with
each layer independently trained with an unsupervised learning technique [20].
Here we stacked several L1/L2-NCAE into a deep architecture and we trained
them one after the other, with the input of a layer used as the activation of
its preceding layer. The activation of the last autoencoder is then used as the
input to the softmax layer, a supervised classifier. It must be remarked that the
weights of the softmax layer are also encouraged to be nonnegative using L1 and
L2 penalty. We then define the misclassification cost in the softmax layer as:

JCL (W) = − 1
m

[
m∑

r=1

k∑

p=1

1
(
y(r) = p

)
log

ew
T
p x(r)

∑k
l=1 ew

T
l x(r)

]
(14)

where k is the number of classes, W is the matrix of input weights of all nodes in
the softmax layer, and wp is the p-th column of W referring to the input weights
of the p-th softmax node. The overall cost function of the softmax classifier with
nonnegativity constraint is given as:

JNC-Softmax (W) = JCL (W) +
α

2

sL∑

i=1

k∑

j=1

f
(
w

(L)
ij

)
(15)
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where sL denotes the number of hidden nodes of the final autoencoder, f(·) is
as in Eq. (9) to penalize the negative weights of the softmax layer. Finally, in
the fine-tuning stage, the weights of all the layers are tuned simultaneously in
a supervised fashion to improve the accuracy of the classification [20]. It must
be noted that only the softmax weights are constrained in the fine-tuning step.
The cost function for fine-tuning the Deep Network (DN) is given by

JDN (W,b) = JCL (WDN ,bDN ) +
α

2

sL∑

i=1

k∑

j=1

f
(
w

(L)
ij

)
(16)

where WDN contains the input weights of the L1/L2-NCAE and softmax layers,
and bDN is the bias input of L1/L2-NCAE layers as shown in Fig. 1(b).

3 Experiments

In the first set of experiments, we constructed a deep network using two stacked
nonnegativity constrained autoencoders and a softmax layer for classification,
and LBFGS in minFunc by Mark Schmidt was used to minimize (8), (15) and
(16). In order to understand how the network manipulates and classifies its
input, we extracted the subset 1, 2 and 6 from the MNIST handwritten digits.
The complete MNIST dataset has 60000 training and 10000 testing set. Each
set is a grayscale image of an handwritten digit scaled and centered in a 28 × 28
pixel box [21]. To have a feel of how the deep network does what it does, we
filter an image of digit 2 through the network as shown in Fig. 2.

We also compare the ability of L1/L2-NCAE and conventional SAE to dis-
cover patterns in high dimensional data. Using t-distributed stochastic neighbor
embedding (t-SNE) projection to reduce the 10D representation of digits 1, 2,
6 to 2D space, Fig. 3(a)–(d) visualize the distribution of features encoded by 10
encoding filters of SAE, NCAE, L1/L2-NCAE and MNF respectively. It can be
observed that the manifold of digits in L1/L2-NCAE is obviously more linear
than that of SAE. In particular, the manifolds of digits 2, 6 in SAE have more
overlap and twists than its L1/L2-NCAE counterpart. We also experimented
with the full MNIST dataset by training a three-layer L1/L2-NCAE network
with 196 hidden neurons. The encoding weights W1, known as receptive field
as in the case of image data, are reshaped, scaled, centered in a 28 × 28 pixel
box and visualized. Thus in Fig. 4, we benchmark the receptive field learned by
L1/L2-NCAE with a three-layer NCAE [1], SAE, and the basis image learned
by using NMF [6].

It can be seen from the results in Fig. 4 that L1/L2-NCAE learnt receptive
field that is more sparse and localized than those of NCAE, SAE, and NMF.
We remark that the black pixels in SAE features are a result of the negative
weights whose values and frequency are reduced in NCAE with nonnegativity
constraints, which are further reduced by imposing an additional L1 penalty term
in L1/L2-NCAE as shown in Fig. 6. In the case of L1/L2-NCAE, tiny strokes and
dots which constitute the basic part of handwritten digits. Figure 5 compares the
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Fig. 2. Filtering the signal through the deep architecture trained using the reduced
MNIST data set with class labels 1, 2 and 6. The test image is a 28 × 28 pixels image
unrolled into a vector of 784 values. Both the input test sample and the receptive field
of the first autoencoding layer are presented as images. The weights of the output layer
are plotted as a diagram with one row for each output neuron and one column for every
hidden neuron in (L− 1)th layer.
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Fig. 3. t-SNE projection [22] of 10D representations of reduced MNIST handwritten
digits using (a) SAE (b) NCAE (c) L1/L2-NCAE (d) NMF.
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(a) SAE

(b) NCAE

(c) L1/L2-NCAE

(d) NMF

Fig. 4. 196 Receptive fields (W(1)) with weight histogram learned from MNIST digit
data set using (a) SAE, (b) NCAE, (c) L1/L2-NCAE, and (d) NMF. Black pixels
indicate negative, and white pixels indicate positive weights. Black nodes in (b) indicate
neurons with zero weights. The range of weights are scaled to [−1, 1] and mapped to
the graycolor map. w <= −1 is assigned to black, and w >= 1 is assigned to white
color.

(a) SAE

(b) NCAE

(c) L1/L2-NCAE

Fig. 5. 196 decoding filters (W(2)) with weight histogram learned from MNIST digit
data set using (a) SAE (b) NCAE and (c) L1/L2-NCAE. Black pixels indicate negative,
and white pixels indicate positive weights. Black pixels in (b) indicate neurons with
zero weights.

decoding filters of L1/L2-NCAE with those of SAE and NCAE. In the second
experiment, we extracted the subset of the NORB normalized-uniform dataset
with class labels 1, 2, 3. The full data set consists of 24, 300 training images
and 24, 300 test images of 50 toys from 5 generic categories: four-legged animals,
human figures, airplanes, trucks, and cars. The training and testing sets comprise
5 instances of each category. Each image consists of two channels, each of size
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Fig. 6. Histogram of the 196 encoding filters using (a) SAE (b) NCAE (c) L1/L2-NCAE
(d) NMF

96×96 pixels. We take the inner 64×64 pixels of each channel and resize it using
bicubic interpolation to 32×32 pixels that form a vector with 2048 entries as the
input. In this experiment, we trained the network with configuration 2048-10-10-
3 on the subset of the NORB data set. Figure 7 shows the randomly sampled test
patterns and the weight of the output layer is given in Fig. 8. A deep network
constructed using the L1/L2-NCAE is contrasted with that constructed with
conventional SAE. It can be observed in Fig. 8 that sparsification of the output
layer weights is the aftermath of the nonnegativity constraints imposed on the
network. In addition, the patterns learned by neurons in each layer are localized,
and this allows easy interpretation of what is going on inside the network. This
is why we have a sparser, more localized weight distribution of hidden neurons
which filters the distinctive part of the input image. Whereas in the case of SAE,
the hidden neurons react to the whole image almost equally, and this makes it
difficult to have a glimpse of their influence in the classification. The training
parameters are given in Table 1.

Fig. 7. Exemplary images from NORB data set
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(a) (b)

Fig. 8. The weights of the a network trained using (a) SAE (b) L1/L2-NCAE. The
weights of the softmax layer are plotted. Each row of the plot corresponds to each
output neuron and each column for every (L− 1)th hidden neuron. The magnitude of
the weight corresponds to the area of each square. Underneath the plot are the receptive
fields learned from the reduced NORB dataset. The activations of (L−1)th-layer hidden
neurons are depicted on the bar chart at the bottom of the plot.

Table 1. Parameter settings for full MNIST and NORB Dataset

Parameters SAE with Red. L1/L2-NCAE SAE with full L1/L2-NCAE NCAE NMF

dataset with Red. dataset with full

dataset dataset

Sparsity parameter

(p)

0.05 0.05 0.05 0.05 0.05 –

Weight decay penalty

(λ)

1e-4 – 0.003 – – –

Nonnegativity

constraint penalty

(α)

– 1e-4 – 0.003 0.003 –

Convergence tolerance 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9

Maximum no. of

iterations

400 400 400 400 400 400

Table 2. Classification performance of supervised learning methods on full MNIST
dataset.

Before fine-tuning After fine-tuning

Model (784-200-20-10) Mean ± SD p-value Mean ± SD p-value # Iterations

Deep L1/L2-NCAE* 86.12± 0.105 97.84 ± 0.151 124

Deep NCAE 84.83 ± 0.094 <0.0001 97.91 ± 0.1264 <0.0001 97

Deep SAE 52.81 ± 0.1277 <0.0001 97.29 ± 0.091 <0.0001 400

Deep NNSAE 69.72 ± 0.1007 <0.0001 97.18 ± 0.0648 <0.0001 400

Deep DAE (50% input dropout) 11.26 ± 0.14 <0.0001 97.11 ± 0.0808 <0.0001 400

Deep NC-DAE (50% input dropout) 84.37 ± 0.1318 <0.0001 97.42 ± 0.0757 <0.0001 106

Deep DpAE (50% hidden dropout) 16.77 0.0784 <0.0001 96.73 ± 0.1066 <0.0001 400
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In the last set of experiments, we train a deep network on the full MNIST
dataset to test if the enhanced ability of the network to shatter data into part
could result in improved classification. In order to implement this, we stacked
and pretrained two L1/L2-NCAEs and the activation of the last autoencoding
layer is utilized in training the softmax classifier. Eventually, we finetuned the
entire deep network to improve the accuracy of the classification. As shown in
Table 2, the classification accuracy and speed of convergence are the figures of
merit used to benchmark our results with those of NCAE, NNSAE, DpAE [23],
DAE [4] and SAE.

It can be observed from the result in Table 2 that L1/L2-NCAE based deep
network gives an improved accuracy compared to other methods, especially
before finetuning. However, the performance in terms of both the classification
accuracy and the speed of convergence is similar to that of the NCAE network.
The improved accuracy in both NCAE and L1/L2-NCAE based network can
be traced to their ability to decompose data more into distinguishable parts.
Although the performance of NCAE and L1/L2-NCAE are similar and better
than other methods (such as NNSAE, DpAE and SAE), L1/L2-NCAE improves
the understandability of the deep network by constraining more weights to be
nonnegative than NCAE. A better insight into the data, in certain scenarios,
outweighs the benefits of an accurate but opaque classifier.

4 Conclusion

The notion of interpretability in autoencoder-based deep neural network is
addressed in this paper. We analyze the effect of encouraging nonnegativity in
a deep architecture on the network performance and its understandability. We
also show that by using both L1 and L2 penalty factors, most of the weights are
forced to be nonnegative, and hence the network becomes more interpretable. In
fact, it can be seen that all the weights in the output layer are strictly positive
and sparse. In sum, encouraging nonnegativity in NCAE-based deep architec-
ture forces the layers to learn part-based representation of their input leading
to a better classification accuracy, and the additional L1 regularization term
improves the network interpretability.
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Abstract. The solar energy is a well alternative for covering the high
electrical demand, and it starts to be integrated into the energetic grid
infrastructure. High forecast accuracy can help in the management of
industrial strategies. We present an approach that combines the potential
of a Neural Network named Echo State Networks (ESN) and a well-
known optimisation technique named Simulating Annealing (SA). We
use the SA technique for selecting the meteorological variables relevant
in the forecasting task and the ESN as forecasting model. We present
the results evaluating our approach on a public dataset.

Keywords: Solar irradiance · Echo State Networks · Simulating
Annealing · Forecasting · Time-series problems

1 Introduction

Solar energy has received significant attention during last years because is an
alternative of renewable resource that can help for reducing the carbon emis-
sions, and it can be used for covering a relevant part of the growing demand of
electrical energy. To have accurate solar irradiance predictions help to integrate
the energy into the grid, as well as to avoid congestions. Besides, high forecast
accuracy helps to mitigate the negative impacts of instable energy sources. In
this paper, we present a procedure for forecasting the solar power irradiance
using the history of the irradiance and other several meteorological variables.
The approach is based on a widely applied metaheuristic technique named Sim-
ulating Annealing (SA), which is used for selecting the most significant input fea-
tures, and the forecasting is done using the Echo State Networks (ESN) model.
An ESN is a Recurrent Neural Network often used for solving temporal learn-
ing problems. We have two main goals in our article, one consists in defining a
group of meteorological variables that impact on the solar power. The second one
consists in evaluating the accuracy of Echo State Networks for forecasting solar
irradiance using the previous information about the solar irradiance and a group
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of external meteorological variables, such as: wind characteristics, air tempera-
ture, etc. Related works of forecasting solar power irradiance has been presented
during the last years. Some approaches have been based on classic statistical
methods [1], Neural Networks [1–3], and other machine learning techniques have
been also studied [4–6]. We evaluate our approach using a well-known public
dataset [7], and we present the results for predicting the solar irradiance with a
forecasting horizon of three days.

The article is organised as follows. In the next section we define the problem
of forecasting a time-series and we present a background on the SA metaheristic
and the ESN model. Section 3 introduces our methodology. Section 4 is divided
in two parts. First part describes the data set and second part presents the
experimental results. The article ends with an outlook and conclusions.

2 Background

In this section we start by formalising the problem of forecasting time-series
data. Next, we present a background of the methods used in this article: Echo
State Networks and Simulating Annealing.

2.1 Formalization of the Problem

The goal of forecasting a time-series is to predict or estimate future events or
trends using the information concerning the past. Given a time-series of real
observations y(1), y(2), . . . , y(t) the problem of forecasting a time-series consists
in computing a learning tool ϕ(·,w) with parameters w that predicts (bet-
ter as possible) the value of y(t + τ) with τ > 0 using the precedent points
y(t), y(t − 1), . . .. The accuracy of ϕ(·) is assessed using an average over all dis-
tances between the target y(t + τ) and the predicted value that we denoted by
ŷ(t + τ). This problem is generalised when we have a set of external features
a(t) in a multidimensional space. In this case the forecast of y(t + τ) (τ > 0) is
given using the information of a(t),a(t − 1), . . . , y(t), y(t − 1), . . .. The parame-
ters of ϕ(·,w) are computed such that an error measure in an arbitrary range of
time [1, T ] is minimised, here we consider the widely used Mean Squared Errors
(MSE)):

MSE =
1
T

T∑

t=1

(ŷ(t) − y(t))2. (1)

2.2 Simulating Annealing Method

A popular optimisation technique is Simulating Annealing (SA), which is used
for continuous and combinatorial optimisation problems on multi-dimensional
spaces [8]. The technique is inspired from the thermodynamical process wherein
liquids freeze and crystallise or metals cool and anneal. The goal consists in
optimising an objective function that in this context is named energy function.
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The procedure is iterative and stochastic, at each step the method tests as feature
solution a random point on the searching space. We replace a current solution
scurr (a point on the large space) by a randomly selected nearby solution snew

that is chosen with a probability p. A nearby solution snew is a solution that has
a Hamming distance with the current solution scurr less than or equal to d, for
an arbitrary d value. The method has a global parameter called temperature (T )
that decreases in the number of iterations until some arbitrary frozen condition
T end (following the metal annealing analogy). The model is given by the following
selection rule

p = min{exp (−(E(snew) − E(scurr))/kT ), 1}, (2)

where k is a constant and p is a probability of selecting a new solution. This rule
gives to the model the capacity for exploring new regions that is done jumping
from a local minimum to other regions on the searching space. The algorithm has
the following input parameters: an initial temperature T (0), a cooling schedule ρ
in [0, 1], and a stop condition T end, in next section we specify how we set those
parameters.

2.3 Echo State Neural Networks

A Recurrent Neural Network (RNN) is a bio-inspired dynamical system used
for solving temporal learning problems. The recurrences allow to the network
to learn complex dynamics and to model systems that evolve in time. Besides,
the model has been also successfully applied for solving any type of supervised
learning problems. Despite the potential of the RNN for solving supervised tasks,
they have been seldom applied in real-world applications, due to the fact that
often can be hard to set-up the network parameters. First-order methods (opti-
misation techniques based on the gradient information) have been appropriated
for training feedforward networks, although they can fail in the case of recurrent
networks [9]. An alternative of the RNN has been introduced at the beginning of
the 2000 s with the name of Echo State Networks (ESN) [10]. The technique uses
the power of RNNs for memorising temporal data and overcomes the drawbacks
of training the weights of RNNs, without introducing additional inconveniences.
For that reasons, the model is a good alternative for tackling temporal learning
tasks.

The network has three layers connected in a forward schema. The first layer
typically process the input patterns. The second layer contains recursive con-
nections, and its role is memorising the temporal structure of the patterns and
expanding their geometrical information from the input layer in a higher dimen-
sional space. The third layer generates a linear combination of the expansion
created by the second layer. The ESN has circuits only in the second layer,
which is named reservoir. A main characteristic of the model is that the training
algorithm only focuses in adjusting a subset of weights, only the weights to the
third layer are adjusted. All the rest connections (input and reservoir weights)
are random initialized following some algebraic conditions and they are fixed
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during the learning process. As a consequence, the learning algorithm is fast
and robust because the consists in training the parameters of a linear regression.
The literature about ESN is very rich, and we can find several applications of
the model that show the well performance of ESN for solving temporal learning
tasks [11].

We follow by specifying the notation, let Na, Nx and No be the number of
input, reservoir and output neurons, respectively. The parameters of the model
are the weight matrices, let win be a Nx × Na matrix collecting input-reservoir
weights, let wr be a Nx × Nx matrix collecting hidden-hidden weights, and let
wout a No × (Na + Nx) matrix with the parameters from input and projected
space to the output space. The reservoir is characterized by a multidimensional
state x = (x1, . . . ,xNx) given by:

xm(t) = ψ

(
win

m0 +
Na∑

i=1

win
miai(t) +

Nx∑

i=1

wr
mixi(t − 1)

)
, (3)

for all m ∈ [1, Nx] where ψ(·) is the hyperbolic tangent function (tanh(·)). Let
y(t) be the prediction No-dimensional vector of the model at time t, which is
computed by a linear regression:

ys(t) = wout
m0 +

Na∑

i=1

wout
mi ai(t) +

Nx∑

i=1

wout
mi xi(t), ∀s ∈ [1, No]. (4)

In our experimental results we use a generalisation of the canonical ESN that
computes the reservoir state as follows: firstly, we compute a temporarily vector
state x′ using the expression (3). Secondly we compute the state given by:

xm(t) = (1 − α)x′
m(t) + αxm(t − 1), (5)

where the parameter α is called leaky rate and is used for controlling the reservoir
state update.

The ESN model has the following global parameters that impact in the model
performance: the size of the reservoir (given by the number of reservoir neu-
rons), the input scaling factor (a weighting factor of the input patterns), the
spectral radius of the reservoir matrix, the density and topology of the reser-
voir matrix [11,12]. The reservoir size impacts in the linear separability of the
data, there is a tradeoff between the large of the reservoir and overfitting. In our
experiments, the training data is normalised. We consider the input scaling fac-
tor equal to 1, therefore all the input patterns have equal relevance. The spectral
radius controls the stability of the reservoir state and impacts in the memory
capacity of the model. An important property of the model is that the stability of
the dynamical system x(t) only depends of the reservoir weight matrix wr [11], .
The stability is controlled by the spectral radius of wr, that we denote by ρ(wr),
if ρ(wr) < 1 the stability of the ESN can be ensured [11]. An usual practice
consists in scaling the initial reservoir, in order to control the spectral radius,
the scaling procedure is as follows: wr ← (β/ρ(wr))wr, where β is a constant in
(0, 1]. The sparsity of the reservoir matrix is often set on 20% non-zero values.
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3 Methodology

The section is divided in two parts, the first one present the procedure applied
for setting the global parameters of the ESN. The second part contains the used
methodology of this article.

3.1 Setting of the Global ESN Parameters

We begin by finding the best global parameters of the ESN model. We arbitrary
select three parts of the solar global irradiance time-series. The selection was
made considering the different trends of the 2015. A first part A has a grown
increasing trend in an arbitrary range of time [a1, a2] (days in February and
March), a second part B doesn’t present any evident trend in [b1, b2] (days of May
and June), and a third part C has a downward trend in [c1, c2] (days of October
and November). For each period A, B and C we compute ESNs with different
global parameters (Nx, ρ(wr), α), and we evaluate their accuracy using the MSE
(as an averaged error of the three parts). The global parameters of the ESN are
computed using the model for forecasting three days ahead. We forecast the solar
power using only information of the past of the solar power series, in other words
we don’t use any other meteorological variables. The evaluated ESN parameter
values are defined in a regular spaced-grid points in the following intervals: α ∈
[0.5, . . . , 0.9], Nx ∈ [30, 35, . . . , 120, 125] and ρ(wr) ∈ [0.1, 0.15, . . . , 0.95]. Let
N∗

x , ρ∗ and α∗ be the best global parameters of an ESN according our empirical
evaluations. A remark, the evaluations for reservoir matrices with ρ(wr) > 0.55
were in some cases unstable. This means that the accuracy presented a large
variance, therefore we analyse only the results for ρ(wr) ≤ 0.55.

3.2 Feature Selection Using SA Method

We apply the SA method for automatically selecting other meteorological vari-
ables for forecasting the solar irradiance. We assume that several external vari-
ables impact in the solar irradiance, such as: air temperature, humidity, wind
characteristics, etc. Therefore, we use SA as feature selection tool for defining
a set of meteorological variables. The selection can not be done in reasonable
time using a brute-force strategy or a greedy method due to the large number
of variables (in our experiments, we are using more than 20 variables). The pro-
cedure for using SA is as follows. Without loss of generality we enumerate the
input features by {1, . . . , N}, where N is the number of meteorological variables
including the solar power. As a consequence, the searching space is {0, 1}N ,
where the solutions have the form s = [s1, s2, . . . , sN ] where si = 0 represents
that the input feature i is omitted as input of the ESN, and si = 1 represents
that the variable i is an input of the model. For each combination we evaluate
the accuracy of an ESN with parameters N∗

x , ρ∗ and α∗, the objective is to find
s ∈ {0, 1}N such that the MSE is minimized. In the SA method, given a current
solution scurr we must select a nearby solution of scurr that we denote by snew. In
this step, we random select a set D of d integer values in [1, N ]. Next, we define
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the nearby solution snew as snewj = scurrj for all j /∈ D and snewj = scurrj +1 mod 2
for all j ∈ D where mod is the module function.

Our main goal is developing a device for predicting future values in a period
Δt using information until a current time. Therefore, given a explanatory vari-
able a(t) and the target y(t) until time t, we predict the solar irradiance value
at time t + 1 (ŷ(t + 1)), we use a(t), y(t) and ŷ(t + 1) for predicting ŷ(t + 2),
a(t), y(t), ŷ(t + 1) and ŷ(t + 2) for predicting ŷ(t + 3), and so on. We assume
that after a period Δt, we are able to have new measured values for the explana-
tory variables (a). In other words, we use also other meteorological variables,
for instance temperature, at time t for predicting the solar irradiance at time
t + Δt, and so on. We divide the time-series in two parts. The first part (named
training) is used for finding the best configuration of the input features and the
best global ESN parameters. The second part (named validation) is used for
evaluated the adjusted model. We use the fitted model for predicting the values
on the validation time-series, and the predicted values of power solar as well as
the other meteorological variables are used as input patterns for predicting new
values. We set Δt with the value of three days. All codes for data processing
have been developed in Matlab (Mathworks Inc. Natick, Ma, USA).

4 Experimental Results

The first part of this section contains a description of the data, the second one
presents our experimental results.

4.1 Data Description

We use the meteorological data provided by the National Renewable Energy
Laboratory and Solar Technology Acceleration Center (SolarTAC) [7]. The col-
lected data corresponds to the period started in January 1, 2015 till December
5, 2015. The temporal precision of the data is 1 min. The output variable is the
global irradiance given by the Global Horizontal Irradiance in W/m2, the input
features are: Air Temperature, Wind Chill Temp, Dew Point Temp, Relative
Humidity, Wind Speed, Pk Wind Speed, SDev Wind Speed, Wind Direction,
Wind Dir at Pk WS, SDev Wind Direction, Station Pressure, Precipitation,
Accumulated Precipitation, Zenith Angle, Azimuth Angle, Airmass, CMP22
Temp, CR1000 Temp, CR1000 Battery, and CR1000 Process Time. More infor-
mation about those variables and the used protocol for collecting the data see is
available in [7]. The preprocessing of the data consisted in changing the temporal
precision from 1 min to 10 min. Instead of using the variable information each
minute, we consider the data each 10 min. The time-series data has 50232 points
in this period. All the variables were normalised in [0, 1]. Figure 1 presents the
three periods used for setting the parameters of the ESN model. Due to the fact
that SA is a metaheuristic technique we evaluate our approach of different 30
experiment trials. For each one, we start the SA method by randomly selecting
the half part of the input features.
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Fig. 1. Training data used for finding the best ESN global parameters. The first graphic
covers the period since Feb. 3 till Mar. 10, the second graphic covers the period since
May 18 till Jun 22, and the third graphics covers the period since Oct. 4 till Nov. 8.

4.2 Results Analysis

As example, we present in Fig. 2 the accuracy of the model when two leaky
parameters (α in expression (5)) are evaluated. The graphic shows the MSE
on the validation data (three days ahead) for different size of the reservoir and
spectral radius. We can see that models with large reservoir size can provoke
overfitting on the training data, as a consequence they can have low accuracy
for modelling the validation data. According to the results, we set the parame-
ters as follows: α∗ = 0.8, N∗

x = 40 and ρ∗ = 0.25. A large leaky parameter (0.8)
means that a better accuracy is reached when the reservoir state is gradually
updated, that is weighting only with 0.2 the new information at each step given
by expression (3). Figure 3 illustrates how SA improves the model by selecting
a better configuration of input features. The vertical axis shows the log(MSE)
and the horizontal axis represents the first 80 iterations. The different curves of
Fig. 3 represent different SA experiments. We can see for all cases how the error
decreases with the number of iterations. We set the Hamming distance between
the current solution and the near solution with d = 3. The maximum number
of iterations of the SA was 400. A remark, in the SA algorithm we guarantee
that the solar power data is always an input feature of the ESN model. Figure 4
presents the evolution of the number of input features by the model over the
first 400 iterations. For a better visibility we present as example only 5 random
selected SA trials. For instance, the blue curve of Fig. 4 shows how at the itera-
tion 51 of the SA method, the best ESN solution has 12 input features, and at
the next step (iteration 52) the best solution has only 6 input features. Table 1
presents the performance on the validation dataset for forecasting 3 days ahead,
according to different number of iterations of the SA method. The first column
is the number of iterations, the second column shows the best reached accuracy
among the 30 SA trials. The next two columns are the mean and the variance of
the MSE among the 30 SA experiments. In addition the table shows the number
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Fig. 2. Sensitivity analysis of the ESN parameters. Example of the accuracy on the
validation data reached by two ESNs with leaky rate 0.6 and 0.8 and parameters
Nx ∈ [30, 125] and ρ(wr) ∈ [0.1, 0.55].
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Fig. 3. Evolution of the model accuracy (log(MSE)) over the first 80 iterations of the
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Table 1. Accuracy of the proposed method when is forecasted three days ahead. The
accuracy is presented according the number of iterations in SA algorithm. The columns
2, 3 and 4 are presented using scientific notation.

Iteration Min (10−4) Mean (10−4) Var (10−8) Number of features

50 5.2612 6.1036 1.0421 12

100 5.1195 5.7287 0.2834 10

150 4.9987 5.5482 0.0891 12

200 4.9986 5.4859 0.08349 10

of input features used by the best configuration at the iterations 50, 100, 150,
200. The lowest reached MSE was 4.9986633 × 10−4 computed using free run-
ning prediction over three days. The best combination of input features reached
with 400 iterations of SA was composed by the variables: global horizontal irra-
diance, air temperature, wind chill temp, dew point temp, relative humidity,
Pk wind speed, standard deviation of wind speed, accumulated precipitation,
Zenith angle, Azimuth angle, CR1000 Temp, and CR1000 Process Time. For
more information about those variables see [7].

5 Conclusions and Future Work

We present a procedure for forecasting the solar power irradiance using several
external meteorological variables. The approach uses the well-known metaheuris-
tic technique Simulating Annealing (SA) for selecting the most significant input
features, as well as a specific type of Recurrent Neural Network named Echo
State Networks (ESN) for forecasting the time-series. We evaluate the proposed
method over a real meteorological dataset provided by the Solar Technology
Acceleration Center (SolarTAC), Colorado, USA. The SA technique automati-
cally finds a good combination of meteorological variables, which affect the solar
power estimation. We consider that we obtain promising results for a forecasting
horizon of three days. We are interested in the near future to analyse the group
of meteorological variables computed by SA, as well as to extend the period used
for training the network model.

Acknowledgement. This work was supported by Grant of SGS No. SP2016/97, VŠB-
Technical University of Ostrava, Czech Republic.
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Abstract. In this paper a neural system for predicting electric power
load in Poland in a week time horizon is presented. The system consists
of seven multi-layer neural networks that have common input. Each net-
work is dedicated to predict the total load in one of the seven successive
days. Various form of input vectors as well as various ways of encoding
them were tested. Verification which type of input data are crucial as
well as which periodic aspects should be taken into account in data rep-
resentation in week prediction was studied. Various numbers of neurons
in a hidden layer were tested as well. The mean absolute percentage error
(MAPE) is equal to 2.6 % for the most effective system.

Keywords: Multilayer neural network · Electric load prediction

1 Introduction

Both the specific character of the electric power which cannot be stored at the
industrial level as well as the great dynamics of the energy market causes instant
demand on the systems that predict electric power load on a scale of the whole
country [1,2,4,5,8,13,20]. Statistical methods, time series and artificial intelli-
gence systems (AI systems), including expert systems, fuzzy systems, artificial
neural networks (ANNs) and hybrid systems, are used to forecast power load.
The prediction of twenty four hour profile is a well worked out problem - see,
for instance, the papers [3,8–11,16,18,20]. For this task the mean-absolute per-
centage error (MAPE) varies from 1.1% to 3.5%. The mid-term prediction that
consists in forecasting power load for a few days is a more difficult task and
scientific literature concerning this problem is not as rich as for short-term fore-
casting - the papers [6,7,12,14,15,17,19,21] can be put as examples. The men-
tioned lack of literature for the mid-term power load forecasting and the fact
that such forecasting is crucial for power industry was the reason of conduct the
studies described in this paper. Verification which type of input data are crucial
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as well as which periodic aspects should be taken into account in input data
representation in week prediction is the main topic of this paper.

In this paper a system for week prediction of electric power load for Poland
is presented and its efficiency is studied. The system is based on a set of seven
multi-layer neural networks and it predicts a total daily power load for the seven
next days. Various form of input vectors as well as various ways of encoding them
were tested. Various numbers of neurons in a hidden layer were tested as well.

2 System for Power Load Prediction

2.1 Data Preparation

This paper presents how different ways of delivering learning data to artificial
neural network(ANN) will impact results. To do that it was necessary to create
an application which can easily manipulate input data and type of neural net-
work. The Java language was chosen and Encog library (www.encog.org; access:
10 December 2015) was implemented for a more professional approach.

To create working neural network data, real values that includes weather
measurements and electricity usage are required. Data are presented hourly, but
in this paper daily predictions are measured and consequently we are averaging
temperature of 24 hours and summing 24 electricity usage values of every day.

All values are normalized to a real number from closed interval [0, 1]. In case
of temperature, interval is slightly different as negative values are allowed here:
[−1, 1]. This research was performed on a national level. As a result we needed
more than one temperature measurement. In that case data from four cities was
obtained: Cracow, Warsaw, Poznan and Wroclaw. Whole range of gathered data
is between 1 January 2010 and 31 July 2014. It gives us 4,5 year of data which
was divided between learning and testing set - three fourths of the set, counting
from the beginning of the set, was used as the learning set, the rest was used as
the testing set. MAPE was calculated for the testing set.

In order to analyze the possibility of lowering MAPE value in electricity
prediction we try to optimize data format of input values. In this paper we aim
at showing which format of same values gives the best result. A few parameters
were examined as described below.

Size of Input Vector. To get a working neural network we need to pass some
values known as input vector. In this case our input contains parameters such
as temperature, daily electricity usage, a day of the week and a day of the year.
The real issue starts with how long this input vector should be. This question
can be answered only empirically. Because of that, we prepared various types of
input data to perform ANN learning on them. One of the facts to be verified is
whether having a larger input corresponds to better outcome, or it is the other
way round.

Because of weekly prediction, we encounters incomplete data - predicting
usage in later days creates an issue of missing real electricity usage values of

www.encog.org
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previous one to six days, depending on a day to be predicted. In that case instead
of missing value we use predicted value of previous day. By doing that we show
ANN that some of its data may not be precise and it has got a chance of being
taken into consideration by alternate corresponding weights. We can observe
the solution in Fig. 1 where algorithm works recursive by gathering previous
electricity usage before calculating the current one.

Fig. 1. The algorithm presented as a flowchart

Temperature. In predicting electricity usage we have the two most important
factors passing through input vector: previous electricity usage and weather data.
In case of weather data a relevant part is mostly temperature. In this research
we study two approaches of passing temperature to the input vector. As we have
gathered data from four different cities, we can pass those four (normalized)
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values to ANN or in second approach, average four numbers and pass it to the
input vector. In this study we can check whether it is better to pass more data
- increasing accuracy or shorten the input vector to give ANN less parameters
to proceed.

Periodic Data. Another arguments passing to the input vector of ANN are
day of the week and day of the year. They have a common feature: both are
periodic. It means that they do not end, after the last value we got the first one
on the same conditions as previous transitions. This can become an issue when
passing as input to ANN. Since the input vector can consist only of real number
values, we have to convert day of the week to some number. Additionally, ANN
may not understand why after number seven comes number one. In this paper
three approaches have been taken. Firstly, the most basic one, periodic value
(day of the week and day of the year) is normalized to a closed interval [0, 1] and
passed to the input vector. Secondly, days of the week (and analogously days of
the year) are put on a circle in equal distances between the previous and the
next day. We access those points by sine and cosine of a corresponding angle.
In the third approach we use sine value of the current day. The most significant
advantage of that solution is continuity but an obvious disadvantage is that some
distant days will have same values.

In this paper we want to test all the above mentioned concepts to determine
which is the best one and also if there is relevant difference between them.

2.2 Neural System

Neural network structure is an important factor in prediction optimization. The
biggest issue in creating ANNs is a lack of their universal structure. Thus it
is necessary to create and investigate the most effective system to resolve each
problem. This paper does not test all parameters as based on earlier researches
some of them were assumed to be the most efficient.

The input vector in this ANN consists of a couple of previous days that are
described by a few parameters showed in Table 1.

The output vector contains one element from [0, 1] interval pointing to daily
predicted value. Then, this value is denormalized to show actual electricity usage.
The whole system consists of seven multi layer neural networks (perceptrons)
that have common input. Each perceptron predicts the total power load for one
of the seven successive days.

Table 1. The input vector for the artificial neural network

Parameter Description

Electricity usage Usage of electricity by customers throughout 24 h country wide

Temperature Normalized value in Celsius degree in four cities

Day of the week Normalized value from interval [0, 1] pointing to a specific day of the week

Day of the year Normalized value from interval [0, 1] pointing to a specific day of the year
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The hidden layer in ANN is very important when it comes to optimizing
prediction. A number of layers and neurons in them are parameters that have
important influence on the output value. The problem arises when the most opti-
mal settings are varied in respect to the researched problem. Intuitive solutions,
like increasing neurons in a hidden layer do not always indicate result optimiza-
tion. In this paper we study influence that number of neurons in a hidden layer
has on predicting output. Previous research showed that changing the number
of a hidden layer to more than one gives significant deterioration of predicted
value. Therefore in this paper we use only one hidden layer. Three approaches
are taken. When number of neurons is: 10, 15 or 20 in one hidden layer. In all
cases values are calculated by sigmoid function. We want to check if increasing
number of neurons implicates better prediction or vice versa.

When it comes to learning methods, we have a lot of possibilities and tech-
niques. In case of electricity usage prediction non-linear Levenberg-Marquardt
optimization method is being used. It was the best one from all that was tested
in case of electricity usage prediction. Number of epochs was set to 30. It is
suitable to study efficiency provided parameters.

The Research Process. Another step after preparing research is its successful
implementation. In the case of ANN, there are a lot of aspects that can be
studied effectively such as data and learning. However, testing all of them in one
paper is impossible and because of that some of them (like number of epochs)
are constant. They were not changed during research whereby results from every
approach are comparable.

To summarize all data passing to the input vector are normalized to [0, 1]
interval except temperature which is in [−1, 1] interval. There is only one hidden
layer with different number of neurons. The output vector contains one element
in [0, 1] interval, which points to electricity usage prediction at the national level.

Levenberg-Marquardt algorithm was chosen for a learning method and the
epoch number was set to 30. All tested combinations were repeated four times
and the best prediction was chosen. All results were put in a few tables to
visualize better created dependencies. More accurate results can be seen in the
next section.

3 Results

In this section results of previously presented concepts are described and
explained. MAPE values are put into a few tables to better visualize differences
between specific parameters. All values inside tables are percentages. To have a
clearer view, description of the specific set of parameters is moved to another
Table 2 and short symbol was created to represent them which takes less space
and enables easier table reading.
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Table 2. Symbols description

Symbol Description

ld number of days before that are passed to the input vector

ln number of neurons in the hidden layer

n1 four temperatures passed to the input vector, without circle topology of periodic

data, without sine continuity of periodic data

n2 four temperatures passed to the input vector, with circle topology of periodic data,

without sine continuity of periodic data

n3 one-averaged temperature passed to the input vector, without circle topology of

periodic data, without sine continuity of periodic data

n4 one-averaged temperature passed to the input vector, with circle topology of periodic

data, without sine continuity of periodic data

n5 four temperatures passed to the input vector, without circle topology of periodic

data, with sine continuity of periodic data

n6 one-averaged temperature passed to the input vector, without circle topology of

periodic data, with sine continuity of periodic data

3.1 Periodic Data

For the purpose of ensuring proper results verification for periodic data, Table 3
was divided into two sections. The left side presents results of temperature pro-
vided as four values to the input vector, contrary to the right side where in all
three columns one-average temperature for one day is provided. In both sections
there are three identical columns which compare different solutions to the peri-
odic data problem. Respectively from the left side we have a column where data
is converted to regular numbers and then normalized, the next one is with circle
topology and the last is a case where we use sine values as days representation.

Table 3. Results for periodic data problem

ld ln n1 n2 n5 n3 n4 n6

7 10 5,40 % 5,90 % 3,98 % 3,35 % 4,82 % 2,65 %

15 5,56 % 6,02 % 4,54 % 3,86 % 4,27 % 2,84 %

20 5,80 % 5,20 % 4,46 % 3,27 % 4,57 % 2,79 %

25 5,47 % 6,81 % 5,61 % 3,09 % 4,87 % 4,27 %

14 10 6,01 % 5,03 % 4,61 % 3,31 % 5,90 % 2,64 %

15 5,83 % 5,14 % 4,53 % 3,53 % 6,87 % 2,60 %

20 5,42 % 5,75 % 4,56 % 3,38 % 5,09 % 2,79 %

25 5,33 % 5,93 % 4,77 % 4,12 % 5,21 % 2,99 %

21 10 6,04 % 5,60 % 5,57 % 3,28 % 4,98 % 3,41 %

15 5,67 % 5,44 % 4,96 % 3,41 % 5,37 % 3,40 %

20 5,04 % 5,66 % 5,96 % 3,34 % 4,21 % 3,40 %

25 5,44 % 6,02 % 5,53 % 3,84 % 4,61 % 3,43 %
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Results here are not very optimistic for circle topology as a successful solution
to the periodic data problem. MAPE in their case is definitely worse than other
cases, no matter how many neurons hidden layer counts or how many days are
passed to the input vector. In that case we can clearly state that it is better
to avoid that method for these kind of problems. In the other two approaches
we can see that almost all results are better in case of sine, continuous, periodic
data interpretation. Only when “number of days before” and “neurons in hidden
layer” parameters provided to the input vector are high, basic, non-continuous
data interpretation gives slightly better MAPE result. We can conclude that the
best approach is to use sine periodic data interpretation, without circle topology.

3.2 Temperature

Here we compare how different provision of temperature to the input vector
influences the result. Table 4 was divided into three vertical sections. Each of
them compares results when four temperatures are provided to the input vector
(left side) or one-averaged (right side). Difference between sections lies in differ-
ent parameters. It is important that in all sections only temperature parameter
is changed and the rest of them stays the same. Because of that comparison,
each section is reliable.

Results in this case seem to be clear. In most cases providing one-averaged
temperature to the input vector gives a better outcome. Additionally looking at
number of days or number of neurons in hidden layer passing to input vector, it
is safe to assume that it does not influence outcome in either approach.

Table 4. Results for different temperature approach

ld ln n1 n3 n2 n4 n5 n6

7 10 5,40 % 3,35 % 5,90 % 4,82 % 3,98 % 2,65 %

15 5,56 % 3,86 % 6,02 % 4,27 % 4,54 % 2,84 %

20 5,80 % 3,27 % 5,20 % 4,57 % 4,46 % 2,79 %

25 5,47 % 3,09 % 6,81 % 4,87 % 5,61 % 4,27 %

14 10 6,01 % 3,31 % 5,03 % 5,9 % 4,61 % 2,64 %

15 5,83 % 3,53 % 5,14 % 6,87 % 4,53 % 2,60 %

20 5,42 % 3,38 % 5,75 % 5,09 % 4,56 % 2,79 %

25 5,33 % 4,12 % 5,93 % 5,21 % 4,77 % 2,99 %

21 10 6,04 % 3,28 % 5,60 % 4,98 % 5,57 % 3,41 %

15 5,67 % 3,41 % 5,44 % 5,37 % 4,96 % 3,40 %

20 5,04 % 3,34 % 5,66 % 4,21 % 5,96 % 3,40 %

25 5,44 % 3,84 % 6,02 % 4,61 % 5,53 % 3,43 %
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3.3 Number of Neurons in Hidden Layer

In this case we are checking if increasing number of neurons in hidden layer
optimizes the results. In all cases (n1–n6) we can observe how output MAPE
behaves when more neurons are added to the hidden layer. All results can be seen
in Table 5. It is divided into three horizontal sections. Each of them represents
different “number of days before” parameter provided to the input vector, while
in every one of them we have four different combinations of the hidden layer.

Table 5. Results for different numbers of neurons in the hidden layer

ld ln n1 n2 n3 n4 n5 n6

7 10 5,40 % 5,90 % 3,35 % 4,82 % 3,98 % 2,65 %

15 5,56 % 6,02 % 3,86 % 4,27 % 4,54 % 2,84 %

20 5,80 % 5,20 % 3,27 % 4,57 % 4,46 % 2,79 %

25 5,47 % 6,81 % 3,09 % 4,87 % 5,61 % 4,27 %

14 10 6,01 % 5,03 % 3,31 % 5,90 % 4,61 % 2,64 %

15 5,83 % 5,14 % 3,53 % 6,87 % 4,53 % 2,60 %

20 5,42 % 5,75 % 3,38 % 5,09 % 4,56 % 2,79 %

25 5,33 % 5,93 % 4,12 % 5,21 % 4,77 % 2,99 %

21 10 6,04 % 5,60 % 3,28 % 4,98 % 5,57 % 3,41 %

15 5,67 % 5,44 % 3,41 % 5,37 % 4,96 % 3,40 %

20 5,04 % 5,66 % 3,34 % 4,21 % 5,96 % 3,40 %

25 5,44 % 6,02 % 3,84 % 4,61 % 5,53 % 3,43 %

Results in this case do not lead to unambiguous conclusions. The general
trend is to degrade MAPE values in case of an increase in an amount of neurons,
therefore a huge number of exceptions discourages from creating such assump-
tions. In fact two of the best results occur when the number of neurons are 10
and 15, which are rather low numbers. Also, we cannot conclude that more neu-
rons are better with a bigger input vector (number of days before [ld]) because
there are one of the highest MAPE results in this area. To sum up, this case
does not give us clear conclusions and we need more research in this area.

3.4 Size of the Input Vector

Size of the input vector is a very interesting parameter to study. It shows the
importance of electric usage that had place days before to predict near future.
Table 6 is divided, much like in case before, into four sections. All of them con-
tain three different numbers which represent size of input vector. However, each
section has different value of neurons in hidden layer.

Interpretation of the results here is difficult, much like in previous cases.
General trend does not implicate any conclusions. We can notice that in some
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Table 6. Results of different size of the input vector

ln ld n1 n2 n3 n4 n5 n6

10 7 5,40 % 5,90 % 3,35 % 4,82 % 3,98 % 2,65 %

14 6,01 % 5,03 % 3,31 % 5,90 % 4,61 % 2,64 %

21 6,04 % 5,60 % 3,28 % 4,98 % 5,57 % 3,41 %

15 7 5,56 % 6,02 % 3,86 % 4,27 % 4,54 % 2,84 %

14 5,83 % 5,14 % 3,53 % 6,87 % 4,53 % 2,60 %

21 5,67 % 5,44 % 3,41 % 5,37 % 4,96 % 3,40 %

20 7 5,80 % 5,20 % 3,27 % 4,57 % 4,46 % 2,79 %

14 5,42 % 5,75 % 3,38 % 5,09 % 4,56 % 2,79 %

21 5,04 % 5,66 % 3,34 % 4,21 % 5,96 % 3,40 %

25 7 5,47 % 6,81 % 3,09 % 4,87 % 5,61 % 4,27 %

14 5,33 % 5,93 % 4,12 % 5,21 % 4,77 % 2,99 %

21 5,44 % 6,02 % 3,84 % 4,61 % 5,53 % 3,43 %

cases increasing the input vector causes better MAPE outcome. In other cases
we cannot see any dependencies on which we can base our conclusions. It is
worth noting, however, that a few of the best results have a lower size of the
input vector.

4 Concluding Remarks

The MAPE error for the applied systems of perceptrons depends on the used data
and their representation. The MAPE for most effective system is equal to 2.6%.
This result is comparable for results communicated in the papers that refers
results for mod-term power load prediction - for instance in [22] MAPE is equal
to 2.54% for monthly prediction. The system of perceptrons that have fifteen
neurons in hidden layers turned out to be the most effective one. Furthermore,
power load for the last fourteen days was taken into consideration and one-
averaged temperature was passed to the input vector. Moreover, the periodic
data were encoded without circle topology but with the sine representation.
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Abstract. An activation function is a very important part of an arti-
ficial neuron model. Multilayer neural networks can properly work only
when these functions are nonlinear. A simple approximation of an often
applied hyperbolic tangent activation function is presented. This pro-
posed function is computationally highly effective. Computational com-
parisons for two well-known test problems are discussed. The results are
very promising in potential applications to FPGA chips designing.

Keywords: Neural networks · Activation function · Transfer function

1 Introduction

In the recent years various soft computing techniques have been developed
[13–16,22–24,27–31,34,40]. Various feedforward multilayer neural networks have
been investigated by many scientists, e.g., [2,3,18,19,25,26,35–39]. A large num-
ber of networks use non-linear activation functions. These functions are relatively
computationally expensive. This is particularly disadvantageous for small net-
works, for parallel implementation of neural networks and for operating a net-
work which has been already learned. The activation function and its derivative
are used in the recall phase and by most learning algorithms in the learning
phase, respectively. Thus, efficiency of the activation function is very important
for both the working time and learning time of a neural network. This problem
has been studied in [1,17,20,21]. Unfortunately, the performance of the presented
functions did not prove satisfactory. This necessitates a search for an efficient
activation function which will be simple in implementation. This is particularly
important in the case of parallel pipelining solutions [4–12,32,33]. whose perfor-
mance may be limited by a slow activation function.

In multilayer or fully connected (FCC) neural networks each neuron can be
connected to any input or any previous neuron outputs. After calculating the
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L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 35–45, 2016.
DOI: 10.1007/978-3-319-39378-0 4



36 J. Bilski and A.I. Galushkin

weighted sum si of neuron inputs, the value yi of the activation function is
determined. The Eqs. (1) and (2) describe the recall phase of a network:

si (n) =
∑

j

wij (n) xj (n), (1)

yi (n) = f (si (n)) , (2)

where f() is the neuron activation function. The hyperbolic tangent (tanh) is
very often used as the activation function:

y1 = f1 (s) = tanh (s) =
es − e−s

es + e−s
=

1 − e−2s

1 + e−2s
= 1 − 2

1 + e2s
(3)

The ability to easily calculate the derivative based on the hyperbolic tangent
value is very advantageous:

y′
1 = tan h′ (s) = 1 − y2

1 (4)

Figure 1 shows the graph of the hyperbolic tangent function and its derivative.

Fig. 1. The graph of the hyperbolic tangent function and its derivative

Unfortunately, calculating the hyperbolic tangent is computationally
demanding. To reduce this inconvenience in this paper a linear quadratic (LinQ)
activation function is proposed:

y2 = f2 (s) =

⎧
⎨

⎩

as − b; s ≤ −2 + 2a
0.25s(4 − abs(s)); −2 + 2a < s < 2 − 2a
as + b; s ≥ 2 − 2a

(5)

where a is a slope of function linear part, and b is obtained from:

b = 1 − 2s + s2. (6)
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The derivative of the LinQ function is given by:

y′
2 = f ′

2 (s) =
{

1 − 0.5abs (s) ;
a;

−2 + 2a < x ≤ 2 − 2a
s ≤ −2 + 2a; s ≥ 2 − 2a; (7)

In the Fig. 2 the graph of the linear quadratic LinQ function and its derivative is
presented. It is easy to see that the proposed function is similar to the hyperbolic
tangent, but for larger arguments it does not converge to the values of 1 or −1.
The linear quadratic function is a combination of linear and quadratic functions
in the appropriate ranges of the s value. There are four ranges: (−∞,−2 + 2a〉 ;
(−2 + 2a, 0); 〈0, 2 − 2a) and 〈2 − 2a,∞) . In the first and fourth ranges the LinQ
function is linear while in the second and third ranges this function is quadratic.
In the connection points of these functions their derivatives are equal so that
the derivative of the LinQ function is continuous. The slope a and offset b are
selected so that the linear functions are tangential to the quadratic functions.

Fig. 2. The graph of the linear quadratic function and its derivative

It is important that the computational load on the linear quadratic function
is low. Only one or two multiplications and one addition are needed.

2 Computational Results

First, operation times of LinQ and tanh functions have been investigated. Both
functions have been run 10 million times for randomly selected arguments. The
results are shown in Table 1. The calculation time of the LinQ function is about
four times shorter than the time of the tanh function, while the calculation times
of their derivatives are comparable for both functions.

In the next subsections the two learning problems are tested. The first is a sim-
ple XOR problem, and the second is the two-spiral problem. For both problems a
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Table 1. Times of 10 million computations of the hyperbolic tangent and linear-
quadratic activation functions and their ratio.

Function Function time Derivative time

tanh 451 88

LinQ 111 90

Speed ratio 0.2461 1.0227

neural network is considered as trained if the error criterion in each iteration of the
epoch falls below the set threshold γ:

NL∑

i=1

[
d
(L)
i (t) − y

(L)
i (t)

]2
≤ γ. (8)

2.1 Learning of the XOR Logic Function

To investigate the logic XOR function two networks shown in Figs. 3 and 4 have
been used. The first is a typical multilayer (2) neural network with two inputs,
two hidden neurons and one output (it is marked by 221). The second also
has two layers, but there is only one hidden neuron. Moreover, all the neurons
connect with all the previous layers and also the network inputs (marked by
211f). In the Tables 2 and 3 the success rate, an average number of epochs and
experiment times (including unsuccessful learning processes) depending on the
slope a and the neural network architecture with the linear-quadratic (LinQ)
and hyperbolic tangent (tanh) activation functions are presented. In all the cases
the simple error back propagation has been used as the learning algorithm, the
learning constant was set to η = 0.3, the maximum of 200 epochs was executed,
and the threshold was set to γ = 0.1. Each learning process was repeated 100
times.

Table 4 shows the times (without an additional time needed to organize the
experiment) of 10 million working/learning epochs depending on the neural net-

Fig. 3. The two-layer neural networks architecture (221) for learning the XOR problem
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Fig. 4. The two-layer fully connected neural networks architecture (211f) for learning
the XOR problem

Table 2. The XOR problem. The success rate, an average number of epochs and
experiment times depending on the slope a and the neural network architecture with
the linear-quadratic activation function.

slope
0.01 0.05 0.1

Network Succ. Average Exper. Succ. Average Exper. Succ. Average Exper.
arch. rate epoch time rate epoch time rate epoch time

221 87 37 0.10 88 34 0.10 88 41 0.11
211f 73 140 0.15 99 54 0.08 98 44 0.08

Table 3. The XOR problem. The success rate, an average number of epochs and
experiment times depending on the neural network architecture with the hyperbolic
tangent activation function and their ratio.

Network arch. Succ. rate Average epoch Exper. time

221 95 35 0.09

211f 94 85 0.14

Table 4. The XOR problem. Times of 10 million learning epochs depending on the
neural network architecture with the hyperbolic tangent and linear-quadratic acti-
vation functions and their ratio.

Working Learning

Network tanh LinQ Speed tanh LinQ Speed
arch. time time ratio time time ratio

221 12 6 0.5000 50 38 0.7600
211f 9 6 0.6667 40 18 0.4500
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work architecture with the tanh and LinQ activation functions and their speed
ratio, which is defined by the following formula:

speed ratio =
LinQ time

tanh time
. (9)

2.2 Learning of the Two-Spiral Problem

To research the two-spiral problem two types of neural networks have been
applied. The first type is a four-layer network with connections to all the previ-
ous layers and to the network inputs (marked 2hhh1f, h=3..6). All the hidden
layers have h neurons. The second type of network is shown in Fig. 5.

Fig. 5. The fully connected neural networks architecture with n neurons for learning
the two-spiral problem

Table 5. The two-spiral problem. The success rate, an average number of epochs and
experiment times depending on the slope a and the number of neurons in the fully
connected four-layer neural network with the linear-quadratic activation function.

slope
0.001 0.01 0.1

Network Succ. Average Exper. Succ. Average Exper. Succ. Average Exper
arch. rate epoch time rate epoch time rate epoch time

23331f 40 1970 51 27 2519 58 0 - 67
24441f 78 1743 42 72 1795 46 30 2594 73
25551f 93 1353 34 90 1371 37 80 2010 56
26661f 97 1230 36 90 1273 43 95 1386 42

This network is called a fully connected cascade (FCC). Each neuron is connected
to all the previous neurons and network inputs. For both network types the error
back propagation has been used, the learning factor was set to η = 0.01, the
maximum of 5000 epoch was executed, the threshold was set to γ = 0.1, and
there were 100 trials.
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The success rate, an average number of epochs and an experiment times
(including unsuccessful learning processes) depending on the slope a and the
neural network architecture for the LinQ and tanh activation functions are pre-
sented in the Tables 5, 6, 7 and 8 for both types of neural networks respectively.

Table 6. The two-spiral problem. the success rate, an average number of epochs and
experiment times depending on the number of neurons in the fully connected four-layer
neural network with the hyperbolic tangent activation function.

Network of arch. Succ. rate Average epoch Exper. time

23331f 20 2294 75

24441f 81 1741 52

25551f 87 1543 57

26661f 96 1384 52

Table 7. The two-spiral problem. The success rate, an average number of epochs and
experiment times depending on the slope s and the number of neurons in the fully
connected cascade with the linear-quadratic activation function.

slope
0.001 0.01 0.1

Number of Succ. Average Exper. Succ. Average Exper. Succ. Average Exper
Neurons rate epoch time rate epoch time rate epoch time

8 13 2216 72 10 1988 73 0 - 77
10 44 1915 74 41 1993 76 5 3385 99
12 69 1586 74 65 1755 81 39 2352 112
14 76 1660 86 78 1481 79 75 1983 97
16 81 1504 93 88 1509 83 96 1475 70
18 85 1427 101 89 1498 98 99 1238 67

Table 8. The two-spiral problem. The success rate, an average number of epochs and
experiment times depending on the number of neurons in the fully connected cascade
with the hyperbolic tangent activation function.

Number of neurons Succ. rate Average epoch Exper. time

8 12 2093 83

10 38 1861 90

12 73 1580 77

14 81 1597 90

16 90 1570 93

18 92 1598 109
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Tables 9 and 10 show the times (without an additional time needed to orga-
nize the experiment) of 500 thousand learning epochs depending on the neural
network architecture with the tanh and LinQ activation functions and their
speed ratio.

Table 9. The two-spiral problem. The times of 500 thousand learning epochs depending
on the number of neurons in the fully connected four-layer neural network with the
hyperbolic tangent and linear-quadratic activation functions and their ratio.

Working Learning

Network tanh LinQ Speed tanh LinQ Speed
arch. time time ratio time time ratio

23331f 44 25 0.5682 80 63 0.7875
24441f 57 33 0.5789 104 81 0.7788
25551f 71 42 0.5915 133 102 0.7669
26661f 90 52 0.5778 166 126 0.7590

Table 10. The two-spiral problem. The time of 500 thousand learning epochs depend-
ing on the number of neurons in the fully connected cascade with the hyperbolic
tangent and linear-quadratic activation functions and their ratio.

Working Learning

Number of tanh LinQ Speed tanh LinQ Speed
Neurons time time ratio time time ratio

8 38 23 0.6053 86 72 0.8372
10 47 29 0.6170 117 100 0.8547
12 58 36 0.6201 159 135 0.8491
14 68 43 0.6324 201 176 0.8756
16 80 52 0.6500 244 217 0.8893
18 92 61 0.6630 293 261 0.8908

3 Conclusion

In this paper the linear quadratic activation function for a neural network learn-
ing algorithm are presented. We have compared computational performance of
the linear quadratic activation function with the hyperbolic tangent activation
function. Moreover, the time of computations per epoch with the linear quadratic
activation function for working/learning process is up to 40 %/30 % shorter than
with the hyperbolic tangent function respectively. In most cases the number of
epochs needed to learn a neural network is slightly smaller, and success rate
is greater. It has been observed that the performance of the proposed solution
is promising. Additionally, a parallel approach can be used for calculation of



A New Proposition of the Activation Function for Significant Improvement 43

the linear quadratic activation function, which will results in an even greater
acceleration. It should be emphasized that the result of acceleration has been
only achieved by simple replacing of the activation function without affecting
the structure of the network and the learning algorithm. The proposed function
can be applied to other learning methods [2,3,18,19,25,37–39].

In future research it might be possible to create a parallel version of the linear
quadratic activation function by its implementation in: the SIMD operations, the
GPUs accelerators and the FPGAs chips.
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4. Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for neural
networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidel-
berg (2004)

5. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent RTRN neural network
learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

6. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent Elman neural network
learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010, Part II. LNCS(LNAI), vol. 6114, pp. 19–25. Springer,
Heidelberg (2010)

7. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent multi layer perceptron
learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS(LNAI), vol. 7267, pp. 12–20.
Springer, Heidelberg (2012)

8. Bilski, J., Smola̧g, J.: Parallel approach to learning of the recurrent Jordan neural
network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS(LNAI), vol. 7894, pp. 32–40.
Springer, Heidelberg (2013)

9. Bilski, J.: Parallel Structures for Feedforward and Dynamical Neural Networks.
AOW EXIT (2013). (in Polish)

10. Bilski, J., Smola̧g, J., Galushkin, A.I.: The parallel approach to the conjugate
gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2014, Part I. LNCS(LNAI), vol. 8467, pp. 12–21. Springer, Heidelberg
(2014)

11. Bilski, J., Smola̧g, J.: Parallel architectures for learning the RTRN and Elman
dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570
(2015)



44 J. Bilski and A.I. Galushkin
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16. Cpa�lka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signa-
ture verification based on horizontal partitioning. Pattern Recognit. 47, 2652–2661
(2014)

17. Duch, W., Jankowski, N.: A survey of neural transfer functions. Neural Comput.
Surv. 2, 163–213 (1999)

18. Fahlman, S.: Faster learning variations on back-propagation: an empirical study.
In: Proceedings of Connectionist Models Summer School, Los Atos (1988)

19. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt
algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

20. Jankowski, N., Duch, W.: Optimal transfer function neural networks. In: Pro-
cedings of the 9th European Symposium on Artificial Neural Networks, Bruges,
Belgium, pp. 101–106 (2001)

21. Kamruzzaman, J., Aziz, S.M.: A note on activation function in multilayer feedfor-
ward learning. In: Proceedings of International Joint Conference on Neural Net-
works: IJCNN 2002, vol. 1, pp. 519–523 (2002)

22. Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-
organizing maps and its application to the analysis of mission statements. J. Artif.
Intell. Soft Comput. Res. 5(3), 161–176 (2015)

23. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting
fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
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Abstract. This paper presents application of Givens rotations in the
process of learning feedforward artificial neural network. This approach
is based on QR decomposition. The paper describes mathematical back-
ground that needs to be considered during the application of the Givens
rotations. The paper concludes with results of example simulations.
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1 Introduction

Artificial Neural Networks nowadays are broadly used in many areas of human
everyday life. They can be found in many areas of forecasting e.g. weather,
market tendencies, prices, etc [16,17,22–24,26]. Artificial Neural Networks can
also be applied in the scope of various process optimizations, signal filtrations
and much more [1,13,14,18,21,27]. Before an ANN is ready to be used, it
needs to be trained for solving a demanded task. One of the best known and
rudimentary learning algorithms for a feedforward Artificial Neural Network is
the Error Back Propagation [8]. Unfortunately this algorithm requires a lot of
time and effort to train a network [4,12,18,20]. During the researches aimed
at improving teaching process of neural networks many algorithms have been
developed [3,9,11,15,25,29]. Many of them require less epoch count than the
Back Propagation algorithm but consume more resources, e.g. the Levenberg-
Marquardt method [25]. The purpose of this paper is to formulate the Givens
algorithm based on QR decomposition and apply it to learning a neural net-
work. The goal is to prove that this approach can achieve desired error value in
a significantly shorter time than the Back Propagation method.

2 Givens Rotations Basics

The Givens rotations is one of a few elementary orthogonal transformation
methods. The most common practice is to limit rotation around a single plain,
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 46–56, 2016.
DOI: 10.1007/978-3-319-39378-0 5
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stretched between two unit vectors span{ep, eq}(1 ≤ p < q ≤ n). Each rotation
is described by the following matrix [2].

Gpq =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
. . .

c · · · s
...

...
. . .

...
...

−s · · · c
. . .

0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

(1)

Matrices Gpq are called rotation matrices or rotations. By definition, those matri-
ces differ from Identity matrix only in terms of four elements

gpp = gqq = c gpq = −gqp = s, (2)

where
c2 + s2 = 1, (3)

which obviously leads to equation GT
pqGpq = I and the proof that matrix Gpq is

an orthogonal matrix. The rotation is performed by orthogonal transformation
given in Eq. (4)

x → y = Gpqx (4)

which leads to the following equalities

yp = cxp + sxq

yq = −sxp + cxq

yi = xi (i �= p, q; i = 1, . . . , n)
(5)

Let a ∈ R
n. From Eq. (5) only two elements of vector a are being changed during

a single rotation. There is a possibility to pick rotation parameters to make one
of the elements ap or aq equal 0. In order to replace value aq with 0, Eq. (5) has
to be taken under further consideration

āq = −sap + caq = 0. (6)

Parameters c and s of the rotation matrix have to be calculated according to
Eq. (7).

c =
ap

ρ
, s =

aq

ρ
, (7)

where

ρ =

⎧
⎨

⎩
ap

√
1 + (aq/ap)

2
, for |ap| ≥ |aq|

aq

√
1 + (ap/aq)

2
, for |ap| < |aq|

(8)
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3 The Givens Rotation in a QR Decomposition

The QR decomposition method assumes that any non-singular matrix regular
by columns can be depicted by the product of the upper triangle and orthogonal
matrices.

A = QR, (9)

where
QTQ = I, (10)

QT = Q−1, (11)

rij = 0 for i > j. (12)

The presented process of the QR decomposition is called the Givens orthogo-
nalization [2]. According to Eqs. 6 and 7, for any vector a ∈ R

m, there exists a
sequence of Givens rotations G12,G13, . . . ,G1m that can be given as a product
of each other

G1 = G12 . . .G1,m−1G1m. (13)

Matrix G1 is able to perform multiple rotations at once and transform vector a
to the pattern given by the following form

ā = G1a = e1ρ = [ρ, 0, . . . , 0]T , ρ = ±‖a‖2 (14)

Rotation matrix (13) is also able to transform the whole matrix. Let A be
a non-singular matrix regular by columns and let A ∈ R

m,n. The left-sided
multiplication of matrix

A = A1 = M1 =
[
a1 B1

]
(15)

by matrix (13) results with the pattern shown in Eq. (16)

A2 = G1A1 = Ḡ1M1 =
[
ā1 B̄1

]
=

[
ρ1
0 B̄1

]
=

[
r11 r12 · · · r1n

0 M2

]
. (16)

At this point, the very left column vector of matrix A equals as shown in Eq. (14).
The top row of matrix A is also already rotated as desired in the final upper-
triangle form. In the next steps new sequences of rotations need to be performed

Gk = Gk,k+1 . . .Gk,m−1Gkm (k = 1, . . . ,m − 1). (17)

Performing analogous transformations of matrix Mk, each time the input matrix
is one step closer to the desired upper-triangle form

Ak+1 = ḠkMk =
[
āk B̄k

]
=

[
ρk

0 B̄k

]
=

[
rkk rk,k+1 · · · rk,n

0 Mk+1

]
, (18)

where

Gk =
[
Ik−1 0
0 Ḡk

]
. (19)



Application of the Givens Rotations in the Neural Network 49

The algorithm is finished after reaching m − 1 steps. Then, the input matrix is
fully transformed into the upper-triangle form

R = Gm−1 . . .G1A1 = Gm−1,m . . .G23 . . .G2mG12 . . .G1mA1 = QTA (20)

Orthogonal matrix Q can be retrieved from respective rotations

Q = GT
1 . . .GT

m−1 = GT
1m . . .GT

12G
T
2m . . .GT

23 . . .GT
m−1,m (21)

The full QR decomposition has been accomplished by the Givens rotations as
given in Eq. (9).

4 Neural Network Learning with a QR Decomposition

The paper assumes learning of a multilayer Neural Network with any differen-
tiable activation function [10]. The purpose of the learning process is to minimize
error measure function expressed by the formula given below

J (n) =
n∑

t=1
λn−j

NL∑
j=1

ε
(L)2
j (t)

=
n∑

t=1
λn−t

NL∑
j=1

[
d
(L)
j (t) − f

(
x(L)T (t)w(L)

j (n)
)]2

.

(22)

The following equations show how to formulate an entry point for the Givens
algorithm. The first step is to calculate the gradient of error measure function
expressed by Eq. (22) and equal it to 0.

∂ J(n)

∂ w
(l)
i (n)

= 2
n∑

t=1
λn−t

NL∑
j=1

∂ ε
(L)
j (t)

∂ w
(l)
i (n)

ε
(L)
j (t)

= −2
n∑

t=1
λn−t

NL∑
j=1

∂ y
(L)
j (t)

∂ w
(l)
i (n)

ε
(L)
j (t) = 0.

(23)

Equation (23) needs to be transformed further

n∑
t=1

λn−t
NL∑
j=1

∂ y
(L)
j (t)

∂ s
(L)
j (t)

NL−1∑
p=1

∂ s
(L)
t (t)

∂ y
(L−1)
p (t)

∂ y(L−1)
p (t)

∂ w
(l)
i (n)

ε
(L)
j (t)

=
n∑

t=1
λn−t

NL−1∑
p=1

∂ y(L−1)
p (t)

∂ w
(l)
i (n)

NL∑
j=1

∂ y
(L)
j (t)

∂ s
(L)
j (t)

w
(L)
jp ε

(L)
j (t)

=
n∑

t=1
λn−t

NL−1∑
p=1

∂ y(L−1)
p (t)

∂ w
(l)
i (n)

ε
(L−1)
p (t)

=
n∑

t=1
λn−t

Nl∑
q=1

∂ y(l)
p (t)

∂ w
(l)
i (n)

ε
(l)
q (t) = 0,

(24)
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where ε
(l)
p (t) shows the error value in each layer calculated from the last to the

first layer according to Eq. (25)

ε(l)p (t) =
Nl+1∑

j=1

∂ y
(l+1)
j (t)

∂ s
(l+1)
j (t)

w
(l+1)
jp (n) ε

(l+1)
j (t) . (25)

To obtain the desired form, additional transformations need to be performed

n∑
t=1

λn−t
Nl∑

q=1

∂ y(l)
q (t)

∂ w
(l)
i (n)

ε
(l)
q (t)

=
n∑

t=1
λn−t

Nl∑
q=1

∂ y(l)
q (t)

∂ s
(l)
q (n)

∂ s(l)
q (t)

∂ w
(l)
i (n)

ε
(l)
q (t)

=
n∑

j=1

λn−j ∂ y
(l)
i (t)

∂ s
(l)
i (n)

y(l−1)T (t)ε(l)i (t)

=
n∑

t=1
λn−t ∂ y

(l)
i (t)

∂ s
(l)
i (n)

y(l−1)T (t)
[
d
(l)
i (t) − y

(l)
i (t)

]
= 0.

(26)

At this step the result of transformations (26) is linearized

f
(
b
(l)
i (t)

)
≈ f

(
s
(l)
i (t)

)
+ f ′

(
s
(l)
i (t)

)(
b
(l)
i (t) − s

(l)
i (t)

)
(27)

and the following normal equation is given

n∑

t=1

λn−tf ′2
(
s
(l)
i (t)

) [
b
(l)
i (t) − x(l)T (t)w(l)

i (n)
]
x(l)T (t) = 0. (28)

Equation (28) given in a vector form is an entry point for the Givens algorithm

A(l)
i (n)w(l)

i (n) = h(l)
i (n) , (29)

where

A(l)
i (n) =

n∑

t=1

λn−tf ′2
(
s
(l)
i (t)

)
x(l) (t)x(l)T (t), (30)

h(l)
i (n) =

n∑

t=1

λn−tf ′2
(
s
(l)
i (t)

)
b
(l)
i (t)x(l) (t). (31)

To improve equation readability the following substitution is performed

z(l)i (t) = f ′
(
s
(l)
i (t)

)
x(l) (t) . (32)
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Then, Eqs. 30 and 31 are transformed to formulas 33 and 34 respectively

A(l)
i (n) =

n∑

t=1

λn−tz(l)i (t) z(l)Ti (t), (33)

h(l)
i (n) =

n∑

t=1

λn−tf ′
(
s
(l)
i (t)

)
b
(l)
i (t) z(l)i (t), (34)

where

b
(l)
i (n) =

{
b
(L)
i (n) = f−1

(
d
(L)
i (n)

)

s
(l)
i (n) + e

(l)
i (n)

for l = L
for l = 1 . . . L − 1,

(35)

e
(k)
i (n) =

Nk+1∑

j=1

f ′
(
s
(k)
i (n)

)
w

(k+1)
ji (n) e

(k+1)
j (n) for k = 1 . . . L − 1. (36)

In order to solve Eq. (29), the QR decomposition can be used. After completion,
Eq. (29) should be left-sided multiplied by QT

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) , (37)

R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n) . (38)

As shown in Eq. (37), vector h can be rotated along with matrix A. As the
result of the QR decomposition, matrix R is the upper-triangle, so its inversion
is not so expensive. Finally, the weights of neurons in each layer can be adjusted
according to the following equations

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) , (39)

w(l)
i (n) = (1 − η)w(l)

i (n − 1) + η ŵ(l)
i (n) . (40)

5 Research and Results

The presented Givens QR decomposition algorithm has been tested in two sce-
narios:

1. learning XOR logic scheme, which is presented in Subsect. 5.1,
2. learning approximation of the logistic curve. More details are presented in

Subsect. 5.2.

Both scenarios assume the use of hyperbolic tangent as an activation function.
The error criterion of the learning process is formulated by the following equation

NL∑

j=1

[
d
(L)
j (t) − y

(L)
j (t)

]2
≤ γ, (41)
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where γ stands for an acceptable error threshold. During the research two learn-
ing parameters have been adjusted to acquire the shortest convergence time: η
- learning step and λ - forgetting factor. Each item in Tables 1, 2, 3 and 4 has
been produced as average of 100 consecutive runs with constant parameters. At
the beginning of every run the network is fully reinitialized. During every itera-
tion, learning samples have been presented in a pseudo-random order. Activation
function parameters have been set to 1. As a learning acceptance criterion, an
average error epoch has been set to γ = 0.01. Maximal epoch limit has been set
to 600.

5.1 Learning of XOR Logic Scheme

In this scenario of Neural Network consists of two inputs, one output, two lay-
ers and one neuron per layer. Each network input is connected to each layer.
A single epoch consists of four iterations. Example run results are shown in
Fig. 1. In this case an accepted error value is achieved after 6 epochs for the
Givens algorithm and after 164 epochs for the Back Propagation algorithm.

Fig. 1. Example results for learning of XOR logic scheme with the following parame-
ters: Givens algorithm: η = 0.2, λ = 0.3, weight range 2–3. Back Propagation algorithm:
η = 0.1, weight range −0.5–0.5.

Table 1 shows an average success rate of the XOR logic scheme learning
process for different values of parameters η and λ. Good results (about 100 %
success rate) have been achieved for η ≤ 0.4 and λ > 0.3. The worst results have
been achieved for λ > 0.8.

Table 2 presents detailed data about an average epoch count for learning the
XOR logic scheme by the Givens algorithm depending on values η and λ. As
shown in Table 2 the best times have been achieved for λ ≤ 0.8. In this case the
value of η significantly affects an average epoch count. Overall good performance
(short convergence time) and a high success rate is achievable with parameters
in ranges: 0.1 ≤ η ≤ 0.4 and 0.4 ≤ λ ≤ 0.7.
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Table 1. Success rate depending on η and λ values for learning XOR logic scheme

Table 2. Average convergence epoch count depending on values η and λ for learning
the XOR logic scheme

5.2 Learning a Logistic Curve Approximation

A logistic curve is defined by x = x(1 − x), 0 ≤ x ≤ 1. In this scenario
a Neural Network consists of two inputs, one output and two layers. The
first layer consists of five neurons. The last layer consists of only one neuron.
A network input is connected to each neuron of each layer. A single epoch con-
sists of eleven iterations. The example run results are shown in Fig. 2. In this
case an accepted error value is achieved after 4 epochs for the Givens algorithm
and after 157 epochs for the Back Propagation algorithm. Table 3 shows an aver-
age success rate of the logistic curve approximation learning process for different
values of parameters η and λ. In this case, good results (about 100 % success
rate) are slightly different from those for the XOR logic scheme learning. A high
success rate has been achieved for λ ≥ 0.6. The value of η seems not to have
any significant impact on the learning success rate. The worst results have been
achieved for λ ≤ 0.3, and no convergence has been met in this case.

Table 4 presents detailed data about an average epoch count for learning the
logistic curve approximation by the Givens algorithm depending on values η and
λ. As shown in Table 4, the best times have been achieved for λ = 0.9. Also, in
this case the value of η does not affect an average epoch count significantly.
Overall good performance (short convergence time) and high success rate is
achievable for 0.8 ≤ λ ≤ 0.99, which is opposite to the XOR logic scheme
learning process.
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Fig. 2. Example results for learning the logistic curve approximation with the fol-
lowing parameters: Givens algorithm: η = 0.1, λ = 0.89, weight range 0.001–1. Back
Propagation algorithm: η = 0.1, weight range 0.001–1.

Table 3. Success rate depending on values η and λ for learning the logistic curve

Table 4. Average convergence epoch count depending on values η and λ for learning
the logistic curve

6 Conclusion

The following paper covers the method of learning Neural Network by the QR
decomposition performed by the Givens rotations. As shown in Sect. 5 the per-
formance of the presented algorithm is about ten to twenty times faster than
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the Back Propagation one. The Givens rotations can be applied as a learning
method for feedforward Neural Networks. It is very likely that the Givens rota-
tions could be applied in the methods presented in [13,16,19,28]. In the near
future a momentum implementation will be taken under consideration as per [3].
Also, a parallel implementation of QR decomposition done by Givens rotations
will be attempted as proposed in [4–7,25].
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25. Bilski, J., Smol ↪ag, J., Żurada, J.M.: Parallel approach to the Levenberg-Marquardt
learning algorithm for feedforward neural networks. In: Rutkowski, L., Kory-
tkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Arti-
ficial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 3–14. Springer, Hei-
delberg (2015)

26. El-Samak, F.A., Ashour, W.: Optimization of traveling salesman problem using
affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput.
Res. 5(4), 239–245 (2015)

27. Knop, M., Kapuscinski, T., Mleczko, W.K.: Video key frame detection based on
the restricted Boltzmann machine. J. Appl. Math. Comput. Mech. 14(3), 49–58
(2015)

28. Nowak, B.A., Nowicki, R.K., Mleczko, W.K.: A new method of improving classifi-
cation accuracy of decision tree in case of incomplete samples. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2013, Part I. LNCS, vol. 7894, pp. 448–458. Springer, Heidelberg (2013)

29. Serdah, A.M., Ashour, W.M.: Clustering large-scale data based on modified affinity
propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23–33 (2016)



Parallel Learning of Feedforward Neural
Networks Without Error Backpropagation

Jaros�law Bilski1(B) and Bogdan M. Wilamowski2

1 Institute of Computational Intelligence, Czȩstochowa University of Technology,
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Abstract. A parallel architecture of the steepest descent algorithm for
training fully connected feedforward neural networks is presented. This
solution is based on a new idea of learning neural networks without error
backpropagation. The proposed solution is based on completely new par-
allel structures to effectively reduce high computational load of this algo-
rithm. Detailed parallel 2D and 3D neural network learning structures
are explicitely discussed.

Keywords: Forward-only computation · Neural network training ·
Parallel architectures

1 Introduction

Feedforward neural networks have been investigated by many scientists e.g.
[14,19,27,29,30]. The error backpropagation method is relatively simple and
has been often used to learn feedforward networks, see e.g. [12,18,28]. Classi-
cally there are two phases in the error backpropagation method. In the first
phase data are entered into network inputs and calculations are carried forward
to network outputs. In the second phase errors at the outputs of network are
calculated and they are sent back to all neurons. A new approach to calculate
errors in neurons is presented in [29]. In the cited algorithm, all calculations
are performed forward in one phase. This eliminates the necessity of transfer-
ing the error back and introduces the possibility of using pipelining for learning
neural networks. Unfortunately, in the classical approach, neural networks learn-
ing algorithms, like other learning algorihms [14,20–23,26], are implemented on
a serial computer. Due to a large amount of computational operation of learning
algorithms, serial implementation is time consuming and slow. For very large
networks computational load of learning algorithms makes it impractical.

An interesting solution to this problem is the use of high performance dedi-
cated parallel structures, see eg. [2–10,24,25]. This paper presents a new concept
of parallel realisation of the steepest descent learning without error bacpropa-
gation algorithm. A single iteration/epoch of the parallel architecture requires
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 57–69, 2016.
DOI: 10.1007/978-3-319-39378-0 6
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much fewer computation cycles than a serial implementation. Efficiency of this
new architecture seems to be very promising and is explained in the last part of
the paper.

In this paper we investigate a parallel structure for [29]. A sample structure
of a feedforward fully connected network is shown in Fig. 1. The network has nn
(8) neurons and no (2) outputs. The input vector contains ni (2) input signals.

Fig. 1. A fully connected neural network with eight neurons, two inputs and two
outputs

The neuron model is shown in Fig. 2. Each neuron connects to all the inputs
and all the previous neurons. It should be noted that by leaving out some of the
weight connections, a traditional multilayer neural network can be obtained.

Fig. 2. The neuron model

The input vector to the i-th neuron is given by:

[x−ni, . . . , x0, . . . , xi−1]
T (1)
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where:

xj =

⎧
⎨

⎩

1
inpj+ni

yj

j = −ni
−ni + 1 ≤ j
0 < j < i

. (2)

The Eqs. (3) and (4) describe the recall phase of the network:

si (n) =
∑i−1

j=−ni
wij (n) xj (n) , (3)

yi (n) = f (si (n)) , (4)

where f() is the neuron activation function. Correction of network weights is
based on the minimization of the error measurement function, which is defined
as the sum of squared errors of the network outputs:

J (n) =
1
2

∑np

p=1

∑no

m=1
ε
(p)
m

2
(n) =

1
2

∑np

p=1

∑no

m=1
ε
(p)
m

2
(n)
(
d
(p)
m (n)− y

(p)
m (n)

)2
. (5)

The steepest descent rule will be used in learning all weights in order to minimize
the error measurement function.

w
(p)
ij (n + 1) = w

(p)
ij (n) + η

(
−∇J

(p)
ij (n)

)
, (6)

where η is the learning factor. It is often determined a priori, but better results
are obtained by changing its value during the course of the learning process. The
appropriate component of the gradient of the error measurement function takes
the form:

∇J
(p)
ij (n) =

∂J (n)

∂w
(p)
ij (n)

=
∂J (n)

∂s
(p)
i (n)

∂s
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i (n)

∂w
(p)
ij (n)

=
∂J (n)
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(p)
i (n)

x
(p)
j . (7)

By denoted:

δ
(p)
i (n) ∧= − ∂ J (n)

∂ s
(p)
i (n)

(8)

a simpler form of Eq. (7) is obtained:

∇J
(p)
ij (n) =

∂ J (n)

∂ w
(p)
ij (n)

= −δ
(p)
i x

(p)
j . (9)

Therefore, the algorithm (6) takes the form:

w
(p)
ij (n + 1) = w

(p)
ij (n) + ηδ

(p)
i x

(p)
j . (10)

The method of calculation of δ
(p)
i in formula (10) is as follows:
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By defining

f ′(p)
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∂ y
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i (n)
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, (12)
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∂ y
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, i ≤ k (13)

a formula is obtained:

δ
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i (n)
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δ
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Of course, the δ
(p)
ii (n) assumes the following value
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The δ
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ij (n) values are calculated as follows:
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It leads to:
δ
(p)
ij (n) = f ′(p)

i (n)
∑i−1

k=j
w

(p)
ik (n) δ

(p)
kj (n). (17)

As a result, the entire gradient algorithm without backpropagation can be sum-
marized as follows:

si (n) =
∑i−1

j=−ni
wij (n) xj (n) , (18)

yi (n) = f (si (n)) , (19)

δ
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(p)
i x

(p)
j . (23)

The initial values of weights within the network are randomly selected (e.g. from
the interval < [−0.5, 0.5 >]), and the learning coefficient η is usually taken from
the range (0, 1 >.

The weights wij (without weights connecting the neurons with the inputs of
the network) and the deltas δij can be organized in the table (see Table 1) to
show the calculation sequence. The calculations of δij are performed sequentially
row by row from top to bottom of the table. The deltas δij in the i− th row can
be obtained from the deltas and the weights from the previous rows (21):
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Table 1. The computational table contains the weights between neurons and also
derivatives δij Eqs. (20) and (21)

idx 1 2 · · · j · · · i · · · nn

1 δ11 w21 · · · wj1 · · · wi1 · · · wnn1

2 δ21 δ22 · · · wj2 · · · wi2 · · · wnn2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
j δj1 δj2 · · · δjj · · · wij · · · wnnj

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
i δi1 δi2 · · · δij · · · δii · · · wnni

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
nn δnn1 δnn2 · · · δnnj · · · δnni · · · δnn,nn

2 Parallel Realisation

The parallel two-dimensional structure of the presented algorithm uses the archi-
tecture which requires many simple processing elements. Figure 3 shows the two-
dimensional parallel structure for learning a neural network, which bases on the
above table for a fully connected network (Fig. 1) having two inputs, eight neu-
rons and two outputs. The B and D processing elements correspond to the ele-
ments of the main diagonal of the above table. In addition, at the top processing
elements connecting neurons with inputs xi of the network are placed.

Into the structure input signals xi are entered and the processing is performed
row by row. The A processing elements in the appropriate columns calculate
sums for the following neurons (18). The B and D processing elements calculate
the value of the activation functions fi and their derivatives f ′

i . Sums from the
Eq. (21) are calculated in a pipelined manner row by row through the C and E
processing elements to determine the δij values as a result. Then the structure
exposes outputs of the network, and next, after error calculations based on the
desired values di, the corrections of weights in the network are realized (23). The
D and E processing elements differ from the B and C processing elements that
are also included in the calculation formulas (22). The cycle is repeated for the
next patern. A few main kinds of functional processing elements are used in
the proposed solution (Fig. 4). The A processing elements fulfill three functions:
calculate the sum of the formula (18), send the weights to the elements B, C,
D and E, also update the weights in accordance with formula (23) based on
the δi received from the B and D processing elements (in the second version
the momentum is included). The B processing elements calculate the values
of activation functions and their derivatives, send them respectively to A and
C processing elements. In addition, they compute firsts addends from formula
(21) and δi by multiplying the derivatives by the total sums sumb calculated
by the E processing elements. The C processing elements calculate and store δij

values, then compute the successive partial sums of sumf (21). The D processing
elements operate similarly to the B elements, and additionally calculate the
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Fig. 3. The parallel two-dimensional structure for learning neural networks

values εi and δi. The E processing elements additionally calculate the sumb
sums from formula (22) and send them to the B and D processing elements.

Figure 5 shows a three-dimensional structure. It is based on the modified
two-dimensional structure (Fig. 3). The main aim is to obtain a full pipelining
during network learning. It is achieved by separating some of the functions of
B, D, C and E processing elements and moving them to the T and S processing
elements. In this structure weights update is performed after the epoch only. This
also necessitates extension of the structure by additional delaying Z elements.
The operation of the structure is as follows:

– inputs are given in a pipelined manner;
– successive values are calculated in rows;
– all weights are given simultaneously to the T and S processing elements;
– at the same time known values of δij are transmitted to all the S processing

elements that are above them;
– the T and S processing elements forming the “staircase” calculate in a

pipelined manner the sums sumf from the Eq. (21);
– the δi are calculated in the B and D processing elements;
– based on the above the cumulative adjustments of weights are obtained after

the epoch in the A processing elements.

The modified A - E processing elements are shown in Fig. 6 and the addi-
tional S, T and Z processing elements in Fig. 7. The A processing elements have
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Fig. 4. The processing elements for 2D structure for learning neural networks

been enhanced to support calculating of cumulative network weights adjustments
after the epoch. The A processing element is presented in two versions: without
and with the momentum component. The B - E processing elements have been
simplified, and some of their functions have been taken over to the additional T
and S elements.

3 Computational Results

In all the cases, the number of computing cycles has been determined. Tables 2,
3, 4, 5 and 6 show the numbers of computational cycles per one iteration for
serial computing, per one epoch for serial computing, per one iteration for 2D
parallel computing, per one epoch for 2D parallel computing and per one epoch



64 J. Bilski and B.M. Wilamowski

Fig. 5. The three-dimensional structure for neural network learning

Fig. 6. Processing elements of the three-dimensional structure for neural network
learning
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Fig. 7. Additional processing elements of the three-dimensional structure for neural
networks learning

Table 2. Number of cycles per one iteration for serial computing

Operation Number of cycles per one iteration for serial computing

+/− n3

6
+ n2

2
+ 2ni + no − 1

2
o2 − 2n

3
+ 1 1

2
o

∗ n3

6
+ n2 + 2ni + no − 1

2
o2 − n

6
+ i + 1

2
o + 1

f/f ′ 2n

Table 3. Number of cycles per one epoch for serial computing

Operation Number of cycles per one epoch for serial computing

+/−
(

n3

6
+ n2

2
+ 2ni + no − 1

2
o2 − 2n

3
+ 1 1

2
o
)

p

∗
(

n3

6
+ n2 + 2ni + no − 1

2
o2 − n

6
+ i + 1

2
o + 1

)
p

f/f ′ 2np

Table 4. Number of cycles per one iteration for 2D parallel computing

Operation Number of cycles per one iteration for 2D parallel computing

+/− n + i + 2

∗ n + 3

f/f ′ n

Table 5. Number of cycles per one epoch for 2D parallel computing

Operation Number of cycles per one epoch for 2D parallel computing

+/− (n + i + 2) p

∗ (n + 3) p

f/f ′ np

for 3D parallel computing, respectively. The formulas for cycles of addition,
multiplication and function computation are presented separately. Symbols i, n,
o and p denote the numbers of inputs, neurons, outputs and patterns respectively.
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Fig. 8. The number of computing cycles (1 column) for the serial (TS), 2D (T2D) and
3D (T3D) calculations. Charts of performance factors (column 2) for the 2D structure
and 3D structure (relative to serial and 2D respectively)

Figure 8 shows the charts of computing cycles number and the charts of
performance factors PS2D = TS/T2D, PS3D = TS/T3D and P2D3D =
T2D/T3D for the neural network with 2 inputs and 1 output. It was assumed
that there are 10 to 100 learning patterns in each epoch and 2 to 20 neurons in
a network.



Parallel Learning of Feedforward Neural Networks 67

Table 6. Number of cycles per one epoch for 3D parallel computing

Operation Number of cycles per one epoch for 3D parallel computing

+/− n + i + 3

∗ n + 4

f/f ′ n + p − 1

4 Conclusion

In this paper the parallel structures of the steepest descent learning algorithm
without error bacpropagation for a fully connected feedforward neural network
are presented. We can compare computational performance of the parallel struc-
ture of the proposed learning algorithm with a sequential solution for a network
with two inputs, one output, up to N = 20 neurons and up to P = 100 patterns
of the learning data. The number of computational cycles of the presented par-
allel 3D architecture displays only linear growth while in a serial solution this
number is of order O(n3p). The performance factor (PS3D = TS/T3D) of par-
allel 3D realisation achieves 1250 for N = 20 neurons and P = 100 patterns, and
it grows fast when these numbers grow, see Fig. 8. It has been observed that the
performance of the proposed solution is very promising. A similar parallel app-
roach can be used for other advanced learning algorithms of feedforward neural
networks, see eg. [1,7,9]. In future research it might be possible to make an
attempt at designing a parallel realisation of learning in other methods [29–31],
and structures [20–23] and various fuzzy [15–17], and neuro-fuzzy structures
[11,16].
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Abstract. In this paper the results of parallelizing an image encryption
algorithm based on chaotic neural networks are presented. A data depen-
dence analysis of loops is applied in order to parallelize the algorithm.
The parallelism of the algorithm is demonstrated in accordance with the
OpenMP standard. As a result of this study, it is stated that the most
time-consuming loops of the algorithm are suitable for parallelization.
The efficiency measurements of a parallel algorithm working in standard
modes of operation are shown.

Keywords: Neural network · Chaos · Image encryption · Paralleliza-
tion · OpenMP

1 Introduction

One of the very important functional features of cryptographic algorithms is
cipher speed. This feature is significant in case of block ciphers since they usu-
ally work on large data sets. Thus even not much differences of speed may
cause the choice of the faster cipher by the user. Therefore, it is all-important
to parallelize encryption algorithms in order to achieve faster processing using
multi-core processors or multiprocessing systems. In recent years many chaos-
based ciphers were proposed. Futhermore neural networks are often introduced
to design encryption algorithms considering the complicated and time-varying
nature of the structures. Chaotic neural networks (CNNs) are particulary suit-
able for data protection. Nowadays, there are many descriptions of various
ciphers based on chaotic neural networks, for instance [1–10]. The critical issue
in such ciphers is program implementation.

Unlike parallel implementations of classical block ciphers, for instance AES
[11], IDEA [12], there are only a few parallel implementations of block ciphers
based on chaotic neural networks, for example [13–15]. Being seemingly a
research gap it is absolutely fundamental to show real functional advantages and
disadvantages of the encryption algorithm using software or hardware implemen-
tation.

c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 70–80, 2016.
DOI: 10.1007/978-3-319-39378-0 7
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The main contribution of the study is developing a parallel algorithm in
accordance with OpenMP standard of the image encryption algorithm designed
by Bigdeli et al. and presented in [16] based on transformations of a source code
written in the C language representing the sequential algorithm.

This paper is organized as follows. The next section briefly describes the
image encryption algorithm based on chaotic neural networks. In Sect. 3, par-
allelization process is fully characterized. In Sect. 4, the experimental results
obtained for developed parallel algorithm are presented. Finally, concluding
remarks are given in Sect. 5.

2 Description of the Image Encryption Algorithm Based
on Chaotic Neural Networks

The image encryption algorithm based on chaotic neural networks [16] is com-
posed of three separate blocks: chaotic neuron layer (CNL), permutation neuron
layer (PNL) and a chaotic key generator. Each of the first two layers is 3-input
3-output and includes three neurons. The chaotic key generator block supports
these layers by their corresponding weights and biases.

The encryption process consists of the following steps:

1. Select a sequence of 160 bits as the authentication code K, and then split
them into five groups, that are further mapped into nine initial parameters
x1(0), y1(0), z1(0), x2(0), y2(0), z2(0), x3(0), y3(0) and z3(0). Next, set R as
the number of iterations, and N0 as the complementary secret keys.

2. Iterate three chaotic systems- Chua [17], Lorenz [19] and Lü [18] using a
fourth order Runge–Kutta algorithm for N0 times to obtain x1(N0), y1(N0),
z1(N0), x2(N0), y2(N0), z2(N0), x3(N0), y3(N0) and z3(N0). Set the iteration
number r = 1.

3. Since D is an N × N pixels image, for N0 + i, i = (r − 1) × (N × N) + 1, ...,
r × (N × N) iterate the three chaotic systems, where i = 1, 2, ... represents
the i-th iteration of chaotic systems. For each iteration compute Wdl, Bdl

and Al matrices in the following way:

Wdl,i =

⎡

⎣
x1(N0 + i) x2(N0 + i) x3(N0 + i)
y1(N0 + i) y2(N0 + i) y3(N0 + i)
z1(N0 + i) z2(N0 + i) z3(N0 + i)

⎤

⎦ + αI, (1)

a(j, i) = mod(|xj(N0 + i)| − floor(xj(N0 + i)) × 1014, 255) + 1, (2)

(j = 1, 2, 3),
Al,i = [a(1, i), a(2, i), a(3, i)]T , (3)

b(j, i) = dec2bi(mod(|yj(N0 + i)| − floor(yj(N0 + i))) × 1014, 255) + 1, (4)

(j = 1, 2, 3),
Bdl,i = [b(1, i), b(2, i), b(3, i)]T , (5)
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where Wdl,i is the weight matrix, Bdl,i and Al,i are the bias matrices of
chaotic neuron layer and dec2bi(x) converts decimal number x to a binary
value. Besides, I is a 3 × 3 identity matrix, and the parameter α prevent
from occurrence the singularity problem in Wdl,i

−1 matrix (that is necessary
in decryption process).
In order to determine the weight matrix of permutation neuron layer Wcl, let
us define:

Di = [x1(N0 + i), y2(N0 + i), z3(N0 + i)], (6)

w1,i = arg(max(Di)), (7)

w2,i = arg(min(Di)), (8)
where arg(max(Di)) and arg(min(Di)) are the index of the maximum value
in the vector Di and the index of the minimum value in the vector Di, respec-
tively. Then the non-zero term of the first row and the second row of the
matrix Wcl,k is determined as:

Wcl,i(1, w1,i) = Wcl,i(2, w2,i) = 1, (9)

and, the non-zero term of the third row is determined such that it exists just
one ′1′ in each row/column of the matrix Wcl,k. Then, the control parameters
of the Arnold cat map [21] are derived as [22]:

pi = floor[mod(z1(N0 + i) × 224), N)], (10)

qi = floor[mod(mod(z1(N0 + i) × 248, 224), N)], (11)
4. Suppose that the P is N × N pixels plain image. Then, corresponding to

each pixel k, there is a vector Xk of order three with the RGB components of
the pixel as its entries Xk = [Rk, Gk, Bk]T , k = 1, ..., (N × N). Then the total
color information of the image will be a 3 × (N × N) matrix X with columns
Xk, k = 1, ..., (N × N). Compute the matrix X as the input of chaotic neuron
layer.

5. In order to generate the secret information, several operations are applied to
each column of matrix X, i.e. Xk, k = 1, ..., (N × N) and
i = (r − 1) × (N × N) + 1, ..., r × (N × N) as:

Yi,k = Wdl,iXk, (12)

- Normalization (mapping the values of Y1,k into interval [1,255]):

Y2,k = N(Y1,k), (13)

- Manipulation:

Y3,k = floor(Y2,k) + mod(Y2,k, f loor(Y2,k)) = Y31,k + Y32,k, (14)

- XOR operation:
Y4,k = Y31,k ⊕ Bdl,i, (15)

- Applying chaotic activation function:

Y5,k = f(Y4,k, Al,i) + Y32,k, (16)

where f() is the chaotic tent map [20].
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6. The output of the chaotic neuron layer is the 3 × (N × N) matrix Y5 which
is then permuted in two stages by permutation neuron layer. At first, each
column of Y5 is linearly permuted as:

Y6,k = g(Wcl,iY5,k + Bcl,i), (17)

where g(x) = x, Bcl,i = [0, 0, 0]T and the calculation of weight matrix Wcl,i

is as presented in step 3.
7. The output of the linear permutation stage are shuffled. Therefore, each row

of matrix Y6 is arranged in a N × N matrix and thus three output N × N
matrixes are provided. Then, each matrix is permuted in two-dimensional by
Arnold cat map permutation algorithm. Considering the three nonlinearly
permuted matrices as three planes of encrypted image(red, green, blue), the
output encrypted image is derived, which is called Y7.

8. If the current round is not the final round of encryption (r < R), then set
P = Y7. Set r = r + 1 and return to step 3. Otherwise, set Pfinal = Y7 is the
final cipher image and encryption process is completed.

In the decryption process (symmetric to encryption one), the reverse of
encryption process is performed. Therefore, the inverse of PNL and CNL opera-
tions should be applied to the cipher image, iteratively. More detailed description
of encryption algorithm designed by Bigdeli et al. is given in [16].

3 Parallelization Process of Encryption Algorithm

Given the fact that proposed encryption algorithm can work in block manner
it is necessary to prepare a C source code representing the sequential algorithm
working in Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher
Feedback (CFB), Output Feedback (OFB) and Counter (CTR) modes of oper-
ation. The source code of the encryption algorithm in the essential ECB mode
contains thirty for loops. Twenty two of them include no I/O functions. Some of
these loops are time-consuming. Thus their parallelization is critical for reducing
the total time of the parallel algorithm execution.

In order to find dependencies in program a research tool for analyzing array
data dependencies called Petit was applied. Petit was developed at the University
of Maryland under the Omega Project and is freely available for both DOS and
UNIX systems [23].

The OpenMP standard was used to present parallelized loops. The OpenMP
Application Program Interface (API) [24,25] supports multi-platform shared
memory parallel programming in C/C++ and Fortran on all architectures
including Unix and Windows platforms. OpenMP is a collection of compiler
directives, library routines and environment variables which could be used to
specify shared memory parallelism. OpenMP directives extend a sequential pro-
gramming language with Single Program Multiple Data (SPMD) constructs,
work-sharing constructs, synchronization constructs and help to operate on both
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shared data and private data. An OpenMP program begins execution as a sin-
gle task (called a master thread). When a parallel construct is encountered,
the master thread creates a team of threads. The statements within the parallel
construct are executed in parallel by each thread in a team. At the end of the par-
allel construct, the threads of the team are synchronized. Then only the master
thread continues execution until the next parallel construct will be encountered.
To build a valid parallel code, it is necessary to preserve all dependencies, data
conflicts and requirements regarding parallelism of a program [24,25].

The process of the encryption algorithm parallelization can be divided into
the following stages:

– carrying out the dependence analysis of a sequential source code in order to
detect parallelizable loops;

– selecting parallelization methods based on source code transformations;
– constructing parallel forms of program loops in accordance with the OpenMP

standard.

There are the following basic types of the data dependencies that occur in
for loops: a Data Flow Dependence, a Data Anti-dependence and an Output
Dependence [26,27]. Additionally, control dependence determines the ordering
of an instruction i, with respect to a branch instruction so that instruction i is
executed in a correct program order.

To find the most time-consuming loops of the algorithm, experiments were
carried out for an about 4 megabytes input file.

It appeared that the algorithm has two computational bottlenecks: the first is
enclosed in the function bigdeli enc() and the second is enclosed in the function
bigdeli dec(). The bigdeli enc() function enables enciphering of the whichever
number of data blocks and the bigdeli dec() one does the same for deciphering
process (analogically to similar functions of the classic block ciphers like DES-
the des enc(), the des dec() presented in [28]). Thus the parallelization of for
loops included in these functions has a unique meaning.

The bodies of the bigdeli enc() and the bigdeli dec() functions are as follows:

void bigdeli_enc(bigdeli_context *ctx,UINT8 *input,UINT8 *output,
int input_length){

for (int i = 0; i<NUMBER_OF_BLOCKS; i++) {
Encryption(ctx, input, output);
input+= BLOCKSIZE;
output+= BLOCKSIZE;

}
};

void bigdeli_dec(bigdeli_context *ctx,UINT8 *input,UINT8 *output,
int input_length){

for (int i = 0; i<NUMBER_OF_BLOCKS; i++) {
Decryption(ctx, input, output);
input+= BLOCKSIZE;
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output+= BLOCKSIZE;
}

}.

Taking into account the strong similarity of the above functions only the first
one is examined. Subsequently this analysis is valid in the case of the second one.

In order to apply the data dependencies analysis of the loop included in
bigdeli enc() function the body of the Encryption() function should be put in
this loop.

Definitions of the tentMap(), catMap(), ChuaSystem(), LorenzSystem(),
LuSystem(), Normalization(), Manipulation(), XOR(), chaoticActivation(), f(),
and g() functions included in the body of the Encryption() function are the
following:

double tentMap(double param,double initial,int iter) {
for (int z = 0; z < NUMBER_OF_ITERATIONS; z++) {

for (int i=0;i<iter;i++) {
if ((initial>=0) && (initial<param))

return (initial/param);
else

return((1-initial)/(1-param));
}

}
};

void catMap(char output[][N+1], char input[][N+1]){
for(int i = 0; i < N; i++) {

for(int j = 0; j < N; j++) {
output[(i + j)
}

}
};

void ChuaSystem(double x,double y,double z,
double *xx,double *yy,double *zz){

*xx = 10 * y - 20 * x * x * x + 10.0 * x / 7.0;
*yy = x - y + z;
*zz = -100.0 * y / 7.0;

};

void LorenzSystem(double x,double y,double z,
double *xx,double *yy,double *zz){

*xx = -10 * x + 10 * y;
*yy = 28 * x - y - z * x;
*zz = -8.0 / 3.0 * z + x * y;

};
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void LuSystem(double x,double y,double z,
double *xx,double *yy,double *zz){

*xx = 36 * y - 36 * x;
*yy = - x * z + 20 * x;
*zz = x * y - 3 * z;

};

void Normalization(double *yy double x,
double q1, double q2, double q3){

*yy = q1 * tanh(q2 * x) * q3);
};

void Manipulation(double y, double *yy){
*yy = floor(y) + mod(y, floor(y)));

};

void XOR(int y, int b, int *yy){
*yy = y ^ b;

};

void chaoticActivation(double y, double y2, double a, int iter,
double *yy){

*yy = tentMap(y2,a,iter) + mod(y, floor(y));
};

void g(double x,double *yy) {
*yy = x;

}.

The actual parallelization process of the loop included in the bigdeli enc()
function consists of the five following stages:

– removal of the chaotic key generator operations, construction of matrices Wdl,
Bdl, Al from the chaotic neuron layer (CNL), construction of matrices Wcl,
Bcl and control parameters p, q from the permutation neuron layer (PNL);
all these calculations have to be executed before starting the chaotic neuron
layer operations;

– insertion of the following statements in the beginning of the loop body:
plaintext = &input[BLOCKSIZE*i];
ciphertext=&output[BLOCKSIZE*i];

– removal from the end of the loop body the following statements:
input+= BLOCKSIZE;
output+= BLOCKSIZE;

– insertion of the following statements:
ChaoticNeuronLayer(ciphertext, plaintext, wdl, bdl, al);
PermutationNeuronLayer(ciphertext, wcl, bcl, p, q);
the first statement carries out the operations specified in chaotic neuron
layer (normalization, manipulation, XOR, chaotic activation), the second one
accomplishes the operations included in permutation neuron layer (linear per-
mutation, cat map permutation).
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– suitable variables privatization (i, ii, plaintext, ciphertext, wdl, bdl, al, wcl,
bcl, p, q, y1, y31, y4, y5, y6) using OpenMP (based on the results of data
dependence analysis) for the loop indexing by i;

– adding appropriate OpenMP directive and clauses (#pragma omp parallel
for private() shared()) for the loop indexing by i.

The steps above result in the following parallel form of the loop include in
the bigdeli enc() function in accordance with the OpenMP standard:

#pragma omp parallel private (i, ii, plaintext, ciphertext,
wdl, bdl, al, wcl, bcl, p, q,
y1, y31, y4, y5, y6)

#pragma omp for
for (i=0; i<nblocks; i++) {

plaintext=&input[BLOCKSIZE*i];
ciphertext = &output[BLOCKSIZE*i];
for(ii=0; ii<R; ii++) {

ChaoticNeuronLayer(ciphertext,plaintext, wdl, bdl, al);
PermutationNeuronLayer(ciphertext, wcl, bcl, p, q);

}
}.

4 Experimental Results

In order to study the efficiency of the presented encryption algorithm eight Quad-
Core Intel Xeon Processors 7310 Series - 1.60 GHz and the Intel C++ Compiler
(version 13.1.1 20130313 that supports the OpenMP 4.0) were used. The results
received for an about 5 megabytes input file (8 bit per pixel image) using two,
four, eight, sixteen and thirty-two cores versus the only one have been shown in
Tables 1 and 2. The number of threads is equal to the number of processors.

The total running time of the presented encryption algorithm consists of the
following operations: data receiving from an input file, data encryption, data
decryption and data writing to an output file.

Thus the total speed-up of the parallel encryption algorithm depends heavily
on the following four factors:

– the degree of parallelization of the loop included in the bigdeli enc() function;
– the degree of parallelization of the loop included in the bigdeli dec() function;
– the method of reading data from an input file;
– the method of writing data to an output file.

The results confirm that the loops included both the bigdeli enc() and the
bigdeli dec() functions are parallelizable with high speed-up (see Table 1).

The block method of reading data from an input file and writing data to
an output file was used. The following C language functions and block sizes
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Table 1. Speed-up of the parallel Bigdeli et al. image encryption algorithm in the ECB
mode of operation.

Number of threads Speed-up of the
encryption process

Speed-up of the
decryption process

Speed-up of the
whole algorithm

1 1.00 1.00 1.00

2 1.87 1.95 1.41

4 3.64 3.84 1.82

8 5.81 6.21 2.20

16 6.01 6.33 2.40

32 5.83 6.17 2.20

Table 2. Speed-ups of the parallel Bigdeli et al. image encryption algorithms in the
CTR, CBC and CFB mode of operation.

Number of threads Operation Speed-up of the
CTR mode of
operation

Speed-up of the
CBC mode of
operation

Speed-up of the
CFB mode of
operation

1 Encryption 1.00 1.00 1.00

1 Decryption 1.00 1.00 1.00

2 Encryption 1.90 1.00 1.00

2 Decryption 1.90 1.90 1.90

4 Encryption 3.50 1.00 1.00

4 Decryption 3.70 3.70 3.70

8 Encryption 5.70 1.00 1.00

8 Decryption 6.00 6.00 6.00

16 Encryption 5.90 1.00 1.00

16 Decryption 6.10 6.10 6.10

32 Encryption 5.70 1.00 1.00

32 Decryption 6.00 6.00 6.00

was applied: fread() with 1024-bytes blocks for data reading and fwrite() with
256-bytes blocks for data writing.

In accordance with Amdahl’s Law the maximum speed-up of the encryption
algorithm is limited to 4.60, because the fraction of the code that cannot be
parallelized is 0.2175.

The encryption algorithm was also parallelized in the following standard
modes of operation (CTR, CBC and CFB). The results are presented in Table 2.

When the encryption algorithm operates in the ECB and CTR modes of
operation, both the encryption and decryption processes are parallelizable and
speed-ups of the whole algorithm are similar (see details- Tables 1 and 2). For the
CBC and CFB modes only the decryption process is parallelized so the values of
speed-up are lower than for the ECB and CTR modes of operation (see Table 2).
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5 Conclusions

In this paper, the parallelization process of the image encryption algorithm
designed by Bigdeli et al. has been shown. The time-consuming for loops
included in the functions responsible for the encryption and decryption processes
are parallelizable. The experiments have shown that the application of the par-
allel encryption algorithm for multiprocessor and multi-core computers would
considerably boost the time of the data encryption and decryption. The speed-
ups received for these operations can be admitted as satisfactory. Moreover, the
developed parallel encryption algorithm can be also helpful for hardware and
GPGPU implementations
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Abstract. Type and structure of artificial neural network (ANN) have
significant impact on its performance. Furthermore, networks of the same
type and structure often perform differently due to the random distri-
bution of initial weights. These issues cause the practical use of ANNs
a challenging task. Some of the mentioned drawbacks can be eliminated
using ensembles of ANNs. However, relevance of a single ensemble mem-
ber might be different in different classification or regression tasks. In this
paper we present an autonomous ensemble design method that includes
selection of a subset of ANNs most suitable for solving of a specific task.
The ensemble is able to change its structure by choosing the electors with
respect to their training performance. The proposed method is tested in
practical regression tasks in civil engineering structures monitoring.

Keywords: ANN · Ensemble · SHM

1 Introduction

Structural Health Monitoring (SHM) is a field of growing importance. Autnomo-
nous detection and localization of damage in structures allows both significant
increase in their operational safety and reduction of expenses connected with
their operation. SHM is usually performed on a basis of data gathered in peri-
odic or continuous examinations with use of non-destructive techniques. One can
enumerate lots of methods that can provide data for monitoring tasks: ultrasonic
testing [1], vision-based inspection [2], modal analysis [3], operational variables
[4] and many more. SHM is usually based on comparison of structure’s behavior
in known, intact state (baseline) with one observed in unknown condition. The
differences are evaluated by autonomous systems and used in order to detect,
localize and quantify the damage. The most simple solution is to quantify the
difference between baseline and unknown state and apply a threshold: If a differ-
ence exceeds certain value, the system would interpret corresponding structure’s
state as damaged and would raise an alarm. However, in most of the practical
cases, the state of a structure is not only affected by damage, but also by environ-
mental or operational factors (e.g. temperature, changes of loading etc.) which
c© Springer International Publishing Switzerland 2016
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renders the simple threshold-based damage detection a difficult task. Usually,
state of a structure can successfully be retrieved only by using many sources of
information simultaneously. The multiparametric classification of data require
advanced processing algorithms. Artificial Neural Networks (ANNs) are often
used in this scope.

Though the field is well-developed, there is still much interest in application
of soft computing methods for the purpose of SHM [5]. One can point out many
recent implementations of ANNs: mulitlayered perceptron (MLP) networks have
been proven to solve the problem of multiparametric classification for the pur-
pose of ultrasonic guided wave based monitoring of aircrafts [6,7], structural
optimization [8] or prediction of composite fatigue lifetime [9]. Self organizing
maps (SOM) have been successfully implemented for damage detection in com-
posite plates [10]. Radial-basis function networks (RBFs) have been employed
for the purpose of monitoring wind turbine blades [11].

Choice of a network structure including both type and number of neurons
is usually a challenging task. Each structure has its strengths and weaknesses.
The type of structure and its size should be based on distribution of data in
data space. Partial overlapping of classes or complicated separation margins
require usage of large networks, while small amount of data would require small
networks not prone to over-fitting. Clustering of data would increase the effec-
tiveness of non-supervised or RBF networks, while uniform spread of data would
cause MLPs to be more efficient. Unfortunately, the distribution of data in clas-
sification space is not easily observed. The most commonly used technique of
tailoring the network to a task is a trial and error method, based on operator’s
experience. Another issue that needs to be addressed is the fact that in prac-
tice the requirement of uniformity of training and testing datasets is sometimes
hard to fulfill, thus the network that is the most effective on training dataset
might not provide similar results in operational phase. An illustrative example
is the task of fatigue damage detection in a large structure. As damaging a large
structure is usually too costly to be executed, classifiers are usually trained on
data from limited amount of experiments performed in laboratory conditions,
on a subcomponent scale. One can easily observe that data gathered even in
the most extensive experimental programme cannot cover all possible damage
scenarios that may arise in operational phase. Therefore, should the autonomous
data interpretation systems be reliable, they need to be effective even if the data
obtained in monitoring are not fully covered by training examples.

Since it was proven that ANN cooperation can show results superior to
usage of single ANNs [12], application of different ANN cooperation approaches
attracted much attention over recent decades. Out of numerous possibilities,
modular and ensemble-based classifiers are arguably the most popular [5,13].
The former rely on ANNs that are experts in specific categories. The data get
assigned into category and classified by a proper expert. In SHM such solution
have been successfully adapted for gas leakage detection [14]. The latter achieve
decision with use of ANNs that each perform independent diagnoses of their
own. Weighted average of individual votes is treated as an output of a whole
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classifier. Ensemble members are usually chosen using overproduce and choose
strategy that incorporate training of multiple candidate electors and then choice
of the most accurate subset [15]. Although many methods were proposed for this
task [16], a simple choice of electors that performed best in training phase is still
very popular. Ensemble approach found numerous applications in different areas
of engineering [17–20].

The aim of research presented in this paper is to design a method that is
capable of efficient data classification or regression in various practical applica-
tions of SHM. In order to achieve good performance over different datasets it
should be able to self-adjust its structure. The robustness of the decision will
be achieved through usage of an ensemble of different networks. The method is
validated in two distinct experiments regarding practical examples of SHM.

The remainder of this paper is organized as follows: Sect. 2 provides details
of ensemble design used by authors. Section 3 provides two distinct experiments
in which the ensemble classifier was validated. Finally, Sect. 4 summarizes and
concludes the article.

2 Ensemble of ANNs

2.1 Principle of Operation

The procedure includes training a number of networks of three types on a subsets
of training data. Evaluation of their performance on a remaining training data
allows the classifier to decide whether or not they should be included as electors
in final esemble. Following paragraphs provide insight into types of electors that
are included in starting pool. The motivation behind the choice of candidate
electors was to provide elector pool that is versatile, able to perform both global
and local classification and regression tasks and to respond both to training
labels and natural clustering of data. Additional requirement was that electors
should be well-established in SHM and proven to be effective in practical tasks.

2.2 Candidate Electors

MLP. A network most commonly used in data classification for SHM purpose.
Its main advantages include simplicity of implementation and wide availability
of software packages that include MLPs. MLP is usually trained in supervised
mode with back-propagation algorithm. It divides data space with hypersurfaces.
The more neurons in layers, the more hyperplanes can be used for data classi-
fication. The performance of the network in training phase is adjusted globally:
each neuron performs global classification, the superposition of signals from all
neurons is used for output calculation.

RBF. A network similar in the idea to MLP, however here the data space is
divided by hyperspheres. The classification is performed locally. Value returned
by the classifier is influenced only by neurons placed in close proximity to the
data point under evaluation. In cases where data are clustered it can operate in
more efficient way than MLP network.
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SOM. Self-Organizing Maps trained in non-supervised mode achieve the best
performance when the number of classes for separation is unknown or when the
data are clustered. SOM networks usually require additional interpretation of
result: as they are not provided with target values in training phase, they can
not return labels for data that can refer to any physical state of object under
monitoring by their own.

2.3 Ensemble Design Algorithm

For each potential ensemble member the training data are divided into subset
used for training (A “train” set, 90 % of samples) and subset used for elector
evaluation (A “test” set, 10 % of samples). All networks are arranged in order
of their performance (measured by MSE metric) on the latter. In the next step,
10 best networks are chosen as final elector set for the classifier. Each of the
networks can be assigned a voting weight based on their position in rank, so the
best networks have the highest impact on the resulting value. These weights can
later be modified based on their performance, provided that additional means
of network evaluation are available during their operational phase. However, in
case presented in this paper all weights are set to 1. Schematic illustration of
training and operation of ensemble is depicted in Figs. 1 and 2.

Fig. 1. Training of electors and ensemble design procedure

Fig. 2. Operational phase of an ensemble: assessment of new data
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3 Experimental Evaluation

3.1 Data Acquisition

In order to evaluate performance of a developed ensemble ANN classifier two
experiments have been conducted:

Experiment 1. In aircraft maintenance, detection of fatigue cracks that develop
in its structure is an issue of great importance. Several aircraft panels were sub-
jected to a periodic loading to create fatigue damage. One of them was used
as source of data for ensemble classifier training and evaluation. The panel
was instrumented with piezoelectric transducers that were used for generation
and acquisition of ultrasonic signals. Four features that measured the difference
between signal and a baseline, were used as an input data for ANN classifier. The
purpose was to detect damage on each sensing path and assess its extent. Tar-
get values presented to networks in training phase ranged from 0 to 1, where 0
denoted lack of damage in structure and 1 denoted large damage placed directly
onto signal propagation path. In a training phase ANN classifier was presented
with 110 data samples. Data for evaluation of the ensemble included 46 samples
acquired on the same specimen by different sensor pairs. Data were acquired
under a LIDER/25/43/L-2/10/NCBiR/2011 project and used thanks to the
courtesy of the Polish Air Force Institute of Technology.

Experiment 2. The maintenance and monitoring of wind turbines is often
based on Supervisory Control And Data Acquisition (SCADA) systems, which
periodically acquire operational and environmental characteristics for the tur-
bine. The damage can be detected indirectly, on a basis of differences between
expected and observed performance of a turbine in given environmental condi-
tions. The result predicted by the system can later be compared with acquired
values. Differences between prediction and measurement can be used as a dam-
age indicator. Several characteristics (Wind speed, wind direction, rotor speed
and generator temperature) were used as inputs for the ANN classifier. The
purpose of ANN was to predict power output in given conditions. Training data
consisted of 3450 data samples acquired during three consecutive weeks of tur-
bine’s operation. New data for ensemble evaluation incorporated 860 samples
acquired during fourth week. Target values presented to networks in training
phase ranged from 0 to 2000 kW. Data were used thanks to the courtesy of RP
GLOBAL Poland.

3.2 Experimental Setup

Main purpose of this work was to create robust classifier applicable in different
practical situations. Therefore, initial points for a classifier in both problems were
identical. Pool of electors to choose from consisted of 80 networks presented in
Table 1. The range of networks’ size was determined based on a literature search
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Table 1. Electors in initial pool

Type of a network Number of networks Range of neuron count

MLP, 1 hidden layer 20 1 – 50

MLP, 2 hidden layers 20 1 – 50

SOM 20 1 – 200

RBF 20 1 – 200

and authors experience - to cover most of typical ANN applications in SHM.
Training of the networks and choice of a final elector group for the classifier was
performed according to the procedure described in Sect. 2.3. In each case result
obtained by voting classifier is compared both to network that obtained highest
performance on a training set and averaged performance of all the networks in
the electors pool.

3.3 Results

Efficiency of the ANN classifier in fatigue damage assessment and wind turbine
power output prediction task can be observed in Table 2. Final sets of electors
chosen by a classifier, arranged in order of their training performance, are given
in Tables 3 and 4. Ensemble members that obtained better performance than
the final ensemble are marked in bold. Visualization of results is given in Figs. 3
and 4.

Results of the first experiment are predictable: networks that scored high on
a training data were usually efficient also in “operational phase”, but the depen-
dance between training and testing performance is not linear. Some networks
relatively weak in the training phase (but still efficient enough to be chosen as
final electors) provided high results on testing data.

In the second experiment, however, the networks that scored the best results
on new data evaluation set were significantly weaker in a training stage. Over-
all classifier performance is not only superior to that of first elector, but also
better than most of electors treated alone (only the 7th elector scored slightly
better than the whole ensemble). Such difference in results of both experiments
is caused mainly by non-uniformity of training database and new data obtained
in the second example. Turbine happened to produce power almost continuously
during training data acquisition. Very small amount of training data acquired

Table 2. Classifier efficiency in both tasks

Classifier MSE experiment 1 MSE experiment 2

Ensemble classifier 0.0112 0.000211

Network with best performance on a training set 0.0108 0.000589

Average network from the elector pool 0.0309 0.000368
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Table 3. Choice of electors in fatigue damage detection experiment. Networks that
scored higher than the whole ensemble are marked in bold.

No. Elector MSE over test subset MSE obtained for new data

1 MLP, 2 hidden layers, 7 neurons 0.0116 0.0108

2 MLP, 1 hidden layer, 34 neurons 0.0149 0.0743

3 MLP, 2 hidden layers, 22 neurons 0.0167 0.0159

4 MLP, 1 hidden layer, 25 neurons 0.0172 0.0419

5 MLP, 2 hidden layers, 10 neurons 0.0188 0.0254

6 MLP, 2 hidden layers, 19 neurons 0.0219 0.0474

7 MLP, 1 hidden layer, 1 neuron 0.0252 0.0098

8 MLP, 1 hidden layer, 7 neurons 0.0255 0.0104

9 MLP, 2 hidden layers,34 neurons 0.0290 0.0483

10 SOM, 16 neurons 0.0314 0.0244

Table 4. Choice of electors in power prediction experiment. MSE normalized with
respect to maximum power. Networks that scored higher than the whole ensemble are
marked in bold.

No Elector MSE over test subset MSE obtained for new data

1 MLP, 1 hidden layer, 35 neurons 0,000168 0,000589

2 MLP, 1 hidden layer, 31 neurons 0,000214 0,000266

3 MLP, 2 hidden layers, 13 neurons 0,000225 0,000244

4 MLP, 2 hidden layers, 39 neurons 0,000240 0,000420

5 MLP, 1 hidden layer, 29 neurons 0,000245 0,000382

6 MLP, 2 hidden layers, 19 neurons 0,000247 0,000235

7 MLP, 2 hidden layers, 35 neurons 0,000248 0,000248

8 MLP, 2 hidden layers, 27 neurons 0,000255 0,000194

9 MLP, 1 hidden layer, 37 neurons 0,000260 0,000306

10 MLP, 1 hidden layer, 19 neurons 0,000270 0,000282

Fig. 3. Experiment 1: extent of damage measured and detected by the ensemble of
classifiers.
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Fig. 4. Experiment 2: power generated and predicted by the ensemble of classifiers.

during standstill turbine caused some networks to return absurd values for analy-
sis of periods out of operation in an ensemble evaluation phase. This is observed
in Fig. 4: peaks are clearly visible, especially in error plot. In contrast, regression
problem in experiment 1 is relatively simple. The data were not only drawn from
similar distribution, but they were also almost linearly separable. The choice of
electors reflected this observation: In the first experiment small networks were
chosen as ensemble members (See for instance elector no. 1, 7, and 8). In exper-
iment 2, the design algorithm of the ensemble resulted in selection of more com-
plicated networks, which was a good decision from both task complexity and
amount of avilable data points of view.

Another interesting remark is that wide range of elector pool is exploited
in a selection process: small networks can score in similar tasks just as well as
large ones. The impact of training efficiency on final performance is usually more
important than influence of network type and size.

4 Conclusions

Two different tasks have been successfully performed by proposed self-adjusting
classifier. In each of them, despite same starting point, method resulted in picking
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different set of electors. In both experiments “first choice”, that is - a classifier
with the highest performance over a training dataset rendered acceptable result
in “operational phase”. It is not safe however, to rely only on one network in
practical tasks. In case, when training data do not cover all possible states that
can happen during classifier’s operational phase, response of ANNs can at times
be unpredictable. As quality assessment of a training dataset can be a challenging
task, usage of a group of different cooperating electors arise as a more reliable
choice. This fact is of particular importance from engineering point of view, as
in most practical cases of ANN usage, the access to training data of the same
distribution and quality as data used further in operational stage is limited.
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Abstract. Neural network architectures have been proven useful to
model the intrinsic characteristics of photovoltaic cells. The possibility
to get rid of an a priori model is one of the many advantages of such
an approach as well as the resulting accuracy, robustness and speed.
Neural networks have been used to model the characteristics of tra-
ditional silicon-based photovoltaic modules, and in this work we have
investigated a model for new generation organic solar cells. Silicon-based
cells were generally prone to be modeled by simple circuital parameter
sets, however for organic cells the process is generally impervious. For this
reason, we show that the application of Radial Basis Neural Networks
has resulted advantageous to modeling. We have used such networks
together with an algorithmic solution to automatically parametrize the
Voltage-Current characteristics of organic photovoltaic modules.

Keywords: Radial basis neural networks · Parametrical models ·
Photovoltaic systems · Renewable energy · Organic solar cells

1 Introduction

The fabrication process and the implementation of photovoltaic (PV) cells is a
very complex process. In order to enhance the effectiveness of such a process it
is often useful to obtain an accurate model of the characteristics of the manufac-
tured cells. However, the study and verification of mathematical models require a
huge amount of resources and has a negative impact on the production timetable.
Moreover, for the newly developed technology, namely the organic solar cells of
last generation, it is very difficult to obtain an analytical model starting from
a priori assumptions, due to the complex nature of the material itself. On the
c© Springer International Publishing Switzerland 2016
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contrary, a model-independent technique is paramount to automatically extract
model parameters for the characteristics of this new kinds of cells. In this paper,
we propose a software system based both on radial basis neural networks and
a customised algorithmic approach to accurately model the electrical output
behaviour and the voltage-current (I-V) characteristics of organic solar cells.
Such parameters suffice to obtain a compact representation of the features of
the solar cell and can be extremely important to improve the quality of the
device allowing to intervene into the production line, or to enhance the existing
predictive models for energy production by means of new generation photovoltaic
panels.

It has been shown that the relationship between I-V is nonlinear and cannot
be easily expressed by any analytical equation or the equivalent circuit para-
meters [2]. Therefore, the proposed neural network is used to overcome these
difficulties using measured I-V curves.In this work we made use of Artificial
Neural Networks for modeling purpose [9,10,14]. A similar approach for seg-
mented silicon based devices [13] and Photovoltaic Thermal collectors (PV/T)
has been presented in [16]. A hybrid soft-computing modeling technique uses
multi-class [15] or neuro-fuzzy models to predict solar cell short-circuit cur-
rent and open-circuit voltage, followed by coordinate translation of a mea-
sured current-voltage response [1], and other previous approaches have been
developed to describe the electrical behaviours of solar cells and the electrical
equivalent circuit [3,20], such as gaussian approximation based methods [17,18],
fuzzy sets [21], game theory based strategies [22,23], artificial intelligence algo-
rithms [5,8] or other hybrid approaches [6]. Our approach is innovative in that
it automatically provides a concise representation (using a few parameters) of
the I-V characteristic.

2 Process Chain of the Polymer Solar Cell

In this study we have developed a model for organic photovoltaic devices that
are cheap, flexible, lightweight and easy to process, yet typically low in effi-
ciency offering semiconducting properties and the ability of photocurrent gener-
ation. Organic materials are thermally evaporated at low temperatures and are
processed by printing or spin-coating at room temperature from solution with
high absorption coefficients reducing manufacturing costs. The thin layers of
organic materials are used to absorb a large fraction of light, generating electron-
hole pairs with electro-chemical properties such as charge transport, degrada-
tion, mitigation, energy level and solubility [4]. The architecture of organic solar
cells consists of an anode in ITO (indium tin-oxide) with a layer of Gold,
a Polystyrene sulfonate (PEDOT:PSS), a regioregular poly-3-hexylthiophene
(P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) bulk het-
erojunction thin film forming the active layer of the device and an aluminum
cathode. A commonly used material as transparent anode is the (ITO)-coated
glass substrate offering a satisfactory conductivity, although ITO is expensive.
A PEDOT:PSS layer is deposited on top of the device based processing method
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of simple cheap and spin coating. The photoactive layer, which absorbs incident
photons in an organic solar cell, is obtained by mixing equal weight ratios of
P3HT and PCBM in a solvent (Fig. 1).

Fig. 1. ITO coated glass in SolidWorks

The procedures for testing organic solar cell devices were carried out in the
equipped Dr. Rafi Shiklers laboratory at the Ben-Gurion University of the Negev
in Beer-Sheva, Israel. The encapsulation of the solar cells has been processed at
low temperature (22◦C) compatible with organic materials because they are
very sensitive and degrade very fast under normal air conditions. So the electric
characterisation of the devices was performed under a dry nitrogen atmosphere
(inside glove box) with an O2 concentration of 1.7 ppm and an H2O concen-
tration smaller than 0.1 ppm. Isolation glove boxes provide controlled environ-
ments that protect contamination-sensitive materials from ambient conditions.
Containment glove boxes provide safe processing environments that protect oper-
ators from biohazards within the glove box chamber. For controlled atmospheres,
nitrogen dry boxes provide an isolated work environment for processing samples
or handling air-sensitive materials while maintaining an anaerobic or other gas
specific environment within the glove box. The dual glovebox system for polymer
electronics fabrication provides an inert atmosphere for spin coating, electrode
or counter-electrode deposition and assembly of organic photovoltaic (OPV) and
other flexible electronic devices. Integrated into the glovebox system there is a
high vacuum chamber with mask transfer system for the thermal evaporative
deposition of patterned electrodes and an atomic layer deposition system for
counter electrode deposition (Fig. 2).

The architecture of organic solar cells has been realised and investigated
with the direct vacuum evaporation of the metal gold on the ITO-Glass sub-
strate. In the first stage it was very important to clean the ITO coated glass.
The glass substrate is sized 12 mm × 12 mm × 0.7 mm and is coated in the
middle with a rectangular section 6 mm × 12 mm and 90 nm ± 10 nm of trans-
parent thick ITO layer with resistance of 20 Ω/m2. The ITO is the anode with
high transparency, conductivity with high carrier concentration, but it is fragile
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Fig. 2. ITO coated glass

and susceptible to deterioration. At a wavelength of 550 nm the ITO coated
glass offers a transparency above 85 %. The substrates were first cleaned in
acetone bath, because acetone’s powerful solvent for removing organic parti-
cles, methanol and isopropanol for 15 min each in an ultrasonic bath (53 kHz
at room temperature). The substrates were dipped into distilled water and
put into a vacuum oven; afterwards plasma cleaning was used to remove any
remaining oxygen molecules. After the cleaning process the glass plate, with
upturned ITO layer, was placed on the chuck of the spin coater outside the
glove box and aligned by vacuum. The solution of PEDOT:PSS were applied
on the samples. Immediately the spin coater was turned on and was rotating
with 5000 rpm (revolutions per minute) and an acceleration of 12000 rpm/s for
one minute. An annealing on hot plate of an hour at a temperature of 100◦C–
105◦C was necessary, to remove the water that is a solvent for the PEDOT
interacting with the active layer and contaminate the glove box. The heater
plate ensures even heating across the surface. Thus the cells are transferred into
the glove box. Inside the glove box, a solution of photo-active polymer P3HT
and PCBM has been prepared. P3HT layers were deposited onto cleaned sub-
strates by spin coating the samples at 1000 rpm for 1 min, resulting in a layer
thickness of approximately 100–200 nm Poly(3,4)-ethylenedioxythiophene poly-
styrenesulfonate (PEDOT:PSS)/ITO/glass substrates using the different types
of molds. In the next step the 80 nm thick aluminum cathodes were evaporated
on the samples. A mask was used to create the preferred shape of aluminum
cathodes. For the thermal evaporation we have used the resistance heated boats
and Pieces of aluminum (wire, canes, coils, etc.) are inserted in the boats. After
the evaporation of aluminum the devices are put on the heater for 30 min at
140 C inside the glove box. To connect the thin film to electrical wire the Sil-
ver Conductive Epoxy was deposited on small part of ITO removed locally and
aluminum layer.
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Fig. 3. On the left: the single diode equivalent circuit models of a solar cell. On the
Right: the double diode equivalent circuit models of a solar cell.

3 Circuital Models for PV Modules

An accurate model of the photovoltaic cell is paramount to obtain better quality
during the fabrication process of PV panels [19]. Commonly several circuital
models are adopted in order to parametrize the I-V characteristics of a PV panel
or cell. In Fig. 3, left side, a single diode model is represented. Under illumination
and normal operating conditions, the single diode model is the most popular
model for solar cells. However, the single diode model is particularly inaccurate
at low illumination. A more complex model is depicted on the right side of Fig. 3,
the double diode model is used to simulate the space-charge recombination effect
by incorporating a separate current component with its own exponential voltage
dependence. Moreover, the double diode model has been shown to be a more
accurate representation of solar cell behavior than the single diode model in
some cases. By applying the Kirchoffs current law (KCL) and Kirchoffs voltage
law (KVL) to the single diode model we obtain:

I = Iph − ID1 − Ish (1)

Vd1 = RsI + V (2)

with

Id1 = I01

[
exp

(
qVd1

nkT

)
− 1

]
(3)

Starting from Eqs. (1), (2) and (3), we can be derive:

I = Iph − I01

[
exp

(
qVd1

nkT

)
− 1

]
− V + RsI

Rsh
(4)

where Iph is photo-current density; I0 is the saturation current density under
reverse bias, Rs is the series resistance, Rsh is the shunt resistance, n is the
ideality factor, q is the electronic charge, k is Boltzmanns constant and T is the
temperature in Kelvin. The current density (I) is current per unit area. From
Eq. (5) it is shown that the solar cell parameter extraction problem is reduced
to the determination of five parameters (Rs, Rsh, Iph, ID1, and n) with a set
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of experimental I-V data. For the double diode model applying the Kirchoffs
current law (KCL) and Kirchoffs voltage law (KVL) we obtain:

I = Iph − ID1 − ID2 − Ish (5)

Vd1 = Vd1 = RsI + V (6)

with

Id1 = I01

[
exp

(
qVd1

n1kT

)
− 1

]
(7)

Id2 = I02

[
exp

(
qVd2

n2kT

)
− 1

]
(8)

Starting from Eqs. (5),(6),(7), and (8), we can derive:

I = Iph − I01

[
exp

(
qVd1

n1kT

)
− 1

]
− I02

[
exp

(
qVd1

n2kT

)
− 1

]
− V + RsI

Rsh
(9)

Equation (9) must be fitted to the experimental I-V curve in order to obtain
the seven parameters (Rs, Rsh, Iph, I01, I02, n1, and n2).

4 The RBFNN Based Model

In this work we developed a Radial Basis Neural Network (RBFNN) based app-
roach [24] to obtain a parametrical representation of the I-V characteristics of
the presented solar cells. Taking advantage of the universal approximation the-
orem we trained a RBFNN as in [12] in order to approximate the I-V relation
for a given solar cell. RBFNNs consist of three layers: the input, a hidden layer
with Radial Basis Function (RBF) neurons and a linear output layers (Fig. 4).
This network has been trained using the measured tension V as input and the
measured current I as target. Therefore, both the input vector u and the output
vector y have only one dimension, hence the hidden layer is composed of N fully
connected neurons activated by a standard RBF φ so that:

φk(x) = e− ||Wx−ck||
σ ∀ k ∈ [1, N ] ∩ N (10)

where the input vector x is multiplied by the input weights matrix W and ck

represents the centroid vector. In our implementation we have chosen to adopt a
unitary spread by choosing σ = 1, therefore due to the mono-dimensional nature
of the inputs Eq. (10) becomes

φk(V ) = e−(w
(1)
1k V −ck)

2 ∀ k ∈ [1, N ] ∩ N (11)
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Fig. 4. The implemented radial basis neural network, the related RBF hidden neurons
(white) and the output linear neuron (gray).

where x is obtained by multiplying the input (tension) by the corresponding
weight in the N × 1 input weights matrix

W(1) =

⎡

⎢⎢⎢⎢⎣

w
(1)
11

w
(1)
12
...

w
(1)
1N

⎤

⎥⎥⎥⎥⎦
(12)

Finally, the overall approximated output (current) Ĩ is obtained as linear com-
bination of the outputs φk(V ) coming from the hidden RBF neurons:

Ĩ = b0 +
N∑

k=1

w
(2)
k1 φk(V ) (13)

where b0 is a simple bias and the linear sum weights are the elements of the
N × 1 hidden weights matrix

W(2) =

⎡

⎢⎢⎢⎢⎣

w
(2)
11

w
(2)
21
...

w
(2)
N1

⎤

⎥⎥⎥⎥⎦
(14)

Finally, from Eqs. (11) and (13) it follows that the network approximates the
I-V characteristics as

Ĩ
(
V

∣∣∣{w
(l)
ij }, {ck}, b0

)
= b0 +

N∑

i=1

w
(2)
k1 e−(w

(1)
1k V −ck)

2
(15)
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Basing on the expansion in (15) it is then possible to use RBFNNs to obtain a
parametrical model of the I-V characteristic. The parameters of such a model
are represented by the weights, centroids and biases. It follows that the RBFNN
can be trained in order to automatically obtain such parameters, moreover by
pruning the network it is also possible to reduce the total number of parameters
needed to characterise the photovoltaic cell.

5 RBFNN Training and Pruning Process

The training for a RBFNN is a twofold process in order to determine both the
centroids ck and the weights w

(l)
ij . In a RBFNN the number of neurons of the

hidden layer is typically much lower than the number of the training pattern, in
facts the centroids, which are the parameters of the RBF, need not be within the
training patterns set. Therefore, the determination of the centroids becomes part
of the learning process. While, in order to find the weights, the RBFNN must be
trained with supervised techniques, for the centroids, there are two strategies:
the first uses an unsupervised learning to determine a set of centroids {ck} and
use LMS algorithm to train output weights wij ; the second technique trains all
parameters together: spread parameters σk (which in our case is permanently
defined as σk), input and output weights w

(l)
ij and centroids ck through an super-

vised learning algorithm such as the backpropagation algorithm. Training meth-
ods that separate the tasks of prototype determination and weight optimisation
(the first strategy) often do not use the input-output data from the training
set for the selection of the prototypes. E.g., the random selection method and
the k-means algorithm result in prototypes that are completely independent of
the input-output data from the training set. Although this results in fast train-
ing, it clearly does not take full advantage of the information contained in the
training set. Gradient descent training of RBF networks has proven to be much
more effective than more conventional methods [11]. Then, we have obtained the
weights and center vectors by iteratively computing the partials and performing
the following updates:

E(τ) = 1
2 (Ĩ − I)2

w
(l)
i,j(τ + 1) = w

(l)
i,j(τ) − ηw

∂E(τ)

∂w
(l)
i,j(τ)

ck(τ + 1) = ck(τ) − ηc
∂E(τ)
∂ck(τ)

, (16)

where ηw and ηc are learning rate coefficients, and τ represents the training
step. After the weights and centroid have been computed, a pruning procedure
must be performed in order to shorten the list of parameters to consider for the
model. In our simulations we determined that it is possible to preserve a sufficient
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accuracy while pruning the network to only two neurons. In this manner we
obtain a compact analytical model from (15), that is reduced to

Ĩ(V ) = b0 + w
(2)
α1 e−(w

(1)
1α V −cα)2 + w

(2)
β1 e−(w

(1)
1β V −cβ)

2
(17)

where α and β represent the index of the two remaining neurons after the pruning
procedure. The obtained model in (17) represents a model of the I-V character-
istics of the examined solar cells based on the seven residual parameters of the
neural network after pruning. The said parameters are: w

(2)
α1 , w

(1)
1α , cα, w

(2)
β1 , w

(1)
1β ,

cβ , and b0.

6 The Experimental Survey and Simulation Results

The Current-voltage measurements took place in the laboratory of organic semi-
conductor devices at the Ben-Gurion University of the Negev in Beer Sheva. The
following equipment has been used to collect the PV cell data used in this work
for its characterisation:

– Keithley Model 2420 SourceMeter instrument
– IEEE-488 interface such as the Keithley KPCI-488 3
– Source illumination (also said solar simulator)
– A Stellar Net inc spectrometer

Current and voltage values have been collected with the Keithley SourceMeter
(model 2636) and imported with the LabTracer software. The photocurrent is
assumed to depend linearly on the light intensity, which is reasonable for the
low-light intensities, therefore white-light photocurrent measurements were per-
formed under simulated AM1.5 solar irradiation (100 mW/cm2) with a K.H.
Steuernagel Lichttechnik GmbH Simulator. The emission spectrum has been
verified with the spectrometer and is reported in Fig. 5. The simulated light
incidence was modulated in order to be comparable to the natural exposition
to the sun. The samples were placed at a distance of 7 cm underneath the solar
simulator and each cell was tested under the same irradiation conditions. The
start, stop, and step values determine the direction and amplitude of the sweep,
as well as the number of points that can be collected. In the proposed exper-
imental survey the start and stop voltage are defined in the range 0 to 0.5 or
0 to 0.7 V. The experimental data collected in laboratory have then been used
to verify our approach. The proposed RBFNN was trained using the measured
tensions as input and the measured currents as targets. The training process
and the consequent pruning procedure has been described in Sect. 5. Figure 6
shows the comparison among the measured I-V characteristic and the model
represented by the RBFNN after pruning. Additionally, the latter has been ana-
lytically obtained in Eq. (17). The overall ensemble of the network parameters
is depicted in Fig. 7.
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Fig. 5. The spectrum of the solar simulator
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Fig. 6. Several measured I-V relations and the approximation returned by the imple-
mented RBFNN after training and pruning.
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Fig. 7. The RBFNN parameters: the inputs weights w
(1)
1k , the hidden weights w

(2)
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centroids ck and the bias b0. The hidden weights w
(2)
k1 are represented in logarithmic

scale, for the negative values we represented the absolute logarithm in red color. (Color
figure online)

7 Conclusion

This paper proposed a novel technique to model and parametrize the I-V char-
acteristic of an organic solar cell of new generation. The I-V model has been
obtained by training a dedicated Radial Basis Neural Network (RBFNN) and
giving as output the seven parameters of the cell. The adopted approach is very
effective thanks to its independency from the solar radiation values, although
requiring its constancy. The RBFNN based model is able to reproduce a para-
metrical relation of the current for the organic cell as a function of the terminal
voltage of the corresponding circuital electrical model. Especially, for the esti-
mation of I-V characteristics, the RBFNN based model perfectly matches the
experimental characteristics while giving precise results with a fast and auto-
matic procedure. The relatively small number of parameters has been proven
advantageous and suitable for the accurate estimation of the electrical char-
acteristics, therefore outperforming existing models [7] which generally fail to
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accurately predict the highly variable portion of the characteristic curve. There-
fore, the proposed RBFNN based approach achieves an effective improvement of
the existing approaches due to the low computational complexity and complete
automatism.
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Abstract. In this paper, a method for increasing the number of mul-
tilayer perceptron inputs has been proposed. Three kinds of additional
input variables have been tested. They make it possible to perform data
separation by neurons in the first layer of multilayer perceptrons, with
the use of hypercurves having various shapes in the two selected dimen-
sions. By using more inputs, single neurons in the first hidden layer are
capable of solving some non-linear separable problems, e.g. the XOR
function. In dependence of the weight values of these neurons, they may,
in some dimensions, realise the similar transformations as neurons in the
hidden layer of RBF networks or separated the data with hyperplanes
or hyperparabolas. The use of the proposed procedure does not need to
implement, from the very beginning, a new network training algorithm.
The classification results on the three very popular UCI benchmarks,
which contain the real-world data, are presented.

1 Introduction

Multilayer perceptrons (MLPs) are one of the most popular types of artificial
neuron networks. They are applied both for fitting and data classification prob-
lems. The networks possess many significant advantages [1] including, among
other things, the predisposition for multidimensional data processing [1,2]. There
exist a very big number of ready-made libraries and toolboxes for work with
MLPs. Even a number of training algorithms designed to reduce the influence of
outliers have been created [3]. Learning of MLPs is usually significantly faster
and easier than training many of various deep learning architectures. Learning
of MLPs may be carried out on mobile devices or microcontrollers without large
computing power. Such microcontrollers are often used in low cost embedded
systems. It seems that due to many important advantages of multilayer percep-
trons, they will still be used in numerous applications for many years.

MLPs are feedforward artificial neural networks. They possess one or more hid-
den layers wherein neurons have a bipolar or unipolar sigmoidal activation func-
tion. One hidden layer is sufficient for MLPs to be universal approximators[4].

For fitting problems, MLPs are often applied with one hidden layer and
an output layer containing neurons with a linear activation function while, for
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 104–113, 2016.
DOI: 10.1007/978-3-319-39378-0 10
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a classification, networks are used with one hidden layer and an output layer
with neurons having sigmoidal activation functions. The number of neurons in
the output layer is equal to the number of the network outputs. The gradient
algorithms are used for training [5]. Very often, the objective function used
during training is the mean squared error

MSE =
1

Nq

N∑

i=1

q∑

j=1

(yj,i (xi) − dj,i)
2
, (1)

where q denotes the number of the network outputs, yj,i (xi) denotes the value
of the j-th network output, when the network inputs are equal to the elements
of the vector xi, dj,i is the desired value of the j-th network output, N is the
number of the pairs in the data set {xi,di}Ni=1, di = [d1,i, d2,i, ..., dq,i]

T .
The neuron output is described by the formula

z = f

(
b +

n∑

k=1

wkuk

)
, (2)

where f denotes the activation function, n is the number of the neuron inputs,
b is the bias, w1, ..., wn are the neuron weights, u1, ..., un denote the values of
the neuron inputs. The transformation performed by a single neuron with two
inputs and a bipolar activation function being hyperbolic tangent is depicted in
Fig. 1.
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Fig. 1. Transformation performed by the neuron with two inputs and a bipolar acti-
vation function.

If the contour lines of the transformation performed by a neuron were drawn,
then it would be the straight lines in the n-dimensional space. The centre of
the slope was marked, in Fig. 1, by a bold line. For a neuron with n inputs,
it is described by the following equation of an n-dimensional straight line b +∑n

k=1 wkuk = 0. The further part of the study is organised as follows. In Sect. 2,
the proposed procedure for classification that enables the automatic division of
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the space with diversified hyper-curves is presented. In Sect. 3, the results of use
of the proposed procedure with the three popular benchmarks including real-
world data are shown. Analysis of the results and the conclusions are at the end
of the paper.

2 The Proposed Procedure

In Fig. 2, some examples of transformations that may be done by a neuron with
a sigmoidal activation function being a hyperbolic tangent, when the number of
its inputs is increased and, instead of feeding to its inputs the input variables u1

and u2 only, one feeds also the signals u2
1, u1u2 and u2

2 are depicted.
Let us assume that a data set consists two matrices X and T. The matrix T

is of size q x N and the size of the matrix X is s x N , where s denotes the number
of the attributes (the number of features, input variables), on the basis of which,
the classification is done. The i-th column of the matrix T includes the desired
values of the classifier outputs, when its inputs are equal to the elements of the
i-th column of the matrix X. In the further part of the study, it was assumed

(a) z = −u2
1 − u2 + 2 (b) z = −10u2

1 − 10u2
2 + 0.5

(c) z = −8u2
1 − 12u2

2 + 5 (d) z = 10u1 + 20u2

Fig. 2. Exemplary transformations made by the neuron which output is equal to
tanh(w1u1+w2u2+w3u1u2+w4u

2
1+w5u

2
2+b) for various values of weights w1, w2, ..., w5

and b. tanh denotes the hyperbolic tangent
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that the signals fed onto the network inputs were rescaled to the interval [−1, 1],
i.e. the elements of the matrix X belong to [−1, 1].

The first stage of the proposed procedure consists in finding the two input
variables that are one of the most relevant. Let us denote them by v1 and v2.
In the papers [6–8], various methods to define the relevance of neuron network
inputs are presented and their features have been analysed.

During conducted experiments v1 and v2 were chosen in the manner described
below; however, many other methods may be used.

In order to find the two very significant inputs, an auxiliary small multilayer
perceptron was created, with one hidden layer that contained only 5 sigmoidal
neurons. The matrices X and T were divided randomly into the training, validat-
ing and testing sets in such a way that the training set consists of 60 % columns
of the matrices X and T, the validating one of 15 %, and the testing one of 25 %.
The matrices containing 60 % columns of the matrices X and T were denoted
as Xtrain and Ttrain, respectively, while the matrices for validation were denoted
by Xvalid and Tvalid. The learning process on the training data was interrupted
when the objective function value, calculated on the validating set, increased in
6 successive training epochs.

Next, the medians were calculated of all rows of the matrix Xvaltrain created
from a merging of the matrices Xtrain and Xvalid in the following way Xvaltrain =
[Xtrain Xvalid]. Then, it was investigated how the objective function value (1)
calculated on the data not belonging to the test set would change if the signals
fed onto individual inputs of the auxiliary network were substituted by their
medians. In other words, it was investigated how the value (1) would change
after substitution of the given input variable by the median calculated of the
row of the matrix Xvaltrain, associated with that variable. As the very relevant
input variables v1 and v2, it was assumed attributes for which the substitution
by their medians resulted in the highest increase of the objective function value
(1). Obviously, when selecting v1 and v2, it should be also borne in mind that
they must not be signals that accept binary values only.

The successive step of the proposed procedure consists in calculation of sev-
eral signals determined on the basis of the values of the input variables v1 and
v2, and in locating them as additional rows in the matrix X. Each of the sig-
nals will formulate one appended row. The matrix extended in such a way has
been denoted as Xextended. In the experiments described in Sect. 3, the following
additional signals have been applied:

(a) v2
1 , v1 · v2, v2

2

(b) combinations of orthogonal not normalised Legendre polynomials of the
degrees I and II, i.e. the additional signals were P2(v1), P2(v2), P2(v1)v2,
P2(v2)v1, v1v2, where P2(a) = 0.5

(
3a2 − 1

)

(c) several first components of the two-dimensional Fourier series, i.e. the addi-
tional signals were sin(w1), cos(w1), sin(w2), cos(w2), sin(w1) · cos(w2),
sin(w2) · cos(w1), sin(w1) · sin(w2), cos(w1) · cos(w2), where w1 = v1π,
w2 = v2π. In addition to using these components of the Fourier series, the
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inputs v1 and v2 have been removed and, therefore, the matrix Xextended

had, in this case, the 6 additional rows only (8-2=6).

Legendre polynomials are orthogonal on the interval [−1, 1] whereas, for cal-
culation of the signals specified in the point c of the list shown above, v1 and
v2 are multiplied by π, since the Fourier series components are orthogonal on
the interval [-π, π]. Legendre polynomials of the zero and first degrees are equal
to P0(a) = 1 and P1(a) = a; therefore, after addition of the signals specified
in point b, the matrix Xextended with the biases of neurons provided Legendre
polynomials of the degrees: 0, 1 and 2.

After constructing the matrix Xextended according to the point (a) or (b) or
(c), the last step of the proposed method consists in use of Xextended complete
with the matrix T for training of MLPs solving several classification problems
that have been described in Sect. 3.

The signals mentioned in points a–c above can be favourably used when the
relevancies of v1 and v2 do not differ substantially each other. These signals may
be applied in problems, for which MSE1/MSE2 ≤ 1.5, where MSE1 denotes
the value of (1) after replacing the most relevant input variable v1 by its median,
MSE2 is the value of (1) after substitution of v2 by its median. Larger value of the
ratio MSE1 to MSE2 indicates that the input v1 is probably significantly more
important than v2. If a network has a large number of inputs and the relevance
of v1 is substantially higher than v2 then one may consider to use additional
signals that are much more associated with v1 than with v2; for example:

(d) v3
1 , v2

1 , v1 · v2, v2
1 · v2,

(e) P3(v1), P2(v1), P2(v1)v2, v1v2, where P3(a) = 0.5
(
5a3 − 3a

)
is the 3rd

degree Legendre polynomial.

3 Classification Results on Popular Benchmarks

For the experiments, the free popular benchmarks with real-world data were used
that originated from the UC Irvin Repository of machine learning databases [9,
10]. The benchmarks were selected due to their high popularity. Their additional
advantage is the accessibility in the standard toolbox Neural Network to the
Matlab. Another reason for which the first two of the benchmarks described
below were used, was the high number of instances.

The first set was the Thyroid Disease Databases. It included the results of
7200 patients characterised by 21 attributes, of which 15 were binary and 6
continuous. The following 3 classes were considered:

1. Normal, not hyperthyroid
2. Hyper-function
3. Subnormal functioning.

The other dataset was the Brest Cancer Dataset that included the results
of 699 biopsies. The classification if the tumour is malignant or benign was
conducted on the basis of the following attributes (input variables):
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1. Clump Thickness: 1 – 10
2. Uniformity of Cell Size: 1 – 10
3. Uniformity of Cell Shape: 1 – 10
4. Marginal Adhesion: 1 – 10
5. Single Epithelial Cell Size: 1 – 10
6. Bare Nuclei: 1 – 10
7. Bland Chromatin: 1 – 10
8. Normal Nucleoli: 1 – 10
9. Mitoses: 1 – 10.

Another dataset was the Wine dataset that included 178 data of Italian
wines derived from three different cultivars. It was recognised which cultivar is
the origin of the wine on the basis of measurement of the following parameters:

1. Alcohol
2. Malic acid
3. Ash
4. Alcalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
8. Nonflavanoid phenols
9. Proanthocyanins

10. Color intensity
11. Hue
12. OD280/OD315 of diluted wines
13. Proline.

Two series of experiments were carried out. The classification was done with
the use of MLPs. In these networks, in the hidden layer and in the output layer,
all activation functions were the hyperbolic tangent. The matrix X, in the case
of each benchmark, possessed as many rows as many attributes were in a given
benchmark. The matrix T had the number of rows equal to the number of
classes. In the conducted experiments, the influence of extension of the matrix
X by appending signals specified on the positions a, b, c of the list from Sect. 2
was investigated. In the case of adding the orthogonal Legendre polynomial, the
matrix X was increased of 5 rows. If the components of two-dimensional Fourier
series were appended, then matrix Xextended was bigger by 6 rows (8-2=6), while
in the case of addition of the signals v2

1 , v1v2, v2
2 , the matrix X was increased

by 3 rows only.
When creating the MLPs, the initial values of their weights are pseudorandom

numbers. The training of the networks with the gradient algorithms begins from
various starting points and is terminated at various local minima of the objective
function, where its values may be highly differentiated. Therefore, in order to
obtain reliable results, the following steps were repeated 50 times and the results
averaged:

(I) Selection of v1 and v2 in accordance with the description of Sect. 2.
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(II) Creation of MLPs that have been denoted in the present study as
MLP SMALL, MLP POLY, MLP LEG, MLP F and MLP BIG.
The networks MLP SMALL, MLP POLY, MLP LEG and
MLP F had h neurons in their hidden layer, where, in the first experiment
series, it was assumed h = 10, while in the second series, it was assumed
h = 20. MLP BIG had

hbig = h + �6h

s
�, (3)

neurons in the hidden layer, where �·� denotes the ceil function, the value
of which is equal to the lowest integer number greater than the function
argument.

(III) Training of MLP SMALL and MLP BIG on the basis of the matrices X
and T. Training of the network MLP POLY on the basis of the matrix
T and the matrix X with appended rows with the signals v2

1 , v1v2, v2
2 .

Training of the network MLP LEG on the basis of matrix T and matrix
X with appended rows containing the orthogonal Legendre polynomials
from point b. Training of the network MLP F on the basis of matrix T and
matrix X with appended rows with the Fourier series elements and with
removed rows of v1 and v2. For training of all networks, 60 % of the data
was used. The validation set consisted of 15 % of the data and the test set
of 25 % of the data. The training process with use of the scaled conjugate
gradient backpropagation [11] was interrupted when the objective function
value (1) calculated on the validation set increased in 6 successive epochs.

(IV) calculation of the objective function value (1) on the test set and determin-
ing of the number of incorrectly classified test data.

After a 50-ple execution of the above procedure, all results determined in its
point IV were averaged. The averages are presented in Tables 1, 2, 3, 4, 5 and 6.

It is worthwhile to note that the networks MLP POLY, MLP F and
MLP LEG have more inputs and connections from the inputs to the hidden
layer neurons than MLP SMALL. Therefore, the number of neurons in the hid-
den layer of the networks MLP BIG was chosen on the basis of the formula
(3), so that the network MLP BIG has at least as many weights as the network
MLP F, which has more connections than MLP POLY and MLP LEG. By com-
parison of the results of MLP SMALL and MLP BIG with other networks, one
may analyse better the influence of selection of the input signals and the influ-
ence of the increase in the weight number. MLP BIG and MLP SMALL are the
networks, for training of which, no additional input variables (signals) were used.
These networks were created only in order to state if the proposed additional
signal is the main reason for improved classifications.

In the case of the benchmark Thyroid Disease Databases, when selecting v1
and v2, the input variables that had only the binary values were omitted.

It is worth to notice that for all used datasets the ratio MSE1/MSE2 ≤ 1.5
(Table 7). Therefore, the signals listed in the points a–c were suitable.

On the basis of the results shown in Tables 1, 2, 3, 4, 5 and 6, it is easy
to notice that in many cases an increase in the number of neurons deteriorates
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Table 1. Objective function (1) calculated on the test set for Cancer Dataset.

h MLP SMALL MLP BIG MLP POLY MLP LEG MLP F

10 0.030736 0.03731 0.032288 0.031859 0.039463

20 0.031479 0.03143 0.030259 0.030377 0.044535

Table 2. Number of incorrectly classified test data for Cancer Dataset.

h MLP SMALL MLP BIG MLP POLY MLP LEG MLP F

10 6.52 8.66 6.92 6.84 8.20

20 6.36 6.54 6.16 6.24 9.62

Table 3. Objective function (1) calculated on the test set for Thyroid Dataset.

h MLP SMALL MLP BIG MLP POLY MLP LEG MLP F

10 0.035195 0.036571 0.022046 0.022985 0.019768

20 0.035627 0.036430 0.024173 0.025380 0.021127

Table 4. Number of incorrectly classified test data for Thyroid Dataset.

h MLP SMALL MLP BIG MLP POLY MLP LEG MLP F

10 114.32 115.46 75.62 78.50 66.94

20 114.14 117.48 81.90 86.84 71.52

Table 5. Objective function (1) calculated on the test set for Wine Dataset.

h MLP SMALL MLP BIG MLP POLY MLP LEG MLP F

10 0.029915 0.030966 0.035607 0.030738 0.028828

20 0.055565 0.033308 0.026080 0.033035 0.045060

Table 6. Number of incorrectly classified test data for Wine Dataset.

h MLP SMALL MLP BIG MLP POLY MLP LEG MLP F

10 2.68 3.16 3.30 2.94 2.38

20 5.26 2.94 2.38 3.12 4.12



112 K. Halawa

Table 7. Mean values of the MSE1/MSE2 ratio.

Dataset Thyroid Disease Brest Cancer Wines

MSE1/MSE2 1.120 1.290 1.291

performance instead of making it better although increasing the number of inputs
is very likely to improve performance.

The proposed method was tested also on the UCI benchmarks intended for
solving of the fitting problems. It proceeded similarly as in the classification
investigation case, with the only difference consisting in applications of the net-
works with the liner activation function in the output layer. For the fitting, the
following datasets were used: the abalone dataset, the building data set and
the engine dataset. After analysing the results, it was found that the method
proposed is good for the classification problems, only, and is not suitable for
fitting.

4 Conclusions

In the case of the Cancer dataset, the best qualification was obtained for
MLP LEG and MLP POLY wherein h was equal to 20. These bigger net-
works achieved a lower objective function value (1) for the test set as well as
a lower number of erroneous classifications. For Thyroid Datasets, MLP POLY,
MLP LEG and MLP F always yielded much lower MSE than MLP SMALL
and MLP BIG. Furthermore, the number of incorrect classified patients was
also considerably better. For this datatset, MLP POLY, MLP LEG and MLP F
obtained 30 % fewer incorrect classifications than MLP SMALL and MLP BIG.
When recognising the wine origin for h = 20, the best results were obtained with
use of MLP POLY. The wine dataset consisted of a multiply lower number of
data than the other datasets. There were only 178 instances in the dataset and,
due to that, the bigger networks trained on this set underwent, most probably,
overfitting and, in most cases, had a worse generalisation capability. Proposed
method went well for the benchmark that had even 21 attributes as well as for
the benchmark that had 9 attributes. For Cancer Dataset set, the worst results
were obtained for the MLP F although they were based on the highest number
of the additional signals. Therefore, networks MLP F appear to be useless. On
the basis of the analysis of the results obtained, it seems to be worthwhile to
consider solutions similar to those used in the network MLP POLY for classi-
fying large datasets (with a high number of instances in the training dataset)
with use of perceptrons having a dozen or more neurons in the hidden layer. The
important advantages of the networks of type MLP POLY are the use of three
additional signals only and the very intuitive action as well as division of the
hyperspace.
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The proposed procedure does not need implementation of any complicated
new software. The dimensions where the curve separation takes place with use
of more complex shapes than straight lines are only selected automatically. Such
a possibility may constitute a useful and interesting alternative with respects to
the manual data analysis and arduous selection of its preprocessing way.

In further research, the author intends to test the networks of type
MLP POLY in more detail, on a considerably higher number of the classification
problems. More sophisticated ways for selection of the significant inputs, taking
in consideration among other things, the correlations will be employed. Meth-
ods and hints for automatic selection of additional input variables on the basis
of the value of MSE1/MSE2 ratio will be developed. It is worthwhile that the
initial values of the weights were chosen with the use of the Nguyen-Windrow
algorithm that was designed so that the hyper-slope straight lines are placed
possibly uniformly. Small changes of weight values may remarkable change the
shape of curves. The development of the weight selection system intended for
the curved hyper-slopes may result in a better division of the space and further
improvement of the classification results.
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Abstract. In the paper, a rough restricted Boltzmann machine
(RRBM) is proposed. It is a hybrid architecture, which extends the
restricted Boltzmann machine (RBM) using some elements of the Pawlak
rough set theory. The main goal of such hybridization is to allow process-
ing the imperfect input data and expressing the imperfection in the
answer of the system. In the paper, one form of the imperfection is con-
sidered - missing values. However, the solutions similar to presented one
can be designed also to handle e.g. imprecise data. The formal definition
of RRBM is illustrated by experimental results on a handwritten digits
reconstruction.

Keywords: Restricted Boltzmann machine · Missing data · Rough set
theory · Handwritten digits reconstruction

1 Introduction

The original Pawlak rough set theory [41,42] is a tool to analyse data with vari-
ous detail levels of description. It allows to classifying objects or states observed
through abstract classes (atoms). The size and shape of atoms depend on the
form of input information, e.g. the set of available features. Moreover, the form
of input information can vary for particular objects. It creates an approximation
space, which is individual for each observation. According to the theory, the input
description (object, state etc.) can be classified to positive, negative and bound-
ary regions of particular classes. The two first cases are interpreted as the input
description is sufficient to recognize the object as belonging to the class or not.
The third case occurs when the input data is insufficient to made specific decision.
The special properties of the rough set theory has been already transferred into
fuzzy and neuro-fuzzy classifiers [35–37,49,51], approximators [38], nearest neigh-
bour classificators [34,39] and feedforward neural networks. This paper contains
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the first proposition of incorporation the rough set theory into the architecture of
the restricted Boltzmann machine and results of initial experiments with the new
system.

The restricted Boltzmann machine (RBM) [17,50] is a recurrent neural net-
work. In contrast to most artificial neural networks, the values obtained on the
non-linear parts of neurons are treated as the probability values and the out-
puts of the neurons are generated randomly according to this probability. RBMs
are applied to filtering, image reconstruction, recognition, and modelling [13].
They are also components of deep belief networks [10,19]. Neural networks are
parallel in their nature. Thus, they are often implemented on various physical
parallel architectures [3–8,40,52]. Even, the perceptron made by Frank Rosen-
blatt [43] was implemented as a parallel electro-mechanical device. The author
of this paper applied many signal processors connected by dedicated serial bus
to realise a fast neural network [2]. Nowadays, artificial neural networks are
implemented in structures built from single molecules [29], e.g. distributed in
mesoporous silica matrix [27,28].

The paper is organized as follows. Section 2 contains description of RBM
and its learning in a nutshell. It is a base for a further consideration. The main
contribution is placed in Sect. 3. It is the aforementioned conception of the rough
restricted Boltzmann machine (RRBM). The illustration of RRMB working as
well as experimental scenario and the results are contained in Sect. 4. The final
remarks, conclusions and plans for the future work in the subject are presented
in Sect. 5.

2 Introduction to Restricted Boltzmann Machine
Learning

The restricted Boltzmann machine is a two layer recurrent neural network. The
layers, according to their function, are called ‘visible’ and ‘hidden’, and signed
by index ‘v’ and ‘h’ (e.g. bv, yhj), respectively. The input values are presented on
the outputs of the visible layer as vector v0(t) = [v10(t), . . . , vi0(t), . . . , vM0(t)],
where M is a number of inputs and also a number of neurons in the visible
layer, t indicates the specific sample. Then, the data are transmitted to the
hidden layer, as it is depicted in Fig. 1. The state of RBM is characterised by
the energy function defined as follows [18]

E (v,h) =
M∑

i=1

bvivi −
N∑

j=1

bhjhj −
M∑

i=1

N∑

j=1

vihjwij , (1)

where v = [v1, . . . , vi, . . . , vM ] and h = [h1, . . . , hj , . . . , hN ] are current states of
neurons in the visible and hidden layers, respectively, bvi, bhj are biases in the
layers, and wij is the weight between i-th neuron in the visible layer and j-th
neuron in the hidden layer. The network assigns a probability to every possible
pair of a visible and a hidden vector

p (v,h) =
1
Z

e−E(v,h), (2)
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b)a)

Fig. 1. Directions of data propagation in the restricted Boltzmann machine, (a) from
visible layer to hidden, (b) from hidden layer to visible

where Z, is a partition function given by summing over all possible pairs of
visible and hidden vectors

Z =
∑

v,h

e−E(v,h). (3)

The probability which the network assigns to a visible vector v is given by
summing over all possible hidden vectors

p (v) =
1
Z

∑

h

e−E(v,h). (4)

Given a random input configuration v, the state of the hidden unit j is set to 1
with probability

P (hj = 1|v) = σ

(
bhj +

∑

i

viwij

)
, (5)

where σ(x) is the logistic sigmoid function 1
1+exp(−x) . Similarly, given a random

hidden vector the state of the visible unit i can be set to 1 with probability

P (vi = 1|h) = σ

(
bvi +

∑

i

hjwij

)
. (6)

The probability assigned by the network to a training image can be increased by
adjusting the weights and the biases to decrease the energy E of that image and
to increase the energy of other images, especially those that have low energies
and therefore make a big contribution to the partition function. The derivative
of the log probability of a training vector with respect to a weight is following

∂ log p(v)
∂wij

= 〈vihj〉0 − 〈vihj〉∞, (7)

where 〈·〉0 denotes the expectations for the data distribution (p0) and 〈·〉∞
denotes the expectations for the model distribution (p∞) [30]. It can be done
by starting at any random state of the visible units and performing alternating
Gibbs sampling for a very long time. One iteration of alternating Gibbs sam-
pling consists of updating all of the hidden units in parallel using (5) followed
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by updating all of the visible units in parallel using (6) [17]. It is solved by the
Contrastive Divergence algorithm [17,18]. Using this procedure can be applied
in order to correct the weights and bias of the network

Δwij = η (〈vihj〉0 − 〈vihj〉∞) , (8)

Δbvi = η(vi0 − vi∞), (9)

Δbhj = η(hj0 − hj∞). (10)

The result of reconstruction is given as the vector v∞(t) available on the visible
layer. It can be used for further processing as clustering [9,14,22] and pattern
recognition [10] using various AI methods e.g. fuzzy systems, neural networks
and their hybridization [26].

3 Rough Restricted Boltzmann Machine

The architecture of RBM presented in Sect. 2 works with input vector v0(t). It
is assumed that all values of the vector are known and initiated the recurrent
process of reconstruction. Here we are changing this assumption. Below we pro-
pose a new version of RBM architecture — Rough RBM. In this system, the val-
ues of the input vector can be presented as real values (as in RBM), as intervals,
or can be missing. In the last case the missing values are substituted by the inter-
vals which covers the whole feature space (MCAR) or its parts (MAR, MNAR).
It could be treated as a form of multiple imputation [1,48]. Thus, the input
values are presented as pair of vectors {v0(t),v0(t)}, where v0(t) = [v10(t), . . . ,
vi0(t), . . . , vM0(t)] and v0(t) = [v10(t), . . . , vi0(t), . . . , vM0(t)]. When the i-th
input value is the real value vi0(t) then vi0(t) = vi0(t) = vi0(t) else it is repre-
sented by interval [vi0(t), vi0(t)]. The knowledge of RRBM architecture is stored
in the matrix of weights W = {wij}, the same as in RBM. Thus, it can be trans-
ferred between both systems. It is dissimilar to the rough neurons proposed by
Lingras [31,32]. RBM consists of two layer of neurons — ‘visible’ and ‘hidden’.
RRBM consist of four layer — ‘visible-lower’, ‘visible-upper’, ‘hidden-lower’,
and ‘hidden-upper’. The weight for lower and upper layers are common, i.e. W.
Depending on the sign of appropriate weight the information is transmitted from
neurons in visible-lower layer to neurons in hidden-lower or hidden-upper layer
and from neurons in visible-upper layer to neurons in hidden-upper or hidden-
lower layer. It is defined as follows

shj(t) =
∑

i=0
wij(t)>0

wij(t) · vi(t) +
∑

i=0
wij(t)<0

wij(t) · vi(t) + bhj(t) (11)

and

shj(t) =
N∑

i=0
wij(t)>0

wij(t) · vi(t) +
N∑

i=0
wij(t)<0

wij(t) · vi(t) + bhj(t). (12)
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Then, from neurons in hidden-lower layer to neurons in visible-lower or visible-
upper layer and from neurons in hidden-upper layer to neurons in visible-upper
or visible-lower layer

svi(t) =
N∑

j=0
wij(t)>0

wij(t) · hj(t) +
N∑

j=0
wij(t)<0

wij(t) · hj(t) + bvi(t) (13)

svi(t) =
N∑

i=0
wij(t)>0

wij(t) · hj(t) +
N∑

i=0
wij(t)<0

wij(t) · hj(t) + bvi(t). (14)

There is not direct transmission between visible-lower and visible-upper layers
as well as between hidden-lower or hidden-upper layers. The result of the recon-
struction is given as the pair of vectors {v∞(t),v∞(t)}.

The output of j-th neuron in the hidden-lower layer is signed by hj(t), and
hj(t) in the case of hidden-upper layer. They are derived with the probability
described by non-linear output of the neurons as follows

P
(
h0j(t) = 1|y

hj
(t)

)
= y

hj
(t), (15)

P
(
h0j(t) = 1|yhj(t)

)
= yhj(t), (16)

where y
hj

(t) = σ (svi(t)) and yhj(t) = σ (svi(t)), but the following restriction
must be meet

h0j(t) ≤ h0j(t). (17)

During the learning, the corrections defined in equations (8)–(10) come from
both lower and upper layers of the networks. Thus, they are defined as follows

Δwij(t) = η

(〈vi(t)hj(t)〉0 − 〈vi(t)hj(t)〉∞
)

+
(〈vi(t)hj(t)〉0 − 〈vi(t)hj(t)〉∞

)

2
, (18)

Δbvi(t) = η
(vi0(t) − vi∞(t)) + (vi0(t) − vi∞(t))

2
, (19)

Δbhj(t) = η
(hj0(t) − hj∞(t)) + (hj0(t) − hj∞(t))

2
. (20)
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4 Experimental Results

The architecture of RRBM presented in Sect. 3 has been implemented in Matlab
environment. It allows to comparing the results with implementation of RBM
proposed by Karpathy [21]. The investigation has been realised using database,
which contains 6000 samples of hand-written digits [20]. The randomly selected
5000 samples has been used for learning, the remaining 1000 samples — for
testing. The description of dividing procedure can be found in [33]. The origi-
nal database is free of missing elements. However, to perform the experiments
the specified number of pixels are randomly set as missing. In such case, the
input data are substituted by minimum and maximum values of pixel brightness.
Algorithm 1 and Fig. 2 illustrate this process.

The experiments are carried out for various level of missing pixels, between
1 % and 14 %. However, it is realised in two scenarios. In the first one the RBM
architecture has been learned using complete data. Then, the matrix of weights
W has been transferred to RRBM architecture. The obtained RRBM has been
tested using patterns with missing pixels. The second scenario is more time-
consuming. The same levels of missing pixels is have been set for learning and
testing phase. Obviously, both learning and testing phases are realised on RRBM
architecture. For full picture of research, various sizes of the networks have been
tested.

)b)a

Fig. 2. Example of pattern ‘6’ with marked single line, (a) original, (b) with some
pixels set as missing

4.1 Experiment 1

This experiment has been realised with the first scenario. Thus, we have only
single RRBM with single matrix of weights W. To illustrate the effect of rough
reconstruction we focused on a single line of digit ‘6’ pattern. The line is marked
in Fig. 2. As we can see, there are two bright regions on the dark background
in this line. In Fig. 3 this two bright parts of pattern, described as ‘original’,
are compared with its rough reconstruction for various level of missing pixels in
whole pattern. The rough reconstruction contains the lower part v∞ obtained on
the visible-lower layer and the upper part v∞ obtained on the visible-upper layer.
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Fig. 3. Rough reconstruction of single line of pattern ‘6’ for various level of missing
pixels — the first scenario

Algorithm 1. Input data preparation for RRBM
1: procedure CreateSystemLT
2: numSamples ← number of sample
3: i ← sample
4: DATA ← data learning
5: dataL ← lower system
6: dataT ← top system
7: while (i < numSample) do
8: if (DATA(i) == isIncompleteData) then
9: dataL(i) := min(DATA)

10: dataT (i) := max(DATA)
11: else
12: dataL(i) := DATA(i)
13: dataT (i) := DATA(i)
14: end if
15: end while
16: end procedure

The difference between these two parts of reconstruction is the result of missing
pixels appearance. When the state of all pixels are known, both parts are equal as
in the first graph (Missing 0 %) in Fig. 3. The rest graphs in the figure illustrate
the lower and upper reconstructions for increasing level of missing pixels. When
the level is enough high the lower reconstruction obtains the minimum values of
brightness, i.e. zero and the upper reconstruction obtains the maximum value,
i.e. 1 around the bright areas in pattern. In the case of the pixels located far
from bright areas, both lower and upper obtain values close to zero.
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The lower and upper reconstruction can be compared to a mould. They lim-
ited the space in which we expect the values of brightness. The distance between
the reconstructions depend on the level of missing pixels in input patterns. It
change from 0 when all pixels are available to 1 when all input pixels are missing.
In the last case, the reconstruction covers all possible patterns.

4.2 Experiment 2

This experiment has been realised according to the second scenario. The learn-
ing was performed for various level of missing pixels. Thus, it created many
rough restricted Boltzmann machines, as we expect, dedicated for work with
various level of missing pixels. Figure 4 presents the result of rough reconstruc-
tion of selected line of pattern ‘6’ realised by nine of above-mentioned network
for input data with the same level of missing pixels. Generally, the results are
similar to obtained in Experiment 1. However, comparing to result presented in
Fig. 3 (Experiment 1) we can see that for high level of missing pixels the lower
reconstruction obtains higher values when there are missing pixels also in learn-
ing set. It means that RRBM created in second scenario has higher ability of
reconstruction in the case of missing features.
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Fig. 4. Rough reconstruction of single line of pattern ‘6’ for various level of missing
pixels — the second scenario

4.3 Experiment 3

The aim of this experiment is to test the influence of the hidden layers size and the
number of learning steps for the quality of rough reconstruction. The investigation
was processed for various level of missing pixels and the average results have been
placed in Table 1. As we can see, the number of learning steps is more important
than the size of the network. Of course, when the size is sufficient.
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Table 1. Error of reconstruction

Number of hidden neurons epochs

100 200 500 1000

100 0.322 0.307 0.291 0.288

200 0,323 0.307 0.296 0,291

500 0.327 0.311 0.300 0.294

5 Conclusions and Future Work

In the paper, the new architecture of recurrent neural network has been pro-
posed. It is a hybrid of the restricted Boltzmann machine and some elements of
the rough set theory. Thus, the new network has been named rough restricted
Boltzmann machine. The architecture and learning procedure of RBM has been
extended and adapted to processing data in the form of the interval. In addition,
the results of reconstruction are intervals, which cover infinite number of simi-
lar patterns. This property of RRMB has been presented in the graphs obtained
during the experiments — reconstruction of handwritten digits. The experiments
were performed according to two scenarios. It allowed to test the architectures
built using data with missing information and the complete one. Both scenarios
assumed the use of testing data with various level of missing input information.
The various number of learning epochs and the various size of the architecture
was also tested.

To know all the properties of the proposed architecture the further inves-
tigation is needed. Particularly, the other sets of patterns should be used and
the detailed tests for various set and its sequences of missing input information
should be done. Moreover, the proposed architecture of RRBM contains the same
representation of knowledge as classic RBM, i.e. a single matrix of weights. It
allows to easily transfer the knowledge between the systems. However, there are
also known other models of rough neurons, e.g. [31]. We expect that such type
of neurons can be also applied to build RRBM architectures. It is also tempting
to apply the idea of flexible systems [11,12] and connect the level of flexibility
with the size of output interval. They will be ones of the next steps in our work.

The aim of RBM and RRBM applications is different than fuzzy systems and
feedforward neural networks. However, we think also about a specific form of
ensembles of RRBMs modelled on already proposed ensembles contained other
rough subsystems [23,24]. The RRBMs can be used as the element of CBIR
systems [15,16,25]. Future work can be also devoted to application of RRBM to
stream data mining [44–47].
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3. Bilski, J., Litwiński, S., Smol ↪ag, J.: Parallel realisation of QR algorithm for neural
networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidel-
berg (2004)

4. Bilski, J., Smol ↪ag, J., Galushkin, A.I.: The parallel approach to the conjugate
gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2014, Part I. LNCS, vol. 8467, pp. 12–21. Springer, Heidelberg (2014)

5. Bilski, J., Smol ↪ag, J.: Parallel realisation of the recurrent RTRN neural network
learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

6. Bilski, J., Smol ↪ag, J.: Parallel realisation of the recurrent Elman neural network
learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 19–25. Springer, Heidelberg
(2010)

7. Bilski, J., Smol ↪ag, J.: Parallel realisation of the recurrent multi layer percep-
tron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 12–20.
Springer, Heidelberg (2012)

8. Bilski, J., Smol ↪ag, J.: Parallel approach to learning of the recurrent jordan neural
network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 32–40.
Springer, Heidelberg (2013)

9. Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering app-
roach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res.
4(1), 43–56 (2014)

10. Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support
vector machines and convolutional neural networks and deep belief networks. J.
Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)

11. Cpalka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: IEEE Inter-
national Joint Conference on Neural Networks, IJCNN 2005. Proceedings, vol. 3,
pp 1764–1769, July 2005

12. Cpalka, K., Rutkowski, L.: Evolutionary learning of flexible neuro-fuzzy systems.
In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008, (IEEE
World Congress on Computational Intelligence), pp. 969–975, June 2008

13. Dourlens, S., Ramdane-Cherif, A.: Modeling & understanding environment using
semantic agents. J. Artif. Intell. Soft Comput. Res. 1(4), 301–314 (2011)

14. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using
affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput.
Res. 5(4), 239–245 (2015)

15. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image
indexing by data clustering and inverse document frequency. In: Kozielski, S.,
Mrozek, D., Kasprowski, P., Ma�lysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol.
424, pp. 374–383. Springer, Heidelberg (2014)



124 W.K. Mleczko et al.

16. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From
single image to list of objects based on edge and blob detection. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2014, Part II. LNCS, vol. 8468, pp. 605–615. Springer, Heidelberg (2014)

17. Hinton, G.: Training products of experts by minimizing contrastive divergence.
Neural Comput. 14(8), 1771–1800 (2002)

18. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momen-
tum 9(1), 926 (2010)

19. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets.
Neural comput. 18(7), 1527–1554 (2006)

20. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
21. Karpathy, A.: Code for training restricted Boltzmann machines (RBM) and deep

belief networks in MATLAB. https://code.google.com/p/matrbm/
22. Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-

organizing maps and its application to the analysis of mission statements. J. Artif.
Intell. Soft Comput. Res. 5(3), 161–176 (2015)

23. Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost ensemble of
DCOG rough–neuro–fuzzy systems. In: Jdrzejowicz, P., Nguyen, N.T., Hoang, K.
(eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)

24. Korytkowski, M., Nowicki, R., Scherer, R.: Neuro-fuzzy rough classifier ensemble.
In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009,
Part I. LNCS, vol. 5768, pp. 817–823. Springer, Heidelberg (2009)

25. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting
fuzzy classifiers. Inform. Sci. 327, 175–182 (2016)

26. Koshiyama, A.S., Vellasco, M.M.B.R., Tanscheit, R.: GPFIS-control: a genetic fuzzy
system for control tasks. J. Artif. Intell. Soft Comput. Res. 4(3), 167–179 (2014)

27. Laskowski, L., Laskowska, M.: Functionalization of SBA-15 mesoporous silica by
Cu-phosphonate units: probing of synthesis route. J. Solid State Chem. 220, 221–
226 (2014)

28. Laskowski, L., Laskowska, M., Balanda, M., Fitta, M., Kwiatkowska, J., Dzilin-
ski, K., Karczmarska, A.: Mesoporous silica SBA-15 functionalized by nickel-
phosphonic units: Raman and magnetic analysis. Microporous Mesoporous Mater.
200, 253–259 (2014)

29. Laskowski, �L., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass imple-
mentation of a Hopfield neural structure. In: Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014,
Part I. LNCS, vol. 8467, pp. 89–96. Springer, Heidelberg (2014)

30. Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines
and deep belief networks. Neural Comput. 20(6), 1631–1649 (2008)

31. Lingras, P.: Comparison of neofuzzy and rough neural networks. Inf. Sci. 110(3–4),
207–215 (1998)

32. Lingras, P.: Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing.
Neurocomput. 36(1–4), 29–44 (2001)

33. Mleczko, W.K., Kapuscinski, T., Nowicki, R.K.: Rough deep belief network -
application to incomplete handwritten digits pattern classification. In: Proceed-
ings Information and Software Technologies - 21st International Conference, ICIST
2015, Druskininkai, Lithuania, 15–16 October 2015, pp. 400–411 (2015)
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Abstract. We present a dataset of word embeddings for the Polish
language. Presented embeddings can be used as an input for Artificial
Intelligence methods as an alternative for one-hot representation. Spa-
tial relations between embeddings reflect relations such as alternatives
and analogies. This improves generalization of methods using presented
embeddings. Data from Wikipedia has been used together with skip-gram
and contitous-bag-of-words methods introduced originally for English
language by Mikolov et al. Current version of embeddings can be down-
loaded from http://publications.ics.p.lodz.pl/2016/word embeddings/.

1 Introduction

Representation of text can improve efficiency of artificial intelligence systems
that predict most likely word sequences (i.e. language modelling), a vital subtask
for spell checking, optical character recognition, speech recognition, machine
translation and spam detection.

A common representation for linguistic data is the one-hot representation.
In this representation each word w is represented as a vector V (w):

V (w) =
[
δij

∣∣ i ∈ ZZ|D| and j = ind(w)
]
, (1)

where ind(w) is index of the word in ordered dictionary D and δij is the
Kronecker delta (Table 1).

Representations where almost all elements of V (w) are equal to 0, in par-
ticular the one-hot representation, are called sparse. For efficiency, sparse repre-
sentations are usually encoded in compressed form. In the case of one-hot this
can be a single integer1.

The biggest advantages of one-hot representation are its simplicity and low
memory overhead. Many classic methods from language processing have been
based on the assumption that words can be treated like symbols – being either
equal or not. This is what the one-hot representation boils down to in practice.

The main drawback of this representation is lack of similarity grading. Highly
similar words will be as different from each other as any other random words
(Fig. 1).
1 Even though sparse representations are encoded in the compact form all the opera-

tions are performed as if they still were full-size vectors.
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Table 1. Examples of words and their one-hot vectors

w ind(w) V (w)

abakus 1
[
1, 0 . . . 0

]

leśnikom 820543
[
0 . . . 1 . . . 0

]

żyźniejszymi 3624472
[
0 . . . 0, 1

]

Fig. 1. Distances of all words in one-hot representation are equal

From the point of view of language processing system this means that each
word is a unique – and its usage has to be learned from scratch based on contents
of available text corpora. Words which occur rarely are seen in very few contexts.
Lack of sufficient number of context examples makes it difficult for artificial
intelligence systems to learn usage of a word. When learning process is over,
the trained system uses rare words only in the contexts it has seen (overfitting
errors) or risk errors and use them in contexts it hasn’t seen (underfitting errors).

Stemming and morphosyntactic annotations are a major improvement of
this representation. Stemming joins all variants of a given word (called jointly
- lexeme) under the name of its stem – greatly reducing size of dictionary and
increasing number of contexts where usage of the stem can be observed.

This is the case especially in heavily inflected languages - like Polish. Online
dictionary maintained at sjp.pl lists 3 839 346 words composing 196 619 differ-
ent lexemes (state as of Nov 15th 2015). On average this gives 20 different forms
for each lexeme. Some lexemes have a lot more forms: e.g. verb wkalkulować
(meaning account for) has 178 different forms.

Stemming loses information about the exact word that the stem came from.
To keep this information in the training data and make it accessible to Artificial
Intelligence technique being trained, stems are often enriched with morphosyn-
tactic annotations. Morphosyntactic annotations are indicators that for each
stem indicate cases of all grammatical categories that the original word used.
Using these annotations it’s possible to recover original word that the stem came
from.

Stemmed and annotated corpus still can be written in a compressed form
– albeit not as a single integer. Instead a set of integers can be used: first
one indicates position of the stem of the word in the ordered list of all stems.
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Successive integers indicate all morphosyntactic categories that stemmed word
belonged to e.g. in [9] the word morfologicznej is represented as colon-separated
list: morfologiczny:adj:sg:gen.dat.loc:f:pos (Fig. 2).

Fig. 2. Many-hot representation of the word morfologicznej.

Further improvements of this representations include spell correction, syn-
onym detection, word-sense disambiguation and extraction of additional, some-
times hand-crafted features, out of words [5] (Fig. 3).

Dense Representations. Alternative for sparse representations are dense rep-
resentations. Those are relatively small vectors, usually ranging from tens to
hundreds dimensions. Main difference between dense and sparse word vectors is
that all of the elements of dense vectors carry some information about the rep-
resented word. The information about the word identity and its relations with
other words is distributed throughout the vector.

In the field of language processing the dense word vectors are called word
embeddings. This name comes from the fact that the word vectors place or embed
words at some positions of their word-space.

Word embeddings are natural input for many Artificial Intelligence methods
- like neural networks or support vector machines. The embeddings can be fed
directly as an input to such systems. Space induced by word embeddings is also
well-structured - words which can be used interchangeably often can be found in
close proximity, while completely unrelated words are located in remote regions
of this space.

Fig. 3. Distances between word embeddings correspond to their syntactic and semantic
similarities. Actual word embeddings have tens or hundreds of dimensions.
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Creating word word embeddings in practice is done automatically using some
text corpora and a word embedding algorithm. The algorithm and corpora used
to embed the words are key factors for their final utility.

1.1 Techniques for Generating Word Embeddings

There are many techniques for generating word embeddings described in the
literature. First chronologically was the one described in [1]. It relies on training
an auxiliary neural network to predict a one-hot vector of a following word based
on one-hot vectors of a few previous words. Key element of this network is the
first hidden layer which is shared by all previous words and transforms them
from sparse, one-hot representation (roughly 100 000 dimensions) into a dense
representation (roughly 100 dimensions). Second hidden layer takes concatena-
tion of dense representations of the words and outputs a probability distribution
for the following word. The network is trained to minimize prediction error.
When training is over the parameter matrix of first hidden layer is retained as
an embedding layer. Remaining part of the network is discarded. Multiplying
one-hot vector of any word by the embedding layer (operation which can be
reduced to matrix row lookup) produces word embedding.

Let’s denote W i as the embedding of word wi using embedding matrix C :

W i = V (wi) × C . (2)

Let’s also denote σ to be the activation function of the neural network. Var-
ious authors used sigmoid, tanh or a rectified linear unit but the basic structure
of the training is the same.

The process of training is an optimization that minimizes error E by modi-
fying embedding matrix C and prediction matrix P :

E =
∥∥∥∥ V (wn) − softmax

(
σ
(
W n−1,W n−2, · · ·

) × P
) ∥∥∥∥ . (3)

This technique was developed and improved upon by other researchers. With
some modifications, this basic idea is still the foundation of leading word embed-
ding techniques.

Idea introduced in [8] improved this by slightly changing the objective func-
tion of the network. Instead of predicting one-hot vector of the next word it
tries to predict its embedding (taken from the embedding layer). Although this
seems like a simple change, conceptually it’s a significant leap forward. Using
this modification the word embeddings that are being trained (by refining para-
meters of embedding layer) are at the same time used as a reference output for
computing error of last layer of the neural network. Using this objective causes
training process to gradually move word embeddings closer or further apart while
at the same time changing the linear transformation that is responsible for pre-
diction. Again, the process of training can be described as a minimization of the
error E in terms of embedding and prediction matrices C and P , same as in
Eq. (3). The difference is that multiplication by matrix P produces predicted
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word embeddings (instead of distribution over all the words from dictionary).
The probability function used by softmax is changed to rely dot-product as a
vector-similarity measure to accommodate this change:

p
(
wi|X

)
=

exp
(
W i · X )

∑
j∈D exp

(
W j · X ) . (4)

Another modification is presented in [10] where the network is trained on
two concatenations of word embeddings - one real - created by concatenating
word embeddings based on the text corpus - and one corrupted - by choosing
different word embedding. Then the network learns a scoring function that scores
corrupted concatenations lower than original ones. This modification, although
also seemingly simple causes the training process to more effectively shift words
in space - by creating bigger pressure to push unrelated word embeddings apart.

In [3] a very similar approach is used - but instead of corrupting last word,
the word in the middle is altered. This makes the word embeddings take into
account not only the following but also preceding words. It’s also shows that
word embeddings can benefit from being trained on a task different than just a
next word prediction.

Another important development of word embeddings can be found in [4] -
where the problem of multiple word meanings is tackled by introducing multiple
vectors for each word. If we try to associate some neighbourhood of a word vector
with each word then classical word embeddings would divide whole word-space
into something which could be conceptually similar to a Vornoi diagram. Each
word in this space would occupy a single convex region. Introducing multiple
vectors for each word makes it possible to represent more complex areas of this
space, even disjoint areas in the case of homonyms. This change is closely related
to the notion of word-sense disambiguation, a common theme in statistical lan-
guage processing.

Work presented in [6] brings a significant quality improvement by inverting
the structure of auxiliary neural network. In this approach, called skip-gram
method, a single word embedding is given as an input to the neural network.
Then the network is trained to predict concatenation of word vectors of several
neighbouring words. Additionally a negative sampling is used, where a random
word embedding is used in place of original one and the objective function is
changed to minimize the probability of random word. This has effect similar to
scoring objective from [10] - it creates a pressure that pushes word embeddings
apart.

During training the error is defined here as a sum of errors coming from
predicting several nearby words:

E(wn) = E−2(wn) + E−1(wn) + E+1(wn) + E+2(wn) , (5)

Et(wn) =
∥∥∥∥ V (wn+t) − softmax

(
σ
(
W n

) × P t

) ∥∥∥∥ . (6)
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During negative sampling the error is defined as:

Ẽ(wn) = Ẽ(−2)(wn) + Ẽ(−1)(wn) + Ẽ1(wn) + Ẽ2(wn) , (7)

Ẽt(wn) = 1 −
∥∥∥∥ V (wn+t) − softmax

(
σ
(
W x�=n

) × P t

) ∥∥∥∥ . (8)

1.2 Properties of Word Embeddings

Main advantage of word embeddings is their organization in the induced word-
space. It has been shown in [2,7] that spatial relationships between word embed-
dings correspond to their semantic and syntactic properties.

Contexts which are used to train word embeddings are still valid when a
word such as dobry (good) is replaced by lepszy (better) or kiepski (feeble). This
interchangeability makes the training process place them in close proximity.

Similar behaviour can be seen in contexts where some words frequently co-
occur. Changing one of them in such context makes it necessary to change
the other e.g. “prezydentem Stanów Zjednoczonych jest Barack Obama”
(Barack Obama is the president of the United States) and “prezydentem Rzecz-
pospolitej Polski jest Andrzej Duda” (Andrzej Duda is the president of the
Republic of Poland). Presence of analogies makes the training process place their
word embeddings in a analogously located areas of the space.

These relations can be exploited. Neighbourhood of word embeddings can
be used to find their alternatives (both synonyms and antonyms). Differences
between word embeddings can be transferred to new words in order to find their
analogies. Word embeddings found by averaging other word embeddings usually
show syntactic and semantic properties of their averaged components.

Interesting relations between word embeddings are the main reason of their
recent popularity among researchers, which can be seen in the variety of modi-
fications being published.

From the practical perspective, word embeddings used as an input for Arti-
ficial Intelligence system lowers number of dimensions (hundreds of dimensions
instead of hundreds of thousands) and arranges words in semantically and syn-
tactically organized word-space where small perturbations end up finding closely
related words.

Introduction of word embeddings often comes with improved generalization.
Artificial Intelligence system trained by classifying words such as s�laby, kiepski,
nienajlepszy, dobry, lepszy as positive/negative has a chance to learn that some
region of word-space can be treated as positive or negative decision region. New
word, which wasn’t observed during training, such as tragiczny has a chance to
find itself in correct decision region and to be classified correctly. For most real
systems the generalization to new words is a very desired property.
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2 Published Word Embeddings

2.1 Training Procedure

Training Corpus. As a training corpus we used preprocessed data of article
content from Wikipedia. Exact date of database and additional comments can
be found in the README file published alongside word embeddings.

Contents of Wikipedia article database was cleaned by removing HTML and
Wiki markup. Tables, citations, timelines and URLs have been removed from the
corpus. Image captions and link text have been retained. Numbers have been
broken down into separate digits. All upper-case letters have been replaced with
lower-case. Additionally all words occuring less than 5 times in the corpus have
been replaced by a special rare-word token. This cleaning process resulted in
final vocabulary having 933 198 entries.

Training Algorithm. Training was performed by running 500 iterations of
continous-bag-of-words and skip-gram algorithms as described in [6] over the
training corpus. Learning rate was gradually changed from 0.05 to 0. The choice
of training schedule was influenced by the need to minimize oscillations of the
network around the found minimum.

No testing or validation sets have been used and the network was trained to
fit the training data as closely as possible. This choice was justified by high bias
of the model (a single layer of 100 sigmoid neurons), unable to learn the much
larger training corpus.

Context width was set at five words on each side of the input/predicted word
for both algorithms. This was chosen as the average of context widths that tend
to produce reasonable outputs (context widths at two or one didn’t produce
good embeddings; similarly context widths at more than ten).

The continous-bag-of-words and skip-gram algorithms are characterized by
varying efficiency in semantic and syntactic analogies. Both variants have been
published in separate files. For higher overall accuracy a concatenation of both
word embeddings should be used.

Examples of word-space neighbourhoods can be seen in Tables 2, 3, 4, 5 and 6.

2.2 Using Word Embeddings

The embeddings have been published at http://publications.ics.p.lodz.pl/2016/
word embeddings/.

Word embeddings are organized into lexicographically sorted text files where
each line starts with a word and is followed by 100 space-separated real numbers
ranging between 0 and 1. Two variants of vectors have been published in separate
files - according to algorithm that was used to generate them - skip-gram and
continous-bag-of-words [6].

http://publications.ics.p.lodz.pl/2016/word_embeddings/
http://publications.ics.p.lodz.pl/2016/word_embeddings/
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Table 2. Example word-space neighbourhoods, according to cosine distance of
skip-gram embeddings.

krokodyl japonia szczecinek pasuje pasuj ↪e

hipopotam 0.286 korea 0.140 bia�logard 0.172 pasuj ↪a 0.212 zada�lem 0.358

s�loń 0.289 chiny 0.169 wa�lcz 0.175 pasowa�lo 0.265 pyta�lem 0.367

goryl 0.309 tajlandia 0.194 stargard 0.182 linkuje 0.280 pzdr 0.385

rekin 0.313 filipiny 0.219 świdwin 0.196 wygl ↪ada 0.283 spróbuj 0.394

neolit marek brwi anna herbata

neolitu 0.174 policzki 0.176 dariusz 0.162 katarzyna 0.070 kawa 0.226

paleolit 0.190 w�losy 0.203 mariusz 0.185 krystyna 0.092 herbaty 0.245

paleolitu 0.194 uszy 0.206 s�lawomir 0.188 elżbieta 0.098 wanilia 0.258

mezolitu 0.216 karku 0.219 krzysztof 0.197 ma�lgorzata 0.098 cytryny 0.273

Table 3. Example word-space neighbourhoods, according to cosine distance of
continous-bag-of-words embeddings.

krokodyl japonia szczecinek pasuje pasuj ↪e

s�loń 0.349 tajlandia 0.250 wa�lcz 0.255 pasowa�lo 0.203 zastosuj ↪a 0.490

tygrys 0.371 hongkong 0.319 bia�logard 0.333 pasuj ↪a 0.217 wyjaśni ↪e 0.492

hipopotam 0.372 rosja 0.330 świdwin 0.344 pasowa�l 0.242 da�lem 0.494

żó�lw 0.372 singapur 0.334 goleniów 0.348 pasowa�laby 0.253 podeśl ↪e 0.495

neolit brwi marek anna herbata

paleolit 0.268 policzki 0.263 jerzy 0.249 barbara 0.099 papryka 0.253

neolitu 0.315 uszu 0.268 andrzej 0.258 joanna 0.112 zupa 0.304

mezolit 0.338 uszy 0.275 s�lawomir 0.258 katarzyna 0.117 kapusta 0.331

paleolitu 0.344 policzków 0.302 jacek 0.258 agnieszka 0.125 kawa 0.336

Table 4. Example word-space neighbourhoods of analogies, according to cosine
distance of skip-gram embeddings. Emphasized words are valid analogies.

barbara pies berlin szekspir

+(ania − anna) +(kotek − kot) +(francja − niemcy) +(polski − angielski)

ania 0.026 kotek 0.095 berlin 0.128 wyspiański 0.178

kasia 0.275 pies 0.128 bruksela 0.136 konwicki 0.231

andrzejewska 0.277 piesek 0.245 paryż 0.166 witkiewicz 0.238

majka 0.290 użytkowość 0.267 tuluza 0.166 baczyński 0.241

basia 0.291 misi 0.278 strasburg 0.181 żeromski 0.248

blythe 0.299 psem 0.297 antwerpia 0.197 wokulski 0.250

To improve visibility of published word embeddings we kindly request authors
that base their work upon them to point it out by referencing this article or
including link to the place where they were downloaded.
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Table 5. Example word-space neighbourhoods of analogies, according to cosine
distance of continous-bag-of-words embeddings. Emphasized words are valid analogies.

barbara pies berlin szekspir

+(ania − anna) +(kotek − kot) +(francja − niemcy) +(polski − angielski)

ania 0.078 kotek 0.021 francja 0.038 twardowski 0.312

basia 0.355 pies 0.060 berlin 0.045 mocarski 0.322

dorotka 0.384 piesek 0.243 paryż 0.050 wokulski 0.340

barbara 0.386 mís 0.308 bruksela 0.069 wyspiański 0.358

marta 0.393 ch�lopiec 0.337 lozanna 0.078 odludki 0.361

iza 0.399 szczeniak 0.345 tuluza 0.138 jakóbczyk 0.363

Table 6. Example word-space neighbourhoods of averages, according to cosine distance
of skip-gram embeddings. Emphasized words are valid intermediate words.

1
2 (pierwszy + pi ↪aty) 1

2 (poniedzia�lek + niedziela) 1
2 (jezus + mahomet)

trzeci 0.150 niedziela 0.073 jezus 0.191

czwarty 0.158 poniedzia�lek 0.073 mahomet 0.191

pierwszy 0.164 czwartek 0.111 prorok 0.239

pi ↪aty 0.164 sobota 0.166 chrystus 0.278

drugi 0.172 pi ↪atek 0.191 jahwe 0.307

szósty 0.209 wtorek 0.194 jezusa 0.318

3 Summary

We present a dataset of word embeddings for the Polish language. Reimplement-
ing state-of-the-art algorithm is a time-consuming and error-prone task. By pub-
lishing an off-the-shelf word embeddings we hope to lower the entry barrier and
reduce time spent by other researchers on building their own embeddings.

We hope to create a baseline word embeddings to compare efficiency of other
Artificial Intelligence systems. Taking the word embedding quality out of the
equation and will allow more direct competition between language processing
systems.
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Abstract. Currently very popular trend in artificial intelligence is the
use of deep neural networks. The power of such networks are very large,
but the main difficulty is learning these networks. The article presents a
analysis of deep neural network nonlinearity with polynomial approxima-
tion of neuron activation functions. It is shown that nonlinearity grows
exponentially with the depth of the neural network. The effectiveness of
the approach is demonstrated by several experiments.

Keywords: Deep neural networks · Activation function · Nonlinearity

1 Introduction

Our civilization encounters increasingly complex problems that often exceeds
human capabilities. Until recently, the aim was to create artificial intelligence
systems, as perfect as a man. Currently, we are able to create intelligent learning
systems exceeding the human intelligent. For example, we can create a model
and predict the behavior of complexity of natural processes, which cannot be
described mathematically. In order to efficiently model complex multidimen-
sional nonlinear systems it must be used unconventional methods. Due to multi-
dimensionality and nonlinearity algorithmic or statistical methods are not able
to provide satisfactory solutions. Methods based on computational intelligence
allow for more effective solving of complex problems, such as predict of economic
trends, modeling natural phenomena, etc. Among the many methods based on
different types of neural networks (SLP, MLP, FCC), fuzzy systems, RBF net-
work, LVQ, PCA and SVM the special attention should be placed on neural
networks with deep architecture. These networks contain-ing multiple hidden
layers have high computation potential, and thus seem to be a perfect tool for
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modeling complex multidimensional nonlinear systems. Research shows that the
process of learning this type of network is very difficult and time-consuming,
which makes difficult to use of their potential. These deep neural networks have
a much more power that allow to solve much more complex problems. There
are currently different methods that can be divided into two main types that
can be also used jointly [1,2]: (a) discriminative or supervised such as multi-
layer supervised gradient-based method, Convolutional Neural Networks (CNN)
or Recurrent Neural Network (RNN); (b) generative or unsupervised such as
Restricted Boltzmann Machine (RBM), Deep Belief Networks (DBN) or autoen-
coders. To use this power this is required to understand the architecture of the
neural network and its impact on the functioning of the system and the training
process and to find an effective training algorithms that will more quickly and
effectively train such networks using its properties. Both of these problems are
closely connected. Commonly used network MLP (Multi Layer Perception) have
a relatively limited capacity [3] and difficult to train effectively due to vanishing
gradient problem that make layers near input less trainable [5,6]. The way to
solve this issue could be new training methods such as based on pre-training or
segmentation frequently jointly with GPU/HPC accelerated computation tech-
niques [7–10]. It turns out, however, that the new neural networks such as BMLP
(Bridged MLP) [3,4] or DNN (Dual Neutral Networks) [4] with the same number
of neurons are able to solve the problems of 10 or 100 times more complex [4,11].

2 Nonlinearity Capabilities of Deep Neural Networks

As mentioned in previous chapter the deep neural networks despite of problems
with training are able to solve much complex and more nonlinear problem than
shallow networks [12–18]. The power of given architecture depends on nonlinear-
ity that can be mod-eled by network configured in this architecture. Question is
how nonlinearity of network depends on its architecture. Answer could be key
for proper dimensioning of network for given class of problem. This is a complex
problem and it probably will not be possible to solve it in general way. How-
ever, below we will attempt to attack this issue using three different approaches
by approximating nonlinearities by polynomial and trigonometric functions and
using digital approach.

Let us assume that neural activation function is approximated by Taylor
series expansion, which is polynomial given by

f = k0 + k1x + k2x
2 + k3x

3 + · · · =
m∑

n=0

knx
n (1)

As a example we can consider sigmoid function 1
1+e−x that can be expanded

into odd polynomial terms:

1
2

+
x

4
− x3

48
+

x5

480
− 17x7

80640
+ · · · (2)
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Another example is Gaussian function e− (x−b)2

a used in RBF units can be
expanded into:

e− b2
a +

2be− b2
a x

a
− (a − 2b2)e− b2

a x2

a2
−2(b(3a−2b2)e− b2

a )x3

3a3

+
(3a2−12ab2+4b4)e− b2

a x4

6a4
+ . . .

That for b=0 gives even polynomial terms:

1−x2

a
+

x4

2a2
+ . . . (3)

For simplicity let us consider first four terms of (1):

f = k0 + k1x + k2x
2 + k3x

3 (4)

Let us now consider N neurons in shallow architecture, shown in Fig. 1a, then
the nonlinearities given by (4) are able to produce a nonlinear function given by:

F =
N∑

i=1

(
k0i + k1ix + k2ix + k3ix

3
)

= a0 + a1x + a2x + a3x
3 (5)

where an =
∑N

i=1 kni
Maximal polynomial degree of such expression is equal to maximal polyno-

mial degree of activation function and is independent from the number of neurons
N. One may notice that in shallow architecture the order of polynomial does not
increase. In other words nonlinearity does not increase.

In the case of deep architecture shown in Fig. 1b, the output of previous layer
n-1 neuron is the input of the next layer n and the nonlinear function for layer
n in given by:

fn(x) = k0n + k1nfn−1(x) + k2nfn−1(x)2 + k3nfn−1(x)3 (6)

f

f

f ∑x

f ffx F1 F2 Fn
1 2 n

1

2

n

Fig. 1. Two general types of ANN architectures: (a) shallow, (b) deep.
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For N=2 it gives:

F2 (x) = k02 + k12 (F1 (x)) + k22(F1 (x))2 + k32(F1 (x))3 (7)
F2 (x) = k02 + k12

(
k01 + k11x + k21x

2 + k31x
3
)

+k22
(
k01 + k11x + k21x

2 + k31x
3
)2

+k32
(
k01 + k11x + k21x

2 + k31x
3
)3

It means that maximal polynomial degree is 9.
For N = 3

F3 (x) = k03 + k13 (F2 (x)) + k23(F2 (x))2 + k33(F2 (x))3 (8)

the maximal polynomial degree is determined by last term where:

k33

(
k32

(
k01 + k11x + k21x

2 + k31x
3
)3)3

gives highest polynomial degree equals 27. As can be observed in the deep
architecture the order of polynomial describing output function increases rapidly
with the number of layers. It means that such deep system has better ability to
correctly classify patterns because separation surface can be more nonlinear.
The detailed analysis was done only for N ≤ 3 where the largest order of output
polynomial is 9 for N=2 and 27 for N=3 but it can be concluded that the maximal
polynomial degree of nonlinearity depends exponentially on the number of layers
and for activation functions expansion with maximal polynomial degree m is
given by mN .

The cases shown in Fig. 1 have only one input but for multiple inputs similar
conclusions can be withdrawn that deeper networks produce more nonlinear
surfaces that shallow networks.

The power grid increases linearly with the width and exponentially with the
depth. Therefore, it can be concluded that in order to solve complicated problems
should use deep architecture.

3 Experimental Results

To confirm better capability of deep neural network in solving complex problems
three experiments with well-known benchmarks have been prepared: two-spiral
classification problem, Shwefel function approximation problem and Parity-9
problem. All problems have been tried to resolve with neural networks with dif-
ferent architectures form single-layer SLP shallow network to multilayer BMLP
deep network and second-order NBN algorithm [19]. In all experiments NBN
2.08 software [20] have used.
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Fig. 2. Visualization of the two-spiral problem
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Fig. 3. Two-spiral problem training success rate with different architectures

3.1 Two-Spiral Problem

First experiment has been done for classical classification two-spiral problem
described in [21] and shown in Fig. 2.

Figure 3 and Table 1 shows training success rates achieved with NBN algo-
rithm for BMLP architectures. For each network used in experiments, all the
hidden layers (from 1 to 5) consist the same number of neurons, from 3 to 8.
Due to randomness of NBN algorithm all experiments have been repeated 100
times (trials). The success rate is defined as ratio of the number of success trials
to the number of all trials.

The shallow architecture networks with one hidden layer were not able to
train successfully while with deeper networks training success rate is growing
very fast. Note that the network with 12 neurons in two-layer architecture (6-6)
achieve 0.37 success rate while the same 12 neurons in three-later architecture
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Table 1. Success rate of two-spiral classification problem for different SLP and BMLP
architectures with NBN algorithm

Number of hidden Number of neurons Number of hidden

layers per hidden layer neurons Success Rate

SLP

1 3 3 0

1 4 4 0

1 5 5 0

1 6 6 0

1 7 7 0

1 8 8 0

BMLP

2 3 6 0

2 4 8 0

2 5 10 0.25

2 6 12 0.37

2 7 14 0.53

2 8 16 0.79

3 3 9 0.17

3 4 12 0.70

3 5 15 0.84

3 6 18 0.91

3 7 21 0.94

3 8 24 0.98

4 3 12 0.82

4 4 16 0.91

4 5 20 0.93

4 6 24 0.94

4 7 28 0.97

4 8 32 0.99

5 3 15 0.91

5 4 20 0.98

5 5 25 0.99

5 6 30 1

5 7 35 1

5 8 40 1

(4-4-4) gives 0.70 success rate and in four-layer architecture (3-3-3-3) reaches
0.82. Similar, 16 neurons in two layers achieves 0.79 success rate while four layer
architecture with 4 neurons in each layer allow to achieve 0.91 result.
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3.2 Shwefel Function

Second experiment was prepared for Shwefel function given by

z (x, y) = 2 ∗ 418.9829−xsin
(√

|x|
)

−ysin
(√

|y|
)

shown in Fig. 4.

Fig. 4. Surface of normalized Shwefel function.
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Fig. 5. Shwefel function training success rate for different architectures.

Results achieved for approximation of Shwefel function with different archi-
tectures have been shown in Fig. 5 and Table 2. As can be observed for all net-
works with shallow architectures the success rate is equals 0, while with deeper
architectures reach much better results. Similar to the two-spiral experiment
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Table 2. Success rates for Shwefel function approximation with SLP and BMLP archi-
tectures and NBN algorithm

Number of hidden Number of neurons Number of hidden

layers per hidden layer neurons Success rate

SLP

1 5 5 0

1 8 8 0

1 10 10 0

1 15 15 0

1 20 20 0

1 25 25 0

1 50 50 0

1 100 100 0

BMLP

2 5 10 0

2 8 16 0

2 10 20 0.20

2 15 30 1

2 20 40 0.84

2 25 50 0.87

3 5 15 0.42

3 8 24 1

3 10 30 0.72

3 15 45 1

3 20 60 1

3 25 75 1

4 5 20 0.98

4 8 32 1

4 10 40 1

4 15 60 1

4 20 89 1

4 25 100 1

given number of neurons in deeper architecture allows to achieve better result
than the same number of neurons in shallower architecture. As an example 20
neurons in single hidden layer architecture ware not able to train with success
while the same 20 neurons in two hidden layers architecture (10-10) achieved
0.20 success rate and in four hidden layer architecture (5-5-5-5) reached 0.98.



144 P. Rozycki et al.

Table 3. Success rate of Parity-9 problem for different architectures with NBN algo-
rithm

Number of hidden Number of neurons Number of hidden

layers per hidden layer neurons Success rate

SLP

1 2 2 0

1 3 3 0

1 4 4 0

1 5 5 0.32

1 6 6 0.68

1 7 7 0.84

1 8 8 0.98

1 9 9 1

1 10 10 1

BMLP

1 1 1 0

1 2 2 0

1 3 3 0

1 4 4 0.48

1 5 5 0.82

1 6 6 0.96

1 7 7 1

2 1 2 0.04

2 2 4 0.66

2 3 6 1

2 4 8 1

2 5 10 1

3 1 3 0.48

3 2 6 1

3 3 9 1

4 1 4 0.88

4 2 8 1

5 1 5 0.99

5 2 10 1

6 1 6 1

6 2 12 1
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Fig. 6. BMLP architectures for Parity-N problems solution
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3.3 Parity-9 Problem

Last experiment has been prepared for Parity-9 problem. Results achieved for
different architectures with NBN algorithm are shown in Table 3. Note that
difference between SLP and single layer BMLP is that in BMLP architecture
exist connections from inputs to the output neuron that is summator in this
case (Fig. 6).

This additional connection make architecture, in fact, even more shallow
because input signals are transferred directly to output neuron without any
nonlinear transformations but from the other side it add many additional weights
that make network more adjustable and allow to achieve better training abilities.
Presented results confirm observations from previous experiments, that deeper
architectures allow to solve problems with less neurons than shallow networks.
As an example, 4 neurons in SLP architecture was not able to solve problem
while the same 4 neurons in four-layer BMLP architecture allow to reach 0.88
training success rate.

As can be found in [22] the SLP network needs nh = N hidden neurons to
solve Parity-N problem while the same nh neurons in BMLP architecture with
one hidden layer allow to solve N = 2nh + 1 Parity problem. With multilayer
BMLP architecture the Parity-N problem that can be solved is given by

N = 2 (n1 + 1) (n2 + 1) (n3 + 1) (n4 + 1) ... (nn + 1) − 1 (9)

Figure 6 shows sample architectures that are able to solve different Parity-N
problems. Note that the BMLP architecture with one neuron in each layer gives
most deep FCC architecture that is able to solve Parity-N problem given by
N = 2(nh+1) − 1, that also confirm exponential improvement of the network
power with its depth.

4 Conclusions

Deeper neural networks allow to solve more complex problems. This is result
of possibility for modeling more nonlinear functions by cascade of activation
functions. Analysis presented in Chap. 2 confirm that using polynomial approach
for selected architectures and formulate some generalization. Also experimental
results confirm advantage of deep over shallow neural networks in ability to solve
high nonlinear problems.
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Abstract. This paper describes a new approach to feed-forward neural
networks learning based on a random choice of a set of neurons which are
temporally active in the process of neural network weight adaptation.
The rest of the network weights is locked out (frozen). In contrast to
the “dropout” method introduced by Hinton et al. [15], the neurons
(along with their connections) are not removed from the neural network
during training, only their weights are not modified, i.e. stay constant.
This means that in every epoch of training only the random part of the
neural networks (a chosen set of neurons and its connections) adapts.
Freezing of neurons suppresses overfitting and prevents drastic increment
of weights during the learning process, since the overall structure of the
neural networks does not change. In many cases the approach based on
training only some parts of the neural network (subspaces of the weight
space) shortens the time of training. Experimental results for medium
size neural networks used for modeling regression are also provided.

Keywords: Neural network training · Stochastic gradient decent ·
Random subspace optimization · Over-fitting · Deep learning

1 Introduction

In this paper we propose a new strategy of optimization based methods of neural
networks learning. In this strategy only a randomly chosen part of neurons along
with their connections, i.e., in-going and out-going weights is adjusted in every
epoch. The rest of the network remains temporarily unchanged. We will say that
the neurons not chosen for training are temporarily frozen. Changing at once
only a part of the decision variables is applied in many optimization (and other
numerical) methods starting from the coordinate descent (Gauss-Seidel) strategy
or alternating direction method of multipliers [6,19]. However, these methods
are based on fixed partition of optimized variables. On the other hand, random
selection of neurons, when only one unit is updated at a time is performed
in asynchronous learning of the Hopfield network [13]. The approach proposed
here introduces an additional level of variability to the process of neural network
learning similarly as stochastic gradient does, enlarging exploration capability of
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the neuron weight space. Furthermore, this strategy allows neurons to be more
evenly exploited, since only some neurons, i.e., a randomly selected subspace
of weights will be updated in the actual epoch of training. As a consequence, it
will result in more evenly distributed network weights and better neural network
generalization possibility [2].

From this point of view, one can see some similarities between freezing ran-
domly chosen parts of the learned neural network that is proposed here and the
Dropout method [15]. Dropout is a random procedure in which only randomly
chosen neural network neurons (hidden units) are trained, whereas the rest of the
neural net neurons and their incoming and outcoming connections are temporar-
ily removed from the neural network during a small period time of training. Sto-
chastic gradient decent (SGD) training is lately often combined with the dropout
method [1,15,21]. It is known that dropout gives visible improvements on many
benchmark data sets for speech and image classification [1,8,21,24]. Dropout
is used for preventing a trained neural network from overfitting and it usually
improves the performance of SGD training of deep neural nets [5,8,14,20,23].

Although the freezing strategy can be applied not only to learn feed-forward
neural nets (FFNN), in this paper we restrict ourselves to FFNN architecture
with one hidden layer of sigmoid neurons and a linear output neuron, i.e., the
simplest structure which is known to be the universal approximator [7,16] and
SGD learning algorithm. Nevertheless, it should be noted, that the freezing strat-
egy can be used also with many other popular optimization based FFNN train-
ing methods, such as Levenberg-Marquardt, conjugate gradient methods, BFSG
[10,12], among many others.

This paper is structured as follows. The next section describes the structure
of our FFNN and the problems of training it in the context of overfitting in
nonlinear regression neural network models training. Section 3 presents details
of the learning strategy proposed here with randomly frozen neurons. Section 4
shows some simulation results which explain and confirm proposals and conclu-
sions developed in the previous sections. In Sect. 5 we summarize the provided
simulation results and indicate possible further developments.

2 Network Structure, Learning Optimal Weights
and the Problem of Overfitting

We assume that the neural network is a usually used FFNN with one or more
hidden layers. The output of the network is given by:

ynet(X) =
M∑

j=1

w
(0)
j φ

(0)
j (X), (1)

where X ∈ Rn (X = (x1, . . . , xn)T ) is an input vector, M is the number of
neurons in the hidden layer (the last hidden layer), and w

(0)
j is a weight joining

j-th neuron to the output of the network. For the network with exactly one
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hidden layer we have

φ
(0)
j (X) = fact

(
n∑

i=1

w
(−1)
ij xi + bj

)
, j = 1, . . . , M, (2)

where fact is an activation function. In general, for the network with K > 1
hidden layers,

φ
(0)
j (X) = fact

⎛

⎝
M(−1)∑

i=1

w
(−1)
ij φ

(−1)
i (X) + b

(−1)
j

⎞

⎠ , j = 1, . . . ,M, (3)

where φ
(0)
j (X) is an ouput of j-th neuron in the last hidden layer and consecu-

tively

φ
(−k)
j (X) = fact

⎛

⎝
M(−k−1)∑

i=1

w
(−k−1)
ij φ

(−k−1)
i (X) + b

(−k−1)
j

⎞

⎠ , (4)

where j = 1, . . . ,M (−k), k = 1, . . . ,K−1, M (−K) = n and φ
(−K)
i (X) = xi, i =

1, . . . , n and M (0) = M .
Usually the problem of neural network training is over-parameterized. It

means that the number of data points in the learning sequence (Xj , yj), j =
1, . . . , N , i.e., N is often smaller than the number of the neural network para-
meters.

From the theoretical point of view, if N ≤ M and matrix

χ =

⎡

⎢⎣
φ
(0)
1 (X1), φ

(0)
2 (X1), . . . , φ

(0)
M (X1)

· · · · · ·
φ
(0)
1 (XN ), φ

(0)
2 (XN ), . . . , φ

(0)
M (XN )

⎤

⎥⎦ (5)

is a matrix of a full rank (i.e., has a rank N), then there exist weights in the last
hidden layer W (0) = (w(0)

1 , . . . , w
(0)
M )T such that neural networks (1–3) interpo-

lates the learning sequence.
It is well known that the least mean square errors minimization leads in such

a case to the partial solution W (0) = (χTχ)−1χTY, where Y = (y1, y2, . . . , yN )T .
A similar approach is often used when training small RBF networks [12]. Also,
extreme learning machines [17] utilize such kinds of ideas. Unfortunately, matrix
χ is usually badly conditioned and may lead to significant numerical errors.
Although the rest of the neural network weights can be used for preconditioning,
the perfect solutions are also undesirable, since interpolating or almost interpo-
lating networks behave poorly on test data (other than training ones).

3 Description of the Algorithm

We will use for FFNN training the Stochastic Gradient Descent (SGD) algorithm
with mini-batches of the size MB and additional momentum term [12,21,22].
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Traditional SGD picks at random a small set of training examples (i.e., random
mini-batch) at each iteration and updates all network weights on the basis of
this set only. In random weight subspace optimization we will randomly select
(uniformly, but without repetitions) L neurons among all M neurons forming
the hidden layer. If the network contains more hidden layers the similar random
selection will be repeated on every hidden layer. The weights of all in-going
and out-going connections of the selected neurons will be updated. The rest of
the neural networks weights will be unchanged. We say that this part of the
networks is temporarily frozen. Here we assume that the same weight subspace
selection will be used during the whole epoch. Furthermore, we fix that each
epoch consists of N/MB iterations. As a consequence, every epoch consists of
the same number of learning example presentations, independently of mini-batch
size N .

Thus, in every epoch the set of neurons is randomly divided onto two comple-
mentary sets: neurons which remain frozen, i.e., are not updated in this epoch,
and the rest of the neural network neurons which will be trained in this epoch.
More precisely, only their in-going and out-going connections which are not con-
nected to the frozen neurons will be updated.

w(t + 1) := w(t) + Δw(t + 1) (6)

Δw(t + 1) := μΔw(t) − α ∇EMB/MB, (7)

where t is the number of iteration, and w(t) symbolizes weight of any non-
frozen network connection at time t. μ stands for the momentum coefficient and
α is the learning rate. ∇EMB denotes the stochastic gradient obtained with
respect to a randomly selected mini-batch of training samples. It is possible to
use momentum in two different ways - the global and the local. In the global
momentum regime only Δw(0) = 0. In the local momentum regime Δw is set to
zero at the beginning of each epoch. The last approach allows us to additionally
stabilize training.

It may be useful to start with a full neuron set training (without frozen
neurons), however it was not necessary in our experiments. It should be noted
that in general, stochastic gradient ∇EMB is computed for the whole network.
In contrary, the number of the weight updates is strongly reduced depending
only on L.

3.1 Learning Rate and Other Training Parameters

We have used a small constant learning rate α during all the training. We estab-
lished the learning rate value on the basis of experiments. Namely, we have used
the learning rate that gives stable convergence in the 10 initial epochs.

3.2 Some Comments About Dropout

The dropout method can be implemented in different ways (see [8,11,15,21,25])
and is usually used for classification (logistic regression). We have applied this
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method for comparison reasons during training FFNN for regression. It was
important to have similar circumstances when we are freezing some neurons
instead of dropping them out. Thus, we have chosen the dropout strategy without
any regularization, but accompanied by a larger momentum term, i.e., μ = 0.99
(according to indications given in [21]). To stabilize the training process we have
to reset the momentum term at the beginning of every epoch. Otherwise the
learning rate should be much smaller than that used by the freezing approach.
At test time one single neural network without dropout was used. The outgoing
weights of every neuron were scaled down according to the probability 1 − p,
where p is a probability that a given neuron will be temporarily removed from
the network. In our experiments p = 0.5.

4 Numerical Experiments Results

We have performed SGD training of neural networks with one hidden layer of
100 neurons as a model of the following regression problem.

Y = f(X1,X2) + ε = exp [−5X1 + 1] + 0.5 exp [−0.25(11X2 − 2)2] + ε, (8)

where X1,X2 ∈ [0, 1] are independent uniformly distributed random variables
and ε is a Gaussian white noise with variance σ2 = 0.01, i.e., ε ∼ N (0, 0.1). The
training sequence consists of 100 independent and identically distributed (i.i.d.)
data points. Similarly, the testing set contains also a hundred i.i.d. elements.

We have used stochastic gradient descent with 5 and 10 -sized mini-batches
and a traditional mean squared error as a criterion function. Furthermore, apart
from MSE for the learning and the testing set also a mean absolute error (MAE)
was also monitored. It is easy to check that if we know the true regression
function f(X1,X2), the expected value of MAE is

E{|Y − f(X1,X2)|} ≈ 0.799 (9)

and the expected value of MSE is 0.01.
Although it seems that regression model (8) is relatively easy to approximate

by a small size FFNN with one hidden layer, in our learning experiments we have
have used a neural network equipped with 100 neurons in its hidden layer.

The initial weights are taken uniformly from [0, 1] interval. All experiments
shown in Tables 1 and 2 were performed, starting from the same initial point. The
columns labeled by (DR 50) contain errors obtained for droput of 50 neurons.
Training all 100 neurons was performed without freezing. Monte Carlo errors
given in these Tables were computed on the basis of the 100000 random samples.
Tables 1 and 2 contain final errors obtained after 5000 epochs of training. The
training process details from the first 1000 epochs are depicted in Fig. 1.

The theoretical analysis and many experiments [3,4,9,20] indicate, that that
local minima are not a problem for larger size FFNN. Instead of local min-
ima, an extremely large number of saddle points where the gradient is zero is
observed. So, regardless of the initial weights, the neural network nearly always
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Table 1. Training and testing errors for mini-batch of size 5 after 5000 epochs of
training with local momentum μ = 0.9 (0.99 for dropout) and constant learning rate
α = 0.05

Number of trained neurons 100 10 20 30 40 50 DR 50

Training errors

MAEtrain 0.093 0.091 0.091 0.083 0.088 0.091 0.108

MSEtrain 0.013 0.014 0.013 0.010 0.012 0.013 0.019

Testing errors

MAEtest 0.120 0.128 0.121 0.103 0.117 0.120 0.139

MSEtest 0.023 0.025 0.023 0.016 0.021 0.023 0.030

Monte Carlo errors

MAEMC 0.121 0.123 0.121 0.106 0.112 0.117 0.135

MSEMC 0.023 0.024 0.024 0.018 0.20 0.022 0.030

arrives at solutions of very similar quality, especially if the size of the network
is large. Thus, we have performed some additional experiments: for the full net-
work learned without freezing and for the network with L = 30, i.e., when 70
neurons from one hundred were frozen in every epoch. In all the cases the size
of mini-batch was equal to 5 and each experiment was repeated five times. The
averaged results of training after 5000 epochs are given in Table 3. One can see,
that the mean errors are very close to that presented in Table 1. According to
these facts we restrict further experiments to the one common starting point.
Tables 4 and 5 provide the training and testing errors after 10000 epochs of
training for mini-batches of size 5 and 10, respectively.

Table 2. Training and testing errors for mini-batch of size 10 after 5000 epochs of
training with local momentum μ = 0.9 (0.99 for dropout) and the constant learning
rate α = 0.05

Number of trained neurons 100 10 20 30 40 50 DR 50

Training errors

MAEtrain 0.098 0.100 0.096 0.089 0.089 0.092 0.118

MSEtrain 0.014 0.015 0.014 0.013 0.012 0.013 0.023

Testing errors

MAEtest 0.123 0.127 0.122 0.113 0.117 0.120 0.149

MSEtest 0.024 0.026 0.025 0.021 0.022 0.023 0.035

Monte Carlo errors

MAEMC 0.118 0.127 0.117 0.107 0.113 0.117 0.146

MSEMC 0.028 0.026 0.022 0.018 0.021 0.022 0.036
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Table 3. Averaged training and testing errors for mini-batch of size 5 after 5000 epochs
of training with local momentum μ = 0.9 and the constant learning rate α = 0.05

Number of trained neurons MAE training MSE training MAE testing MSE testing

100 0.094 0.014 0.125 0.025

30 0.084 0.011 0.106 0.017

Table 4. Training and testing errors for mini-batch of size 5 after 10000 epochs of
training with local momentum μ = 0.9 and the constant learning rate α = 0.05

Number of trained neurons 100 10 30 DR 50

Training errors

MAEtrain 0.093 0.090 0.089 0.103

MSEtrain 0.013 0.012 0.012 0.017

Testing errors

MAEtest 0.121 0.121 0.114 0.134

MSEtest 0.023 0.024 0.020 0.027

Monte Carlo errors

MAEMC 0.116 0.115 0.107 0.131

MSEMC 0.022 0.022 0.019 0.028

Table 5. Training and testing errors for mini-batch of size 10 after 10000 epochs of
training with local momentum μ = 0.9 (0.99 for dropout) and the constant learning
rate α = 0.05

Number of trained neurons 100 10 50 DR 50

Training errors

MAEtrain 0.096 0.097 0.092 0.103

MSEtrain 0.013 0.015 0.013 0.018

Testing errors

MAEtest 0.121 0.127 0.120 0.136

MSEtest 0.023 0.026 0.023 0.029

Monte Carlo errors

MAEMC 0.116 0.127 0.115 0.128

MSEMC 0.022 0.026 0.021 0.027

It can be once more observed that SGD is a very slowly convergent method,
especially for regression problems. The best results we have obtained for L = 30
and a very long training time. It was MSElearn = 0.0084, MAElearn = 0.074 for
the learning sequence and MSEtest = 0.0107, MAEtest = 0.085 for testing. The
number of epochs was about 23500 for local momentum and 13500 for global
momentum. Validity of the solution was confirmed by Monte Carlo simulations
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Fig. 1. Results of first 1000 epochs of the training. Left panel: MSE for the learning set.
Right panel: MSE for the testing set. Blue – traditional FFNN, yellow – the network
with freezing L = 30, green – dropout for 50 neurons left. (Color figure online)

using 100000 random observations, namely MSEMC = 0.011 and MAEMC =
0.084. It was a slightly better result than that obtained for the testing set.

5 Discussion and Conclusions

In this paper we have presented a new neural network training strategy, when in
every epoch of training only a randomly chosen and structurally connected net-
work weights are updated. The learning algorithm temporarily keeps constant
the rest of the neuron weights. We say that these weights are frozen. We have
shown experimentally, that for SGD method of learning this approach can pro-
vide better and faster solutions than the classical strategy of the whole network
training. It occurred that the proposed method provides a very good generaliza-
tion and – in contrast to the dropout – it is much more stable and it does not
need a regularization.

We have decided to use a testing set of the same size as the learning set.
Both of them were relatively small, i.e., the number of samples N was equal
to the number of neurons in the hidden layer. This assumption allows us to
trustworthy control of the training process. Errors obtained by the Monte Carlo
method confirm credibility of the solutions.

It should be noted that in our example the smaller size mini-batches acceler-
ate the training. Furthermore, too large learning rates, even if they do not desta-
bilize the training process, result in larger finally obtainable values of MSEtrain

and MSEtest.
In our experiments (without any regularization) freezing gave better results

than the dropout method. Nevertheless, further comparisons are needed.
The performed experiments suggest that over-parametrized (with respect to

the number of data samples) FFNN models can be learned efficiently without
over-fitting symptoms. We claim that the random subspace selection is efficient,
although slow in combination with SGD, for large scale multivariate optimiza-
tion problem. From the stochastic optimization point of view it is important to



156 E. Skubalska-Rafaj�lowicz

provide a safe and trusty method of decreasing the learning rate during the opti-
mization process [18]. However some adaptive methods of changing the learning
rate have been known for decades [12], and still there is no satisfactory solution
from the point of view of SGD.

Furthermore, it should be noted, that the freezing strategy can be combined
not only with SGD type FFNN training algorithms, but also with other pop-
ular optimization based training methods, for example, Levenberg-Marquardt,
conjugate gradient, quasi-Newton methods and their modifications [10,12].
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Abstract. According to the simplicity and universal approximation
capability, single layer feedforward networks (SLFN) are widely used in
classification and regression problems. The paper presents a new OLS-
PSO constructive algorithm based on Orthogonal Least Square (OLS)
method and Particle Swarm Optimization (PSO) algorithm. Instead of
evaluating the orthogonal components of each neuron as the conven-
tional OLS method, a new recursive formulation is derived. Then based
on the new evaluation of each neuron’s contribution, the PSO algorithm
is used to seek the optimal parameters of the new neuron in continuous
space. The proposed algorithm is experimented on some practical regres-
sion problems and compared with other constructive algorithms. Results
show that proposed OLS-PSO algorithm could achieve a compact SLFN
with good generalization ability.

Keywords: Single Layer Feedforward Networks (SLFN) · Construc-
tive algorithm · Orthogonal Least Square (OLS) · Particle Swarm
Optimization (PSO)

1 Introduction

Because of the universal approximation capability [1], single layer feedforward
network (SLFN) became a popular model for classification and regression prob-
lems. Due to its simple structure and good supervised learning performance,
SLFNs are widely used in different application fields, such as signal processing,
time-series prediction and control, etc [2,3].

The architecture of SLFN consists of three layers: an input layer, a hidden
layer with nonlinear activation function and an output summator. Popular inves-
tigated activation functions for hidden layer include sigmoid function and Radial
Basis Function (RBF).

This work was partially supported by the National Science Centre, Cracow, Poland
under Grant No. 2013/11/B/ST6/01337.

c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 158–169, 2016.
DOI: 10.1007/978-3-319-39378-0 15



Single Layer Feedforward Networks Construction Based on OLS and PSO 159

The tunable parameters of the SLFN include the hidden parameters and the
output weights that connecting the hidden nodes to the output summator. For
SLFN with sigmoid hidden layer, hidden parameters are input weights (including
bias); for SLFN with RBF hidden layer, hidden parameters are center and width
of each hidden node.

The SLFN learning consists two main tasks: determining the optimal net-
work size and searching the optimal parameters. Though many gradient based
algorithms and evolutionary methods for fixed size SLFN training worked
well [15,20,21], it is still difficult to determine the optimal network size. In order
to extend these algorithms to construction, trial and error approach is popularly
used, which leads to heavy computation.

To simplify the construction process, different methods were investigated
to involve the alteration of the network size into the parameters tuning process.
There are two main strategies to alter the SLFN architecture: constructive strat-
egy and pruning strategy [4]. The constructive algorithms start from a small
SLFN and then add additional hidden neurons until satisfactory solution is
found. The pruning algorithms do it in the opposite way, that start with a
large SLFN and then remove the least important neurons. As shown by T.Y.
Kwok and D.Y. Yeung [5], the constructive algorithms are more computationally
economical and likely to find smaller-size solutions than pruning algorithms. In
this paper, we will focus on the constructive algorithm.

Another important issue for SLFN construction is the parameters tuning
strategy after altering the network structure. For constructive algorithms, it
means how to tune the parameters after adding new hidden neurons. Since tuning
all the parameters each time will slow down the computational efficiency, many
researchers only tune part of the parameters and freeze the rest [4–8].

In this paper, a new constructive algorithm based on Orthogonal Least
Square (OLS) and Particle Swarm Optimization (PSO) is proposed for SLFN
learning. Each time adding a new neuron, freeze previous hidden parameters,
a reformulated OLS is derived to update the least square optimal solution of
the output weights recursively. The hidden parameters of the new added neuron
are tuned with PSO algorithm by using the contribution of the hidden neuron
defined in the reformulated OLS algorithm.

The rest of the paper is organized as following. In Sect. 2, conventional OLS
algorithm is reformulated into a recursive way. Section 3 introduces PSO algo-
rithm for optimization of the hidden parameters of the new neuron. In Sect. 4,
several popular benchmarks are given to validate the effectiveness of the pro-
posed OLS-PSO algorithm. Experiment results are compared with the other
constructive algorithms. Section 5 gives the conclusion.

2 Reformulation of OLS Algorithm

The Orthogonal Least Square (OLS) algorithm was originally proposed for model
selection [9]. Then it is popular used in RBF networks training for center selec-
tion [10,11]. While the conventional OLS algorithm mainly focused on the selec-
tion and only determined the least square solutions in the last step, in this
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section, a new formulation of OLS algorithm is derived that could update all the
parameters recursively, which will be more suitable for dynamic construction of
SLFN.

The conventional OLS algorithm is a stepwise forward selection method. In
the SLFN construction scheme, a candidate parameters pool is initially generated
for the (K + 1)th neuron selection,

W pool
K+1 = {w(1)

K+1,w
(2)
K+1, ...,w

(N)
K+1} (1)

whose corresponding outputs are,

H pool
K+1 = {h(1)

K+1,h
(2)
K+1, ...,h

(N)
K+1} (2)

The core idea of the OLS algorithm is to convert each component of the
model (each column of HK) into a set of orthogonal basis vectors by using QR
decomposition.

HK = OKΔK (3)

in which, ΔK is a (K + 1) × (K + 1) upper triangle matrix with 1s on the
diagonal.

ΔK =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 a01 a02 · · · a0K

0 1 a12 · · · a1K

0 0
. . . . . .

...
...

. . . . . . 1 aK−1K

0 · · · · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

OK is an N × (K + 1) matrix with orthogonal columns (o0 is for bias),

OK = [o0,o1, ...,oK ] oioj = 0, for all i �= j (4)

With the storage of above decomposition for previous SLFN, for each candi-
date in the pool (2), Gram-Schmidt process is carried out to expand OK , ΔK

to OK+1, ΔK+1 by simply adding a new column. The detail of the process is
described as below,

For i from 1 to N (every candidate in the pool),

1. Expanding new column to ΔK .

For j from 0 to K, a
(i)
jK+1 =

oT
j h

(i)
K+1

oT
j oj

2. Expanding new column to OK .
o(i)
K+1 = h(i)

K+1 − ∑K
j=0 a

(i)
jK+1oj

The advantage of the OLS algorithm is that by converting each component
into an orthogonal vector, the cost function (SSE) of SLFN with K hidden
neurons can be presented as,

C = yTy −
K∑

j=0

(oT
j y)2

oT
j oj

(5)
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which means, every hidden neuron’s contribution to the total error reduction
can be described independent to each other.

As a result, for the (K + 1)th neuron, one just select the candidate with the
biggest contribution,

arg max
i

{[err](i)K+1 =
(o(i)

K+1

T
y)2

o(i)
K+1

T
o(i)
K+1

} (6)

While one finished the selection process (assume Km neurons are selected),
the least square solutions of output weights can be simply achieved by solving
the following equation,

ΔKm
θ = gKm

(7)

in which,

gKm
= [

oT
1 y

oT
1 o1

,
oT
2 y

oT
2 o2

, ...,
oT
Km

y
oT
Km

oKm

]T (8)

2.1 Reformulated OLS Algorithm

In this section, the conventional OLS algorithm is reformulated in a recursive
way that is more suitable for dynamic construction.

Given a SLFN with K hidden neurons, whose hidden matrix is HK . While
HT

KHK is non-singular, the global optimal solution for the output weights θK

can be simply computed as,

θ̂K = H†
Ky (9)

where H†
K is the Moore-Penrose generalized inverse [12] of the hidden matrix

HK .
H†

K = (HT
KHK)−1HT

K (10)

For a guess of the (K+1)th hidden neuron with hidden parameters w(i)
K+1 and

outputs h(i)
K+1, do a temporary linear regression to the target h(i)

K+1 with current
SLFN (with K hidden neurons). Denote the optimal solution and residual error

of this regression as θ̂
(i)

t and e(i)t .

θ̂
(i)

t = H†
Kh(i)

K+1 (11)

e(i)t = h(i)
K+1 − HK θ̂

(i)

t (12)

Denote the errors for current SLFN as eK = y − ỹK , and the new errors
after adding (K +1)th neuron as eK+1. Then we have the following conclusions.

The contribution of this guess (w(i)
K+1) can be described as,

[err](i)K+1 =
(h(i)

K+1

T
eK)2

h(i)
K+1

T
e(i)t

(13)
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which can replace (6) to evaluate the error reduction contribution of the new
neuron with any possible hidden parameters.

While one find the optimal neuron with maximum contribution, denote its
outputs are hK+1, the corresponding variables in the temporary regression are
θt and et. Then the parameters can be updated recursively as following,

H†
K+1 =

⎡

⎢⎢⎢⎣

H†
K − θ̂teTt

hT
K+1et

eTt
hT
K+1et

⎤

⎥⎥⎥⎦ (14)

θ̂K+1 =

⎡

⎢⎢⎢⎣

θ̂K − hT
K+1eK
hT
K+1et

θ̂t

hT
K+1eK
hT
K+1et

⎤

⎥⎥⎥⎦ (15)

eK+1 = eK − hT
K+1eK
hT
K+1et

et (16)

2.2 Relation to Conventional OLS Algorithm

While the conventional OLS algorithm used the orthogonal vectors as space basis
vectors, each new neuron was decomposed as a representation of the previous
basis vectors and a new orthogonal vector,

hK+1 =
K∑

j=0

ajK+1oj + oK+1 (17)

Instead, the reformulated OLS algorithm regarded the orthogonal vectors as
latent variables, and used the previous components as basis vectors directly.

hK+1 =
K∑

j=0

θt,jhj + et (18)

in which, θt,j is the jth element of θt.
Since {o0,o1, ...,oK} are the orthogonal basis vectors of {1,h1, ...,hK}, we

can conclude that the residual error of the temporary regression (et) in (18) is
actually the decomposed orthogonal vector of the new neuron (oK+1) in (17).

By reformulated the conventional OLS algorithm, all the parameters could
be updated recursively. Therefore, the proposed reformulated OLS algorithm is
more suitable for dynamic construction of SLFN.
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3 Particle Swarm Optimization

The conventional OLS algorithm mainly worked as a selection method, which
used the error reduction contribution criterion to pick the best component from
a candidate pool. However, the parameters of the SLFN are not necessary limit
in the discrete space, like the candidate pool. In this paper, the hidden parame-
ters of the new added neuron are optimized in the continuous space to maximize
the new derived contribution function (13). Considering the multimodal charac-
teristic and the existence of the plateaus, in this paper, instead of the gradient
based methods, Particle Swarm Optimization (PSO) is used to tune the new
added neuron’s hidden parameters.

The PSO algorithm is a population based stochastic optimization technique
developed by Kennedy and Eberhart [13] in 1995, inspired by social behavior
of bird flocking and fish schooling. Unlike genetic algorithm (GA), the PSO
algorithm doesn’t have the complicated operators, such as crossover and muta-
tion [14], therefore it has less parameters to set. Due to the efficiency and sim-
plicity, PSO is popular used for neural networks learning alternative to back
propagation (BP) algorithm [15–17].

The PSO algorithm optimizes an objective function by having a population
of candidate solutions, called particles, which are initialized randomly in the
searching space. Each particle has a position and velocity. These particles are
moved around the searching space to seek the global optima by updating their
positions and velocities iteratively according to simple formula. The movement
of each particle is influenced by its individual best known position (pbest) and
the best known position in the swarm (gbest). Assume a population with N
particles, for the ith particle, denote its position and velocity are x(i),v(i) ∈ Rm.
Then each dimension of x(i) and v(i) are updated as,

v
(i)
j = c0×v

(i)
j +c1×rand()×(pbest

(i)
j −x

(i)
j )+c2×rand()×(gbestj −x

(i)
j ) (19)

w
(i)
j = w

(i)
j + v

(i)
j (20)

in which, x
(i)
j , v

(i)
j are the jth dimension of x(i) and v(i) (j = 1, 2, ...,D). c1, c2

are the acceleration constants with positive values set by user. rand() is ran-
domly generated number in the range [0,1]. pbest

(i)
j is the jth dimension of the

best known position (pbest(i)) in the ith particle’s searching history. gbestj is
the jth dimension of the best known position (gbest) in the entire swarm. c0
is called inertia weight introduced by Shi and Eberhart [18], which plays a key
role in balancing the exploration and exploitation process of the swarm. Many
researches have been done on the parameters setting of the PSO algorithm [22].
In this paper, we will use the suggested setting in [22]: c1 = c2 = 2; a linearly
decreasing inertia weight c0 starts at 0.9 and ends at 0.4. The extensive exper-
iments have been done to verify the appropriateness of c0, c1 and c2 and the
recommended values gave the best result.

It has been shown that the neural networks with smaller size tend to produce
smoother functions, which could generalize better [19]. Inspired by this, we have a
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bound for the searching space of those hidden parameters. Assume the maximum
amplitude of the input data is r > 0, which means the input range ⊆ [−r, r].
Then the hidden parameters of each neuron is bounded as 10 times of this range,
which is [−10r, 10r]. In particular for the width σ of the RBF node, we bounded
it as σ ∈ (0, 10r]. The velocity corresponding to each parameter is bounded in
the same range [10r, 10r] to constrain the exploration of the swarm. As a result,
in each iteration as the PSO proceeds, after the velocity is updated with (19),
it is determined as,

v
(i)
j =

⎧
⎪⎨

⎪⎩

−10r if v
(i)
j ≤ −10r

v
(i)
j if − 10r < v

(i)
j < 10r

10r if v
(i)
j ≥ 10r

(21)

after the parameters are updated with (20), for all the parameters of sigmoid
SLFN and centers of RBF network, they are determined as,

x
(i)
j =

⎧
⎪⎨

⎪⎩

−10r if x
(i)
j ≤ −10r

x
(i)
j if − 10r < x

(i)
j < 10r

10r if x
(i)
j ≥ 10r

(22)

for the width of RBF network, they are determined as,

x
(i)
j =

⎧
⎪⎨

⎪⎩

ε if x
(i)
j ≤ ε

x
(i)
j if ε < x

(i)
j < 10r

10r if x
(i)
j ≥ 10r

(23)

in which, ε is a small positive value set by user.

3.1 Process Description

The PSO procedure in the proposed OLS-PSO algorithm is shown in Fig. 1. Each
time after this procedure, the optimal parameters of the new hidden neuron is
stored in gbest. The variables θ̂t, et corresponding to this best particle will
be reused for the update of H†

K+1, θ̂K+1 and eK+1 according to (14–16). The
construction process will continue until the desired error arrives, or the number of
hidden neurons arrives the maximum preset number, or the greatest contribution
of the new neuron is smaller than some threshold set by user, which means the
construction saturates.

4 Experiments

In this section, the proposed OLS-PSO algorithm is experimented on several 2-D
function approximation benchmarks. The experiment results are compared with
other constructive algorithms introduced in Sect. 1.

All the experiments are carried out on Windows 7 Enterprise 64-bit operating
system, Intel R©CoreTM2 Quad CPU Q8400 2.67 GHz process, 4.00 GB RAM,
MATLAB R2012a platform.
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1: Assume current SLFN has K hidden neurons, whose hidden matrix is HK , the
Moore-Penrose generalized inverse of the hidden matrix is H†

K , the optimal out-

put weights of current SLFN is θ̂K , the error is eK . One is trying to add the
(K + 1)th hidden neuron.

2: Initialize a population of N particles with random positions
{x(1)

K+1,x
(2)
K+1, ...,x

(N)
K+1} and random velocities {v(1)

K+1,v
(2)
K+1, ...,v

(N)
K+1}. Each

position is initialized as pbest(i), whose fitness calculated by (11-13) is fi. Pick
the maximum fitness as fg and the corresponding particle position as gbest.

3: for t ← 1 to T do � Iteration number
4: for i ← 1 to N do � Each particle
5: for j ← 1 to D do � Each dimension
6: update each velocity with (19)(21)
7: udpate each parameter with (20)(22)(23)
8: end for
9: Calculate fitness [err]

(i)
K+1 of current parameters using (11-13)

10: if [err]
(i)
K+1 > fi then

11: pbest(i) ← x
(i)
K+1

12: fi ← [err]
(i)
K+1

13: end if
14: if [err]

(i)
K+1 > fg then

15: gbest ← x
(i)
K+1

16: Store θ̂t and et

17: fg ← [err]
(i)
K+1

18: end if
19: end for
20: end for

Fig. 1. Tuning hidden parameters with PSO

4.1 2-D Function Approximation

In this experiment, the proposed OLS-PSO algorithm is compared with the algo-
rithms by T.Y. Kwok and D.Y. Yeung in [4] on eight 2-dimensional benchmarks.
In [4], several objective functions had been proposed to optimize the hidden para-
meters of each new neuron and quickprop [23] was used for the optimization task.
Mesh plots of these benchmark functions are shown in Fig. 2.

The SLFNs with sigmoid activation function are constructed to approximate
the above eight functions. For each function, both noiseless and noisy training
sets are generated for the SLFN learning. The noiseless training set has 225
patterns, which are generated randomly by the uniform distribution in each cor-
responding input range. Based on the noiseless training set, independent and
identically distributed (i.i.d.) Gaussian noise with mean zero and standard devi-
ations 0.1 are added as the noisy training set. The testing data set is 100 × 100
patterns generated from a regular spaced grid in the input range of each function.
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(a) function #1 (b) function #2 (c) function #3 (d) function #4

(e) function #5 (f) function #6 (g) function #7 (h) function #8

Fig. 2. Meshplot of the eight functions for approximation

Table 1. Comparison of testing FVU in average for 20 trials while approximating the
2-D functions with noiseless training set

Function # S1 S2 S3
√
S1

√
S2

√
S3 Scascor OLS − PSO

1 0.0594 0.0970 0.0559 0.0705 0.0969 0.0508 0.0901 0.0271

(0.0065) (0.0124) (0.0086) (0.0167) (0.0124) (0.0094) (0.0093) (0.0073)

2 0.0132 0.0246 0.0216 0.0119 0.0227 0.0172 0.0235 0.0011

(0.0073) (0.0046) (0.0097) (0.0079) (0.0054) (0.0091) (0.0072) (0.0005)

3 0.2108 0.1523 0.1404 0.2255 0.1563 0.1337 0.1549 0.0708

(0.0735) (0.0395) (0.0654) (0.0590) (0.0389) (0.0718) (0.0391) (0.0228)

4 0.3472 0.2851 0.2040 0.4398 0.2646 0.2103 0.2674 0.1692

(0.0951) (0.0363) (0.1055) (0.3965) (0.0402) (0.0746) (0.0291) (0.0553)

5 0.0585 0.0290 0.0521 0.0537 0.0293 0.0633 0.0271 0.0093

(0.0227) (0.0059) (0.0289) (0.0162) (0.0054) (0.0407) (0.0037) (0.0039)

6 0.2057 0.1634 0.2927 0.2253 0.1676 0.2963 0.1693 0.1393

(0.0334) (0.0159) (0.0986) (0.0457) (0.0189) (0.0780) (0.0194) (0.0852)

7 0.5479 0.3063 0.3904 0.6235 0.3142 0.4352 0.3024 0.2417

(0.1170) (0.0379) (0.0991) (0.1973) (0.0353) (0.1543) (0.0218) (0.0536)

8 0.2591 0.2454 0.2191 0.2493 0.2321 0.2167 0.2401 0.2120

(0.0379) (0.0264) (0.0322) (0.0357) (0.0156) (0.0386) (0.0174) (0.0361)

* In each cell, the above value is the averaged RMSE while the value in the bracket is the standard

deviation.

The performances of these algorithms are evaluated on the prediction accu-
racy of the testing data set by calculating the fraction of variance unexplained
(FVU) [4].

FVU =
(y − ỹ)T (y − ỹ)
∑P

p=1(yp − ȳ)2
(24)
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Table 2. Comparison of testing FVU in average for 20 trials while approximating the
2-D functions with noisy training set

Function # S1 S2 S3
√
S1

√
S2

√
S3 Scascor OLS − PSO

1 0.0717 0.0949 0.0600 0.0731 0.0961 0.0580 0.0953 0.0327

(0.0130) (0.0085) (0.0123) (0.0145) (0.0130) (0.0148) (0.0106) (0.0071)

2 0.0111 0.0237 0.0190 0.0139 0.0227 0.0209 0.0222 0.0013

(0.0066) (0.0047) (0.0200) (0.0104) (0.0060) (0.0136) (0.0046) (0.0005)

3 0.1811 0.2264 0.1854 0.2094 0.2092 0.1517 0.1993 0.0971

(0.0462) (0.0678) (0.0611) (0.0484) (0.0545) (0.0545) (0.0480) (0.0184)

4 0.3160 0.2805 0.2308 0.3746 0.2725 0.2085 0.2797 0.1509

(0.0641) (0.0374) (0.0737) (0.0931) (0.0281) (0.0916) (0.0280) (0.0586)

5 0.0572 0.0287 0.0656 0.0538 0.0276 0.0615 0.0286 0.0100

(0.0200) (0.0060) (0.0301) (0.0221) (0.0035) (0.0350) (0.0058) (0.0046)

6 0.2240 0.1654 0.2520 0.2250 0.1685 0.3017 0.1690 0.1594

(0.0473) (0.0226) (0.0882) (0.0428) (0.0248) (0.0812) (0.0206) (0.0819)

7 0.5860 0.3273 0.4280 0.6166 0.3141 0.4519 0.3244 0.2529

(0.1269) (0.0363) (0.1171) (0.1741) (0.0280) (0.1327) (0.0306) (0.0435)

8 0.2969 0.2941 0.2595 0.2886 0.2970 0.2696 0.3024 0.2931

(0.0374) (0.0466) (0.0344) (0.0354) (0.0291) (0.0353) (0.0358) (0.0658)

* In each cell, the above value is the averaged RMSE while the value in the bracket is the standard

deviation.

in which, y = [y1, y2, ..., yP ]T ∈ RP are the desired outputs for the testing
patterns. ỹ are the actual outputs with the trained SLFN. ȳ is the average value
of the desired outputs for all the testing patterns.

ȳ =
1
P

P∑

p=1

yp (25)

All the algorithms constructed a SLFN with sigmoid activation function by
adding hidden neurons from 1 to 15. All the objective functions in [4] are opti-
mized by quickprop [23], in which 100 is set as the maximum iteration number.
To increase the probability to find the global optimal parameters of the new neu-
ron, 4 candidates are trained together in each stage. While using the proposed
OLS-PSO algorithm, after many experiments, the population size have been set
as 20 and the maximum iteration number of the PSO have been set as 20.

Since all the algorithms has randomness involved, each construction is
repeated 20 times. The averaged FVU and corresponding standard deviation
for the testing data set among the 20 times are recorded. Table 1 shows the
results while training with noiseless data set, Table 2 shows the results while
training with noisy data set. For each approximated function, the best result is
highlighted with bold in the table. From the comparisons, one can observe that
for most functions, while constructing SLFN with the same number of hidden
neurons, the proposed OLS-PSO algorithm could achieve better accuracy with
both noiseless and noisy training data set. Note that The OLS-PSO algorithm
converged faster than other objective functions, which also demonstrated that a
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more compact SLFN could be constructed to arrive a similar generalization accu-
racy. All the other objective functions are optimized 4×100 epochs by quickprop
while the OLS-PSO algorithm had 20× 20 evaluations of the error contribution.
Because of the simplicity of the PSO, that no gradient information is required
and only forward computation is performed, the proposed OLS-PSO algorithm
constructed the SLFN slightly faster than the other algorithms.

5 Conclusion

In this paper, a new constructive algorithm for SLFN construction is proposed
based on Orthogonal Least Square (OLS) and Particle Swarm Optimization
(PSO). As the other constructive algorithms, the proposed OLS-PSO algorithm
constructs the SLFN by adding hidden neurons one by one. Each time adding a
new neuron, all the hidden parameters of previous SLFN are frozen. With the
error reduction contribution defined in the OLS, the PSO algorithm is used to
search the optimal parameters of the new added neuron. All the output weights
of the SLFN keep to be least square optimal. Unlike the conventional OLS used in
model selection, which needs to evaluate the orthogonal components of each neu-
ron, a new formulation is derived that is more efficient and suitable for dynamic
construction of SLFN.

The proposed OLS-PSO algorithm is compared with other popular construc-
tive algorithms, the comparison results demonstrated that the OLS-PSO algo-
rithm could achieve very compact SLFN with good generalization ability. The
PSO algorithm works well to search the global optimal parameters of the hidden
neuron based on the multimodal contribution function. However, it was shown
much slower than those constructive ELMs. In fact, the PSO algorithm was crit-
icized with slow convergence in the vicinity of the global minimum. Further work
will focused on the combination of the PSO and gradient method to speed up
the optimization process.
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Abstract. In this paper some problems that arise in identification of
nonlinear systems described by the cloud-based fuzzy rule-based model
are shown. These models do not assume fixed partitioning of the space of
antecedent variables. The Mahalanobis distance among the data samples
is proposed for local density calculation which is more suitable when the
data are scattered around the input-output surface. The identification
algorithms are given in a recursive form which is necessary for the imple-
mentation of an evolving system. The proposed algorithms are illustrated
on a simple simulation model of a static system.

1 Introduction

In this paper we deal with nonlinear systems which are modelled by fuzzy rule-
based (FRB) models. The paper is focused on the identification issues of the
FRB models. Traditionally, FRB systems often assumed fixed partitioning of
the space of antecedent variables. This means that only the consequent models’
parameters need to be estimated. Identification of the Takagi-Sugeno fuzzy model
is the one that arguably received the most attention; the early works date to the
1980s [12]. Later many works followed and the area is still alive. When the model
needs to be estimated on line, recursive algorithms are needed. Often a version of
recursive least squares algorithm has been applied. Global and local approaches
to estimate consequent models’ parameters were presented in [2]. The problem
of identification of dynamic systems is that with the local approach the local
models have more appropriate local behaviour while the fuzzy model is less
accurate globally [11]. Nevertheless, different local identification approaches are
presented by [6], [3], [9], [4] etc.

The second problem in nonlinear system identification is to properly partition
the space of antecedent variables. The methods are based on learning algorithms
for neural networks [15], evolving clustering [8], subtractive clustering [2], fuzzy
c-means clustering [6], Gustafson-Kessel clustering [5] and others [7,10,14].

Recently, a special type of fuzzy FRB systems with non-parametric
antecedents has been proposed in [1]. Unlike traditional Mamdani and Takagi-
Sugeno FRB systems, the approach does not require an explicit definition of
fuzzy sets (and their corresponding membership functions) for each input vari-
able. Data clouds are subsets of previous data samples with common properties.
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 173–182, 2016.
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In the original works [1] data closeness has been used as a similarity measure.
The approach itself is not limited to any particular similarity measure to clas-
sify data into clouds. In identification of dynamical systems it is very important
to distinguish among the operating regions that demonstrate different system
dynamics. Those regions could be seen as natural clouds. Even if we choose to
select the framework of cloud based system identification, there are still a num-
ber of subtasks that have to executed. There are also some possible changes
that can be introduced to the original method while still keeping the general
methodology.

The relative density in the original papers [1] was based on Euclidean distance
among the data samples in the cloud although it was stated that any other
distance could be used. In the current paper two distance metrics are compared:
the original Euclidean distance and Mahalanobis distance where we introduced
some versions for calculating actual density.

We limit ourselves to static systems that map the multi-dimensional input
space to the real numbers in this work. This simplifies the problem of identi-
fication because the problems related to identification of dynamic systems are
omitted.

2 Takagi-Sugeno Fuzzy Model of a Nonlinear System

A typical Takagi-Sugeno fuzzy model [13] is given in the form of rules:

if z1 is A1,k1 . . . and zq is Aq,kq
then y = φj(x)

j = 1, . . . , m k1 = 1, . . . , f1 kq = 1, . . . , fq (1)

The q-element vector zT = [z1, ..., zq] denotes the input or variables in the
antecedent part of the rules, and variable y is the output of the model. With
each variable in the antecedent zi (i = 1, . . . , q), fi fuzzy sets (Ai,1, . . . ,Ai,fi

)
are associated, and each fuzzy set Ai,ki

(ki = 1, . . . , fi) is associated with a
real-valued function μAi,ki

(zi) : R → [0, 1], that produces membership grade of
the variable zi with respect to the fuzzy set Ai,ki

. To make the list of fuzzy
rules complete, all possible variations of fuzzy sets are given in Eq. (1), yielding
the number of fuzzy rules m = f1 × f2 × · · · × fq. The variables zi are not the
only inputs of the fuzzy system. Implicitly, the n-element vector xT = [x1, ..., xn]
also represents the input to the system. It is usually referred to as the conse-
quence vector. The functions φj(·) can be arbitrary smooth functions in general,
although linear or affine functions are usually used.

The system in Eq. (1) is easily described in the closed form in the case of a
product-sum Takagi-Sugeno fuzzy model

y =

∑f1
k1=1 · · · ∑fq

kq=1 μA1,k1
(z1) . . . μAq,kq

(zq) φj(x)
∑f1

k1=1 · · · ∑fq

kq=1 μA1,k1
(z1) . . . μAq,kq

(zq)
(2)

Note a slight abuse of notation in Eq. (2) since j is not explicitly defined as a
running index. From Eq. (1) it is evident that each j corresponds to a specific
variation of indexes ki, i = 1, . . . , q.



Problems of Identification of Cloud-Based Fuzzy Evolving Systems 175

To simplify Eq. (2), a partition of unity is considered where functions βj(z)
defined as

βj(z) =
μA1,k1

(z1) . . . μAq,kq
(zq)

∑f1
k1=1 · · · ∑fq

kq=1 μA1,k1
(z1) . . . μAq,kq

(zq)
j = 1, . . . ,m (3)

give information about the fulfilment of the respective fuzzy rule in the nor-
malized form. It is obvious that

∑m
j=1 βj(z) = 1 irrespective of z as long as

the denominator of βj(z) is not equal to zero (this can be easily prevented by
stretching the membership functions over the whole potential area of z). Com-
bining Eqs. (2) and (3) and changing summation over ki by summation over j
we arrive to the following equation:

y =
m∑

j=1

βj(z)φj(x) (4)

From Eq. (4) it is evident that the output of a fuzzy system is a function
of the antecedent vector z (q-dimensional) and the consequence vector x (n-
dimensional). The dimension of the input space d may be and usually is lower
than (q + n) since it is usual to have the same variables present in z and x.

The class of fuzzy models have the form of linear models, this refers to {βj}
as a set of basis functions. The use of membership functions in input space
with overlapping receptive fields provides interpolation and extrapolation. It is
very common to define the output value as a linear combination of consequence
variables x

φj(x) = θθθT
j x, j = 1, . . . ,m, θθθT

j = [θj1, . . . , θjn] (5)

If the matrix of the coefficients for the whole set of rules is denoted as ΘΘΘT =
[θθθ1, ..., θθθm] and the vector of membership values as βββT (z) = [β1(z), . . . , βm(z)],
then Eq. (4) can be rewritten in the matrix form

y = βββT (z)ΘΘΘx =
m∑

j=1

βj(z)θθθ
T
j x (6)

A fuzzy model in the form given in Eq. (6) is referred to as an affine Takagi-
Sugeno model and can be used to approximate any arbitrary function that maps
any compact set C ⊂ R

d from the input space (the input space is the space of
the union of variables in x and z) to R with any desired degree of accuracy.

3 Identification of the Antecedent Part

The local density γj
k is defined by a suitable kernel over the distances between

the current sample z(k) and all the previous samples that have already been
classified to a particular cloud (j-th in this case) [1]:

γj
k =

1

1 + ρ
∑Mj

i=1 dj
ki

Mj

j = 1, ...,m (7)
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where dj
ki denotes the square of the (Euclidean) distance between the current

data sample z(k) and the i-th sample of the j-th cloud zj
i , while M j is the

number of input data samples associated with the j-th cloud. Note the factor ρ
which is not present in [1] and will be discussed later.

3.1 Density Based on Mahalanobis Distance

Mahalanobis distance is conceptually different from the Euclidean one. It is
defined between an observation and a group of observations. The latter is char-
acterised with its mean and the corresponding covariance matrix. In our case
the distance will be calculated between two samples but taking into account the
covariance matrix of the cloud data samples. The cloud is characterised by the
mean value of the samples in the j-th cloud μμμj and the associated covariance
matrix ΣΣΣj . The square of the distance between the current data sample z(k)
and the i-th sample of the j-th cloud (zj

i ) can therefore be computed as

dj
ki = (z(k) − zj

i )
T (ΣΣΣj

Mj )−1(z(k) − zj
i ) (8)

with μμμj(k) and ΣΣΣj(k) given by

μμμj
Mj =

1
M j

Mj∑

i=1

zj
i

ΣΣΣj
Mj =

1
M j − 1

Mj∑

i=1

(zj
i − μμμj

Mj )(z
j
i − μμμj

Mj )T (9)

where the lower index in μμμj(k) and ΣΣΣj(k) gives the number of data samples
taken into account during the calculation of the corresponding variable.

By introducing (8) into (7) we obtain the non-recursive formula for density
calculation:

γj
k =

1

1 + ρ
∑Mj

i=1(z(k)−zj
i )

T (ΣΣΣj

Mj )
−1(z(k)−zj

i )

Mj

(10)

Eq. (10) can be transformed into the recursive form by further developing the
summation in it:

Mj
∑

i=1

(z(k) − z
j
i )

T
(ΣΣΣ

j

Mj )
−1

(z(k) − z
j
i ) =

Mj
∑

i=1

((z(k) − μμμ
j

Mj ) − (z
j
i − μμμ

j

Mj ))
T
(ΣΣΣ

j

Mj )
−1×

× ((z(k) − μμμ
j

Mj ) − (z
j
i − μμμ

j

Mj )) = M
j
(z(k) − μμμ

j

Mj )
T
(ΣΣΣ

j

Mj )
−1

(z(k) − μμμ
j

Mj )
︸ ︷︷ ︸

T1

−

− 2
Mj
∑

i=1

(z
j
i − μμμ

j

Mj )
T
(ΣΣΣ

j

Mj )
−1

(z(k) − μμμ
j

Mj )

︸ ︷︷ ︸
T2

+
Mj
∑

i=1

(z
j
i − μμμ

j

Mj )
T
(ΣΣΣ

j

Mj )
−1

(z
j
i − μμμ

j

Mj )

︸ ︷︷ ︸
T3

(11)
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To try to simplify the expression further we need to fulfill the conditions for the
covariance matrix inversion. First denote the matrix of all the vectors (zj

i −μμμj
Mj )

of the j-th cloud in its columns by ΞΞΞj (dimension q×M j). The matrix ΣΣΣj
Mj from

(9) is non-singular if and only if ΞΞΞj has rank q. Since all the rows in ΞΞΞj have zero
mean, at least q + 1 columns are needed for the matrix ΞΞΞj to achieve full rank.
If M j ≥ q + 1 and all the measurements are independent, the matrix ΣΣΣj

Mj can
be inverted (its inverse is (M j − 1)(ΞΞΞjΞΞΞ

T
j )−1). Then it is easy to see that the

term T3 in (11) is identical to (M j − 1) trace(ΞΞΞT
j (ΞΞΞjΞΞΞ

T
j )−1ΞΞΞj) which is in turn

equal to (M j − 1)q (q is the dimension of the antecedent vector). The term T2

is identical to 0 due to the definition of μμμj
Mj in (9). The formula for the relative

density (10) therefore takes the form suitable for the recursive implementation:

γj
k =

1

1 + ρ
[
(z(k)−μμμj

Mj )T (ΣΣΣ
j

Mj )−1(z(k)−μμμj

Mj ) +
(Mj−1)q

Mj

] (12)

The expression in square brackets in Eq. (12) is equivalent to the quadratic
form in Eq. (10) and therefore always positive. Now it is properly to discuss the
parameter ρ. This parameter directly influences “overlapping” of local densities
which is analogous to overlapping of membership functions in the context of fuzzy
systems. Small values of ρ have similar effect as wide membership functions. By
increasing ρ, the analogous membership functions become narrower.

The benefit of using Mahalanobis distance is to describe the ellipsoidally
shaped clouds. In fact any cloud stretched in a certain direction can be described
easier. The size and the shape of the ellipsoid depends on the covariance matrix of
the data in the cloud. While the idea of having such clouds is appealing, it holds
a caveat. If a cloud is based on some measurements in a small region of space,
the covariance matrix ΣΣΣj

Mj becomes small and a relatively close measurement
may have low density with respect to this particular cloud. The problem lies in
the fact that the volume of the cloud (or better of the ellipsoid defined by its
covariance matrix) is too small. To prevent this phenomenon, the inverse of the
covariance matrix in Eq. (12) is replaced by its normalised version:

γj
k =

1

1 + ρ

⎡
⎣ (z(k)−μμμ

j

Mj )
T (ΣΣΣ

j

Mj )
−1(z(k)−μμμ

j

Mj )
√

det
(
(ΣΣΣ

j

Mj )
−1
) + (Mj−1)q

Mj

⎤
⎦

(13)

The normalising factor is the square root of the determinant of the matrix which
is proportional to the volume of the ellipsoid. In some cases (e.g. when ΣΣΣj

Mj is
not of a full rank) it is possible to use multiplication with (detΣΣΣj

Mj )
1
2 instead

of division with the square root given in (13).
There exist other possibilities of coping with the aforementioned prob-

lem of “small” clouds. One approach is to only perform normalisation (13) if
(detΣΣΣj

Mj )
1
2 falls below a certain threshold (typically 1), otherwise unnormalised

algorithm (12) is used. Thus, automatic normalisation of “big” signals is still
achieved via the Mahalanobis metric while over-shrinking of clouds is prevented.

Equation (9) is not suitable for implementation in the recursive identification
algorithm because it needs to have all the past data stored. This algorithm can
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be adapted for our purpose as follows. If a new data sample (say z) is assigned
to the j-th cloud, the update of the mean and the covariance matrix can be
calculated using the Algorithm 1:

M j ← M j + 1
d ← z − μμμj

μμμj ← μμμj + 1
Mj d

Sj ← Sj + d(z − μμμj)T

ΣΣΣj ← 1
Mj−1S

j

All the states (M j , μμμj , Sj) of this algorithm are initialised with zeros. Note
that the lower indexes are omitted in the algorithms.

In order to calculate the relative density (12) or (13), one needs the inverse
of the covariance matrix. To avoid inverting the matrix in each sampling instant,
Woodbury matrix identity is used to obtain the recursive form for the matrix
inversion. Last two steps of Algorithm 1 therefore change in Algorithm 2:

S̄j ← S̄j − S̄jd
[
1 + (z − μμμj)T S̄jd

]−1 (z − μμμj)T S̄j

(ΣΣΣj)−1 ← (M j − 1)S̄j

Algorithm 2 introduces a new state S̄j as an inverse of Sj from Algorithm
1. It is initialised with a large positive definite matrix, usually a diagonal one.
Note that the inverse in Algorithm 2 applies to a (positive) scalar and is not
problematic. Note also that Algorithm 1 exactly reproduces the mean and the
covariance matrix from (9) while Algorithm 2 also achieves this but there is a
slight difference in the initialisation phase. After the full rank of the covariance
matrix is achieved, all three algorithms become identical.

But since starting a new cloud with enough initial data is extremely impor-
tant for robust operation, the above mentioned small difference is irrelevant.
Enough initial data means that data are kept in a buffer before a decision for
starting a new cloud is taken. Usually, this means that more than q+1 measure-
ments are kept. Then, there is no need of initialising the inverse of the covariance
matrix with a big positive matrix. Instead, real data from the buffer are used.

3.2 The Determination of the Input-Output Mapping

Any nonlinear mapping that maps a compact set from the input space to R

can be approximated by a number of general approximators. One possibility is
to use a Takagi-Sugeno model given in Eq. (6). The problem of identifying the
model is a very well-known one and has been treated by many authors in the last
decades. Most traditional approach is to somehow estimate the parameters θθθj

while simultaneous identification of parameters θθθj and functions βj(·) has also
received quite some attention in the literature.

Here we will try to obtain a very simple and also not so accurate model
by only analysing the covariance matrices of the clouds. We will assume that
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measurement vectors are composed of the input vector x and the corresponding
output y:

zT =
[
xT y

]
(14)

One possibility to obtain input-output mapping is to deduce it solely by
analysing the input part of the FRB. For this purpose, the following idea is
used. The data in the input-output space lie along the hyper-surface represent-
ing the input-output mapping. Due to disturbances, measurement noise, para-
sitic disturbances and other sources of errors, the data do not lie exactly on the
surface, but are spread in the vicinity of the hyper-surface. Analysing the data
in the cloud it turns out that the eigenvectors associated with the dominant
eigenvalues lie along the hyper-surface while the smallest eigenvalue is associ-
ated with the eigenvector that is perpendicular to the hyper-surface. For the j-th
cloud, this normal vector is denoted by nj . This vector determines the tangential
hyper-plane in the centre of the cloud. In the context of nonlinear systems, the
normal vector to the hyper-plane changes from one operating point to another.
The normal vector in a certain operating can be obtain by linear combination
of individual normal vectors associated with individual clouds. Here we will use
normalised densities associated with the clouds as the factors of the linear com-
bination. This leads to the following estimate of the normal vector:

nk =

∑m
j=1 γj

knj
∑m

j=1 γj
k

(15)

When a measurement zT
k =

[
xT

k yk

]
is obtained, a local linearised model can be

obtained: [
xT − xT

k y − yk

]
nk = 0 (16)

Equation (16) describes the hyper-plane with the normal vector nk through the
point

[
xT y

]T . This method enables obtaining the local linear model without
the need for performing the identification of the consequent part of the FRB.
The method also has some drawbacks due to the fact that the data inside a
cloud usually do not lie along a hyper-plane and the required normal direction
to the surface is contaminated with the direction of the nonlinearity in a certain
direction.

4 Simulation Examples

First a static system
y = u3 (17)

will be treated. The data collected from the system are depicted in Fig. 1. In
the left part of Fig. 1 the data clouds obtained by calculating the densities using
Euclidean distance are shown in different colours. The right part of Fig. 1 shows
the results of the example where the density is calculated by the second version of
the Mahalanobis distance (Eq. 13). The ellipses show the one standard deviation
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Fig. 1. The clouds obtained with the density calculation based on the Euclidean dis-
tance (left) and the corrected Mahalanobis distance (13) (right)
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Fig. 2. The data in the clouds and the normal vector calculated from the eigenvectors
by Eq. (15)

boundary. All other parameters are the same in both approaches: new cloud
is started when the local density falls below 0.4, ρ = 1

n = 1
2 . The first thing

to note is that lower number of clouds is obtained in the latter case which is
understandable because the clouds adapt their shape to the data to a certain
extent.

In Fig. 2 the data clouds are depicted together with the normal vectors given
by Eq. (13). The left part of the figure shows the case with high noise (the same
data as in Fig. 1 while in the right part the case with low noise is analysed. As
expected, normal vectors are estimated verywell when the data lie almost along the
hyper-plane.Aroundnonlinearities and/or in the case of higher noise the estimated
normal to the surface becomes less accurate leading to the wrong linearised model.

The input partition of the two models (illustrated in Fig. 1) was used to
design two fuzzy models where the consequent parameters were estimated by
the classical least squares method (global optimum of the parameters is searched



Problems of Identification of Cloud-Based Fuzzy Evolving Systems 181

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

u

y

measured
true
Euclid
Mahalanobis

Fig. 3. The comparison of the two simulated outputs with the original one (Color figure
online)

for in a non-recursive way). Figure 3 shows the true output of the system with
a green colour and the measured one with the black colour. Both outputs of the
fuzzy models are also shown. The model that is based on Euclidean distance
is shown in red, the one based on Mahalanobis distance is shown in blue. The
comparison of errors shows that the proposed method results in the mean square
error (MSE) of 0.0172 among the model output and the true output while the
MSE of 0.0232 is achieved in the case of Euclidean-distance-based model. This
means that the lower error is achieved while lower number of parameters is tuned
(4 clouds instead of 7).

5 Conclusions

In this paper we focused only on the identification of static mappings although
the approach is suitable also for dynamic systems. By static we refer to the prop-
erty that the output of the system only depends on the current inputs and not on
internal states. Having said that we do not assume that the nonlinearity is time
invariant. On the contrary, the model with (slowly) varying system parameters
is one of the main targets when speaking about the evolving systems in general.

In this paper an alternative way of describing local density in the cloud-based
evolving systems is discussed. The Mahalanobis distance among the data sam-
ples is used which leads to the density that is more suitable when the data are
scattered around the input-output surface. All the algorithms for the identifi-
cation of the cloud parameters are given in a recursive form which is necessary
for the implementation of the evolving systems. It is also shown that a simple
linearised model can be obtained without identification of the consequent para-
meters. All the proposed algorithms are illustrated on a simple simulation model
of a static system.
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Abstract. In this paper, two measures of uncertainty for interval type-2
fuzzy sets are presented, evaluated, compared and contrasted. Wu and
Mendel regard the length of the type-reduced set as a measure of the
uncertainty in an interval set. Greenfield and John argue that the volume
under the surface of the type-2 fuzzy set is a measure of the uncertainty
relating to the set. For an interval type-2 fuzzy set, the volume mea-
sure is equivalent to the area of the footprint of uncertainty of the set.
Experiments show that though the two measures give different results,
there is considerable commonality between them. The concept of invari-
ance under vertical translation is introduced; the uncertainty measure
of a fuzzy set has the property of invariance under vertical translation
if the value it generates remains constant under any vertical translation
of the fuzzy set. It is left unresolved whether invariance under vertical
translation is an essential property of a type-2 uncertainty measure.

Keywords: Interval type-2 fuzzy set · Uncertainty · Uncertainty
bounds · Volume measure of uncertainty · Invariance under vertical
translation

1 Introduction

In 1965 Zadeh introduced the concept of the (type-1) fuzzy set [26]. Type-1
membership functions are of questionable accuracy as their derivation tends to be
subjective or reliant on large sets of data. The practical application of fuzzy sets is
within a Fuzzy Inferencing System (FIS). Uncertainty in type-1 FISs derives from
various sources, e.g. “The meanings of the words that are used in the antecedents
and consequents of rules can be uncertain” and “Measurements that activate a
type-1 FLS may be noisy and therefore uncertain.” [19, p. 117]. It is therefore
very difficult, if not impossible, to determine a type-1 membership function, and
consequently it seems somewhat inappropriate to use crisp numbers, possibly
expressed to several decimal places, to represent degrees of membership. Klir
and Folger [16, p. 12] comment:

“. . . it may seem problematical, if not paradoxical, that a representation of
fuzziness is made using membership grades that are themselves precise real
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numbers. Although this does not pose a serious problem for many appli-
cations, it is nevertheless possible to extend the concept of the fuzzy set
to allow the distinction between grades of membership to become blurred.
Sets described in this way are known as type 2 fuzzy sets.”

One might argue that the type-1 membership function does reflect the certainty
of a proposition. Does not a membership grade of 1 imply certain truth, a grade
of 0 certain falsehood, and a grade of 0.5 total uncertainty? But really what is
being quantified here is not so much uncertainty as vagueness. This is what lies
behind the common use of fuzziness as a so-called measure of uncertainty for
type-1 fuzzy sets [23, p. 5384].

Zadeh’s 1975 innovation of the type-2 fuzzy set [27–29] provides an intuitive
model of uncertainty. A type-2 fuzzy set (defined in Subsect. 2.2) may be thought
of as an adaptation of a type-1 fuzzy set [19, p. 118]:

“Imagine blurring the type-1 membership function . . . Then, at a specific
value of x, say x′, there no longer is a single value for the membership
function (u′); instead the membership function takes on values wherever
the vertical line intersects the blur. Those values need not all be weighted
the same; hence, we can assign an amplitude distribution to all of those
points. Doing this for all x ∈ X, we create a three-dimensional membership
function — a type-2 membership function — that characterizes a type-2
fuzzy set.”

Type-2 fuzzy sets take two forms, generalised, with variable secondary mem-
bership grades (Subsect. 2.2) between 0 and 1, and the simpler interval, where
all secondary membership grades are 1. The specific concern of this paper
is the interval type-2 fuzzy set. These are increasingly used in applications
[3,5,6,11,13,15,17,20,21], since interval type-2 fuzzy inferencing is less com-
putationally complex than its generalised counterpart [12,19].

The concept of a fuzzy uncertainty measure is analogous to that of error
bars in statistics. Therefore such a measure has the potential to provide valu-
able information. By quantifying the uncertainty associated with the aggregated
fuzzy set [7, p. 1015], one is in effect measuring the uncertainty of the inference
generating the aggregated set. In fuzzy image processing [5,6,13], for example,
an uncertainty measure would indicate the reliability of the processed outputs.

In [23] five measures of uncertainty for interval type-2 fuzzy sets are surveyed,
most notably the centroid length measure. A measure not considered in this
survey is that of the area of the interval set’s Footprint Of Uncertainty (FOU).
In this report the centroid length and the FOU area measures are compared and
contrasted.

The next section covers preliminaries such as assumptions and definitions.
Following that, in Sect. 3, the two uncertainty measures are presented, after
which, in Sect. 4, the experiments by which the methods are compared and con-
trasted are described and their implications assessed. Finally Sect. 5 concludes
the paper.
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2 Preliminaries

2.1 Assumptions

The following assumptions relate to fuzzy sets:

1. The type-1 fuzzy set is contained within a unit square and may be viewed as
a curve represented by (x, u) co-ordinates.

2. The type-2 fuzzy set is contained within a unit cube and may be viewed as a
surface represented by (x, u, z) co-ordinates.

3. The domain (x-axis) is discretised.

2.2 Definitions

Let X be a universe of discourse. A type-1 fuzzy set A on X is characterised by
a membership function µA : X → [0, 1] and can be expressed as follows [26]:

A = {(x, µA(x))| µA(x) ∈ [0, 1] ∀x ∈ X}. (1)

In the following the notation U = [0, 1] is employed.
Let P̃ (U) be the set of fuzzy sets in U . A type-2 fuzzy set Ã in X is a fuzzy

set whose membership grades are themselves fuzzy [27–29]. This implies that
µÃ(x) is a fuzzy set in U for all x, i.e. µÃ : X → P̃ (U) and

Ã = {(x, µÃ(x))| µÃ(x) ∈ P̃ (U) ∀x ∈ X}. (2)

It follows that ∀x ∈ X ∃Jx ⊆ U such that µÃ(x) : Jx → U. Applying (1), we
obtain:

µÃ(x) = {(u, µÃ(x)(u))| µÃ(x)(u) ∈ U ∀u ∈ Jx ⊆ U}. (3)

X is called the primary domain and Jx the primary membership of x while U is
known as the secondary domain and µÃ(x) the secondary membership of x.

Putting (2) and (3) together, we obtain the definition of a generalised type-2
fuzzy set :

Ã = {(x, (u, µÃ(x)(u)))| µÃ(x)(u) ∈ U, ∀x ∈ X ∧ ∀u ∈ Jx ⊆ U}. (4)

Definition 1 (Interval Type-2 Fuzzy Set). An interval type-2 fuzzy set is
a type-2 fuzzy set whose secondary membership grades are all 1.

In the interval case, Eq. 4 reduces to:

Ã = {(x, (u, 1)), ∀x ∈ X ∧ ∀u ∈ Jx ⊆ U}. (5)

Definition 2 (Footprint Of Uncertainty [19]). The Footprint Of Uncer-
tainty (FOU) is the projection of the type-2 fuzzy set onto the x − u plane.

The FOU defines the interval set, as all its secondary membership grades are 1.



186 S. Greenfield

Definition 3 (Lower Membership Function). The Lower Membership
Function (LMF) of a type-2 fuzzy set is the type-1 membership function associ-
ated with the lower bound of the FOU.

Definition 4 (Upper Membership Function). The Upper Membership
Function (UMF) of a type-2 fuzzy set is the type-1 membership function associ-
ated with the upper bound of the FOU.

Discretisation is the process by which a continuous set is converted into a
discrete set through a process of slicing.

Definition 5 (Vertical Slice [19]). A vertical slice of a type-2 fuzzy set is a
plane through the x-axis, parallel to the u − z plane.

Definition 6 (Degree of Discretisation). The degree of discretisation is the
separation of the slices.

Definition 7 (Rectangular Type-2 Fuzzy Set). A rectangular type-2 fuzzy
set is an interval type-2 fuzzy set whose FOU extends between the lines x = 0
and x = 1, with LMF and UMF both running parallel to the x-axis.

Figure 1 depicts two rectangular type-2 fuzzy sets.

Definition 8 (Blank Type-2 Fuzzy Set). The blank type-2 fuzzy set is a
rectangular type-2 fuzzy set whose LMF is the line u = 0 and UMF is the line
u = 1.

Definition 9 (Invariance under Vertical Translation). An attribute of a
fuzzy set has the property of Invariance under Vertical Translation (IVT) if it
remains constant under any vertical translation of the fuzzy set.

Definition 10 (Embedded Set). An embedded set is a special kind of type-2
fuzzy set, which relates to the type-2 fuzzy set in which it is embedded in this
way: For every primary domain value, x, there is a unique secondary domain
value, u, plus the associated secondary membership grade that is determined by
the primary and secondary domain values, µÃ(x)(u).

The centroid length uncertainty measure is inextricably linked with the
defuzzification process of a type-2 fuzzy set. Type-reduction, the first stage of
type-2 defuzzification, creates a type-1 fuzzy set know as the Type-Reduced Set
(TRS). Assuming that the primary domain X has been discretised, the TRS of
a type-2 fuzzy set may be defined thus [19, p. 121], [27]:

Definition 11. The TRS associated with a type-2 fuzzy set Ã with primary
domain X discretised into N points X = {x1, x2, . . . , xN}, is

CÃ =

{(∑N
i=1 xi · uki∑N

i=1 uki

, µÃ(x1)(uk1) ∗ . . . ∗ µÃ(xN )(ukN
)

)∣∣∣∣∣∀(uk1 , uk2 , . . . , ukN
)

∈ Jx1 × Jx2 × . . . × JxN
⊆ UN

}
.

(6)
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For the TRS of an interval type-2 fuzzy set, Definition 11 reduces to:

Definition 12 (TRS of an Interval Type-2 Set). The TRS associated with
an interval type-2 fuzzy set Ã with primary domain X discretised into N points
X = {x1, x2, . . . , xN}, is

CÃ =

{(∑N
i=1 xi · uki∑N

i=1 uki

, 1

)∣∣∣∣∣ ∀(uk1 , uk2 , . . . , ukN
) ∈ Jx1 ×Jx2 ×. . .×JxN

⊆ UN

}
.

(7)

Mendel and John’s Representation Theorem [19, p. 121] provides a precise
method for defuzzification of type-2 fuzzy sets. Though Definitions 11 and 12 do
not explicitly mention embedded sets, they appear implicitly in Eqs. 6 and 7.
When these equations are presented in algorithmic form (Algorithm1), they are
explicitly referred to. Exhaustive type-reduction (Algorithm1) processes every
embedded set in turn, hence the term ‘exhaustive method’ [8,9]. Each embedded
set is defuzzified as a type-1 fuzzy set. The defuzzified value is paired with the
minimum secondary membership grade of the embedded set, which in the interval
case is 1, as all the secondary membership grades are 1. The set of ordered pairs
constitutes the TRS, which is then defuzzified as a type-1 fuzzy set to give the
defuzzified value of the type-2 fuzzy set.

Input: a discretised interval type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall the embedded sets do
2 calculate the primary domain value (x) of the type-1 centroid of the type-2

embedded set ;
3 pair the secondary grade (1) with the primary domain value (x) to give set

of ordered pairs (x, 1) {these points lie on a line} ;

4 end

Algorithm 1: Type-reduction of an interval discretised type-2 fuzzy set
to a type-1 fuzzy set, adapted from Mendel [18].

2.3 Principle of Type-2 Uncertainty Measurement

Mendel [18, p. 11] advocates the fundamental design requirement with regard to
type-2 uncertainty measurement: “When all sources of uncertainty disappear, a
type-2 FLS must reduce to a comparable type-1 FLS.” This principle is patently
valid.

It follows from this requirement that there is no uncertainty associated with
a type-1 fuzzy set, and hence so called measures of uncertainty for type-1 fuzzy
sets [1,2,4,22] cannot be measuring uncertainty ; perhaps they are measuring
another characteristic of the type-1 set such as vagueness (Sect. 1).
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3 Type-2 Uncertainty Measures

In this section the two interval type-2 uncertainty measures of TRS length and
FOU area are presented; these measures contrast strongly in their rationales and
derivations.

3.1 Length of the TRS as a Measure of Uncertainty

Wu and Mendel propose that the length of the TRS of an interval set provides a
measure of the uncertainty of the set [25]. The most widely adopted method for
type-reducing an interval type-2 fuzzy set is the Karnik-Mendel Iterative Proce-
dure (KMIP) [14]. The result of type-reduction of an interval type-2 fuzzy set is
an interval (a particular case of a type-1 fuzzy set), with the defuzzified value at
the midpoint. The endpoints of the interval are termed uncertainty bounds [25,
p. 622]. The iterative procedure is an efficient search method for locating these
endpoints. It is an approximate technique [7,14, p. 203]. Since the publication of
the KMIP, various more efficient versions have been proposed [24], which differ
somewhat in their search strategy whilst giving the same result. However, in this
paper the absolutely accurate Exhaustive Method [7] is used. Though it has rel-
atively high computational complexity, in the experiments described below the
discretisation employed is coarse enough for defuzzification to be accomplished
relatively speedily.

3.2 Area of the FOU as a Measure of Uncertainty

How type-2 fuzzy sets model uncertainty is the subject of [10]. In this book
chapter it is proposed that the third dimension reflects the uncertainty arising
out of a deficit in information. From this premise it is argued that the volume
under the surface of the type-2 fuzzy set is a measure of the uncertainty relat-
ing to the set. For an interval type-2 fuzzy set, since the secondary membership
grades all take the value of 1, the area of the FOU is equivalent to the vol-
ume under the surface of the type-2 fuzzy set. The measure is applied to the
aggregated fuzzy set [7, p. 1015]; this in effect measures the uncertainty of the
inference from which the aggregated set is generated (Sect. 1).

Minimum Uncertainty. The least amount of uncertainty possible is 0. This cor-
responds to a type-2 fuzzy set in which every secondary membership function is
a vertical line of height 1, with 0 area, originating from an FOU that is a line.
Such a type-2 fuzzy set is equivalent to, and reducible to, a type-1 fuzzy set.

Maximum Uncertainty. At the other extreme, the greatest amount of uncertainty
possible is 1. There is only one type-2 fuzzy set having uncertainty of 1, an
interval set for which the support for each vertical slice’s secondary membership
function is the complete interval [0, 1]. The area of the FOU is 1. This type-2
fuzzy set may be described as a unit cube (of volume 1). It is fitting that it has
an uncertainty of 1, as, being essentially formless, like a blank sheet of paper, it
is devoid of information. For this reason it is termed the blank type-2 fuzzy set.
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4 Experiments

4.1 Methodology

The two uncertainty measures are compared and contrasted experimentally,
using specially constructed test sets. There are four experimental test runs. For
three of the test runs rectangular interval type-2 fuzzy sets (Fig. 2) are employed.
For the fourth test run, the underlying test set has no specific symmetry or form
(Fig. 1). The strategy adopted is to either alter the distance between the LMF
and the UMF, or keep this distance constant whilst translating the test set ver-
tically, in each instance applying both the centroid length and the FOU area
measures. The accurate Exhaustive Method [7] is used to generate the TRS, as
opposed to the KMIP [14], which is an approximation. For all the test sets the
domain has a degree of discretisation of 0.1, so engendering 11 evenly spaced
vertical slices.
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Fig. 1. Rectangular type-2 fuzzy test sets. The LMF and UMF are shown as bold lines.



190 S. Greenfield

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ

Fig. 2. Asymmetric type-2 fuzzy test sets. The LMF and UMF are shown as bold lines.

4.2 Results

The results of the experiments are presented in Tables 1, 2, 3 and 4.
There are several points of commonality between the two measures:

1. From the trend in the last two columns of Table 2, the minimum uncertainty
for both measures is evidently 0.

2. From the trend in the last two columns of Table 1, the maximum uncertainty
for both measures is evidently 1.

3. If the distance between the LMF and UMF is increased, the amount of uncer-
tainty increases, as measured by both TRS length and FOU area (Tables 1
and 2).

4. As the distance between the LMF and UMF decreases to 0 (Table 2), the
TRS length and FOU area both decrease to 0. Both measures tend to the
value 0 as representing no uncertainty i.e. total certainty, as for a type-1
fuzzy set.
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Table 1. Rectangular test sets with defuzzified values of 0.5000000000. The UMF is
constant at 1, and the LMF decreases from 0.1 towards 0.

LMF UMF Left Uncert. bound Right Uncert. bound Length of TRS Area of FOU

0.1 1 0.2157894737 0.7842105263 0.5684210526 0.9000000000

0.01 1 0.0500000000 0.9500000000 0.9000000000 0.9900000000

0.001 1 0.0054455446 0.9945544554 0.9891089109 0.9990000000

0.0001 1 0.0005494505 0.9994505495 0.9989010989 0.9999000000

0.00001 1 0.0000549945 0.9999450055 0.9998900110 0.9999900000

0.000001 1 0.0000054999 0.9999945001 0.9999890001 0.9999990000

0.0000001 1 0.0000005500 0.9999994500 0.9999989000 0.9999999000

0.00000001 1 0.0000000550 0.9999999450 0.9999998900 0.9999999900

0.000000001 1 0.0000000055 0.9999999945 0.9999999890 0.9999999990

0.0000000001 1 0.0000000005 0.9999999994 0.9999999989 0.9999999999

Table 2. Rectangular test sets with defuzzified values of 0.5000000000. The UMF is
constant at 1, and the LMF increases from 0.9 towards 1.

LMF UMF Left Uncert. bound Right Uncert. bound Length of TRS Area of FOU

0.9 1 0.4855769231 0.5144230769 0.0288461538 0.1000000000

0.99 1 0.4986288848 0.5013711152 0.0027422303 0.0100000000

0.999 1 0.4998635619 0.5001364381 0.0002728761 0.0010000000

0.9999 1 0.4999863629 0.5000136371 0.0000272742 0.0001000000

0.99999 1 0.4999986364 0.5000013636 0.0000027273 0.0000100000

0.999999 1 0.4999998636 0.5000001364 0.0000002727 0.0000010000

0.9999999 1 0.4999999864 0.5000000136 0.0000000273 0.0000001000

0.99999999 1 0.4999999986 0.5000000014 0.0000000027 0.0000000100

0.999999999 1 0.4999999999 0.5000000001 0.0000000003 0.0000000010

Table 3. Rectangular test sets with defuzzified values of 0.5000000000. The distance
between the LMF and UMF is constant at 0.05, but the height of the test set increases.

LMF UMF Left Uncert. bound Right Uncert. bound Length of TRS Area of FOU

0.025 0.075 0.3526315789 0.6473684211 0.2947368421 0.0500000000

0.125 0.175 0.4538461538 0.5461538462 0.0923076923 0.0500000000

0.225 0.275 0.4724770642 0.5275229358 0.0550458716 0.0500000000

0.325 0.375 0.4803921569 0.5196078431 0.0392156863 0.0500000000

0.425 0.475 0.4847715736 0.5152284264 0.0304568528 0.0500000000

0.525 0.575 0.4875518672 0.5124481328 0.0248962656 0.0500000000

0.625 0.675 0.4894736842 0.5105263158 0.0210526316 0.0500000000

0.725 0.775 0.4908814590 0.5091185410 0.0182370821 0.0500000000

0.825 0.875 0.4919571046 0.5080428954 0.0160857909 0.0500000000

0.925 0.975 0.4928057554 0.5071942446 0.0143884892 0.0500000000
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Table 4. Asymmetric test sets with variable defuzzified values. The shape and size of
the test set is constant, but the height of the test set increases.

Min. Max. Left Uncert. Right Uncert. Defuzzified Length Area

LMF UMF bound bound value of TRS of FOU

0.02 0.19 0.3363636364 0.5248226950 0.4442324244 0.1884590587 0.0610000000

0.22 0.39 0.4484567901 0.5096952909 0.4805290824 0.0612385007 0.0610000000

0.42 0.59 0.4693014706 0.5060240964 0.4881952415 0.0367226258 0.0610000000

0.62 0.79 0.4781413613 0.5043695381 0.4915292610 0.0262281768 0.0610000000

0.82 0.99 0.4830284553 0.5034280118 0.4933946116 0.0203995565 0.0610000000

5. As the distance between the LMF and UMF increases to 1 (Table 1), the
TRS length and FOU area both increase to 1. Both measures tend to the
value 1 as indicating maximum uncertainty, as for a blank fuzzy set.

Nonetheless there are clear discrepancies in the values reached by the two
measures; they are not equivalent. If an interval set is translated in the x − u
plane so that its u co-ordinate is increased, its uncertainty decreases, as measured
by TRS length, yet the FOU area measure remains constant. There is thus an
extreme contrast between the two measures in regard to IVT (Definition 9),
as the FOU area measure adheres absolutely to IVT, whereas the TRS length
measure does not. Is IVT an essential characteristic for a type-2 fuzzy uncertainty
measure? In other words, should IVT be a design requirement? If so, then TRS
length is unacceptable as an uncertainty measure; if not TRS length is a valid
measure of uncertainty.

5 Conclusion

Two measures for the uncertainty relating to an interval type-2 fuzzy set are
examined in this paper. Though as techniques they totally contrast, the experi-
ments presented show that similarities are nonetheless apparent in their behav-
iour.

The most telling difference in the outcomes of the two measurement tech-
niques is in relation to invariance under vertical translation, a characteristic
which the FOU area measure adheres to, but the TRS length measure does
not. Whether IVT is an essential characteristic for a type-2 fuzzy uncertainty
measure is left unresolved, a suitable topic for further work.
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Abstract. As a three-dimensional object, there are a number of ways
of slicing a generalised type-2 fuzzy set. In the context of the Mam-
dani Fuzzy Inferencing System, this paper concerns three accepted slic-
ing strategies, the vertical slice, the wavy slice, and the horizontal slice
or α-plane. Two ways of defining the generalised type-2 fuzzy set, ver-
tical slices and wavy slices, are presented. Fuzzification and inferencing
is presented in terms of vertical slices. After that, the application of all
three slicing strategies to defuzzification is described, and their strengths
and weaknesses assessed.

Keywords: Type-2 fuzzy set · Defuzzification · Type-reduction ·
Mamdani Fuzzy Inferencing System

1 Introduction

Type-2 fuzzy sets are an extension of type-1 fuzzy sets in which the sets’ mem-
bership grades are type-1 fuzzy sets. The concept dates back to Zadeh’s seminal
paper of 1975 [1]. They take two forms, the interval, for which all secondary
membership grades are 1, and the generalised, where the secondary membership
grade may take any value between 0 and 1. For the computationally simpler
interval type-2 Fuzzy Inferencing System (FIS) [2] applications in areas such as
control, simulation and optimisation have been developed [3–8]. So far, gener-
alised type-2 fuzzy applications are few in number [2,9,10]. This is attributable
to the enormous computational complexity of generalised type-2 fuzzy inferenc-
ing. Strategies have been developed that reduce the computational complexity
of all stages of the generalised type-2 FIS [11–14], and of particular relevance to
this paper, [15]. In [16] three of these strategies are evaluated.

Uncertainty is ineradicably present in the factors upon which decisions are
made. The ability to deal with uncertainty is desirable in an FIS because better
uncertainty handling gives more accurate outputs. The interval type-2 fuzzy set,
an enhancement of the ubiquitous type-1 fuzzy set, has an inbuilt facility to han-
dle uncertain inputs. However the generalised type-2 fuzzy set, an augmentation
of the interval type-2 fuzzy set, provides uncertainty handling that is subtle and
sophisticated [17]. More generalised type-2 applications are desirable, since at
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 195–205, 2016.
DOI: 10.1007/978-3-319-39378-0 18
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present the generalised type-2 fuzzy set’s remarkable facility for dealing with
uncertainty is not being fully exploited (Subsect. 5.1).

The focus of this paper is the Mamdani FIS1 (Fig. 1), in which a crisp numeri-
cal input passes through three stages of processing: fuzzification, inferencing, and
lastly, the crucial stage of defuzzification. Through defuzzification, the aggregated
set produced during the inferencing stage is converted into a crisp number which
is the output of the FIS. For discretised type-1 fuzzy sets, defuzzification is a
simple procedure, with several defuzzification techniques available including the
centroid, centre of maxima and mean of maxima [18]. In contrast, defuzzifica-
tion of a discretised type-2 fuzzy set (as formed in a type-2 FIS) is a process
consisting of two stages [19]:

1. Type-reduction, which converts a type-2 fuzzy set to a type-1 fuzzy set known
as the Type-Reduced Set (TRS), and

2. defuzzification of the type-1 TRS.

FUZZIFICATION

INFERENCING

CRISP INPUTS

ANTECEDENT
COMPUTATION

IMPLICATION

AGGREGATION

AGGREGATED TYPE-2 
FUZZY SET

TYPE-2 FUZZY INPUTS

TYPE-2
DEFUZZIFI-

CATION

TYPE-REDUCTION

TYPE-1
DEFUZZIFICATION

CRISP OUTPUT

TYPE-2
FUZZY
SETS

FUZZY
RULES

Fig. 1. The Mamdani type-2 FIS.

The paper is structured as follows: The next section presents two ways
of defining the generalised type-2 fuzzy set (vertical slices and wavy slices).
1 The alternative is the Takagi-Sugeno-Kang FIS for which the output membership

functions are either linear or constant; defuzzification is superfluous as the outputs
may be aggregated via a simple weighted sum.
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Section 3 describes the join and meet inferencing algorithms which employ ver-
tical slices. Section 4 concerns type-2 defuzzification approaches based on wavy
slices, vertical slices and horizontal slices (α-planes). Lastly, Sect. 5 concludes
the paper.

2 Defining the Type-2 Fuzzy Set

This section describes how the type-2 fuzzy set may be defined through either
vertical slices or wavy slices.

2.1 The Vertical Representation

Let X be a universe of discourse. A type-1 fuzzy set A on X is characterised by
a membership function μA : X → [0, 1] and can be expressed as follows [20]:

A = {(x, μA(x))| μA(x) ∈ [0, 1] ∀x ∈ X}. (1)

Let P̃ (U) be the set of fuzzy sets in U=[0,1]. A type-2 fuzzy set Ã in X is a
fuzzy set whose membership grades are themselves fuzzy [1,21,22]. This implies
that μÃ(x) is a fuzzy set in U for all x, i.e. μÃ : X → P̃ (U) and

Ã = {(x, μÃ(x))| μÃ(x) ∈ P̃ (U) ∀x ∈ X}. (2)

It follows that ∀x ∈ X ∃Jx ⊆ U such that μÃ(x) : Jx → U. Applying (1) gives:

μÃ(x) = {(u, μÃ(x)(u))| μÃ(x)(u) ∈ U, ∀u ∈ Jx ⊆ U}. (3)

X is called the primary domain and Jx the primary membership of x while U
is known as the secondary domain and μÃ(x) the secondary membership of x.
Putting (2) and (3) together we obtain

Ã = {(x, (u, μÃ(x)(u)))| μÃ(x)(u) ∈ U, ∀x ∈ X ∧ ∀u ∈ Jx ⊆ U}. (4)

Definition 1 (Vertical Slice [2]). A vertical slice of a type-2 fuzzy set is a
plane through the x-axis, parallel to the u − z plane.

2.2 The Wavy Slice Representation Theorem

An embedded type-2 fuzzy set (embedded set) or wavy slice [2,16] (Fig. 2) is a
special kind of type-2 fuzzy set, which relates to the type-2 fuzzy set in which it
is embedded in this way: For every primary domain value, x, there is a unique
secondary domain value, u, plus the associated secondary membership grade
that is determined by the primary and secondary domain values, μÃ(x)(u).
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Fig. 2. Two embedded type-2 fuzzy sets, indicated by different flag styles. The flag
position in the x − u plane shows the primary membership grade. The flag height
indicates the secondary membership grade.

Definition 2 (Embedded Set). Let Ã be a type-2 fuzzy set in X. For discrete
universes of discourse X and U , an embedded set Ãe of Ã is defined as the
following type-2 fuzzy set

Ãe = {(xi, (ui, μÃ(xi)(ui)))| ∀i ∈ {1, . . . , N} : xi ∈ X ui ∈ Jxi
⊆ U}. (5)

Ãe contains exactly one element from Jx1 , Jx2 , . . . , JxN
, namely u1,

u2, . . . , uN , each with its associated secondary grade, namely μÃ(x1)(u1),
μÃ(x2)(u2), . . . , μÃ(xN )(uN ).

Mendel and John have demonstrated that a type-2 fuzzy set is definable as
the union of its embedded type-2 fuzzy sets [2,16]. This result is known as the
type-2 fuzzy set Representation Theorem or wavy slice Representation Theorem,
and is formally stated thus [2, Page 121]:

Let Ãj
e denote the jth embedded set for type-2 fuzzy set Ã, i.e.,

Ãj
e ≡

{(
xi,

(
uj
i , μÃ(xi)(u

j
i )

))
, i = 1, . . . , N

}
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where {uj
i , . . . , u

j
N} ∈ Jxi

. Then Ã may be represented as the union of its
embedded sets, i.e.,

Ã =
n∑

j=1

Ãj
e, where n ≡

N∏

i=1

Mi.

3 Type-2 Fuzzy Inferencing Using Vertical Slices

In this section the join and meet algorithms for fuzzification of, and inferencing
with, discretised generalised type-2 fuzzy sets are presented [19].

The formula for the join operation of two discretised type-2 fuzzy sets Ã and
B̃ is

μÃ∪B̃(x) =
∑

u∈Ju
x

∑

w∈Jw
x

fx(u) � gx(w)/(u ∨ w) x ∈ X, (6)

and the formula for the meet operation is

μÃ∩B̃(x) =
∑

u∈Ju
x

∑

w∈Jw
x

fx(u) � gx(w)/(u ∧ w) x ∈ X, (7)

where ∨ is the maximum operator, ∧ is the minimum operator, � signifies a
t-norm, and

∑ ∑
represents union over Ju

x × Jw
x .

Join and meet operations proceed vertical slice by vertical slice2, so it is
sufficient to specify how these operations may be applied to two slices. Let Ã
and B̃ be two type-2 fuzzy sets, in which the co-domains are discretised into N
slices, and the domains sliced vertically at the points xÃ and xB̃ respectively.
Two type-1 fuzzy sets,

SÃ = {zA1/uA1 + zA2/uA2 + · · · + zAN
/uAN

},

SB̃ = {zB1/uB1 + zB2/uB2 + · · · + zBN
/uBN

},

are generated. To join these two slices necessitates that all N2 possible
min /max pairings of SÃ and SB̃ be created: min(zA1 , zB1)/max(uA1 , uB1) +
min(zA1 , zB2)/max(uA1 , uB2)+ · · ·+min(zAN

, zBN
)/max(uAN

, uBN
). Similarly,

for meet, pairings are generated as follows: min(zA1 , zB1)/min(uA1 , uB1) +
min(zA1 , zB2)/min(uA1 , uB2) + · · · + min(zAN

, zBN
)/min(uAN

, uBN
).

The next stage is the same for join and meet. For every resultant domain
value (‘denominator’) generated, the maximum membership grade (‘numerator’)
is selected. The resultant set of pairs is the join or meet of the two slices.

4 Approaches to Type-2 Defuzzification

This section summarises and evaluates generalised type-2 defuzzification
approaches based on wavy slices, vertical slices and horizontal slices.
2 The optimised inferencing algorithms described in [11] employ vertical slices.
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4.1 Exhaustive Defuzzification

The strategy known as Exhaustive Defuzzification, (so called because every
embedded set is processed in turn), is built upon the foundation of the wavy
slice Representation Theorem [2] and is therefore precise3 [2]. However it is a
very inefficient method owing to its high computational complexity deriving
from the large number of embedded sets. Its first and main stage consists of
type-reduction of the type-2 fuzzy set to form the TRS [16], defined thus:

Definition 3. The TRS associated with a type-2 fuzzy set Ã with primary
domain X discretised into N points X = {x1, x2, . . . , xN}, is

CÃ =

{(∑N
i=1 xi · uki∑N

i=1 uki

, μÃ(x1)(uk1) ∗ . . . ∗ μÃ(xN )(ukN
)

)∣∣∣∣∣

∀(uk1 , uk2 , . . . , ukN
) ∈ Jx1 × Jx2 × . . . × JxN

⊆ UN

}
,

(8)

where ∗ is a t-norm.

Embedded sets (Fig. 2) are referred to implicitly in 8 and explicitly in Algo-
rithm1.

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall the embedded sets do
2 find the minimum secondary membership grade (z) ;
3 calculate the primary domain value (x) of the type-1 centroid of the

embedded type-2 fuzzy set ;
4 pair the secondary grade (z) with the primary domain value (x) to give set

of ordered pairs (x, z) {x-values may correspond to multiple z-values} ;

5 end
6 forall the primary domain (x) values do
7 select the maximum secondary grade {make each x correspond to a unique

value} ;

8 end

Algorithm 1. Exhaustive type-reduction of a discretised type-2 fuzzy set
to a type-1 fuzzy set, adapted from Mendel [19].

4.2 Vertical Slice Centroid Type-Reduction (VSCTR)

VSCTR is a highly intuitive method employed by John [23]; the paper of Lucas
et al. [12] renewed interest in this strategy. In this approach each vertical slice of

3 Discretisation in itself brings an unavoidable element of approximation. However the
exhaustive method does not subsequently introduce further inaccuracies.
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the type-2 fuzzy set is defuzzified as a type-1 fuzzy set. By pairing the domain
value with the defuzzified value of the vertical slice, a type-1 fuzzy set is formed,
which is easily defuzzified to give the defuzzified value of the type-2 fuzzy set.
Though chronologically preceding it, this method is a generalisation of the Nie-
Tan Method for interval type-2 fuzzy sets.

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall the vertical slices do
2 find the defuzzified value using the centroid method ;
3 pair the domain value of the vertical slice with the defuzzified value to

give set of ordered pairs (i.e. a type-1 fuzzy set) ;

4 end

Algorithm 2. VSCTR of a discretised type-2 fuzzy set to a type-1
fuzzy set.

In [24], VSCTR performed well for both efficiency and accuracy when com-
pared experimentally with other generalised type-2 defuzzification techniques
against benchmark values generated by exhaustive defuzzification. The experi-
ments reported in [25] demonstrate that the Nie-Tan defuzzified value (of the
interval type-2 fuzzy set) approximates to the exhaustive defuzzified value more
closely as domain discretisation becomes finer.

4.3 The α-Plane Representation

Another recognised technique for the defuzzification of generalised type-2 fuzzy
sets employs the α-Planes Representation, proposed by Liu in 2008, [15,26]4.
In this strategy a generalised type-2 fuzzy set is decomposed into a set of α-
planes, which are horizontal slices equivalent to interval type-2 fuzzy sets. Each
α-plane is then defuzzified via the Karnik-Mendel Iterative Procedure (KMIP)
[15], so forming an approximation to the TRS. Defuzzifying the resultant type-1
fuzzy set gives a defuzzified value for the generalised type-2 fuzzy set. Below
this method is presented algorithmically (Algorithm3), and diagrammatically
(Fig. 3).

Though the α-Planes Method was envisaged by Liu as being used in conjunc-
tion with the KMIP [15], any interval defuzzification method may be used. Any
variation on the KMIP, such as the Enhanced Iterative Algorithm with Stop
Condition (EIASC) [28] will locate the endpoints of the TRS interval. Other
interval methods, such as the Greenfield-Chiclana Collapsing Defuzzifier [29,30],
or the Nie-Tan Method [31], will defuzzify the α-plane [32]; their defuzzified val-
ues (located in the vicinity of the centre of the interval) may then be formed
into a type-1 fuzzy set equivalent to the TRS.
4 Independently of Liu, and at about the same time, Wagner and Hagras introduced

the notion of zSlices [27], a concept very similar to that of α-planes.
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Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set

1 decompose the type-2 fuzzy set into α-planes ;
2 forall the α-planes do
3 find the left and right endpoints using the KMIP ;
4 pair each endpoint with the α-plane height to give set of ordered pairs,

i.e. a type-1 fuzzy set {each α-plane is paired with two endpoints } ;

5 end

Algorithm 3. Type-reduction of a type-2 fuzzy set to a type-1 fuzzy
set using the α-Plane Method.

Fig. 3. Type-reduction using the α-planes representation (from Liu [15]).

In [24] the α-Planes Method has been shown to be inferior to two gener-
alised defuzzification techniques, the Sampling Defuzzifier [13] and VSCTR [12],
in relation to both accuracy and efficiency. The concept of the truncated gen-
eralised type-2 fuzzy set is introduced in [33], where it is shown that applying
the α-planes strategy to the truncated type-2 fuzzy set makes for more efficient
defuzzification, since there are fewer α-planes to process. Intuitive, one might
expect that accuracy would also be improved, as irrelevant α-planes (between
the maximum secondary membership grade and the truncation grade) would be
eliminated and therefore not be able to distort the defuzzified value. However
experiments show this not to be the case; in 22 out of 25 instances truncation
worsens accuracy [34]. This points to deeply entrenched issues with the method’s
accuracy.

5 Conclusion

Generalised type-2 fuzzy sets may be defined through vertical slices, or equiva-
lently, through wavy slices. The join and meet algorithms which drive the fuzzi-
fication and inferencing stages of the FIS are always implemented via vertical
slices. Regarding defuzzification, approaches have been derived from each of the
three slicing techniques. Exhaustive defuzzification, based on the wavy slice rep-
resentation, is absolutely precise but prohibitively inefficient. VSCTR has been
shown experimentally to provide an excellent approximation to the exhaustive
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method, and to be the fastest of the three techniques. Experiments have shown
the α-Planes Method to be inferior to VSCTR as regards both speed and accu-
racy [24].

5.1 Further Work

In order to exploit the generalised type-2 fuzzy set’s particular ability for uncer-
tainty handling, more generalised type-2 applications need to be created. This
requires the development of optimised algorithms to overcome the problem of
computational complexity in generalised type-2 fuzzy inferencing. The research
reported in [11,24] shows the progress already made towards this objective. How-
ever further efficiencies are feasible in both inferencing and defuzzification.

ExpressJAM: The FastJAM (Fast Join and Meet) optimisation [11] reduces
computational complexity in the FIS inferencing stages. Initial work has begun
on ExpressJAM (Express Join and Meet), a further optimisation of FastJAM
that applies to the particularly complex aggregation substage of the inferencing
stage, and is optimisable yet further in software via parallel processing.

Generalised Greenfield-Chiclana Collapsing Defuzzifier: The Greenfield-
Chiclana Collapsing Defuzzifier is an interval type-2 method whose superiority
over other interval methods is demonstrated in [24]. Generalisation of this inter-
val technique to the generalised type-2 fuzzy set will result in the Generalised
Greenfield-Chiclana Collapsing Defuzzifier.
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Abstract. Fuzzy signatures offer a possible way of describing, modeling
and analysing of complex systems, when the exact mathematical model
is not known or too difficult to handle. In these cases the input values
have uncertainties, due to lack of knowledge or human activities. These
uncertainties have influence on the final decision about the system. The
uncertainties are taken into consideration as fuzzy sets, for example rep-
resenting the uncertainty of a linguistic variable. In this paper we discuss
the input sensitivity of type-2 weighted general mean aggregation oper-
ator and fuzzy signatures which are equipped with general means as
aggregation operators.

Keywords: Fuzzy signatures · Fuzzy model · Weighted general mean ·
Aggregation operators · Sensitivity

1 Introduction

In science and technology often arise problems of describing, modeling and
analysing complex systems, but usually the exact mathematical model is not
known or too difficult to deal with, due to lack of detailed knowledge of the
parameters or the behaviour of the system. Human activities, lack of repro-
ducibility and not well-defined interdependencies between the variables are also
common features.

One of the possible ways of modeling such systems is the fuzzy signature
based approach. In this modeling technique the complex systems is described by
a set of qualitative measures, which are also arranged into a hierarchical frame-
work expressing interconnections and dependencies, and modeling the human
approach to the problem. There is a wide variety of applications, for example
in economy, in the medical field [1], and in several fields of engineering and
informatics, for example robotics [2], data mining [3] and civil engineering [4,5].
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In mathematical point of view, fuzzy signatures are hierarchical representa-
tions of data structuring into vectors of fuzzy values [6]. A fuzzy signature is
defined as a special multidimensional fuzzy data structure, which is a general-
ization of vector valued fuzzy sets [8]. Vector valued fuzzy sets are special cases
of L-fuzzy sets which were introduced in [7]. A fuzzy signature is defined by

A : X → S(n), (1)

where X is the universe of discourse, 1 ≤ n and

S(n) = ×n
i=1Si Si =

{
[0, 1]
S(m) (2)

A fuzzy signature can be represented by a nested vector value fuzzy sets and by
a tree graph also (see Fig. 1), the latter one is more expressive [8].

Fig. 1. A fuzzy signature graph and the corresponding nested vectors.

Values at the leaves or input values (μ-s) are usually depend on the opinion
of human experts or determined by estimation methods. The final conclusion,
the output of the fuzzy signature is computed from the inputs applying suitable
aggregation functions, this is the membership value of the whole fuzzy signature.
If the input values are not crisp numbers but fuzzy sets then the output is a fuzzy
set also. Due to the built-in uncertainty or lack of detailed information of the
complex system that we are going to model, different human experts or different
kind of estimation methods may give different scores to the same situation.
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In real applications a fuzzy signature based model should have some robustness,
so the output should not change too much if the input values change a little.

We mean by sensitivity of fuzzy signatures that the change of the input fuzzy
sets (measured by an appropriate distance) how influence the change of the out-
put fuzzy set. In the following we discuss the issue how the membership value
or membership function of the whole fuzzy signature changes if the membership
values in the nested vectors change. In other words, if we think of the tree graph
representation, how the membership value of the root changes if the membership
values of leaves change. For answering this question we have to know the struc-
ture of the signature tree and the applied aggregation operators. We examine
the case when all the operators applied on membership values and member-
ship functions in the signature are from the class of weighted generalized mean
aggregation operators (WGMs). The case when the inputs are crisp membership
values (not fuzzy sets) was discussed in [9–11], while the type-2 case was firstly
introduced in [12], but the question was discussed using different approach.

In the remaining part of the paper in Sect. 2 we review some mathemati-
cal definitions and theorems, in Sect. 3 the sensitivity of WGM is discussed, in
Sect. 4 we examine the sensitivity of fuzzy signatures in general and in special
cases, finally in Sect. 5 we discuss the sensitivity of WGM if the inputs are fuzzy
numbers, and the sensitivity of type-2 fuzzy signatures with respect to a kind of
Minkowski-type metric.

2 Basic Definitions and Theorems

The weighted generalized mean form a very large class of aggregation operators.
Their various special cases often arise also in theoretical and practical problems.

Definition 1 (Generalized Mean). (see for example [13] or [14]) Let
x1, . . . , xn be nonnegative real numbers and p ∈ R (p �= 0). Then their gen-
eralized mean with parameter p is defined by:

Mp(x1, . . . , xn) =

[
1
n

n∑

k=1

xp
k

] 1
p

(3)

Some special cases in p:
– p = 1 arithmetic mean
– p = 2 quadratic mean
– p = −1 harmonic mean

Definition 2 (Weighted generalized mean; WGM). Let x1, . . . , xn and

w1, . . . , wn be nonnegative real numbers, wi ≥ 0,
n∑

i=1

wi = 1 and p ∈ R (p �= 0).

Then the weighted generalized mean of x1, . . . , xn with weights w1, . . . , wn and
with parameter p is defined by:

Mw
p (x1, . . . , xn) =

[
n∑

k=1

wkxp
k

] 1
p

(4)
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We note here that the weighted generalized mean is sometimes called ‘scaled
norm’. We do not use this terminology because of the possible misunderstanding:
the properties of the norm are fulfilled only when p ≥ 1, but the WGM is defined
for every p ∈ R.

The generalized mean is a special case of the weighted generalized mean with
weights wk = 1

n . The limits at ±∞ regardless to the weights (see for example
[13]):

lim
p→∞

[
n∑

k=1

wkxp
k

] 1
p

= max(xi) lim
p→−∞

[
n∑

k=1

wkxp
k

] 1
p

= min(xi) (5)

The limit if p → 0 is the weighted geometric mean:

lim
p→0

[
n∑

k=1

wkxp
k

] 1
p

=
n∏

i=1

xwi
i (6)

Our aim is to discuss how the membership function of the whole fuzzy signature
changes if the input values change. Since in our case the aggregation operators
in the signature are weighted general mean operators, we have to examine the
sensitivity of this kind of operator w.r.t. the change of its input vector. The
change of the input vector is measured by a p-norm, so first we recall its definition
(see for example [15]).

Definition 3 (p-norm). Let p ≥ 1 a real number and x = (x1, . . . , xn) ∈ R
n.

Then the p-norm of x is defined by

‖x‖p =

(
n∑

k=1

|xk|p
) 1

p

(7)

Some widely used p-norms:

– p = 1 (taxicab norm) ‖x‖1 = |x1| + . . . + |xn|
– p = 2 (euclidean norm) ‖x‖2 =

√
x2
1 + . . . + x2

n

– p = ∞ (maximum norm) ‖x‖∞ = max(|x1|, . . . , |xn|)
Two important properties of the p-norm:

– If 1 ≤ p ≤ q ≤ ∞ then ‖x‖q ≤ ‖x‖p.
– If 1 ≤ p ≤ q ≤ ∞ then ‖x‖p ≤ ‖x‖q · n1/p−1/q.

We will use the generalization of the triangular inequality, the so called
Minkowski’s inequality.

Theorem 1 (Minkowski’s Inequality). (see for example [13] or [14]). Let
a, b ∈ R

n, p ≥ 1, then the following inequality holds:

‖a + b‖p ≤ ‖a‖p + ‖b‖p (8)
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The generalization of the reverse triangular inequality also holds:

Corollary 1. If a, b ∈ R
n, p ≥ 1, then
∣∣‖a‖p − ‖b‖p

∣∣ ≤ ‖a − b‖p (9)

Theorem 2 (Hölder’s Inequality). (see for example [13] or [14]). Let a, b ∈
R

n, r, s, t ≥ 1 and 1/r = 1/t + 1/s. Then the following inequality holds:

[
n∑

i=1

|ai · bi|r
]1/r

≤
[

n∑

i=1

|ai|t
]1/t

·
[

n∑

i=1

|bi|s
]1/s

(10)

or in terms of p-norms:
‖a ◦ b‖r ≤ ‖a‖t · ‖b‖s (11)

where ‘◦’ denotes the elementwise product (also known as Hadamard- or Schur-
product).

Theorem 3 (Zadeh’s Extension Principle). Let f : X1×X2× . . .×Xn → Y
be a mapping. Let A1, A2, . . . , An be fuzzy subsets of X1,X2, . . . , Xn, respectively.
Then f(A1, A2, . . . , An) = B, where B is a fuzzy subset of Y such that

B(y) =
{

sup
{
min {A1(x1), . . . , An(xn)} | (x1, . . . , xn) ∈ f−1(y)

}
if f−1(y) �= ∅

0 otherwise.

Theorem 4 (Nguyen’s Theorem). (see in [17]) Let f : X ×X × . . .×X → X
be a continuous function and let A1, A2, . . . , An be fuzzy numbers. Then

[f(A1, A2, . . . , An)]α = f([A1]α, [A2]α, . . . , [An]α)

where f(A1, A2, . . . , An) is defined by the extension principle and

f([A1]α, [A2]α, . . . , [An]α) = {f(x1, x2, . . . , xn) | xi ∈ [Ai]α}.

3 Sensitivity of the Weighted General Mean

In this section we analyse the change of the WGM under the change of its input
vector. Note that we examine the case p ≥ 1. Let we use the following notations:

w1/p =
(
w

1/p
1 , . . . , w1/p

n

)
(12)

w1/p ◦ x =
(
w

1/p
1 · x1, . . . , w

1/p
n · xn

)
(13)

If the input vector is x = (x1, . . . , xn), the vector of the weights is w =
(w1, . . . , wn), then the weighted generalized mean with parameter p is

M =

[
n∑

i=1

wix
p
i

] 1
p

=

[
n∑

i=1

(
w

1/p
i xi

)p
] 1

p

=
∥∥∥w1/p ◦ x

∥∥∥
p

(14)
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If the new (maybe perturbed) input vector is x∗ = (x∗
1, . . . , x

∗
n), then the new

output is M∗ =
∥∥w1/p ◦ x∗∥∥

p
. So the change of the input is Δx = x∗ − x, the

change of the output is ΔM = M∗ − M . The upper estimations for |ΔM |:

|ΔM | =

∣∣∣∣∣

∥∥∥w1/p ◦ x∗
∥∥∥

p
−

∥∥∥w1/p ◦ x
∥∥∥

p

∣∣∣∣∣ ≤
∥∥∥w1/p ◦ x∗ − w1/p ◦ x

∥∥∥
p

(15)

=
∥∥∥w1/p ◦ (x∗ − x)

∥∥∥
p

=
∥∥∥w1/p ◦ Δx

∥∥∥
p

(16)

Applying Hölder’s inequality we get that

|ΔM | ≤
∥∥∥w1/p ◦ Δx

∥∥∥
p

≤
∥∥∥w1/p

∥∥∥
r
· ‖Δx‖s (17)

where 1/p = 1/r + 1/s. If we use the convention 1/∞ = 0 then we get

|ΔM | ≤
∥∥∥w1/p

∥∥∥
p

· ‖Δx‖∞ = ‖Δx‖∞ (18)

since
∥∥w1/p

∥∥
p

=
[

n∑
i=1

(
w

1/p
i

)p
]1/p

= 1.

4 Sensitivity of a Fuzzy Signature

4.1 General Case

Applying the results of the previous section we can analyse the sensitivity of
fuzzy signatures in which the values are determined by a WGM operator in every
nodes. The sensitivity bound of the whole fuzzy signature can be derived from
the bounds of the WGM-s, according to the graph structure of the signature.
The whole computation can be carried out from the leaves of the signature to
the root (see [11]). In general a WGM has WGMs as inputs:

Fig. 2. A part of a fuzzy signature.
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Let we denote the inputs of Mi by xij , j = 1, . . . , ni, and the weights of the
inputs by wij , j = 1, . . . , ni, so we have

Mi =

⎡

⎣
ni∑

j=1

wij · xpi

ij

⎤

⎦
1/pi

(19)

Then the upper estimation of the change of Mi is given by the previous section:

|ΔMi| ≤
⎡

⎣
ni∑

j=1

wij · Δxpi

ij

⎤

⎦
1/pi

= ‖wi
1/pi ◦ Δxi‖pi

(20)

Let we denote the minimum of p1, p2, . . . , pk by p∗. Then because of the prop-
erties of the p-norm the following holds for any i = 1, 2, . . . , k:

‖wi
1/pi ◦ Δxi‖pi

≤ ‖wi
1/pi ◦ Δxi‖p∗ ≤ ‖wi

1/pi‖p∗ · ‖Δxi‖p∗ (21)

Moreover
‖wi

1/pi ◦ Δxi‖p∗ ≤ ‖wi
1/pi‖p∗ · ‖Δxi‖p∗ (22)

Using the above upper estimations we get an upper estimation for the change of
the next stage (N , see Fig. 2), where

u1/q = (u1/q
1 , . . . , u

1/q
k ) (23)

ΔM = (ΔM1, . . . ,ΔMk) (24)

The upper bound is (see [11]):

|ΔN | ≤ ‖u1/q ◦ ΔM‖q =

[
k∑

i=1

ui · |ΔMi|q
]1/q

(25)

≤
∥∥∥u1/q ◦ ‖w1/pi ◦ Δx‖p∗

∥∥∥
q

(26)

Here the last term is the q-norm of a vector whose ith element is

u
1/q
i ·

⎡

⎣
ni∑

j=1

(
w

1/pi

ij · Δxij

)p∗

⎤

⎦
1/p∗

(27)

4.2 Special Case: Homogeneous Fuzzy Signatures

The sensitivity analysis of a fuzzy signature becomes much more simple if the
value of the parameter p is the same for all of the WGM operators applied in the
nodes. If this condition holds, the output value of the signature is the weighted
generalized mean of the input values with parameter p, where the weights are
the product of the weights form the root to the leaves.
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Definition 4. A fuzzy signature is called homogeneous if all of the aggregation
operators in the nodes are weighted generalized mean operators with the same
value of p.

Lemma 1. The WGM of y1, . . . , yk with weights v1, . . . , vk and with parameter
p where all of the yi-s are WGM’s of xji-s with weights w1i, . . . , wnii and with
the same parameter of p, is the WGM of the x-s with weights vi · wji

Proof.

[
k∑

i=1

vi · yp
i

] 1
p

=

⎡

⎢⎣
k∑

i=1

vi ·

⎡

⎢⎣

⎡

⎣
ni∑

j=1

wji · xp
ji

⎤

⎦

1
p

⎤

⎥⎦

p⎤

⎥⎦

1
p

(28)

=

⎡

⎣
k∑

i=1

ni∑

j=1

vi · wji · xp
ji

⎤

⎦

1
p

=

⎡

⎣
∑

ni∑

l=1

cl · xp
l

⎤

⎦

1
p

(29)

In this case the sensitivity analysis of the fuzzy signature is nothing else but the
simple sensitivity analysis of only one weighted generalized mean aggregation
operator, which was discussed in Sect. 3.

5 Sensitivity of Type-2 Fuzzy Signatures with Weighted
General Mean Aggregation Operators

In this section we analyse the case when the inputs of the weighted general mean
are fuzzy sets. For simplicity, and because of practical reasons we assume that
all of them are fuzzy numbers (normal, fuzzy convex sets with bounded support
and with continuous membership function). Moreover, we handle these fuzzy sets
as fuzzy ratings or fuzzy scores given by human experts, because we examine
the sensitivity of the operator as the sensitivity of a decision support tool. Here
the fuzziness represents the uncertainty (lack of detailed knowledge about the
system, lower expertise, etc.) of the given score, or the uncertainty of the given
linguistic value.

Remember the sensitivity means how the whole system (in our case: a decision
support system) behaves under small perturbations of the input values. As in
the case of real or complex values, we have to choose a suitable measure (metric)
to give numerical value to the change of the input fuzzy sets and to the output
fuzzy set.

There are several distance measures in the field of mathematics of fuzzy sets,
see for example [16]. In the following we define a distance metric based on α-cuts
and on the Minkowski-type distance. This metric takes into consideration all of
the α-cuts, not only the largest deviations. Moreover, this approach give us the
possibility the give less importance to lower membership levels by a suitable
weighting function, because in decision support methods the lower membership
values usually have less importance.
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Definition 5. Let A and B be fuzzy numbers (convex, normal fuzzy sets with
bounded support and with continuous membership function) and q ≥ 1. We define
the distance of A and B by

d(A,B) =
∫ 1

0

(|ΔL(α)|q + |ΔR(α)|q)1/q dα (30)

where ΔL(α) = LA(α) − LB(α) and ΔR(α) = RA(α) − RB(α), and L(α) and
R(α) denote the left and right endpoints of the α-cut intervals, respectively.

Theorem 5. The distance defined above has distance properties, i.e.:

1. d(A,B) ≥ 0;
2. d(A,B) = 0 iff A = B excluding countable set of points;
3. d(A,B) = d(B,A);
4. d(A,C) ≤ d(A,B) + d(B,C).

Proof. Properties 1 and 3 follow immediately form the definition.
Property 3: If d(A,B) = 0, then (|ΔL(α)|q + |ΔR(α)|q)1/q equals zero excluding
countable set of points of the interval [0, 1], so A = B excluding countable set
of points. The other direction is straightforward.
Property 4: This inequality follows form the fact that

(|ΔLAB(α)|q + |ΔRAB(α)|q)1/q ≤
≤ (|ΔLAC(α)|q + |ΔRAC(α)|q)1/q + (|ΔLCB(α)|q + |ΔRCB(α)|q)1/q

which is the corollary of Minkowski’s inequality.
In our case the input fuzzy sets are fuzzy scores form the [0, 1] interval, so

their support is that interval. So we deal with nonnegative, convex, normal fuzzy
sets. There exist many methods to generalize a usual multivariable real function
to fuzzy sets, in our approach we use the most popular (and the oldest) one,
Zadeh’s extension principle.

Due to the well-known Nguyen’s theorem [17] for nonnegative fuzzy numbers,
the α-cut of the function is given by the function of the α-cuts. If the input fuzzy
sets are A1, . . . , An, then their weighted general mean (M) is given by its α-cuts:

Mα =

⎡

⎣
[

n∑

i=1

wiL
p
Ai

(α)

]1/p

,

[
n∑

i=1

wiR
p
Ai

(α)

]1/p
⎤

⎦ (31)

where LAi
(α) and RAi

(α) denote the left and right endpoints of the α-cut of
input Ai.

If the new (perturbated) inputs are A∗
1, . . . , A

∗
n, then the distance of the new

(M∗) and the former (M) output fuzzy sets is

d(M,M∗) =
∫ 1

0

(|ΔLM (α)|q + |ΔRM (α)|q)1/q dα (32)
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where

ΔLM (α) = LM (α) − LM∗(α) =

[
n∑

i=1

wiL
p
Ai

(α)

]1/p

−
[

n∑

i=1

wiL
p
A∗

i
(α)

]1/p

(33)

ΔRM (α) = RM (α) − RM∗(α) =

[
n∑

i=1

wiR
p
Ai

(α)

]1/p

−
[

n∑

i=1

wiR
p
A∗

i
(α)

]1/p

(34)

An upper estimation of |ΔLM (α)| and |ΔRM (α)| can be given by the reverse
triangle inequality:

|ΔLM (α)| =

∣∣∣∣∣∣

[
n∑

i=1

wiL
p
Ai

(α)

]1/p

−
[

n∑

i=1

wiL
p
A∗

i
(α)

]1/p
∣∣∣∣∣∣

(35)

≤
[

n∑

i=1

wi

∣∣LAi
(α) − LA∗

i
(α)

∣∣p
]1/p

(36)

=

[
n∑

i=1

(
w

1/p
i

∣∣LAi
(α) − LA∗

i
(α)

∣∣
)p

]1/p

(37)

= ‖w1/p ◦ |LA(α) − L∗
A(α)| ‖p = ‖w1/p ◦ |ΔLA(α)| ‖p (38)

where LA(α) = (LA1 , . . . , LAn
) and ◦ denotes the elementwise product. We get

a similar upper bound for |ΔRM (α)|, of course.
If |ΔLAi

(α)| < ε and |ΔRAi
(α)| < ε for all i = 1, 2, . . . , n then we get the

following upper estimation of the distance of M and M∗:

d(M,M∗) ≤
∫ 1

0

(
‖w1/p ◦ |ΔLA(α)| ‖q

p + ‖w1/p ◦ |ΔRA(α)| ‖q
p

)1/q

dα (39)

≤
∫ 1

0

⎛

⎝

⎡

⎣
(

n∑

i=1

wi · εp

)1/p
⎤

⎦
q

+

⎡

⎣
(

n∑

i=1

wi · εp

)1/p
⎤

⎦
q⎞

⎠
1/q

dα (40)

= ε · 21/q. (41)

By Hölder’s inequality we can give an upper estimation in terms of the norm
of the changing of the α-cuts. As we have seen,

|ΔLM (α)| ≤ ‖w1/p ◦ |ΔLA(α)| ‖p (42)

Applying Hölder’s inequality we get that

‖w1/p ◦ |ΔLA(α)| ‖p ≤ ‖w1/p‖s · ‖ΔLA(α)‖t (43)
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where p, s, t ≥ 1 and 1/p = 1/s + 1/t (1/∞ = 0 by convention). The upper
estimation of the distance of M and M∗ by the above inequality is the following:

d(M,M∗) ≤
∫ 1

0

([
‖w1/p‖s · ‖ΔLA(α)‖t

]q

+
[
‖w1/p‖s · ‖ΔRA(α)‖t

]q)1/q

dα

(44)

= ‖w1/p‖s ·
∫ 1

0

(‖ΔLA(α)‖q
t + ‖ΔRA(α)‖q

t )
1/q dα (45)

If |ΔLAi
(α)| < ε and |ΔRAi

(α)| < ε for all i = 1, 2, . . . , n then we get the
following upper estimation of the distance of M and M∗:

d(M,M∗) ≤ ‖w1/p‖s ·
∫ 1

0

(‖ΔLA(α)‖q
t + ‖ΔRA(α)‖q

t )
1/q dα (46)

≤ ‖w1/p‖s ·
∫ 1

0

((
ε · n1/t

)q

+
(
ε · n1/t

)q)1/q

dα (47)

= ‖w1/p‖s · ε · n1/t · 21/q. (48)

Note that if wi = 1/n for i = 1, 2, . . . , n then ‖w1/p‖s = n−1/t, so in this case
the upper estimation is simplified to ε · 21/q.

The sensitivity of a type-2 fuzzy signature can be given similarly to the case
of type-1 signatures. Since we deal with nonnegative fuzzy numbers, and we
use Zadeh’s extension principle to extend the weighted general mean to fuzzy
numbers, we only have to determine the endpoints of the α-cuts according to
Nguyen’s theorem. These endpoints are crisp numbers, so we can apply the
results of Sect. 4 estimating the absolute difference on α-levels. In a special case,
when all of the weighted general mean aggregation operators have the same
parameter (i.e. the signature is homogeneous), then the computation is simplified
to only one weighted general mean of fuzzy numbers.

6 Conclusion

The sensitivity of type-2 fuzzy signatures was discussed in the case when all of
the aggregation operators are weighted general means with parameter p ≥ 1. In
general case a recursive estimation can be given, but in a special case (when the
WGMs have the same parameter) the sensitivity analysis of a fuzzy signature
simplified to a sensitivity analysis of WGM on fuzzy numbers.

We note that the sensitivity depends on the choosen distance metric between
fuzzy numbers and on the extension of real functions to fuzzy numbers. Zadeh’s
extension principle and Nguyen’s theorem offer an easy way to handle the α-cuts
of the result, but usually it has a large support, the membership function is too
wide. A possible way to moderate this kind of uncertainty propagation is the
t-norm based extension of real functions with a suitable t-norm.
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13. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press,
Cambridge (1952)
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Abstract. This paper is aimed at the engineering evaluating of 3 well-
known temporal logic systems: of the Linear Temporal Logic (LTL), of a
Fuzzy Linear Temporal Logic (FLTL) and some alternative fuzzy exten-
sion of LTL – called a Fuzzy-Time Temporal Logic as a system suitable
for an explicit rendering of a fuzzy nature of time. We intend to for-
mulate and defend the thesis – on a base of a behavior of robot in the
block world – that chosen systems are only partially capable of satisfying
typical requirements of engineers.

Keywords: Linear Temporal Logic · Fuzzy-time tempora logic · Fuzzy
Linear Temporal Logic · Engineering evaluation

1 Introduction

The practical utility of the commonly known temporal modal system: Linear
Temporal Logic (LTL) or Intervals Allen’s algebra (All-13) seems to be indis-
putable, independently of their theoretical – or even philosophical provenance
(see: [16]). In fact, temporal logic forms an essential component of many temporal
planning tasks such as: generating of robot trajectories satisfying LTL formu-
las or temporal logic planning with using of model checking machinery. On the
other hand, a precise specification of a capability of temporal systems (like their
expressive power) appears to be relatively difficult – even from a ’purely’ theo-
retical point of view. For example, it was demonstrated by L. Maximova in [14]
that LTL with operator ‘next’ does not respect the so-called Beth property, what
means that not all implicit definitions of this system can be explicitly rendered
in its language. This fact seems to justify that the expressive power of LTL is (at
least partially) elusive. Additionally, some difficulties with the expressive power
evaluation stem from the more practical considerations concerning temporal sys-
tems. In fact, it is not clear, which properties of the robot’s activity and its work
space in temporal logic motion planning can be expressed in known temporal
systems.

Objectives of the Paper . According to this, we intend to propose a kind
of retrospective evaluation of three temporal systems from the point of view
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 219–229, 2016.
DOI: 10.1007/978-3-319-39378-0 20
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of their ‘engineering’ utility. We venture to formulate and defend a thesis that
neither LTL, nor the so-called Fuzzy Linear Temporal Logic – as some promising
LTL-extension from [7], nor some alternative LTL-extension in a form of the
Fuzzy-Time Linear are completely capable of expressing the common engineering
requirements imposed on (even typical) robot activity in temporal- logic-based
motion planning. In order to justify this conjecture we distinguish a handful
of such requirements concerning the system’s specification, robot actions and a
nature of time. This issue forms a main purpose of this paper.

Paper’s Motivation and State of Art . The main motivation factor of this
paper research is inspired by a lack of a broader comparative discussion on a
real expressive power of well- known systems of temporal logics from the point
of view of engineering requirements. The considerations of the paper stem from
the earlier approaches to the time representation in the framework of LTL –
introduced in 1977 in [15] by Amir Pnueli (a point-wise way), of the Allen’s
All-13 algebra of 13 intervals relations – introduced by J. Allen in [1] – and
of the Halpern-Shoham interval temporal logic introduced in [10]. These sys-
tems were widely discussed from the meta-logical point of view in a seminal
monograph [8]. The optimistic thesis about an utility of LTL in temporal logic
motion planning for mobile robots was expressed in [5,6] and in search control
knowledge for planning in [3]. The role of LTL as a support of the discrete event-
based-model was discussed by Antonniotti in [2]. Temporality in some scheduling
contexts was also considered in [9]. A comparative monograph of Emerson [4]
gives a broad outlook at the nature of the mutual relationships between modal
logic and temporal logic. It forms a kind of inspiration for the authors of the
paper to grasp and elucidate the mutual relationships and natural connotations
between temporal systems and fuzzy logic systems. An expressive power of some
fuzzy logic system with implicitly given temporal component was discussed with
respect to some aspects of temporal planning in [12]. In order to preserve some
coherence in the material presentation, only these fuzzy logic systems will be
discussed, which extend the initial system of Linear Temporal Logic – earlier
discussed (in a comparison with Allen’s algebra and the Halper-Shoham logic)
in the same context in [11]. Some capability of the Halpern-Shoham logic with
respect to modelling of some problems of temporal reasoning with preferences
was presented in [13].

This attitude determines a subject of our analysis: LTL, FLTL and FTL. For
that reason, we omit a description of a well-known Temporal Logic of Action of
L. Lamport as a non-fuzzy system, although actions in temporal framework will
be a subject of our interest. It also appears that an evaluation of the Lamport’s
system requires some analysis, which essentially exceeds the thematic scope of
this paper.

Paper’s Organization . The rest of the paper is organized as follows. In Sect. 2
we formulate our initial problem in a form of some paradigmatic example pf
temporal planning with a robot per- forming tasks in block’s world. The main
paper’s body forms Sect. 3, where we present three systems of temporal logic:
LTL, FLTL and FTL in order to evaluate their ability to express the requirements
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imposed on the robot task and its materialization. In Sect. 4 some concluding
remarks and a brief outline of future research were formulated.

2 The Problem Formulation and Its Justification

It has been said that a main paper’s objective is to evaluate an ability of cho-
sen modal-temporal systems to express the several engineering requirements in
examples of temporal planning. In order to realize this goal, we firstly extract a
handful of such requirements from a paradigmatic example of the temporal plan-
ning with a robot performing the task to relocate the blocks in a given workspace
P. Secondly, we check which of the extracted engineering requirements (referring
to the robot environments, robot tasks and their temporal requirements) can
be captured by Linear Temporal Logic, the Halpern-Shoham temporal logic and
Allen’s interval algebra.

Problem: We formulate the problem-example that will be addressed in this
paper as follows: Consider a robot R that is able to move in a square environment
with k-rooms P1, P2, . . . , Pk and a corridor Corr for some natural k > 3 with
blocks A, B, C located somewhere in rooms P1, P2, . . . , Pk. Consider that R
performs the task: carry all the blocks and put them together in a corridor in
an alphabetic order (firstly A, secondly B, finally C). Consider that the robot’s
activity has the following temporal constraints:

• Take a block B not earlier than t0 > 0 after putting the block A in a corridor;
• Do not take two blocks in the same time;
• The room searching cannot be automatically finished by the robot;
• Visit the rooms P1, P2, . . . , Pk in any order;
• Since a moment tA visit the rooms in the order: P1, P2, P3.

It easy to see that our problem seems to be a paradigmatic one for all class
of similar problems and can be a convenient “bridgehead” for further analysis
and attempt of a new system construction. In fact, it contains typical commonly
considered commands, tasks, actions concerning robot’s activity and its admis-
sible environment. Secondly, such a particularity degree corresponds well with
a particularity degree of typical engineering requirements imposed on similar
systems.

3 Engineering Requirements of the Problem-Situation

The above example allows us to distinguish the following engineering require-
ments imposed on the environment of the robot activity, its temporal constraints
for its activity and the system specification.

System Specification.

1. Sequencing: Carry the blocks in alphabetical order: A, B, C.
2. Coverage: Go to rooms: P1, P2, . . . , Pk.
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3. Conditions: If you find a block A, B or C, take it; otherwise stay where you
are.

4. Conceptualization of the robot’s activity: Point-wise events (block A in Pk

etc.) and actions on events as processes in time-intervals (the room searching
by a robot R, the carrying of the blocks etc.)

5. Nature of actions: Some actions finish in the last action event, but some of
them can last further automatically in a future (see: the room searching by
a robot).

Temporal Requirements.

1. Temporal sequencing: Take a block B not earlier than t0 > 0 after putting
the block A in a corridor; Since the moment tA firstly visit the room P1, after
that P2 and finally P3.

2. Temporal coverage: Do not take two blocks in the same time;
3. Action duration: The duration time of some actions (like a room searching)

can be longer than some time-interval I1, but shorter than a time-interval I2.
4. Nature of time: The states should be accessible from the earlier states in a

discrete linear time, but potentially – also in a continuous time.

3.1 Linear Temporal Logic (LTL) and Engineering Requirements

In order to evaluate whether LTL is capable of expressing all of the desired engi-
neering requirements, above extracted from the above problem-situation of the
robot’s activity, we will describe the syntax and semantics of LTL and distinguish
the special class of LTL-formulas that could be especially useful for expressing
of the above problem-situation.

Syntax . Bi-modal language of LTL is obtained from standard propositional
language (with the Boolean constant �) by adding temporal-modal operators
such as: always in a past (H), always in a future (G), eventually in the past (P),
eventually in the future (F), next and until (U) and since (S) – co-definable with
“until”. The set FOR of LTL-formulas is given as follows:

φ := φ|¬φ|φ ∨ ψ|φUψ|φSψ|Hφ|Pφ|Fφ|Next(φ) (1)

Some of the above operators of temporal-modal types are together co-definable
as follows: Fφ = �U , Pφ = �Sφ and classically: Fφ = ¬Gφ and Pφ = ¬Hφ.

Semantics. LTL is traditionally interpreted in models based on the pointwise
time-flow frames F = 〈T,<〉 and dependently on a set of states S. In result, we
consider pairs (t, s) (for t ∈ T representing a time point and s ∈ S) as states of
LTL- models. Anyhow, we often consider a function f : T �→ S that associates a
time-point t ∈ T with some state s ∈ S and we deal with pairs (t, f) instead of
(t, s). Hence the satisfaction relation |= is defined as follows:

• (t, f) |= Gφ ⇐⇒ (∀t
′
> t)t

′ |= φ, (t, f) |= Hφ ⇐⇒ (∀t < t
′
)t

′ |= φ.
• (t, f) |= Fφ ⇐⇒ (∃t

′
> t)t

′ |= φ, (t, f) |= Pφ ⇐⇒ (∃t < t
′
)t

′ |= φ.
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• (t1, f) |= φSψ ⇐⇒ there is t2 < t1 such that t2, f |= ψ and t, f |= φ for all
t ∈ (t1, t2).

• (t1, f) |= φUψ ⇐⇒ there is t2 > t1 such that t2, f |= ψ and t, f |= φ for all
t ∈ (t1, t2).

• (tk, f) |= Next(φ) ⇐⇒ (tk+1, f) |= φ, k ∈ N.

Specific Set of Formulas of LTL. Due to the observation from [6], we dis-
tinguish a class of special formulas of L(LTL) of two sorts. The first class X =
{object−−names : ψc

1, ψ
c
2, . . . , P1, . . . , Pk, Corr,A,B,C; events : AP1 , BP2 , etc.}

will describe the robot’s environments and its evolution; the second one – Y =
{actions : see(),move(), . . . , go(), take(), a1, a2, . . . etc.} – the robot’s ‘behavior’
and activity.

In accordance with our intentions, object-names will be denoted by concrete
objects in a considered situations, the events-names by ‘real’ events such as that
“block A is located in a room P1” etc. In a similar way we encode actions as
propositions. It not difficult to observe that LTL, enriched as above, is (at least
partially) capable of describing the situation of the robot’s activity and partially
express desired requirements as follows.

System Specification.

1. Sequencing: Carry the blocks in alphabetical order: A, B, C.
F (Go(P1) ∧ F (Go(P2) ∧ . . . F (Go(Pk).

2. Coverage: Go to rooms: P1, P2, . . . , Pk.
Go(P1) ∧ Go(P2) ∧ . . . Go(Pk)

3. Conditions: If you find a block A, B or C, take it; otherwise stay where you
are.
(See(A) → take(A)) ∧ (See(B) → take(B)) ∧ (See(C) → take(C)).

Environments of Robot.

1. The blocks A, B, C initially located somewhere in rooms P1, . . . Pk but not
in a corridor Corr.
APi ∧ BPj ∧ CPl ∧ ¬(ACorr ∧ BCorr ∧ CCorr)

2. The corridor as a final place of the location of blocks A, B, C.

Temporal Requirements.

1. Temporal coverage: Do not take two blocks in the same time:
¬G(take(A) ∧ take(B) ∧ take(C))

2. Nature of time: The states should be accessible from the’earlier’ states in a
discrete linear time, but potentially– also in a continuous time.

Independently of such a (relative big) expressive power of LTL, we can observe a
difficulty with the expressing of such temporal requirements as delays and move
of actions in time (after to, longer than t1, but not shorten than t2 etc.).
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3.2 The Plan Construction and LTL

At the end of the paragraph we shall briefly evaluate how the LTL-formalism can
support the plan constructions. We will refer to planning operators classically
understood as a sequence of the appropriate actions (expressed in terms of its
preconditions and effects). We will focus our attention on the robot’s actions
that we distinguished in the above engineering requirements. In our case we can
approximate a plan construction as follows.

go(r, P1, P2, . . . Pk) :
robot r goes to the room P1 and-after that – to the adjacent rooms
P2, . . . Pk

preconditions: • adjacent(P1, P2) . . . adjacent (Pk−1, Pk)
• blocks are initially located somewhere in rooms P1, P2 . . . Pk,
but not in a corridor Corr:
APi ∧ BPj ∧ CPl∧ �= (ACorr ∧ BCorr ∧ CCorr)

effects: see(r,APi) ∧ see(r,BPj ) ∧ see(r, CPl) for i, j, l ∈ {1, 2 . . . k}
take(r,A,Corr)

robot r takes a block A from Pi to the corridor Corr
preconditions: • non-empty(Pi), empty(Corr): APj ,¬CorrA ∧ ¬CorrB ∧
¬CorrC

effects: empty(APi ), non-empty(corridor):
¬APi , CorrA

take(r,B,Corr)
robot r takes a block B from Pj to the corridor Corr
preconditions: • non-empty(Pi), empty(Corr): BPj ,¬CorrA ∧ ¬CorrB ∧
¬CorrC

effects: empty(APi ), non-empty(corridor):
¬BPi , CorrB

take(r, C,Corr)
robot r takes a block C from Pj to the corridor Corr
preconditions: • non-empty(Pi), empty(Corr): CPj ,¬CorrA ∧ ¬CorrB ∧
¬CorrC

effects: empty(APi ), non-empty(corridor):
¬CPi , CorrB

4 Some Fuzzy Extension of LTL and Its Expressive Power

This section is aimed at presenting some fuzzy extension of Linear Temporal
Logic (LTL), described earlier, in order to capture its expressive power w.r.t.
the considered problems. We will denote this new system by FLTL.

Syntax. FLTL has the same syntax of LTL. In particular, let Q be the set of
well formed formulas and Prop the set of propositional letters, then φ ∈ Q if
and only if

φ := p|¬φ|φ ∧ φ|Xφ|Gφ|φUψ, (2)
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where p ∈ Prop.

Semantics. Semantics of FLTL of Q is defined w.r.t. a linear time structure
Π = (S, s0, s, Lab), where S is a non-empty a set of states, s0 is the initial state,
s ∈ s0 . . . sω is an infinite path in Π, and Lab : S �→ [0, 1]Prop is a fuzzy labeling
function. The evaluation V al is defined on Π for set of formulas Q as follows:

(1) V al(p, s) = Lab(s)(p), for p ∈ Prop
(2) V al(¬p, s) = 1 − V al(p, s)
(3) V al(φ ∧ ψ, s) = min{V al(φ, s), V al(ψ, s)}
(4) V al(φ ∨ ψ, s) = max{(φ, s), (ψ, s)}
(5) V al(Xφ, s) = V al(φ,Next(s))
(6) V al(Gφ, s) = min{V al(φ, s), V al(Gφ,Next(s)},
(7) V al(φUψ, s) = max{V al(ψ, s),min{V al(ψ, s), V al(ψUψ,Next(s))}.

The condition (1) asserts that a valuation V al in a state s is identified with a
labeling function Lab for propositional variables. (3) asserts that a valuation of
a conjunction forms a min-norm for valuations for atomic formulas. Valuation
for a formula ψ = Xφ in a state s is equal to a valuation of the atomic φ in the
next state, in Next(s) etc.

In order to evaluate the expressive power of FLTL with respect to the engi-
neering requirements, defined earlier, let us note that this system has the same
syntax of LTL. Therefore, it is capable of expressing the features for the robot’s
motion and environment expressible in LTL. In particular this formalism is suit-
able to render the same robot motion coverage, action sequencing or its activity
plan as LTL. Therefore, no additional portion of information can be extracted
in the purely syntactic way.

In order to grasp this (eventual) excessive power of FLTL (w. r. t. the LTL
alone), consider against the following robot environment specification:

The blocks A, B, C initially located somewhere in rooms
P1, . . . Pk but not in a corridor Corr.
APi ∧ BPj ∧ CPl ∧ ¬(ACorr ∧ BCorr ∧ CCorr).

In LTL, there is a unique way of valuation of such sentences: only 0 and 1
can be associated to atomic formulas. In FLTL, as depicted above, there is a
broad spectrum of fuzzy [0,1]-values at our disposal. In order to illustrate this
difference in details, let us consider the following simple action sequencing of our
robot and our polygonal environment:

Go(R1) → Move(A).

It is clear that this action sequencing can be performed (takes value 1) by valu-
ations associated to atomic LTL-formulas as follows:

Go(R1) Move(A) Go(R1) → Move(A)
1 1 1
0 1 1
0 0 1

In FLTL-case, we have an infinite spectrum of valuation – dependently on
a valuation of atomic formulas – computed in accordance with the valuation
definition (for simplicity we demonstrate it only for three pairs of values).
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Go(R1) Move(A) Go(R1) → Move(A)
0,3 0,4, 0,7
.... .... ....
1
10

1
10

9
10

3
75

2
25

24
25

The above values can be obtained as follows: V al(Go(R1 → Move(A)) =
V al(¬Go(R1) ∨ Move(A)) = max{¬Go(R1,Move(A)} = max{1 − 0, 3; 0, 4} =
max{0, 7; 0, 4} = 0, 7. These arrangements seem to through a new light for
FLTL-expressiveness with respect to the plan representation. In order to elu-
cidate this fact, consider the fragment of LTL-expressible plan conditions for the
robot activity with a valuation associated to atomic formulas as depicted:

take(r,A,Corr)

robot r takes a block A from Pi to the corridor Corr

preconditions: • non-empty(Pi), empty(Corr): APj ,¬CorrA ∧ ¬CorrB ∧ ¬CorrC

0,5 0,4 0,7 0,356

effects: empty(APi ), non-empty(corridor): ¬APi , CorrA

0,5 0,6

These plan conditions with associated truth values can be interpreted as
partially executable or – if atomic values represent observability of the plan
execution – as partially observable.

5 Fuzzy-Time Temporal Logic

In last section the Fuzzy Linear Temporal Logic without explicit fuzzy-time
operators was discussed. In this section some extension of LTL with fuzzy-time
operators is investigated and denoted as FTL.

Syntax of FTL. FLT extends the LTL in order to render an explicitly given
fuzziness on time. For that reason some fuzzy-operators of called also “almost
operators” such as: “almost until” AU , “almost always” AG etc. These operators
and their semantics is often introduced by its bounded versions.

We say that a formula φ belongs to the set Q of well-formed FTL-formulas
(from now on, simply formulas) if it is defined by a grammar:

φ := p|¬φ|φ ∧ φ|Xφ|Gφ|φUψ|φAUψ |φAU tψ|Fφ |Ftφ |φFψ, (3)

where p ∈ Prop.
It easy to see that1 the LTL-operator U (“until”) is fibring to a new operator

AU (”almost until”) and to its bounded version AU t. An operator F constitutes
a new class consisting also in a new operator F (eventually) and Ft (eventually
in the next t instants).

1 Sometimes, further operators such as AG (“almost always”) and AGt read as “almost
always in the next t instances” are considered. We omit them for a simplicity of the
semantics presentations.
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Semantics. Semantics of all LTL-operators of FTL was given earlier. The
semantics of FLT-formulas is defined w.r.t. a linear time structure Π =
(S, s0, π, Lab), where S is the set of states, s0 is the initial state, π = s0s1 . . . is
an infinite path in Sω, and Lab : S �→ [0, 1]Prop is the (fuzzy) labeling function
that associates to each state some atomic proposition from Prop. Additionally
πi indicates the suffix of π, by starting from the i-th position. In such a frame-
work, the semantics for new fuzzy operators can be given as follows (most of
them are defined inductively):

• Almost eventually.
πi |= Ftφ ⇐⇒ ⊕i+t

j=1(π
j |= φ) , πi |= Fφ ⇐⇒ ⊕

j≤1(π
j |= φ)

• Almost until. This functor is defined inductively. In the second step, a sat-
isfiability of a formula AU tφ in a suffix πi is understood as a situation when
until j-prefix always φ is satisfied; after that ψ is satisfied. Satisfaction condi-
tion for φAUψ is understood as a limit case of the satisfaction condition for
AU tφ.
πi |= φAU0ψ ⇐⇒ φi |= ψ,
πi |= φAU tψ ⇐⇒ maxi≤j≤i+t(πj |= ψ) ⊗ (πi |= Gj−1φ),
πi |= φAUψ ⇐⇒ limest→∞(πj |= AU tφ)

where πi |= Gtφ ⇐⇒ ⊗i+t
j=1(π

j |= φ).
It easy to observe that the newly introduced operators essentially reinforce

the expressive power of our FTL w.r.t. the initial LTL. In order to illustrate this
fact let us return to the robot motion and environment specification, which can
be more realistically specified.

System Specification.

1. Sequencing: Carry the blocks in alphabetical order: A, B, C from some t-
instance:
Ft(Go(P1) ∧ F (Go(P2) ∧ . . . F (Go(Pk).

2. Coverage: Go to rooms: P1, P2, . . . , Pk.
Go(P1) ∧ Go(P2) ∧ . . . Go(Pk)

3. Conditions: Almost until you take blocks: A, B, C find them; otherwise stay
where you are.
(See(A))AU(take(A)) ∧ (See(B))AU(take(B)) ∧ (See(C))AU(take(C)).

Robot’s Environments.

1. From some t-point, the blocks A, B, C will be always located as follows:
initially – somewhere in rooms P1, . . . Pk but not in a corridor Corr.
Gt(APi ∧ BPj ∧ CPl ∧ ¬(ACorr ∧ BCorr ∧ CCorr))

5.1 Short Juxtaposition

In order to finish our comparative evaluation of the chosen systems of temporal
logic, let us compare the detected features of all systems in the table below.
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Th considered criteria refer to a time nature, a possibility of the action rendering
and to some capability of rendering of fuzziness by all these systems.

Properties LTL FLTL FTL

• time linearity yes yes yes
• time fuzziness no no yes
• way of time representa-
tion

pointwise pointwise/interval pointwise/interval

• distinction between
events and actions

partial partial partial

• different actions types no no no
• possibility to express
fuzziness of actions

no partial yes

• possibility to express
the processes

partial partial partial

• possibility to express
the moves and delays in
time

no no no

• representation of
events in time

non-concrete non-concrete non-concrete

6 Conclusions and Future Works

In this paper, three important types of temporal modal logic: Linear Temporal
Logic, Allen’s interval algebra and Halpern-Shoham logic have been evaluated.
We formulated and defended a thesis that these formalisms only partially satisfy
typical engineer’s requirements imposed on robot’s activity in a block’s world.
We find this attempt promising for further extensions. The natural direction of
the current investigation can be an evaluation of the expressive power of well-
known temporal logic of action of L. Lamport – not only from the practical, but
also from a theoretical point of view. It seems to be also promising to compare
LTL with other powerful systems such as Transparent Intensional Logic (TIL).

Nevertheless, it appears that the most important common shortcoming of
all these systems is their non-sensibility for different types of actions, processes
and events. For example, these systems are not capable of capturing a difference
between actions and events. In addition, it sometime arises a need of a sharp
distinguishing between actions that can last in a future independently of their
initiator and its intentions and actions, which do not have such a property. This
issue seems to be a promising subject of future research.
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Abstract. The problem of online nonlinear modelling emerges among
others from limitations of memory. This problem is often solved by using
evolving systems. Evolving fuzzy systems play significant role as they
are distinguishable by clear representation of knowledge (by fuzzy rules)
which allows an interpretation of their behavior. The structure and the
parameters of those systems can be selected online. Moreover, the fuzzy
rules can represent operating points of modeled object, which can also
be identified online. Then, the data from identification can be used for
learning. In this paper we proposed an evolving fuzzy system for nonlin-
ear modelling with endless number of steady states and negligible time
of non-steady states. It is based on analysis of firing level of the fuzzy
rules with possibilities of background learning.

Keywords: Nonlinear modeling · Genetic programming · Fuzzy
system · Rules selection online

1 Introduction

The online processing of the data is an important issue often discussed in the
literature [52]. For online processing of the data evolving systems (ES) can
be used. These systems can adapt to newly incoming data samples (by mod-
ifying their parameters and the structure, which allows to obtain best pos-
sible results). These systems can be used for a classification, modelling and
control problems (see e.g. [11,22,44–46]). The standard systems (not evolv-
ing ones) have limitations due to limit of memory for storing data samples
and time needed for iterative processing of data [36]. The key element of
processing data online is to find appropriate compromise between complex-
ity and stability (possibilities of life-long learning) [85]. It is worth to note
that many computational intelligence methods (see e.g. [1,3,5–7,14,18–20,27–
31,33,34,37,39,49,54–58,61–63,69–73,82,87]) are successfully used in pattern
recognition (see e.g. [15–17,88–93]), modelling (see e.g. [4,12,13]) and opti-
mization (see e.g. [21,23–25,32,40,41,81]) issues. Neuro-fuzzy systems (see e.g.
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Fig. 1. Interpretability emerged from parameters of fuzzy sets: (a) low, (b) high.

[9,10,65–68,74,75]) combine the natural language description of fuzzy systems
(see e.g. [38,45,46]) and the learning properties of neural networks (see e.g.
[76,77,79,80,83,84]).

In case of evolving systems, evolving fuzzy systems (EFS) [50] play significant
role. Those systems are based on interpretable fuzzy rules [64]. Fuzzy rules take
form of ‘IF ... THEN ...’ and they are based on fuzzy sets. EFS are designed step
by step, on the basis of incoming data samples. The purpose of systems design
is to provide high accuracy and low complexity (resulting from for example low
number of fuzzy rules [26]). To obtain such systems, a few approaches can be
found in the literature: approaches based on merging similarity fuzzy rules [47,
53,59], approaches based on adding fuzzy rules into system only when specified
conditions are met [48,51,60] or approaches based on modification of currently
existing fuzzy rules [2,50,78].

The fuzzy systems (see e.g. [9,10,12,13,15,16,24,88,89]) interpretability can
result not only from the low number of fuzzy rules and fuzzy sets, but also
from the semantic of appropriate selected parameters of fuzzy sets [26] (Fig. 1).
The semantic simplifies (clarifies) understanding of how models [26] (Fig. 1),
classifiers [2,42] and control systems [43] work. It is worth to mention that the
interpretability of the online designed models is an important issue. It emerges
from possibilities of understanding how the current object works, and it allows
us to model the typical states of the object. Those states in the further part of
this paper will be called operation points. In the fuzzy systems each operation
point can be represented by single fuzzy rule.

In this paper, the evolving fuzzy system based on analyzing of firing level of
the rules is proposed. Moreover, a few approaches were tested, including modifi-
cation of parameters of fuzzy sets and possibilities of background learning with
using prepared (auxiliary) data samples.

This paper is divided as follows: in Sect. 2 the proposed system is described,
in Sect. 3 an idea of designing of the proposed system is presented, in Sect. 4
simulation results are shown, whereas in Sect. 5 the conclusions are drawn.

2 Neuro-fuzzy System for Online Nonlinear Modelling

The proposed approach uses neuro-fuzzy system of Mamdani type [64]. This
system was designed in a way to allow online flexible build of fuzzy rules. This
process is based on creating and modifying fuzzy rules. The fuzzy rules are based
on dynamical base of fuzzy sets defined as follows:
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C =

⎧
⎪⎪⎨

⎪⎪⎩

A1,1, ..., A1,LA
1
, ...,

An,1, ..., An,LA
n
,

B1,1, ..., B1,LB
1
, ...,

Bm,1, ..., Bm,LB
m

⎫
⎪⎪⎬

⎪⎪⎭
= {C1, ..., CLc} , (1)

where Ai,l stands for input fuzzy sets, i = 1, ..., n stands for input index, n
stands for number of inputs, l = 1, ..., LA

i stands for index of fuzzy set, LA
i

stands for number of input fuzzy sets from base (1) related to input i. Bj,l

stands for output fuzzy sets, j = 1, ...,m stands for output index, m stands for
number of outputs, l = 1, ..., LB

j stands for index of fuzzy set, LB
j stands for

number of output fuzzy sets from base (1) related to output j, LC =
∑n

i=1 LA
i +∑m

j=1 LB
j stands for, changing in the learning process, total number of fuzzy

sets. This approach allows to work with elastic number of fuzzy sets. Each fuzzy
set Ai,l is represented by membership function μAi,l

(x), while each fuzzy set
Bj,l is represented by membership function μBj,k

(y). In the proposed approach
a Gaussian-type membership functions were used. Therefore, for the fuzzy sets
the following parameters were assigned:

⎧
⎨

⎩
Ai,l =

{
xA
i,l, σ

A
i,l, c

A
i,l

}
for input fuzzy set

Bj,l =
{

yB
j,l, σ

B
j,l, c

B
j,l

}
for output fuzzy set,

(2)

where xA
i,l and yB

j,l stands for centers of fuzzy sets, σA
i,l and σB

j,l stands for widths
of fuzzy sets, cAi,l i cBj,l stands for counters of using fuzzy sets, treat as heaviness.

The fuzzy rules base contains fuzzy rules Rk, where k = 1, ..., N stands for
fuzzy rule index, N stands for actual number of fuzzy sets. The number of fuzzy
rules can change in a learning process (Sect. 3). In the proposed approach fuzzy
rules are connected with the fuzzy sets by indexes IAi,k and IBj,k:

Rk =
{
IA1,k, ..., I

A
n,k, I

B
1,k, ..., I

B
m,k

}
, (3)

where each index IAi,k refers to one input fuzzy set from base C and each index
IBj,k refers to one output fuzzy set from base C. This approach allows sharing of
single fuzzy sets by many fuzzy rules, which notation is defined as:

Rk : IF

⎛

⎜⎜⎜⎝

x1 is A1,IA
1,k

AND
x2 is A2,IA

2,k
AND

...
xn is An,IA

n,k

⎞

⎟⎟⎟⎠ THEN

⎛

⎜⎜⎜⎝

y1 is B1,IB
1,k

AND
y2 is B2,IB

2,k
AND

...
ym is Bm,IB

m,k

⎞

⎟⎟⎟⎠ . (4)

The firing level (activation level) of fuzzy rule Rk is calculated as:

τk (x̄) =
n

T
i=1

{
μA

i,IA
i,k

(x̄i)
}

= T

{
μA1,IA1,k

(x̄1) , ..., μA
n,IA

n,k

(x̄n)
}

, (5)

where T (·) is any triangular t-norm [64]. In case of using product type of t-norm
the Eq. (5) is defined as:

τk (x̄) =
n∏

i=1

μA
i,IA

i,k

(x̄i). (6)
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In case of singleton defuzzification, the interferences from k-th rule are calculated
independently for each j-th output by triangular t-norm (which is an interference
operator in the Mamdani type of fuzzy system) (see e.g. [64]):

μB̄j,k
(x̄, y) = μAk→Bj,k

(x̄, y) = T

{
τk (x̄) , μB

IB
j,k

(y)
}

. (7)

The aggregation of interference of fuzzy rules is calculated as follows:

μB
′
j
(x̄, y) =

N

S
k=1

{
μB̄j,k

(x̄, y)
}

= S
{

μB̄j,1
(x̄, y) , ..., μB̄j,N

(x̄, y)
}

, (8)

where S (·) is triangular t-conorm. In case of use of product t-conorm, the Eq. (8)
is defined as:

μB
′
j
(x̄, y) = 1 −

N∏

k=1

(
1 − μB̄j,k

(x̄, y)
)
. (9)

The defuzzificated values of fuzzy system of its j-th output can be calculated
with for example center of area method:

ȳj (x̄) =

LB
j∑

l=1

yB
j,l · μB

′
j

(
x̄, yB

j,l

)

LB
j∑

l=1

μB
′
j

(
x̄, yB

j,l

) , (10)

where yB
j,l are values equal to maximum (isolated) points of the functions μBj,k

(y)
(which are centers of used in simulations Gaussian-type fuzzy sets) (Sect. 4).
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Fig. 2. The idea of proposed evolving fuzzy system.

3 Description of Proposed Method

In this paper three cases were presented (their details are included in next part
of this Section):
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– In Case 1 fuzzy rules and fuzzy sets are added into the system on the basis
of analysis of firing level of fuzzy rules (5).

– In Case 2 additional modification of fuzzy system parameters based on heav-
iness of fuzzy sets is performed.

– In Case 3 additional background learning on the basis of auxiliary data sam-
ples is performed.

3.1 Preliminary Analysis of Data Samples

The purpose of preliminary analysis of data samples (Fig. 2) is to estimate ini-
tialization values of widths of fuzzy sets. Each sample x̄ consist of n input signals
and m output signals : x̄ = {x̄1, ..., x̄n, x̄n+1, ..., x̄n+m} = {x̄1, ..., x̄h}, for which
a minims xmin and maxims xmax are determined. The minims and maxims allows
to determine widths of fuzzy sets in the following way:

σi = σpar · (
xmax
i − xmin

i

)
, (11)

where σpar ∈ [0, 1] stands for parameter specifying the initial width of fuzzy sets
(lower value stands for narrower fuzzy sets).

3.2 Building of Fuzzy System

In the proposed method new fuzzy rules are added into system when the actual
sample x̄ do not active with (specified by parameter τakt ∈ [0, 1]) level any of
existed fuzzy rules in form of (4). This condition can be write as:

τakt > max
k=1,...,N

{
n
√

τk (x̄)
}

. (12)

The use of the square root in the Eq. (12) reduces the impact of the system (10)
inputs number on results of fuzzy rules activation. Newly created fuzzy rules can
use both the existing in the base (1) and the newly created fuzzy sets. To check
if the fuzzy rule can use already existing fuzzy set (Fig. 3) for each input signal
x̄i from sample x̄ the following condition is checked:

⎧
⎨

⎩

μakt > max
l=1,...,LA

i

{
μAh,l

(x̄i)
}

for input fuzzy set (i ≤ n)

μakt > max
l=1,...,LB

i−n

{
μBh−n,l

(x̄i)
}

for output fuzzy set (i > n), (13)

where μakt ∈ [0, 1] stands for threshold value specifying when existing fuzzy set
might be used (it acts similar to a function parameter τakt of fuzzy rules). If
the condition (13) is met, a fuzzy rules can use existing fuzzy set (with highest
value of membership function) and the index IAi or IBi−n is set on index of this
fuzzy set. In the other case, a new fuzzy set is inserted into fuzzy sets base (2)
with parameters initialized as follows:

{
xA
i,l = x̄i;σA

i,l = σi; cAi,l = 1 for input fuzzy set (i ≤ n)
yB
j,l = x̄n+j ;σB

j,l = σn+j ; cBj,l = 1 for output fuzzy set (i > n). (14)
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In the proposed approach we assumed that every data sample can represent
important operation point for modelled object, which means that every data
sample has to be included in the modelling process. Due to this, proposed algo-
rithm can be used mostly for modelling objects with endless number of steady
states and negligible time of non-steady states. It is not directly suitable for
modelling oscillating objects.

If the sample has not met the condition (12) for Case 2 and Case 3 the
parameters of the fuzzy sets existing in the base C with higher value of mem-
bership function are additionally modified. Due to using heaviness of fuzzy sets
in this modification, the insensitivity of changes slowly decreases. Thanks to
that the fuzzy sets retain in clear (interpretable) positions (they do not overlap
each other). Moreover, the information about operation points is also kept. The
modification of fuzzy sets is carried out as follows:
⎧
⎪⎨
⎪⎩

xA
i,l =

cAi,l·xA
i,l+1·x̄i

cA
i,l

+1
; cA

i,l = cA
i,l + 1 for input fuzzy set (i ≤ n)

yB
i−n,l =

cBi−n,l·yB
i−n,l+1·x̄i

cB
i−n,l

+1
; cB

i−n,l = cB
i−n,l + 1 for output fuzzy set (i > n),

(15)

which is based on the idea of moving clusters from the Ward method [86]. In case
of creating new rule the parameters of existing fuzzy sets connected to this rule
are also modified according to Eq. (15). Therefore, the building of fuzzy system
is based on standard fuzzy system mechanisms: the analysis of firing (activation)
of fuzzy rules and analysis of the values of fuzzy sets membership functions. This
approach is new in the literature.

3.3 Background Learning

EFS are by default system parameters which cannot be tuned. It results from the-
oretically infinite number of incoming online data samples. However, in Case 3

start

T

find fuzzy rule
with highest firing level

and modify its
fuzzy sets (15)

N
condition (12)

add new fuzzy rule

T

N
condition (13)

add new fuzzy set
(14)

h n m= 1,2,..., +

find fuzy set with highest
value of membership

function and
assign it to fuzzy rule

modify founded
fuzzy set (15)

stop

merge two closest
(19)auxiliary samples

preliminary samples analysis

T condition (17)

add sample (16)auxiliary

Case 2, Case 3

Case 2, Case 3

Case 3N

Case 1, Case 2, Case 3

Fig. 3. The block schema of proposed approach (Case 1, 2 and 3).
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a method of background learning (tuning) of parameters of fuzzy sets is presented.
It was achieved by creating and storing maximum of Rmax auxiliary samples for
each fuzzy rule. The process of tuning (Fig. 2) can be executed for example in
additional thread. Each auxiliary sample of k-th rule is stored in the form of clus-
ter as in Ward’s method [86]. Each cluster is represented by centers xR

h,k,d and
heaviness cRk,d where d = 1, ..., Rmax is an index of auxiliary sample, k = 1, ..., N ,
and h = 1, ..., n + m.

The process of creating auxiliary samples is connected to the process of cre-
ating and modifying fuzzy rules. Each of incoming data samples becomes an
auxiliary sample for those rules for with highest value of firing (activation) level:

xR
h,k,d = x̄h; cRk,d = 1. (16)

When the number of auxiliary samples for specified rule is higher than maximum
number of data samples Rmax:

d > Rmax, (17)

then, two closest auxiliary samples are merged. The distance between auxiliary
samples (with taking into account heaviness) is calculated as follows:

distd1,d2 =
cRk,d1 · cRk,d2
cRk,d1 + cRk,d2

·
n+m∑

h=1

∣∣∣∣∣
xR
h,k,d1 − xR

h,k,d2

xmax
h − xmin

h

∣∣∣∣∣, (18)

where d1, d2 are indexes of two comparing auxiliary samples. It is worth to
mention that the comparison (18) is executed Rmax/ (2! · (Rmax − 2)!) times.
Therefore, the number Rmax cannot be very high. The merging of two closest
auxiliary samples is performed as follows:

xR
h,k,d3 =

cRk,d1 · xR
h,k,d1 + cRk,d2 · xR

h,k,d2

cRk,d1 + cRk,d2
; cRk,d3 = cRk,d1 + cRk,d2, (19)

where d3 is an index of newly created auxiliary sample. For the background
learning, a genetic algorithm [64] was used (for learning any other methods can
be also used, i. a.: gradient algorithms [65,66,68] or evolutionary algorithms
[67]), which aims to minimize error obtained for all auxiliary samples in all rules
(in the learning process the auxiliary samples are treated as normal learning
samples).

The evaluation function for genetic algorithm includes both the complexity
and accuracy of the system (10). The interpretability of the system (10) results
from mechanisms included in proposed approach (slowly decrease of insensitivity
of moving fuzzy sets and mechanisms of adding fuzzy rules and fuzzy sets). The
complexity of system (10) is defined as follows:

CMPL = wrule · N+wfset ·
⎛

⎝
n∑

i=1

LA
i +

m∑

j=1

LB
j

⎞

⎠ , (20)
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where wrule ∈ [0, 1] stands for weight of fuzzy rules (set experimentally to 1.0),
wfset ∈ [0, 1] stands for weight of fuzzy sets (set experimentally to 0.5). The
accuracy of the system (10) is determined by RMSE:

RMSE =
1

Z · m

Z∑

i=1

m∑

j=1

√
(ȳj (x̄z) − xz,n+j)

2
. (21)

4 Simulations

4.1 Simulation Problems

In our paper a following nonlinear modelling problems were used: plant (marked
as #1) [35], chemical plant [10] (marked as #2), Box & Jenkins gas furnace
problem (marked as #3) [10]. The data used for building of fuzzy system was
modified in a way to allow an online creation of fuzzy system: (a) from data
a 10 % randomly chosen samples are selected and delivered into fuzzy system
(approaches like that can be found in the literature), (b) those samples are used
to create auxiliary samples (Case 3), (c) the 100 % of data is used for testing the
system (10). This procedure was repeated 20 times. Each simulation for each
problem was repeated 50 times and results were averaged.

4.2 Selection of Parameters

The parameters σpar, τakt and μakt have decisive impact on accuracy and com-
plexity of the system (10). The parameter σpar (responsible for initial widths
of fuzzy sets) was set experimentally to value 0.15 to obtain appropriate (inter-
pretable) number of fuzzy sets (Fig. 4a)) and fuzzy rules (Fig. 4b)). The para-
meter τakt (threshold value specifying when to add new fuzzy rule) was set
experimentally to value 0.25, the parameter μakt (threshold value specifying
when existing fuzzy set might be used) was set experimentally to value 0.20. To
choose those parameters both the good accuracy (Fig. 5a)) and good complexity

0.50 0.05
1.0

10.0

0.50 0.05
1.0

28.0

7.2

b)a)

3.1

par par0.15 0.100.15 0.10

NL

Fig. 4. Dependences between parameter σpar and: (a) average number of fuzzy sets of
each input and output (L), (b) average number of fuzzy rules (N).
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Fig. 5. Averaged for all problems dependences between parameters τakt and uakt and:
(a) RMSE, (b) CMPL. The dots stand for optimal set of parameters founded by
experimental method.
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Fig. 6. Process of building of fuzzy system for considered problem: (a) #1, (b) #2,
(c) #3.

(Fig. 5b)) were considered. The parameters of background learning were chosen
experimentally: mutation probability pm = 0.15, crossover probability pc = 0.75,
number of maximum auxiliary samples Rmax = 3. In equations that define firing
level of rules (5), interference of rules (7) and aggregation of interference (8) the
product triangular norms were used.

4.3 Simulation Results

The results obtained for considered problems for all cases were shown in Fig. 6
and presented in Table 2. Additionally, in Fig. 7 results of combinations of para-
meters τpar ∈ [0.025, 0.500] with step 0.025 and μakt ∈ [0.025, 0.500] with step
0.025 were presented. It allows to achieve different trade-off between accuracy
and complexity of the system (10). The examples of obtained fuzzy sets were
shown in Fig. 8 and corresponding fuzzy rules are presented in Table 1.
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Fig. 7. Pareto fronts [8] obtained due to testing different values of parameter τakt and
uakt for considered problem: (a) #1, (b) #2, (c) #3.
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Fig. 8. The examples of fuzzy sets for considered problems: (a) #1, (b) #2, (c) #3.
Dotted lines stands for minims (left line) and maxims (right line) of learning data.
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Table 1. The example notations of fuzzy rules obtained for considered problems. The
linguistics labels used in fuzzy rules are presented in Fig. 8.

# Fuzzy rules notation

1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF
(

x1 is A1,1 AND x2 is A2,1

)
THEN

(
y1 is B1,2

)

R2 : IF
(

x1 is A1,2 AND x2 is A2,2

)
THEN

(
y1 is B1,2

)

R3 : IF
(

x1 is A1,2 AND x2 is A2,3

)
THEN

(
y1 is B1,3

)

R4 : IF
(

x1 is A1,2 AND x2 is A2,1

)
THEN

(
y1 is B1,1

)

R5 : IF
(

x1 is A1,3 AND x2 is A2,3

)
THEN

(
y1 is B1,3

)

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF
(

x1 is A1,1 AND x2 is A2,2 AND x3 is A3,4

)
THEN

(
y1 is B1,3

)

R2 : IF
(

x1 is A1,1 AND x2 is A2,3 AND x3 is A3,4

)
THEN

(
y1 is B1,3

)

R3 : IF
(

x1 is A1,2 AND x2 is A2,1 AND x3 is A3,3

)
THEN

(
y1 is B1,2

)

R4 : IF
(

x1 is A1,2 AND x2 is A2,1 AND x3 is A3,1

)
THEN

(
y1 is B1,1

)

R5 : IF
(

x1 is A1,2 AND x2 is A2,2 AND x3 is A3,2

)
THEN

(
y1 is B1,2

)

R6 : IF
(

x1 is A1,3 AND x2 is A2,3 AND x3 is A3,2

)
THEN

(
y1 is B1,3

)

3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

(
x1 is A1,1 AND x2 is A2,1 AND x3 is A3,1 AND

x4 is A4,1 AND x5 is A5,2 AND x6 is A6,2

)
THEN

(
y1 is

B1,1

)

R2 : IF

(
x1 is A1,1 AND x2 is A2,1 AND x3 is A3,1 AND

x4 is A4,1 AND x5 is A5,1 AND x6 is A6,1

)
THEN

(
y1 is

B1,2

)

R3 : IF

(
x1 is A1,1 AND x2 is A2,1 AND x3 is A3,2 AND

x4 is A4,1 AND x5 is A5,3 AND x6 is A6,3

)
THEN

(
y1 is

B1,1

)

R4 : IF

(
x1 is A1,2 AND x2 is A2,2 AND x3 is A3,2 AND

x4 is A4,1 AND x5 is A5,2 AND x6 is A6,2

)
THEN

(
y1 is

B1,2

)

R5 : IF

(
x1 is A1,2 AND x2 is A2,2 AND x3 is A3,2 AND

x4 is A4,2 AND x5 is A5,1 AND x6 is A6,1

)
THEN

(
y1 is

B1,2

)

R6 : IF

(
x1 is A1,3 AND x2 is A2,3 AND x3 is A3,3 AND

x4 is A4,2 AND x5 is A5,1 AND x6 is A6,1

)
THEN

(
y1 is

B1,3

)

R7 : IF

(
x1 is A1,3 AND x2 is A2,3 AND x3 is A3,3 AND

x4 is A4,2 AND x5 is A5,1 AND x6 is A6,1

)
THEN

(
y1 is

B1,3

)

4.4 Conclusions from Simulations

The conclusions from simulations can be summed up as follows: (a) the results
obtained for proposed approach are very close (in a field of accuracy) to the
results obtained by other authors for offline learning (b) the proposed approach
allowed to achieve interpretable fuzzy rules (Fig. 8), (c) the mechanism of mod-
ifying fuzzy sets (case 2) improved proposed method (case 1) by approximately
5 % (see Table 2), (d) the mechanism of background learning (case 3) improved
proposed method (case 1) by additional approximately 15 % (Table 2), (e) the
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Table 2. Summary results of RMSE and CMPL (best CMPL stands for CMPL
obtained for best RMSE).

Problem Case Avg.

RMSE

Avg.

CMPL

Best

RMSE

Best

CMPL

Avg. N Avg. Fuzzy

sets

Others

authors

RMSE

(offline)

#1 1 0.049 10.733 0.029 11.500 5.710 10.045 0.013-0.054

[35]

2 0.048 10.845 0.029 13.000 5.730 10.230

3 0.040 11.505 0.013 14.000 6.220 10.570

#2 1 0.049 14.070 0.025 14.000 7.390 13.360 0.006-0.009

[10]

2 0.045 13.783 0.026 12.000 7.110 13.345

3 0.040 14.253 0.015 16.000 7.560 13.385

#3 1 1.305 18.700 0.884 18.000 7.035 23.330 0.296–0.450

[10]

2 1.203 18.813 0.845 21.000 7.310 23.005

3 1.036 19.690 0.648 20.000 7.885 23.610

low number of obtained fuzzy rules allows to effectively identify operation points,
(f) the background learning allows to obtain significant improvement in a field
of accuracy (Fig. 7 and Table 2), (g) the proposed method allows to build fuzzy
rules for data samples which represent sporadic existing operation points.

5 Conclusions

The proposed approach to online build of fuzzy systems allows us to obtain good
results in both accuracy and complexity fields. The mechanism of background
learning significantly improved proposed approach. It can be also used in other
online learning methods. In the future, authors consider i.a.: including additional
interpretability criteria, the use of don’t care type of fuzzy sets and use of weights
of rules resulting from frequency of their use. The proposed method is actually
tested on real data obtained from non-invasive online identification of engine.
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7. Bruździński, T., Krzyżak, A., Fevens, T., Jeleń, �L.: Web-based framework for breast
cancer classification. J. Artif. Intell. Soft Comput. Res. 4(2), 149–162 (2014)

8. Cococcioni, M., Ducange, P., Lazzerini, B., Marcelloni, F.: A Pareto-based multi-
objective evolutionary approach to the identification of Mamdani fuzzy systems.
Soft. Comput. 11, 1013–1031 (2007)

9. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L.,
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17. Cpa�lka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification
based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43,
47–56 (2016)

18. Das, S., Kar, S., Pal, T.: Group decision making using interval-valued intuitionistic
fuzzy soft matrix and confident weight of experts. J. Artif. Intell. Soft Comput.
Res. 4(1), 57–77 (2014)

19. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogo-
nal series-type kernel regression neural networks in a non-stationary environment.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 47–54.
Springer, Heidelberg (2012)

20. Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data
stream. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp.
56–63. Springer, Heidelberg (2012)



New Approach for Nonlinear Modelling 243
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51. Lughofer, E., Hüllermeier, E.: On-line redundancy elimination in evolving fuzzy
regression models using a fuzzy inclusion measure. In: Proceedings of the
EUSFLAT 2011 Conference, pp. 380–387. Elsevier, Aix-Les-Bains, France (2011)

52. Lughofer, E.: On-line assurance of interpretability criteria in evolving fuzzy systems
- achievements, new concepts and open issues. Inf. Sci. 251, 22–46 (2013)

53. Maciel, L., Lemos, A., Gomide, F., Ballini, R.: Evolving fuzzy systems for pricing
fixed income options. Evolving Syst. 3(1), 5–18 (2012)

54. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.-Q.: haotic states induced by
resetting process in izhikevich neuron model. J. Artif. Intell. Soft Comput. Res.
5(2), 109–119 (2015)

55. Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for
assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70
(2015)

56. Pietruczuk, L., Duda, P., Jaworski, M.: A new fuzzy classifier for data streams.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS(LNAI), vol. 7267, pp. 318–324.
Springer, Heidelberg (2012)

57. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling
concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894,
pp. 459–473. Springer, Heidelberg (2013)

58. Pietruczuk, L., Zurada, J.M.: Weak convergence of the recursive parzen-type prob-
abilistic neural network in a non-stationary environment. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS,
vol. 7203, pp. 521–529. Springer, Heidelberg (2012)

59. Ramos, J.V., Pereira, C., Dourado, A.: The building of interpretable systems in
real-time. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Sys-
tems: Methodology and Applications, pp. 127–150. Wiley, New York (2010)

60. Rubio, J.J.: Stability analysis for an on-line evolving neuro-fuzzy recurrent net-
work. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems:
Methodology and Applications, pp. 173–199. Wiley, New York (2010)

61. Rutkowska, A.: Influence of membership functions shape on portfolio optimization
results. J. Artif. Intell. Soft Comput. Res. 6(1), 45–54 (2016)

62. Rutkowski, L.: Sequential pattern-recognition procedures derived from multiple
Fourier-series. Pattern Recogn. Lett. 8(4), 213–216 (1988)

63. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in
time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

64. Rutkowski, L.: Computational Intelligence. Springer, New York (2008)
65. Rutkowski, L., Cpa�lka, K.: Compromise approach to neuro-fuzzy systems. In: Sin-

cak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies -
Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

66. Rutkowski, L., Cpa�lka, K.: Flexible structures of neuro-fuzzy systems. In: Quo
Vadis Computational Intelligence. Studies in Fuzziness and Soft Computing, vol
54, pp. 479–484. Springer (2000)

67. Rutkowski, L., Cpa�lka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings
of the 9th International Conference on Neural Information Processing (ICONIP
2002), Orchid Country Club, Singapore, 18–22 November, 2002 CD



246 K. �Lapa et al.

68. Rutkowski, L., Cpa�lka, K.: Neuro-fuzzy systems derived from quasi-triangular
norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems,
Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)

69. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining
data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data
Eng. 26(1), 108–119 (2014)

70. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree
for mining data streams. Inf. Sci. 266, 1–15 (2014)

71. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining
data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng.
25(6), 1272–1279 (2013)

72. Rutkowski, L., Przyby�l, A., Cpa�lka, K., Er, M.J.: Online speed profile generation for
industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS
(LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

73. Rutkowski, L., Rafaj�lowicz, E.: On optimal global rate of convergence of some non-
parametric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–
1091 (1989)

74. Scherer, R.: Neuro-fuzzy systems with relation matrix. In: Rutkowski, L., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS
(LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

75. Scherer, R., Rutkowski, L.: Relational equations initializing neuro-fuzzy system.
In: Proceedings of the 10th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 18–22
(2002)
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92. Zalasiński, M., Cpa�lka, K., Hayashi, Y.: New method for dynamic signature veri-
fication based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS
(LNAI), vol. 8468, pp. 231–245. Springer, Heidelberg (2014)
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Abstract. In this paper we proposed a new approach for interpretability
of the neuro-fuzzy systems. It is based on appropriate use of parametric
triangular norms with weights of arguments, which shape depends on
values of their parameters and weights. The use of those norms as aggre-
gation and inference operators increases precision of fuzzy system. Due
to that, the rule base can be simpler and easier to interpretation. How-
ever, interpretation of parametric triangular norms is not that obvious
as interpretation of nonparametric triangular norms such as algebraic
or minimal norms. Proposed approach is based on choosing values of
parameters from a set of values, where each value have its own interpre-
tation. Additionally, a modified tuning algorithm for selection both the
structure and structure parameters of fuzzy system with interpretability
criteria under consideration is proposed. Proposed approach were tested
on well-known nonlinear simulation problems.

Keywords: Nonlinear modeling · Fuzzy system · Interpretability
criteria · Accuracy

1 Introduction

The fuzzy systems (see e.g. [12,15–21,29,30,34,42,43,48,80,81,85,94–99]) are
based on fuzzy rules. In the past researchers paid attention to the accuracy of fuzzy
systems while ignoring issues of their interpretability. However, in the 1990 s they
started to notice the fact that a large number of rules or fuzzy sets in those rules is
not conducive to the readability of the rule base. Nowadays fuzzy system designers
are trying to reach an acceptable compromise between accuracy and interpretabil-
ity [31,38,54]. In the literature a number of papers on the subject of interpretabil-
ity of fuzzy systems can be found. Their authors have proposed among the others:
(a) solutions aimed at reducing the number of fuzzy rules [2,4,31,38,54], reduc-
ing the number of fuzzy sets [35], reducing the number of system inputs [4,92] and
reducing fuzzy system elements by merging [13,36], (b) solutions related to correct
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 248–265, 2016.
DOI: 10.1007/978-3-319-39378-0 22
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notation of fuzzy rules [4,49], correct activation of fuzzy rules [54] and distinguish-
ability and interdependence of fuzzy sets [55,56,64], (c) solutions related to fuzzy
systems construction aimed at interpretability, based on additional weights of
importance of the rules, antecedences, consequences and system inputs [13,65,71],
parameterized triangular norms [13,28,68] and precise defuzzification mechanism
[13]. The literature abounds in numerous attempts to systematize solutions for
interpretability (e.g. [3,32,82]).

The solutions proposed in this paper can be summarized as follows: (a) it is
based on a use of parametric triangular norms with weights of arguments and
on appropriate use of values of weights of fuzzy system elements. Proposed idea
concerns choosing parameters values from a set of values, where each value have
its own interpretation; (b) in this paper a new algorithm for selection the struc-
ture and parameters of a fuzzy system, constructed on the basis of the golden
ball [60] algorithm is proposed. Moreover, the proposed algorithm takes into
account all the interpretability criteria and it belongs to the methods based on
populations [71]. The use of the learning algorithm also creates a good opportu-
nity to find an appropriate trade-off between interpretability and accuracy. It is
worth to note that many computational intelligence methods (see e.g. [1,5–9,22–
27,33,39–41,44,50,58,61–63,66,67,69,76–79,83,86,87,93]) are successfully used
in pattern recognition, modelling and optimization issues.

This paper is divided into following sections: in Sect. 2 a description of a fuzzy
system is presented. In Sect. 3 a description of proposed learning algorithm is
shown. The results of simulations are presented in Sect. 4, finally the conclusions
are described in Sect. 5.

2 Description of a Neuro-Fuzzy System

In this paper a typical multi-input, multi-output flexible fuzzy system of the
Mamdani-type is considered [13,14,70,71]. Neuro-fuzzy systems combine the
natural language description of fuzzy systems and the learning properties of
neural networks (see e.g. [11,46,47,84,88–91]). This system performs mapping
X → Y, where X ⊂ Rn and Y ⊂ Rm. The rule base of this system consists of
a collection of N fuzzy rules Rk, k = 1, . . . , N . Each rule Rk takes the following
form:

Rk :

⎡

⎣

⎛

⎝ IF
(
x1 is Ak

1

) ∣∣∣wA
1,k AND ... AND

(
xn is Ak

n

) ∣∣∣wA
n,k

THEN
(
y1 is Bk

1

) ∣∣∣wB
1,k , ...,

(
ym is Bk

m

) ∣∣∣wB
m,k

⎞

⎠ ∣∣wrule
k

⎤

⎦ , (1)

where n is the number of inputs, m is the number of outputs, x̄ = [x̄1, . . . , x̄n]
∈ X is a vector of input signals, y = [y1, . . . , ym] ∈ Y is a vector of output lin-
guistic variables, Ak

1 , . . . , Ak
n are input fuzzy sets characterized by membership

functions μAk
i
(xi) (i = 1, . . . , n), Bk

1 , . . . , Bk
m are output fuzzy sets character-

ized by membership functions μBk
j

(yj) (j = 1, . . . ,m), wA
k,i ∈ [0, 1] are weights

of antecedents, wB
j,k ∈ [0, 1] are weights of consequences, and wrule

k ∈ [0, 1]
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are weights of rules. Fuzzy sets Ak
i and Bk

j represent linguistic variables (e.g.
‘very low’, ‘low’, ‘medium’, ‘high’, ‘very high’, ‘near [value]’). In this paper we
consider system based on Gaussian membership functions, which reflects well
the industrial, natural, medical and social processes; however, our solutions may
be related to any other membership function. The flexibility of the system is a
result of using: (a) weights in the rule base, (b) precise aggregation operators
of antecedences and rules (Sect. 2.2), (c) precise inference operators (Sect. 2.2),
and (d) a precise defuzzification process (Sect. 2.1).

2.1 Defuzzification Process

Defuzzification is used to determine output signals ȳj of fuzzy system for given
input signals. This is carried out as follows (with center of area method):

ȳj =

Rj∑
r=1

ȳdef
j,r ·

N↔
S∗

k=1

{ ↔
T ∗

{
τk (x̄) , μBk

j

(
ȳdef

j,r

)
; 1, wB

j,k, pimp
}

;wrule
k , pagr

}

Rj∑
r=1

N↔
S∗

k=1

{ ↔
T ∗

{
τk (x̄) , μBk

j

(
ȳdef

j,r

)
; 1, wB

j,k, pimp
}

;wrule
k , pagr

} , (2)

where
↔
T ∗ and

↔
S∗ are Aczél-Alsina parameterized triangular norms with weights

of arguments (Sect. 2.2), τk (x̄) is the activation level of the rule k, pimp is a
shape parameter of t-norm used for inference, pagr is a shape parameter of t-
conorm used for aggregation of inferences from rules, and ȳdef

j,r (r = 1, . . . , Rj)
are discretization points. In the system considered in this paper the number of
discretization points Rj for any output j does not have to be equal to the number
of rules N . It is creating a good opportunities for increasing the interpretability
and accuracy of the fuzzy system. This issue was discussed in detail in our
previous papers [13,14,51]. The activation level of the k-th rule τk (x̄) in the
formula (2) is determined for the input signals vector x̄ and it is defined as
follows:

τk (x̄) =
n↔
T ∗
i=1

{
μAk

i
(x̄i) ;wA

k,i, p
τ
}

, (3)

where pτ is a shape parameter of t-norm used for aggregation of antecedences.

2.2 Aggregation and Inference Operators

Use of parametrized-type triangular norms with weights of arguments considered
in this paper contributes indirectly to an increase of the interpretability of the
system (2). It results from high working precision of these operators, which
allows for achieving the expected accuracy of the system (2) with a smaller
number of rules N . In this paper a parametrized triangular norms with weights
of arguments of Aczél-Alsina type are used. They are defined as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

↔
T

∗
{a;w, p} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

drastic t − norm for p = 0
minimum t − norm for p = ∞

exp

(
−
(

n∑
i=1

(− ln (1 − w1 · (1 − a1)))
p

) 1
p

)
for p ∈ (0,∞)

↔
S

∗
{a;w, p} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

drastic t − conorm for p = 0
maximum t − conorm for p = ∞

1 − exp

(
−
(

n∑
i=1

(− ln (1 − wi · ai))
p

) 1
p

)
for p ∈ (0,∞)

,

(4)

where p is a shape parameter of norm, w1 . . . , wn ∈ [0, 1] are weights of arguments
a1, . . . , an ∈ [0, 1].

3 Description of a Learning Algorithm

The proposed learning algorithm belongs to so-called population-based algo-
rithms ([74]) and its purpose is to select the structure and the parameters of
the fuzzy system (2). Population-based algorithms can be defined as search pro-
cedures based on the mechanisms of natural selection and inheritance and they
use the evolutionary principle of survival of the fittest individuals. What differs
population algorithms from traditional optimization methods, among others, is
that they do not process task parameters directly, but their encoded form, they
do not conduct a search starting from a single point, but from a population of
points, they use only the objective function and not its derivatives, and they use
probabilistic selection rules. It is worth to notice that, the gradient algorithms
(see e.g. [72,73,75]) can also be applied to proposed interpretability criteria.

3.1 Encoding of Potential Solutions

Encoding of population of potential solutions used in the algorithm refers to the
Pittsburgh approach [37]. A single individual of the population (Xch) is therefore
an object that encodes the complete structure Xstr

ch of the fuzzy system (2), its
set parameters Xset

ch and real parameters Xpar
ch :

Xch =
{
Xstr

ch ,Xset
ch ,Xpar

ch

}
. (5)

Part Xstr
ch of the individual Xch encodes in a binary form the whole structure

of the fuzzy system (2):

Xstr
ch =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1, . . . , xn,
A1

1, ..., A
1
n, ..., ANmax

1 , ..., ANmax
n ,

B1
1 , ..., B1

m, ..., BNmax
1 , ..., BNmax

m ,
rule1, ..., ruleNmax,

ȳdef
1,1 , ..., ȳdef

1,Rmax, ..., ȳdef
m,1, ..., ȳ

def
m,Rmax

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=
{
Xstr

ch,1, ...,X
str
ch,Lstr

}
, (6)
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where ch = 1, ..., Npop is the index of an individual in a population, Npop is the
number of individuals in a population, Nmax is the maximum number of rules
in the system (2), Rmax is the maximum number of discretization points in the
system (2) and Lstr is the number of the individual components Xstr

ch (referred as
genes from now on) is determined as Lstr = Nmax · (n+m+1)+n+Rmax ·m.
The principle adopted in the encoding genes of Xstr

ch is such that the gene with
value 0 of the individual Xstr

ch excludes the associated element from the system
structure (2) and vice versa.

Part Xset
ch of the individual Xch encodes the set parameters, which values have

direct impact on interpretability. Xset
ch contains: (a) weights of antecedences, con-

sequences and rules, and (b) parameters of triangular norms used for aggregation
of antecedences (pagr), inference of rules (pimp) and aggregation of inference of
rules (pτ ). Each of those parameters is chosen from a set of values. Each value
from set have its own interpretation. Part Xset

ch takes the following form:

Xset
ch =

⎧
⎪⎪⎨
⎪⎪⎩

wA
1,1, . . . , w

A
1,n, . . . , w

A
Nmax,1, . . . , w

A
Nmax,n,

wB
1,1, . . . , w

B
m,1, . . . , w

B
1,Nmax, . . . , w

B
m,Nmax,

wrule
1 , . . . , wrule

Nmax,
pτ , pimp, pagr,

⎫
⎪⎪⎬
⎪⎪⎭

=
{
Xset

ch,1, . . . , X
set
ch,Lset

}
,

(7)

where Lset = Nmax · (n + m + 1)+3 is the number of components of individual
Xset

ch . The set of possible values for weights is defined as follows:

setw = {0.0, 0.5, 1.0} , (8)

where value 0.0 can be interpretable as not important, values 0.5 as important,
and value 1.0 as very important. Additionally, when value 0.0 is chosen for an
element, it its treat as reduced from a system (2). For parametrized triangular
norms (4) the set of possible values was chosen to obtain similar behavior to the
non-parametrized norms (see Table 1). The set of possible values is defined as
follows:

setp = {0.00, 0.63, 1.00, 1.51, 10.00} . (9)

Table 1. The parameters that close behavior of triangular norm Aczél-Alsina to non-
parametrical norms.

Triangular norm Drastic �Lukasiewicz Algebraic Hamacher Minimum

Similarity parameter 0.00 0.63 1.00 1.51 10.00

Similarity level Identical Close Identical Close Close

Part Xpar
ch of the individual Xch encodes the real parameters of the fuzzy

system and it has the following form:
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Xpar
ch =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̄A
1,1, σ

A
1,1, . . . , x̄

A
n,1, σ

A
n,1, . . .

x̄A
1,Nmax, σA

1,Nmax, . . . , x̄A
n,Nmax, σA

n,Nmax,

ȳB
1,1, σ

B
1,1, . . . , ȳ

B
m,1, σ

B
m,1, . . .

ȳB
1,Nmax, σB

1,Nmax, . . . , ȳB
m,Nmax, σB

m,Nmax,

ȳdef
1,1 , . . . , ȳdef

1,Rmax, . . . , ȳdef
m,1, . . . , ȳ

def
m,Rmax

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=
{

Xpar
ch,1, . . . , X

par
ch,Lpar

}
,

(10)
where x̄A

i,k, σA
i,k are membership function parameters of input fuzzy sets Ak

i ,
ȳB

j,k, σB
j,k are membership function parameters of output fuzzy sets Bk

j , and
Lpar = Nmax · (2 · n + 2 · m + 1) + Rmax · m is the number of components
of individual Xpar

ch . Those parameters are significantly affecting interpretability
of system (2), but there is no possibility to choose values of them from a set. In
this case, the interpretability criteria presented in our previous paper [51] can
be used.

3.2 Evaluation of Potential Solutions

The purpose of proposed algorithm is to minimize the value of the evaluation
function specified for the individual Xch in the following way:

ff (Xch) = T ∗
{

ffacc (Xch) ,ffint (Xch) ;
wffacc , wffint

}
, (11)

where component ffacc (Xch) specifies the accuracy of the system (2), com-
ponent ffint (Xch) specifies interpretability of the system (2) according to the
adopted interpretability criteria, wffacc ∈ [0, 1] represents weight of the compo-
nent ffacc (Xch), wffint ∈ [0, 1] represents weight of the component ffint (Xch)
(values of weights wffacc and wffint result from expectations of the user regarding
the ratio between the accuracy of the system (2) and its interpretability), and
T ∗ {·} is algebraic triangular norm with weights of arguments defined as:

T ∗ {a;w} =
n∏

i=1

(1 + (ai − 1) · wi). (12)

Component ffacc (Xch) in formula (11) is determined as follows:

ffacc (X) =
1
m

m∑

j=1

1
Z

Z∑
z=1

|dz,j − ȳz,j |
max

z=1,...,Z
{dz,j} − min

z=1,...,Z
{dz,j} , (13)

where Z is the number of rows of a learning sequence, dz,j is the desired output
value of output j for input vector z (z = 1, ..., Z), ȳz,j is the real output value
j calculated by the system for the input vector x̄z. Equation (13) takes into
account the normalization of errors at different outputs of the system (2) in
order to eliminate significant differences between them.
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The component ffint (Xch) represent the interpretability criteria, which
apply mostly to the component Xpar

ch . Those criteria allows to obtain: (a) correct
arrangement of fuzzy sets, (b) correct firing of the fuzzy rules, (c) cohesion of
fuzzy set shapes, (d) appropriate fitting of fuzzy rules to data etc. The examples
of interpretability criteria was considered in our previous papers (see e.g. [51]).

3.3 Processing of Potential Solutions

For selection the structure and parameters of the system (2) a modified golden
ball algorithm (GB) [60] is proposed. The GB algorithm was chosen due to
following advantages: (a) it allows for precise local search of the search space (due
to using multiple populations), (b) it allows for precise global search of the search
space (due to migration mechanism between populations), (c) it allows obtain
high performance (it is achieved thanks to separate learning parameters of each
population, which can be modified in case of giving bad results), (d) it allows
to obtain good diversity of solutions (due to competition mechanism between
populations).

The proposed algorithm works according to the following steps:

Step 1. Initialization. In this step a Npop individuals (players) of population
are randomly initiated and randomly assigned to Nteam populations (teams).
Each team obtains Npla = Npop/Nteam players (Npop should be multiplicity
of Nteam). Each player is evaluated using fitness function (11). Moreover, each
team gets randomly initiated set of parameters:

TEAMe = {pm, pc,mr} , (14)

where pm ∈ (0, 1) is team mutation probability, pc ∈ (0, 1) is team crossover
probability, mr ∈ (0, 1) is team mutation insensitivity, e = 1, ..., Nteam stands
for index of team.

Step 2. Teams traning. This step is carried out Nstep times for each team
separately. In the beginning, for each team a time variable t is set to 0.

Step 2.1. New players creation. In this step a Npla new players are created
for each team, according to evolutionary strategy (μ + λ) [71]. Those players are
created by cloning the players chosen via roulette wheel method [71] from actual
players of the team. If the condition TEAMe {pc} < Ur (0, 1) (where Ur (a, b)
stands for random value from range [a,b]) is met, those genes are additionally
crossovered with genes randomly chosen via roulette wheel method players from
players of the team. TEAMe {pc} stands for using field pc of team TEAMe.

Step 2.2. New players modification. In this step each gene Xpar
ch,g of newly

created players is mutated (when condition TEAMe {pm} < Ur (0, 1) is met)
according to following equation:

Xpar
ch,g := Xpar

ch,g +
(
X̄par

ch,g − Xpar
ch,g

)
·Ur (−1, 1) ·TEAMe {mr} · Nstep − t

Nstep
, (15)
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where range [Xpar
ch,g,X

par

ch,g] stands for minimum and maximum allowed value of
gene Xpar

ch,g, Nstep stands for maximum number of steps of teams training. It
is easy to notice that, the range of mutation is decreasing with each step of
teams training (due to increasing value t). In turn, for each gene Xstr

ch,g (when
condition Xstr

ch,g is TEAMe {pm} < Ur (0, 1) is met) a random value from set
{0, 1} is assigned. Genes Xset

ch,g are modified analogically to genes Xstr
ch,g. The new

values of genes coding weights are randomly chosen from set (8), and the new
values of triangular norms parameters (4) are randomly chosen from set (9).

Step 2.3. New players evaluation. After modification of genes from Step 2.2,
all new players are evaluated according to fitness function (11).

Step 2.4. Selection of team players. The selection of team players is inde-
pendent for each team and it lies on choosing Npla best players from both the
actual teams players and the newly created players from Step 2.1.

Step 2.5. Stop condition of teams traning. In this step a value t is incre-
mented. After that, the condition t < Nstep is checked. If this condition is met,
algorithm goes back to step 2.1, otherwise algorithm goes to next step (Step 3).

Step 3. League competition. In this step each TEAMe compete (playing
matches) Nmatch times with all teams. Each match consist of Natt attacks.
Each attack relies on comparing values of fitness function of randomly chosen
players from both teams. The player with better value of fitness function scores
one point for its team. The team with more (or equal) points gets a league point.
On the basis of league points the teams are sorted (from best to worst). It is
worth to mention that, the results of competition are determined by random
factor, which ensure appropriate migration between teams from next step.

Step 4. Players transfer. Players migration (transfer) between teems is based
on moving players between better and worst teams. Best team from best half
of the teams is transferring Nrep (Nrep < Npla) worst players with Nrep best
players from best team from worst half of the teams, etc. Thus, the last part of
this step will concern transfer between worst team from best half of the teams
with worst team from worst half of the teams.

Step 5. Changing training plans. In this step, a parameters (14) of worst
half of the teams are changed by averaging them with parameters from better
half of the teams (the parameters of best team from worst half of the teams are
averaged with parameters of best team from best half of teams, etc.).

Step 6. Stop condition. In this step a number of iterations of the algorithm is
checked. If this number reached value of Niter algorithm stops and best found
solution is presented, otherwise algorithm goes back to Step 2.
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4 Simulations

The set of nonlinear issues (see e.g. [52,53]) examined in the simulations is shown
in Table 2. The purpose of the simulations was to obtain systems of the forms
(2) characterized by the lowest values of elements of the form (13). In this paper
the following interpretability criteria were considered: (a) complexity criterium,
(b) reducing overlapping of fuzzy sets criterium, (c) increasing integrity of shape
criterium, and (d) increases complementarity criterium (for details see our pre-
vious paper [51]). In the simulations the algorithm described in Sect. 3 to select
its structure and parameters were used. The simulations were performed for five
different variants of weights of the evaluation function (11): from the one focused
on accuracy (W1) to the one focused on interpretability (W5) (see Table 3). A
set of the proposed algorithm parameters was selected experimentally as fol-
lowing: number of iterations Niter = 50, number of individual training steps
Nstep = 20, number of players Npop = 100, number of teams Nteam = 10,
number of matches Nmatch = 2, number of attacks Natt = 20 and number
of transfered players Nrep = 2. A set of parameters of the fuzzy system was
selected as following: maximum number of rules Nmax = 7, and maximum
number of discretization points Rmax = 21.

Each simulation (for each variant W1...W5) was repeated 100 times. The
obtained results were averaged and presented in Table 4 and in Fig. 1. The learn-

Table 2. Simulation problems discussed.

No Test set name Number of
input
attributes

Number of output
attributes

Number of
sets

Problem
label

1 Nelson
function
[57]

2 1 128 NF

2 Yacht Hydro-
dynamics
[59]

5 1 308 YH

3 Concrete
Slump [10]

7 3 103 CS

Table 3. A set of variants of the weights of the evaluation function (11).

Variant wffacc wffint Description

W1 0.90 0.10 focused on high accuracy

W2 0.70 0.30 focused on accuracy

W3 0.50 0.70 intermediate between W2 and W4

W4 0.30 0.70 focused on interpretability

W5 0.10 0.90 focused on high interpretability
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Fig. 1. Obtained trade-off between accuracy and interpretability for problem: (a) NF,
(b) YH, (c) CS.
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Fig. 2. Averaged learning process for problem: (a) NF, (b) YH, (c) CS. Filled circles
stands for best solutions from first iteration of proposed algorithm.

Table 4. Averaged simulation results for considered problems.

Simulation

problem

Evaluation

function

case Other authors

results [45,51]

W1 W2 W3 W4 W5

NF ffacc (·) 0.063 0.069 0.078 0.095 0.144 n/a

ffint (·) 0.643 0.386 0.360 0.322 0.270 n/a

RMSE 1.348 1.446 1.636 2.046 3.263 1.104 - 2.653

YH ffacc (·) 0.027 0.040 0.049 0.076 0.095 n/a

ffint (·) 0.652 0.416 0.365 0.321 0.287 n/a

RMSE 2.614 3.617 4.281 6.996 8.629 0.820 - 2.236

CS ffacc (·) 0.153 0.183 0.190 0.198 0.202 n/a

ffint (·) 0.646 0.346 0.310 0.288 0.268 n/a

RMSE 14.563 16.864 18.104 19.152 19.302 11.941 - 16.668

ing process was presented in Fig. 2. Typical examples of rules obtained for case
W3 (which represent balanced trade-off between accuracy and interpretability)
were presented in Fig. 3 and in Table 5. The notation of fuzzy rules examples
obtained for case W3 and shown in Fig. 3 were presented in Table 5.

The conclusions from the simulations can be summarized as follows: (a)
choosing specified values from set allow to obtain interpretable values of weights
and values of parameters of triangular norms, (b) obtained results are similar
(in a field of accuracy) to results presented by other authors, (c) use of variants
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Fig. 3. Examples of obtained fuzzy sets (case W3) for problem: (a) NF, (b) YH, (c) CS.
Rectangles stands for weights of fuzzy sets and rules (filled rectangle - very important
value, half-filled rectangle - important value, empty rectangle - not important value).
Circles stands for discretization points.

W1-W5 allows to obtain diversified solutions (in a field of expected trade-off
between accuracy and interpretability).



New Approach for Interpretability of Neuro-Fuzzy 259

Table 5. Summary with examples of fuzzy rules in the form of (1) of the fuzzy system
(2) for variant W3 (Fig. 3).

NF

⎧
⎪⎨
⎪⎩

R1 : IF (x2 is medium |m ) THEN (y is medium |m ) |h
R2 : IF (x1 is near (47.78) |m ANDx2 is high |m ) THEN (y is low |m ) |h
R3 : IF (x2 is low |h ) THEN (y is high |h ) |h

YH

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R1 : IF
(
froude number is high |m

)
THEN

(
resistance is medium |h

)
|h

R2 : IF
(
froude number is low |h

)
THEN

(
resistance is low |h

)
|m

R3 : IF

(
l.displ. is near (7.57) |m AND

froude number is medium |h

)
THEN

(
resistance is high |h

)
|m

CS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

⎛
⎜⎜⎜⎜⎝

cement is low |m AND

fly ash is near (26.85) |m AND

sp is low |m AND

coarse aggr. is medium |m

⎞
⎟⎟⎟⎟⎠

THEN
(
str. is medium |m

)
|h

R2 : IF

⎛
⎜⎜⎜⎜⎝

cement is high |m AND

water is low |m AND

sp is high |m AND

coarse aggr. is high |m

⎞
⎟⎟⎟⎟⎠

THEN

⎛
⎜⎝

slump is low |h AND

flow is low |h AND

str. is high |m

⎞
⎟⎠ |m

R3 : IF

⎛
⎜⎝

slag is near (34.38) |h AND

water is high |h AND

coarse aggr. is low |m

⎞
⎟⎠THEN

⎛
⎜⎝

slump is high |h AND

flow is high |m AND

str. is low |h

⎞
⎟⎠ |h

5 Conclusions

In this paper a new approach for interpretability of neuro-fuzzy systems with
parametrized triangular norms was presented. In this approach, it is assumed
that, a part of parameters are selected from set of defined values, where each
of those values have its own interpretation. Those sets concerns weights (of
antecedences, consequences and rules) and parameters of parametrized triangu-
lar norms with weights of arguments. This approach required use of proper learn-
ing algorithm. Therefore, we proposed modified golden ball algorithm, which
allows to select parameters from set of values, select real values of parameters,
and select binary parameters. Proposed learning algorithm can be used to learn-
ing all types of systems, where both the parameters and the structure have to be
found. Obtained simulations results can be considered as good in a both fields
of accuracy and interpretability.
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9. Bruździński, T., Krzyżak, A., Fevens, T., Jeleń, �L.: Web-based framework for breast
cancer classification. J. Artif. Intell. Soft Comput. Res. 4(2), 149–162 (2014)

10. Cheng, Y.I.: Modeling slump flow of concrete using second-order regressions and
artificial neural networks. CCC 29(6), 474–480 (2007)

11. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Process. Image Commun. 156, 559–565 (2000)

12. Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L.,
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20. Cpa�lka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature
verification based on horizontal partitioning. Pattern Recogn. 47, 2652–2661 (2014)
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K., Karczmarska, A.: Raman and magnetic analysis. Microporous Mesoporous
Mater. 200, 253–259 (2014)

48. Li, X., Er, M.J., Lim, B.S., Zhou, J.H., Gan, O.P., Rutkowski, L.: Fuzzy regression
modeling for tool performance prediction and degradation detection. Int. J. Neural
Syst. 2005, 405–419 (2010)

49. Liu, F., Quek, C., Ng, G.S.: A novel generic hebbian ordering-based fuzzy rule
base reduction approach to Mamdani neuro-fuzzy system. Neural Comput. 19,
1656–1680 (2007)

50. Ludwig, S.A.: Repulsive self-adaptive acceleration particle swarm optimization
approach. J. Artif. Intell. Soft Comput. Res. 4(3), 189–204 (2014)

51. �Lapa K.: Algorithms for extracting interpretable expert knowledge in nonlinear
modeling issues, PhD Thesis (in polish), Czestochowa University of Technology
(2015)



New Approach for Interpretability of Neuro-Fuzzy 263

52. �Lapa, K., Przyby�l, A., Cpa�lka, K.: A new approach to designing interpretable
models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS,
vol. 7895, pp. 523–534. Springer, Heidelberg (2013)
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Abstract. In this paper, the fuzzy system for traffic lights control and
simulation in real time is presented. The main advantages of the pro-
posed system are as follows: adaptation of the green light activity time
to the conditions which occur on the given roads intersection; shorter
reduction time (in relation to the other state-of-the-art fuzzy system) of
vehicle numbers on the particular roads. Due to these two advantages,
the road infrastructure is less congested and the traffic participants pos-
sesses the possibility of faster movement. The fuzzy system presented in
this paper was tested on the traffic scenario taken from literature. The
results obtained using proposed approach were compared to the results
obtained using other state-of-the-art fuzzy system chosen from litera-
ture. Due to our approach, the number of vehicles in given crossroads is
reduced in shorter time.

1 Introduction

Fuzzy systems [1,2] which are based on fuzzy logic [3–6] possesses many practical
applications [7–9,12]. One of them is control of traffic lights [10,11]. The traf-
fic lights control problem is based on perform of appropriate control of vehicles
movement in urban area. Nowadays, the city functioning without appropriate
traffic control is more and more difficult. The speed of life and city residents
mobility are increasing, therefore the number of vehicles in the city is increasing
too. The higher number of vehicles in the city influences the movement comfort
of vehicles in the city area, public safety, road infrastructure condition, environ-
ments pollution, and human healthiness. One of the possible way to solve these
problems is adaptation of the road infrastructure to the constantly changing of
the road conditions. The excellent example is an appropriate using of the traffic
lights control. This solution is the cheapest one and the reorganization of the
traffic lights is least burdensome for road users. In the literature, we can find
some applications of the fuzzy systems to the traffic lights control. In the paper
[11], the Mamdani fuzzy system for traffic lights control is presented. This sys-
tem is based on linguistic variables such as: number of vehicles and the total
length of these vehicles. In the paper [10], the adaptive fuzzy system for traf-
fic lights control is presented. This system is based on linguistic variables such
as: number of vehicles, total length of these vehicles (together with the space
c© Springer International Publishing Switzerland 2016
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between particular vehicles), and the average velocity of these vehicles. In the
fuzzy systems [10,11] the value of the maximal green light activity time is longer
than one minute. Also, we must remember about the human factor which exists
in this problem besides the economic criteria such as: time of vehicle movement,
fuel cost, maintenance cost of road infrastructure. As, we know the speed of
life is more and more intensive. Therefore, also the human stress level is higher.
This human stress expression is often enough visible in drivers road aggression.
So, if the green activity time is too longer in one road (of course the vehicle
movement is stopped in the second road) then the human stress level can be
rapidly increased in particular drivers. Therefore, the suggested solution is con-
nected with the shortening of the maximal value of the green activity time. Due
to this, the traffic lights will be toggle more often, and the number of vehi-
cles will be faster reduced in given road intersection. In this paper, the fuzzy
system for traffic lights control and simulation in real time is presented. The
proposed system was named FS-TLC (Fuzzy System for Traffic Lights Control).
The main advantages of the proposed fuzzy system are: adaptation of the green
activity time to the traffic conditions in given road intersection, and the shorter
time which is needed for number of vehicles reduction in particular roads. Due
to these advantages, the road infrastructure is less overburden by the vehicles,
and the vehicles have the possibility for faster movement. The presented fuzzy
system was tested on the traffic scenario which was taken from literature. The
results obtained using proposed FS-TLC system were compared with the results
obtained using fuzzy system presented in the paper [10]. Using FS-TLC system,
the shorter times (which are required for number of vehicles reduction in given
intersection) were obtained than in the case of the fuzzy system presented in
paper [10]. This paper consists of the following sections: in Sect. 2, the problem
of traffic lights control is shortly described; in Sect. 3, the proposed fuzzy system
(FS-TLC) is presented; in Sect. 4, the traffic scenario is presented in detail, and
the results obtained during experiments are shown; and finally in Sect. 5, the
conclusions are presented.

2 Problem of Traffic Lights Control

The problem of appropriate traffic lights control is based on the streamline of
vehicles movement in given road intersection [10]. It is directly connected with
the effective vehicles ride through the city, but have also an enormous influence
on road infrastructure condition and environments pollution. If the traffic will
be faster reduced on the crowded road intersection then the efficiency of the
public transport will be straightened in the whole city. The appropriate control
of the traffic lights can affect on less discomfort and stress level of car drivers. Of
course the other rational advantages are: reduction of environments pollution,
and reduction of financial expenses connected with improvement of the road
conditions.
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3 Proposed Fuzzy System for Traffic Lights Control

Let’s assume that, our crossroads consists of two roads (which intersect each
other): the north-south (NS) road, and east-west (EW) road. The fuzzy system
(which is proposed in this paper) is based on four input linguistic variables, and
two output linguistic variables. The input linguistic variables are as follows: num-
ber of vehicles in the north-south road (VNS), number of vehicles in the east-west
road (VEW), the total weight of vehicles in the north-south road (WNS), and
the total weight of vehicles in the east-west road (WEW). The output linguistic
variables are represented by: green light activity time in the north-south road
(GNS) and green light activity time in the east-west road (GEW). The input lin-
guistic variables such as: VNS and VEW consists of three linguistic values: small
(SM), medium (ME), large (LA). These linguistic variables (VNS and VEW) are
described by the fuzzy set which is presented in the Fig. 1a. The input linguistic
variables such as: WNS and WEW consists of two linguistic values: light (LI)
and heavy (HE). These linguistic variables (WNS and WEW) are described by
the fuzzy set which is presented in Fig. 1b. The output linguistic variables such
as: GNS and GEW consists of five linguistic values: very short (XS), short (SH),
average (AV), long (LO), very long (XL). These linguistic variables (GNS and
GEW) are described by the fuzzy set which is presented in Fig. 1c. In our fuzzy
system (FS-TLC), the fuzzy operators PROD-MAX were applied.

(a) (b)

(c)

Fig. 1. Graphical representation of fuzzy sets which represent: the input linguistic
variables VNS and VEW (a), the input linguistic variables WNS and WEW (b), the
output linguistic variables GNS and GEW (c)

The input data for our fuzzy system are randomly generated in accordance
to the assumed traffic scenario in given crossroads (the detailed description of
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the assumed traffic scenario is in the further part of this section). When the
input data (VNS, VEW, WNS, WEW) will be inserted into the fuzzy system
inputs, the fuzzification process (using PROD operator) is performed. The results
obtained from fuzzification goes to the inference block. In the inference block, the
rules activation level is checked. The fuzzy system (FS-TLC) consists of 72 fuzzy
rules (36 fuzzy rules are assigned to the output GNS, and other 36 fuzzy rules
are assigned to the output GEW). The fuzzy rules coding scheme is as follows:
for example the encoded fuzzy rule SM, SM, LI, LI, XS which is connected with
the output GNS represents the decoded fuzzy rule:
IF VEW=SM AND VNS=SM AND WEW=LI AND WNS=LI THEN GNS=XS

The fuzzy rules for FS-TLC system are presented in Table 1.

Table 1. The fuzzy rules for FS-TLC system

The fuzzy rules for GNS output in FS-TLC system:

SM, SM, LI, LI, XS SM, SM, HE, LI, XS SM, SM, LI, HE, SH

SM, SM, HE, HE, SH SM, ME, LI, LI, AV SM, ME, HE, LI, AV

SM, ME, LI, HE, LO SM, ME, HE, HE, LO SM, LA, LI, LI, LO

SM, LA, HE, LI, LO SM, LA, LI, HE, XL SM, LA, HE, HE, XL

ME, SM, LI LI, XS ME, SM, HE, LI, XS ME, SM, LI, HE, SH

ME, SM, HE, HE, SH ME, ME, LI, LI, AV ME, ME, HE, LI, AV

ME, ME, LI, HE, LO ME, ME, HE, HE, LO ME, LA, LI, LI, LO

ME, LA, HE, LI, LO ME, LA, LI, HE, XL ME, LA, HE, HE, XL

LA, SM, LI, LI, XS LA, SM, HE, LI, XS LA, MS, LI, HE, SH

LA, SM, HE, HE, SH LA, ME, LI, LI, AV LA, ME, HE, LI, AV

LA, ME, LI, HE, LO LA, ME, HE, HE, LO LA, LA, LI, LI, LO

LA, LA, HE, LI, LO LA, LA, LI, HE, XL LA, LA, HE, HE, XL

The fuzzy rules for GEW output in FS-TLC system:

SM, SM, LI, LI, XS SM, SM, HE, LI, SH SM, SM, LI, HE, XS

SM, SM, HE, HE, SH SM, ME, LI, LI, XS SM, ME, HE, LI, SH

SM, ME, LI, HE, XS SM, ME, HE, HE, SH SM, LA, LI, LI, XS

SM, LA, HE LI, SH SM, LA, LI, HE, XS SM, LA, HE, HE, SH

ME, SM, LI LI, AV ME, SM, HE, LI, LO ME, SM, LI, HE, AV

ME, SM, HE, HE, LO ME, ME, LI, LI, AV ME, ME, HE, LI, LO

ME, ME, LI, HE, AV ME, ME, HE, HE, LO ME, LA, LI, LI, AV

ME, LA, HE, LI, LO ME, LA, LI, HE, AV ME, LA, HE, HE, LO

LA, SM, LI, LI, LO LA, SM, HE, LI, XL LA, MS, LI, HE, LO

LA, SM, HE, HE, XL LA, ME, LI, LI, LO LA, ME, HE, LI, XL

LA, ME, LI, HE, LO LA, ME, HE, HE, XL LA, LA, LI, LI, LO

LA, LA, HE, LI, XL LA, LA, LI, HE, LO LA, LA, HE, HE, XL
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The fire level for each rule was computed using PROD operator. The height
method was used for defuzzification of both output linguistic variables: GNS and
GEW. After computation of the crisp output value GNS and GEW, the road
with higher value of green light activity time (higher value between GNS and
GEW) was opened as first. The road with smaller value of green light activity
time (smaller value between GNS and GEW) was opened as a second. When,
the single cycle of green lights changing for both roads will be finished then the
new input data are inserted into the inputs of our fuzzy system. In the case when
any vehicle does not exists in the given intersection, then the road with higher
priority is opened on the XS time (see Fig. 1c).

4 Description of Experiments

During experiments, the simulation process was performed in order to efficiency
comparison between proposed FS-TLC system and fuzzy system presented in
paper [10]. In the next part of this paper, the fuzzy system presented in paper
[10] is named as AEO. Both fuzzy systems (FS-TLC and AEO) were tested
on the situation when the traffic is rapidly growing in the given intersection.
The applied traffic scenario was chosen from paper [10]. In the experiments,
the vehicles are randomly generated for all roads (in given intersection) in five
seconds cycles. The value of weight for each vehicle is randomly generated from
the range [3; 8] tonnes. The simulation process was divided into eight stages
(the duration for each stage is equal to five minutes). The characteristic of the
particular simulation stages is as follows:

Stage 1: The initial number of vehicles on the particular roads is equal to 5.
Next, the number of vehicles is randomly generated from the range [0; 3] for each
road (north-south road and east-west road) by 30 s time period. After vehicles
generation, the traffic lights control process is started off.

Stage 2: The initial number of vehicles for each road is equal to the final value
(for given road) obtained at the end of the stage 1. In the second stage, we
assumed that the number of vehicles will increase in the east-west road (in
relation to the number of vehicles in the north-south road). In this stage, the
number of vehicles is randomly generated from the range [0; 5] for the east-west
road, and from the range [0; 3] for the north-south road.

Stage 3: In the third stage, we assumed that the number of vehicles will increase
in the north-south road (in relation to the number of vehicles in the east-west
road). Therefore, the number of vehicles is randomly generated from the range
[0; 3] for the east-west road, and from the range [0; 5] for the north-south road.

Stage 4: In this stage, the number of vehicles is rapidly growing in the north-
south road. In the east-west road, the number of vehicles is moderate growing.
Therefore, the number of vehicles is randomly generated from the range [0; 5]
for the east-west road, and from the range [0; 9] for the north-south road.
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Stage 5: In the fifth stage, the number of vehicles is increase for the east-
west road, but the number of vehicles is not changed for the north-south road.
Therefore, the number of vehicles for both roads (east-west road, and north-
south road) is randomly generated from the range [0; 9].

Stage 6: In this stage, the reduction process of traffic intensity (in our inter-
section) is began. The number of vehicles is decreased to the minimal level for
the north-south road. The number of vehicles is decreased to the moderate level
for the east-west road. Therefore, the number of vehicles is randomly generated
from the range [0; 5] for the east-west road, and from the range [0; 3] for the
north-south road.

Stage 7: In the seventh stage, the number of vehicles for the both roads is
decreased to the minimal level. Therefore, the number of vehicles is randomly
generated from the range [0; 3] for the east-west road and for the north-south
road.

Stage 8: In this final stage, the new vehicles are not generated. The simulation
process is stopped (for both fuzzy systems: FS-TLC and AEO) when the last
vehicle left the intersection. The value of time obtained when the last vehicle
left the intersection is the result of fuzzy system (FS-TLC and AEO) operation.

The 20 simulation processes were taken during our experiment . The average
simulation time (from 20-fold repetition) was equal to: 2504.3 [s] for FS-TLC
fuzzy system, and 2545.5 [s] for AEO fuzzy system. The shorter times (in 19 cases
on 20 possible) were obtained using proposed FS-TLC fuzzy system. The results
obtained in our experiments are presented in Table 2. The symbol “Difference”
(see Table 2) represents the difference of simulation time between AEO fuzzy
system and FS-TLC fuzzy system.

It is worth to noticed that in only one case, the simulation time obtained by
fuzzy system AEO is shorter than the simulation time obtained by fuzzy system
FS-TLC. However in this one case, the difference in simulation time is small and
equal to 6 s only.

The another difference between fuzzy system FS-TLC and fuzzy system AEO
is the average number of vehicles in the particular roads. Using the proposed
FS-TLC system we obtained the smaller number of vehicles than the number
of vehicles obtained using AEO system for east-west road as well as for the
north-south road. The results obtained using FS-TLC system and AEO system
are presented in Fig. 2 (for east-west road) and in Fig. 3 (for north-south road).
Also, it is worth to notice in accordance to the taken traffic scenario that the
east-west road is less crowded. It can be seen when the data presented in Fig. 2
will be compared with the data presented in Fig. 3.

The characteristic of traffic intensity in the north-south road (Fig. 3) is in
accordance with taken assumptions. In the north-south road, the higher number
of vehicles is taken into account (in all simulation processes) during computation
of green light activity time than in the case of east-west road (Fig. 2). The average
number of vehicles (from the all 20 simulations) is equal to: 72 (FS-TLC) and 80
(AEO) for the north-south road; 83 (FS-TLC) and 90 (AEO) for the east-west
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Fig. 2. The average number of vehicles in the east-west road for each fuzzy system

Fig. 3. The average number of vehicles in the north-south road for each fuzzy system

road. It can be seen that due to application of the FS-TLC fuzzy system the
average number of vehicles is decreased (in relation to AEO fuzzy system) in the
both roads.

If we take into consideration the average values of green light activity time
for particular roads, we can see that for the east-west road (Fig. 4) and for the
north-south road (Fig. 5) the obtained values are oscillated into the range of long
(LO) green light activity time.

Based on the data presented in Fig. 4 and presented in Fig. 5, it can be seen
that the average values of green light activity time which are obtained using AEO
fuzzy system are higher twice than the average values of green light activity time
which are obtained using FS-TLC fuzzy system. The average green light activity
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Table 2. The particular simulation times for fuzzy systems: FS-TLC and AEO

Simulation FS-TLC AEO [10] Difference

Simulation time [s] Simulation time [s] [s]

1 2599 2635 36

2 2561 2635 74

3 2363 2419 56

4 2403 2517 114

5 2525 2563 38

6 2455 2497 42

7 2595 2589 −6

8 2471 2525 54

9 2559 2589 30

10 2445 2495 50

11 2543 2581 38

12 2535 2559 24

13 2509 2535 26

14 2583 2633 50

15 2305 2371 66

16 2585 2603 18

17 2437 2459 22

18 2689 2725 36

19 2417 2449 32

20 2507 2531 24

Fig. 4. The average values of green light activity time in the east-west road for each
fuzzy system
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Fig. 5. The average values of green light activity time in the north-south road for each
fuzzy system

time (from the all 20 simulations) is equal to: 45 [s] (FS-TLC) and 91 [s] (AEO)
for the north-south road; 46 [s] (FS-TLC) and 93 [s] (AEO) for the east-west
road. Finally, we can said that due to the shortening of the green light activity
time (see the results obtained for FS-TLC fuzzy system), the time required for
vehicles movement through the given intersection is shortened too. Also, due to
application of FS-TLC system, the smaller traffic overload is generated for all
roads.

5 Conclusions

Based on the results presented in this paper, we can seen that the parameter
values of green light activity time possesses a huge significance in the traffic
lights control. The higher number of vehicles (in given road) is caused that the
higher traffic overload is generated and also the higher financial cost is gener-
ated for the road maintenance. When the traffic lights will be controlled using
proposed FS-TLC fuzzy system then the road infrastructure will be less exposed
on the damages. Additionally, due to the green light activity time shortening,
the number of vehicles can be faster reduced (using FS-TLC fuzzy system) in
given intersection. In the future research, we plan to consider an application of
hierarchical fuzzy system to traffic lights control.
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Abstract. This paper describes an implementation of a fuzzy system.
For this purpose, a dedicated architecture of a fuzzy logic controller sys-
tem was elaborated in a FPGA circuit. This system has 3 independent
inputs and 2 outputs and is composed of 4 internal blocks: fuzzifica-
tion, inference, defuzzification and control. The fuzzy inference processes
implemented are the techniques of a calculation of a only activated rules
and an application of a parallel processing allows for very quick selec-
tion of only active rules from the whole rules base. The distribution and
shapes of fuzzy sets allow to activate one or two fuzzy rules for one
discrete (sharp) value of the input variable. Input and output linguistic
variables and corresponding fuzzy sets were defined.

1 Introduction

An objective of this work is a presentation of practical implementation of a
digital fuzzy system [1]. For this purpose, a dedicated architecture of the fuzzy
system was elaborated [2,3]. The propossed fuzzy system is based on the classical
Mamdani model in which one can distinguish the following blocks: fuzzification,
inference and defuzzification. In this paper methods of accelerated calculation
in a proposed system were presented. An application of calculate only acti-
vated rules and an application of parallel processing was applied [4]. The idea of
processing only activated rules was presented in the paper [5,6]. The calculate
only active rules in fuzzy system from the knowledge base allow to reduce the
time of inference processing, also besides elimination of verifying the activation
degree of all fuzzy rules allows to accelerate inference process [7,8]. In a hard-
ware realization of fuzzy systems only 2n rules from Ln rules existing in the
rule base are activated (where L - number of input fuzzy sets, n - number of
input linguistic variables) [5,6]. For example for values: L=5, n=3, the whole
rule base is described by 125 rules and in this case only 8 rules are activated.
The parallel processing of activated rules also allows to reduce the time of infer-
ence processing [8,9]. The knowledge, based on which rules are activated in the
proposed system and parallel processing of the rules presented in this paper [10–
12]. Proposed fuzzy system was described using the language of the equipment
description VHDL, simulated and implemented on the FPGA circuit [13,14].

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-39378-0 24



Implementation of a Parallel Fuzzy System in the FPGA Circuit 277

2 The Propossed Fuzzy System

The propossed fuzzy system was simulated and realized on the FPGA circuit
Xilinx Spartan-6 LX16 FPGA [15,16]. This system has 3 independent inputs and
2 outputs, and is composed of 3 internal blocks: fuzzification (b in), inference
(b inf) and defuzzification (b out). The main task of the fuzzy system (Fig. 1)
is generation of output signals (y0, y1) based on input signals (x0, x1, x2). The
block structure of the proposed fuzzy system described using the language of the
equipment description VHDL was presented in Fig. 2.

In the proposed fuzzy system the fuzzification process is performed by read-
ing out the values of a membership function of activated sets as well as codes
of these sets from system’s memory. This process is very quickly realized in a
parallel architecture, because reduces reading pairs of values for each channel.
The input linguistic variables (x0, x1, x2) are described by 5 terms which are
described by 256 samples, with 8 bit resolution (Fig. 3). The input block (b in)
is divided into three independent fuzzy channels composed of blocks “fuzzy x”
(where x=0, 1, 2), as shown in Fig. 2. An appearance of the high state on the
input “enable” of fuzzy x blocks begins the fuzzification process. A sharp value
of the input signal “input(7:0)” indicates the address of memory, which corre-
sponds to the appropriate discreet sample of the point of the rule activation
stored in the memory of the block “fuzzy x”. Each input sharp value is mapped
(transformed) into 2 pairs of values. This discreet sample contains two 8-bit
values of the points of the rule activation (µ0,µ1) and two 3-bit codes of fuzzy
sets (T0,T1). Each sample contains 2 pairs of fuzzy values, such as (T0,µ0)
and (T1,µ1) where T0,T1 - activated sets, µ0,µ1 - activated fuzzy values. In
the memory of the block “fuzzy x” altogether 256 of such samples describing
the input linguistic variables are stored. Reading a 3-byte values of the samples
(T0,µ0) and (T1,µ1) from the memory and transferring them to the output
mi0,mi1 and t of the block “fuzzy x” finishes operations of the fuzzyfication.
The mapping process is very quickly realized in the proposed parallel architec-
ture, because it reduces reading pairs of values for each channel. Next, that data
is transferred to the inference block (b inf). The end of the fuzzification process,
starts the inference process.

A fuzzy rule base was created based on relations between input and output
variables, which was saved in the system’s memory as a look-up table. A single
pair of rules (Ra,Rb) consists of three simple premises connected by conjunction

Fig. 1. A general block diagram of a fuzzy system.
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Fig. 2. A block structure of the proposed fuzzy system.

Fig. 3. An example of the input linguistic variable where x* - crisp input value, T -
codes sets, T0, T1 - activated sets, µ0,µ1 - activated fuzzy values.

operator AND, and has the following form:

Ra := If x0 = A0 AND x1 = A1 AND x2 = A2 then Y 0 = B0 (1)

Rb := If x0 = A0 AND x1 = A1 AND x2 = A2 then Y 1 = B1 (2)
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where: x0, x1, x2 - input linguistic variable, A0,A1,A2 - terms of linguistic vari-
able xi (i = 0, 1, 2), y0, y1 - output linguistic variable, B0, B1 - terms of linguistic
variable yi (i = 0, 1).

A possible number of rules describing this system equals to 2 ∗ 53 = 250
rules or 125 pair of rules, but only 2 ∗ 8 of then are activated for each inference
process. In next steps a method of activating fuzzy rules was explained. This
method is very important it also explains how an address of activated rule can
be calculated. The first step of the fuzzification process, is coding fuzzy input
variables into 2 pairs that contain values of the samples (T0,µ0) and (T1,µ1) for
each input (x2, x1, x0). The second step, started by a high state of the steering
line “e gen” coming from the block “control” begins the inference process.

The inference block shown in Fig. 2 was realized in a parallel inference with a
technique of addressing mode. The parallel inference allow to create 8 addresses
in memory for each activated rule. The simple example, explain how the address
of one rule is generated. A input values (shown in Fig. 4) of block “inference”:

Fig. 4. The examples of the input linguistic variables x0, x1, x2 where x* - crisp input
value, T - codes sets, T0, T1 - activated sets, µ0,µ1 - activated fuzzy values.

Table 1. The example technique of addressing mode for one rule.

Step Rule 1

1 IF (x0 is 000) AND (x1 is 001) AND (x2 is 010) THEN (y0 is 000)

2 000,001,010

3 000001010
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Table 2. The values of state in block the “inference”, where example val-
ues of input linguistic variable: x0 - (T0= 100,µ0 = 6; T1= 011,µ1 = 94), x1 -
(T0= 000,µ0 = 84; T1= 001,µ1 = 16), x2 - (T0 = 010,µ0= 100; T1= 011,µ1= 0).

Rule Full rule Address

1 IF (x0 is 000) AND (x1 is 001) AND (x2 is 010) THEN (y0 is 000) 000001010

2 IF (x0 is 000) AND (x1 is 001) AND (x2 is 001) THEN (y0 is 000) 000001001

3 IF (x0 is 000) AND (x1 is 000) AND (x2 is 010) THEN (y0 is 010) 000000010

4 IF (x0 is 000) AND (x1 is 000) AND (x2 is 001) THEN (y0 is 010) 000000001

5 IF (x0 is 001) AND (x1 is 001) AND (x2 is 010) THEN (y0 is 010) 001001010

6 IF (x0 is 001) AND (x1 is 001) AND (x2 is 001) THEN (y0 is 000) 001001001

7 IF (x0 is 001) AND (x1 is 000) AND (x2 is 010) THEN (y0 is 001) 001000010

8 IF (x0 is 001) AND (x1 is 000) AND (x2 is 001) THEN (y0 is 001) 001000001

x0 - (T0=100, µ0=6; T1=011, µ1=94), x1 - (T0=000, µ0=84; T1=001,
µ1=16), x2 - (T0=010, µ0=100; T1=011, µ1=0) and the example rule was
shown in Table 1 - step 1. This rule has three simple premises, codes of active
fuzzy sets are shown in Table 1 - step 2. The simple linking of these codes,
generates the value of address (Table 1 - step 3). In the proposed fuzzy system
8 addresses are generated in each inference process. Table 2 shows 8 activated
rules.

The hardware realization of the inference block allow to create 8 addresses.
In the proposed system, the values of the 3-bit codes of active fuzzy sets
are introduced through 8-bit inputs, in the range tx(2:0) and tx(6:4) (where
x=0, 1, 2) and corresponding to them values of membership functions through
inputs mix0,mix1 (where x=0, 1, 2) are also introduced. The task of the block
“inference” is to properly connect values µ1,µ2 and T to the outputs of the sub-
block “memory” of block “inference” based on individual 3-bit code with weights
b2, b1, b0 saved in the memory. These weights corresponded to input linguistic
variables x2, x1, x0. In particular the value of the weight ‘0’ corresponds to con-
nection of the value ‘0’ and the T0 code, and ‘1’ corresponds to connection of
the value ‘1’ and the T1 code. Based on the values of weights b2, b1, b0 in the
range tx(2:0), tx(5:3) and tx(8:6) (where x=0, 1, 2) a sequential linking of codes
of active fuzzy sets is performed; in this way a 9-bit address of the conclusion
is created. Table 3 shows the values of calculated address and the values of MIN
operation.

Each generated address shows rule conclusion. A creation of the 8 address
of the conclusion is initiated by the steering signal coming from the block “con-
trol” (Fig. 2). The “inference” block contains the conclusion codes of fuzzy rules
stored at precisely determined addresses, which values correspond to premises
of activated rules. During the reading of indicated codes of rule conclusions,
the block “control” initiates an operation “MIN”; which gives as the result the
lowest value of the membership function. For example, in Table 3 - rule 1 shows
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Table 3. The values of state in the block “inference”, where: R - rule number, b2, b1, b0
- state of counter, x2, x1, x0 - inputs values, address - values of calculated address, M
- value of MIN operation.

R b2 b1 b0 x0 x1 x2 address M

1 0 0 0 (t0= 000; µ0=0.7) (t0= 001; µ1=0.8) (t0= 010; µ0=0.6) 000001010 0.6

(t1= 001;µ0=0.3) (t1=000;µ0=0.2) (t1= 001;µ2=0.4)

2 0 0 1 (t0= 000; µ0=0.7) (t0= 001;µ1=0.8) (t0= 010;µ0=0,6) 000001001 0.4

(t1= 001;µ0=0.3) (t1=000;µ0=0,2) (t1= 001; µ2=0.4)

3 0 1 0 (t0= 000; µ0=0.7) (t0=001;µ1=0.8) (t0= 010; µ0=0.6) 000000010 0.2

(t1= 001;µ0=0.3) (t1= 000; µ0=0.2) (t1= 001;µ2=0.4)

4 0 1 1 (t0= 000; µ0=0.7) (t0=001;µ1=0.8) (t0= 010;µ0=0.6) 000000001 0.2

(t1= 001;µ0=0.3) (t1= 000; µ0=0.2) (t1= 01; µ2=0.4)

5 1 0 0 (t0=000;µ0=0.7) (t0= 001; µ1=0.8) (t0= 010; µ0=0.6) 001001010 0.3

(t1= 001; µ0=0.3) (t1=000;µ0=0.2) (t1= 01;µ2=0.4)

6 1 0 1 (t0= 000;µ0=0.7) (t0= 001; µ1=0.8) (t0= 010;µ0=0.6) 001010001 0.3

(t1= 001; µ0=0.3) (t1=000;µ0=0.2) (t1= 001; µ2=0.4)

7 1 1 0 (t0=000;µ0=0.7) (t0=001;µ1=0.8) (t0= 010;µ0=0.6) 001000010 0.2

(t1= 001; µ0=0.3) (t1= 000; µ0=0.2) (t1= 001;µ2=0.4)

8 1 1 1 (t0= 000;µ0=0.7) (t0=001;µ1=0.8) (t0= 010;µ0=0.6) 001000001 0.2

(t1= 001; µ0=0.3) (t1= 000; µ0=0.2) (t1= 001; µ2=0.4)

Fig. 5. A collection of state in the propossed parallel inference architecture (an example
for system with 2n inputs, where n = 3) A - generation of address, B - reading fuzzy
rule from memory, C- MIN operation, D - MAX operation.

address value (000001010) and “MIN” value (0, 6). In the proposed fuzzy system
for each of initial output fuzzy set, the block MAX is assigned. The task of this
block is to choose the highest value of the activated output fuzzy set. Figure 5
shows a collection of state in the inference block. That architecture requires to
use 8 channels.
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In the proposed realization was used as a defuzzification process the CoGS
(Center of Gravity for Singletons) This operation is performed parallelly for
two output channels in “defuzzx” (where x=0, 1) blocks giving the values of y0
and y1.

3 Simulations and Testing

The proposed digital parallel fuzzy system was described using the language
of the equipment description VHDL, and was simulated in the ISE WebPACK
environment of the Xilinx company. For this purpose in the first step of testing
the values of the input and output membership functions of the fuzzy sets as
well as the table of rules were saved in the memory of the system. The input
membership functions requires 768 bytes of memory for each channel (x2, x1, x0).

The output membership functions require only 5 bytes of memory for each
channel (y1, y0). All rules require to prepare a location in the memory. Next, the
test values of input linguistic variables x0, x1, x2 were introduced. In the second
step of testing, the proposed fuzzy system was programed in the FPGA circuit
Spartan 6. Results of measurements confirmed correct operation of the system.

A collection of number of clock cycles in the inference block is shown in
Table 4. The propossed fuzzy system is described by the following parameters:
number of fuzzy sets L=5, number of inputs n=3. This table also shows how
important the elimination of no activated rules is. In this case for whole number
of 125 rules only 8 rules are active in one “inference”. Using the techniques of
addressing in the inference process and applying parallel processing, very quick
selection of only active rules from the whole rule base is possible.

The parallel method of the inference process, allows to calculate the degree
of rule activations during only 4 clock cycles. Usage of the addressing techniques
requires saved rule conclusions in strictly determined addresses in the system
memory. This demand increases the time necessary to create the rule base at
the time of constructing of the fuzzy system.

Table 4. Number of clock cycles in the inference block for different types of architec-
tures “serial a” - serial inference without the technique of addressing mode, “serial b”
- serial inference with the technique of addressing mode, “parallel” - parallel method
of the inference process of fuzzy system, where: n - number of inputs, A - number of
fuzzy rules, B - activated rules in the inference process, L - number of fuzzy sets.

L = 5 n =2 n=3 n =4 n = 5 n = 6 n=7

A 25 125 625 3125 15625 78125

B 4 8 16 32 64 128

serial a 100 500 2500 12500 62500 78125

serial b 16 32 64 128 256 512

parallel 4 4 4 4 4 4
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Abstract. In this paper a method of implementation of fuzzy system
on FPGA devices is presented. The method applies to a class of fuzzy
systems which are functionally equivalent to a radial basis function net-
works. In the paper the example fuzzy system was implemented on the
FPGA device with the use of the proposed method. The results confirm
a high performance of the obtained fuzzy system. This was achieved at
a reasonable consumption of the hardware resources of the FPGA.

Keywords: Hardware implementation of fuzzy systems · FPGA ·
Radial basis function

1 Introduction

Computational intelligence methods (see e.g. [2–4,6–10,13–15,17,29–32,34,38–
40,42,48–54,60–64]) offer suitable properties for modeling the nonlinear dynam-
ics of various types of real objects. A different types of neural networks (see e.g.
[16,55]) or fuzzy systems (see e.g. [18–27,41,43,56–59,68–74]) have a number of
useful features such as the ability to approximate any continuous non-linearity
or the ability to interpret the accumulated knowledge. However, from a practical
point of view, the other features are also important. For example, the ability to
implement in a hardware (e.g. FPGA) to obtain the operation model working
in a real time. Moreover, the implementation should be relatively simple and
economically justified.

In recent years, a large number of projects have used FPGAs to perform the
control and modeling of dynamical systems. In many cases, these projects utilize
neural networks [5], fuzzy systems or neuro-fuzzy systems [11,33]. However, in
some cases, the degree of complexity of used algorithms is very high and the
economy of this solution is questionable.

This is due to the fact that these algorithms are mainly based on arithmetic
operations for floating point numbers. In particular floating-point operations
such as divide numbers [37], exponential and trigonometric functions are char-
acterized as they have the high complexity and low performance when they are
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 284–298, 2016.
DOI: 10.1007/978-3-319-39378-0 25
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implemented on FPGA devices. FPGA hardware resources are not adapted to
the efficient implementation of this type of calculations. FPGAs are well suited
for the implementation of fixed-point calculations, such as addition, subtraction
and multiplication. Implementation of complex arithmetic operations based on
the floating-point numbers consumes a lot of resources of the FPGA hardware.
For this reason, in most cases fully parallel implementation of floating-point
calculations becomes economically unjustified.

In order to reduce the high consumption of resources a serial or semi-parallel
data processing algorithms are used, including the recursive implementations [37].
In this case, the demand for hardware resources significantly decreases. However,
computing efficiency drops significantly - which is an obvious drawback of such a
solution. It should be noted that in some cases this approach is highly justified.
For example, consider the control system whose duty cycle is limited by the limit
frequency of operation of actuator, for example about 20 kHz. In this case, the hard-
ware implementation of the complete control algorithm working with the cycle less
than 50µs is pointless, because the generated data are not used earlier than the
mentioned time 50µs elapses. It should be noted that there are a number of appli-
cations which drew significant benefits if the processing time is as short as pos-
sible. Examples are hardware emulators of various types of real objects used for
hardware-in-the-loop (HIL) systems.

As noted in the work [46] there are existing commercial digital real-time HIL
simulators that are characterized by 50µs to 100µs time steps and computa-
tional latency, and therefore they are not able to simulate accurately the very
fast dynamics of power electronics systems. The authors suggest that simulation
with a time step with value of 1µ or less is much more appropriate solution.
In order to obtain high processing speeds various techniques are used. They
cover both the structure of the implemented algorithm and methods of their
implementation.

The vast majority of practical implementation on FPGA widely use triangu-
lar or trapezoidal fuzzy sets. Such sets are easier to be realized in FPGA than the
ones based on a Gaussian functions [1,47]. While many theoretically developed
algorithms are based on Gaussian fuzzy sets, which sometimes are considered
to be more appropriate to represent fuzzy knowledge. Moreover, if the input
variables are represented by complementary membership functions of the fuzzy
sets it follows another benefit, namely processing technique is applied only for
activated rules. How was indicated in the paper [47], elimination of verification
of the activation degree of all fuzzy rules allows to accelerate inference process.
One of the possible techniques used in this field is the odd-even method [28].

The results presented in various papers show that in many cases relatively
high processing speed is achieved, however, at the expense of low resolution of
processed signals. This is due to the applied binary encoding using an aver-
age of 6 to 8 bits. Unfortunately, the specificity of many proposed solutions is
that increasing resolution of processed words, eg. to 12-bits, causes a significant
increase in the consumption of hardware resources.
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In this paper we propose a new method for the implementation of fuzzy
system on FPGA. This method offers good performance and accuracy with rel-
atively low consumption of hardware resources.

This paper is organized into 4 sections. Section 2 contains an idea of designing
the neuro-fuzzy structure to the limitations arising from the implementation
in hardware in FPGA devices. Implementation results are presented in Sect. 3.
Conclusions are drawn in Sect. 4.

2 The Method of Designing the Fuzzy Structure
to the Limitations Arising from the Hardware
Implementation

In this work will be considered systems using fuzzy rules of the following form

IF (x1 is xj
1) AND ... AND (xN is xN ) THEN(y is y),

where xi indicates the input to the system (i = 1..N), y is the output, xj
i are

input fuzzy sets for the j-th fuzzy rule (j = 1..M) and yj are output fuzzy sets. In
the considered systems Gaussian input fuzzy sets are used. The algebraic product
is used as a T-norm operator. Rules consequents are a singleton type and the
method of centre of gravity for singletons (COGS) is used for defuzzification. For
the sake of clarity of description we will present a system with one output. It
should be noted that such simplification does not constitute the loss of generality
for the general idea presented in this paper.

According to the theory of fuzzy logic and common practice the implemen-
tation of fuzzy system is followed in three stages: 1. fuzzification, 2. inference,
3. defuzzification. However, because of the investigated class of fuzzy systems
are functionally equivalent to a radial basis function networks [36] (it will be
explained in detail in the later in the paper), in the current paper it is proposed
a more appropriate method of hardware implementation.

The main features of the proposed method are: 1. operations are implemented
in hardware based on fixed-point and simplified floating-point arithmetic, 2.
fuzzification and inference is carried out together on the basis of functional sim-
ilarity to radial basis function networks.

The proposed method is scalable and allows adjustment of the obtained
processing speed and the use of hardware resources for a specific application.
The next part of the work will present a detailed description of the proposed
method of hardware implementation for the considered class of fuzzy structures.

2.1 The Method of Hardware Implementation of the Fuzzification
and the Inference Processes

As pointed out in [66] and cited for this statement [35] the most important
advantage of using fuzzy basis functions, rather than polynomials or radial basis
functions, etc., is that a linguistic fuzzy IF-THEN rule is naturally related to a
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fuzzy basis function. It should be noted that the way of the design of the system
and its implementation not necessarily have to be identical. The design method
should be intuitive to the man, while the implementation should be characterized
by high efficiency and low cost. Therefore, let’s look closer at the class of fuzzy
systems presented in the previous section which are functionally equivalent to a
radial basis function networks.

In the considered group of systems we assume that we are dealing with a
Gaussian input fuzzy sets and every j-th rule uses of separate input fuzzy sets
that are unshared with other rules. For each i-th input it exist a degree of
membership to the i-th input fuzzy set of j-th fuzzy rule as follows:

μj
i = exp

⎛

⎝−
(

xi − xj
i

σj
i

)2
⎞

⎠ , (1)

where xj
i and σj

i are center and width of input fuzzy set. If we use the product
as the T-norm, then the degree of activity of the j-th rule is

μj = μj
1 · μj

2 · ... · μj
N = exp

⎛

⎝−
(

x1 − xj
1

σj
1

)2

− ... −
(

xn − xj
n

σj
N

)2
⎞

⎠. (2)

Note that the action outlined above is similar to the way of calculating the values
of the radial basis function of the following form

μj = exp
(
−‖x − xj‖2

)
, (3)

in which the distance of the input x from the center of the radial fuzzy set xj

for j-th rule is defined as follows

‖x − xj‖ =

√√√√
(

x1 − x1

σj
1

)2

+ ... +

(
xN − xj

N

σj
N

)2

. (4)

This phenomenon has been observed and described in the work [36] as a func-
tional equivalence between radial basis function networks and fuzzy inference
systems. The specific form, for which each of the inputs has individually defined
width σj

i of the set is called Hyper Radial Basis Function (HRBF) [45]. In the
later part of this work the term fuzzy system (FS) refers to the category of
systems that are functionally equivalent to a radial basis function networks.

The Eq. (4) can be rewritten as

‖x − xj‖2 = wj
0 + wj

1,1x1 + wj
1,2 (x1)

2 + ... + wj
N,1xN + wj

N,2 (xN )2, (5)

where

wj
0 =

(
xj
1

σj
1

)2

+ ... +

(
xj
N

σj
N

)2

;wj
i,1 = −2xj

i

σj
i

;wj
i,2 =

(
1
σj
i

)2

. (6)
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The approach represented by formulas (3) and (5) offers noticeable benefits
for the implementation, namely:

1. The Gaussian function is determined only once, in contrast to the classical
approach, demanding the use of this function to determine the degree of
membership of each input separately (1). The proposed solution is therefore
beneficial because the Gaussian function is a troublesome operation in the
implementation on FPGA.

2. All other actions necessary to determine the degree of activity of fuzzy rule are
based on repetitive and simple activities such as multiplication and addition.
These actions are easy to implement on FPGA, they are carried at high speed
and consume relatively small hardware resources.

2.2 The Method of Implementation of Defuzzification Process

As it was mentioned earlier in the paper, the singleton membership functions
with centers of yj are used on the outputs of the rules. In the defuzzification
stage the centre of gravity for singletons (7) is used because of the following
features of the method: defuzzified values tend to move smoothly, have good
sensitivity to change on inputs and are easy to calculate. According to the paper
[12] the centre of gravity for singletons (COGSs) is the most realistic and widely
used method of defuzzification in many applications.

y =

M∑
j=1

μj · yj

M∑
j=1

μj

=
n

d
(7)

However, from a practical point of view, it should be noted that this method
is difficult to implement, because of used arithmetic division of real numbers.
This operation can be avoided if fuzzy system is designed in such a way that
the denominator in the formula (7) is equal to one, i.e. d = 1. This approach is
very comfortable and quite often used in practice. However, in some situations it
may be regarded as too restrictive limitation. In the general case (eg. when using
Gaussian input fuzzy sets) such a requirement is not met and the operation of
real numbers division at the output is required, as shown in Eq. (7).

In many publications this issue was analyzed and various solutions have been
proposed. For example, the paper [28] proposes the implementation of a division
operation based on method of look-up-table (LUT) and addressing with the 6-bit
word. Similarly, in the work [44] it was proposed division in which the divisor
was rounded to the 8-bit number. As you can easily guess in both cases this
resulted in a very low accuracy of the result.

In another work [37] the implementation of this operation on the basis of
single precision floating point arithmetic was used. The result is a high accuracy
but achieved at the expense of rather low performance. How it was indicated
in the cited reference the obtained floating-point divider needs 26 clock cycles
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to establish division result. Others floating-point operations like multiplication,
addition and subtraction take 5 clock cycles, while similar fixed-point operations
takes only one cycle in a typical case. This indicates that the floating-point
operations are much less efficient than a fixed-point ones in general. It is also
important to note that the floating-point operations consume a lot of hardware
resources.

In this paper it is proposed that the division operation required in (7) is
performed as in some other works which uses fixed-point arithmetic. In such a
case a multiplication by the inverse of the denominator is used instead of the
division of two numbers. Determination of the inverse of the denominator is
made on the basis of the method of look-up table (LUT). The disadvantage of
such a method is that it is necessary to use a large amount of memory to store
data in the table with an acceptable accuracy.

In this paper it is proposed to use the simplified 18-bit floating-point numbers
to store data in the table. This approach reduces the memory consumption.
FPGAs usually have a dedicated Block RAM memory, which are organized as 512
locations of 18-bits words [67]. The proposed simplified floating-point arithmetic
is therefore well suited to the optimum utilization of hardware resources.

3 Implementation Results

In our investigation it was considered a problem of hardware implementation of
particular parts of a fuzzy structure (FS). Considered structure has four inputs,
eight rules and one output. The FS was implemented in the Spartan XC6SLX45-
3C FPGA from Xilinx by means of Altium Designer and Xilinx ISE software.
To encode the values of the real numbers a 32-bit fixed-point arithmetic were
used. Widely known and biggest drawback of fixed-point arithmetic is the lim-
ited range and the need for continuous scaling of processed numbers. However,
the use of 32-bits width words made it possible to obtain a relatively wide range
at the same time fairly good accuracy. Thus, in this case this defect was some-
what minimized. Because of the necessary scaling is closely related to a specific
application, this issue will be omitted for the sake of readability of the presen-
tation. It will be presented in detail only in places that are important from the
point of view of the presented algorithm.

3.1 Fuzyfication and Inference

According to the method proposed in the previous section operations of fuzzi-
fication and inference were carried out in the overall processing of input data.
As a result, determination of the output value of the formula (5) requires a
series of operations such as multiplication and addition. It is possible to perform
these actions both in parallel, series and the in series-parallel mode. Fully paral-
lel implementation of calculations allows us to achieve high performance at the
expense of high demand on hardware resources. Serial implementation allows us
to reduce the use of hardware resources, but with a significant loss of obtained
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processing efficiency. While a semi-serial or a semi-parallel implementation allows
for compromise.

In the presented example the semi-serial implementation was used. However,
the use of high-performance fixed-point calculations made it possible to achieve
high-speed processing.

Elementary operations for the input of the rule (5) are executed in parallel
as shown in Fig. 1. The elementary function has three 32-bits width inputs. First
two inputs (W1 and W2) are the weights coefficients wj

i,1 and wj
i,2 respectively,

the third input (X) is the input to the FS, i.e. xi as defined in (5). As a result
this function performs several operations in one cycle. The register shown in
Fig. 1 acts as a component partial sum according to the formula (5). Initial
value of the register is equal to weight wj

0 and it is set in the first clock cycle.
Three 32-bit fixed point multipliers (FP MULTIPLIER 1, 2 and 3) and one 32-
bit adder (ADDER 1) generates the output within the second cycle. Using the
second 32-bit adder (ADDER 2) and one register the whole squared weighted
sum (5) for one rule with four inputs is obtained in the fifth cycle. In the sixth
cycle the LUT block indicated as EXP FUNCTION is used to determine the
output value of the nonlinear exponential function. The LUT consists of 1024
words each 12-bits width to store the shape of gausoid function with a reasonable
accuracy. Summing up, in the general case the whole process of calculation of
rule activation degree requires the following number of clock cycles

cr = 2 + N (8)

Fig. 1. The hardware implementation of the elementary function.

To calculate the output value y of the FS we need to perform the above
described processing for all M rules. This can be done in sequence (serial method)
or in parallel (for example with the use of pipelining) to obtain a different speed
processing of the implemented system. As mentioned earlier in this paper was
carried out the semi-serial implementation method.

3.2 The Defuzification Proces

In the proposed method Fig. 2 shows how all the rules are indicated in order to
determine their activation degree μj and their consequent μj · yj . While, Fig. 3
shows the module used for sequentially processing all rules. Two adders and two
registers are used to accumulate values of activation degrees and consequents of
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Fig. 2. The hardware implementation of the algorithm used to determine the conse-
quents of fuzzy rules.

all rules. The results, i.e. the nominator and the denominator of the Eq. (7) are
obtained within the following number of clock cycles

crms = M · cr. (9)

After the nominator n and denominator d are determined the one extra clock
cycle is necessary to calculate the current output value of the FS according to
used method of defuzzification (7). First of these two values is multiplied by the
reciprocal of the other (Fig. 3) in order to obtain the value of y according to the
following formula y = n · RECIPROCAL (d).

The RECIPROCAL module used for this purpose has one input and one
output which are 12-bits and 27-bits width unsigned words respectively. The
input has a fixed point 3.9 bit representation, i.e. three bits for the integer value
and nine bits for fraction. This gives the useful range of d ∈ (0; 8). Since every
single rule has the activation degree with a range of μj ∈ 〈0; 1〉 this allows to
store the information about the sum of activation degree values for many rules.
The upper limit for the used fixed point representation for the reciprocal input
is, for example, when eight rules have activation coefficient close to unity which
is rather unrealistic in properly designed system.

Fig. 3. The block diagram of the implemented fuzzy system with one output.
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Fig. 4. The method of hardware implementation of the reciprocal function.

The RECIPROCAL module is implemented as an look-up table (LUT)
located in a read-only memory and it stories 4096 words (Fig. 4). Value of the
input of the module is treated as a 12-bit address, which indexes the table.
Each indexed word location stores the result of operation RO = 1/X in a 18-bit
simplified floating-point (SFP) format.

The SFP is proposed in this paper a nonstandard format of encoding floating-
point numbers. The SFP is an encoding format tailored to a specific application.
It allows to reduce the number of bits of a binary word and to simplify their
processing. The general idea is derived from the standard IEEE754 but limited to
the processing of positive numbers and with a limited range. In the SFP format
the 18-bit word is divided into two bitfields: 4-bits for exponent and 14-bits for
mantissa. The exponent is a positive number with range of (0; 15). It gives the
useful range for floating-point values of 〈0; 32768) with an acceptable accuracy.
For example, the accuracy is about 0.01 % for numbers with a value close to
unity or larger. In the paper the exponent is limited to the range of 〈0; 8〉 for
practical reasons.

The detailed method of processing the SFP numbers is shown in Fig. 4. Two
LUTs are used. First (ROMS 18x4096) stores the 18-bit words in SFP format.
The second one (U LUT 9x16) together with the fixed-point multiplier is used
to change the SFP format to the fixed-point one. The U LUT 9x16 is a binary
decoder which converts the 4-bits binary number (input) to the 1-of-9 output
bits. The fixed-point format which is used on the output of the RECIPROCAL
module is compatible with the rest of the system. While the SFP format is used
only in the RECIPROCAL module to store the data table. Such approach has
allowed to reduce memory consumption by more than 50 %, while maintaining
the accuracy and the processing performance at the same level.

3.3 Results

The timing analysis shows that the exemplary FS implemented in the FPGA
device is able to work with clock frequency above 50MHz, which gives the reac-
tion time below 1µs. This allows us to build a FS system, that could be useful
for some kind of applications, e.g. hardware emulators.

The implementation results presented in the Table 1 are valid for a system
with one output. However, for a system with multiple outputs the resource con-
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Table 1. Performance and the FPGA resource usage of the exemplary fuzzy system
implemented with the use of the proposed method.

Response time DSP48A1 Registers Block RAM LUTs

49 cycles 21 35 10 627

0.98µs (36 %) (0.1 %) (9 %) (2 %)

sumption will be almost the same when the serial implementation is used. Obvi-
ously, the response time will be many times larger (proportional to the number
of outputs) compared to the system with one output.

4 Summary

In this paper a method of implementation of fuzzy system on FPGA devices was
presented. The method applies to a class of fuzzy systems which are functionally
equivalent to the radial basis function networks. Thanks to this similarity it was
possible to propose the effective methods of such fuzzy systems implementation
in FPGA-type programmable systems. For a demonstration of the method the
results of the implementation of an exemplary fuzzy system in the FPGA was
presented. The results show that the FS system with four inputs, eight rules and
one output can work with the processing cycle of less than one microsecond. It
makes the proposed solution useful in practice.

Presented solution is highly scalable, because depending on the requirements
it is possible to shortening response time at the expense of increase the hardware
resources. Similarly, it is possible to increase the number of inputs and outputs
and the number of rules of the system.
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65. Tomera, M.: Porównanie jakości pracy trzech algorytmów typu PID: liniowego,
rozmytego i neuronowego. Automatyka, Elektryka, Zak�lócenia 6, 59–77 (2011). (in
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Abstract. This paper focuses on problems related to learning rules using numer-
ical data for the Hierarchical Fuzzy Logic Systems (HFLS) described in [12].
Using hierarchical structure of Fuzzy Logic Systems (FLS) complex problems
could be divided into subproblems with smaller dimensions. “Hierarchical”
means that fuzzy sets produced as output of one of fuzzy logic systems are
then processed as an input of another one as the sets of auxiliary variables. The
main problem is to learn a rulebase with numerical data, which does not contain
any data for those auxiliary variables. Learning rules for FLS in short could be
accomplished by using many different approaches, building one, complex rule-
base using all available input and output variables for complex problems. Our
learning method based on the Wang & Mendel (W&M) method adopted for the
HFLS with selective activation of unit FLS were introduced in [13]. The main
scope of this paper is to extend our method applying quality measures of IF-
THEN rules in the sense of Wu & Mendel (Wu&M) to remove conflicting rules.
The proposal presented in this paper operates on a type-1 HFLS, built with the
fuzzy logic systems (in the sense of Mamdani). An example of single-player
games, i.e. where the “enemy” is controlled by agents is used. Two new prob-
lems are briefly introduced.

Keywords: Hierarchical fuzzy logic systems · Learning fuzzy rules · Nonlinear
control systems · Selective unit fuzzy logic systems activation · Rules quality
measures · IF-THEN rules · Simulation in computer games

1 Introduction

In particular, we are interested in computational intelligence methods based on FLS that
make it possible to solve different complex problems. In general, fuzzy logic systems
are useful in the case when a controlled process is not linear and the use of traditional
controllers may appear inefficient. Fuzzy logic system is a control unit based on fuzzy
logic [20], which makes decisions based on knowledge containing the rules like IF
. . . THEN . . . ; with unspecified predicates [19]. Those rules are expressed by natural
language using Linguistic Variables (LV).

The new solution proposed here is to learn HFLS rulebase using numerical data and
Wu & Mendel IF-THEN rules quality measures (Wu&M IF-THEN RQM). Application

c© Springer International Publishing Switzerland 2016
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of quality measures allows us to discover and evaluate a descriptive model of rules using
the knowledge described by the whole training database - not limited to a single sam-
ple of training data. The proposed solution is an example of linguistic summarization
in the sense of Mendel. Different quality measures take into account different aspects
of assessed rules and make it possible to select rules from the point of view of their
informativeness. Our proposal is based on the Wang & Mendel learning algorithm cre-
ated for the traditional FLSs purposes, newly adapted for HFLSs with selective FLS
activation (see [13]).

The rest of the paper is organized as follows: Subsect. 1.1 treats about our motiva-
tion to develop HFLS and HFLS learning methods; Subsect. 1.2 contains some literature
references with description of our former works. Description of some Wu&M IF-THEN
rules quality measures is presented in Sect. 2. Section 3 contains our new learning algo-
rithm for HFLS with appliaction of Wu&M IF-THEN rules quality measures. In Sect. 4,
tests and the results are described. The last Sect. 5 contains conclusions and some future
directions of the research with new problems proposal.

1.1 Motivation

Below we can see the example of one rule that belongs to the FLS rulebase for tank
decision making inference process during the battle:

RULE 0 : IF TANKS_COUNT IS MEDIUM AND AVERAGE_TANKS_FORCE IS MEDIUM

AND FORCE_DIFFERENCE_TO_THE_NEAREST_OPPONENT IS POSITIVE AND

DISTANCE_TO_THE_NEAREST_OPPONENT IS BIG AND ALLIES_COUNT IS BIG

AND AVERAGE_ALLIES_FORCE IS BIG AND TANK_IS_BEING_ATTACKED IS NO

THEN ACTION IS PATROL;

Using FLS for our sample problem we enumerate seven input variables and one
output. To solve this problem we have to build 1458 rules using seven antecedents and
one consequent. During one inference for battalion of 5 tanks we have to fire 7290 rules
performing over 824 · 103 mathematical operations.

Figure 1 shows examples of two FLS: a traditional one (a) and hierarchical (b).
HFLS contains many FLSs and outputs of one FLS are then considered as input of
another one. The hierarchical structure looks more complicated, but in reality it allows
us to simplify a complex problem into several subproblems with smaller dimensions.
Our tank problem could be solved using the structure presented on Fig. 2. Moreover, not

Fig. 1. Examples of two fuzzy logic systems, traditional (a) and hierarchical (b).
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Fig. 2. General diagram of designed HFLS structure.

each of the combined FLSs works during each iteration of inference because of selective
activation of unit FLSs mechanism application. The example rules are presented below
for strategist, risk, support and offensive strategy action:

RULE 0 : IF TANKS_COUNT IS SMALL AND AVERAGE_TANKS_FORCE IS SMALL

THEN STRATEGY IS DEFENSIVE;

RULE 0 : IF FORCE_DIFFERENCE_TO_THE_NEAREST_OPPONENT IS NEGATIVE

AND DISTANCE_TO_THE_NEAREST_OPPONENT IS SMALL THEN RISK IS BIG;

RULE 0 : IF ALLIES_COUNT IS SMALL AND AVERAGE_ALLIES_FORCE IS SMALL

THEN SUPPORT IS ZERO;

RULE 0 : IF RISK IS ZERO AND SUPPORT IS ZERO THEN ACTION IS PATROL;

Using HFLS we enumerate nine variables (seven original and two auxiliary). In
this case we have to build only 78 rules with max two antecedents and one consequent
grouped into six rulebases. During one inference for a battalion of 5 tanks we have
to fire only 184 rules performing less than 21 · 103 mathematical operations. The full
number summaries of fired rules and performed mathematical operations during the
inference for different battalions in FLS and HFLS is described in Table 1 and in Fig. 3.

Thus HFLS make it possible to divide complex problems into several subproblems
with smaller rulebases and simpler rules which has a possitive impact on performance.
This is because of a huge reduction of the number of fired rules and performed mathe-
matical operations during each inference. So it is worth developing HFLS.

Learning rules is one of the possible ways to develop HFLS. Building rules using
natural language, anyone could be an expert who could create a rulebase to solve some
intuitive problems. However, having for example ten rulebases created by different
‘experts’, we could have ten different rulebases despite the simplicity of the problem.
Consequently the inference engine using those rulebases could make different decisions
for the same input data. Moreover, rulebases prepared by experts represents their sub-
jective opinion and could be designed in a logical way using reasoned decisions giving
‘ideal’ rulebase - not always consistent with the real decisions. Thus learning rules with
a training data is a very important issue.

In [13] we proposed W&M method based learning algorithm adapted to the hier-
archical structure of FLS. This method is very limited because of using very simple
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Table 1. Number of performed mathematical operations during inference for battalions of 1, 5
and 10 tanks in HFLS and FLS.

operation HFLS FLS

strategist risk support action total

fuzzification 2 2 2 2 + 1 9 7

rule firing level 1 1 1 1 + 0 4 6

rule output 50 50 50 50 + 50 250 50

number of rules 9 9 9 16 + 1 44 1458

rules aggregation 400 400 400 800 2000 72850

deffuzification 149 149 149 149 596 149

total 1026 1026 1026 1848 4926 164853

number of math operations for battalion of

1 tank 1026 1026 1026 1848 4926 164853

5 tanks 1026 513 513 924 20526 824265

10 tanks 1026 1026 1026 1848 40026 164853

Fig. 3. Number of fired rules during inference for different battalions in HFLS and FLS.

measure during removing conflicting rules process. This measure depends only on the
single sample of data, which gets the highest value. This means that finally only limited
number of samples have an effect on the learning process. Please see an example of data
shown on Fig. 4. This example shows some sample data, which represents chosen tank
actions in relation to the tank power.

We can see two main groups of points: dots (that belong mainly to the low power)
and stars (that belong to the high power). Rule’s degree from the W&M method is
performed as algebraic product of membership value of sample data to available fuzzy
sets; rule with the best degree of truth is taken into account. Using this degree during
learning process we would get two main rules with degree equal to 1:

IF POWER IS LOW THEN ACTION IS ATTACK;

IF POWER IS HIGH THEN ACTION IS RUN AWAY;
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Fig. 4. Sample of data which represents chosen tank actions in relation to the tank power.

However, we can see that those two of learned rules do not make sense. They were
chosen because of points D0 and S0 - they get the best rule’s degree. Taking into account
all the points we would say, that if the power is low we have to run away or to patrol; if
the power is high we have to patrol - not run away. So we want to emphasize, that used
rule’s degree does not fully exploit power of learning process based on numerical data
and it is important to develop this method to use more complex measures.

1.2 Literature References and Former Works

Authors in [16] says that using fuzzy models all parameters should be learnt in appro-
priate way by using experimental data and respective learning algorithms. The Wang
& Mendel method which is designed as learning algorithm on numerical data for tra-
ditional FLS is described in [17]. Authors of [18] use linguistic summaries to generate
fuzzy rules.

Authors of [14] introduce learning a two layer hierarchical fuzzy logic system using
cooperative co-evolution. Application of genetic and bacterial programming algorithms
for learning hierarchical interpolative fuzzy rules is described in [1]. Fuzzy Feature Sub-
set Selection (FFS) for learning purposes is described in [6,7] using Wang & Mendel
method, in [9] using fuzzy rough set or genetic algorithm in [3]. Linguistic hedges
applied to learning rules combined with genetic algorithm are described in [4,5,10,11].
Authors in [2] presents a tuning based on genetic algorithms by fitting the membership
functions changing their basic parameters and fitting the rules using linguistic hedges.
Another interesting approach of inducing fuzzy rules using ant colony optimization
algorithm and linguistic hedges is presented in [8].

Our HFLS with selective activation of unit FLSs mechanism is described in [12]
with comparison to traditional FLS. [13] introduces our new learning method based on
the W&M method adopted for HFLS. This paper describes extension for our method of
learning rules presented in [13] for the system described in [12].
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2 Wu & Mendel IF-THEN Rules Quality Measures

In this paper we are focused chiefly on quality measures of IF-THEN rules in the sense
of Wu & Mendel described in [18]. Authors of this paper use IF-THEN rules for lin-
guistic summarization. The introduced method operates on five defined IF-THEN rules
quality measures and is used for learning fuzzy rules. Talking about IF-THEN rules
quality measures we have to remember about ‘general’ knowledge quality measures
originally described by Traczyk in [15].

Degree of Truth, T increases as more data satisfying the antecedent also satisfy the
consequent.

T =

∑M
m=1 min(μS 1 (vm1 ), μS 2 (vm2 ))
∑M

m=1 μS 1 (vm1 )
. (1)

Degree of Sufficient Coverage, C describes whether a rule is supported by enough data.
To compute C firstly we have to compute the coverage ratio, which is

rc =

∑M
m=1 tm
M

. (2)

where

tm =

{
1, μS 1 (vm1 ) > 0 and μS 2 (vm2 ) > 0
0, otherwise

(3)

Sufficient coverage is
C = f (rc). (4)

where f is a function that maps rc into C. Function f (rc) is S-shape function. It is
determined by two parameters r1 and r2 where 0 ≤ r1 ≤ r2 and r1 = 0.02 and r2 = 0.15
are used in this paper.

f (rc) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, rc ≤ r1

2( rc−r1
r2−r1

)2, r1 < rc <
r1+r2

2
1 − 2( r2−rc

r2−r1
)2, r1+r2

2 ≤ rc ≤ r2

1, rc ≥ r2

(5)

Degree of Usefulness, U describes how useful a summary is. A rule is useful if and
only if it has a high degree of truth (T ) and it has sufficient coverage.

U = min(T,C). (6)

Degree of Outlier, O which indicates the possibility that a rule describes only outliers
instead of a useful pattern.

O =

{
min(max(T, 1 − T ), 1 −C), T > 0
0, T = 0

(7)
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Degree of Simplicity, S the simplicity of a summary can be measured by its lengh, i.e.,
how many antecedents and consequents the rule has.

S = 22−l. (8)

where l is the total number of antecedents and consequents of the rule.

Symbols M is the number of training data, ym is the mth object, vn is the name of nth

attribute, vmn is the value of the nth attribute for ym.

3 Learning Rules Algorithm for Hierarchical Fuzzy Logic Systems
Using Wu &Mendel IF-THEN Rules Quality Measures

3.1 Our Rules Learning Algorithm with Wu & Mendel IF-THEN Rules Quality
Measures Application

Input. Operating on many input variables and one output we need to have training data
as a set of pairs of the input and output values, i.e.:

(x1(t), x2(t), . . . , xn(t); y(t)). (9)

where t = 1, 2, . . . T is an index of the sample data, T is a number of the training data,
xi(t) is an input value of the input variable xi for the given sample data t, n is a number
of input variables, y(t) is an input value of the output variable y.

Algorithm STEP 1: divide input and output domains into fuzzy regions. For each input
and output variable (xi, y) we need to indicate the minimum and the maximum value
getting the intervals for each variable using numerical data. For auxiliary variables we
need to define these values. We need to divide each of the defined intervals into 2Ni + 1
regions, where i = 1..n. Ni could be different for each variable. For each region we need
to define label and membership function to yield FSs of a given variable.
STEP 2: define groups of variables. For each unit FLS of our HFLS we need to define
one group denoting input and output variables.
STEP 3: generate a separate rulebase for each group of variables. When the output
variable for a given group is not the auxiliary variable, generate fuzzy rules using all
combinations of input and output LV. The generated rules contain conflicting rules (dif-
ferent conclusions for the same conditions). Otherwise, the expert should generate rules
or define generation process. We should not take into account consequent values during
generating rules; the generated rulebase should not contain conflicting rules.
STEP 4: compute the rule’s degree denoted by D(Rk) and values of Wu&M IF-THEN
rules quality measures presented in Subsect. 2 for each sample data and for each of the
generated rules, for all unit rulebases. Degree is an algebraic product of input values
membership values to LV fuzzy sets and could be expressed as follows:

D(Rk) = μA1 (x1) · μA2 (x2) · . . . · μAn (xn) · μB(y) = μB(y)
n∏

i=1

μAi (xi). (10)
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where Rk is rule expressed as follows:

Rk : IF x1 IS A1 AND . . . AND xn IS An THEN y IS B. (11)

Equation (10) could be used if the output LV for a given rulebase is not auxiliary vari-
able. Otherwise, we need to assume that membership value for this variable is equal to
1 on the faith of the expert knowledge. In that case we could simplify Eq. (10) to:

D(Rk) = μA1 (x1) · μA2 (x2) · . . . · μAn (xn) =
n∏

i=1

μAi (xi). (12)

We assume the value obtained using (12) as a membership value for a given value of
auxiliary LV during computing degree for another unit rulebases where this LV occurs
as an antecedent.
Computing Wu&M rules quality measures iterating the sample of data and then rules,
we have to do this in two stages. Firstly, during this step we have to compute separately
the nominator and the denominator of degree of truth (T ). Also we have to compute
nominator of rc for degree of sufficient coverage (C). Final values of mentioned Wu&M
IF-THEN rules quality measures would be computed in the next step after iteration of
all sample of data.
STEP 5: Compute the final values of Wu&M rules quality measures for each rule for
each of unit rulebases with conflicting rules.
STEP 6: Remove conflicting rules, leaving rules with the highest value of chosen
Wu&M IF-THEN rules quality measures. Additionally we could remove rules with
the degree less than some α value, where 0 ≤ α ≤ 1.

To fit our proposal to the designed structure we propose two variants of modification
to provide selective activation of unit FLS support.

Variant 1. During learning tank action rulebases, method learn each of them using
alternative Eq. (13) during computing rule’s degree.

D(Rk) = DS trategist(t, s)μB(y)
n∏

i=1

μAi (xi). (13)

DS trategist(t, s) is the best degree for strategist rules whose conclusions are equal to
a given strategy s. In short in this case degrees of learned rules using sample data t addi-
tionally take into account the best degree for strategist rules, which choose a strategy
that is associated with a given rulebase.

Variant 2. Learning tank action rulebases, a method learns only one rulebase strictly
associated with the strategy, that is equal to a strategy conclusion of strategist rule with
the highest degree. In short, the method learns only one rulebase for a given sample of
data.
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3.2 Our Basic Rulebase Power Measure

As a basic measure to evaluate a rule’s degrees of all learned rulebases we would like
to introduce rulebase power:

Definition 1. Rulebase Power, denoted as RP, is a measure for comparing general
degree for the entire rulebase. RP is expressed as a weighted average of obtained num-
ber of rules rci, whose degrees are in the defined ranges, relative to the total number of
rules R. Each range should have associated weight wi = 0+(i−1)· 1

N−1 : wi ∈ [0, 1],wi <
wi+1, where i = 1..N, N is the number of all ranges. RP could be expressed as:

RP =

∑N
i=1 rci · wi

R
. (14)

RP ∈ [0, 1]. If RP equals 0, that means that degree of all rules include into deprecated
range with a zero weight. RP equal to 1 means that degree’s of all rules include into the
range with the highest degree values.

4 Tests and Results

4.1 Tests

Processing training data using two variants of our new learning method described in
Subsect. 3.1 and three Wu&M IF-THEN rules quality measures six rulebases were
learned. Also two rulebases were learned using our basic learning method described
in [13]. Each of learned rulebases are HFLS rulebases. At the beginning a summary
and a comparison of learned rulebases are described. Summary and comparison refers
to the different learned rules, the number of learned rules with some specified rule’s
degrees and power of the whole rulebase expressed by a proposed measure (see Defin-
ition 1).

Two variants of each learned rulebase using our basic learning method and new
one using only T and C Wu&M IF-THEN RQM were tested. The first test applies to
general behaviour of the game. In this test case the game Tank 1990–2012 was launched
72 times counting losses in subsequent stages taking stage 11 as the last one. The second
test includes comparison of the times needed to get victory by battalion controlled by
HFLS. The game was run 50 times for each rulebase, player tank could not move or
perform any actions.

4.2 Results

Table 2 contains a percentage summary of different rules taken into final rulebase during
learning process using different Wu&M IF-THEN rules quality measures in comparison
to our basic method. We can notice that rulebases learned using our method with C and
U Wu&M rules quality measures have the same values because both rulebases are equal
to each other. Table 3 contains comparison of mentioned rulebases taking into account
for example rulebase power described in Subsect. 3.2. Table 4 shows the results of the
first and the second test.
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Table 2. Percentage summary of different rules taken into the final rulebase during learning using
our new learning method with different Wu&M rules quality measures application in comparison
to the rulebases learned using our basic learning method.

T C U

V1 [%] 22 62 62

V2 [%] 18 62 62

Table 3. Summary of the rulebases learned by our basic learning method and new one using dif-
ferent Wu&M rules quality measures during removing conflicting rules. Rulebases were learned
using both variants of our method. During generating linguistic variables different FS types were
used (triangular, L, gamma).

v1 v2 v1;T v2;T v1;C v2;C v1;U v2;U

D = 0 [%] 4 6 3.70 6.17 23.46 32.10 23.46 32.10

0 < D [%] 96.30 93.83 96.30 93.83 76.54 67.90 76.54 67.90

D = 1 [%] 17 19 17.28 18.52 17.28 18.52 17.28 18.52

RP [%] 51.40 54.66 50.39 53.54 45.34 46.13 45.34 46.13

Table 4. Losses in the following stages (72 tests) and average time necessary to win (50 tests)
playing the game Tank 1990–2012 for different rulebases.

stage number 1 2 3 4 5 6 7 8 9 10 11 defeat victory time

Original 3 10 8 12 11 8 9 6 4 1 72 (100 %) 0 (0 %) 29.8 s

Our;v1 3 13 8 15 15 6 10 1 1 72 (100 %) 0 (0 %) 21.6 s

Our;v2 5 9 7 18 13 10 9 0 1 72 (100 %) 0 (0 %) 23.1 s

Our;v1;T 3 10 10 18 16 5 8 2 72 (100 %) 0 (0 %) 21.0 s

Our;v2;T 2 14 8 19 12 9 7 1 72 (100 %) 0 (0 %) 22.7 s

Our;v1;C 7 7 12 15 9 15 5 1 0 1 72 (100 %) 0 (0 %) 22.1 s

Our;v2;C 6 5 13 16 10 12 8 1 1 72 (100 %) 0 (0 %) 22.0 s

5 Conclusions and Future Work

The tests run prove correctness of the proposed learning method for HFLSs. Application
of IF-THEN rules quality measures is very important, because it allows us to discover
some interesting information about our data and learning rules. The basic method using
rule’s degree tries to construct a predictive model whereas the application of IF-THEN
rules quality measures allows us to discover a descriptive model. Moreover, the possi-
bility of using different IF-THEN rules quality measures enables us to obtain different
rulebases during learning process on the same sample of data.

The results obtained during test cases show a positive impact on the tank control
using learned rulebases, but the differences are not very big.
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The summary presented in Table 3 shows a little worse general rulebase power of
learned rules using our new method with Wu&M IF-THEN RQM application but this
is natural. Rulebase power is predicted by the rule’s degree which is the main crite-
rion during choosing rules in our basic method; the application of Wu&M rules quality
measures during removing conflicting rules enables choosing rules seemingly worse.

Another interesting observation is that in our case the degree of usefulness has no
effect on the final rulebase in comparison to the degree of sufficient coverage. That
means that in our case the second measure is more restrictive than degree of truth.

Also as we can see in Table 2 and in Table 3 we can say, that application of C mea-
sure gives us a rulebase that contains more different rules than T in comparison to our
basic method. Also we have to notice that the number of rule’s degree equal to 0 is
much higher (about 20–30 % in comparison to 3–6 %), but it has no negative impact on
the obtained results.

Moreover, analysing the results we could notice that the first modification variant
of our method got slightly better results than the second variant, regardless of the IF-
THEN rules quality measure used during removing conflicting rules process.

During future research we could apply new IF-THEN rules quality measures and
tuning fuzzy sets function using linguistic hedges during learning process. Also it is
important to present application of our solution to another class of problems unrelated
to the controlling vehicles in computer games, such as controlling autonomous drone
and central heating stove.
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Abstract. In this paper, a cyclic permutation flow shop problem for
a certain production line with uncertain data is considered. The goal is
to minimize the cycle time. The uncertain elements in the system are
identified and modeled as fuzzy numbers. A metaheuristic fuzzy-aware
algorithm is developed and tested against 3 deterministic algorithms.
The fuzzy algorithm significantly outperforms deterministic algorithms
70 % of the time with similar computation time. The fuzzy algorithm is
also more reliable, providing solutions with smaller standard deviation.

Keywords: Flow shop scheduling · Cyclic production · Uncertain
knowledge · Simulated annealing · Fuzzy processing times · Fuzzy cycle
time

1 Introduction

Nowadays, production companies must remaining flexible in order to meet the
requirements of the clients, forcing them to apply Just-In-Time production tech-
niques. In result, the companies are switching production strategy from mass
manufacturing of a single product into manufacturing a mixture of products
(details), commonly referred to as Minimal Part Set or MPS. The most com-
mon optimization of such systems is minimization of the cycle time – the time
between the beginning of one MPS and the beginning of the next one. Moreover,
many production systems are characterized by uncertain data, especially when
the tasks are performed by human operators. Use of hydraulic and pneumatic
motors coupled with properties of details can result in uncertain processing times
as well.

In this paper, we consider a cyclic scheduling problem with uncertain data
using a miniature production line. Here we present a brief overview of research
considering cyclic job scheduling and fuzzy scheduling problems. We start with
cyclic scheduling, which received considerable attention. In the paper [8], theo-
retical and numerical properties of methods for obtaining the minimal cycle time
are studied. The cycle time is estimated through several expressions which are
then compared based on their convergence speed. The distribution of the number
of MPS needed to ascertain the cycle time is examined, with 3 to 4 MPS being
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enough almost 98 % of the time. In the paper [2], graph models of the problem is
employed to establish block elimination properties. Conducted research indicate
improvement of the efficiency of the search process for cyclic flow shop problem.
Solving methods using parallel computing have also appeared, for example, in
the paper [1] two parallel techniques – vector processing and multi-walk method
– were employed to solve cyclic flexible job shop scheduling problem (CFJSSP).
New method of computing the cycle time was also presented.

As for fuzzy scheduling problems, a number of different approaches exist,
most of them focused on solving problems with fuzzy processing times or fuzzy
duedate. Ishibuchi et al. [3] used fuzzy duedate for each job to represent the satis-
faction of decision maker for the completion time of that job. Two problems were
considered: (1) maximization of the minimum satisfaction over all jobs and (2)
maximization of the total satisfaction. Hybrid genetic algorithms (GA) for solv-
ing those problems were demonstrated. Genetic algorithms were also employed
by Sakawa and Kubota [7] to solve multi-objective job shop scheduling problem
with fuzzy processing times and fuzzy duedates. Gantt charts were used to help
define similarity between individuals in the GA. The results were compared to
the simulated annealing algorithm (SA). Parallel scheduling problems were also
considered – in the paper [6], three fuzzy scheduling models for solving such
problems were introduced and tested using hybrid intelligent algorithm. Fuzzy
scheduling have also been modeled outside of production and manufacturing.
In the paper [10], the fuzzy sets theory and integer programming were used to
obtain solution for multi-objective nurse scheduling problem. The proposed algo-
rithm was aimed at providing personalized and equitable schedules that were also
satisfying for the hospital management. Aside from integer programming other
exact algorithms were used. For example, in the paper [4] the branch and bound
method was used to solve job shop scheduling problem with fuzzy data. For
further reading on using fuzzy techniques for solving production planning and
scheduling problems, consider paper [11].

2 System Description

We consider a miniature production line, as shown in Fig. 1, which consists of five
separate machines. The flow of every detail through the system can be divided
into separate phases called stations.

Station A consists of conveyor belt (step A1) that transports details from the
storage to the pneumatic arm. The arm then transports details to the second
station (step A2). The duration of this step is fuzzy due to the pneumatic mech-
anism. Next is station B with four steps from B1 to B4. Step B1 is performed by
the human operator (and is thus fuzzy) and consists of transporting the detail to
a lift. Step B2 employs that lift to deliver the detail to a measurement station.
Step B3 is used to measure the properties of the detail (e.g. material, mass,
height). Step B4 transports the detail to the next station using an inclined slope
(the duration of this step is fuzzy).

Station C is the main station, consisting of a movable plate and two machines
used for the treatment of the detail. The plate can set the detail in one of the
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four positions: (1) starting position, where detail is received, (2) first machine,
(3) second machine and (4) detail exit. Moreover, the plate can hold up to four
details at the same time. The steps performed on this station are: (1) transport of
the detail to the first machine, (2) treatment by the first machine, (3) transport
to the second machine, (4) treatment by the second machine and (5) transport
to the exit position on the plate.

Fig. 1. Miniature production line

Station D is used to
transport the detail from
the plate to the last
station, by the use of
another pneumatic arm
(step D1) and inclined
slope (step D2). Duration
for both steps is fuzzy.
Station E is the last
station used for sorting
(dividing) details. During
step E1 the detail moves
along a conveyor belt
until it is pushed off the
belt at its assigned exit.
During step E2 the detail
is finally transported to
the correct storage.

3 Mathematical Model

Described system can be identified as a cyclic permutation flow shop scheduling
problem. There is set M = {1, 2, . . . ,m} of m machines and set J = {1, 2, . . . , n}
of n jobs (details) to be processed. pi,j describes the processing time of job j on
machine i, while ti,j designates transportation time of job j from machine i to
machine i + 1. Lastly, si,j,k is the refitting time of machine i from job j to job
k. In all cases i ∈ {1, 2, . . . ,m} and j, k ∈ {1, 2, . . . , n}.

In our production system, we decided to distinguish following process-
ing steps: physical measurement (Step B3), first processing (step C2), second
processing (step C4) and sorting of the details (steps E1 and E2). Operation
processing times pi depend on the detail to be processed. Between each pair of
subsequent machines i and i + 1 exists a non-zero transportation time. Decom-
position of the production system can be seen in Table 1. Refitting takes place
only before first and second processing (steps C2 and C4) and depends on the
details to be processed before and after the fitting.

We have defined a flow shop production system with 4 machines
M = {1, 2, 3, 4}. Set of operations is defined as O = {1, 2, . . . , 4n} and each job
j consists of 4 operations (O1,j , . . . ,O4,j) processed on subsequent machines.
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Table 1. Machines and transportation times

Action Times Steps

Transportation of job j to machine 1 (t0,j) A1, A2, B1, B2

Processing of job j on machine 1 (p1,j) B3

Transportation of job j to machine 2 (t1,j) B4, C1

Processing of job j on machine 2 (p2,j) C2

Transportation of job j to machine 3 (t2,j) C3

Processing of job j on machine 3 (p3,j) C4

Transportation of job j to machine 4 (t3,j) C5, D1, D2

Processing of job j on machine 4 (p4,j) E1, E2

In each cycle only one MPS (Minimal Part Set) is performed, during which
all operations from O are to be processed. Moreover, this set can be decomposed
into non-empty subsets Ok, k ∈ {1, 2, . . . ,m}, containing operations from one
machine k, thus

∏
k∈M Ok = O. In our case |Ok| = n for all k.

Schedule of jobs can be defined as a permutation π = (π(1), π(2), . . . , π(n)),
where π(i) is an i-th job from permutation π. Now, let [Sx]m×n be a matrix
of starting times of jobs on x-th MPS, where Sx

i,j is a starting time of job j
on machine i. We assume that not only the schedule of jobs is cyclic, but the
timetable of the system is fully cyclic. As such, there exists a constant T (π) called
period, such that Sx+1

i,π(j) = Sx
i,π(j) + T (π), where i = 1, 2, . . . ,m, j = 1, 2, . . . , n

and x ∈ N. Period T (π) depends on permutation π and is called cycle time.
Minimal value of T (π) will be called minimal cycle time and will be denoted as
T ∗(π). Our goal is to minimize following function:

T ∗(π∗) = min{T ∗(π) : π ∈ Φ}, (1)

where Φ denotes a set of all feasible permutations. Moreover, following con-
straints are to be followed:

Si,π(j) + pi,π(j) ≤ Si+1,π(j), i = 1, . . . ,m − 1, j = 1, . . . , n, (2)

Si,π(j) + pi,π(j) ≤ Si,π(j+1), i = 1, . . . ,m, j = 1, . . . , n − 1, (3)

Si,π(n) + pi,π(n) ≤ Si,π(1) + T, i = 1, . . . ,m, (4)

Si+1,π(n) ≤ Si,π(1) + T, i = 1, . . . , m − 1. (5)

Without the loss of generality, we can assume that start and completion times
of the first detail on first machine are as follows: S1,π(1) = 0 and C1,π(1) = p1,π(1).
Completion times of details on the machines are calculated using the following
recursive equation:

Ci,π(j) = max {Ci,π(j−1) + si,π(j),π(k), Ci−1,π(j)

+ti−1,π(j)} + pi,π(j),
(6)
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where i = 1, . . . ,m, j = 1, . . . , n and k = 1, . . . , n. The goal is to optimize the
following objective function:

T (π) = max
i∈M

{Cx
i,π(n) − Sx

i,π(1)}. (7)

4 Identification of Fuzzy Data

We will now proceed to identify the uncertain data in our production line. Let
us consider step B3 for some job j. The processing time of some operation in j
was measured a number of times (11 in this case), creating a vector p̄j with 11
elements as shown in Table 2. The estimated processing time for step B3 can be
now modeled using fuzzy number B3 = (B3

a, B3
v , B3

c ) as follows:

b3a = min(p1,j , p2,j , . . . , p11,j) = 2.32, (8)

b3b =
p1,j + p2,j + · · · + p11,j

11
= 2.79, (9)

b3c = max(p1,j , p2,j , . . . , p11,j) = 3.44, (10)

yielding B3 = (2.32, 2.79, 3.44).

Table 2. Results of measurement of p̄ for step B3 (in seconds)

p1,j p2,j p3,j p4,j p5,j p6,j p7,j p8,j p9,j p10,j p11,j

3.44 2.92 3.16 3.12 2.76 2.72 3.08 2.60 2.52 2.32 2.40

The above procedure can be applied to all steps in the production process
and then be used to define all processing and transport times through fuzzy
numbers. For example, transport time t3,j is the sum of times of steps C5,
D1, D2. Thus, it can be represented as a fuzzy number computed as a sum
of 3 fuzzy numbers i.e. t3,j = C5 + D1 + D2. The resulting fuzzy numbers
are presented in Table 3. Transport times are identical for all jobs. Fuzzy num-
ber pi,j represents fuzzy processing time of job j on machine i. This time is
dependent on the scaling parameter γj which is different for various jobs. For
example, tasks processed on machine 1 can have processing time represented by
fuzzy numbers like (2.32, 2.79, 3.44) with γj = 1, (4.64, 5.58, 6.88) with γj = 2
and (1.16, 1.395, 1, 72) for γj = 0.5. Machine 4 has been divided into 3 general
versions, depending on the chosen sorting destination. Parameters αj and βj

represent the actual treatment time (as opposite to the treatment initialization
with time of 1.40) for job j. We observe that the uncertainty in the considered
system is significant, as the ratio c

a can be as high as 2 or 3 for some of the
presented fuzzy numbers. Let us also notice that fuzzy numbers p2,j and p3,j are
also real numbers (as a = b = c).
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Table 3. Fuzzy numbers obtained for the considered production system

Fuzzy number a b c

C5 3.44 3.44 3.45

D1 17.52 27.20 47.52

D2 0.69 1.51 2.92

t0,j 13.76 17.61 24.44

t1,j 4.64 6.75 10.65

t2,j 3.44 3.44 3.45

t3,j 21.65 32.15 53.89

p1,j 2.32 · γj 2.79 · γj 3.44 · γj

p2,j 1.40 + αj 1.40 + αj 1.40 + αj

p3,j 1.40 + βj 1.40 + βj 1.40 + βj

pA
4,j 1.40 2.71 5.04

pB
4,j 2.44 4.03 7.32

pC
4,j 3.32 4.36 7.84

5 Computer Experiment

We performed a series of computer tests to research the numerical properties of the
proposed algorithm. For the purpose of the experiment a simulated annealing (SA)
scheme was implemented and employed. The choice of such a method is dictated
by previous numerouos successful uses of SA in job scheduling e.g. it has recently
been proposed for a multi-objective flowshop scheduling problem in [9]. The algo-
rithm used in this paper is based on SA employed by Pempera et al. [5] for solving
bi-criteria flow shop scheduling problem. The algorithm was modified to consider
single criterion goal function ofminimizing the cycle time.The goal function is com-
puted using the fuzzy operations on fuzzy numbers obtained as shown in the pre-
vious section. The core of the algorithm produces a final permutation (solution)
which is then evaluated as shown in the next part of this section.

First, 3 deterministic algorithms were added for comparison, resulting in
4 algorithms in total. The fuzzy algorithm F is based on fuzzy instances, where
processing, refitting and transport times in the form of fuzzy numbers e.g.
{a, b, c}. This algorithm uses operations on fuzzy numbers. The deterministic
algorithms work on real numbers, which are generated from the fuzzy instances.
For algorithm DMIN left value of the fuzzy number is used i.e fuzzy number
{a, b, c} yields real number a. Similarly, the real numbers generated for algo-
rithms DMID and DMAX would be b and c respectively.

Fuzzy algorithm and the deterministic algorithm will be called FA and DA
respectively. Each algorithm produces a final permutation of jobs π for a given
instance. This permutation is then used to perform 100 simulations. During
each simulation the actual processing and transport times are random, based on
the previously measured properties of the system. This yields a collection of 100
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cycle times from T1(π) to T100(π), which can be further transformed into statistic
functions like minimum TMIN(π), maximum TMAX(π) or average TAVG(π). Thus,
for a given instance a single run of one algorithm yields 3 numbers, meaning 12
numbers for 4 algorithms. Each algorithm was set to run for 10 000 iterations,
but can terminate earlier if additional termination conditions are satisfied.

Instances were prepared in 10 size groups with each group having number
of jobs n from 5 to 50. 5 different instances were generated for each size group,
yielding 50 instances in total. Instance n i means i-th instance of size n. For
each instance each algorithm was run 10 times. The summarized results of 10
runs for instance 10 1 are shown in Table 4.

The table presents the most important data about the 10 runs: (1) the best
run, (2) the worst run, (3) the average over all runs and (4) standard deviation
over all runs. All data is presented in percents for easy comparison. Thus, value
100 indicates the best cycle time out of 4000 (10 runs × 100 simulations × 4
algorithms) and value of 200 indicates two times worse (higher) cycle time.

The best runs are similar for every algorithm (e.g. the TMIN from best run
is similar for all algorithms). This means that all algorithms will yield similar
results if repeated enough number of times. However, the average runs are differ-
ent and prove that the FA outperforms the remaining algorithms. TMAX (worst
cycle time in 100 simulations) for avarage run of the FA is better than TMIN

(best cycle time in 100 simulations) for avarage runs of any DA. This effect is
even more visible for worst runs. Actually, TMAX of worst run of the FA (value
197.8) is better than all bold TMIN values for all DAs with the exception of one
case (value 175.8).

The FA is also more stable for the same number of iterations. This can be
observed from standard deviation also presented in Table 4. The result indicate
deviation from roughly 1.5 to 15 % for the FA, while DAs have deviation ranging

Table 4. Summary of results for instance 10 1 (10 runs, all data in percents)

Algorithm Cycle data Best run Average run Worst run Run deviation

F TMIN 100 105.1 107.9 2.31

TMID 118.9 121.5 124.6 1.41

TMAX 138.1 165.3 197.8 13.00

DMIN TMIN 103.0 251.9 450 49.03

TMID 119.7 281.1 478.7 43.84

TMAX 139.4 319.7 515.7 40.57

DMID TMIN 103.3 208.7 448.5 65.14

TMID 119.3 235.6 477 58.19

TMAX 137.7 279.1 518.6 49.82

DMAX TMIN 100.6 175.8 392.6 53.85

TMID 118.2 202.9 416.4 47.02

TMAX 132.7 243.6 451.7 42.96
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from 40 to 65 % (mostly centered around 45 %). Overall, the deviation for the
FA is at least 3 times better than for other DAs (10 times better in many cases).

Let us also note that Table 4 presents typical results, as for most other
instances the conclusions are similar. Now, we consider the overall performance
of the FA for different instances (instance sizes). In Fig. 2a we present the perfor-
mance of the FA compared with the DA that supplied the worst solution of all
DAs. The best observed advantage of the FA is, depending on the instance size,
2 to 5.5 times that of the worst DA (2 to 5.5 times lower values of TMID averaged
over all runs of all instances of a given size). The worst observed advantage is
1.3 to 2 times that of the worst DA, while the average advantage is from 1.5 to
3 times the worst DA. The best advantage increases with instance size, while
average and worst advantage remain roughly the same for all instance sizes.

 1
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 5  10  15  20  25  30  35  40  45  50

min W/F
avg W/F
max W/F

 1

 1.5

 2

 2.5

 3

 5  10  15  20  25  30  35  40  45  50

min B/F
avg B/F
max B/F

Fig. 2. Performance of the fuzzy algorithm against deterministic algorithms, depending
on instance size

Those results are interesting, but it would be more conclusive to compare
the FA to the best of the DAs. However, our tests indicate that each DA can be
the best, depending on specific instance (or even specific run). That means, we
do not know a priori which DA to choose. Thus, we need to run all 3 DAs to
determine the best of them. In the end, we compare the 3 DAs (run in sequence)
with single FA. The results are shown in Fig. 2b.

The best advantage is from 1.4 to 2.7, the average advantage is from 1.1 to 1.7
and those values seem to decrease with the increase in instance size, at least for
n > 30. The most interesting part is the worst advantage which ranges from 0.8
to 1.4. This would indicate that, while the FA is still better on the average, it can
sometimes provide worse solutions than the 3 DAs working together. However,
the values in the Figure are below 1.0 for only one instance group (n = 50).

Let us also notice that the FA takes only slightly longer to execute than a sin-
gle DA. In result, the FA executes almost three times faster then 3 DAs working
together. This assumes all algorithms complete iterations. However, additional
halting conditions can stop the algorithms prematurely (e.g. no further improve-
ments observed). This sometimes happen for the DAs, reducing their actual exe-
cution time, but such reduced runs are characterised by much worse cycle times
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found. This is the source of the high standard deviation observed in the DAs
that was mentioned early.

In order to further research the performance of the FA we divided the
instances into four groups, based on the results provided by the FA. The groups
are as follows:

1. Instances for which the FA was similar to the chosen algorithm with the
significance of 2.5 % (cycle time between 97.5 % and 102.5 % that of the other
algorithm).

2. Instances for which the FA was worse (cycle time greater than 102.5 % that
of the other algorithm).

3. Instances for which the FA was better (cycle time less than 97.5 %, but higher
than 80 % that of the other algorithm).

4. Instances for which the FA was significantly better (cycle time less than 80 %
that of the other algorithm).

With the above categories defined we can now describe the performance of
the FA as shown in Table 5. The second column compares the algorithm to the
worst of the 3 DAs. In result, the FA is always better and almost always much
better (except one instance). The third column compares the FA with the best
DA, showing that the FA is better almost 80 % of the time and is worse only for
2 instances (4 %). For 9 instances the FA provided results approximately equal
to that of the best DA.

Table 5. Performance of the fuzzy algorithm

Case 1 (similar) 2 (worse) 3 (better) 4 (much better)

Vs. worst 0 (0 %) 0 (0 %) 1 (2 %) 49 (98 %)

Vs. best 9 (18 %) 2 (4 %) 5 (10 %) 34 (68 %)

Additionally, statistical hypothesis tests, using t-test of the Octave software
were performed with significance level α = 0.05. Let Bi denote TMID of the best
DA divided by TMID of the FA for run i ∈ [1, 500] (there were 500 runs in total).
In result, Bi = 1.5 means the FA provided 50 % better average cycle time for
that run. Similarly, let Wi denote the same, but with the worst DA instead
of the best one. Now we treat Bi (Wi) as samples from B (W ) distribution
with the unknown mean μB (μW ). We have formulated following 4 hypotheses:
μW = 2.76, μW > 2.65, μB = 1.21 and μB > 1.17. The hypotheses were accepted
using the t-test and the chosen significance level (i.e. no statistical rationale for
rejecting any of those hypotheses).

An alternative FA using trapezoidal fuzzy numbers was also developed for
comparison. Research indicated the performance of both FAs was similar with
minor differences: the trapezoidal FA tended to provide better values of TMIN,
but worse values of TMAX. The trapezoidal FA wasn’t able to achieve superiority
in overall solution quality or execution time compared to the triangular FA.
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6 Conclusions

In this paper with presented a fuzzy algorithm for a certain cyclic flow shop
system with fuzzy data. The algorithm was tested using instances with various
number of jobs. The results indicate that the proposed algorithm significantly
outperforms the deterministic algorithms 70 % of the time and is worse only 4 %
of the time, while taking similar time to execute. Moreover, the fuzzy algorithm
provides solutions much more reliably, proved by several times lower standard
deviation of obtained results.
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2. Bożejko, W., Uchroński, M., Wodecki, M.: Block approach to the cyclic flow shop
scheduling. Comput. Ind. Eng. 81, 158–166 (2015)

3. Ishibuchi, H., Yamamoto, N., Murata, T., Tanaka, H.: Genetic algorithms and
neighborhood search algorithms for fuzzy flowshop scheduling problems. Fuzzy
Sets Syst. 67(1), 81–100 (1994)

4. Kuroda, M., Wang, Z.: Fuzzy job shop scheduling. Int. J. Prod. Econ. 44(1–2),
45–51 (1996)
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Abstract. The paper presents an identification method of a multi-
criteria model of location assessment for renewable energy sources (RES).
Sustainable energy systems have a growing importance for the long-term
national strategic planning, which requires multi-facet decision making.
The multi-criteria decision-analysis (MCDA) methods are widely used
in this field. However, the used methods usually identify discrete values
of preferences for selected alternatives. Most of the calculation must be
repeated for each set of alternatives. This study is intended to identify
the multi-criteria model in the space of the problem, not only for a few
selected alternatives. The model should be independent of the considered
alternatives and related strictly to the domain of criteria. As the result,
a model identified once can be used repeatedly. For this purpose, the
COMET method is used in the identification process. It has provided
the fuzzy model, which can be used repeatedly for different sets of alter-
natives. The model is verified by using the set of possible offshore wind
farm localization.

Keywords: Multi-criteria decision-making · COMET method · Fuzzy
logic · Renewable energy sources

1 Introduction

The renewable energy sources (RES) are the main way to make the national
economies more independent from conventional energy sources. However, it
requires decision-making in situation of contradictory criteria, i.e., economi-
cal, technological, environmental and social [1,2,12,22]. The typical problems
include tasks of selecting: technologies, projects, management options, etc. The
main problem is selecting the best possible solution for location choosing of a
new infrastructure of the renewable energy sources.

The paper is an extension of previous work [23], where the AHP and
Promethee methods were used to assess a set of decision-making alternatives.
The considered problem presents an assessment of an offshore wind farm loca-
tion, where a big number of component criteria creates an area for the use the
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 321–332, 2016.
DOI: 10.1007/978-3-319-39378-0 28
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multi-criteria decision-analysis (MCDA) methods [25–27]. However, specificity
of the considered problem allows application more than one MCDA method
[10,24]. The purpose of this paper is identifying a fuzzy model, which could be
used repeatedly for different sets of alternatives. In this way, if the set of alter-
natives is changed, then the model will further be used to make the assessment.
The MCDA method has not to be repeated because instead we can use the iden-
tified model. It will be identified with use of the COMET method, and will be
verified on the basis of the alternatives set used in [23].

The rest of the paper is organized as follows: First, we give an outline of a
literature review for MCDM methods in the field of the renewable energy sources.
Then, we describe the COMET method as a tool for identification of the fuzzy
model. Then, the location of an offshore wind farm is analyzed for ten criteria to
identify the fuzzy model in full space of the problem. Finally, we discuss results
and their importance.

2 Literature Review

This section presents selected research papers related to multi-criteria decision-
analysis support systems in the RES domain. They are presented in terms of

Table 1. Research related to the use of MCDA methods in problems of RES.

Application area Method Criteria number Ref.

Selecting of renewable energy
power plant technologies

Fuzzy DEA 7 [3]

Selecting of suitable electricity
generation alternatives

Promethee 5 [21]

Selecting of renewable energy
power plant technologies

ELECTRE III 8 [6]

Renewable energy sources project
selection

Electre 8 [9]

Deriving wind farm land suitability
index and classification

AHP 10 [2]

Deriving wind farm land suitability
index and classification

Fuzzy AHP 9 [16]

Assessmnet of land management
options

AHP 12 [11]

Selecting site location Naide 9 or 10 [4,5]

Assessment of the exploitation of a
geothermal resource

Promethee II 5 [8]

Evaluation and ranking of
alternative energy exploitation
schemes of a low temperature
geothermal field

Promethee 4 [7]
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the method and subject of the research problem in Table 1. It shows a large
variety of RES problems that are solved by using MCDA methods, where the
most popular one is the AHP and Promethee methods [2,7,8,11,16,21]. The all
authors have obtained discrete values of assessed alternatives. Additionally, the
real problem of selecting an appropriate method can be observed in [24].

3 The COMET Method

The COMET method is a very effective approach, which is completely fresh in
the field of renewable energy sources. The basic concept of the COMET method
was proposed by prof. Piegat [14,15]. In previous works, the accuracy of COMET
method was verified [13]. The proposed approach is more efficient than MCDM
methods (e.g. AHP or TOPSIS methods). The formal notation of the COMET
method should be shortly recalled in the five following steps [17–20].

Step 1. Define the space of the problem – the problem expert determines the
dimensionality of the problem by selecting the number r of criteria, C1, C2, ..., Cr.
Then, the set of fuzzy numbers for each criterion Ci is selected (1):

C1 = {C̃11, C̃12, ..., C̃1c1}
C2 = {C̃21, C̃22, ..., C̃2c1}
.................................

Cr = {C̃r1, C̃r2, ..., C̃rcr}
(1)

where c1, c2, ..., cr are numbers of the fuzzy numbers for all criteria.
Step 2. Generate characteristic objects – The characteristic objects (CO)

are obtained by using the Cartesian Product of fuzzy numbers cores for each
criteria as follows (2):

CO = C(C1) × C(C2) × ... × C(Cr) (2)

As the result, the ordered set of all CO is obtained (3):

CO1 = {C(C̃11), C(C̃21), ..., C(C̃r1)}
CO2 = {C(C̃11), C(C̃21), ..., C(C̃r2)}
...................................................

COt = {C(C̃1c1), C(C̃2c2), ..., C(C̃rcr )}
(3)

where t is the number of CO (4):

t =
r∏

i=1

ci (4)

Step 3. Rank the characteristic objects – the expert determines the Matrix
of Expert Judgment (MEJ). It is a result of pairwise comparison of the COs by
the problem expert. The MEJ structure is presented (5):
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MEJ =

⎛

⎜⎜⎝

α11 α12 ... α1t

α21 α22 ... α2t

... ... ... ...
αt1 αt2 ... αtt

⎞

⎟⎟⎠ (5)

where αij is the result of comparing COi and COj by the expert. The more
preferred characteristic object gets one point and the second object gets zero
points. If the preferences are balanced, both objects get a half point. It depends
solely on the knowledge of the expert and can be presented as (6):

αij =

⎧
⎨

⎩

0.0, fexp(COi) < fexp(COj)
0.5, fexp(COi) = fexp(COj)
1.0, fexp(COi) > fexp(COj)

(6)

where fexp is the expert mental judgment function.
Afterwards, the vertical vector of the Summed Judgments (SJ) is obtained

as follows (7):

SJi =
t∑

j=1

αij (7)

The last step assigns to each characteristic object an approximate value of pref-
erence. As a result, the vertical vector P is obtained, where i − th row contains
the approximate value of preference for COi. The principle of an insufficient
reason and SJ vector are used to this aim. The best CO gets one point, and the
worst gets zero points.

Step 4. The rule base – each characteristic object and value of preference is
converted to a fuzzy rule as follows (8):

IF C(C̃1i) AND C(C̃2i) AND ... THEN Pi (8)

In this way, the complete fuzzy rule base is obtained.
Step 5. Inference and final ranking – each alternative is presented as a set

of crisp numbers (e.g., Ai = {a1i, a2i, ..., ari}). This set corresponds to criteria
C1, C2, ..., Cr. Mamdani’s fuzzy inference method is used to compute preference
of i − th alternative. The obtained results form the final ranking.

4 Use of the COMET Method in Choosing the Location
of an Offshore Wind Farm

At the beginning, all criteria should be defined. We use the same criteria as in
[23]. Hence, we have ten criteria, which can be divided in three main groups:
spatial factors, economic factors, environmental and social risk. Spatial factors
include:

– C1 - average depth of the basin (in meters) determined for each location on
the basis of the available bathymetry data, C1 ∈ [20, 70].
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Fig. 1. Detailed hierarchy of the identified model.

Table 2. Geographical coordinates of the considered alternatives

Ai Approx. Longitude Approx. Latitude

A1 17o15′E 55o00′N

A2 17o00′E 55o05′N

A3 17o15′E 55o35′N

A4 16o55′E 55o25′N

A5 16o15′E 55o00′N

A6 15o15′E 54o30′N

Table 3. Values of criteria for the alternatives set

Ci Criterion name A1 A2 A3 A4 A5 A6

C1 Average depth of the basin 40 31 29 62 51 35

C2 Distance from the shoreline 34.7 45.6 86.3 77.1 63.1 44.9

C3 Distance from the NEN connection 31 45 82 79 61 41

C4 Type of seabed vg g vg/g mg vg g

C5 The investment cost 9040 9023 11231 10602 7870 7324

C6 Payback time 9 10 11 15 14 12

C7 Annual energy production 2803 2432 3132 3415 2132 1897

C8 Conflict with fisheries 8 5 9 4 5 6

C9 Threat to navigation safety 2 1 5 1 5 2

C10 Influence on the protected areas 2 8 1 1 4 1
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Table 4. The results of COMET method for spatial factors

COi C1 C2 C3 C4 SJ S1

CO1 20 30 30 0 11.5 11/15

CO2 20 30 30 1 15.5 15/15

CO3 20 30 90 0 6.5 6/15

CO4 20 30 90 1 13.5 13/15

CO5 20 90 30 0 7.5 7/15

CO6 20 90 30 1 14.5 14/15

CO7 20 90 90 0 3.5 3/15

CO8 20 90 90 1 10.5 10/15

CO9 70 30 30 0 5.5 5/15

CO10 70 30 30 1 12.5 12/15

CO11 70 30 90 0 1.5 1/15

CO12 70 30 90 1 8.5 8/15

CO13 70 90 30 0 2.5 2/15

CO14 70 90 30 1 9.5 9/15

CO15 70 90 90 0 0.5 0/15

CO16 70 90 90 1 4.5 4/15

– C2 - distance from the shoreline (in kilometers) measured in a straight line
to the coast. The increase of the distance from the edge causes a significant
increase of the cost of building the farm (transport equipment, longer building
time, and etc.), C2 ∈ [30, 90].

– C3 - distance from the NEN connection (in kilometers) measured as distance
of each farm to the nearest NEN port, C3 ∈ [30, 90].

– C4 - type of seabed is a quality rating of the seabed for marine construction:
rocky bottom - the best, grainy - very good, silty-sandy bottom - good, muddy
- moderately good, C4 ∈ [0, 1].

Economic factors include:

– C5 - the investment cost (in million PLN). It is estimated assuming a 7 MW
turbine power, C5 ∈ [7000, 12000].

– C6 - payback time (in years) is the calculation of payback periods making
possible to obtain annual profit. This value is determined using the unit price
of electricity, unit price of certificates of origin, and operating costs. They are
based on the calculated profit for the year, as well as on taking into account
the specified operating baskets payback time, C6 ∈ [5, 15].

– C7 - annual energy production based on the annual average wind speed and
wind turbine performance, C7 ∈ [1500, 4000].

Finally, environmental and social risk include (C8 − C10 ∈ [0, 10]) :
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Table 5. The results of COMET method for economic factors

COi C5 C6 C7 SJ S2

CO1 7000 5 1500 14.5 14/15

CO2 7000 5 2750 22.5 22/15

CO3 7000 5 4000 26.5 26/15

CO4 7000 10 1500 10.5 10/15

CO5 7000 10 2750 19.5 19/15

CO6 7000 10 4000 25.5 25/15

CO7 7000 15 1500 6.5 6/15

CO8 7000 15 2750 15.5 15/15

CO9 7000 15 4000 23.5 23/15

CO10 9500 5 1500 8.5 8/15

CO11 9500 5 2750 17.5 17/15

CO12 9500 5 4000 24.5 24/15

CO13 9500 10 1500 5.5 5/15

CO14 9500 10 2750 13.5 13/15

CO15 9500 10 4000 21.5 21/15

CO16 9500 15 1500 2.5 2/15

CO17 9500 15 2750 9.5 9/15

CO18 9500 15 4000 18.5 18/15

CO19 12000 5 1500 3.5 3/15

CO20 12000 5 2750 11.5 11/15

CO21 12000 5 4000 20.5 20/15

CO22 12000 10 1500 1.5 1/15

CO23 12000 10 2750 7.5 7/15

CO24 12000 10 4000 16.5 16/15

CO25 12000 15 1500 0.5 0/15

CO26 12000 15 2750 4.5 4/15

CO27 12000 15 4000 12.5 12/15

– C8 - conflict with fisheries as the conflict of interests with the marine fisheries
sector is estimated at a 10 points scale with 10 as the biggest conflict.

– C9 - threat to navigation safety based on the traffic map of water, determining
how much influence it can have on a location for sailing in terms of possible
dangers of ship collisions with wind farms.

– C10 - Influence on the protected areas is the proximity of Natura 2000 pro-
tected areas of the potential offshore location. Determines the possible impact
of investment on the protected are a on ten-element scale, assuming that 0
means the least impact on protected areas, while 10 is the biggest one.
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Table 6. The results of COMET method for enviromental and social risk

COi C8 C9 C10 SJ S3

CO1 0 0 0 26.5 26/26

CO2 0 0 5 25.5 25/26

CO3 0 0 10 22.5 22/26

CO4 0 5 0 23.5 23/26

CO5 0 5 5 19.5 19/26

CO6 0 5 10 14.5 14/26

CO7 0 10 0 15.5 15/26

CO8 0 10 5 10.5 10/26

CO9 0 10 10 6.5 6/26

CO10 5 0 0 24.5 24/26

CO11 5 0 5 21.5 21/26

CO12 5 0 10 17.5 17/26

CO13 5 5 0 18.5 18/26

CO14 5 5 5 13.5 13/26

CO26 5 5 10 8.5 8/26

CO16 5 10 0 9.5 9/26

CO17 5 10 5 5.5 5/26

CO18 5 10 10 2.5 2/26

CO19 10 0 0 20.5 20/26

CO20 10 0 5 16.5 16/26

CO21 10 0 10 11.5 11/26

CO22 10 5 0 12.5 12/26

CO23 10 5 5 7.5 7/26

CO24 10 5 10 3.5 3/26

CO25 10 10 0 4.5 4/26

CO26 10 10 5 1.5 1/26

CO27 10 10 10 0.5 0/26

For the purpose of the reduction of the rules base and of the comparisons number
the modular approach will be used. Its structure is presented on Fig. 1.

The set of six assessed alternatives is taken from [23]. Table 2 contains the
approximate ghographical coordinates of the concidered alternatives, i.e. A1−A6.
The detailed values of criteria for each alternative is presented in Table 3.

The first module concerns spatial facors. The criteria C1 − C4 are evaluated
by two fuzzy numbers for each criterion (9):

μC11 = 70−x
50 , μC12 = x−20

50 , μC41 = 1 − x, μC42 = x,
μC21 = μC31 = 90−x

60 , μC22 = μC32 = x−30
60

(9)
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Table 7. The results of COMET method for aggregation module

COi S1 S2 S3 SJ P

CO1 0 0 0 0.5 0/26

CO2 0 0 0.5 3.5 3/26

CO3 0 0 1 6.5 6/26

CO4 0 0.5 0 9.5 9/26

CO5 0 0.5 0.5 12.5 12/26

CO6 0 0.5 1 15.5 15/26

CO7 0 1 0 18.5 18/26

CO8 0 1 0.5 21.5 21/26

CO9 0 1 1 24.5 24/26

CO10 0.5 0 0 7.5 7/26

CO11 0.5 0 0.5 10.5 10/26

CO12 0.5 0 1 5.5 5/26

CO13 0.5 0.5 0 1.5 1/26

CO14 0.5 0.5 0.5 13.5 13/26

CO15 0.5 0.5 1 17.5 17/26

CO16 0.5 1 0 19.5 19/26

CO17 0.5 1 0.5 22.5 22/26

CO18 0.5 1 1 25.5 25/26

CO19 1 0 0 2.5 2/26

CO20 1 0 0.5 4.5 4/26

CO21 1 0 1 8.5 8/26

CO22 1 0.5 0 11.5 11/26

CO23 1 0.5 0.5 14.5 14/26

CO24 1 0.5 1 16.5 16/26

CO25 1 1 0 20.5 20/26

CO26 1 1 0.5 23.5 23/26

CO27 1 1 1 26.5 26/26

Next, we generate the characteristic objects and create the MEJ matrix. The
matrix is transformed to vector SJ and subsequently to preference vector S1. In
this way, we identify the first module. There are 16 rules, which are related to
characteristic objects. The summary of these steps is presented in Table 4.

The second module concerns economic factors. The criteria C5 − C7 include
three triangular fuzzy numbers for each criterion. The cores of these num-
bers are as follows: C(C51) = 7000, C(C52) = 9500, C(C53) = 1200, C(C61) =
5, C(C62) = 10, C(C63) = 15, C(C71) = 1500, C(C72) = 2750, C(C73) = 4000.
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Table 8. The results of preferences from three modules for the considered alternatives

Ai A1 A2 A3 A4 A5 A6

S1 0.8477 0.7569 0.5349 0.2630 0.5867 0.7506

S2 0.5839 0.4639 0.4160 0.4365 0.3682 0.4079

S3 0.6333 0.6556 0.4556 0.8373 0.5222 0.7222

P 0.6122 0.5341 0.4562 0.5291 0.4670 0.5134

There are 27 rules, which are related with generated characteristic objects. The
summary of these steps is presented in Table 5.

The third module concerns environmental and social risk. The criteria
C8 −C10 include three triangular fuzzy numbers for each criterion. The cores of
these numbers are as follows: C(C81) = 0, C(C82) = 5, C(C83) = 10, C(C91) =
0, C(C92) = 5, C(C93) = 10, C(C101) = 0, C(C102) = 5, C(C103) = 10. There are
27 rules, which are related to generated characteristic objects. The summary of
these steps is presented in Table 6.

The last module is aggregation module of the previous three modules. The
input signals S1 − S3 are evaluated with three traingular fuzzy numbers for
each criterion. Cores of these numbers are as follows: C(S11) = 0, C(S12) =
0.5, C(S13) = 1, C(S21) = 0, C(S22) = 0.5, C(S23) = 1, C(S31) = 0, C(S32) =
0.5, C(S33) = 1. There are 27 rules, which are related to generated characteristic
objects. The summary of these steps is presented in Table 7.

Table 8. shows complete results for the considered set of alternatives. The best
alternative in respect of spatial factors is the alternative A1 (0.8477), and the
worst is the alternative A4 (0.2630). The best alternative in respect of economical
factors is the alternative A1 (0.5839), and the worst is the alternative A5 (0.3682).
The best alternative in respect to environmental and social risk is the alternative
A4 (0.8373), and the worst is the alternative A3 (0.4556).

The final assessment P is fully consistent with the results published in [23]. It
means that we got the same ranking as in the previous research for the selected
set of alternatives. However, the obtained model can be used repeatably for each
set of alternatives from the domain of the space of the problem.

5 Conclusions

The COMET method is a useful tool from the MCDA domain, which can be
applied in the RES field. The identified model of location assessment of an
offshore wind farm can be used repeatable and it could be applied in the full
space of the problem. Any number of alternatives can be evaluated because
the values of the alternatives attributes do not affect the parameters of the
model. This is the main reason why the COMET method is free of rank reversal
phenomenon (change in the rank ordering when the set of alternatives has been
changed).
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Moreover, fuzzy modeling allows for use of varying levels of significance for
each criterion. At the same time, it allows for use of relatively easy computation
mechanism. The application of modular approach allows for making a partial
analysis of preferences according to the main groups of criteria.

The identified model has been verified in respect of the reference set of alter-
natives. For this set, the final ranking is fully consistent with reference data.
Future studies should be focused on the possibility of determining local signifi-
cance criteria for different alternatives to enable a more complex analysis.
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Abstract. This paper presents a novel method of generating and
evaluating linguistic summaries of content stored in distributed graph
datasets, like LinkedData. Linguistic summarization is a well known data
mining technique, aimed to discover patterns in data and present them in
natural language. So far, this method has been researched only for rela-
tional databases. In our recent paper we have presented how to adapt this
method for graph datasets. We have solved the problems of subject defin-
ition (further extended in this paper), retrieval of the attributes for sum-
marization, generalization of summarizers and qualifiers. In this paper
we extend that research by adapting proposed method to distributed
interlinked graph datasets, which results in obtaining new summaries,
and therefore new knowledge. We discuss how to follow different types
of equivalence links that may exists between graph datasets. In order
to measure characteristics specific for summaries of distributed graph
data we propose new truth values (degree of subject appropriateness,
degree of summarizer order and degree of linkage), and adapt existing
ones (degree of covering). We run several experiments on Linked Data
and discuss the results.

1 Introduction

In recent years a significant increase in popularity of graph databases has been
observed. This approach to data storage significantly differs from relational data-
bases - there is no rigid schema, data may easily be heterogeneous (information
concerning different subjects may be ‘tangled’ together) and distributed among
several ‘endpoints’ [1]. These characteristics facilitated emerging of Semantic
Web, which essentially is a global, distributed and interconnected graph data-
base, whose endpoints are freely available over the Internet [2].

This paper presents a novel method of creating linguistic summaries of such
distributed graph datasets, which has not been attempted before. Linguistic
summaries, defined by Yager, Kacprzyk and Zadrozny [3,4], are intended for
relational databases only. These algorithms provide means of discovering general
knowledge and complex patterns in data and presenting it in human-readable
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quasi-natural sentences. There have been several extensions to this method, for
instance to handle time series [5]. Basics are given in Sect. 2.

Our research lies within areas of Semantic Web mining (with subfields like
content, structure and usage mining [6,7], see survey on this topic [8]) and graph
data mining [9], and more precisely - graph summarization. Most often graph
summarization is a problem of extracting frequent patterns (subgraphs) from
a large graph [10–12]. A different research area is presented in [13], where ele-
ments of fuzzy set theory are used to express fuzzy queries for graph databases
(precisely - extending Cypher query language for Noe4j).

Research presented here is a continuation of our previous paper [14], where
we have adapted the method of linguistic summaries for graph data scenario,
but only considering a single data source. Similar work, that is on linguistic
summaries of graph databases, is presented in [15], which was published shortly
after our paper. In [15] new concepts, named ‘Structure Summaries’ and ‘DataS-
tructure Summaries’ are introduced, which are capturing relations between two
types of vertices. Despite new nomenclature these constructs are logically equiv-
alent to 1st and 2nd form of summary (see (1) and (2)), and therefore to our
approach, which is based on data extraction from graph to pseudo-relational
model.

Most important elements our previous paper are explained in Sect. 2. In
Sect. 3 we show how to create linguistic summaries of a distributed graph data-
bases, where graph vertices are interlinked between different datasets. After-
wards, we show that navigating deeper in the graph, that is retrieve graph ver-
tices separated by more than one edge from the subject, results in obtaining
new summaries. In Sect. 4 we analyze the problem of truth values (quality mea-
sures). We adapt measures ‘degree of imprecision’ (T2) and ‘degree of covering’
(T3) and propose new ones, that describe the characteristics specific for sum-
maries of graph datasets - ‘degree of subject appropriateness’, ‘degree of sum-
marizer order’ and ‘degree of linkage’. In Sect. 5 we show the application results
- generated summaries for LinkedData, centered around DBPedia.

2 Linguistic Summaries of Relational and Graph Datasets

Linguistic summaries is data mining technique aimed at obtaining high level
knowledge from large datasets. The first form of a linguistic summary is pre-
sented by Eq. (1), see Example 1. Second form of linguistic summaries is pre-
sented in Eq. (2), see Example 2.

Q P are/have S [T ] (1)

Q P being/having W are/have S [T ] (2)

where Q is the linguistic quantifier ; P is the subject of the summary (set of
objects represented by the database tuples di); S is a property of interest, the so-
called summarizer represented by a fuzzy or a crisp set (discrete set in particular).

Example 1. About quarter (Q) workers (P) have high salary (S) [0.67] (T)
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Example 2. Some (Q) young (W) employees (P) have average salary (S) [1.0]

The crucial part of the algorithm in the sense of Yager is the computation of
the degree of truth T . The algorithm is strictly based on Zadeh calculus of lin-
guistically quantified statements, and is computed by T1 (Q P are/have S) =
µQ(

∑m
i=1 µS(di)

m ), where d - tuple, m - number of tuples, µS(di) - membership
value of tuple d to summarizer S (e.g. S - ‘has high salary’), µQ is membership
value to quantifier Q (e.g. Q - about quarter).

So far this method has been researched mostly for relational databases. How-
ever, in a recent work [14] we have presented an approach to using this method
on graph datasets. Due to heterogeneity of a graph database source, initially
one needs to select a subject of a summary, retrieve all vertices that belong to
this class, and obtain their attributes (graph vertices connected to the subject
ones). In case of a relational database this is trivial (each table tuple is a subject),
however for a heterogeneous graph dataset this is no longer true. Selecting all
vertices for summarization is one approach, however such summary would not be
consistent (vertices are interlinked, vertex types have different properties, etc.).
We have proposed to use on ontological class as a subject of a summary.

After retrieval of all instances of classes c, one needs to retrieve all connected
vertices (see Fig. 1) - ones for which given instance is a subject (properties, as
indicated in Fig. 1 by ai), and for which it is an object (graph vertices for which
given instance is a property of, indicated in Fig. 1 by arevi ). Hence, for each
attribute ai ∈ A the set of values Xi is obtained. After this extraction step,
we obtain a relational-like structure (see (4)) and generate linguistic summaries
according to the known methods.

Attribute values Xi are used for creating of summarizers and qualifiers. Each
xj
i ∈ Xj is a summarizer. As we have proven in our previous paper, computing

the set of generalizations for each value (SUP (xj
i )) may create additional sum-

marizers (see Example 3). Generalizations of concept c is the set of broader (gen-
eralized, direct and inferred, which means linked with more than one generalizing
predicate) concepts (terms) - all levels ‘above’ c. Broader (generalization) terms
are linked using predicates such as: rdf:subClassOf, skos:broader (not transi-
tive, hence only one level above concept c is considered), skos:broaderTransitive,
linkedgeodata:parentFeature, and others. Value set of attribute Ai that is used
for creating summarizers and qualifiers, augmented by these generalizations, are
presented in (3).

X ′
i = Xi ∪ (∀xj

i∈Xi
SUP (xj

i )) (3)

Example 3. Say we summarize vertices with class ‘Person’, and one of the proper-
ties is ‘occupation’. In the dataset direct ‘occupations’ are ‘Painter’ and ‘Writer’,
and ‘Painter’ and ‘Writer’ are both instances of class ‘Artist’. Hence, property
value ‘Artist’ is a generalization of both ‘occupations’, and can be added to
set of summarizers.
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S =

⎧⎨
⎩

S1 = {a1(S1), a2(S1), a3(S1), a
rev
4 (S1)}

...
Sn = {a1(Sn), a2(Sn), a3(Sn), arev

4 (Sn)}

⎫⎬
⎭

A = {a1, a2, a3, arev
4 }

Fig. 1. Gathering vertices that are of given summary class (S1 → rdf : typeOf →
c ∪ SUB(c)), attributes (a1, a2, a

rev
1 ), and attribute value sets (XA1 , XA2 , XArev

1
).

arev stands for ‘reverse’ attribute, that is - selected vertex is an object, not a subject
of a triple (arrow pointing towards selected summary subject). S in (4) - the set of
graph vertices that are selected as subjects of the summary, A in (5) - set of retrieved
attributes (graph edges directly connected to subject vertices) that will be used for
generating summarizers and qualifiers. Can be compared to columns in a relation (from
relational data model).

3 Multi-source Extensions to Linguistic Summaries of
Graph Datasets

First considered case of distributed datasets is the situation where information
about the same subject (e.g. music) is distributed between different datasets.
In case of LinkedData, it is usually the case where two databases concern-
ing the same subject are created independently, and afterwards connected (e.g.
DBTune and MusicBrainz). Some examples of equivalent classes are shown in
Table 1. In such cases classes and properties are marked as equivalent, using
specific links (e.g. for Semantic Web these links are owl:equivalentClass and
owl:equivalentPropoerty). Data extraction in such scenario is shown in Fig. 2 -
one needs to gather all instances of selected subject from first database (see D1

in 4) and its properties and equivalent classes from D2 etc. See Example 4.

Example 4. Say we want to create summaries in musical domain. In Linked-
Data there are 3 popular databases in this domain - DBPedia, DBTune and
MusicBrainz. However, these databases use different ontologies, hence differ-
ent classes and properties (DBPedia - DBPedia ontology, MusicBrainz - Music
Ontology). Therefore, in order to consistently extract data for summaries one
needs to navigate equivalence links between these classes and properties.

S = S1 ∪ ... ∪ Sn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

SD1
1 = {a1(SD1

1 ), a2(SD1
1 ), a3(SD1

1 ), arev4 (SD1
1 )}

...

SD2
2 = {a1(SD2

2 ), a2(SD2
2 ), a3(SD2

2 ), arev4 (SD2
2 )}

...
SDn
n = {a1(SDn

n ), a2(SDn
n ), a3(SDn

n ), arev4 (SDn
n )}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

Second considered case of interlinked datasets is shown in Fig. 3. In this case
equivalence links (in Semantic Web ‘owl:sameAs’ link) exist between vertices
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Fig. 2. Gathering vertices that are of given summary class (S1, S2 → rdf : typeOf →
SUB(c)), D1, D2 - different, distributed datasets

Table 1. Some examples of equivalent classes and properties, within the same ontology
and between different ontologies

Class / Property Equivalent

dbpedia.org/ontology/Film sw.opencyc.org/concept/Mx..ycA

umbel.org/umbel/rc/Movie-CW

yago-knowledge.org/resource/wordnet movie

www.freebase.com/film/film

dbpedia.org/ontology/List www.w3.org/2004/02/skos/core#OrderedCollection

dbpedia.org/ontology/Place schema.org/Place

dbpedia.org/ontology/Location

in different datasets, which means that linked vertices are describing the same
entity, and data stored in different databases augment (add more information to)
each other. Hence, the total attribute set for summarization is a concatenation of
the information stored in each database, as shown in (5) (compare to (4) where
only a single source is considered). Some statistics about linkage of DBPedia to
other datasets is shown in Table 2.

Example 5. Say we want to create summaries in film domain. As a dataset about
movies we may use LinkedMDB. By adding the geographical dataset (e.g. GeoN-
ames), and following two sameAs links (LinkedMDB → DBPedia → GeoNames)
one may create new summaries using additional information from other dataset
- like ‘almost all high rated movies are produced in big cities’.

S =

⎧
⎨

⎩

S1 = {aD1
1 (S1), aD1

2 (S1), aD1
3 (S1), aD1

4 (S1), aD2
5 (S1’), aD2

6 (S1’)}
...

Sn = {aD1
1 (Sn), aD1

2 (Sn), aD1
3 (Sn), aD1

4 (Sn), aD2
5 (Sn’), aD2

6 (Sn’)}

⎫
⎬

⎭ (5)

Last extension to the data extraction for graph datasets is shown in Fig. 4
- retrieving higher order attributes, that is vertices not directly connected to

www.freebase.com/film/film
www.w3.org/2004/02/skos/core#OrderedCollection
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Fig. 3. Following owl:sameAs links to gather additional attributes of a subject, D1, D2

- different, distibuted datasets

Table 2. Some example statistics about sameAs linkage from DBPedia to other
datasets for selected classes

Class Count Linked to Links count Linkage %

dbpedia:Book 31172 bookmashup/books 9078 29

dbpedia:Country 1550 eurostat.linkedstatistics.org 253 16

dbpedia:Settlement 475458 sws.geonames.org 85647 18

linkedgeodata.org 103633 21

dbpedia:MusicalWork +
dbpedia:Band

188319 musicbrainz.org 22981 11

dbpedia:Species 279883 lod.geospecies.org 15974 5

the subject vertex, but separated by two or more graph edges - see Example 6.
Figure 4 also indicates that following identity links (like owl : sameAs) is also
required in such cases. Extracted data from graph shown in Fig. 4 is shown in (6)
(compare to (4)) - where attribute a1 comes from database D1, a1a3 is a 2-nd
order attribute (also from D1), and a1b1 is a 2-nd order attribute, but obtained
from D2 after following identity link between graph vertex a1(S1) in D1 and
vertex B in a different dataset - D2.

Example 6. Consider summaries for the subject class ‘Writer’, which is directly
connected to edges of type ‘Book’. Each ‘Book’ also has a set of properties, for
instance ‘Genre’. Adding this as a second-order property of a ‘Writer’ can create
new summaries (E.g. Most writers from Sweden write mystery books).

S =

⎧
⎨

⎩

S1 = {aD1
1 (S1), a1aD1

3 (S1), a1aD1
4 (S1), a1bD2

1 (B), a1bD2
2 (B)}

...

Sn = {aD1
1 (Sn), a1aD1

3 (Sn), a1aD1
4 (Sn), a1bD2

1 (Bn), a1bD2
2 (Bn)}

⎫
⎬

⎭ (6)
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Fig. 4. Gathering n-th order attributes - vertices separated from the root vertex (S1)
by n edges. In such cases following owl:sameAs extracts more information and also
leads to new summaries

4 Adapted and New Quality Measures for Linguistic
Summaries of Multiple Graph Datasets

Quality measures are means to describe various characteristics of a summary. All
quality measures have been developed for relational databases, and some cannot
be directly used in graph datasets, hence we have adapted these ones for graph
data model - T2 and T3. Additionally, we propose three new quality measures
that describe features specific to a graph dataset - TG

1 , TG
2 and TG

3 .
T2 - degree of imprecision, see (7), where in(c) is defined by Definition 1. In

the context of graph datasets, in which vertices have hierarchical generalization
- specialization taxonomy (a clear example of this are class taxonomies), we have
proposed a measure of how imprecise a given vertex is. For instance, for DBPedia
ontology: T2(class : Artist) < T2(class : Writer) < T2(class : Poet).

T2 = 1 − in(c) (7)

Definition 1. Imprecision of a concept is defined by

in(c) =
height(complete − treec)

height(subtree(c))
(8)

where: concept - graph vertex (e.g. - an ontological class), height(x) - number of
levels of a tree of concepts (e.g. ontology, specialization-generalization relations),
complete−treec - tree of specialization-generalization (like class taxonomy) that
concept c is a member of, subtree(c) - tree of concepts starting with concept c
and following all specialization relations downwards

T3 - degree of covering - Quality measure indicating what percentage of
the complete dataset is involved in the summary, see (9)

T3 =
|S|
|D| (9)

where |S| - the number of retrieved subjects, |D| - size of the dataset
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TG
1 - degree of subject appropriateness - a novel truth value created for a

heterogeneous data scenario, see (10). This truth value indicates the consistency
of chosen class. If all vertices taken for summary have the same attributes - the
value is 1. This is a very important quality measure on case of graph datasets,
as subject selection may be dynamic, and therefore it may be that a subclass of
chosen class is much more consistent that selected class. Also, it might be used
for automatic subject selection.

TG
1 =

∑|A|
i=1 count(ai)
|S| ∗ |A| (10)

where A is the set of all attributes, count(ai) is the number of retrieved subjects
that have this attribute, S - number of retrieved subjects for summary (Table 3)

TG
2 - degree of summarizer order - a novel truth value created for a graph

data scenario, see (11). This truth value is related to the number of graph edges
that separate the subject from an attribute. See Example 7.

TG
2 =

1
|path(S, ai)| (11)

where |path(S, ai)| is a length of a path between the subject S and the
attribute ai.

TG
3 - degree of linkage - a novel truth value created for a interlinked data

scenario, see (12). This truth value is related to the number of datasets involved
in creating of the summary, and is increasing proportionally to this number. See
Example 7.

TG
3 = 1 − 2−|nD| (12)

where |nD| is the number of datasets involved in the summary.

Example 7. In Fig. 4, TG
2 (a1) = 1, TG

2 (a1b1) = 1
2 .

For |nD| = 1, TG
3 = 0, for |nD| = 2, TG

3 = 1
2 and for |nD| = 3, TG

3 = 3
4 .

Table 3. T3 and TG
1 for selected classes in the context of DBPedia

Class Count T2 T3 TG
1

dbpedia:Agent 2371260 0.5 0.79 0.01

dbpedia:Settlement 442280 0.62 0.147 0.14

dbpedia:Insect 114855 1 0.0383 0.45

dbpedia:Work 396046 0.37 0.13 0.13

dbpedia:WrittenWork 51019 0.5 0.017 0.33

dbpedia:Album 93826 1 0.031 0.6
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5 Application - Generating Linguistic Summaries for
LinkedData

We have run several experiments of using our method in Linked Data, starting
with DBPedia (since it can be considered a ‘central’ point for Linked Data [16]).
The computational cost of our method is the cost of creating normal linguistic
summaries for relational databases with the overhead of data retrieval from graph
to a relational-like model. In our experiments we have used publicly available
SPARQL endpoints and Apache Jena, hence the initial step was downloading
the data to a local database using a multi-threaded Java Program. For fuzzy
logic related computations we have used jFuzzyLogic library [17]. Table 4 shows
some examples of generated summaries, but only those spanning across several
endpoints.

Table 4. Linguistic summaries created for integrated multiple graph datasets, which
are made possible by methods proposed in this paper - interlinking and retrieving
higher order attributes

No. Summary Datasets T1 T2 T3 TG
1 TG

2 TG
3 Tfinal

1 About quarter
Scandinavian writers
write mystery books

Bookmashup
DBPedia

0.31 0.75 0.006 0.08 0.5 0.5 0.23

2 A lot of Oscar-winning
actors are of
European descent

DBPedia
Eurostat

0.34 0.75 0.001 0.61 0.5 0.5 0.45

3 Most of bands have a
guitar player

Musicbrainz
DBTune
DBPedia

0.53 1 0.007 0.04 0.5 0.75 0.47

4 Some airlines are owned
by Asian
governments

DBPedia YAGO3
Eurostat

0.91 1 0.001 0.07 0.5 0.75 0.53

5 Some mammals are
human sources of
food

DBPedia Umbel
GeoSpecies

0.64 0.3 0.002 0.1 0.5 0.75 0.38

6 Conclusions and Future Work

In this paper we have presented a novel method of generating and evaluating lin-
guistic summaries for distributed graph datasets. We have shown how to extract
data for summarization in the basic form, and how to use the fact that vertices
are interconnected to each other in order to obtain new information. That is: gen-
eralization of summarizer and qualifier (along with proposal of a novel measure
of a ‘imprecision’ of a notion), ways to retrieve information from several datasets
interlinked in different ways (equivalence links between properties and vertices),
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and methods and benefits of using higher order attributes for summarization.
Apart of adapting some existing quality measures - degree of imprecision and
degree of coverage, we have also proposed new ones, specific for graph datasets
- degree of subject appropriateness, degree of linkage and degree of summarizer
order.

Proposed method has been thoroughly tested on Linked Data, which is a
global distributed graph dataset. We have shown that our proposals result in
obtaining new knowledge, with summaries spanning across several datasets, and
that proposed quality measures successfully indicate various characteristics of
these summaries.
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Abstract. In this paper we propose an extension to the Fuzzy Cognitive
Maps (FCMs) that aims at aggregating a number of reasoning tasks into
a one parallel run. The described approach consists in replacing real-
valued activation levels of concepts (and further influence weights) by
random variables. Such extension, followed by the implemented software
tool, allows for determining ranges reached by concept activation levels,
sensitivity analysis as well as statistical analysis of multiple reasoning
results. We replace multiplication and addition operators appearing in
the FCM state equation by appropriate convolutions applicable for dis-
crete random variables. To make the model computationally feasible, it
is further augmented with aggregation operations for discrete random
variables. We discuss four implemented aggregators, as well as we report
results of preliminary tests.

Keywords: Fuzzy Cognitive Maps · FCM · Discrete random variable

1 Introduction

Fuzzy Cognitive Maps (FCMs) are a well-known tool for modeling and qual-
itative analysis of various problems [1–4]. They use a simple representation of
knowledge in a form of a directed graph, in which vertexes are interpreted as con-
cepts and edges attributed with weights as causal relationships. FCMs exhibit
certain similarity to neural networks as regards structural properties and rea-
soning techniques. However, they are considered a semantic modeling tool: con-
cepts, which are typically identified by experts, occur in the problem domain,
and weights specifying influences can be explained based on experts knowledge
or data used in a learning process. Below we provide a short theoretical intro-
duction to FCMs.

Let C = {c1, . . . , cn} be a set of FCM concepts. A state of the FCM is an
n-dimensional vector of concept activation levels (n = |C|), which, depending
on a setting, are real values from [0, 1] or [−1, 1].

Causal relations between concepts are represented in an FCM by edges and
assigned weights. A positive weight of an edge linking two concepts cj and ci
models a situation, where an increase of the level of cj results in a growing ci; a
negative weight is used to describe the opposite rapport. Often, during modeling
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 344–355, 2016.
DOI: 10.1007/978-3-319-39378-0 30
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an ordinal scale of linguistic weights is employed. The symbolic names are then
mapped onto a set of real values from the interval [−1, 1], e.g. strong negative
(−1), negative (−0.66), medium negative (−0.33), neutral (0), medium positive
(0.33), positive (0.66), strong positive (1.0).

A representation of FCM, which is used during reasoning, is an n × n influ-
ence matrix W = [wij ]. A value of an element wij corresponds to a weight of the
edge linking concepts cj and ci (0 values are used, if there is no link). Reasoning
with FCM consists in building a sequence of states: α = A(0), A(1), . . . , A(k), . . .
starting from an initial vector A(0) of concepts activation levels. Successive ele-
ments are calculated according to the formula (1). In the k + 1 iteration the
vector A(k) is multiplied by the influence matrix W , then the resulting acti-
vation levels of concepts are mapped onto the assumed range by means of an
activation (or squashing) function S.

Ai(k + 1) = S(
n∑

j=1

wij Aj(k)) (1)

Commonly used activation functions include bivalent or trivalent step func-
tions, a linear function with cutting off values beyond [−1, 1], various sig-
moidal functions including the logistic function or the hyperbolic tangent. In
our experiments we have also used another S-shaped function Sexp defined as
Sexp(x) = 1 − exp(−mx) if x ≥ 0 and exp(−mx) − 1, if x < 0. The coefficient m
allows to adjust the curve slope.

Basically, a sequence of consecutive states α = A(0), A(1), . . . , A(k), . . . is
infinite. However, it was shown that after k iterations, where k is a number close
to the rank of matrix W , a steady state is reached or a cycle occurs.

The sequence of states α can be interpreted in two ways. Firstly, it can
be treated as a representation of a dynamic behavior of the modeled system.
In this case there exist implicit temporal relations between consecutive system
states and the whole sequence describes an evolution of the system in the form
of a scenario. Under the second interpretation, the sequence represents a non-
monotonic fuzzy inference process, in which selected elements of a steady state
are interpreted as reasoning results. In both cases results of reasoning with FCMs
can be interpreted only qualitatively, as they strongly depend on granularity of
weights and the activation function used. For example, rather a few scenario
steps indicating the predicted development tendencies should be considered or,
in the case of reasoning, meaningful results can be associated to an ordering of
activation levels in a steady state and their proportions.

Both applications of FCMs usually involve executing them for multiple com-
binations of initial activation levels of concepts: either to test several scenarios
starting from various initial states, perform sensitivity analysis or to validate
reasoning results for several inputs.

In this paper we propose an extension to the FCM model, named FCM4DRV,
that aims at aggregating a number of reasoning tasks into a one parallel run.
The described extension was motivated by the problem of qualitative evalua-
tion of reasoning results for an FCM model of risks related to IT security [5–7],
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however, it is rather a general one, than tailored for a specific purpose. The idea
behind FCM4DRV consists in replacing real-valued activation levels of concepts
(and further influence weights) by random variables. Such extension, followed by
the implemented software tool, allows for statistical analysis of multiple reason-
ing results. We replace multiplication and addition operators appearing in FCM
state equation by appropriate convolutions applicable for discrete random vari-
ables. To make the model computationally feasible, we further augment it with
aggregation operations for discrete random variables. We discuss four imple-
mented aggregators, as well as we report preliminary test results for an FCM
model, which was examined in our previous work [8].

The paper is organized as follows: next Sect. 2 discusses related works and
gives a motivation for FCM extension. It is followed by Sect. 3, which intro-
duces FCM4DRV. Next Sect. 4 presents four implemented aggregators. Results
of experiments are reported in Sect. 5. Last Sect. 6 provides concluding remarks.

2 Related Works

Fuzzy Cognitive Maps (FCMs) were proposed by Kosko [1] as a method for spec-
ification and analysis of causal relations between concepts. A large number of
applications of FCMs were reported, e.g. in project risk modeling [9], crisis man-
agement and decision making, analysis of development of economic systems and
the introduction of new technologies, traffic prediction [10], ecosystem analy-
sis [11], signal processing and decision support in medicine. A survey on Fuzzy
Cognitive Maps and their applications can be found in [3].

Over last 15 years a number of FCM extensions have been proposed. Fuzzy
Gray Cognitive Maps [12] use gray numbers (pairs defining interval bounds)
as weights in influence matrix. In Intuitionistic FCMs [13] weights of influence
matrix are also pairs of numbers, the first expresses an impact (μ), the second
a hesitation margin (π). Dynamic Random FCMs [14] introduce probabilities of
concept activation, as well as a capability of updating weights during execution.
Other extensions described in [4] include Rule-based FCMs, Fuzzy Cognitive
Networks and Fuzzy Time Cognitive Maps. The model of RFCMs (Relational
Fuzzy Cognitive Maps) proposed of in [15] shares to a certain extent features of
the discussed FCM4DRV approach. It used fuzzy numbers as concept activation
levels and fuzzy relations to define their influences.

In our previous works [5–7] we have proposed to use FCMs for evaluation
of risk related to security of IT systems. FCM models were hierarchical struc-
tures, in which concepts represented assets, risk factors and countermeasures.
The FCM reasoning technique was then applied to perform risk aggregation: at
first risk factors and countermeasures were combined, then states of low-level
assets and their influences allowed to assign utility values to assets placed at
higher levels in the hierarchy. However, the method faced the problem of correct
benchmarking for obtained risk levels, e.g. a question can arise: how to map a
value 0.12 determined for a certain asset to an ordinal scale of low, medium and
high risk. Selection of thresholds supporting such scale can be determined by
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evaluating numerous combinations of countermeasures. Moreover, preferably it
should be based on statistical distribution of system features, e.g. according to
best practices some security functions are likely to be implemented more often
than others. One of the motivating applications of described here extension to
the FCM model was to facilitate thresholds selection, based on percentile ranks
of concept activation levels.

3 Fuzzy Cognitive Maps for Discrete Random Variables

Random variable X : Ω → E is a function that maps a sample space Ω into
a measurable space E. The sample space represents a set of experiments, mea-
surements or events. A random variable X is called discrete, if E is finite or
countable, otherwise it is continuous. Probability function p(x) = P (X = x),
assigns a value from [0, 1] to an outcome of a random variable X. Moreover, it
is required for the sum (or integral) of p(x) over x ∈ E to be equal 1.0.

In the presented model random variables are used as concept activation levels
of Fuzzy Cognitive Maps. Although we assume, that their values lay within a
certain interval [min,max] ⊆ R, e.g. min = −1, max = 1, we consider them
discrete, i.e. their ranges E are finite. In particular, we represent them as dis-
crete probability mass functions p : E → [0, 1], as well as apply addition and
multiplication operators appropriate rather for discrete random variables than
continuous. Special cases of random variables are singletons, which have a single
value c: Ec = {c} occurring with the probability pc(c) = 1.

3.1 Arithmetic of Discrete Random Variables

Let X and Y be two independent discrete random variables (DRV) with prob-
ability distributions px(x) and py(z). Their sum Z = X ⊕ Y is also a random
variable with the range Ez = {z : ∃(x, y) ∈ Ex × Ey ∧ z = x + y} and whose
probability distribution pz(z) is a convolution of px(x) and py(y) (2)1.

pz(z) =
∑

x∈Ex

∑

y∈Ey

z=x+y

px(x)py(y) (2)

Similarly, a product V = X ⊗ Y is a random variable with the range Ev =
{v : ∃(x, y) ∈ Ex × Ey ∧ v = x · y} and a probability distribution given by (3)

pv(v) =
∑

x∈Ex

∑

y∈Ey
v=x·y

px(x)py(y) (3)

Let S : R → R be a scalar function. It induces a function Ŝ : {Xi} → {Xi}
in the domain of DRVs {Xi}. Variable Y = Ŝ(X) is defined as:

Ey =
⋃

x∈Ex

S(x) and p(y) =
∑

x∈Ex

y=S(x)

p(x) (4)

1 Convolution is often defined as pz(z) =
∑

x px(x)py(z− x). Formula (2) is an equiv-
alent definition.
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3.2 Formulation of FCM4DRV

In FCM4DRV, which is an extension to the basic FCM model, concept activation
levels are represented by discrete random variables (DRVs), similarly the influ-
ence matrix W is an n × n matrix of DRVs and FCM states are n-dimensional
vectors of DRVs. Let us observe, that a classical FCMs can be considered a spe-
cial case of the extended model, where all DRVs are just singletons (single values
with assigned probability 1). Under such assumptions, the FCM state Eq. (1) can
be rewritten as in (5) using defined earlier summation ⊕ and multiplication ⊗
operators, as well as an activation function Ŝ defined in the domain of DRVs.

Ai(k + 1) = Ŝ(wi1 ⊗ A1(k) ⊕ wi2 ⊗ A2(k) ⊕ · · · ⊕ win ⊗ An(k)) (5)

Analogously to the classical model, execution of FCM4DRV produces a
sequence of states α = A(0), A(1), . . . , A(k), . . . , whose convergence can be
checked based on selected distance measure for DRVs.

Unfortunately, in most practical situations calculation of a new FCM state
with formula (5) is computationally unfeasible. Let us consider a simple case of
n × n influence matrix F of singletons (i.e. a real-valued matrix) and an initial
state vector A0 of DRVs, each having ranges of k elements. Then, in the worst
case the DRV ranges in A1 will comprise kn elements, k2n elements for A2, kin

for Ai and so on. If we assume quite a reasonable values k = 100 and n = 10,
then probably the calculation of A1 with 10 · 10010 = 1021 mapping elements
would fail.

To handle this problem we introduce additional aggregation operation into
the state equation that is applied to partial results obtained during evaluation
of expression appearing on the right side of the state Eq. (5). An aggregation
function Ĝ converts an input DRV X into a smaller (i.e. having less numer-
ous mapping) variable Y = Ĝ(X). It is expected that the number of elements
appearing in the range of Y is bounded by a selected positive integer: |EY | < k
and certain equivalence criteria are satisfied Y ≈ X.

The FCM state equation extended by aggregation function Ĝ is given by (6).
It reflexes the most natural order of evaluating expressions (from left to right).

Ai1(k + 1) = fi1 ⊗ A1(k)
Ai2(k + 1) = Ĝ(A11(k) ⊕ (fi2 ⊗ A2(k)))
...
Ain(k + 1) = Ĝ(A1n−1(k) ⊕ (fin ⊗ An(k)))
and finally:
Ai(k + 1) = Ŝ(Ain(k + 1))

(6)

Equivalence relation Y ≈ X for random variables can be based on various
measures, e.g. equality or expected values E(X) = E(Y ) or distances between
two distributions. At this point, however, we did not make attempt do qual-
itatively evaluate aggregation functions and analyze their influence on states



Combining Fuzzy Cognitive Maps and Discrete Random Variables 349

reached during reasoning. Instead in the next Sect. 4, we describe a few proto-
type aggregation procedures implementing variants of Ĝ function that were used
during experiments.

4 Aggregators

For a discrete random variable X its probability mass function pX : EX → [0, 1]
is actually represented as a set of pairs: pX = {(x, p) : x ∈ EX ∧ p ∈ [0, 1]}.
In our experiments EX was finite and hence bounded: EX ⊂ [xmin, xmax]. The
basic idea behind at least three aggregators described in this section consists in
performing one-dimensional clustering. Values x ∈ EX laying close are grouped
into clusters EX1, . . . , EXi, . . . EXk and each cluster EXi is replaced by a sin-
gle pair (vi, pi). The method of establishing vi and pi depends on algorithm.
Typically, vi is obtained by kind of averaging values in EXi and pi by summing
probabilities.

4.1 Simple k-means

Simple k-means is an adaptation of well-known k-means clustering algorithm.
The main difference is that initial centroids are not randomly selected, but evenly
distributed within the range [xmin, xmax]. For the resulting representation pV =
{(vi, pi)} of the output random variable V , elements vi are cluster centers and
pi is a sum of probabilities assigned to elements EXi = {xij} forming a cluster:
pi =

∑
x∈EXi

p(x). The method does not assure that the mean value of X will
be kept by V . In spite of this, during experiments E(X) and E(V ) occurred to
be quite close.

4.2 DBSCAN

DBSCAN (Density-based spatial clustering of applications with noise) is a widely
used clustering algorithm characterized by low complexity O(n logn). It is con-
trolled by two parameters ε – minimal distance between data points forming a
neighborhood and λ – minimal cluster size. During algorithm execution points,
whose neighborhood size is smaller than λ are rejected as outliers. On the other
side, neighborhoods having at least λ elements are converted to clusters and
further expanded. Outcome of the algorithm, including the number of clusters,
depends on established values of ε and λ.

The discussed aggregator has been based on DBSCAN implementation in
JavaML library [16] with the following parameters: ε = xmax−xmin

k , where k is
an upper limit on the number of resulting clusters and λ = 6. After running
the clustering algorithm, values belonging to the clusters EXi were converted to
pairs (vi, pi) according to formula (7).

pi =
∑

x∈EXi
pX(x) and vi = 1

pi

∑
x∈EXi

x · pX(x) (7)
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4.3 UniBins Aggregator

UniBins aggregator divides the range [xmin, xmax] of an input variable X into k
uniformly distributed bins represented by values v0, . . . , vk−1. Bins borders are
fuzzy and a level, at which an input element x can be assigned to a bin is quan-
titatively described by a bin’s membership function. This concept is illustrated
in Fig. 1.

Fig. 1. UniBins aggregator. Value x with the probability p laying between v1 and v2
contributes µ1 · p to probability of v1 and µ2 · p to probability of v2. Factors µ1 and µ2

are determined according to triangle membership functions around v1 and v2 marked
with dash-dot and dashed lines.

4.4 Percentile Rank Aggregator

Percentile rank aggregator assigns equal probability Δp = 1/k to each output
value, while preserving the percentile ranks of input distribution. The assumed
granulation level is Δp. The basic algorithm idea is shown in Fig. 2a. Let us
analyze the sequence (xi, pi), . . . , (xi+3, pi+3). As pi + pi+1 + pi+2 < Δp < pi +
pi+1 + pi+2 + pi+3 the value vk+1 will be placed between xi+3 and xi+4. The

Fig. 2. PercentileRank aggregator: (a) multiple input values aggregated into one (b)
significant change of amplitude resulting in multiple output elements
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exact position depends on Δp − pi − pi+1 − pi+2, the smaller the value is, the
distance between xi+3 and vk+1 is smaller.

Another feature of the percentile rank aggregator is its capability to produce
multiple output values in case of rapid changes of input PMF. This is illus-
trated in Fig. 2b: placement of output values v1, . . . , v6 correspond to points
of intersection of line linking xi and xi+1 with successive percentile ranks:
2Δp, 3Δp, . . . , 7Δp.

5 Experiments and Results

In this section we present results of experiments aiming at demonstrating com-
putational feasibility of the proposed FCM4DRV model. We implemented a pro-
totype software tool in Java, which supports operations on DRVs, provides dis-
cussed earlier aggregation procedures and allows to conduct FCM reasoning.

Described further experiments were performed on an FCM model that was
previously discussed in [8]. The map presented in Fig. 3 specifies concepts and
their influences intended to characterize the domain of academic units, e.g. uni-
versity departments. Although the model accuracy may be disputable, it was

Fig. 3. Fuzzy cognitive map for analysis of academic units development [8]. Lin-
guistic values (− − −, −−, −, +, ++, + + +) are mapped to numeric weights
(−1,−0.66,−0.33, 0.33, 0.66, 1).
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selected as a benchmark, because it was previously quite extensively tested.
Moreover, it has easy to perceive semantic, what facilitates the analysis.

The influence matrix used during the experiments comprised single real val-
ues, i.e. singletons with assigned probability 1. However, all elements of the initial
state vector, were random variables of 100 values uniformly distributed in the
interval [−1, 1]. The only exception was the input concept Law, which in each
iteration was reset to the single value 1 with probability 1.0. The aggregators
were configured to keep sizes of DRVs limited to k = 100.

All experiments were conducted using Java 8, run on Intel Core i7-2675QM
laptop at 2.20 GHz, 8 GB memory under Windows 7. The number of iterations
was limited to 25, as regardless of activation function and aggregator used all
calculations converged to steady states within that bound. Execution times (25
iterations) depended on aggregators: for Simple k-means execution times ranged
at 9 min 41 s, for DBSCAN about 6 min 51 s, for UniBins about 5.5 s and, finally,
4 s in the case of PercentileRank.

Figure 4 shows typical probability distributions obtained by applying previ-
ously discussed aggregators. We have selected for comparison the concept Teach-
ing workload at iteration 6. Plots (a) and (c) show that observed PMFs are

Fig. 4. Comparison of PMFs for four aggregators: (a) simple k-means (b) DBSCAN
(c) UniBins (d) PercentileRank



Combining Fuzzy Cognitive Maps and Discrete Random Variables 353

Fig. 5. Comparison of percentile scores obtained (a) UniBins aggregator (b) Percentile
Rank aggregator. In both cases exp activation function was used.

mixtures of 3 (simple k-means) or 2 (UniBins) Gaussian distributions. A typical
feature of DBSCAN aggregator is a small number of resulting clusters and in con-
sequence a significant reduction of the number of values occurring in a resulting
discrete random variable. In this case the input variable comprising 600 elements
was converted to 4 clusters. The plot (d) shows results of applying PercentileR-
ank aggregator. High amplitudes in other diagrams, e.g. (a) correspond to high
frequencies of values.
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The primary goal of FCM4DRV is to provide data enabling statistical analysis
of ranges reached by concept activation levels during reasoning. Figure 5 illus-
trates such kind of analyzes. It shows how percentile scores for selected concepts
changed over iterations. The left column (a) gives results for UniBins aggregator,
while (b) for PercentileRank. In both cases Sexp activation function was used.
Although the results are qualitatively similar, the plots suggest that the second
aggregator is probably more appropriate for analyses related to percentile ranks,
as it provides better separation of activation levels corresponding to k − 1 cut
points (see Sect. 4.4).

It should be noted that reasoning with FCM4DRV allows only to establish
ranges of activation levels, full information on FCM states that can be reached
in a classical reasoning process is not available. However, as it was mentioned in
Sect. 2, such outcomes fits our needs related to benchmarking of risk levels during
risk assessment. In this case FCMs were used for hierarchical aggregation and we
were interested in values obtained after m iterations, where m is the hierarchy
depth. On the other hand, activation levels reached in a steady state can be
interpreted as expected values for a certain initial distribution. In particular
reasoning with FCM4DRV can be used for sensitivity analysis focused on a
certain concept, e.g. we may consider an experiment, in which initial values for
one concept are uniformly distributed and all other are fixed as singletons. We
may also put forward a claim that theoretically, for experiments similar to the one
discussed, results obtained in the first iteration may provide enough information
to describe predicted tendencies: as initial activation levels of concepts cover
their ranges, sets of values determined in the first iteration comprise all possible
reasoning outcomes. However, the use of aggregators introduces errors, which
were not at this point analyzed.

6 Conclusions

In this paper we discuss FCM4DRV, an extension to classical FCM model con-
sisting in replacing concept activation levels with discrete random variables. The
proposed model aims at establishing ranges of activation levels reached during
reasoning with FCMs. We were motivated by a particular problem of selecting
accurate thresholds during IT security risk analysis with FCM [5–7], however,
the presented here solution is more general and can be applied to a variety of
problems. The FCM4DRV extension includes augmenting classical FCM state
equation with appropriate operators applicable to DRVs, as well as introducing
aggregators, special functions that transform DRVs into similar ones, yet less
memory consuming and requiring smaller computational effort. We implemented
a prototype software tool supporting the FCM4DRV model and we reported
experiments demonstrating its computational feasibility and typical results.

We plan to develop features that are still missing: first of all provide tools for
assessing similarity measures between DRVs, errors introduced by aggregators,
as well as provide analysis on their influence on reasoning results.
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Abstract. The electrical energy cost represents a significant fraction of
the total cost in a water supply system. Any optimization in pumping
operational procedures results in a reduction of this cost. The aim of
this paper is the optimization of pump operation in a water distribution
system, located at Guarapuava, Brazil. For this, we used two techniques
of Natural Computing: Genetic Algorithms and Shuffled Frog Leaping
Algorithm. Both techniques were effective when comparing with a tradi-
tional approach. However, in our experiments, the SFLA achieved lower
costs.

Keywords: Water supply · Electrical energy · Genetic Algorithms ·
Shuffled Frog Leaping Algorithm

1 Introduction

In Brazil, the electrical energy cost of a water supply system varies between
9 % and 24 % of the company’s expenses, depending on the country region [20].
In some places, it is the second largest expense. Improving the pumping opera-
tional procedures can save energy and, as a consequence, minimize the company’s
expenses, without any additional investment.

In the domain of water distribution, several studies have been conducted for
optimizing the design of Water Distribution Networks (WDN) [15,21,24]. Jowwit
and Germanopoulos [11] used Linear Programming to produce optimal pumping
schedules. Pasha and Lansey [19] also adopted Linear Programming. However,
they considered online data into the model for optimizing the pump operation in
real-time. Also in the real-time pumping-scheduling problem, Giacomello et al.
[8] applied a hybrid optimization method, based on Linear Programming and
Greedy Algorithm. Price and Ostfeld [22] used a skeletonized operational graph.
In order to handle with the uncertainty in water demand, Goryashko and
Nemirovski [10] employed the Robust Counterpart Methodology in Linear Pro-
gramming Models. Outeiro et al. [4] dealt with such uncertainty by including
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fuzzy linear programming to their models. McCormick and Powell [16] derived a
simplified model from a standard hydraulic simulator, and used a descent method
to produce initial schedules, as well as a two-stage simulated annealing to gen-
erate optimal solutions. Fracasso et al. [7] used Markov Decision Processes in a
framework to optimize the electricity costs, as well as to prevent water demand
interruption by minimizing the risk of pipe rupture.

Moreover, several works regarding the use of Natural Computing techniques
to solve the optimal design of WDN have also been reported in the scientific lit-
erature. The first studies of Natural Computing for reducing the energetic cost of
pumping systems appeared in 1994 [17]. Originally, they employed the Genetic
Algorithms (GA). Since then, several authors used this approach [2,17,25].
However, according to the authors, in order to obtain better results for pump
scheduling, Genetic Algorithms should be hybridized with other techniques. The
methodology used by Kurek and Ostfeld [12] combined SPEA2 (an evolution-
ary multiobjective algorithm) with EPANET (a hydraulic simulation software)
for finding a trade-off between pumping costs and water quality. Odan et al.
[18] generated optimal pump schedules using A MultiALgorithm-Genetically-
Adaptive-Method (AMALGAM) and other methodological approaches to enable
this scheduling in real-time. López-Ibánez et al. [13] developed an application
based on the Ant Colony Optimization technique for the optimal scheduling of
pumps. Rajabpour et al. [23] determined the optimal operation of the pump-
ing stations using a Jumping Particle Swarm Optimization (JPSO) algorithm
to achieve the minimum energy cost. Eusuff and Lansey [5] developed the
SFLANET, a computer model that uses the Shuffled Frog Leaping Algorithm
(SFLA) with the EPANET to determine the optimal discrete pipe measures for
new pipe networks.

Since the reduction of expenses in water supply systems is an important
problem to solve, with economic impacts, we aim to compare two important
techniques of Natural Computing in this work: GA and SFLA. These algorithms
were implemented and tested using real data from the water distribution system
of Guarapuava, a city in the South of Brazil, with a population of 167,328 in
2010 (souce: IBGE – Brazilian Institute of Geography and Statistics).

The paper is structured as follow: the problem is presented in Sect. 2; Sect. 3
discusses the Materials and Methods used in this work; Sect. 5 describes the
results; finally, Sect. 6 outlines the conclusions and some directions for future
work.

2 Problem Description

The SANEPAR (Sanitation Company of Paraná) is the company responsible for
water supply and water treatment in the city of Guarapuava. The water catch-
ment is done in a river (Rio das Pedras) using two pipelines (diameters: 400 mm
and 350 mm; length: 1,112 m; elevation: about 100 m). Three pumps compose
the water catchment station: two of 447,42 kW and one of 335,56 kW, with
respective water flow rate of 594m3/h and 432m3/h. Only two pumps can work
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Fig. 1. Guarapuava’s water supply system

Fig. 2. Average hourly water demand in Guarapuava (January 2013)

together due to the station capacity for producing drinking water (currently, lim-
ited to 1,188m3/h). The station has four interconnected reservoirs with 9,200m3

of maximum capacity. In order to avoid cavitation in the water distribution net-
work, as a rule, the minimum volume adopted is 1/3 of the maximum capacity.
A simplified scheme of Guarapuava’s water supply system is depicted in Fig. 1.

In Brazil, the electricity tariffs are determined by ANEEL (Brazilian Electric-
ity Regulatory Agency), which establishes the charges for each type of company.
The water distribution companies pay the tariff called “green horo-sazonal”.
This means that there are different tariffs for electricity (kWh), according to
the periods of the day. The tariff is more expensive in peak hours, between 18 h
and 21 h. In the period of the gathered data, the cost in peak hours was R$
0,59/kWh and in other hours was R$ 0,14/kWh.

The data used in this work are the water demand measurements in Guara-
puava, during January 2013. A model was developed from such data, in order
to obtain an average water demand behavior for each hour of a day (see Fig. 2).
There are 24 data points, corresponding to the 24 h. The first data point is the
average water demand from 00:01 am to 01:00 am, considering all the 31 days of
January 2013. The second point is the average demand from 01:01 am to 02:00,
and so on.
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The energy daily cost of the pump operation in the water distribution system
of Guarapuava can be formulated as the objective function Z (Eq. 1):

Z =
24∑

t=1

[441 ∗ T (t) ∗ X1(t) + 331 ∗ T (t) ∗ X2(t) + 441 ∗ T (t) ∗ X3(t)] (1)

where 441 and 331 values are the demand in kWh for each motor i (i = 1, 2, 3);
T (t) is the electricity consumption tariff in R$/kWh for each period t (t =
1, 2, ..., 24); Xi(t) is the amount of time that the motor i must be working (pump-
ing) for each period t.

The formulation of the optimal pump scheduling problem relies on the fol-
lowing set of assumptions:

1. each pump can work a fraction of time each hour: 0 ≤ Xi(t) ≤ 60;
2. the maximum and minimum capacity of the reservoirs must be observed:

3066 ≤ V (t) ≤ 9200;
3. the treatment capacity must be equal or greater than the total pumped water:

594 ∗X1(t)+432 ∗X2(t)+594 ∗X3(t) ≤ 1, 188, where 594 and 432 values are
the amount of water that each motor i can pump working an entire hour.

3 Natural Computing Approaches

Natural Computing uses nature as inspiration for the development of new com-
putational techniques that can be used to solve complex problems. Among the
developed techniques, there are the bio-inspired algorithms. They are based on
populations with two main approaches: (i) evolutionary algorithms (biological
evolution) and (ii) swarm algorithms. Genetic Algorithms (GA), Evolutionary
Programming, Evolutionary Strategy and Genetic Programming are examples
of evolutionary algorithms. Their evolutionary operators change the individ-
ual characteristics. Ant Colony Optimization, Particle Swarm Optimization and
Shuffled Frog Leaping Algorithm (SFLA) are swarm algorithms. These algo-
rithms are based on the collective behavior of individuals changing their knowl-
edge [3]. In common, these approaches rely on the behavior of population ele-
ments, which evolve over time (generations) as a system for solving a certain
problem.

In this paper, two Natural Computing approaches are adopted to optimize
pumping schedule: (i) the GA, using a computational representation of chro-
mosomes as processing elements; and (ii) the SFLA, adopting virtual frogs as
computing units. These techniques are described in this section.

3.1 Genetic Algorithms (GA)

Genetic Algorithms are techniques inspired in the natural evolution, with the
purpose of finding solutions for problems that require search, adaptation and
optimization [9]. A typical implementation of GA is depicted in Algorithm 1.
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Algorithm 1. The Genetic Algorithm
1: pop.init()

2: repeat
3: pop.evaluatePopulation()

4: pop.getBestIndividuals()

5: pop.applyEvolutionaryOperators()

6: until stop criteria = true

First, an initial random population is generated (Line 1 in Algorithm 1).
Note that the random individuals generated in this step must satisfy all the
constraints of the problem. Then, from Line 2 to Line 6, an evolutionary process
is executed on the generated population of chromosomes (candidate solutions).
During the process, each chromosome is evaluated through fitness (Line 3), which
is a measure of how adequate a candidate solution is to solve a given problem.
Next, a set of chromosomes (with the best fitness values) are selected (Line
4). The genetic operators, such as crossover and mutation, are applied over the
selected chromosomes (Line 4), improving the population and/or introducing
diversity. Then, the evolutionary process is repeated, until a stop criteria is
satisfied (Line 6).

In our approach, the crossover and mutation operators are implemented as
follows: (i) the crossover takes two individuals as parameters and performs cross-
ing in a cutoff point. The cutoff point can be fixed or randomly settled. After
making the crossing, the new individuals are evaluated according to the problem
constraints. If valid individuals are generated, they replace the parents in the
next generation. (ii) In the mutation, once an individual is selected, a variation
occurs over a random allele representing a peak hour of power consumption.

3.2 Shuffled Frog Leaping Algorithm (SFLA)

The SFLA algorithm is a memetic metaheuristic [6], designed to search a solution
for an optimization problem using a heuristic search. It is based on the evolu-
tion of memes, produced by individual interactions (local search) and a global
information exchange among individuals in a population. Meme is an intellectual
or cultural information unit that is transmitted from an individual to another,
analogous to the biological evolution [1].

In SFLA, we have “frogs” that evolve through a memetic evolution. The
frogs are hosts for memes, i.e., a vector of memotypes. A memotype represents
an idea, similar to a gene in a GA. The SFLA gradually improves ideas contained
in each frog within a virtual population. In SFLA, ideas are passed among all
individuals in the population, while in GA the interaction is only between parents
and siblings.

In order to better understand the dynamics of the algorithm, we must con-
sider the following situation: a group of frogs leaping in a swamp. This swamp
has a number of rocks in certain places, where the frogs can jump. The goal of
the frogs is to find the stone with the maximum amount of available food, as
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Algorithm 2. The Shuffled Frog-Leaping Algorithm
1: Input{N, im, iN, F};
2: Output{Thebestfrog};
3: Generate a random population of F frogs;

4: Calculate the fitness for each frog;

5: for i = 1 to N do
6: Rank the F frogs in the decreasing order by fitness value;

7: Select the frog with the best position in the swamp (Xg);
8: Shuffle the frogs among the Im Memeplexes;

9: for j = 1 to Im do
10: for k = 1 to iN do
11: Define the best (Xb) and the worst (Xw) frogs in Memeplex j;
12: Generate a new frog (Xnew) by improving the position of Xw

using Eqs. 2 and 3;

13: if the position is improved then
14: Xw ← Xnew;

15: else
16: Randomly generate a new frog (Xrand);
17: Xw ← Xrand;

18: end if
19: end for
20: end for
21: end for
22: Output the best solution;

soon as possible, thus improving their memes. A more detailed description of
SFLA can be seen in Algorithm 2.

The Algorithm 2 shows two main schemes: a global execution flow and a
local search, where occurs memetic evolution. In the first the control variables
are defined (line 1): number of generations (N ) – how many generations will be
realized in the execution (the main loop); number of memeplex (Im) – memeplex
is a subset of frogs; number of evolution (iN ) – iterations executed for each
memeplex; number of frogs (F ) – population size of frogs, which are possible
solutions. The line 2 defines the output: the best frog (i.e., the best solution).

The other variables are: (Xw) is the position of the worst frog in memeplex,
that has the greater fitness value in the local search space; (Xb) is the position
of best frog in the memeplex, that has the lowest fitness value in the local search
space; (Xg) is the position of the best frog in the swamp, that has the lowest
fitness value in the global search space.

In the line 3, the first population of frogs is randomly generated and checked
whether the created solutions (frogs) are feasible, according to the constraints
of the problem. Next, the fitness of each frog is calculated (line 4).

Then, from lines 5 to 20 occurs the global search. N iterations are performed.
In line 6, the population of feasible frogs is sorted in descending order by the
fitness value. Next, the best global solution in each iteration is selected (the best
frog, Xg) in the line 7.
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The local search starts in the line 8 and ends in the 18, where each memeplex
is improved by cultural evolution (there are Im memeplexes. The loop in the
lines 9–17 defines the number of evolution iterations inside each memeplex. Such
evolution aims to improve the position of the worst frog (Xw) in memeplex, which
is enhanced by the infection process of ideas, using the best frog (Xb) (lines 10
and 11). From lines 12 to 16, if the new generated frog is better than the worst
frog (Xw), then substitute Xw. Otherwise, a new frog is randomly generated to
substitute Xw.

The new frog is generated using the Eqs. 2 and 3 [14].

D = Rand() ∗ (Xb − Xw) (2)

Xnew = D + Xw, DMin ≤ D ≤ DMax (3)

where Xw and Xb are the worst and best frog positions respectively in memeplex;
Rand() generates a random number between (0, 1); and DMin and DMax are the
minimum and maximum allowed change in the position of a frog, respectively.
If XNew is better than the original fitness worst Xw, Xw is replaced by XNew.
Otherwise, the best overall frog Xg is used instead of Xb to carry out the strate-
gic update. If still there is no improvement, a viable solution to replace Xw is
generated randomly. The process continues for a predefined number of iterations
in each memeplex. Then all the frogs are shuffled to exchange global information.
Local search is followed by global, until a predetermined convergence criterion
to be satisfied.

The frog shuffling is the distribution of the frogs among the memeplexes.
After the sorting, for example, if we have Im = 3 (number of memeplexes), frog
ranking 1 goes to memeplex 1, frog ranking 2 goes to memeplex 2, frog ranking
3 goes to memeplex 3, frog ranking 4 goes to memeplex 1, and so on.

4 GA and SFLA Specification

The data structure used for the chromosome and frog instances in GA and SFLA,
respectively, is showed in Fig. 3. This specifies 24 items for estimating the use
of the three pumps, in discrete minutes, per hours in a day. Highlighted in red,
three items represent the peak time interval (from 18 to 20 h). Considering the
Natural Computing approaches, each item refers to an allele in AG chromosome
and a memes in SFLA frog.

Fig. 3. Data structure representing a daily pumping schedule.
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On developing the Natural Computing approaches, we considered the follow-
ing restrictions of the water supply system: (i) the installed treatment capacity
(1188m3) limits the pumping of water to the supply system; (ii) to avoid cavi-
tation, the amount of water in the reservoirs can not be less than 3066m3; and
(iii) the upper level of water in the reservoirs is limited to 9200m3.

To find out an intrinsic system behavior, a preliminary analysis on a monthly
data set (January 2013) was conducted. The analysis is depicted in Fig. 2.

Such analysis revealed the peaks of water consumption. Regardless a day
of the week, the peaks tend to occur from 11 to 15 h and from 18 to 20 h. By
relating the identified intervals and the energy tariffs, the following statements
were confirmed: (i) the last interval is comprised in the peak hours energy cost;
and (ii) it is strongly recommended avoid the use the pumps between 18 to 20 h
to minimize the energy expenses.

For implementing the approaches, the formulation discussed in Sect. 2 were
used, adding the pump operation rules: (i) only two pumps can work together,
i.e., at least one of them must be zero; and (ii) the sum of pump operations
cannot exceed 120 min (maximum time of pumps working together).

5 Results and Discussion

GA and SFLA approaches were developed using the JAVA programming lan-
guage. They were tested by varying the parameters. For GA initial population:
{50, 100, 150, 200}; generations: {50, 100, 200, 1000}; mutation: {0.3, 0.5}, high
rate for promoting gene exchanging and not content updating; crossover: {0.6,
0.9}, previous tests showed that lower crossover rates do not improve the solu-
tions; and cut-off point: fixed, random. For SFLA initial population: {50, 100};
memeplex subsets: {10, 20}; generations: {5, 10}; and evolution in memeplex:
{1, 3}.

In the tests, the best GA individual emerged after 100 generations, among
100 individuals. It was adopted the random cut-off point, using 0.6 and 0.5 for
crossover and mutation rates, respectively. Depicted in Fig. 4(a), the individual
represents a pump-scheduling as follows: (i) inside peak hours: only a 441 kW
engine is used for 39 min, minimizing the energy consumption in the critical
interval; and (ii) outside peak hours: for six hours, the two 441 kW engines
were completely activated. In the remaining hours, a 441 kW and the 331 kW
engines were fully used.

The best SFLA individual arose after 10 generations, among 50 individuals
in 20 memeplex. Depicted in Figure Fig. 4(b), the individual represents a pump-
scheduling as follows: (i) inside peak hours: only a 441 kW engine is used
for 14 min, minimizing the energy consumption in the critical interval; and (ii)
outside peak hours: for three hours, the two 441 kW engines were completely
activated. In the remaining hours, a 441 kW and the 331 kW engines were fully
used.
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Fig. 4. Best individuals for (a) GA and (b) SFLA

6 Conclusion

Managing the energy production and consumption is a crucial issue to any coun-
try. It is related to the national policies to better use the available resources and
grow in a sustainable way. In Brazil, the total energy consumption is about
10.59 MWh/year. From this amount, approximately, 2.5 % of the energy is taken
by the water supply companies for feeding back the economic system with an
important element to produce goods and services, the water. In this context,
generating savings in water supply companies can represent availability to other
purposes.

For reducing operational costs, we investigated the use of Natural Computing
approaches for minimizing the pump operations in water supply systems. In a
use case, we apply the GA and SFLA approaches. The experiments showed that
those approaches can produce substantial reduction of expenditures. The best
individuals of GA (R$ 2,531.20) and SLFA (R$ 2,376.59) achieved savings of
approximately 20 %, when comparing to the real average cost of the company
(about R$ 3,200.00). Also, SLFA saved about 6 % more when compared to GA.

The preliminary results encourage us in a research agenda. As the approaches
were developed adopting only one-month data, we aim to advance in this study,
considering a large-scale dataset. In such a way, we aim to work on water demand
forecasting and water supply system automation.
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Abstract. This paper illustrates a parallel implementation of evolution-
ary induction of model trees. An objective is to demonstrate that such
evolutionary evolved trees, which are emerging alternatives to the greedy
top-down solutions, can be successfully applied to large scale data. The
proposed approach combines message passing (MPI) and shared mem-
ory (OpenMP) paradigms. This hybrid approach is based on a classical
master-slave model in which the individuals from the population are
evenly distributed to available nodes and cores. The most time consum-
ing operations like recalculation of the regression models in the leaves as
well as the fitness evaluation and genetic operators are executed in par-
allel on slaves. Experimental validation on artificial and real-life datasets
confirms the efficiency of the proposed implementation.

Keywords: Evolutionary algorithms · Decision trees · Parallel
computing · MPI · OpenMP

1 Introduction

Decision trees are one of the most known prediction techniques in data mining [13].
Their popularity can be explained by their ease of application, fast operation and
effectiveness. Regression and model trees [12] may be considered as a variant of
decision trees, designed to approximate real-valued functions instead of being used
for classification tasks. Main difference between regression trees and model trees is
that, for the latter, constant value in the terminal nodes is replaced by the regres-
sion planes.

Despite fifty years of research on the decision trees, a few open issues still
remain [16]. To mitigate some of them (e.g. application of heuristics such as
greedy algorithms where locally optimal decisions are made in each tree node)
evolutionary algorithms (EAs) are applied to the decision tree induction [1]. The
strength of such approach lies in global search for splits and predictions, and it
results in higher accuracy and smaller output trees in comparison to popular top-
down decision tree inducers [19]. However, one of the major drawbacks associated
with the application of EAs is relatively high tree induction time, especially for
large scale data. In the recent survey [1] on the evolutionary induction of decision
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 370–379, 2016.
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trees, authors put on the first place in the future trends the need of speeding up
the evolutionary induction.

Fortunately EAs are naturally prone to parallelism and the process of arti-
ficial evolution can be implemented in various ways [5]. There are three main
strategies that have been studied for the parallelization and/or distribution of
the computation effort in EAs:

– master-slave paradigm [3] - parallelization of the most time consuming oper-
ations in each evolutionary loop (usually fitness recalculation);

– cellular (fine-grained) algorithm [15] - redistribution of single individuals
which can communicate only with the nearest individuals (for the selection
and reproduction) based on the defined neighborhood topology;

– island (coarse-grained) model [2] - grouping individuals into sub-populations
that are distributed between islands and can evolve independently.

In this paper, a parallelization with a hybrid MPI+OpenMP approach (which
is considered as providing better efficiency than e.g. pure MPI version [20]) is
proposed to the evolutionary induction of regression and model trees. It is applied
to a system called Global Model Tree (GMT) [6] that is used in many real-life
applications [7]. The main objectives of this work are to accelerate the GMT
system and to enable efficient evolutionary induction of decision trees on large
scale data. Previously, we managed to apply similar idea for parallelizing the
evolutionary induction of classification trees [8]. To the best of our knowledge,
proposed solution is the first research on parallelization the evolutionary induc-
tion of regression or model trees, as there have been no such attempts in the
literature.

This paper is organized as follows. The next section provides a brief back-
ground on the GMT system. Section 3 describes our approach for parallel imple-
mentation of evolutionary tree induction in detail. Section 4 presents experimen-
tal validation of the proposed solution on artificial and real-life datasets. In the
last section, the paper is concluded and possible future works are sketched.

2 Global Model Tree System

The general structure of the GMT system follows a typical EA [17] framework
with an unstructured population and a generational selection. Model trees are
represented in their actual form as univariate trees, so each split in the inter-
nal node is based on a single attribute. If the attribute is nominal, at least one
value is associated with each branch (inner disjunction). In case of a continuous-
valued attribute, the typical inequality tests are applied. Initial individuals are
constructed using greedy strategies [19] on random subsamples of the train-
ing data, and the tests in internal nodes are searched on random subsets of
attributes. Each tree leaf contains a multivariate linear regression model that is
constructed using the standard regression technique [18] with objects associated
with that node. A dependent variable (y) is explained by the linear combination
of multiple independent variables {x1, x2, . . . , xq}:

y = β0 + β1 ∗ x1 + β2 ∗ x2 + . . . + βq ∗ xq, (1)
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Fig. 1. Crossover between two individuals and the resulting offspring. Each individual
has one donor node and one receiver node.

where q is the number of independent variables and βi (0 ≤ i ≤ q) are fixed coeffi-
cients that minimize the sum of the squared residuals of the model. Additionally,
in every node information about training instances associated with the node is
stored. This enables the algorithm to perform more efficiently local structure
and tests modifications during applications of genetic operators.

Tree-based representation requires developing specialized genetic operators
corresponding to classical mutation and crossover. Application of the operators
can modify the tree structure, tests in internal nodes, and models in the leaves.
The mutation operator makes random changes in some places of the selected
individuals. The crossover operator attempts to combine elements of two existing
individuals (parents) to create a new solution. The GMT system performs various
specialized variants of genetic operators. An example of asymmetric crossover
where the subtree of the first/second individual is replaced by a new one that was
duplicated from the second/first individual is illustrated in Fig. 1. The replaced
subtree starts in the node denoted as a receiver, and the duplicated subtree starts
in the node denoted as a donor. It is preferred that the receiver node has a high
error per instance and it is replaced by the donor node, which should have a
small value of error as it is duplicated. The application of this particular variant
is more likely to improve affected individuals because, with higher probability,
the good nodes are duplicated and replace the weak nodes. Several variants of
crossover and mutations were proposed in [6], e.g.:
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– finding a new test or modification of the existing one (shift threshold on
continuous attribute, re-grouping nominal attribute values) in the internal
node;

– pruning the internal node and transforming it into the leaf with a new mul-
tivariate linear regression model;

– expanding the leaf into the internal node;
– replacing one of the following: subtree, branch, node, or test between two

affected individuals;
– modification of the linear regression models in the leaves (add, remove, or

change attributes).

Successful application of any operator results in a necessity for relocation of the
instances between tree parts rooted in the modified nodes.

The selection mechanism is based on the ranking linear selection [17] with
the elitist strategy, which copies the best individual founded so far to the next
population. The fitness function measures the performance of the individuals
in terms of meeting the problem objective. In the context of decision trees,
a direct minimization of the prediction performance measured on the learning
set often leads to the over-fitting problem and poor performance on unseen
testing instances. Therefore, efficient fitness function should consider not only
the predictive error but also the complexity of the tree. In GMT , the authors
adapt the Bayesian Information Criterion (BIC) [21] as a fitness function. The
BIC fitness is equal to:

FitBIC(T ) = −2 ∗ ln(L(T )) + ln(n) ∗ k(T ), (2)

where L(T ) is the tree (T ) maximum of likelihood function, k(T ) is the complex-
ity term, and n equals the number of instances. The function L(T ) is common
for regression models [9] and is defined as:

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1]. (3)

The term SSe(T ) is the sum of squared residuals of the tree T (on the training
set).

3 Parallel Implementation of the GMT System

The proposed parallelization of the model tree evolutionary inducer is based on
the sequential GMT algorithm for univariate model trees. The general flowchart
of our hybrid MPI+OpenMP approach is illustrated in Fig. 2. One can observe
that the evolutionary induction is run in a sequential way on a master node and
the most time consuming operations (evaluation of the individuals, recalculation
of the regression models and genetic operators) are performed in parallel on
the available nodes (slaves). This master-slave parallelization approach, where
the master distributes the population among the slaves and, finally, it gathers
and merges the results, does not affect the results of the induction. Information
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Fig. 2. Hybrid parallel approach of the evolutionary model tree induction

about the location of the training instances is stored in each node of model trees.
This way the genetic operators can efficiently obtain the fitness corresponding
to the individual [6]. The actual fitness calculation is embedded into the post
mutation and crossover processing, when the instances in the affected parts of the
tree (or trees) are relocated. This mechanism increases the memory complexity
of the induction but significantly reduces its computational complexity. As a
consequence, the most time consuming elements of the algorithm are genetic
operators and thus are performed in parallel. In addition, each tree node contains
information about the regression models. After each successive application of any
genetic operator the regression models in the affected leaves are recalculated,
which also takes considerable amount of time.

The first level of parallelization the GMT solution (see Fig. 2) applies dis-
tributed memory approach where the master node spreads individuals from the
population over slave nodes using message-passing strategy [10]. The role of the
master node is to perform selection and reproduction (steps (1) and (7)) as
well as the verification of termination condition (step (8)). In each evolutionary
loop, the master evenly distributes individuals among the slaves (step (2)). To
avoid wasting resources, the chunk of population is left on the master which also
works as a slave. Migration the individuals between nodes (steps (2) and (6)) is
performed with the framework of the message-passing interface (MPI [11]) and
requires: packing the tree structures into a flat message; transferring the message
between nodes (sending/receiving); and unpacking the message into the corre-
sponding tree. The packed tree structure contains information about its size and
the information about each tree node:

– node type (leaf or internal node);
– type and definition of a test (only for internal node);
– definition of the multivariate linear regression model;
– additional statistics (number of instances that reaches the node, prediction

error).
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To avoid unnecessary unpacking-packing operations (for the trees that will not be
selected into the next generation) on the master, the fitness value of the migrated
individual is also transferred. However, no information about the objects redis-
tribution in the tree is included in the package. Including such information would
strongly increase the size of the package, especially on large scale datasets. There-
fore, alike in our previously presented research [8], we recover the redistribution
of the instances in those nodes that will be affected by the genetic operators.
It is performed on slave nodes which execute the mutation and crossover opera-
tions (steps (3) and (4)). If the genetic operator is successful, then there is also
a need to reallocate the instances in the sub-trees and rebuild regression models
in the leaves (step (5)). Otherwise, the nodes statistics from the received pack-
age remain unchanged. It should be emphasis that the GMT system mutates
the internal nodes in lower parts of the tree with higher probability. This may
enhance a possible speedup of such partial nodes reconstruction as it is expected
that the lower parts of the tree held fewer instances that need to be reallocated.

Second level of parallelization that applies shared (OpenMP [4]) memory
approach is performed on slave nodes. All the calculations assigned to the slave
node are spread over cores which run the algorithm blocks in parallel. Depend-
ing on the genetic operator type, each core processes a single individual at a
time (in case of mutation) or pairs of affected individuals (in case of crossover)
in parallel. All cores within the node operate independently but share the same
memory resources. In contrast to the distributed memory approach, no data com-
munication between the cores is required as the access and modification of the
same memory space by one core is visible to all other cores. However, additional
synchronization during write/read operations is needed in order to insure appro-
priate access to shared memory. Parallelization with shared memory approach
is also applied on the master node for the distribution and gathering popula-
tion from other nodes. In addition, those individuals that were transformed into
leaves after the application of genetic operators are extended into stumps in
parallel by cores at each slave node.

4 Experiments

In this section we show the performance of the proposed parallel version of the
GMT system. Two sets of experiments were performed on real-life and artificial
datasets using evolutionary induced regression and model trees.

4.1 Setup

All presented results were obtained with a default setting of parameters from the
sequential version of the GMT system. We have tested one artificially generated
dataset called Armchair [6] with 4 different number of instances (from 1 000
to 1 000 000) and 4 real-life datasets available in the UCI Machine Learning
Repository [14]. In addition, we have compared the time performance between
regression and model tree inductions, and provide some detailed time-sharing
information of our MPI+OpenMP parallelization.
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In the paper we focus only on the time performance of the GMT system,
therefore, results for the prediction accuracy are not enclosed. However, for all
tested datasets, the proposed hybrid approach achieved very good results - the
same as the sequential version [6].

Experiments were performed on a cluster of sixteen SMP servers (nodes) run-
ning Ubuntu 12 and connected by an Infiniband network (20 Gb/s). Each server
was equipped with 16 GB RAM, 2xXeon X5355 2.66 GHz CPUs with total num-
ber of cores equal 8. We used the Intel version 15.1 compiler, MVAPICH version
2.2 and OpenMP version 3.0. Within each node, the shared memory approach
(OpenMP) was applied whereas between the nodes the message-passing inter-
face (MPI) was used. For performance measuring we made use of the Multi-
Processing Environment (MPE) library with the graphical visualization tool
Jumpshot-4 [11].

4.2 Results

In the first experiment, the authors focus on the overall speedup of the proposed
hybrid MPI+OpenMP approach. Table 1 presents the obtained mean speedup
for different datasets. Only the best combination of nodes and cores is shown
and it looked as follows for all tested datasets:

– results for 2 cores: 1 node with 2 OpenMP threads;
– results for 4 cores: 4 nodes with 1 OpenMP thread;
– results for 8, 16, 32, 64 cores: 8 nodes with 1, 2, 4, 8 OpenMP threads per

node, respectively.

It should be recalled that the shared memory approach is strongly linked and
limited by the available hardware (e.g. 8 cores in one node), whereas within
the distributed memory approach it is usually easier to create more numerous
configurations.

Results enclosed in Table 1 show that the proposed hybrid parallelization
noticeable decreases the tree induction time on artificial and real-life datasets.

Table 1. Mean speedup reported for different number of cores

Dataset Instances Attributes Speedup on different number of cores

2 4 8 16 32 64

Armchair 1 000 2 1.91 3.64 6.25 9.81 14.24 20.11

Armchair 10 000 2 1.85 3.38 6.19 9.98 14.99 22.81

Armchair 100 000 2 1.85 3.40 6.04 9.97 14.74 20.85

Armchair 1 000 000 2 1.72 3.31 5.62 9.08 13.52 17.52

Stock 950 9 1.47 3.21 3.92 8.08 11.86 19.49

Pol 15 000 48 1.74 3.23 5.47 9.06 14.95 18.33

Fried 40 768 10 1.80 2.81 5.09 8.54 13.63 23.08

Elnino 178 080 9 1.80 2.82 5.79 7.82 11.82 15.80
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The speedup for 64 cores is in range from ×15.8 on the Elnino dataset to ×23.1
on the Fried dataset. With such speedup, the average tree induction time for
GMT on the Elnino dataset (the biggest dataset from [6]) decreased from over
10 h to 40 min. The smaller speedup on the largest datasets (Armchair with 1
million instances and Elnino) may be caused by the necessity of reallocating
large number of instances (after unpacking the message) in the affected node on
the slaves. However, the algorithm speedup is still higher than for the evolution-
ary induced classification trees where the maximum speedup did not exceed ×15
[8] on artificially generated datasets. We can observe that the speedup differences
between 32 and 64 cores are relatively small considering doubling the number of
cores. The possible reason is the size of the population (default: 64 individuals).
To achieve effective parallelization, the total number of cores should not exceed
half of the population size because for some operations like crossover, each core
performs calculations on two individuals.
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Fig. 3. Performance evaluation: (a) speedup comparison between model and regression
(regr) tree induction on the Armchair dataset with different number of objects, (b)
detailed time-sharing information of model tree induction (without OpenMP) with
different number of slaves. Evaluation performed on the Armchair dataset with 100 000
instances.

Figure 3(a) illustrates the performance of the regression and model tree
induction on the Armchair dataset with various number of instances. We can
observe that with the increase of the number of cores the disproportion between
the speedup for both types of tree representations is getting higher (around 2×
smaller speedup for 64 cores in favor of model trees). To better understand why
the proposed approach performs differently on regression and model trees see
Fig. 3(b) which illustrates in details the time-sharing information for the induc-
tion of the model trees. In case of the model tree induction, more than 60 % of
the evolutionary loop time is spent on building the linear models in the leaves
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and calculating their errors. We can observe, that this part of the algorithm is
well scalable (over 95 %), however, it only exists for the evolutionary induced
model trees as the regression trees does not have linear models in the leaves.
Other parallelized parts like genetic operators (which include embedded fitness
recalculations) are also well scalable (around 95 %), however, due to the overhead
(MPI transfer) the speedup improvement on larger number of cores is smaller.
For 8 processes the MPI takes almost 30 % of the evolutionary loop time in
case of the model trees and approximately 50 % for the regression trees. In addi-
tion, as some parts of the algorithm have to run sequentially, the efficiency for
the higher number of cores is getting smaller, as expected from the Amdahl’s
law [10].

5 Conclusion and Future Works

The growing popularity of the evolutionary induced model trees can be with-
held if there will be no sufficient solutions to improve their speed and their
ability to analyze large scale data. In the paper, the authors propose a hybrid
MPI+OpenMP parallelization to extend the GMT system. Proposed implemen-
tation takes an advantage of modern parallel machines and may provide an effi-
cient acceleration on high-performance computing clusters as well as on low-cost
commodity hardware. We see many promising directions for the future research.
One of the possibilities is an additional parallelization of the models calculations
in the leaves (with OpenMP) as well as to deal with a GPGPU parallelization.
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Abstract. Existing literature shows that genetic algorithms can be suc-
cessfully used for automated construction of S-boxes. In this paper we
show the usage of genetic algorithm, more specifically NSGA-II, as an
aid in designing and testing of invertible substitution boxes which are
special case of substitution boxes. Many cryptographic properties of S-
boxes are often contradicting each other. It is therefore difficult to find
an optimal solution. NSGA-II proved to be a valuable tool in finding a
range of solutions from which we can later select an appropriate S-box
for a cipher. We also show that we can use NSGA-II to test integration
of S-boxes with a cipher and automatically reject S-boxes which make
the cipher weak.

Keywords: NSGA-II · Substitution box · Invertible · S-box · Cryptog-
raphy · Genetic algorithm

1 Introduction

Construction of cryptographic primitives such as block ciphers and hash function
is an important problem in cryptography. Over time new vulnerabilities are found
which means that new cryptosystems need to be designed in order to replace the
old ones. As systems become increasingly more complex and new more advanced
methods of cryptanalysis are discovered, cryptographers find it more difficult to
design new systems that would be immune to all known forms of attacks. For
this reason many scientists find it necessary to use automated techniques such
as methods used in artificial intelligence. Artificial intelligence has been success-
fully used in various fields [1,6,12,14,18,21] also related to computer security and
cryptography. Neural networks were used as a base for many ciphers and crypto-
graphically secure hash functions [15,16,22]. Some metaheuristic methods such
as evolutionary algorithms were used to optimize components of cryptographic
primitive. Substitution boxes (S-boxes) are especially important because they
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are a core component of most modern block ciphers and are responsible for
resistance against many cryptanalytic techniques. Genetic algorithms proved to
be effective in optimizing cryptographic properties of S-boxes [2,3,13].

In the investigations presented in the paper the process of creating invertible
substitution boxes has been defined as multi-objective optimization. The list of
objectives expresses the desirable properties of such S-boxes and entire algo-
rithms. To take it into account a well known multi-objective genetic algorithm
NSGA-II has been adopted and applied.

The paper is organized as follows. In the remaining part of Introduction
the idea of substitution boxes, in particular invertible substitution boxes, and
NSGA-II algorithm are presented. Then, Sect. 2 contains the details of proposed
solution. It includes a discussion of coding the S-boxes in chromosomes and defin-
itions of objectives. Both issues have been illustrated by appropriate algorithms.
Equally important is the Sect. 3. It contains details and results of experimental
research. The final section covers conclusions and plans for future works in the
subject.

1.1 Substitution Boxes

Substitution boxes, also known as S-boxes, are an important component of mod-
ern block ciphers. An S-box is a function that takes m bits of input and trans-
forms it to n bits of output. Good S-box has a highly nonlinear mapping between
input and output bits in order to satisfy Shannon’s properties of confusion and
diffusion [4,19]. Cipher has good confusion if there is a complex relationship
between the secret key and the ciphertext. Cipher has good diffusion if the
ciphertext bits depends on all plaintext bits, and changing one input bit will
change each output bit with probability about 50%. S-box structure and prop-
erties directly affect confusion and diffusion of a cipher.

There is a special type of S-boxes which are commonly used in block
ciphers based on the model known as substitution-permutation network. In
those ciphers, a substitution box usually represents a bijective boolean function
because substitution needs to be reversed in order to ensure that decryption is
possible. Such S-boxes are therefore invertible n, n-functions. This means that
for every such S-box there exists an inverse S-box which effectively reverses sub-
stitution. In order to differentiate them from ordinary S-boxes, in this paper we
call them invertible S-boxes. A very well known example of invertible S-box is
8-bit S-box used in AES [7].

Invertible S-boxes have many interesting cryptographic properties that dif-
ferentiate them from other S-boxes. For example, invertible S-boxes are always
balanced. Boolean function is balanced if the number of ones and zeros in its
truth table is equal. Invertible S-boxes are essentially permutations of 2n values,
so each bit appears exactly 2n−1 times as one and zero [3,8]. This also contributes
to difficulty in constructing them.
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1.2 NSGA-II

The nondominated sorting genetic algorithm II (NSGA-II) [9] is nowadays com-
monly known and probably the most popular multi-objective evolutionary algo-
rithm. It is a direct successor of the NSGA [20]. NSGA-II solves the main prob-
lems of NSGA, mainly high computational complexity of nondominated sorting.
The subsequent Pareto fronts are determined using domination counts assigned
for each solution in a population, domination counts stored number of the solu-
tions which dominate the current one and set of solutions dominated by it. The
first Pareto front includes the solutions with the count equal to zero. The pro-
cedure is repeated for next fronts applying the previously determined sets. Such
procedure causes that the NSGA-II outperforms its predecessor as well as other
multi-objective evolutionary algorithms.

The decision to use NSGA-II for our research is based on the fact that several
S-box properties are contradicting each other. This means that trying to optimize
one property often results in degrading other properties. For this reason finding
a substitution box with good properties can be a very difficult task. Moreover,
in the case of invertible substitution boxes, it is impossible to find an S-box
with perfect nonlinearity and several other properties are constrained. Using a
single value to represent fitness of all cryptographic properties in single-objective
algorithms may be inadequate. Multi-objective algorithms like NSGA-II can use
all properties to find Pareto optimal populations and provide a set of solutions
with satisfying properties. Cryptographer can later decide which S-box will be
the most appropriate for given cipher. In order to use NSGA-II, we need to
define the objectives and representation of S-boxes in chromosomes.

2 Implementation of Genetic Algorithm

This section describes implementation details of our research. In order to use
NSGA-II we need to define a coding method, objectives and genetic operators.
Coding method specifies how genetic material in form of bits is decoded into
an S-box. Objectives in multi-objective algorithms define how good a potential
solution is relative to other solutions. Unlike fitness function in single-objective
genetic algorithms, NSGA-II objectives represent problems we want to minimize,
that is the lower objective value the better. Genetic operators are used in the
process of selecting next population.

2.1 Coding

One of the problems associated with invertible S-boxes is how to encode them
for the purpose of genetic algorithms. Only a very small fraction of all n-bit
boolean functions represent valid invertible S-boxes. For example, the number
of all valid 8-bit S-boxes is

(28)256 = 22048
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The number of all valid invertible 8-bit S-boxes is

(28)! = 256! ≈ 21684

Therefore, the probability that randomly chosen 8-bit S-box will be invertible is
approximately

21684

22048
= 2−364 ≈ 10−110

This means that arbitrary coding can not be used because genetic algorithm
would be unlikely to find a valid solution. For this reason coding method has to
be specifically designed.

The second problem is related to how genetic operators work. In general,
mutation of one bit should introduce relatively small changes to the resulting
S-box and crossover should create an S-box that is similar to both parent S-
boxes. Coding that does not satisfy those criteria would make it more difficult
to find the desired solution using genetic algorithm. However, because invertible
S-boxes are a type of permutation, there is no trivial way of coding to achieve
this.

During our research we created an algorithm that allows proper encoding of
invertible S-boxes and minimizes changes performed by genetic operators. This
algorithm performs swap operations similarly to how random shuffle algorithms
does, however instead of randomly selecting indices they are computed using
an array called selection table. Values in the selection table are constrained to
specific ranges which depend on position of values within the table. First value
is constrained to range [0, n − 1], second value is constrained to range [0, n − 2],
and so on. The last value is always 0. An example of a valid selection table is
shown below.

6 3 1 3 2 0 0

From the definition of selection tables we can deduce that the number of all
possible selection tables of size n is

n ∗ (n − 1) ∗ (n − 2) ∗ . . . ∗ 2 ∗ 1 = n!

Values in selection table are used to calculate indices of elements to swap
with corresponding value in array. We iterate over all values in selection table in
a loop. The element on position i is swapped with element i + selection[i]. If i
and i+selection[i] are the same, no swap operation is performed. After the swap,
element that was originally on position i + selection[i] will be in position i and
will not be swapped with any other element in subsequent swaps. The algorithm
is presented below. The process realised by the algorithm is illustrated in Fig. 1.

Like random shuffle, our algorithm has computational complexity of O(n)
and constant memory requirements. A selection table uniquely represents a valid
permutation and since the number of all selection tables of size n is n!, they
effectively map to all possible permutations of the same size. Therefore, we can
use selection tables to encode invertible S-boxes.
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Algorithm 1. Algorithm for decoding S-boxes from selection tables
function DecodeSBox(selection, n)

Create an array sbox with length n
for i = 0; i < n; i ← i + 1 do

sbox[i] ← i
end for
for i = 0; i < n; i ← i + 1 do

index ← i + selection[i]
if i �= index then

temp ← sbox[i]
sbox[i] ← sbox[index]
sbox[index] ← temp

end if
end for
return sbox

end function

Fig. 1. Swap operations using selection table 6 3 1 3 2 0 0

Every selection table represents a unique permutation and therefore can be
used to encode an invertible S-box. In our implementation, an encoded solution
contains 256 integers representing a selection table which is decoded and then
used to calculate the S-box.

2.2 Objectives

In this section we describe the objectives defined for NSGA-II. For the purpose
of this research we limited the number of objectives to three in order to ensure
stability of the algorithm.

Nonlinearity. Nonlinearity is an essential property of good substitution boxes.
The higher nonlinearity of an S-box, the more difficult it is to approximate
its operation using combination of linear functions, and as a result it is more
resistant to linear cryptanalysis. There are many definitions of nonlinearity in
existing literature [4]. We decided to use Peak-to-Average Power Ratio (PAR)
with respect to Walsh-Hadamard Transform described in [17]. The value of PAR
provides an information about how good the best linear approximation of S-box
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can be. Low value means that S-box has high nonlinearity and is therefore more
secure. High value means that an S-box is highly linear and is therefore more
susceptible to linear analysis. Completely linear S-boxes have a maximum value
of 2n, where n is the number of output bits. Finding an S-box with good non-
linearity using PAR value is therefore a minimization problem. Because of this,
PAR can be used directly as an objective in NSGA-II unlike other nonlinearity
indicators. PAR with respect to WHT is shown on Eq. 1.

Fk = 2−n
∑

x∈Zn
2

(−1)f(x)+x·k

PAR(f) = 2n max
∀k

(|Fk|)2. (1)

A tests performed on one million randomly generated 8-bit invertible S-boxes
show that an average value of PAR is about 9.5. The minimum was 4.0 and
maximum was 33.0625. Standard AES S-box has nonlinearity of 4.0.

Hamming Distance Score. A hamming weight of a binary vector is a number
of bits in this vector set to 1. A hamming distance is a Hamming weight of a dif-
ference between two binary vectors. Difference is usually defined as an exclusive
OR of two vectors. In this case, Hamming distance between two vectors will be
a number of differing bits.

Hamming distance can be used to measure the quality of substitution boxes.
An S-box should, on average, change half of the input bits. We can calculate
Hamming distances between all possible S-box input values and the correspond-
ing output values and analyze them. On average, the number of bits changed by
substitution should be about half of the number of output bits. In the case of
8-bit S-boxes, average Hamming distance should be close to 4.0 (Fig. 2).

Calculating Hamming distances between inputs and outputs of an S-box can
be used in an objective for NSGA-II. Since NSGA-II seeks to minimize the
objectives, we can define a negative score based on Hamming distance counts.
The method of calculating the Hamming distance score is shown on Algorithm 2.

The bias 2−8 is used to normalize the score to range [0, 1]. The completely
linear identity S-box has a score of 1.0, which is also the highest value possible.

Fig. 2. Counts of Hamming distances for AES S-box
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Algorithm 2. Algorithm for calculating score based on Hamming distances in
S-box

function HammingDistanceScore(sbox)
Create an array count with length 9
for i = 0; i < 9; i ← i + 1 do

count[i] ← 0
end for
for x ← 0; x < 256; x ← x + 1 do

y ← f(x)
d ← x + y
c ← number of ones in d
countc ← countc + 1

end for
sum ← count[0]+0.1×count[1]+0.01×count[2]+0.01×count[6]+0.1×count[7]+

count[8]
return sum × 2−8

end function

The score of 0.0 is a theoretical minimum. AES S-box has a Hamming distance
score of about 0.009883. A test performed on one million randomly generated
8-bit invertible S-boxes show that an average score was about 0.01625, the lowest
score was 0.003086 and the highest was 0.05578.

Diffusion Score. Diffusion is a highly desired property of a cipher where a
change of any bit of input vector will result in all output bits changed with
a probability of 50 %. Even a small probabilistic deviation can result in whole
cipher being susceptible to differential cryptanalysis.

In our research we used a modified AES-128 cipher implementation which
accepts custom invertible substitution boxes. We used it in order to test inte-
gration between S-box and cipher. Testing all possible cases for each potential
solution (2128 plaintexts, 2128 differentials, and 2128 secret keys) is impractical
due to extreme time needed for all calculations. Instead we decided to perform
a probabilistic test using randomly chosen secret keys and plaintexts. The pro-
cedure is presented on Algorithm 3.

In the test, we generate random plaintext x1 and compute ciphertext y1. We
invert specific bit in the plaintext and obtain x2 for which we calculate ciphertext
y2. Ciphertexts y1 and y2 are XORed together to obtain difference Δy. The bias
2−13 is chosen in order to normalize results to a range [0, 1]. The value of 0 is
a case where each difference results in 50% change of every output bit which
means statistical analysis and differential cryptanalysis will be ineffective. The
value of 1 is a case where differences result in 100% change of all output bits
which means cipher can be easily broken using differential cryptanalysis. Since
diffusion test is a probabilistic test, in practice diffusion score will always be a
value above 0. This value depends on the number of performed tests. For 256
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Algorithm 3. Algorithm for calculating diffusion score of given S-box
function DiffusionScore(sbox, tests)

Construct cipher with sbox
diffusion ← 0
for b ← 0; b < 128; b ← t + 1 do

Initialize count to 0
for t ← 0; t < tests; t ← t + 1 do

Generate random plaintext x1

y1 ← cipher(x1)
Invert bit b in x1

y2 = cipher(x2)
Δy ← y1 + y2

for i ← 0; i < 128; i ← i + 1 do
if bit i in Δy is set then

count[i] ← count[i] + 1
end if

end for
end for
for i = 0; i < 128; i ← i + 1 do

diffusion ← diffusion +
|counti− 1

2 tests|
tests

end for
end for
return 2−13 × diffusion

end function

tests, original AES has a score about 0.05. Increasing the number of tests results
in smaller values of the score but it also increases time needed for calculations.

3 Experimental Research

For our research we used an open source library jMetal version 4.5.2 [10]. It is a
library with single- and multi-objective optimization methods using various evo-
lutionary algorithms, including NSGA-II. This library was chosen due to simple
design and extensible implementation. For the purpose of our experiment we
wrote a customized version of NSGA-II in order to allow evaluation of solutions
on multiple threads and enable saving of partial results to a file.

3.1 Scenario

Using our customized NSGA-II implementation, we performed a simulation
where randomly chosen population of invertible substitution boxes was subject
to evolutionary optimization. We chose a population size of 200, single point
crossover operator with probability 0.8 and bit flip mutation operator with prob-
ability 0.05. The total number of generations was 10, 000. Every 500 generations,
current population was saved with their objectives to a file for later analysis.
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Solutions were encoded as 256 variables, 8 bits long each. Variables were
decoded to values from 0 to 255 and later scaled to ranges appropriate for values
in selection table. Decoded selection table is then used to calculate an S-box.

3.2 Results

The simulation time was 23 h, 24 min and 2 s. The final population was saved to a
file and objectives were analyzed in a program. Summary statistics of objectives
are presented in Table 1.

Figure 4 shows that majority of S-boxes have nonlinearity below 10. 8 S-boxes
have been found with PAR 4.0. The remaining two objectives of those S-boxes
are presented in Table 2. Their lowest Hamming distance score is 0.01097656 and
the highest score is 0.02328125.

Because their nonlinearity is the highest possible in 8-bit invertible S-boxes,
which is also exactly the same as in AES S-box, they are good candidates for
use in a new cipher. Analysis of partial results show that these S-boxes were
gradually being found during simulation (Fig. 3).

Figure 4 also shows that majority of S-boxes in final population have Ham-
ming distance score below 0.01. The lowest score is 0.005546875, however this
S-box has relatively low nonlinearity of 14.0625. The best S-box with nonlin-
earity of 5.0625 has a score 0.0064453125. A cryptographer can choose to use
this S-box if its Hamming distances are more important than a small sacrifice
in nonlinearity.

Table 1. Summary statistics of objectives in final population

Minimum Average Maximum

Nonlinearity (PAR) 4.0 7.8084375 18.0625

Hamming distance score 0.00554688 0.00853691 0.02328125

Diffusion score 0.04829216 0.04906658 0.05064440

Table 2. S-boxes with PAR = 4.0

S-box Hamming distance score Diffusion score

1 0.01179688 0.04959965

2 0.01164063 0.04976130

3 0.01578125 0.04936028

4 0.01109375 0.04979086

5 0.01097656 0.04992056

6 0.01953125 0.04988623

7 0.02328125 0.04981518

8 0.01390625 0.05005264



Application of Genetic Algorithms in the Construction 389

Fig. 3. The number of S-boxes with PAR = 4 after every 500 generations

Fig. 4. Distribution of S-boxes based on PAR Nonlinearity and Hamming distance
score

Diffusion scores show that all found substitution boxes have acceptable val-
ues. Weak S-boxes that resulted in poor diffusion in a cipher were automatically
discarded by genetic algorithm because their scores were worse than scores of
other S-boxes.

4 Conclusions and Future Work

In our research we showed that multi-objective genetic algorithms can be suc-
cessfully used as a tool for construction of invertible substitution boxes for cryp-
tographic purposes. With proper coding method, NSGA-II was able to find a
set of S-boxes with good cryptographic properties which can be later used as a
component of a new block cipher. One of the objectives was used to test inte-
gration of S-boxes with AES cipher which means it could eliminate S-boxes that
perform poorly when used in a cipher but otherwise has good properties.

In the future, our research will concentrate on gradually adding more objec-
tives based on cryptographic properties of S-boxes as well as testing our approach
using new block ciphers. We will also adopt our method to various modifications
of NSGA-II such as steady-state NSGA-II [5,11].
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Abstract. This paper presents preliminary results of using grammatical
evolution to evolve expressions that calculate the user/item features used
in the matrix factorization recommendation algorithm. The experiment
was performed primarily to determine whether grammatical evolution
can be applied to this field, and to compare the results with those of the
’traditional’ algorithm. For the purpose of the experiment, we used the
CoMoDa dataset, which features realistic data collected over five years.
The preliminary results are promising and offer a lot of possible future
work, some of which is discussed at the end of the paper.

Keywords: Grammatical evolution · Genetic programming · Recom-
mender systems · Collaborative recommender · Matrix factorization

1 Introduction

In recent years, recommender systems have evolved from obscure and rare com-
putational solutions to fully-fledged software that is omnipresent in almost every
aspect of human-computer interaction. Now users can not only get active rec-
ommendation in the form of search results and personalized program guides but
also get recommendations in a more subtle form such as personalized advertise-
ments, which load while they browse the Internet. Recommender systems (RS)
have therefore moved onto the next stage of development and are now addressing
issues such as big data analysis, implicit feedback collection, contextualization,
and personalization. RS have also become economically viable as demonstrated
by companies such as Google, Amazon and Netflix. These companies invest large
amounts of resources into development of new technologies. One of such devel-
opments was the Matrix Factorization (MF) method [4], which was developed
as part of the $1,000,000 Netflix prize [1]. However, there is a problem with the
algorithm in that, while it does offer great accuracy, it does not scale well and
becomes very slow when faced with more ‘realistic’ datasets, which can contain
millions of users, items, and ratings. A lot of effort is therefore put into either
distributing the workload of the algorithm (such as Distributed Nonnegative
Matrix Factorization (DNMF) [8] and Scalable Nonnegative Matrix Factoriza-
tion (ScalableNMF) [2]), or speeding up the feature calculation procedure.
c© Springer International Publishing Switzerland 2016
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This paper presents the preliminary results of experiments aiming to achieve
the latter: to increase the algorithm’s accuracy using as few iterations over a
dataset as possible. We move away from the established principles of feature
value calculation such as regularized gradient descent [13] by employing gram-
matical evolution to evolve expressions for feature value calculation, which—at
least to our best knowledge—has not been tried before in the field of matrix
factorization recommender systems.

Grammatical evolution (GE) [11] is a relatively new evolutionary computa-
tion technique, often classified as a subfield of genetic programming (GP) [6]. GE
can evolve programs from linear strings of codons by using a context-free gram-
mar usually written in a Backus–Naur form, and a special mapping procedure,
which guarantees the syntactical correctness of the obtained programs.

1.1 Problem Statement

This paper presents preliminary results of using GE as part of the MF Rec-
ommender System. Most current MF systems rely on the regularized gradient
descent method to calculate the values of user and item features (see Materials
and Methods below), which, while providing a steady descent in the overall accu-
racy of the system, requires a large amount of iterations to achieve the desired
level of accuracy (measured with RMSE). For the purposes of our experiment,
we fix the number of iterations to 100 and compare the results provided by the
original (gradient descent) system with those obtained by employing GE. More
details follow in the sections below.

2 Materials and Methods

In this section we provide the details about the used data and algorithms as well
as the details about the evaluation measure used to compare the results.

2.1 Matrix Factorization Algorithm

The basic idea of the MF algorithm is that we can use a sparse user-item matrix
to calculate latent features of each existing user and item (similar to PCA and
Eigenvalue space). These features can then be used to compute (predict) the
missing values in the user-item matrix. To compute a rating r(um, in) for the
mth user um and the nth item in, we simply multiply the latent feature vectors
as described in the Feature Calculation Algorithm subsection below.

The main challenge with the MF algorithm lies in finding an efficient way to
calculate the latent features. In our experiment, we use a ‘classic’ MF algorithm,
which uses regularized gradient descent as the latent feature calculation method.
We use 7 latent features as we have identified this number of features to be
sufficient in our previous work [10].
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The Algorithm. Our implementation of the whole MF algorithm can be sum-
marized as follows:

Prepare user (P) and item (Q) latent feature matrices containing starting
latent feature values (0.3 in our example).
Calculate static biases (see explanation below).
For each feature (7 in this example):

Repeat 100 times:
For each rating in the training set:

Calculate a predicted rating and compare it with the current ‘true’
rating.
Adjust the current user/item latent feature based on the regular-
ized gradient descent algorithm.

End For
End Repeat

End For

Prediction Model. If we wish to calculate a predicted rating r for a user um

and an item in, we need the following values: the global bias b, the user bias
bum

, the item bias bin , the user latent feature vector P(um) (the mth row of the
user latent feature matrix) and the item feature vector Q(in) (the nth row of
the item latent feature matrix). The predicted rating is then calculated using
the equation

r(um, in) = b + bum
+ bin + P(um) ∗ Q(in). (1)

Static Biases. As shown in the section above, the predicted rating depends not
only on the user/item latent features but also on the biases of the system. The
idea is to remove some of the static variance from the feature space by moving
the averaged information about the user, item, and overall rating behavior into
separate values (i.e., biases). These biases are calculated as follows:

– The global bias b is the average rating of the whole dataset.
– The user bias bum

is the mth user average rating minus the global bias.
– The item bias bin is the nth item average rating minus the global bias.

Feature Calculation Algorithm. During each iteration of the MF algorithm,
the latent feature values of the current user and item are adjusted according to
the following two equations:

P(um, k) = P(um, k) + (err ∗ Q(in, k) − reg ∗ P(um, k)) ∗ pLR, (2)
Q(in, k) = Q(in, k) + (err ∗ P(um, k) − reg ∗ Q(in, k)) ∗ qLR. (3)

P(um, k) and Q(in, k) are the current values of the kth latent features of the
selected user and item, respectively, while err is the difference between the cal-
culated and the actual rating in the train set. A constant value reg, which is
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set to 0.3 in our experiment, is used to prevent the feature values to escape the
normal bound. Constant values pLR and qLR determine the step (i.e., learning
rate) in the gradient descent method and are set to 0.03 in our case.

2.2 Grammatical Evolution

Equations (2) and (3) were the part of the algorithm that we targeted with
GE. We performed two experiments: In the first experiment, we replaced both
equations with one and the same GE generated expression. That is to say, we
used the same expression for the user and item latent feature calculation except
that we swapped the positions of the terms P(um, k) and Q(in, k). In the second
experiment, however, we used a different expression for each of the two features.
The aim of this was to find out whether the original idea with two equally
structured equations is indeed better than using two quite different expressions
for both features.

Table 1 shows the settings that we used in our GE.

Table 1. The settings used in GE.

Objective Find an expression that will successfully predict missing feature values

Terminal operands err - difference between the true and predicted rating (see the previous
subsection), P(um, k) - the kth latent feature value of the mth user,
Q(in, k) - the kth latent feature value of the nth item, constants 0.01,
0.02, 0.04, and 0.08

Terminal operators Binary operators +, −, ∗, and % (protected division)

Fitness cases Context Movie Dataset [5]

Raw fitness RMSE of differences between 3452 pairs of predicted and actual ratings
in the training set.

Standardised fitness Same as raw fitness

Parameters Population Size: 300 (sensible initialization [12]), Generations: 200,
Prob. Mutation: 0.01, Prob. Crossover: 0.20 (LHS crossover [3]), Tour-
nament Size: 5

Apart from the setting shown in Table 1, we used a grammar with the fol-
lowing three productions:

<expr> ::= <expr><op><expr> |
(<expr><op><expr>) |
<var>

<op> ::= + | − | ∗ | %
<var> ::= err | P(um, k) | Q(in, k) | 0.01 | 0.02 | 0.04 | 0.08.



396 M. Kunaver and I. Fajfar

Also, it should be noted that we used an LHS crossover operator [3] rather
than a standard one-point crossover, as the former turned out to yield better
results.

In order to evaluate the cost of the evolved expressions, we used each of the
expressions in a full run of the MF algorithm to act as the feature adjustment
expression. The resulting latent feature values were then used to compute the
cost of the evolved expression, which was the RMSE between actual ratings and
predicted ratings calculated using the latent features from the evolved expres-
sion. To prevent bloat, we punished the expressions whose length exceeded 200
characters by setting their cost value to 200 (the typical cost of an expression
was below 1). In a similar manner we punished the expressions that produced
a latent feature value greater than 50. This was done according to similar logic
as used in regularization of the gradient descent method—we wished the latent
feature values to remain in the range from −5 to +5 to avoid the occurrence of
over-fitting [10].

2.3 Computer Set-Up

All experiments were performed on a personal computer with an Intel Xeon
3.3 GHz processor, 16 GB of RAM running 64-bit Windows 7 operating system.
The experiments did not require a dedicated database server or any special
hardware. All algorithms and evaluations were run in Python 2.7, and the code
typed using the Spyder editor.

2.4 CoMoDa Dataset

We performed the evaluation using the Context Movie Dataset [5] as the source
of our training and test sets. This dataset was acquired during our previous work
using an on-line movie rating application (www.ldos.si/recommender.html) that
enabled the users to track their viewed movies and to obtain recommendations
from several RS algorithms (the hybrid and content-based RS described above and
a matrix factorization RS developed separately). The application also features a
questionnaire, whose purpose is the collection of contextual data that describes
the situation during the item consumption. The application is still available and
in use. Additional information about LDOS-CoMoDa can be found in [5].

At the time of writing this paper, the features of the LDOS-CoMoDa are:

– 189 users
– 3029 items (movies and TV series)
– 4316 submitted ratings
– ratings from 1 (don’t like it) to 5 (it is amazing) in steps of one
– overall average rating: 3.7931
– item average rating: 3.6387
– user average rating: 4.1204
– average number of ratings per item: 2.373
– average number of ratings per user: 22.85

www.ldos.si/recommender.html
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Each user is described with basic demographic data (i.e., age, sex, location)
provided on a voluntary basis. Each item is described with several attributes:
genre(s), director, actor(s), language, country, budget and release year. Also,
each rating is annotated with associated contextual variables.

During each run of GE the dataset was randomly divided into two parts: a
training set, which contained 80 % of the ratings in the dataset and a test set,
which contained the remaining 20 % of the ratings.

2.5 Evalutaion

In order to evaluate the cost of expressions evolved using GE as well as determine
the efficiency of the original MF algorithm we used the RMSE measure [9],
which is frequently used in articles relating to MF and RS. We calculated the
RMSE from the differences between the ratings from the test set (see CoMoDa
subsection above) and either the ratings predicted with MF algorithm using GE
generated expressions or those gained from the baseline MF algorithm. Note
that each time an RMSE value was computed after exactly 100 iterations of the
MF algorithm.

2.6 Experiment Sequence

In summary, a single experiment was carried out as follows:

1. Create a training and test set by randomly splitting the dataset to 80 %/20 %.
2. Use the standard MF algorithm to calculate the baseline RMSE.
3. Run GE for the set number of generations, calculating the cost (i.e., the

RMSE value) of each individual in the population in each generation.
4. Plot and print the evolved expression with the lowest cost and compare it

with the cost of the baseline algorithm.

We preformed 2 runs of 10 experiments each. The first run featured the same
expression for user and item features while the second run featured different
expressions. Each of the experiments used a different test and training set.

3 Results

Table 2 shows the results of our twenty experiments. The first ten rows present
the results where equal expressions were used for calculating the user and item
latent features, while for the second ten rows we used a different expression for
each of the two features. Apart from the obtained RMSE values, the table also
summarizes relative improvements of the GE-enhanced MF algorithm over the
baseline MF algorithm.

The results show that, in eighteen of the twenty experiments, the use of GE
increased the performance (i.e., produced a lower RMSE value) when compared
with the baseline algorithm. Table 3 further lists the best, worst and mean rel-
ative improvement in both runs. In addition it also lists the Wilcoxon p-values
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Table 2. Results of the experiments.

RMSE Used expressions Improvement (%)

Baseline GE

0.91 0.78 equal 14.2

0.68 0.61 equal 10.3

1.00 0.92 equal 8.0

1.08 1.07 equal 0.9

1.21 1.13 equal 6.6

1.26 1.16 equal 7.9

1.15 0.83 equal 27.8

1.27 1.27 equal 0

1.19 1.16 equal 2.5

1.20 1.01 equal 8.0

0.76 0.52 different 31.5

0.96 0.92 different 4.2

1.21 1.00 different 16.6

1.30 0.86 different 33.8

1.37 1.16 different 15.3

1.18 1.06 different 10.2

1.18 0.99 different 16.1

1.05 0.95 different 9.6

0.83 0.83 different 0

1.08 1.00 different 7.4

that show that each run featured significantly different values. A quick compari-
son of the results of the first and second half of Table 2 also seems to indicate that
using a different equation for each of the two latent features produces much bet-
ter results (an average improvement of 14.47 %) than using the same expression
for both latent features (an average improvement of 8.62 %).

Table 3. Relative improvement comparison and statistical testing.

Used expressions Relative improvement Wilcoxon (p-value)

Best Mean Worst St. dev.

Equal 27.80 8.62 0.00 8.02 0.0077

Different 33.80 14.47 0.00 10.95 0.0077
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4 Conclusions

The aim of this article was twofold: First, to see whether it is possible to use
GE in Recommender Systems, more specifically in the MF algorithm. Second,
to evaluate the benefit of GE in this field and see whether it can deliver better
results than the currently accepted regularized gradient descent variant of the
algorithm.

As can be seen from the results, we successfully implemented GE as part of
the MF algorithm and used the expressions generated by the GE as replacement
equations for the user/item latent feature calculations. In each of the experi-
ments, we observed an improvement of the overall accuracy of the MF algorithm.
The improvement was even better when we used a different expression for each
of the latent features. It should be noted that all our experiments were carried
out using a ‘real’ dataset that was collected over many years of our research [5].
Due to time constraints, however, we carried out too few experiments in order to
draw statistically significant conclusions. Regardless, we have shown that incor-
porating GE into the MF algorithm provides a way to increase the accuracy of
the system without increasing the number of iterations needed to calculate the
latent features. Apart from that, the observed improvements are relatively large,
so it is definitely worthwhile to continue the research on this topic.

4.1 Future Work

Here is a short list of research activities that we believe are worth trying in the
future:

– To run enough experiments to get statistically significant results.
– To use a different number of iterations to determine whether we can achieve

the same accuracy with fewer iterations, or even better accuracy with more
iterations.

– To experiment with the GE parameters (e.g., population size, type of gram-
mar, type of crossover) to determine if any combination performs better.

– To implement a 10-fold cross validation of the algorithm.
– To parallelize the algorithm to be able to run GE based recommender system

in real time.
– To use several other publicly available datasets such as EachMovie, MovieLens

and Netflix in order to determine the scalability of this approach.
– To apply GE to other RS algorithms such as the Genre-Preference Collabora-

tive Recommender, which was developed as part of our previous work [7].

Acknowledgments. This work was supported by the Ministry of Education, Science
and Sport of Republic of Slovenia under Research program P2-0246 - Algorithms and
optimization methods in telecommunications.



400 M. Kunaver and I. Fajfar

References

1. Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of KDD Cup and Work-
shop, vol. 2007, p. 35 (2007)

2. Benson, A.R., Lee, J.D., Rajwa, B., Gleich, D.F.: Scalable methods for nonnegative
matrix factorizations of near-separable tall-and-skinny matrices. In: Advances in
Neural Information Processing Systems, pp. 945–953 (2014)

3. Harper, R., Blair, A.: A structure preserving crossover in grammatical evolution.
In: Corne, D., et al. (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, vol. 3, pp. 2537–2544. IEEE Press (2005)

4. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)
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Abstract. The paper is devoted to the optimization of energy of carbon
based atomic structure with use of the memetic algorithm. The graphene
like atoms structure is coded into floating point genes and underwent
evolutionary changes. The global optimization algorithm is supported
by local gradient based improvement of chromosomes. The optimization
problem is solved with the use of Intel PHI (Intel Many Integrated Core
Architecture – Intel MIC). The example of optimization and speedup
measurement for parallel optimization are given in the paper.
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1 Introduction

The optimization of new graphene-like structures allows to obtain new stable
structures with unique material properties. The goal of the paper is to describe
algorithm which can be used to solve the optimization problem of atoms struc-
ture search in a parallel way.

Carbon has many allotropes such as diamond, graphite and amorphous phase,
as well as numerous synthetic structures like graphene and nanotubes. This phe-
nomenon is caused by the existence of carbon atoms in various hybridization
states i.e. atoms of carbon with different electronic configurations, which deter-
mine the types of bondings, angles between them and spatial arrangement of
neighboring atoms. In the recent years, graphene and similar two-dimensional
materials are the subjects of particular interest of researchers ([1–5]) because of
unique electronic, thermal and mechanical properties of such structures. Two-
dimensional graphene-like materials can be considered as periodic, flat atomic
networks, made of stable configurations of carbon atoms in certain hybridization
states. Depending on the arrangement of the considered structure, rectangular or
c© Springer International Publishing Switzerland 2016
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triclinic unit cell of given size and atomic density can be identified. An overview
of such well known structures (like graphyne and supergraphene), along with
detailed description and investigation of their structural and electronic proper-
ties using tight-binding method can be found in the work by [2]. The stress-strain
relations and mechanical properties were obtained by [6].

Since the stable configurations of atoms correspond to the global (or local in
the case of isomers) minima on the Potential Energy Surface (PES), such a task
can be considered as an optimization problem. However, searching for the global
minimum on the PES is a non-trivial, NP-hard problem, because the number
of local minima increases almost exponentially with the number of atoms in the
considered structure.

The first group of the methods is based on searching of the PES, combined
with simulation of certain physical processes, e.g. Random Searches and Monte
Carlo (MC) Simulated Annealing [7] and Basin Hopping Monte Carlo [8]. The
second group of computational intelligence methods is inspired by biological
mechanisms, present in natural environment and live organisms. The bioinspired
optimization methods of atomic structures, such as Genetic Algorithm [9], Arti-
ficial Immune System (AIS) [10] and Particle Swarm Optimization [11] have
become very popular in the last years.

The authors of this paper successfully implemented set of bioinspired algo-
rithms: Evolutionary Algorithm [12], AIS and PSO [13] for investigation of
small aluminium clusters with pair-wise Morse and Murrell-Mottram potentials.
Searching for new two-dimensional, graphene-like structures can be performed in
the same manner. However, in this case a more sophisticated interatomic inter-
action model, so called bond-order potential, should be applied. The bond-order
potential is able to handle various hybridization states of carbon atoms, allow-
ing creation of bondings with proper, neighborhood-dependent geometry. Addi-
tionally, in contrast to the isolated for environment atomic clusters, new algo-
rithm should impose periodicity of the created structure. The hybrid algorithm
proposed in this work hybrid algorithm combines Parallel Evolutionary Algo-
rithm, prepared by the authors, and conjugated-gradient optimization, built-in
LAMMPS software package [14,15] which helps to form the new atomic configu-
ration. Behavior and potential energy of carbon atoms is determined using Adap-
tive Intermolecular Reactive Bond Order (AIREBO) potential, as developed by
[16]. The presented algorithm has modular construction, thus each component
can be replaced with functional equivalent (e.g. EA with AIS, gradient opti-
mization with molecular dynamics, etc.) or adapted to use on new computer
architectures. The proposed method can be extended to optimization of the
three-dimensional molecular structures and may be considered as an alternative
approach to existing ones such as the ab-initio/PSO algorithm called CALYPSO
[17]. The presented work, is a continuation of the authors investigations and
modeling of atomic systems [6,18,19] and a developed version of the approach
applied to the minimization of energy of atomic clusters [13].

The next chapter describes the modelling of graphene-like material with the
use of AIREBO potential. The memetic algorithm based on global evolutionary
algorithm and local gradient based search is described in Sect. 3. The parallel
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platform based on Intel PHI coprocessor is presented in Sect. 4. The optimization
problem for graphene-like material optimization is given in Sect. 5, where the
parallel memetic algorithm is discussed. The result of the chosen optimisation
problem and performance obtained with the use of coprocessor Intel PHI are
shown in Sect. 6.

2 Graphene-Like Material Modeling

The graphene material plays important role in research and application of
new materials. The properties of graphene are well known. The graphene-like
materials which are allotropes of graphene are stable atomic structures with
coarser atom distribution than graphene. The numerical simulation of graphene
allotropes can be performed with the use of static molecular method. Choosing
the proper interaction model is very important in numerical simulation. In the
presented case, the potential energy, as well as neighbourhood-dependent behav-
iour of the carbon atoms is determined on the base of the Adaptive Intermolecu-
lar Reactive Empirical Bond Order (AIREBO) potential for hydrocarbons [16].
The bond-order interaction mode is based on a set of neighborhood-dependent,
switched, mathematical formulas, parametrized to the properties of hydrocar-
bons. The AIREBO potential in the following form is used in computations:

FF =
∑

i

∑

j �=i

⎛

⎝EREBO
ij + ELJ

ij +
∑

k �=i,j

∑

l �=i,j,k

ETORSION
kijl

⎞

⎠ (1)

where the term denoted by EREBO
ij corresponds to the short range interactions

between covalently bonded pair of atoms. The long range interactions in the
AIREBO model are computed in a simplified way, using the Lennard-Jones-like
function (term ELJ

ij ) with additional distance-dependent switching functions,
which expand the abilities to form different spatial configurations of carbon
atoms. The last, torsional potential (ETORSION

kijl ) depends on the neighbouring
atom’s dihedral angles. All coefficients in 1 depend on coordinates of atoms.
The AIREBO potential is fitted to handle different spatial configurations and
hybridizations types of carbon atoms properly and is computationally more effec-
tive than the ReaxFF [20] approach, which requires additional equilibration of
the atomic charge every certain number of iterations [21,22]. The application
of the AIREBO potential to the examination of mechanical properties of vari-
ous two dimensional graphene-like materials has been already performed in [6]
and was in a good agreement with the results obtained by other researchers.
The resulting atomic structures can be used in multiscale modeling of composite
materials [23,24].

The periodicity of the structure is achieved by proper boundary condi-
tions, imposed on the unit cell. The static molecular analysis is performed
using package LAMMPS [14,15]. The equilibration process is performed using
the minimization method based on the Polak-Ribiere algorithm [25]. After the
conjugated-gradient (CG) minimization of the potential energy, the potential
energy of the structure is computed.
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3 Memetic Algorithm

The evolutionary based algorithms are a well known global optimization tech-
nique [26]. The optimizations is performed using an algorithm based on biological
observation of the evolution of species. The description of elements, mechanism
used in the algorithm are also bioinspired. The optimization is performed for
design vector described as individuals with chromosomes or just chromosomes
(if an individual contain one chromosome). The design variables are called genes.
The objective function value or objective function with some additional terms
is called fitness function and says how the individual or chromosome is fitted to
the environment defined by the optimization problem.

The memetic algorithms [27,28] combine evolutionary, global, population
based algorithm with local improvements methods for some individuals or chro-
mosomes. The memetic algorithms are sometimes named hybrid algorithms or
hybrid evolutionary algorithms because they are a kind of a hybrid of global and
local optimization techniques [29].

The global evolutionary algorithm coupled with local conjugate gradient algo-
rithm is used in the paper. The driving part of the optimization is the evolution-
ary algorithm with evolving population of potential solutions to the problems.
The typical operators like mutation and crossover are used without modifica-
tions. The selection is also preserved. The gradient algorithm modifies the genes
of all chromosomes before computing fitness functions. The modification leads
to modification of evolutionary algorithm process of optimum search. The evo-
lutionary operators moves chromosomes to the new areas of attraction and the
gradient based algorithm moves chromosome to the local optimum value. The
proposed approach works well for a highly multimodal fitness function for which
it is hard to close to local optimum using a typical evolutionary algorithm. The
algorithm used in the paper is shown in Fig. 1.

The memetic algorithm used in the paper uses floating point number repre-
sentation of genes. The chromosome genes are modified with the use of uniform
and Gaussian mutation combined with a simple crossover. The uniform mutation
changes genes values randomly within the box constraints. The Gaussian muta-
tion combined with a simple crossover uses in the first step a simple crossover
creating new offspring on the base of two randomly taken chromosomes. The
offspring contains parts of two parents chromosomes determined by randomly
chosen cutting line. The offspring is modified with the use of Gaussian mutation,
some genes are selected and modified with the use of value obtained from random
number generator with normal distribution. The selection of chromosomes which
will create a new population is performed with the use of ranking selection with
elitism. The best chromosome survive due to elitism. The chromosomes with
high fitness have the highest probability of being selected to a new population.
The ranking of chromosomes is created on the basis of fitness function value. The
new rank value is given for each chromosome on the basis of the rank position
and rank function. The selection based on the rank value for each chromosome
established with roulette wheel method is used in the algorithm.
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Fig. 1. The memetic algorithm flowchart

4 Intel PHI coprocessor

The Intel PHI coprocessor [30] is a brand name for an Intel Many Integrated Core
Architecture (Intel MIC). The coprocessor used in the paper contains a chip with
many cores (61 in case of Intel Phi 7120P – code name Knights Corner) connected
using a bidirectional ring bus. Each of the cores have 4 threads. The cores are
equipped with cache-coherent L2 cache and the coprocessor is equipped with a
few (8 in Intel Phi 7120P) memory controllers. The Intel Phi 7120P coprocessor
has up to 16 GB of GDDR5 memory with total throughput of 352 GB/sec. The
communication between host and coprocessor is based on PCIe bus. The low
speed of the PCIe bus should be taken into account during the development of
algorithms, the as low as possible communication between host and coprocessor
is important factor. One of the cores is used to manage the system operations
on the coprocessor. The user can use 60 cores with 4 threads which gives up to
240 threads per coprocessor card.

The programs on the coprocessor can be executed in a few execution
modes [30]:

– coprocessor native – the program is compiled for the coprocessor only, can-
not be executed on host processor, the special coprocessor instructions like
AVX512 can be used to improve the performance of the program,

– offload – the program is compiled for host, but some functions and data are
marked and compiled for coprocessor, during execution of the program on
the host, some work is offloaded to the coprocessor card, special coprocessor
instruction can be used in offloaded part,

– symmetric – the program is executed both on host and coprocessor, the most
typical example is MPI usage, where some jobs are executed on host and
some on coprocessor, the work should be divided according to performance
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of the host and coprocessor, the program is compiled in two versions, one for
host and another for coprocessor.

The thread distribution between cores can be defined by the user and threads
can be bound to a given core. The two typical distributions types are scatter and
compact. The choice of distribution depends on algorithm and communication
needed between threads during computations.

The coprocessor native execution mode should be used when comparing per-
formance to other platforms wherever it is possible because in offload execution
and symmetric mode some time is spent for transferring data and programs to
coprocessor before running program.

The OpenMP can be used for parallel programming on Intel MIC platform,
also other approaches like Intel Cilk Plus, MPI, OpenCL and pthreads are sup-
ported. The OpenMP was chosen as a parallel library for programs presented in
the paper.

5 Optimization of Graphene-Like Material

The graphene-like materials can be optimal which means that for prescribed peri-
odic cell size and given number of atoms one can describe atomic structure with
minimal total potential energy of the atomic structure. The memetic algorithm
described in Sect. 3 is used to solve the optimization problem. The objective -
fitness function was declared with the use of (1). The design variables - genes
are positions of atoms in the cell (Fig. 2). The configuration of n atoms have 2n
design variables (genes).

In the initial population, atoms have randomly generated coordinates and
are placed in the area of the unit cell with periodic boundaries. Dimensions, the
rectangular or triclinic type of the unit cell, as well as the number of atoms, are
part of a set of parameters of the simulation. Such an approach allows to control
the value of atomic density of the newly-created structure. The periodicity of
the atomic structure significantly reduces the number of design variables. The
crucial role in the creation of a new atomic structure is played by the fitness
function which is formulated as the total potential energy of the considered
atomic system, i.e., the total sum of all potential energies of particular atomic
interactions.

Fig. 2. The example of chromosome and corresponding atoms structure
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The local CG method is used for every chromosome in population and is
computed by LAMMPS package. The library containing LAMMPS classes is
used during the optimization. The main timeconsuming part of the optimization
algorithm is local CG method performed by the LAMMPS. The evolutionary
algorithms are easily parallelized, the loop with fitness function evaluation is
done in parallel way in most approaches [31,32]. The OpenMP [33] library was
used in the preparation of numerical results. The parallel algorithm is shown
in Fig. 3. The LAMMPS objects for each thread are created and distributed
between the cores performing computations.

Fig. 3. The parallel memetic algorithm for graphene like materials optimization

6 Results of the Numerical Tests

The problem of optimization of 8 carbon atoms positions in periodic cell was
considered. The minimization with the use of memetic algorithm is performed
in a parallel way. The optimization was executed several times on coprocessor
Intel Phi 7120P in native execution mode. The scatter distribution of threads
was used. The obtained speedup for different number of threads are shown in
Table 1.

The result of the optimization, the atomic structure is shown in Fig. 4.
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Table 1. The speedup obtained during computations in native execution mode

No. of threads Speedup

1 1.00

2 1.97

4 3.72

8 7.69

16 14.57

32 28.32

48 40.20

Fig. 4. The obtained atomic structure during optimization, (a) periodic structure, (b)
cell

7 Conclusions

The memetic optimization algorithm used for the search of new graphene-like
atoms structures scale well on the coprocessor. The speedups above 40 for 48
threads were obtained. The presented algorithm can also be used for the opti-
mization and search for other atoms structures not only the ones based on car-
bons. The future investigations will be conducted for utilizing the coprocessor in
a symmetric mode allowing for the use of two coprocessors and host processors
in the same optimization problem solving.
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6. Mrozek, A., Burczyński, T.: Examination of mechanical properties of graphene
allotropes by means of computer simulation. Comput. Assist. Methods Eng. Sci.
20(4), 309–323 (2013)

7. Lloyd, L.D., Johnston, R.L.: Modelling aluminium clusters with an empirical many-
body potential. Chem. Phys. 236, 107–121 (1998)

8. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest
energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys.
Chem. A 101, 5111–5116 (1997)

9. Roberts, C., Johnston, R.L., Wilson, N.T.: A genetic algorithm for the structural
optimization of morse clusters. Theoret. Chem. Acc. 104, 123–130 (2000)

10. Shao, X., Cheng, L., Cai, W.: An adaptive immune optimization algorithm for
energy minimization problems. J. Chem. Phys. 120(24), 11401–11406 (2004)

11. Zhou, J.C., Li, W.J., Zhu, J.B.: Particle swarm optimization computer simulation
of Ni clusters. Trans. Nonferrous Met. Soc. China 18, 410–415 (2008)
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Abstract. This work is concerned with complex optimization problems
which can be divided into multiple, multi-dimensional problems arranged
linearly (as can be observed in the multi-stage industrial processes).
The relations between complexity of the problem, level of aggregation
of stages into larger groups, and efficiency of search for optimal solution
were investigated.

1 Introduction

Typical industrial process (e.g. motivated by metallurgical engineering) can be
divided into numerous smaller stages [1,7,9,11]. They are often arranged in a
linear manner, along technological path which material (semi-product) have to
pass before it reaches its final form. For example, in production of copper from
sulfide concentrates, the production line consists of the following stages: copper
flash smelting, converting of copper matte to blister copper, fire refining of copper
and electrolytic refining [2]. Of course, each stage can be divided even further,
since there are real steps (reactions) that have to take place in each stage (and
require proper sequence of control parameters, to proceed smoothly).

When choosing a strategy for optimization of such processes, at first an
important decision about aggregation of stages must be made. It is possible to
consider large number of small (possibly low-dimensional) stages, and try to set
control parameters one after another, or look at the process more globally, e.g.
aggregate all stages inside one large stage with many control parameters, output
parameters etc. (one huge multi-dimensional optimization problem). Performing
some partial aggregations and treating them sequentially is another permissible
approach.

In the present work an attempt to answer the question which strategy is
better was made. As a testing ground a sequence of standard test functions was
used and the influence of aggregation on reliability of finding optimal solution
was checked. It is continuation of the Authors’ previous research undertaken in
[6,10].
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2 Stages, Test Function and Optimization Method

2.1 General Structure of the Problem

In this work a hypothetical industrial process (e.g. metallurgical process) con-
sisting of a few intermediate steps or stages, enumerated by index i = 1, . . . , n
was analysed. In each stage there is the following set of input-output parameters:

(i) vector xi of uncontrollable input parameters, e.g. representing initial mate-
rials delivered to factory, semi-products from other steps or from other
production lines etc.

(ii) vector pi of (input) control parameters, ensuring that the reac-
tion/production proceeds properly, effectively, etc.

(iii) vector yi of output parameters which represent some parameters of products
of this step; usually we keep only these parameters which carry an essential
information for further stages of production

(iv) vector qi which represents evaluation of the quality of the process at stage
i; it may be calculated from yi, but can be also derivative of some other
parameters that we do not keep in yi.

In practice, in each stage there are two functions Qi, Fi which bound input-
output parameters by the formula:

xi+1 = yi = Fi(xi,pi),
qi = Qi(xi,pi).

Of course, the above dependences define a chain relation between stages. For
example, to evaluate quality at stage 3 it is necessary to calculate

q3 = F3(x3,p3) = F3(y2,p3) = F3(F2(x2,p2),p3)
= F3(F2(F1(x1,p1),p2),p3). (1)

For simplicity, in this article an assumption was made that there is only one
value describing quality in step i, that is qi = qi. The main optimization goal is
to find minimum of the function

q = w1q1 + w2q2 + . . . + wnqn. (2)

where weights wi ≥ 0 quantify importance of quality in intermediate step i
for the evaluation of quality of the whole process. Again, for simplicity an
assumption was made that all quality assessments are equally important, that is
wi = 1/n for each i. Note that in the following approach q is in fact a function
Q(p1, . . . ,pn) because weights w1, . . . , wn as well as materials input vector x1

are set before the optimization procedure starts.
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2.2 Aggregation

Aggregation involves grouping some of stages into one larger stage. For example,
if 1 ≤ a ≤ b ≤ n then using functions Fi it is possible to define aggregated
function F b

a by composition similar to (1), that is

F b
a(xa,pa,pa+1, . . . ,pb) = Fb(Fb−1(. . . (Fa(xa,pa),pa+1), . . .),pb−1),pb).

This way a single stage, which is a composition of stages from a to b can be
achieved. Clearly, similar aggregation of quality function must be performed. It
can be done using approach similar to formula (2), that is:

qba =
1

b − a + 1
(qa + qa+1 + . . . + qb) =

1
b − a + 1

b∑

j=a

Qj(xj ,pj)

=
1

b − a + 1

b∑

j=a

Qj(Fj−1(. . . (Fa(xa,pa),pa+1), . . .),pj−1),pj)

Aggregation for the initial sequence of stages means that a partition of the set
{1, 2, . . . , n} providing numbers 1 = a1 < a2 < . . . < as ≤ n where 1 ≤ s ≤ n is
fixed. Then if putting bi = ai+1 − 1 for i = 1, . . . , s − 1 and bs = n then initial
problem consisting of n stages is replaced by problem consisting of s stages,
described by functions F

bj
aj and quality functions q

bj
aj . By the definition, F

bj
aj has

one “materials” input vector xaj
and vector of control parameters which is a

composition of control vectors before aggregations, that is (paj
,paj+1, . . . ,pbj ).

This way a reduction of number of stages is achieved, however the dimensions
of the decision problem is increasing as well.

2.3 SIM and SEQ Approaches

The following natural techniques to deal with optimization of chain structured
processes will be used [6]:

1. simultaneous (SIM),
2. sequential (SEQ),

In a simultaneous approach the optimization procedure searches for optimal solu-
tions for all considered stages at once. This approach is equivalent to solving one
huge multi-dimensional optimization problem. The SIM approach will be used
inside aggregated stages to find their optimal control parameters. If the aggre-
gated stage is described by a function F b

a then the optimization algorithm modify
all control parameters pa, . . . ,pb. The opposite to SIM approach is SEQ in which
the optimization of each stage is being performed separately from the first to
the last stage. Using SEQ approach the optimization procedure solves many
low dimensional problems. The SEQ will “transport” solutions between consec-
utive stages (aggregated or not). Since some stages are aggregated into bigger
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ones, in fact the optimization procedure will look for optimal values of func-
tions qb1a1

, . . . , qbsas
sequentially. None of the improvements (e.g. SIMF or SEQC

techniques from [6]) will be applied, since it should better reveal influence of
aggregation on the whole process, rather than other factors hard to quantify
(e.g. effect of credits).

2.4 Measure of Aggregation

Suppose there are some aggregations of stages, that is, the partition a1 ≤ b1 <
a2 ≤ b2 < . . . < as ≤ bs of the set of indexes {1, 2, . . . , n} as described in
Sect. 2.2 is given. Observe that aggregated stage j contains bj − aj + 1 stages,
and therefore it is clear that:

s∑

i=1

bi−ai+1 = −a1+bs+1+
s−1∑

i=1

bi+1−ai+1 = −1+n+1+
s−1∑

i=1

ai+1−ai+1 = n.

A measure of the level of aggregation can be expressed by the formula:

A =
k∑

i=1

(bi − ai)2

(n − 1)2
. (3)

Observe that

bi+1 − ai = bi+1 − ai+1 + ai+1 − ai = (bi+1 − ai+1) + (bi − ai) + 1

and clearly, for any two natural numbers m2 + n2 < (m + n + 1)2. Therefore, it
is not hard to check that (3) reaches its maximal value when there is only one
large aggregated stage, and in this case A = 1 because b1 = n and a1 = 1, while
minimal value of A is assigned when there are n single stages (no aggregation),
and in such case ai = bi for i = 1, . . . , n, hence A = 0. In this sense value of
A increases when aggregation of stages increases. Note that A is independent
on the partition, and only depends on the number of aggregated stages of given
length. For example, if n = 5 and a2 = 3, a3 = 4 then there is aggregation of the
form 2− 1− 2 that is first aggregated stage is composed of 2 simple stages, next
is a single stage, and then again aggregation of two stages appears. Similarly
a2 = 2, a3 = 4 gives structure 1 − 2 − 2. But in both situations the introduced
measure of the level of aggregation will have the same value A = 1+1

42 = 1/8.

2.5 Test Function and Optimization Method

The main goal of this paper is to investigate influence of the method of aggre-
gation on the optimization process, rather than influence of complexity of opti-
mized function. When using a more sophisticated function, the effect of aggre-
gation could be highly influenced by the choice of optimization method, starting
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point, etc. This observation resulted in the decision to choose in each stage the
following simple function:

qi = Qi(xi,pi) =
k∑

j=1

(pi,j − xi,j)2 (4)

where pi,j denotes j-th coordinate of the i-th vector pi. In other words, each Qi

is a simple quadratic function and input vector xi is responsible for displacement
of the minimum. This way it is easy to check if optimum was reached and at
the same time some dependences between consecutive stages in the chain are
embedded. In the considerations the input of following stage was equal to the
control vector used in previous one xi+1 = pi, that is Fi(xi,pi) is simply a
projection on the second coordinate. The main ingredient that will change during
the tests will be the number of stages (varying between 2 and 10) and the number
of dimensions of vectors xi and pi (varying between 1 and 10).

Since in practice the shape of the graph of Qi would not be known, an
algorithm which allow entire-space search will be used. It would work well with
simple function Qi but also with any other much more complicated function.
The decision was made to use Particle Swarm Optimization (PSO) because first
of all it has the above features, and second, it will make possible to compare
obtained results with those presented in [6]. This method is, similarly to genetic
algorithms, motivated by mechanism observed in nature. There is quite large
literature on this topic, e.g. see [3–5,8].

Roughly speaking, during optimization position vector zik of i-th particle in
generation k is transformed by the formula

zik+1 = zik + vi
k+1. (5)

where vi
k+1 is a velocity vector modified in consecutive iterations by the formula:

vi
k+1 = wvi

k + c1r
i
1,k(p

g − zik) + c2r
i
2,k(p

i − zik) (6)

where: pg denotes vector of the best position found so far by the whole swarm;
vector pi represents the best solution found so far by the i-th particle; w is
defined as the inertia coefficient; c1 and c2 are acceleration coefficients (called
also training coefficients); ri1,k and ri2,k are numbers from the interval [0, 1] picked
at random with the uniform distribution. In each iteration, a leader of the swarm
is chosen (the particle with the best value of quality function) and then vectors
pg and pi are updated.

3 Optimization Results

In optimization procedure for a single stage the allowed maximal number of
quality function Qi evaluations was set to Imax = 1000. When stages are aggre-
gated then this number is multiplied in a sense that the value of Qb

a can be
checked only 1000-times, however, to calculate the value of Qb

a it is necessary to
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(a) 2 stages (b) 5 stages

(c) 7 stages (d) 10 stages

Fig. 1. The probability of finding the global minimum depending on the number of
optimization variables and the aggregation level.

(a) 2 stages (b) 5 stages

(c) 7 stages (d) 10 stages

Fig. 2. The average number of objective function calls in successful optimization
depending on the number of optimization variables and the aggregation level.
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check values of each of the functions Qa, . . . , Qb, so in practice 1000 · (b − a + 1)
checks of basic quality function are preformed. The required accuracy was set
to ε = 1/1000, which means that optimization goal is accomplished if value of
quality function Qb

a in each stage is below ε for some sequence of control para-
meters. The optimization of the whole process was considered as successful if
the value of all quality function q was less or equal than assumed accuracy ε.

The computation was made for different number of stages n = 2, 5, 7, 10
and for different dimension of test function at each stage k = 1, 5, 7, 10 (the
same value of k fixed for all stages in the chain). For each combination of the
number of stages and the dimension of test function at each stage, optimization
procedure was performed 100 times. All possible combinations of aggregations
were considered as well

1 − 1 − · · · − 1, 2 − 1 − . . . − 1, 1 − 2 − 1 − . . . − 1, · · · , (n − 1) − 1, n.

for every fixed number of stages n.
The probability of finding global minimum for different number of stages and

for different number of variables in each stage is shown in Fig. 1. Color of each
bar on the graph represents value of aggregation A in the optimization procedure
calculated according to formula (3). In case of chain composed of only 2 stages,
there are only two possible structures 1 − 1 or 2 and therefore there are only
two values of A = 0 or A = 1, respectively. If there were 5 stages then possible
aggregations and possible values of A are presented in Table 1. Figure 2 presents
the average number of objective function calls needed in successful optimization
to reach required accuracy. When the number of stages increases, the number of
possible aggregations increases exponentially.

Table 1. All possible aggregations A for a process with 5 stages.

Number of aggregated stages
of given size in the class

No. of elements in
the class

Structure of a
representant

A

1 2 3 4 5

5 1 1-1-1-1-1 0

3 1 4 2-1-1-1 0,0625

1 2 3 2-2-1 0,125

2 1 3 3-1-1 0,25

1 1 2 3-2 0,3125

1 1 2 4-1 0,5625

1 1 5 1

Total: 16
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4 Summary and Conclusions

A problem of optimization of multistage processes was investigated in the present
paper. The Authors already developed a few strategies which were presented in
[6]. This paper focuses on hybrid approach - a combination of SIM and SEQ
approaches. It is evident from the results (see Fig. 1) that if the number of
variables is small (5 dimensions) then it is better to use sequential approach.
The best results are achieved when there is no aggregation at all. It is interesting
that this statement does not change when the number of stages increases.

When the dimension of the problem is high, then SIM approach starts to sur-
pass sequential approach, with the highest probability of finding optimal solution
when there is total aggregation (all simple stages aggregated in one stage). The
conclusion is that, when the linear process can be divided in large number of
small, relatively simple problems, then it may be good idea to keep this splitting.
In the case of large optimization problems it seems to be a better choice to use
a strategy with measure of aggregation close to one. It is especially visible in
Fig. 1(d) where only highly aggregated structures were able to lead to a solution.
It is also interesting that average number of function calls was much higher in
SEQ approach. It means that this approach needs more computational time to
lead to a solution; SIM strategy was giving optimal solution either fast or failed
in finding one, see Fig. 2.
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Abstract. Differential evolution (DE), as a class of biologically inspired
and meta-heuristic techniques, has attained increasing popularity in solv-
ing many real world optimization problems. However, DE is not always
successful. It can easily get stuck in a local optimum or an undesired stag-
nation condition. This paper proposes a new DE algorithm Differential
Evolution with Alopex-Based Local Search (DEALS), for enhancing DE
performance. Alopex uses local correlations between changes in individ-
ual parameters and changes in function values to estimate the gradient
of the landscape. It also contains the idea of simulated annealing that
uses temperature to control the probability of move directions during the
search process. The results from experiments demonstrate that the use
of Alopex as local search in DE brings substantial performance improve-
ment over the standard DE algorithm. The proposed DEALS algorithm
has also been shown to be strongly competitive (best rank) against sev-
eral other DE variants with local search.

Keywords: Differential evolution · Memetic algorithm · Local search ·
Alopex · Optimization

1 Introduction

Differential evolution (DE) [1] represents a class of evolutionary algorithms that
offer biologically inspired and meta-heuristic techniques to solve many real world
optimization problems. As population-based approaches [2], DE performs par-
allel and beam search thus exhibiting strong ability of exploration in complex
and high dimensional spaces. One distinguishing feature of DE is that it utilizes
the differences of solutions randomly selected from the population to generate
offspring for the new generation. Consequently the search in DE is guided by
the distribution of solutions rather than a pre-specified probability function. A
deep survey of various DE algorithms and associated operators can be found in
[3] and [4]. DE has some attractive properties such as easy programming, simple
implementation and relatively low computational expenses while still yielding
high performance on complex fitness landscapes. It has become a very competi-
tive alternative among the evolutionary algorithms in engineering optimization
applications. In [5] it was indicated that DE algorithms were more efficient and
more accurate than several other optimization methods, including controlled
random search, simulated annealing and genetic algorithms.
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 420–431, 2016.
DOI: 10.1007/978-3-319-39378-0 37
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However, the performance of DE is not always good. It can easily get stuck
in a local optimum or fail to generate better solutions before the population has
converged. Recent efforts are made to mitigate this problem with two kinds of
countermeasures. The first is to enhance the DE capability by adapting mutation
strategies or control parameters of DE during the running of the algorithm, see
examples in [6–9] and [10]. The second is to combine DE with local search to
increase its convergence speed or the ability to avoid local optima, see the works
in [11–13].

This paper proposes a new DE variant Differential Evolution with Alopex-
Based Local Search (DEALS), as contribution to the second kind of efforts for
enhancing DE performance. Alopex [14] was originally proposed for solving pat-
tern matching and combinatorial optimization problems. It uses local correla-
tions between changes in individual parameter and changes in the function values
to estimate the gradient of the landscape. Alopex also contains the idea of sim-
ulated annealing that uses the evolving parameter temperature to control the
probability of move directions during the search and optimization process. The
results from experiments demonstrate that the use of Alopex as local search
in DE brings substantial performance improvement over the standard DE algo-
rithm. The proposed DEALS algorithm has also been shown to be strongly
competitive (best rank) against several other DE variants with local search.

The remaining of the paper is organized as follows. Section 2 gives a review of
the related works. The basic DE is briefly introduced in Sect. 3, which is followed
by the explanation of the proposed DEALS algorithm in Sect. 4. Experiment
results and evaluation are presented in Sect. 5. Finally we conclude the paper in
Sect. 6.

2 Related Work

Since the first proposal of DE in 1997 [15], a lot of works have been done to
improve the search ability of this algorithm, resulting in many variants of DE.
A brief overview on some of them is given in this section. Ali et al. [12] proposed
two different local search algorithms, namely Trigonometric Local Search and
Interpolated Local Search, which were applied to refine the best solution and
two random solutions in every generation respectively.

Local search differential evolution was developed in [16] where a new local
search operator was used on every individual in the population with a probability.
The search strategy attempted to find a random better solution between trial
vector and the best solution in the generation.

Dai and Zhou [17] combined Orthogonal Local Search with DE in the
so-called OLSDE (Orthogonal Local Search Differential Evolution) algorithm.
Therein two individuals were randomly selected from the population in each
generation and they were used to generate a group of trial solutions with the
orthogonal method. Then the best solution from the group of trial solutions
replaced the worst individual in the population.
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Jia et al. [18] proposed a memetic DE algorithm in combination with chaotic
local search (CLS). The adaptive shrinking strategy embedded within CLS
enabled the DE optimizer to explore large space in the early search phase and
to exploit small regions in the later phase. Moreover, the chaotic iteration pro-
duced a higher probability to move into a boundary field, which appeared helpful
for avoiding premature convergence to some extent. A similar work of utilizing
chaotic principle based local search in DE was presented in [19].

Noman and Iba [11] proposed a crossover-based Local Search (XLS) called
DEachSPX. The authors proposed a Lamarckian LS that adapt the length of
the search in the crossover step, taking some information from the search. The
local search method used by the author is a simple hill-climbing algorithm. This
method improve their previous algorithm DEfirSPX [20], which had a fix length
of the crossover search. A similar work was proposed in [21] called DExhcSPX.
This algorithm also uses a hill climbing crossover approach.

Poikolainen and Neri [22] proposed a DE algorithm employing concurrent
fitness based local search (DEcfbLS). The local search was applied to multi-
ple promising solutions in the population, and the selection of individuals for
local improvement was based on a fitness-based adaptation rule. Further, the
local search operator was realized by making trial moves successively on single
dimensions. But there was not much variation in the step sizes of the moves for
different variables within an iteration of the search.

3 Differential Evolution

DE is a stochastic algorithm maintaining a population with Np individuals.
Every individual in the population stands for a possible solution to the problem.
An individual in the population is represented by vector Xi,g with i = 1, 2,. . . ,Np

and g referring to the index of the generation. A cycle in DE consists of three
consecutive steps od operations: mutation, crossover and selection which are
described as follows:

MUTATION. In this first step, NP mutant vectors are created using indi-
viduals randomly selected from the current population. Indeed there are a few
mutation strategies which can be used to generate mutant vectors. But only the
random mutation strategy will be explained below. The other mutation strate-
gies and their performance are discussed in [23]. The calculation of the mutant
vector Vi,G using the random mutation strategy is given in Eq. 1.

Vi,g = Xr1,g + F × (Xr2,g − Xr3,g) (1)

where Vi,g represents the mutant vector, i stands for the index of the vector, g
stands for the generation, r1, r2, r3 ∈ {1,2,. . . ,Np} are random integers and F is
the scaling factor in the interval [0, 2].

Figure 1 shows how this mutation strategy works. All the variables in the
figure appear in Eq. 1 with the same meaning, and d is the difference vector
between Xr2,g and Xr3,g.
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Fig. 1. Random mutation with one difference vector

CROSSOVER. This operation combines every individual in the actual pop-
ulation with the corresponding mutant vector created in the mutation stage.
These new solutions created are called trial vectors and we use Ti,g to represent
the trial vector corresponding to individual i in generation g. Every parameter
in the trial vector are decided in terms of Eq. 2

Ti,g[j] =

{
Vi,g[j] if rand[0, 1] < CR or j = jrand

Xi,g[j] otherwise
(2)

where j stands for the index of a parameter in the vector, Jrand is a randomly
selected integer between 1 and Np to ensure that at least one parameter from
the mutant vector will be included in the trial vector and CR is the probability
of recombination.

SELECTION. This operation compares a trial vector and its parent solution
in the current population to decide the winner to survive in the next generation.
Therefore, if the problem of interest is minimization, the individuals in the new
generation are chosen using Eq. 3.

Xi,g+1 =

{
Ti,g if f(Ti,g) < f(Xi,g)
Xi,g otherwise

(3)

where Xi,g is an individual in the population, Xi,g+1 is the individual in the next
generation, f(Ti,g) represents the objective value of the trial vector and f(Xi,g)
stands for the objective value of the individual in the current population.

4 Differential Evolution with Alopex Local Search

This section discusses the key idea and technical details of utilizing the Alopex
method to enhance the search ability of a standard DE algorithm. First we shall
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introduce Alopex-based local search in Subsect. 4.1, and subsequently we present
the new DE variant: DEALS (Differential Evolution with Alopex Local Search)
in Subsect. 4.2.

4.1 Alopex

Alopex (algorithm of pattern extraction) was originally proposed by Harth and
Tzanakou for optimization and pattern matching in visual receptive fields [14]. It
aims to estimate the gradient of the objective function by measuring the effect
of changes of independent variables. Alopex also uses the varying parameter
Temperature to control the probability of move directions in the search process.
In this paper we adopt Alopex as a local search function for DE, which is detailed
in the following.

Let Zk = (zk1 , zk2 , . . . , zkN ) denote the solution in the kth iteration of the search
process. We first calculate the correlation between the variables and objective
values for Zk with respect to a random solution Z0 = (z01 , z

0
2 , . . . , z

0
N ) from the

population. The correlation is calculated as follows

Ck
j = (zkj − z0j ) × [F (Zk) − F (Z0)] for j = 1, 2, . . . , N (4)

Then, considering minimization problem as an example, the probability for
a negative move on the jth variable in Zk is decided using the Bolzmann distri-
bution as

P k
j =

1

1 + e

Ck
j

Tk
j

(5)

where T k is the annealing temperature that is updated in each iteration as
the average of the correlations across all variables:

T =
1
N

∗
N∑

j=1

|Ck
j | (6)

The calculation of the temperature in (6) enables automatic adjustment of the
behavior concerning exploration and exploitation based on condition or progress
in the local optimization process. The search will become more randomized when
it is far from an optimum with large correlations. In contrast, small correlations
will make the search more biased towards a deterministic scheme for better
exploitation of a promising region. With the probability of move direction as
given in (5), the trial solution Qk = (qk1 , qk2 , . . . , qkN ) is generated by

qkj = zkj + δkj ∗ |zkj − z0j | ∗ rand(0, 1) (7)

where δkj is a sign representing the direction of move as given by

δkj =

{
1 if Ph,k ≥ rand(0, 1)
−1 otherwise

(8)
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If Qk is better than the Zk, the search moves on to the next iteration with the
current solution being updated. Otherwise the trial solution is generated again
according to (7) with the hope to find an improved solution in the neighborhood.

As a summary, the Alopex-based local search function ALS (Start, NumEva)
can be formulated below, where Start represents the initial solution to which
the local search is applied and NumEva is the number of objective evaluations
allocated for a single run of local search.

Algorithm 1. function ALS(Start, NumEva)
1: Z1 = Start;
2: k = 1;
3: for i = 1 to NumEva do
4: Z0=Random individual from population;
5: for j = 1 to N do
6: qkj = zk

j + δkj ∗ |zk
j − z0

j | ∗ rand(0, 1);
7: end for
8: if f(Qk) < f(Zk) then
9: Zk+1 = Qk

10: k = k + 1
11: end if
12: end for

4.2 DEALS

This subsection describes how the Alopex-based local search can be combined
into a DE cycle, giving rise to the new algorithm: DEALS. The basic idea is
to apply the Alopex-based search to the most promising individual in the pop-
ulation after completing mutation, crossover, and selection operations in each
generation. However, special care has to be taken here to avoid launching the
local search from the same location as in the last generation. This entails remem-
bering the solution Xlast in the last generation where local search started (which
seems similar to the idea of short memory in tabu search [24]). When the Alopex
search is conducted in a new generation, it takes as starting point the best indi-
vidual from the population but excluding Xlast. The procedure of the proposed
DEALS method is outlined in Algorithm1 .

5 Experiments and Results

This section aims to examine the ability of DEALS to reach the global optimum
in both unimodal and multimodal problems. The tests were made on 10 bench-
mark functions from [25], where functions f1-f5 are unimodal while functions
f6-f10 are multimodal. A complete description of these functions can be found
in Table 1.
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Algorithm 2. DEALS
1: Initialize the population S(0) with randomly created individuals
2: Set Intensity as the number of evaluations used in a single run of local search
3: Set Xlast={} and t=0;
4: while The termination condition is not satisfied do
5: Create mutant vectors using Eq. 1
6: Create trial vectors by crossover according to Eq. 2
7: Select winning vectors according to Eq. 3 to obtain population S(t+1)
8: Identify Xbest as the best from S(t + 1)nXlast

9: Randomly select solution X’ from S(t + 1)nXbest

10: Ynew = ALS(Xbest, Intensity)
11: Update S(t+1) by replacing Xbest by Ynew

12: Set Xlast = Xbest and t = t+1
13: end while

Table 1. The 10 functions used in the test

FUNCTION

f1(x) =
∑n

i=1 z2
i ; z = x − o

f2(x) =
∑n

i=1(
∑i

j=1 zj)
2; z = x − o

f3(x) =
∑n

i=1 (106)
i−1
n−1 z2

i ; z = (x − o) ∗ M

f4(x) = (
∑n

i=1(
∑i

j=1 zj)
2) × (1 + 0.4|N(0, 1)|); z = x − o

f5(x) = max{Aix − Bi}; *check [25]

f6(x) =
∑n−1

i=1 [100 × (−zi+1 + z2
i )

2 + (zi − 1)2]; z = x − o + 1

f7(x) = 1
4000

×∑n
i=1 z2

i −∏n
i=1 cos( zi√

i
)+; z = (x − o) ∗ M

f8(x) = −20 × exp(−0.2 ×
√

1
n

×∑n
i=1 z2

i ) − exp( 1
n

×∑n
i=1 cos(2πzi)) + 20 + e

z = (x − o) ∗ M

f9(x) =
∑n

i=1[z
2
i − 10 × cos(2 × π × zi) + 10]; z = x − o

f10(x) =
∑n

i=1[z
2
i − 10 × cos(2 × π × zi) + 10]; z = (x − o) ∗ M

5.1 Experimental Settings

Beside DEALS, the basic DE (DE/rand/1) and other 5 different DE variants
were included in the experiments. These DE variants are DENLS [26], OLSDE
[17], DEachSPX [11], DEfirSPX [20], DExhcSPX [21]. The results of OLSDE
were taken from [17] and the results of DEachSPX, DEfirSPX and DExhcSPX
were taken from [11]. The experimental settings for all the algorithms are listed
below:

– DE/rand/1: population size NP = 60, F = 0.9 and CR = 0.9.
– DEALS: population size NP = 30/60, F = 0.9, CR = 0.9, n = 10.
– DENLS: population size NP = 60, F = 0.9, CR = 0.9 and p= 0.1.
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– OLSDE: population size NP = 30, F = 0.9, CR = 0.9, more details can be
found in [17].

– DEachSPX: population size NP = 30, F = 0.9, CR = 0.9, more details can
be found in [11].

where p is the percentage that is changing in the individual when we use
local search.

All the algorithms were assessed with 30 executions on each of these 10
functions to acquire a fair and reliable results for comparison. The termination
condition to finish the execution of these algorithms is that the error of the best
result found is below 1.00E − 08 or the number of evaluations has exceeded
300,000.

5.2 Comparing DEALS with Basic DE and DENLS

First we compare DEALS with basic DE and DENLS. The results from these
algorithms on the benchmark functions are summarized in Table 2, in which the
numbers in boldface represent the lowest mean errors of the solutions found by
the algorithms. The population size used in DEALS was 60, since this population
size was used for the other two algorithms. We can see from this table that
DEALS was the best in all unimodal functions and in multimodal functions
DEALS was the best in 2 functions (f6 and f8) and quite competitive in the
other 2 functions (f7 and f10). With pairwise comparison, the observation is
that DEALS improved basic DE in almost all the functions (except function
f9) and DENLS in all the unimodal functions. On the multimodal functions the
results from DEALS and DENLS are generally similar.

Table 2. Results of DEALS, DE and DENLS with population size 60

FUNCTION DE DENLS DEALS

f1 0.00E+00 0.00E+00 0.00E+00

f2 3.39E+01 8.13E−01 6.02E−04

f3 6.41E+06 1.23E+06 1.21E+06

f4 2.72E+02 4.70E+01 3.52E+00

f5 1.36E+02 1.61E+02 7.76E+01

f6 3.18E+01 4.61E+01 7.42E+00

f7 5.32E−02 4.60E−03 1.03E−02

f8 2.10E+01 2.10E+01 2.09E+01

f9 1.22E+01 1.42E+01 1.75E+01

f10 1.47E+02 2.70E+01 2.74E+01
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5.3 Comparing DEALS with Others Algorithms

In this subsection, the performance of DEALS is compared with the other algo-
rithms: OLSDE DEachSPX, DEfirSPX, and DExhcSPX. Here the population
size was 30 for all the algorithms in comparison. The results from the algorithms
are given in Table 3. From this table, we can see that DEALS was the best in 4
of the 5 unimodal functions and the second best in the remaining function. In
multimodal cases DEALS can be judged as the best in 3 of the 5 functions (f6,
f8 and f10).

Table 4 gives the summarized results of the comparison made above. We
compare DEALS with every other algorithm in terms of their errors obtained on
all the benchmark functions. The numbers of functions on which DEALS was
superior (�), identical (=), or inferior (≺) to another approach are illustrated
in this table. The table shows that DEALS outperformed all other approaches
in 6–7 functions (at least 60 % of the functions) and this number is much higher
than the number of functions where DEALS was outperformed by any other
algorithm.

Table 5 shows a rank of the algorithms in relation to their relative errors
across all the 10 benchmark functions. The relative error of one algorithm on a
certain function is defined as the proportion of the (mean) error of the algorithm

Table 3. Results of DEALS and the other algorithms with population size 30

FUNCTION DEALS OLSDE DEachSPX DEfirSPX DExhcSPX

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 0.00E+00 0.00E+00 6.60E−05 1.05E−03 9.40E−04

f3 3.72E+05 2.20E+05 1.20E+06 1.73E+06 1.54E+06

f4 8.44E−03 1.15E+01 4.62E+00 1.04E+01 6.69E+00

f5 3.85E+02 8.47E+02 9.00E+02 1.15E+03 1.01E+03

f6 8.01E−01 8.81E+00 3.84E+00 1.65E+01 1.41E+01

f7 1.60E−02 4.70E+03 7.39E−03 4.53E−03 7.98E−03

f8 2.09E+01 2.10E+01 2.09E+01 2.10E+01 2.09E+01

f9 3.60E+01 3.95E+01 2.04E+01 2.47E+01 2.80E+01

f10 4.61E+01 5.58E+01 5.27E+01 6.96E+01 6.79E+01

Table 4. Comparison of DEALS against the other algorithms

ALGORITHM UNIMODAL FUNC. MULTIMODAL FUNC. OVERALL

� = ≺ � = ≺ � = ≺
OLSDE 2 2 1 5 0 0 7 1 2

DEachSPX 4 1 0 2 1 2 6 2 2

DEfirSPX 4 1 0 3 0 2 7 1 2

DExhcSPX 4 1 0 2 1 2 6 2 2
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Table 5. Ranking of the algorithms

ALGORITHM RANK SUM OF RELATIVE ERRORS

DEALS 1 3.17

OLSDE 3 6.20

DEachSPX 2 4.44

DEfirSPX 5 7.53

DExhcSPX 4 6.78

on that function to the worst error on the function from all the algorithms. It can
be observed from the table that DEALS was superior to all the other approaches
in terms of the summation of relative errors in all the functions.

6 Conclusion

In this paper we propose the combination of the Alopex-based local search with
standard differential evolution, leading to DEALS as a new algorithm for DE.
Alopex belongs to a class of search methods that rely on variable perturbation
to estimate the gradient information. It also processes the merit of simulated
annealing by using the cooling temperature to control the balance between ran-
domized and deterministic searches. The experimental results showed that the
use of Alopex as a local search mechanism could substantially enhance the perfor-
mance of DE in both unimodal and multimodal problems. Besides, our proposed
DEALS algorithm obtained the best rank among several DE variants with local
search.

More works will be done in future to improve our proposed algorithm. One
of the works will be self-adjustment of the intensity of the local search that is
used inside a DE cycle. The other interesting attempt will be enhancing DEALS
with adaptive mutation strategies and adaptive running parameters. Moreover,
DEALS will be tested and possibly further modified in real industrial scenarios.
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Abstract. In this paper a new method for fuzzy nonlinear modeling
is proposed. This method is a hybridization of genetic algorithm and
genetic programming. The innovations in this method concern, among
others, using weights of aggregation operators, fitness function criteria
and possibilities of automatic creation of fuzzy rules base. The proposed
method was tested with use of typical nonlinear modelling benchmarks.

Keywords: Nonlinear modeling · Genetic programming · Genetic algo-
rithm · Fuzzy system · Structure selection

1 Introduction

Computational intelligence (see e.g. [2–4,9,12,14,15,26,28–30,33,48,55,62–65])
is one of the rapidly developing fields. It applies to among others: neural
networks (see e.g. [38,39,74,78,79]), fuzzy systems (see e.g. [7,8,16,18,19,57–
59,61,67,68]), learning algorithms (see e.g. [17,19,25,73]), etc. These systems
can be used in many fields such as: optimization (see e.g. [23,32,36,37,70,71,76]),
identification (see e.g. [20–22,52,53,66,82–85]), classification (see e.g. [27,31,34,
50,51,54,80,81]), control systems (see e.g. [44]) and nonlinear modelling (see
e.g. [5,6,41,42]). This paper is focused on nonlinear modelling with use of new
approach based on genetic programing and genetic algorithm.

One of the mostly used systems for nonlinear modelling are fuzzy systems
[56]. These systems can achieve high accuracy and interpretable knowledge in a
form of fuzzy rules. Most papers in the literature concerns selecting parameters
of fuzzy system with specified amount on fuzzy rules. To achieve that a genetic
algorithms [60], population-based algorithms [77], differential evolution [47] etc.
are used. The approaches that allows simultaneous selection of system structure
and system parameters can be found less often. These approaches are based
mainly on hybrid population-based algorithms [17] and on genetic programming
[1,13,49,69].

Genetic programming (GP) is an interesting technique. It is an evolution-
ary algorithm (see e.g. [72]) which makes possible to find computer programs
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 432–449, 2016.
DOI: 10.1007/978-3-319-39378-0 38
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that perform a user-defined task represented as a tree structure. Every leaf of
the tree can contain a numeric value (constant or a system input value). In
turn, each node of the tree contains mathematical operators which are usually
used to obtain results based on child nodes numerical values. Three types of
mathematical operators are used: single argument operators (e.g.“cos (·)”), two
argument operators (e.g. “+”) and multi arguments operators (e.g. “avg (·)”).
GP and other evolutionary algorithms (like evolutionary strategies, evolutionary
programming, genetic algorithm etc.) rely on a population of solutions and are
mostly used for optimization problems. These methods are based on a natural
evolution (using mechanisms like natural selection, inheritance, survival) which
gives them an advantage over other methods used for optimization problems like
analytic methods, gradient methods and random methods (see e.g. [56]).

The genetic programming can be used as three different approaches in the
fuzzy systems. The first approach is based on using GP directly to select con-
sequences functions in Takagi-Sugeno fuzzy systems (see e.g. [44]). The second
approach is based on using GP to create new inputs for fuzzy system (it reduces
complexity of the system). The third approach (mostly often used) is based on
using GP to select antecedences of the fuzzy rules (see e.g. [10]). In this approach
mathematical operators from GP are replaced by fuzzy operators. In [13] fuzzy
operator AND was used, in [24] additional fuzzy operators OR, ‘NOT’, ‘greater’,
‘lesser’ and ‘near’ were used. In [43] operators AND, parent operators OR and
fuzzy set operator NOT were used.

The proposed method is based on third approach. This method can be dis-
tinguished by: (a) use of elastic weighted triangular norms as operators AND
and OR, (b) use of operator NOT for fuzzy sets, (c) use of new encoding of the
system, (d) use of fitness function with complexity of the system and new crite-
ria of correct notations of fuzzy rules, and (e) use of proposed hybrid learning
algorithm which is based on genetic algorithm and genetic programming.

The structure of proposed paper consists of: Sect. 2 with description of the
proposed method, Sect. 3 with presentation of simulation results, and Sect. 4
with conclusions.

2 Proposed Method Description

This section contains: description of the proposed fuzzy system, method of its
encoding and initialization, definition of fitness function and description of pro-
posed learning algorithm.

2.1 Description of Fuzzy System

This paper is based on Mamdani type fuzzy system [56], where fuzzy rules can
be in general defined as:

Rk :
[(

IF (x̄1is[NOT]A1,k) AND/OR . . . AND/OR (x̄nis[NOT]An,k)
THEN (y1isB1,k) . . . , (ymisBm,k)

)]
, (1)
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where n is a number of inputs, m is a number of outputs, x̄ = [x̄1, . . . , x̄n] ∈ X,
y = [y1, . . . , ym] ∈ Y, Ak

1 , . . . , Ak
n are input fuzzy sets and Bk

1 , . . . , Bk
m are output

fuzzy sets. In the proposed method fuzzy rules (1) are represented by trees
obtained from genetic programming (Fig. 1a)). Using these trees creates the need
of use of fuzzy sets base, which allow fuzzy sets connect with leaves of trees. Fuzzy
sets base is defined as:

C =

⎧
⎪⎪⎨

⎪⎪⎩

A1,1, ..., A1,R, ...,
An,1, ..., An,R,

B1,1, ..., B1,R, ...,
Bm,1, ..., Bm,R

⎫
⎪⎪⎬

⎪⎪⎭
= {C1, ..., CLc} , (2)

where n is number of inputs, m is number of outputs, R is a number of fuzzy sets
stored for each input i = 1, ..., n or output j = 1, ...,m in base (2), Lc = R·(n+m)
stands for total number of fuzzy sets. Each input fuzzy set Ai,r is represented by
membership function μAi,r

(x̄), while each output fuzzy set Bj,r is represented
by membership function μBj,r

(x̄). It is worth to notice that the second index of
fuzzy sets used in Eq. (2) does not stand for index of the rule (as in Eq. (1)) but
it stands for index of fuzzy set stored for each input and output. The proposed
method is based on Gaussian-type membership function, which is defined by two
parameters: center of fuzzy set (x) and width of fuzzy set (σ).

Each element of the tree (see Fig. 1a)) is described by a set of parameters:
l, o, i, r, w1, w2, N

L i NP. The parameter l decides if element is treated as a node
(l = 0) or leaf (l = 1). The parameter o indicates operator of a given element:
o = 0 for l = 1 stands for ‘IS’, o = 1 for l = 1 stands for ‘NOT’, o = 0 for
l = 0 stands for ‘AND’ (triangular t-norm with weights of arguments [56]) and
o = 1 for l = 0 stands for ‘OR’ (triangular s-norm with weights of arguments).
The parameter i (for leaf) stands for input index of associated fuzzy set. The
parameter r (for leaf) stand for index of associated fuzzy set Ai,r (see Fig. 1b)).
The parameter w1 stands for weight of left child node, w2 stands for weight
of right child node (see Fig. 1c)), NL stands for left child node (for node) and
NP stands for right child node (for node). Taking into consideration mentioned
parameters the output of any of the tree element (both nodes and leaves) can
be calculated as:

µN (x̄) =

⎧⎪⎪⎨
⎪⎪⎩

µAi,r (x̄i) for o = 0 & l = 1 (denoted IS)
1 − µAi,r (x̄i) for o = 1 & l = 1 (denoted NOT)

T ∗ {µNL (x̄) , µNP (x̄) ;w1, w2} for o = 0 & l = 0 (denoted AND)
S∗ {µNL (x̄) , µNP (x̄) ;w1, w2} for o = 1 & l = 0 (denoted OR)

, (3)

where T ∗(·) stands for triangular t-norm with weights of arguments S∗(·) stands
for triangular s-norm with weights of arguments (see e.g. [56]).

The activation (firing) level of fuzzy rule based on structure presented on
Fig. 1(a) is calculated as follows:

τk (x̄) = μNroot
k

(x̄) , (4)
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where N root
k stands for root of the tree of k-th fuzzy rule (k = 1, ..,K) and K

stands for number of fuzzy rules. Defuzzificated output values of the system for
each output j can be calculated for example with center of area method [56]:

ȳj (x̄) =

R∑
r=1

yB
j,r ·

K

S
k=1

{
T

{
τk (x̄) , μB

j,nB
j,k

(
yB
j,r

)}}

R∑
r=1

K

S
k=1

{
T

{
τk (x̄) , μB

j,nB
j,k

(
yB
j,r

)}} , (5)

where yB
j,r are centers of output fuzzy sets Bj,r and nB

j,k stands for index con-
necting k-th fuzzy rule with j-th output fuzzy set. For example nB

j=1,k=2 = 3
means that the second fuzzy rule is associated with the third set of the first
output Bj=1,nB

j=1,k=2=3.

2.2 Encoding Description

In the proposed approach encoding of the system (5) is based on encoding tree
elements N (3) (Fig. 1a)) as sets of parameters:

N =
{
l, o, i, r, w1, w2,NL,NP

}
. (6)

The encoding of fuzzy system (5) is defined as:

Xch =
{
Xfsets

ch ,Xrules
ch

}
. (7)

The part Xfsets
ch encodes parameters of fuzzy sets base (2):

Xfsets
ch =

⎧
⎪⎪⎨

⎪⎪⎩

xA
1,1, σ

A
1,1, ..., x

A
1,R, σA

1,R, ...,

xA
n,1, σ

A
n,1, ..., x

A
n,R, σA

n,R,

yB
1,1, σ

B
1,1, ..., y

B
1,R, σB

1,R, ...,

yB
m,1, σ

B
m,1, ..., y

B
m,R, σB

m,R

⎫
⎪⎪⎬

⎪⎪⎭
, (8)

a)

N

N

N N

N

N N

N N

b)

Nl o i r
w1 w2

l = 0

Ai,r

c)

N l = 1
w1 w2

xi

µN( )x

µ x( )iAi,r

µN( )x
root

µN ( )xroot

µN ( )xL µN ( )xPN NL P

Fig. 1. Structure of: (a) tree representing fuzzy rule with parameters set of each tree
element, (b) leaf and its connection with fuzzy set, (c) node and children weights.
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thus the part Xrules
ch encodes parameters of fuzzy rules:

Xrules
ch =

⎧
⎪⎪⎨

⎪⎪⎩

Nroot
1 , nB

1,1, ..., n
B
m,1,

Nroot
2 , nB

1,2, ..., n
B
m,2,

...,
Nroot

K , nB
1,K , ..., nB

m,K

⎫
⎪⎪⎬

⎪⎪⎭
, (9)

where Nroot
k is a root of the tree of k-th rule, nB

j,k is an index connecting k-th
fuzzy rule with fuzzy set of j-th output. In the proposed method the part Xfsets

ch

encoding parameters of fuzzy sets is processed by a genetic algorithm and the
part Xrules

ch encoding fuzzy rules is processed by a genetic programming.

2.3 System Initialization

The parameters of fuzzy sets encoded in Xfsets
ch are initialized randomly taking

into consideration adjustments to the considered simulation problem. Next, the
number of fuzzy sets K ∈ [Kmin,Kmax

]
is chosen randomly. After the number

of fuzzy rules is chosen the parameters of part Xfsets
ch are initialized using the

following function:

Xrules
ch =

⎧
⎪⎪⎨

⎪⎪⎩

init (Nroot
1 , 1, 1) , Uc (1, R) , ..., Uc (1, R) ,

init (Nroot
2 , 1, 1) , Uc (1, R) , ..., Uc (1, R) ,

...,
init (Nroot

K , 1, 1) , Uc (1, R) , ..., Uc (1, R) ,

⎫
⎪⎪⎬

⎪⎪⎭
, (10)

where Uc(a, b) is a function returning random integer value from the range [a, b]
and init (N, lvl, l) is a recursive function that initializes randomly trees from a
genetic programming. The function init (N, lvl, l) is defined as:

init (N, lvl, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N =

⎧
⎨
⎩

1, Uc (0, 1) , Uc (1, n) , Uc (1, R) ,
Ur (0, 1) , Ur (0, 1) ,
null, null

⎫
⎬
⎭ for

⎧
⎨
⎩

l = 1
or

lvl ≥ lvlmax

N =

⎧
⎪⎪⎨
⎪⎪⎩

0, Uc (0, 1) , Uc (1, n) , Uc (1, R) ,
Ur (0, 1) , Ur (0, 1) ,
init(NL, lvl + 1, Uc (0, 1)),
init(NP, lvl + 1, Uc (0, 1))

⎫
⎪⎪⎬
⎪⎪⎭

for

⎧
⎨
⎩

l = 0
and

lvl < lvlmax

,

(11)
where Ur(a, b) is a function returning real value from the range [a, b], lvl stands
for height (deepness) of the tree, lvlmax is a maximum height of the tree, NL

stands for left child node, and NP stands for right child node. It is worth to
mention that child nodes are generated with increased value lvl which limits the
height of the tree to lvlmax. Moreover, randomly initialized parameter l decides
if child node will be a leaf or node.
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2.4 System Evaluation

For evaluation of the system (5) the following fitness function was used:

ff (Xch) = T ∗
{

ffacc(Xch),ffcom(Xch),ffsam(Xch),ffmul(Xch);
wffacc, wffcom, wffsam, wffmul

}
, (12)

where component ffacc (Xch) specifies the accuracy of the system (5), component
ffcom (Xch) specifies complexity of the system (5), component ffsam (Xch) stands
for a penalty for using the same fuzzy set multiple times by fuzzy rules (which
is non-desired), component ffmul (Xch) stands for a penalty for using the same
input multiple times by single fuzzy rule (with is non-desired), wffacc, wffcom,
wffsam, wffmul are weights of components, T ∗{·} is a n-argument extension of
algebraic triangular norm with weights of arguments. The components of fitness
function are described in detail in the next part of current Section.

The component ffacc (Xch) of function (12) is defined as:

ffacc (X) =
1
m

m∑

j=1

1
Z

Z∑
z=1

|dz,j − ȳz,j |
max

z=1,...,Z
{dz,j} − min

z=1,...,Z
{dz,j} , (13)

where Z is the number of rows of a learning sequence, dz,j is the desired output
value of output j for input vector z (z = 1, ..., Z), ȳz,j is the real output value
j calculated for the input vector x̄z. Equation (13) takes into account the nor-
malization of errors at different outputs of the system (5), which allows using
function (13) in triangular norm used in function (12).

The component ffcom (Xch) of function (12) is defined as:

ffcom (Xch) =
1
K

K∑

k=1

com
(
Xrules

ch {Nroot
k })

2lvlmax − 1
, (14)

where Xrules
ch {Nroot

k } stands for using element Nroot
k of individual Xrules

ch , denomi-
nator stands for maximum number of tree elements (Mersenne’s number), numer-
ator stands for actual number of tree elements calculated as follows:

com (N) =
{

1 for N {l} = 1
1 + com

(
N
{
NL
})

+ com
(
N
{
NP
})

for N {l} = 0 . (15)

The component ffsam (Xch) of function (12) is defined as:

ffsam (Xch) =

⎛

⎜⎜⎝

n∑
i=1

R∑
r=1

max
(

0,
K∑

k=1

smA
(
Xrules

ch {Nroot
k } , i, r

)− 1
)

+

+
m∑
j=1

R∑
r=1

max
(

0,
K∑

k=1

smB
(
Xrules

ch

{
nB
j,k

}
, j, r

)
− 1
)

⎞

⎟⎟⎠

K · (2lvlmax−1 + m)
, (16)
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where denominator stands for maximum number of leaves and output fuzzy
sets m for all K fuzzy rules, numerator stands for penalty for using specified
fuzzy set more than 1 time by any fuzzy rule, function smA(Nk, i, r) stands for
number of using input fuzzy set Ai,r by k-th rule, function smB(nB , j, r) stands
for number of using output fuzzy set Bj,r by k-th rule. The function smA(N, i, r)
from Eq. (16) was defined as follows:

smA (N, i, r) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for

{
N {l} = 0 and

(N {i} = i and N {r} = r)

0 for

{
N {l} = 0 and

(N {i} �= i or N {r} �= r)(
smA

(
N
{
NL
}
, i, r
)
+

+smA
(
N
{
NP
}
, i, r
)
)

for N {l} = 1

, (17)

and the function smB(nB , j, r) was defined as follows:

smB
(
nB , j, r

)
=
{

1 for nB = r
0 for nB �= r

. (18)

The component ffmul (Xch) of function (12) was defined with assumption
that one fuzzy rule cannot use multiple fuzzy sets which are connected to the
same input:

ffmul (Xch) =
1

n · K

(
n∑

i=1

max

(
0,

K∑

k=1

mul
(
Xrules

ch

{
Nroot

k

}
, i
)− 1

))
, (19)

where function mul (N, i) stands for penalty of multiple use of fuzzy sets con-
nected to i-th input by single rule:

mul (N, i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for N {l} = 1 and N {i} �= i
1 for N {l} = 1 and N {i} = i(

mul
(
N
{
NL
}

, i
)
+

+mul
(
N
{
NP
}

, i
)
)

for N {l} = 0 and N {o} = 0

1
2

(
mul

(
N
{
NL
}

, i
)
+

+mul
(
N
{
NP
}

, i
)
)

for N {l} = 0 and N {o} = 1

. (20)

The penalty resulting from using OR operator in minimization of fitness function
(12) is smaller than penalty for using AND operator. Using the OR operator for
the same inputs is acceptable (as opposed to AND operator), but it complicates
readability of fuzzy rules.

2.5 Description of Learning Algorithm

The proposed learning algorithm purpose is to select parameters of the fuzzy
sets stored in base (2) and to select the structure of the fuzzy rules. Proposed
algorithm works according to the following steps:
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– Step 1. In this step a Npop individuals of population P are initialized accord-
ing to description from Sect. 2.3.

– Step 2. This step involves evaluation of the individuals of population P by
fitness function (12).

– Step 3. In this step a Npop of child individuals are generated and stored in
temporary population P′. The genes Xfsets

ch of these individuals are initialized
with use of genetic algorithm crossover operator. The individuals for crossover
are selected by roulette wheel method from population P. The genes Xrules

ch

of these individuals are initialized by choosing randomly genes nBj,k and root
nodes from preselected parents.

– Step 4. This step purpose is to mutate individuals (each individual is
mutated with probability pm1 ∈ (0, 1)) from population P′. The genes Xfsets

ch

are mutated (with probability pm2 ∈ (0, 1)) with use of standard genetic
mutation operator. In turn the genes Xrules

ch are mutated (with probability
pm3 ∈ (0, 1)). This mutation is based on random changes of parameters N {i},
N {r} and nB

j,r. Independent mutation probabilities pm1 �= pm2 �= pm3 (where
pm1 � pm2 > pm3) balance the mutation in a following way: (a) mutation
should be processed on the greater part of the population P′ (pm1) which
allows proper diversity of population, (b) from the other hand, genes muta-
tion probability (pm2) cannot be high due to degeneration of the population,
(c) changes in connection between leafs and nodes (pm3) should be rarely per-
formed, as too intense changes in relationships between the fuzzy rules and
fuzzy sets could hinder the convergence of the algorithm.

– Step 5. Next, the individuals from population P′ are pruned. This process is
based on replacing randomly selected node of each genetic programming tree
(with probability px ∈ (0, 1)) by randomly generated leaf (init(N, 0, 1)).

– Step 6. In this step extension of genetic programming trees from population
P′ is performed. This process is based on replacing randomly selected leaf
of each genetic programming tree (with probability pl ∈ (0, 1)) by randomly
generated node (init(N, lvl, 0)). The lvl stands for actual height of leaf, which
prevents excessive growth of the tree.

– Step 7. In this step for each individual from population P′ a new fuzzy rule is
added (with probability pd and only when K < Kmax) (according to Eq. (11))
or existing randomly chosen fuzzy rule is removed (with probability pu and
only when K > Kmin).

– Step 8. After modification of individuals from population P′ (Steps 3-7) each
individual is evaluated by fitness function (12).

– Step 9. Next, the individuals from populations P and P′ are merged and
only Npop best individuals are chosen to replace population P.

– Step 10. In the last step of the algorithm the purpose is to check if stop
condition is met (for example if the number of executed iterations of algorithm
reaches specified value). If so, the algorithm stops. Otherwise, algorithm goes
back to step 3.
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2.6 Fuzzy Rules Notation

As it was mentioned earlier, in the proposed system (5) a varied fuzzy operators
were used to aggregate antecedences of fuzzy rules and to process the fuzzy sets.
Due to that the notation of fuzzy rules is defined as:

Rk : IF zp
(
Xrules

ch

{
Nroot

k

})
︸ ︷︷ ︸
definition by function

THEN

(
y1 IS B1,Xrules

ch {nB
1,k}, ...,

ym IS Bm,Xrules
ch {nB

m,k}

)
, (21)

where function zp(·) defines antecedences of fuzzy rules in the following way:

zp (N) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xN{i} IS AN{i},N{r} for N {l} = 1 and N {o} = 0
xN{i} IS NOT AN{i},N{r} for N {l} = 1 and N {o} = 1⎛

⎝
zp
(
N
{
NL
}) |N {w1}

AND
zp
(
N
{
NP
}) |N {w2}

⎞

⎠ for N {l} = 0 and N {o} = 0

⎛

⎝
zp
(
N
{
NL
}) |N {w1}

OR
zp
(
N
{
NP
}) |N {w2}

⎞

⎠ for N {l} = 0 and N {o} = 1

. (22)

It is worth to mention that the values of weights w1 and w2 from Eq. (22) can be
replaced by their linguistic equivalents: n (not important) for values lower than
0.25, i (important) for values from range [0.25, 0.75] and v (very important) for
values higher than 0.75. Then, the fuzzy rule notation may be written as the
following example:

R1 : IF

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛

⎝
x4 IS NOT A4,5|v

AND
x6 IS A6,2|n

⎞

⎠ |n

AND⎛

⎝
x1 IS A1,4|i

OR
x2 IS A2,2|n

⎞

⎠ |i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

THEN (y1 IS B1,4). (23)

3 Simulation Results

Simulation was performed on the following benchmarks: Box & Jenkins gas fur-
nace problem [11] (BJ), Hang function [75] (HF), Nelson function [45] (NF) and
yacht hydrodynamic [46] (YH).

The simulations were executed for three cases: case 1 which concerns system
(5), case 2 which concerns system (5) with disabled weights (weight values were
set to 1: w1 = 1 and w2 = 1), case 3 which concerns system (5) with disabled
weights and disabled operators NOT and OR (o values were set to 0). For all cases



New Method for Fuzzy Nonlinear Modelling Based on Genetic Programming 441

a proposed hybrid learning algorithm and proposed fitness criteria were used.
This way of testing allowed precise determination of the impact of individual
components of the system (5) on the results.

Values of parameters of the algorithm were experimentally selected as follows:
number of fuzzy sets in fuzzy sets base (2) for each input and output was set to
R = 5, minimum number of fuzzy rules was set to Kmin = 3, maximum number
of fuzzy rules was set to Kmax = 5, maximum height of the tree was set to
lvlmax = 5, weights of fitness function components were set to (12) wffacc = 1.0,
wffcom = 0.5, wffsam = 0.2, wffmul = 0.1, number of individuals in population
Npop = 100, number of algorithm iterations Nstep = 1000, individual mutation
probability pm1 = 0.7, genes mutation probability pm2 = 0.2, rules mutation
probability pm3 = 0.1, pruning of tree probability px = 0.3, extending of tree
probability pl = 0.2, adding new fuzzy rule probability pd = 0.2 and removing
fuzzy rule probability to pu = 0.3. For each benchmark and case simulations
were repeat 100 times and results were averaged. Obtained results are presented
in Table 1, while the example of obtained fuzzy rules and fuzzy sets are presented
in Fig. 2 and in the Table 2.

Table 1. Obtained results with comparison with results of other authors ([35,40]).

Problem Case Avg.

ff

Avg.

ffacc

Avg.

ffcom

Avg.

ffsam

Avg.

ffmul

Avg.

K

Avg.

rmse

Best

rmse

Best rmse

(other authors)

BJ 1 0.083 0.034 0.089 0.006 0.018 3.200 0.505 0.323 from 0.219 to 0.449

2 0.091 0.032 0.110 0.006 0.017 3.900 0.477 0.405

3 0.089 0.029 0.107 0.008 0.022 4.100 0.432 0.401

HF 1 0.100 0.037 0.079 0.012 0.104 3.167 0.137 0.078 from 0.011 to 0.131

2 0.107 0.041 0.088 0.012 0.100 3.467 0.154 0.088

3 0.108 0.045 0.080 0.012 0.104 3.300 0.167 0.085

NF 1 0.064 0.018 0.077 0.004 0.033 3.100 1.315 1.158 from 1.104 to 2.653

2 0.068 0.019 0.080 0.004 0.038 3.233 1.337 1.189

3 0.071 0.017 0.085 0.006 0.050 3.433 1.294 1.082

YH 1 0.084 0.021 0.092 0.019 0.053 3.233 1.314 0.690 from 0.820 to 2.236

2 0.096 0.022 0.098 0.026 0.075 3.333 1.375 0.993

3 0.087 0.028 0.095 0.013 0.036 3.300 1.747 1.178

The simulation conclusions are following: (a) best results of fitness function
was obtained for case 1 (see Table 1), (b) obtained accuracy for case 1-case 3
is similar (see Table 1), (c) case 1 is characterized by best complexity (for some
cases simultaneously with best accuracy), which was possible to obtain due to
using weights (see Table 1), (d) obtained results do not differ from the results
of other authors (see Table 1). It is worth to mention that other authors results
are concentrated mostly on accuracy or on using more complex systems (see
e.g. [35,40]), (e) proposed approach is characterized by clear and not-conflicting
fuzzy rules (see Fig. 2 and Table 2).
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Table 2. Examples of fuzzy rules obtained for case 1.

Problem Notation of fuzzy rules Values of fitness function

BJ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

x3 IS A3,4|n
AND

x6 IS A6,4|i

⎞

⎟
⎟
⎠ |v

AND

x1 IS A1,2|i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

THEN (y1 IS B1,1)

R2 : IF

⎛

⎜
⎜
⎝

x1 IS A1,5|v
AND

x6 IS A6,1|v

⎞

⎟
⎟
⎠ THEN (y1 IS B1,5)

R3 : IF

⎛

⎜
⎜
⎝

x1 IS A1,3|i
OR

x5 IS A5,4|n

⎞

⎟
⎟
⎠ THEN (y1 IS B1,4)

ff = 0.067

ffacc = 0.031

ffcom = 0.073

ffsam = 0.000

ffmul = 0.000

K = 3.000

rmse = 0.467

HF

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

⎛

⎜
⎜
⎝

x2 IS NOT A2,4|n
AND

x1 IS A1,1|v

⎞

⎟
⎟
⎠ THEN (y1 IS B1,5)

R2 : IF

⎛

⎜
⎜
⎝

x2 IS A2,4|i
OR

x1 IS A1,5|n

⎞

⎟
⎟
⎠ THEN (y1 IS B1,2)

R3 : IF

⎛

⎜
⎜
⎝

x2 IS A2,5|v
OR

x2 IS A2,3|i

⎞

⎟
⎟
⎠ THEN (y1 IS B1,1)

ff = 0.102

ffacc = 0.037

ffcom = 0.073

ffsam = 0.015

ffmul = 0.125

K = 3.000

rmse = 0.140

NF

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

⎛

⎜
⎜
⎝

x1 IS NOT A1,1|i
AND

x2 IS NOT A2,5|n

⎞

⎟
⎟
⎠ THEN (y1 IS B1,1)

R2 : IF

⎛

⎜
⎜
⎝

x2 IS A2,3|v
OR

x1 IS A1,1|n

⎞

⎟
⎟
⎠ THEN (y1 IS B1,3)

R3 : IF

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 IS NOT A1,5|n
OR

⎛

⎜
⎜
⎝

x1 IS A1,2|n
OR

x2 IS A2,1|v

⎞

⎟
⎟
⎠ |v

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

THEN (y1 IS B1,5)

ff = 0.051

ffacc = 0.015

ffcom = 0.073

ffsam = 0.000

ffmul = 0.000

K = 3.000

rmse = 1.267

YH

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : IF

⎛

⎜
⎜
⎝

x2 IS NOT A2,1|n
AND

x6 IS A6,4|n

⎞

⎟
⎟
⎠ THEN (y1 IS B1,1)

R2 : IF

⎛

⎜
⎜
⎝

x1 IS A1,4|n
AND

x6 IS A6,5|v

⎞

⎟
⎟
⎠ THEN (y1 IS B1,5)

R3 : IF

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

x4 IS A4,2|i
AND

x2 IS A2,4|i

⎞

⎟
⎟
⎠ |n

OR
⎛

⎜
⎜
⎝

x5 IS A5,3|n
OR

x6 IS A6,1|v

⎞

⎟
⎟
⎠ |n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

THEN (y1 IS B1,2)

ff = 0.072

ffacc = 0.021

ffcom = 0.105

ffsam = 0.015

ffmul = 0.125

K = 3.000

rmse = 1.308
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Fig. 2. Examples of fuzzy sets obtained for problems: (a) BJ, (b) HF, (c) NF, (d) YH
for fuzzy rules presented in Table 2.

4 Conclusions

In this paper a new hybrid learning algorithm for selection of the structure and
the parameters of the fuzzy systems for nonlinear modelling is presented. In
presented approach fuzzy rules take form of binary trees. Nodes of these trees
decide on aggregation operators (AND/OR) and the leaves of these trees are
connected to the input fuzzy sets (with possibilities of using negation opera-
tor NOT). Each node contains additional weights of its children which increase
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flexibility of the fuzzy system and notation of fuzzy rules. An important char-
acteristic of proposed method is ability to promote clear and consistent rules
through properly defined evaluation function solutions. The proposed approach
was tested on typical nonlinear modelling benchmarks and it can be said that
obtained results are satisfying. All mentioned factors make proposed approach
very useful in nonlinear modeling.
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Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI),
vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

17. Cpa�lka, K., �Lapa, K., Przyby�l, A., Zalasiński, M.: A new method for designing
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71. Smyczyńska, U., Smyczyńska, J., Hilczer, M., Stawerska, R., Lewiński, A.,
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Abstract. In this paper a new approach for designing control systems
is presented. It is based on ensemble of PID controller and flexible neuro-
fuzzy system with dynamic structure. A hybrid population-based algo-
rithm is proposed to select the structure and its parameters. In this
hybridization a genetic algorithm is used to select the controller structure
and evolutionary strategy is used to simultaneously select the controller
parameters. The proposed approach allows design interpretable control
systems based on different control criteria and different controlled object.
The proposed controller structure and proposed learning algorithm were
tested on typical control problem.

Keywords: Evolutionary algorithm · PID algorithm · Fuzzy system ·
Structure selection

1 Introduction

The problem of designing the structure and selecting the parameters of control sys-
tems is an important topic in the literature. For this process different approaches
are used: analytical approaches (well-known in the literature) and approaches
based on using computational intelligence [3,17–19,21–23,25,27,29,30,36,38,42,
46–51,55–63,66–72]. One of the most commonly used types of controllers are the
ones based on the combination of linear correction terms. The structure of these
controllers is based on functional blocks of proportional (P ), integral (I) and
derivative (D) type. In the literature many types of specialized structures are
presented (e.g. PI, PID, PI in cascade, PI with feed-forward [7,31], PI or PID
with additional low-pass [37], PID with anti-windup and compensation mech-
anism [45], pseudo-derivative feedback (PDF), pseudo-derivative feedback with
feed-forward gain (PDFF) [64] etc.). From the other hand, the control systems
based on computational intelligence usually do not have strictly defined struc-
tures. Their structure can be based on e.g. neural networks [20], fuzzy systems
[4–6,14,15], neuro-fuzzy systems [8,9,12,13,16,32,53,54], etc. Gradient algo-
rithms, population based algorithms [11,65], etc. can be used to select the struc-
ture and the parameters of these control systems. The third type of controllers
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 450–464, 2016.
DOI: 10.1007/978-3-319-39378-0 39
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are hybrids of other mentioned types. The hybridization can be based on com-
bined controller structures (see e.g. [1,26]) or on using computational algorithms
to select structure and parameters of typical PID controllers (see e.g. [35]).

Taking into account hybrid approaches, an ensemble of PID controllers and
fuzzy systems is worth attention. The advantages of this ensemble was proved
in i.a. [1,26]. The use of fuzzy system can not only affect system accuracy but
it also makes possible to obtain interpretable knowledge in a form of fuzzy rules
[33,34,44,52]. Initially, the interpretability of fuzzy systems referred only to the
number of fuzzy rules, but gradually the interpretability criteria which refer
to many aspects of fuzzy systems were introduced. These criteria can concern,
among the others, correct notation of fuzzy rules [2], correct activation of fuzzy
rules [39], distinguishability of fuzzy sets [41], precise defuzzification mechanism
[10] etc. The use of these criteria results in increasing readability of fuzzy rules,
fuzzy sets, understanding of deffuzification mechanism etc. The overall summary
on interpretability criteria can be found, for example in [2,24]. Unfortunately,
PID-fuzzy controllers presented in the literature usually are characterized by
high number of fuzzy rules [40], static structures [26] and statically (or partial
statically) distributed fuzzy sets [43].

In this paper a new structure of flexible PID-fuzzy controller is proposed.
This structure is based on ensemble of PID controller and fuzzy system and
it allows for dynamic reduction of its elements. The flexibility of the controller
was achieved by using, among the others, precise defuzzification operator and
dynamic number of system inputs. Moreover, the new system encoding and new
tuning algorithm based on hybrid genetic-evolutionary algorithm are proposed.
The proposed controller structure and the proposed learning algorithm were
tested on typical control problem.

This paper is organized into 5 sections. Section 2 contains description of pro-
posed controller, Sect. 3 describes an idea of using evolutionary method for con-
troller optimization. Simulation results are presented in Sect. 4 and conclusions
are drawn in Sect. 5.

2 Description of New PID-fuzzy Controller

The PID controller, as mentioned above, consists of the following functional
blocks: proportional P with parameter KP (see Fig. 1 (a)), integral I with parame-
ter KI (see Fig. 1 (b)) and derivative D with parameter KD (see Fig. 1 (c)). The
typical structure of PID controller is based on control blocks (CB) with single out-
put (see Fig. 1 (d)). These blocks can act as a whole controller or as a part of the
controller. In case of PID-fuzzy controllers, CB blocks are modified to a form with
number of outputs equal to number of functional blocks (see Fig. 1 (e)).

In this paper we propose a modified CB structure (see Fig. 1 (f)), which allows
for reduction of its functional blocks or reduction of whole CB structure from a
controller (proposed approach takes assumption that controller consists of mul-
tiple CB blocks). The reduction takes place when additional binary parameters
CP, CI, CD and CCB) have value equal to 0.
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Fig. 1. Structure of: (a) proportional functional block P, (b) integral functional block
I, (c) derivative functional block D, (d) typical CB block, (e) fuzzy systems CB block,
(f) proposed CB block, (g) proposed flexible PID-fuzzy controller.

Moreover, a new flexible PID-fuzzy controller structure is proposed. This
structure is based on proposed CB block and flexible fuzzy system (see Fig. 1 (g)).
Proposed structure makes possible, among the others, support of any number
of input signals (this number is equal to the number of CB blocks). The output
values of proposed CB blocks are calculated as follows:

⎧
⎨

⎩

xP
s (t) = KP

s · es (t) · CCB
s · CP

s

xP
s (t) = KI

s · ∫ t

0
es (t) dt · es (t) · CCB

s · CI
s

xP
s (t) = KD

s · des(t)
dt · es (t) · CCB

s · CD
s

, (1)

where s = 1, ...,M stands for index of CB, M stands for number of CB, ei(t)
stands for input of controller, C∗

s stands for reduction parameter, ∗ stands for
any CB element (P, I, D or CB). According to Eq. (1) each CB block returns
three outputs, which are transformed into fuzzy system input vector x̄ as follows:

x̄ =

⎧
⎪⎪⎨

⎪⎪⎩

xP
1 (t) , xI

1 (t) , xD
1 (t) ,

xP
2 (t) , xI

2 (t) , xD
2 (t) ,

...,
xP
M (t) , xI

M (t) , xD
M (t)

⎫
⎪⎪⎬

⎪⎪⎭
= {x̄1, ..., x̄n} , (2)

where n = 3M stands for the number of fuzzy system inputs.
In this paper a typical multi-input, multi-output flexible fuzzy system of

the Mamdani-type is considered. This system performs mapping X → Y, where
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X ⊂ Rn and Y ⊂ Rm. The rule base of this system consists of a collection of N
fuzzy rules Rk, k = 1, . . . , N . Each rule Rk takes the following form:

Rk :
[(

IF
(
x1 is Ak

1

)
AND ... AND

(
xn is Ak

n

)

THEN
(
y1 is Bk

1

)
, ...,

(
ym is Bk

m

)
)]

, (3)

where x̄ = [x̄1, . . . , x̄n] ∈ X is a vector of input signals, ȳ = [ȳ1, . . . , ȳm] ∈ Y is
a vector of output signals, Ak

1 , . . . , A
k
n are input fuzzy sets characterized by

membership functions μAk
i
(x̄i), i = 1, . . . , n, Bk

1 , . . . , Bk
m are output fuzzy sets

characterized by membership functions μBk
j
(ȳj), j = 1, . . . , m, m is the number

of outputs. The flexibility of the system is a result of using dynamic number of
inputs and a precise defuzzification process. Outputs of the system are calcu-
lated, for example, by center of area method:

uj(t) = ȳj =

Rj∑
r=1

ȳdef
j,r · N

S
k=1

{
T

{
τk (x̄) , μBk

j

(
ȳdef
j,r

)}}

Rj∑
r=1

N

S
k=1

{
T

{
τk (x̄) , μBk

j

(
ȳdef
j,r

)}} , (4)

where ȳdef
j,r (r = 1, . . . , Rj) are discretization points (in the system considered

in this paper the number of discretization points Rj for any output j does not
have to be equal to the number of rules N , which creates good opportunities for
increasing the interpretability and accuracy of the fuzzy system), τk (x̄) is the
activation level of the rule k determined for the input signals x̄ as follows:

τk (x̄) =
n

T
i=1

{{
1 for x̄i = 0

μAk
i
(x̄i) for x̄i �= 0

}
, (5)

where T{·} and S{·} are triangular norms [52]. In this paper algebraic (product)
triangular norms were used. These norms are defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

T {a} = T {a1, ..., an} =
n

T
i=1

{ai} =
n∏

i=1

ai

S {a} = S {a1, ..., an} =
n

S
i=1

{ai} = 1 −
n∏

i=1

(1 − ai)
. (6)

3 Description of New Learning Algorithm

In this paper a new modification of genetic-evolutionary algorithm is proposed. It
is based on genetic algorithm (for selection controller structure) and evolutionary
algorithm (for selection controller parameters). The process of simultaneously
select the structure and the structure parameters is described in detail later in
this section. Proposed algorithm was adjusted to the proposed structure of the
controller (by proper encoding of the structure) and to the tested simulation
problem (by suitable definition of fitness function, which evaluate not only the
accuracy of the controller, but also its complexity and interpretability).
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3.1 Encoding of Potential Solutions

Encoding of population of potential solutions used in the algorithm refers to the
Pittsburgh approach [28]. A single individual of the population (Xch) is therefore
an object that encodes the complete structure Xstr

ch of the controller (4) and its
real number parameters Xpar

ch :

Xch =
{
Xpar

ch ,Xstr
ch

}
. (7)

The part Xpar
ch which encodes real number parameters of Xch is defined as follows:

Xpar
ch =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
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A
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A
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n,N ,

x̄B
1,1, σ

B
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B
m,1, σ

B
m,1, ...,

x̄B
1,N , σB

1,N , ..., x̄B
m,N , σB

m,N ,

ȳdef
1,1 , ..., ȳdef

1,R, ..., ȳdef
m,1, ..., ȳ

def
m,R

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
{

Xpar
ch,1, ...,X

par
ch,Lpar

}
, (8)

where KP
s ,KI

s,K
D
s stand for parameters of CBs, s = 1, ...,M , x̄A

i,k, σ
A
i,k stand

for centers and widths of input fuzzy sets, i = 1, ..., n stands for index of fuzzy
system input, k = 1, ..., N stands for index of fuzzy system rule, N stands for
number of fuzzy rules, x̄B

j,k, σ
B
j,k stand for centers and widths of output fuzzy sets ,

j = 1, ...,m stands for index of fuzzy system output, ȳdef
j,r stands for discretization

points, r = 1, ..., R stands for index of discretization points, R stands for number
of discretization points, Lpar = 3M +2N(n+m)+mR stands for number of real
number parameters. In this paper a Gaussian type of fuzzy sets were chosen for
both input and output fuzzy sets.

The part Xstr
ch , which encodes binary parameters of Xch is defined as follows:

Xstr
ch =

⎧
⎨

⎩

CCB
1 , ..., CCB

M ,
CP

1 , CI
1, C

D
1 , ..., CP

M , CI
M , CD

M

ȳdef
1,1 , ..., ȳdef

1,R, ..., ȳdef
m,1, ..., ȳ

def
m,R

⎫
⎬

⎭ =
{
Xstr

ch,1, ...,X
str
ch,Lstr

}
, (9)

where CCB
s stands for reduction of CBs, CP

s , CI
s, C

D
s stand for reduction of CBs

functional blocks (see Fig. 1 (f)), ȳdef
j,r stands for reduction of respectively dis-

cretization points encoded in part Xpar
ch , Lstr = 3(1+M)+mR stands for number

of binary parameters. The equation defining outputs of CB blocks (1) with taking
into account proposed encoding is defined as follows:

⎧
⎨

⎩

xP
i (t) = Xpar

ch

{
KP

i

} · ei (t) · Xstr
ch

{
CCB

} · Xstr
ch

{
CP

}

xP
i (t) = Xpar

ch

{
KI

i

} · ∫ t

0
ei (t) dt · ei (t) · Xstr

ch

{
CCB

} · Xstr
ch

{
CI

}

xP
i (t) = Xpar

ch

{
KD

i

} · dei(t)
dt · ei (t) · Xstr

ch

{
CCB

} · Xstr
ch

{
CD

} , (10)

where Xpar
ch {g} stands for referring to g-th gene of part Xpar

ch . The output of the
proposed system (4) with taking into account proposed encoding is defined as
follows:
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ȳj =

Rj∑
r=1

Xstr
ch

{
ȳdef
j,r

} · Xpar
ch

{
ȳdef
j,r

} ·
N

S
k=1

{
T

{
τk (x̄) , μBk

j

(
Xpar

ch

{
ȳdef
j,r

})}}

Rj∑
r=1

Xstr
ch

{
ȳdef
j,r

} ·
N

S
k=1

{
T

{
τk (x̄) , μBk

j

(
Xpar

ch

{
ȳdef
j,r

})}} . (11)

The use of binary reduction of discretization points Xstr
ch

{
ȳdef
j,r

}
causes using only

∑R
r=1 X

str
ch

{
ȳdef
j,r

}
discretization points in Eq. (11).

3.2 Genetic-Evolutionary Algorithm

The proposed genetic-evolutionary algorithm works according to the following
steps:

– Step 1. Initialization. In this step a Npop individuals are randomly initial-
ized (the real number genes are initialized randomly accordingly to simulation
problem and the binary genes are initialized randomly) and stored into pop-
ulation P.

– Step 2. Evaluation. Next, each individual from population P is evaluated
by the proposed fitness function, designed to evaluate accuracy of the con-
troller, its complexity and interpretability (12). The fitness function definition
is described in detail in Sect. 3.3.

– Step 3. Reproduction. In this step a new Npop individuals are created
and stored into population P′. Those individuals are created using typical
crossover operator [52] from genetic algorithm. Parents of the individuals are
chosen by roulette wheel method [52].

– Step 4. Mutation. In this step individuals from population P′ are mutated.
The genes of individuals encoded in Xpar

ch are mutated with probability pm by
evolutionary strategy mutation, and the genes encoded in Xstr

ch are mutated
with probability ps (ps < pm due to higher impact on the system output)
by genetic algorithm mutation. The proposed distinction in mutation makes
possible to keep the correct solution diversity of the population without per-
version.

– Step 5. Evaluation. This step involves evaluation of individuals from popu-
lation P′ with use of the fitness function (12) .

– Step 6. Individuals selection. In this step a Npop best individuals (accord-
ing to fitness function value) is chosen from P ∪ P′. Next, these individuals
replace population P.

– Step 7. Stopping condition. In this part of the algorithm the stopping
condition is checked (this condition can rely on checking if certain number of
iterations is achieved). If this condition is met, then the algorithm stops and
the best solution is presented. Otherwise, the algorithm goes back to Step 3.
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3.3 Evaluation of Potential Solutions

Each individual Xch is evaluated by the following fitness function:

ff (Xch) =
F∑

f=1

afwfffcf (Xch), (12)

where ffcf (Xch) stands for fitness function component, f = 1, ..., F , F stands for
number of fitness function components (this number depends, among the others,
from simulation problem), wf stands for weights of fitness function components
ffcf (Xch), af stands for normalizations of fitness function components. The
function ffc1 (Xch) is responsible for complexity of the controller and it is defined
as follows:

ffc1 (Xch) =
1

Lstr

Lstr∑

l=1

Xstr
ch,l. (13)

The function ffc2 (Xch) is responsible for interpretability of fuzzy system rules
(by promoting properly distributed fuzzy sets) and it is defined as follows:

ffc2 (Xch) =

n∑
i=1

N−1∑
k=1

ierA
(

→
x
A

i,k+1,
→
x
A

i,k

)
+

m∑
j=1

N−1∑
k=1

ierB
(

→
x
B

j,k+1,
→
x
B

j,k

)

(n + m) · (N − 1)
, (14)

where
→
x

A

i = sort
(
Xpar

ch {x̄A
i,1}, ...,Xpar

ch {x̄A
i,N})

and
→
x

B

j = sort
(
Xpar

ch {x̄B
j,1}, ...,

Xpar
ch {x̄B

j,N})
stands for ascended sorted vectors containing centers of fuzzy sets

of i-th inputs and j-th outputs. The function ierA(·) (and analogically for outputs
ierB(·)) stands for penalty for incorrect distributed fuzzy sets:

ierA (x1, x2) =
{

(x2 − x1) /bAi for x2 − x1 < bAi
0 for x2 − x1 ≥ bAi

, (15)

where bAi (and analogically bBj for outputs) stands for minimum acceptable dis-
tance between center of neighboring fuzzy sets:

bAi =
1
N

(
max

k=1,...,N

(
Xpar

ch {x̄A
i,k}

) − min
k=1,...,N

(
Xpar

ch {x̄A
i,k}

))
. (16)

The rest fitness function components depend from simulation problem and
they are defined in Sect. 4.

4 Simulation Results

4.1 Problem Description

In our simulations a problem of designing controller structure and tuning para-
meters for double spring-mass-damp object was considered (see Fig. 2). More
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Fig. 2. Simulated spring-mass-damp object. s∗ stands for desired position of the mass
m1

details about this model can be found in our previous paper [35]. Object para-
meters were set as follows: spring constant k was set to 10 N/m, coefficient of
friction μ = 0.5, masses m1 = m2 = 0.2 kg. Initial values of: s1, v1, s2 i v2

were set to zero, and s∗ is a desired position of mass m1 (see Fig. 2), simulation
length T all was set to 10 s, output signal of the controller was limited to the
range y ∈ (−2,+2), quantization resolution for the output signal y of the con-
troller as well as for the position sensor for s1 and s2 was set to 10 bit, time step
in the simulation was equal to T = 0.1 ms, while interval between subsequent
controller activations were set to twenty simulation steps (number of iteration
of the model is calculated as Z = T all/T ). For the considered problem a trape-
zoidal shape of desired signal s∗ was used (see Fig. 4). The input of the controller
e1(t) = s∗, e2(t) = s1, e3(t) = s1 − s∗ (M = 3). Moreover, for considered simu-
lation problem, the following fitness function components (13) were additionally
used:

– RMSE standing for accuracy of the controlled object:

ffc3 (Xch) = RMSE =

√√√√ 1
Z

·
Z∑

i=1

ε2i =

√√√√ 1
Z

·
Z∑

i=1

(s∗
i − s1i )

2
, (17)

– Overshooting of the controller:

ffc4 (Xch) = max
i=1,...,Z

{
s1i

}
. (18)

– Oscillations of the output of the controller:

ffc5 (Xch) =
O−1∑

o=1

|ro − ro+1|, (19)

where rc stands for each local minims and maxims of the output values of
the controller, c = 1, ..., O, O stands for number of minims and maxims of
osculations.

4.2 Controller and Algorithm Parameters

The parameters of the controller and learning algorithm were set experimentally
to: number of fuzzy rules N = 3, number of discretization points R = 10, number
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Table 1. Simulation results and comparison with other methods, n/a stands for not
available data.

Method ff(·) ffc1(·) ffc2(·) ffc3(·) ffc4(·) ffc5(·) PID elements

Passive system n/a n/a n/a 0.822 n/a n/a n/a

PID controller [35] best (by ffc3(·)) n/a n/a n/a 0.050 15.374 1.040 6.000

best (by ffc4(·)) n/a n/a n/a 0.051 12.315 1.117 10.000

Proposed approach best 1.052 0.474 0.092 0.090 2.657 1.256 4.000

average 1.468 0.509 0.148 0.128 2.450 1.195 4.544
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Fig. 3. Structure of best obtained flexible PID-fuzzy controller.

of individuals in population Npop = 100, number of iterations = 1000, mutation
probability pm = 0.25, binary mutation probability ps = 0.15, normalization
parameters of fitness function components a1 = 1.0, a2 = 1.0, a3 = 10.0, a4 =
0.01, a5 = 0.1, weights of fitness function components w1 = 0.2, w2 = 0.5,
w3 = 1.0, w4 = 0.1, w5 = 0.1. The simulations were repeated 100 times and
results were averaged.

4.3 Obtained Results

The obtained results are presented in Table 1. The best founded controller struc-
ture is presented in Fig. 3, the corresponding signals of the controller in Fig. 4
and notation of the corresponding fuzzy rules can is defined as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1 : IF

(
xP

2 (t) is high AND xI
2(t) is high AND

xP
3 (t) is medium AND xI

3(t) is high

)
THEN u1(t) is high

R2 : IF

(
xP

2 (t) is low AND xI
2(t) is medium AND

xP
3 (t) is low AND xI

3(t) is medium

)
THEN u1(t) is medium

R3 : IF

(
xP

2 (t) is medium AND xI
2(t) is low AND

xP
3 (t) is high AND xI

3(t) is low

)
THEN u1(t) is low

.

(20)
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Fig. 4. Signals from: (a) the best obtained flexible PID-fuzzy controller, (b) the best
PID controller from [35].

4.4 Simulation Conclusions

Conclusions from the simulations are as follows: (a) obtained accuracy of the
system (see ffc3(·) in Table 1) is acceptable and close to results from literature
(with lower complexity of the controller); (b) the number of used PID functional
elements is the best in comparison with other results (see Table 1); (c) using
ensemble with fuzzy systems allowed us to obtain the smallest oscillations of
the controller output (see ffc4(·) in Table 1 and Fig. 4); (e) obtained controller
structure is simple and fuzzy sets distribution is correct (see Fig. 3); (f) fuzzy
rules notation is simple and interpretable (see Eq. 20 and Fig. 3).

5 Summary

The use of ensemble of flexible fuzzy system and PID controller allowed us to
obtain non-complex controllers with low number of readable and clear fuzzy
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rules. Moreover, controller accuracy was acceptable and controller output oscil-
lations, due to using fuzzy logic, were the smallest in comparison to other authors
results (it is a big advantage of the proposed ensemble). The proposed algorithm
and dynamic structure of the controller allow us to automatically match para-
meters of the controller, and also its structure, to the considered simulation
problem. In the future authors plan to use, among the others, dynamic number
of fuzzy rules and fuzzy sets, new interpretability criteria and multi-population
algorithms.

Acknowledgment. The project was financed by the National Science Center
(Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.
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Abstract. In this paper a previously proposed method is extended with
pseudo-random number generator based on chaotic sequences. Several
recent approaches for designing the evolutionary computational tech-
niques are merged in the proposed method. The proposed method rep-
resents a hybridization of heterogeneous swarm based PSO and differ-
ential evolution extended with the chaotic sequences implementation.
The performance of the proposed method is tested on IEEE CEC 2013
benchmark set.
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1 Introduction

The Particle Swarm Optimization (PSO) [1–4] and Differential Evolution (DE)
[5,6] are among the most prominent representatives of evolutionary compu-
tational techniques (ECTs). Recently it has been shown that using chaotic
sequences as pseudorandom number generators (PRNGs) may be very beneficial
for various ECTs [7–12].

Popular trend for ECTs design is hybridization. Given the popularity of PSO
and DE and the focus of the researching community on the improvement of these
methods, the hybridization of PSO and DE was an inevitable step [13,14]. The
performance of DE and PSO on certain types of optimization problems is often
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very different. Thru the process of hybridization it is possible to achieve good
results on very broad spectrum of optimization tasks.

In this paper recently proposed hybrid of Multiple-choice strategy for PSO
[15–17] and DE (MC-PSO/DE) is further extended with chaotic PRNG. The goal
is to show that the performance of such hybrid method can be further improved
by implementation of chaotic sequences. The performance of proposed chaotic
method is tested using the CEC 13 benchmark set [18] and compared with
canonical MC-PSO/DE and state-of art representative for CEC 13 Benchmark
the fk-PSO [19].

In the next two sections the original PSO and DE algorithms are shortly
described. The used chaotic systems are briefly described in the next sections.
Following is the description of proposed hybrid method. The experiment is
designed and results presented in following sections.

2 Particle Swarm Optimization Algorithm

Original PSO takes the inspiration from behavior of fish and birds. The knowl-
edge of global best found solution (typically noted gBest) is shared among the
particles in the swarm. Furthermore each particle has the knowledge of its own
(personal) best found solution (noted pBest). Last important part of the algo-
rithm is the velocity of each particle that is taken into account during the cal-
culation of the particle movement. The new position of each particle is then
given by (1), where xt+1

i is the new particle position; xt
irefers to current particle

position and vt+1
i is the new velocity of the particle.

xt+1
i = xt

i + vt+1
i (1)

To calculate the new velocity the distance from pBest and gBest is taken
into account alongside with current velocity (2).

vt+1
ij = w · vt

ij + c1 · Rand · (pBestij − xt
ij) + c2 · Rand · (gBestj − xt

ij) (2)

Where:
vt+1
ij - New velocity of the ith particle in iteration t+1. (component j of the

dimension D).
w – Inertia weight value.
vt
ij - Current velocity of the ith particle in iteration t. (component j of the

dimension D).
c1, c2= 2- Acceleration constants.
pBestij – Local (personal) best solution found by the ith particle. (component
j of the dimension D).
gBestj - Best solution found in a population. (component j of the dimension D).
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xt
ij - Current position of the ith particle (component j of the dimension D) in

iteration t.
Rand – Pseudo random number, interval (0, 1).

Finally the linear decreasing inertia weight [2,4] is used. The dynamic inertia
weight is meant to slow the particles over time thus to improve the local search
capability in the later phase of the optimization. The inertia weight has two
control parameters wstart and wend. A new w is given in the iteration by (3),
where t stands for current iteration number and n stands for the total number of
iterations. The typical values used in this study were wstart = 0.9 and wend=0.4.

w = wstart − ((wstart − wend) · t)
n

(3)

3 Differential Evolution

Similarly to PSO the DE is a population-based optimization method that works
on real-number-coded individuals [5]. For each individual x i,G in the current
generation G, DE generates a new trial individual x ′

i,G by adding the weighted
difference between two randomly selected individuals x r1,G and x r2,G to a ran-
domly selected third individual x r3,G. The resulting individual x ′

i,G is crossed-
over with the original individual x i,G. The fitness of the resulting individual,
referred to as a perturbed vector u i,G+1, is then compared with the fitness
of x i,G. If the fitness of u i,G+1 is greater than the fitness of x i,G, then x i,G

is replaced with u i,G+1; otherwise, x i,G remains in the population as x i,G+1.
DE is quite robust, fast, and effective, with global optimization ability. It does
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not require the objective function to be differentiable, and it works well even
with noisy and time-dependent objective functions. Please refer to [5,6] for the
detailed description of the used DE/rand/1/bin strategy (4) as well as for the
complete description of all other strategies.

ui,G+1 = xr1,G + F · (xr2,G − xr3,G) (4)

The full schematic of DE algorithm is given in Fig. 1.

4 Chaotic Maps

In this section four discrete dissipative chaotic systems (maps) are described.
These four chaotic maps were used as CPRNGs for the velocity calculation in
PSO (See (2)). The choice was based on previous research [10–12].

4.1 Lozi Chaotic Map

The Lozi map is a simple discrete two-dimensional chaotic map. The map equa-
tions are given in (5). The typical parameter values are: a = 1.7 and b = 0.5
with respect to [20]. For these values, the system exhibits typical chaotic behav-
ior and with this parameter setting it is used in the most research papers and
other literature sources. The x,y plot of Lozi map with the typical setting is
depicted in Fig. 2.

Xn+1 = 1 − a |Xn| + bYn

Yn+1 = Xn
(5)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x

y

Fig. 2. x,y plot of Lozi map
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Fig. 3. x,y plot of Dissipative standard map

4.2 Dissipative Standard Map

The Dissipative standard map is a two-dimensional chaotic map [11]. The para-
meters used in this work are b = 0.6 and k = 8.8 based on previous experiments
[15,16] and suggestions in literature [20]. The x,y plot of Dissipative standard
map is given in Fig. 3. The map equations are given in (6).

Xn+1 = Xn + Yn+1(mod2π)
Yn+1 = bYn + k sin Xn(mod2π) (6)

4.3 Burgers Chaotic Map

The Burgers map (See Fig. 4) is a discretization of a pair of coupled differential
equations The map equations are given in (7) with control parameters a = 0.75
and b = 1.75 as suggested in [20].

Xn+1 = aXn − Y 2
n

Yn+1 = bYn + XnYn
(7)

4.4 Tinkerbell Map

The Tinkerbell map is a two-dimensional complex discrete-time dynamical sys-
tem given by (8) with following control parameters: a = 0.9, b = -0.6, c = 2 and
d = 0.5 [20]. The x,y plot of the Tinkerbell map is given in Fig. 5.

Xn+1 = X2
n − Y 2

n + aXn + bYn

Yn+1 = 2XnYn + cXn + dYn
(8)
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Fig. 4. x,y plot of Burgers map
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Fig. 5. x,y plot of Tinkerbell map

5 MC-PSO/DE Hybrid with Repulsive Strategy

The hybrid method proposed in this paper is mostly based on the PSO. In the
original MC-PSO [15,16] four different velocity calculation formulas are defined.
Afterwards each particle is randomly assigned one of the pre-defined formulas in
each iteration. The particle can either: stay in its current position, follow ran-
domly chosen particle, follow its own pBest or follow the gBest. The probability
of selection of particular behavior is given by three numbers b1, b2 and b3. These
numbers represent border values for different behavior rules and they follow the
pattern: b1 < b2 < b3. During the calculation of new velocity for each particle a
random number r is generated from the interval <0, 1> and it determines the
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particular behavior rule to apply. For further details (including full pseudocode
of the original MC-PSO) please refer to [15].

For the purposes of hybridization [17] two changes were introduced into the
original MC-PSO. Firstly the DE/rand/1/bin is performed on stationary par-
ticles. Secondly to prevent fast premature convergence the gBest is used as a
repulsive point. The repulsive strategy was firstly introduced in [21] and it was
implemented in the hybrid method [17] in such manner that the gBest is repuls-
ing the particles instead of attracting them (See (12)).

For clarity the selection process of new velocity calculation formula and the
DE implementation can be described as follows:

During the new velocity and position calculation a random number r is gen-
erated:

If r < b1 DE/rand/1/bin is performed for the particle and the new velocity of
particle is given by (9):

v(t + 1) = 0 (9)

If b1 < r < b2 the new velocity of particle is given by (10):

v(t + 1) = w · v(t) + c · Rand · (xr(t) − x(t)) (10)

d If b2 < r < b3 the new velocity of particle is given by (11):

v(t + 1) = w · v(t) + c · Rand · (pBest − x(t)) (11)

If b3 < r the new velocity of particle is given by (12):

v(t + 1) = w · v(t) − c · Rand · (gBest − x(t)) (12)

Where xr(t) is the position of randomly chosen particle and c = 2.

The chaotic PRNG is used in this paper to generate the random number r
and the Rand number for Eqs. (10–12) for all other purposes a canonical PRNG
is used.

6 Experiment

In this study the performance of the MC-PSO/DE with four different chaotic
PRNGs was tested on the IEEE CEC 2013 benchmark set [15] for dimension
setting (dim) = 10. According to the benchmark rules 51 separate runs were
performed for each algorithm and the maximum number of cost function evalu-
ations (CFE) was set to 100000. The population size was set to 40. The border
values for MC-PSO were set to following values: b1 = 0.5, b2 = 0.7 and b3 =
0.95. Several tuning experiments were performed to select the combination of
border values for general use. It may be possible to achieve better performance
on a single problem by tuning these values further.
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Other controlling parameters of the PSO and DE were set to typical values as
follows:
For PSO:
c1,c2 = 2; wstart= 0.9; wend= 0.4; vmax= 0.2;

For DE:
CR = 0.9; F = 0.5;
These typical settings are based on literature [1–6].

The mean results of canonical MC-PSO/DE and four different chaotic
PRNGs (Noted Lozi, Dissipative, Burgers and Tinkerbell) are compared in
Table 1 alongside with the state-of art representative for CEC 13 Benchmark
the fk-PSO [19]. Only significantly best results are given in bold numbers.

Furthermore as an example the mean history of the best found solution during
the optimization in given in Fig. 6.

Fig. 6. Mean best value history comparison – f22

In the Table 1 the benchmark functions are divided into unimodal (noted
with u), basic multimodal (noted with m) and composite functions (noted with
c). The original canonical MC-PSO/DE [17] shows very good performance in
many cases and the performance is comparable with the fk-PSO. However it is
also clear that by implementing various chaotic PRNGs it is possible to improve
the performance of the method significantly in many cases. This is depicted in
Fig. 6 where the performance of canonical version and version with PRNG based
on Burgers map and Tinkerbell map are compared in the case of f22.

In many other cases the performance of the canonical method seems to be
significantly improved when the chaotic PRNG was applied; most notably f4,
f11, f14, f15, f22 and f23.
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Table 1. Mean results comparison, dim = 10, max. CFE = 100000

f(x) fmin fk-PSO MC-PSO-DE Lozi Dissipative Burgers Tinkerbell

fu
1 -1400 -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03

fu
2 -1300 1.43E+05 2.56E+03 4.38E+04 1.84E+04 1.39E+04 2.62E+04

fu
3 -1200 6.74E+05 -1.17E+03 3.42E+06 1.27E+05 2.44E+04 1.69E+05

fu
4 -1100 -6.84E+02 -9.28E+02 -6.75E+02 -1.01E+03 -6.27E+02 -5.07E+02

fu
5 -1000 -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03

fm
6 -900 -8.97E+02 -8.97E+02 -8.94E+02 -8.94E+02 -8.97E+02 -8.96E+02

fm
7 -800 -7.98E+02 -8.00E+02 -7.99E+02 -8.00E+02 -8.00E+02 -8.00E+02

fm
8 -700 -6.80E+02 -6.80E+02 -6.80E+02 -6.80E+02 -6.80E+02 -6.80E+02

fm
9 -600 -5.97E+02 -5.97E+02 -5.98E+02 -5.99E+02 -5.99E+02 -5.98E+02

fm
10 -500 -4.99E+02 -5.00E+02 -5.00E+02 -5.00E+02 -5.00E+02 -5.00E+02

fm
11 -400 -4.00E+02 -3.90E+02 -3.97E+02 -3.96E+02 -3.99E+02 -3.98E+02

fm
12 -300 -2.93E+02 -2.89E+02 -2.96E+02 -2.95E+02 -2.97E+02 -2.98E+02

fm
13 -200 -1.89E+02 -1.87E+02 -1.95E+02 -1.94E+02 -1.96E+02 -1.96E+02

fm
14 -100 -6.22E+01 9.09E+02 7.30E+02 8.52E+02 -9.77E+01 3.22E+02

fm
15 100 5.54E+02 1.07E+03 8.75E+02 9.74E+02 3.67E+02 1.04E+03

fm
16 200 2.00E+02 2.01E+02 2.01E+02 2.01E+02 2.01E+02 2.01E+02

fm
17 300 3.11E+02 3.29E+02 3.24E+02 3.25E+02 3.27E+02 3.27E+02

fm
18 400 4.16E+02 4.32E+02 4.25E+02 4.27E+02 4.32E+02 4.30E+02

fm
19 500 5.01E+02 5.01E+02 5.01E+02 5.01E+02 5.01E+02 5.01E+02

fm
20 600 6.03E+02 6.03E+02 6.03E+02 6.03E+02 6.03E+02 6.02E+02

fc
21 700 1.08E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03

fc
22 800 9.22E+02 1.90E+03 1.52E+03 1.82E+03 8.23E+02 8.23E+02

fc
23 900 1.42E+03 2.07E+03 1.39E+03 1.70E+03 9.60E+02 9.62E+02

fc
24 1000 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03

fc
25 1100 1.31E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03

fc
26 1200 1.39E+03 1.32E+03 1.32E+03 1.33E+03 1.31E+03 1.33E+03

fc
27 1300 1.67E+03 1.61E+03 1.62E+03 1.62E+03 1.61E+03 1.61E+03

fc
28 1400 1.73E+03 1.69E+03 1.73E+03 1.70E+03 1.69E+03 1.72E+03

It is therefore safe to say that the implementation of chaotic sequences may
not be only beneficial for basic ECTs but also for hybrid methods such as the
presented MC-PSO/DE with chaotic PRNG. Also is it shown that the pre-
sented chaos enhanced hybrid method can achieve very good results and in some
cases excellent performance, in comparison with another state-of-art PSO based
method. The proposed hybrid method enhanced with CPRNG based on Burgers
chaotic map managed to obtain better or similar results with the fk-PSO in total
of 22 from 28 functions.
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7 Conclusion

In this study a previously proposed hybrid method called MC-PSO/DE has been
enhanced with four different chaotic pseudo-random number generators. Moti-
vation came from previous successful experiments with chaos enhanced meta-
heuristics. The goal was to investigate whether the chaotic PRNGs can improve
the performance of complex hybrid method. As the results indicate it seems that
the chaotic sequences may be beneficial for the method in many cases. However
the selection of particular chaotic system seems very problem-dependant and
this issue will be addressed in further studies. Various adaptive approaches may
be designed to resolve the problem of selection among the chaotic systems. The
chaotic sequences and their mutual influence with ECTs will also remain the
focus of future research. This work should encourage more researchers to use
the implementation of chaotic sequences into various ECTs as it is easily usable
plug-in method that often brings surprisingly good results as has been shown in
this and also previous studies. In the near future the proposed method will be
tested for waste transportation network problem solving [22–24].
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Abstract. In the paper a method for the design of the control system is
presented. With the use of an evolutionary methods an initial structure
of the controller is adjusted such that the designed controller fulfills the
control objective in the best way possible. This elastic structure consists
of basic functional blocks and filters. The proposed method is able to
find such the structure and parameters of the controller, which make it
immune to measurement noise that could disrupt the work of the control
system. As a result, the process of controller design is performed easier
and faster.

Keywords: Evolutionary optimization · Elastic controller structure ·
PID algorithm · Structure selection · Filter selection

1 Introduction

The problem of designing control systems is well known in science [1]. This is
due to the fact that the quality of work of individual parts or even of entire
machines mainly depends on the characteristics of the used controller. It should
be noted that in this context, the design of the control system is not only the
selection of parameters for a known controller structure. On the contrary, it is a
much broader concept. Namely, the design of the control system consists of the
following elements:

– indication of measurable signals, which can be used in a feedback loop,
– selection of the controller structure,
– tuning of controller parameters,
– implementation in target hardware platform with fulfillment of requirements

of real-time work.

Usually these steps are performed in the presented order. If this approach
does not lead to achieve the desired effect (that is, to obtain a satisfactory quality
of work), then the whole procedure must be repeated starting from the second
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 476–492, 2016.
DOI: 10.1007/978-3-319-39378-0 41
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step. The controller structure needs to be modified (or completely changed) and
the tuning procedure must be carried out starting from the beginning.

In the literature there are known controller structures which are typically
used, they are: controllers structures based on the combination of linear correc-
tion terms, e.g. PID controllers (optionally with gain scheduling algorithm, with
feed-forward path or with additional low-pass filters [2], state feedback con-
trollers, nonlinear controllers based on computational intelligence and hybrid
controllers, in which are combined approaches from other groups. However, in
practice PID controllers are used the most often [1]. It is a result of widespread
knowledge of how they work and their relatively simple implementation in a
microprocessor-based control systems.

It is important to point out that the control system design process is difficult
and time consuming. Sometimes, in order to obtain a better quality of control,
an engineer, basing on his experience, has to modify the controller structure.
Modification of the controller structure, usually performed by means of trial and
error method, causes the process of controller design much more difficult.

Among the experimental methods for the design of control systems, meth-
ods based on artificial intelligence [17,20–22,25–28,31,38–43,56,63,64] and in
particular the methods of evolution [32–34] are becoming more common. The
effectiveness of these methods is proven by their diversity. They include,
among others, fuzzy systems [8–14,36,53,54], optimization methods [5–7,19,22–
24,29,30,37,44–52], decision trees [3,4] and can be used in wide area of problems
[15,16,18,57–62,65,67–74]. These methods make the design of the control system
easier. However, in many cases the obtained controller is sensitive to interfer-
ence, which commonly occurs in the real-world conditions. The measurement
noise and limited resolution of the digital word used to carry information about
the measured values can lead to unstable controller operation.

In this paper it is proposed the use of low-pass finite-impulse-response filters
(FIR) with programmable characteristics for each of the measurement signals
used in the feedback loop. These filters are designed to suppress interference
that could disrupt the work of the control system. So, it is possible to find the
structure and parameters of the controller, which makes it immune to this type
of interference. We suggest the use of an universal initial structure which in
the process of evolution will be adjusted in a way that the designed controller
fulfills the control objective in the best way possible. This elastic structure con-
sists of basic functional blocks and filters, both with programmable connections
and parameters. Due to this approach the design of the control system can be
regarded as one continuous process, unlike the commonly used method of trial
and error. As a result, the process of controller design is performed easier and
faster. Details of the proposed method are described in Sect. 3.

This paper is organized into 5 sections. Section 2 contains a description of the
extended PID controller structure, while Sect. 3 shows the proposed evolutionary
algorithm used to design control system. Simulation results are presented in
Sect. 4. Conclusions are drawn in Sect. 5.
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2 Description of Proposed PID Controller

Proposed controller is based on elastic structure, which among the others,
depends from number of controller input signals fbi, i = 1, ..., FB, FB stands
for number of feedback signals (see Fig. 1). In proposed structure assumptions
that fb1 stands for desired value of fb2 and the rest of the feedback signals
stand for additional measurable signals were made. Moreover, the control blocks
(CB) and finite impulse response filters (FIR) can be dynamically switched off or
on by changing controller parameters. Due to that, the design of the controller
should not only consider selecting the real parameters of the controller but also
integer parameters encoding its structure.

Proposed controller (see Fig. 1) uses typical P, I and D elements (see. respec-
tively Fig. 2(a), (b) and (c)). These elements can be part of typical control block
CB (see Fig. 2(d)). The output value of typical control block takes the following
form:

u (t) = KPe (t) + KI

t∫

0

e (t) dt+KD de (t)
dt

, (1)

where KP, KI and KD stand respectively for parameters of P, I and D elements
of control block. The proposed CB structure allows for additional reduction of P,
I, D elements by using integer values CP, CI, CD and reduction of whole control
block by integer value CCB. The reduction takes place if the integer values are
set to 0. The output of the proposed CB takes the following form:

u (t) =

⎧
⎨

⎩
CP · KPe (t) + CI · KI

t∫
0

e (t) dt+CD · KD de(t)
dt for CCB = 1

e(t) for CCB = 0
. (2)

fb2( )t fbFB( )t...
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Fig. 1. Proposed controller structure: (a) with any number of FB feedback signals, (b)
with 3 feedback signals.
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Fig. 2. Typical structure of: (a) element P, (b) element I, (c) element D, (d) control
block CB, (e) filter FIR, z−1 stands for values from previous time step.

The proposed FIR filters used in controller are based on typical FIR filters (see
Fig. 2(e)) with using an additional integer parameter CF to reduction of the filter
(in case of reduction the output of the filter is exact to input of the filter). Thus,
the output of the proposed filter takes the following form:

u (t) =

⎧
⎨

⎩

S∑
s=1

bse (t − s − 1) for CF = 1

e(t) for CF = 0
(3)

where e(t) stands for input value, e(t − i) stands for input value from t − i time
step, bs stands for weights of filter, s = 1, ..., S, S stands for length of the filter
(S has to be an odd number). The weights of the filter are calculated using
filter parameters: transition frequency ft and lenght of the filter S, which are a
part of the elastic structure of the controller and should be selected by learning
algorithm as well. The weights values bs are calculated as follows:

bs =

{
sin(2πft|s− 1

2 (S−1)|)
π|s− 1

2 (S−1)| for s = 1
2 (S − 1)

2 ft for s �= 1
2 (S − 1)

. (4)

The proposed controller structure is characterized by the following advan-
tages: (a) it is able to process any number of feedback signals fbi, (b) it uses
cascade control blocks configuration which allows us to obtain good accuracy of
the controller, (c) the structure is dynamic, each CB block, CB block elements
(P,I,D) and filter FR can be switched off or on, (d) it has great capabilities of
learning due to many selectable parameters (e) it is able to minimize the impact
of feedback signals noises by use of the FIR filters.

3 Description of the Proposed Algorithm

A new hybrid evolutionary algorithm is presented to select the proposed con-
troller parameters and parameters encoding controller structure. It is based on
an ensemble of genetic algorithm (to select controller structure) and evolution-
ary strategy (to select controller parameters). This ensemble was proposed in
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our previous work [33,67] and it achieved good results. In this paper we pro-
pose a number of improvements (introduced by our experience) that may allow
us to obtain even better results. These improvements are based on iteration-
dependent parameters of learning algorithm, using multiple learning parameters
and operators, and new encoding of the controller parameters.

3.1 Encoding of the Controller Parameters

The parameters and the structure of the proposed controller are encoded in
chromosome Xch defined as follows:

Xch =
{
Xpar

ch ,Xstr
ch

}
, (5)

where part Xpar
ch encodes the real parameters of the controller and part Xstr

ch

encodes integer parameters of the controller. The part Xpar
ch is defined as follows:

Xpar
ch =

{
KP

1 ,KI
1,K

D
1 , ...,KP

M ,KI
M ,KD

M ,
ft1, ..., ftR

}
=

{
Xpar

ch,1, ...,X
par
ch,Lpar

}
, (6)

where KP
m ∈ [0, 20],KI

m ∈ [0, 50],KD
m ∈ [0, 5] stand for CB P, I, D parameters,

m = 1, ...,M , M stands for number of CB blocks, ftr ∈ [0.1, 0.5] stands for
transition frequency, r = 1, ..., R, R stands for number of filters, Lpar = 3M +R
stands for number of genes in part Xpar

ch . The part Xstr
ch is defined as follows:

Xstr
ch =

⎧
⎨

⎩

CP
1 , CI

1, C
D
1 , ..., CP

M , CI
M , CD

M ,
CCB

1 , ..., CCB
M , CF

1 , ..., CF
R

F1, ..., FR

⎫
⎬

⎭ =
{
Xstr

ch,1, ...,X
str
ch,Lstr

}
, (7)

where CP
m ∈ {0, 1}, CI

m ∈ {0, 1}, CD
m ∈ {0, 1} stand for activation of CB PID

elements (values equal to 1 stands for active element), CCB
m ∈ {0, 1} stands for

activation of m-th control block, CF
r ∈ {0, 1} stands for activation of r-th filter

(values equal to 1 stands for active element), Fr ∈ {0, ..., 9} stands for lenght of
the filter (real lenght of the filter is calculated as Sr = 5+2Fr), Lstr = 4M +2R
stands for number of genes in part Xstr

ch .

3.2 Proposed Algorithm Description

Proposed algorithm is based on new iteration-dependent mutation and crossover
from genetic algorithm and evolutionary strategy. The algorithm works according
to the following steps:

– Step 1. Initialization. In this step the value iteration is set to 0. Next the
N individuals (each individual Xch represents controller encoded by chromo-
some (5)) are randomly initialized and stored in population P. The initial-
ization of individuals’ genes is realized as follows:

⎧
⎨

⎩
Xpar

ch,g = Ug
(
Xpar

ch,g, X
par
ch,g

)

Xstr
ch,h = Uh

(
Xstr

ch,h, Xstr
ch,h

) , (8)
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where Ug(a, b) returns a random real value from the range [a, b]. Xpar
ch,g and

Xpar
ch,g stand respectively for minims and maxims values of genes Xpar

ch,g, g =
1, ..., Lpar, Uh(a, b) returns random integer value from the range [a, b]. Xstr

ch,h

and Xstr
ch,h stand respectively for minims and maxims values of genes Xstr

ch,h,
h = 1, ..., Lstr.

– Step 2. Evaluation. In this step each individual is evaluated by fitness
function defined as follows:

ff (Xch) =
F∑

f=1

wf · ffcomf (Xch), (9)

where ffcomf (Xch) stands for fitness function components which depend from
simulation problem (see Sect. 4.1), wf stands for weights of fitness function
components, f = 1, ..., F , F stands for number of fitness function components.

– Step 3. Probabilities calculation. In this step the value iteration is incre-
mented. Next, the dynamic parameters for mutation and crossover are calcu-
lated as follows: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1 = 0.2 + 0.2 · α
p2 = 0.2 · α
p3 = 0.5 · α
p4 = 0.1 · α
p5 = 0.2 · α · α

, (10)

where p1 stands for gene mutation probability, p2 stands for gene mutation
range, p3 stands for chance of select gene directly from one of parents while
crossover, p4 stands for integer gene mutation probability (this value is small
due to higher impact on the system), p5 stands for chance of assign random
integer value into integer gene (all parameters p were estimated experimen-
tally on the basis of experience of authors), α stands for iteration-dependent
value calculated as:

α = 1 − iteration

iterationmax
. (11)

where iterationmax stands for maximum number of iteration of the algorithm.
– Step 4. Reproduction. In this step a N new individuals are created and

stored in population P′. For each individual the condition Ug(0, 1) < pc is
checked (where pc stands for crossover probability). If this condition is met,
new individual is created as a result of crossover between two individuals
selected by the roulette wheel method [55] from population P. Otherwise,
the individual is created as a result of cloning and mutating of one individual
selected by the roulette wheel method [55] from population P. The mutation
is performed according to Eq. (13) described in detail in Step 5. The genes
obtained from crossover are calculated as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xpar
ch,g =

⎧⎪⎨
⎪⎩

XA,par
ch,g for Ug (0, 1) < 0.5

XB,par
ch,g for Ug (0, 1) ≥ 0.5

and
and

Ug (0, 1) < p3

Ug (0, 1) < p3

XA,par
ch,g + Ug (0, 1) ·

(
XB,par

ch,g − XA,par
ch,g

)
for Ug (0, 1) ≥ p3

Xstr
ch,h =

⎧
⎪⎨
⎪⎩

XA,str
ch,h for Ug (0, 1) < 0.5

XB,str
ch,h for Ug (0, 1) ≥ 0.5

and
and

Ug (0, 1) < p3

Ug (0, 1) < p3

XA,str
ch,h + Uh

(
XA,str

ch,h , XB,str
ch,h

)
for Ug (0, 1) ≥ p3

, (12)

where XA,∗2
ch,∗1 and XB,∗

ch,∗ stand respectively for genes from the first and second
parent, ∗1 stands for ‘par’ or ‘str’, ∗2 stands for ‘g’ or ‘h’. The purpose of
Eq. (12) is to increase chance to select gene values directly from parents or
in the other case to select gene values between gene values of parents (if
condition Ug (0, 1) ≥ p3 is met).

– Step 5. Mutation. In this step genes of individuals from population P′ are
mutated. For each individual the condition Ug(0, 1) < pm is checked (where
pm stands for mutation probability). If this condition is met, genes of the
individual are modified as follows:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Xpar
ch,g =

{
Xpar

ch,g + Ug (−1, 1) · p2 ·
(
Xpar

ch,g − Xpar
ch,g

)
for Ug (0, 1) < p1

Xpar
ch,g for Ug (0, 1) ≥ p1

Xstr
ch,h =

{
Xstr

ch,h + Uh (−1, 1) for Ug (0, 1) < p4

Xstr
ch,h for Ug (0, 1) ≥ p4

. (13)

Next, if condition Ug(0, 1) < pt is met (where pt stands for integer mutation
probability, which also depends from the iteration number pt = po·α, where po

stands for integer mutation factor) additional integer mutation is performed:

Xstr
ch,h =

{
Xstr

ch,h + Uh
(
Xstr

ch,h, Xstr
ch,h

)
for Ug (0, 1) < p5

Xstr
ch,h for Ug (0, 1) ≥ p5

. (14)

– Step 6. Repair. This step purpose is to repair (cut to specified ranged) gene
values of individuals from population P′ which is calculated as follows:

⎧
⎨

⎩
Xpar

ch,g = min
(
Xpar

ch,g,max
(
Xpar

ch,g,X
par
ch,g

))

Xstr
ch,h = min

(
Xstr

ch,h,max
(
Xstr

ch,h,Xstr
ch,h

)) . (15)

– Step 7. Evaluation. In this step all individuals from population P′ are
evaluated according to fitness function (9).

– Step 8. Merging. This step aim is to select the best N individuals from
merged populations P and P′. Selected individuals replace population P.

– Step 9. Stopping condition. In this step the stop condition is checked
(iteration ≥ iterationmax). If this condition is met, algorithm stops and the
best individual according to the fitness function value is presented. Otherwise,
the algorithm goes back to Step 3.
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4 Simulations Results

In our simulations a problem of designing controller structure and tuning para-
meters for double spring-mass-damp object was considered (see Fig. 3). More
details about this model can be found in our previous paper [67]. Object para-
meters were set as follows: spring constant k = 10 N/m, coefficient of friction
μ = 0.5, masses m1 = m2 = 0.2 kg. Initial values of: s1, v1, s2 i v2 were set
to zero, and s∗ is a desired position of mass m1 (see Fig. 3), simulation length
T all was set to 10 s, output signal of the controller was limited to the range
u ∈ (−2,+2), quantization resolution for the output signal y of the controller as
well as for the position sensor for s1 and s2 was set to 8 bit, time step in the sim-
ulation was equal to T = 0.1 ms, while interval between subsequent controller
activations were set to twenty simulation steps, number of model iteration is
calculated as Z = T all/T . The feedback signals for the controller was chosen as:
fb1 = s∗, fb2 = s1, fb3 = s2 (FB = 3).

Fig. 3. Simulated spring-mass-damp object.

4.1 Problem Evaluation

For problem under consideration a trapezoidal shape of desired signal s∗ was
used (see Fig. 4). Moreover, for considered simulation problem, a following fitness
function components (9) were used:

– Complexity of the controller:

ffcom1 (Xch) =

M∑
m=1

(
Xstr

ch

{
CP

m

}
+ Xstr

ch

{
CI

m

}
+ Xstr

ch

{
CD

m

}
+ Xstr

ch

{
CCB

m

})

4M
, (16)

where notation Xstr
ch {a} stands for using gene a from chromosome Xch.

– RMSE standing for accuracy of the controlled object:

ffcom2 (Xch) = RMSE =

√√√√ 1
Z

·
Z∑

i=1

ε2i =

√√√√ 1
Z

·
Z∑

i=1

(s∗
i − s1i )

2
, (17)

– Overshooting of the controller:

ffcom3 (Xch) = max
i=1,...,Z

{
s1i

}
. (18)
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– Oscillations of the output of the controller:

ffcom4 (Xch) =
O−1∑

o=1

√
|ro−ro+1|, (19)

where ro stands for each local minims and maxims of the output values of
the controller (those minims and maxims were selected with ignoring noise
influence on the signals), o = 1, ..., O, O stands for number of minims and
maxims of osculations.

4.2 Simulation Parameters

In the simulations the following values of parameters were set experimentally:
fitness function components weights w1 = 0.1, w2 = 10, w3 = 0.01, w4 =
0.1, crossover probability pc = 0.75, mutation probability pm = 0.75, integer
mutation factor po = 0.50, number of algorithm iterations iterationmax = 1000,
number of individuals in populations N = 100.
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Fig. 4. Best simulations results for: (a) case 0, (b) case 1, (c) case 2, (d) case 3. s1

stands for position of the mass m1, |s∗ − s1| stands for difference with desired position
of mass m1 (s∗) and s1, u stands for output of the controller.
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Table 1. Averaged simulation results.

Case Noise ff(·) ffcom1(·)
complexity

ffcom2(·)
accuracy

ffcom3(·)
oscilations

ffcom4(·)
over-

shoot.

pid(·) fir(·)

0 0% 1.389 0.500 0.057 18.674 1.049 7.500 0.000

1 1% 3.628 0.437 0.162 31.743 1.160 6.550 0.000

2 3.423 0.467 0.153 29.280 1.137 7.000 0.700

3 3.080 0.502 0.144 13.767 1.190 7.500 2.000

4.3 Simulation Cases

In the simulations four cases were tested to show the effectiveness of the proposed
controller and learning algorithm:

– Case 0 - case without filters and noise of the feedback signals (to present
possibilities of learning algorithm).

– Case 1 - case without filters and with 1 % of noise of s1 and s2 feedback
signals (to show how noise of the signals affect the results).

– Case 2 - case with filters and with 1 % of noise of s1 and s2 feedback signals
(to show impact of the filters on the results).

– Case 3 - case with static filters (CF were set to 1) and with 1 % of noise of
s1 and s2 feedback signals (to show impact of the filters on the results).

For each case simulations were repeat 100 times and results were averaged.

4.4 Obtained Results

The averaged simulations results are presented in Table 1, the best simulations
results are presented in Tables 2, 3, Figs. 4 and 5.

Table 2. The best simulation results (by fitness function value).

Case Noise ff(·) ffcom1(·)
complexity

ffcom2(·)
accuracy

ffcom3(·)
oscila-

tions

ffcom4(·)
over-

shoot.

pid(·) fir(·)

0 0% 1.194 0.467 0.049 15.263 1.038 7.000 0.000

1 1% 2.438 0.467 0.103 28.572 1.294 7.000 0.000

2 1.752 0.667 0.074 22.780 1.077 10.000 1.000

3 1.807 0.533 0.076 21.885 1.157 8.000 2.000

4.5 Simulation Results

Conclusions from the simulation are as follows: (a) including noise of feedback
signals significantly degrade the performance of controller (see Fig. 4(a) and (b)
and ff(·) values in Table 1); (b) adding filters allowed us to reduce impact of noise
(see Fig. 4(c) and (d) and ff(·) values in Table 1); (c) using dynamic reduction
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Fig. 5. Best simulations structures obtained for: (a) case 0, (b) case 1, (c) case 2, (d)
case 3. Gray rectangles stands for reduced elements of the controller.

of filters in learning process (case 2) led to obtain 0.7 (in average) active filters
in the controller, which allowed us to obtain 5.6 % accuracy improvement and
7.8 % oscillations improvement of the system (see Fig. 4(b) and (c) and Table 1);
(d) using static active filters led to obtain 11.1 % accuracy improvement and
56.6 % oscillations improvement (see Fig. 4(b) and (d) and Table 1); (e) obtained
structures are simple and the average reduction of controller elements is close
to 50 % (see Fig. 5 and Table 3); (f) the best obtained accuracy of the controller
(see Table 2) without noise of feedback signals is better than accuracy obtained

Table 3. Parameters of controllers obtained for the best simulation results, ’-’ stands
for parameters reduced by the corresponding integer parameters.

Values of parameters

Parameters Case 0 Case 1 Case 2 Case 3

KP
1 KI

1 KD
1 2.36 0.03 - - 0.01 - - - - - - -

KP
1 KI

2 KD
2 - - - 18.57 - - 12.55 43.97 0.38 15.30 17.87 -

KP
1 KI

3 KD
3 15.25 - 1.11 7.559 49.94 0.01 6.59 23.67 0.11 10.21 23.80 0.13

KP
1 KI

4 KD
4 14.08 - - 7.79 - - 3.34 23.43 0.39 6.34 23.64 -

KP
1 KI

5 KD
5 1.907 - 0.60 - 50.00 - - 0.08 - 3.87 - -

ft1 F1 S1 - - - - - - - - - 0.11 0 5

ft2 F2 S2 - - - - - - 0.10 2 9 0.10 2 9
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by hybrid multi-population algorithms [35]; (g) the best obtained accuracy of
the controller (see Table 2) with noise of feedback signals and with use of filters
(case 2 and case 3) is close to accuracy obtained by hybrid population algorithms
without noise of feedback signals [66].

5 Summary

The proposed elastic structure of the controller containing proposed CB blocks
and FIR filters allowed us to obtain accurate and simple controllers, with reduced
impact of feedback signals noise on the performance of the controller. Moreover,
the proposed training algorithm, which allows reduction of any component of the
controller and simultaneously selection of its parameters, allowed us to obtain a
very good results in terms of accuracy, superior to the results presented in the
literature. In the future, the authors plan to use the proposed controller and
learning algorithm in a more complex control problems.
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70. Zalasiński, M., �Lapa, K., Cpa�lka, K.: New algorithm for evolutionary selection of
the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II.
LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)



492 A. Przyby�l et al.
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1 Introduction

This research deals with the hybridization of the two softcomputing fields, which
are the complex dynamics given by chaos theory dynamics driving the selection of
indices in Differential Evolution (DE) algorithm and evolutionary computation
techniques (ECT’s). Currently the DE [1] is known as powerful heuristic for
many difficult and complex optimization problems.

A number of DE variants have been recently developed with the emphasis
on adaptivity/selfadaptivity [2], ensemble approach [3] or utilization for discrete
domain problems. The importance of randomization as a compensation of lim-
ited amount of search moves is stated in the survey paper [4]. This idea has
been carried out in subsequent studies describing various techniques to modify
the randomization process [5,6] and especially in [7], where the sampling of the
points is tested from modified distribution. The importance and influence of ran-
domization operations was also deeply experimentally tested in jDE strategy [8].
Together with this persistent development in such mainstream research topics,
the basic concept of chaos driven DE have been introduced.

Recent research in chaotic approach for heuristics generally uses the chaotic
map in the place of a pseudo random number generator. This causes the heuristic
to map unique regions, since the chaotic map iterates to new regions. The task
is then to select a very good chaotic map (or combination of chaotic maps) as
the pseudo random number generator (PRNG).

The focus of this research is the direct embedding of chaotic dynamics in
the form of chaos pseudo random number generator (CPRNG) for heuristic.
The initial concept of embedding chaotic dynamics into the evolutionary/swarm
algorithms is given in [9]. Later, the initial study [10] was focused on the simple
embedding of chaotic systems for DE and Self Organizing Migration Algorithm
(SOMA) [11]. Also the PSO (Particle Swarm Optimization) algorithm with ele-
ments of chaos was introduced as CPSO [12] followed by the introduction of
chaos embedded PSO with inertia weigh strategy [13], further PSO strategy
driven alternately by two chaotic systems [14] and finally PSO with ensemble
of chaotic systems [15]. Recently the chaos driven heuristic concept has been
utilized in ABC algorithm [16] and applications with DE [17].

The organization of this paper is following: Firstly, the motivation for this
research is proposed. The next sections are focused on the description of the
concept of chaos driven DE utilizing Ueda oscillator and the experiment back-
ground. Results and conclusion follow afterwards.

2 Motivation

This research is an extension and continuation of the previous successful initial
experiment with the single/multi-chaos driven DE (ChaosDE), where the pos-
itive influence of hidden complex dynamics for the heuristic performance has
been experimentally shown.

Nevertheless, the questions remain, as to why it works, why it may be ben-
eficial to use the correlated chaotic time series for generating pseudo random
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numbers driving the selection, mutation, crossover or other processes in partic-
ular heuristics.

Recently many research studies have been carried out focusing on the utiliza-
tion of different randomization type, different PRNGs, distributions etc. Thus
an experiment has been designed, to show, whether the chaos embedded heuris-
tics concept belongs to the group of either “utilization of different PRNG with
different distribution” or the unique chaos dynamics providing unique sequenc-
ing of pseudo random numbers is the key of performance improvements. The
last point was also inspired by recent advances in connection of complexity and
heuristic [18] together with the research focused on selection of indices in DE [19]
where the indices (solutions) for mutation process were not selected randomly,
but based on the complex behavior and neighborhood mechanisms.

Since the sequencing in chaotic series generated by the mostly utilized dis-
crete chaotic systems is given directly by the discrete nature and mathematical
notations of the used chaotic map, a different type of experiment was performed
and presented here. It is focused on the time-continuous chaotic systems, to be
more precise, on the investigating the influence of the oscillator sampling time to
the DE performance. In contrast to using discrete chaotic systems as CPRNGs,
through the utilization of time-continuous systems and with different sampling
times from very small to bigger, it is possible to fully keep, suppress or remove
the hidden complex chaotic dynamics from the generated data series used for
obtaining the pseudo random numbers.

3 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1]. DE is quite robust, fast, and effective, with global optimization
ability. It does not require the objective function to be differentiable, and it
works well even with noisy and time-dependent objective functions. There are
essentially five inputs to the heuristic. Dim is the size of the problem, Gmax is
the maximum number of generations, NP is the total number of solutions, F is
the scaling factor of the solution and CR is the factor for crossover. F and CR
together make the internal tuning parameters for the heuristic. Due to a limited
space and the aims of this paper, the detailed description of well known canonical
strategy of differential evolution algorithm basic principles is insignificant and
hence omitted. Please refer to [1,20] for the detailed description of the used
DERand1Bin strategy (both for ChaosDE and Canonical DE) as well as for the
complete description of all other strategies.

4 Ueda Oscillator

Ueda oscillator is the simple example of driven pendulums, which represent some
of the most significant examples of chaos and regularity.

The Ueda system can be simply considered as a special case of intensively
studied Duffing oscillator that has both a linear and cubic restoring force. Ueda
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oscillator represents the both biologically and physically important dynamical
model exhibiting chaotic motion. It can be used to explore much physical behav-
ior in biological systems [21].

The Ueda chaotic system equations are given in (1). The parameters are: a
= 1.0 b = 0.05, c = 7.5 and ω = 1.0 as suggested in [22]. Figure 1 shows x, y
parametric plots of the chaotic system.

dx
dt = y
dy
dt = −ax3 − by + c sin ωt

(1)
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Fig. 1. x, y parametric plot of the UEDA oscillator

5 The Concept of ChaosDE with Time-Continuous
Chaotic System as Driving CPRNG

The general idea of CPRNG is to replace the default PRNG with the chaotic
system. As the chaotic system is a set of equations with a static start position,
we created a random start position of the system, in order to have different start
position for different experiments. Thus we are utilizing the typical feature of
chaotic systems, which is extreme sensitivity to the initial conditions, popularly
known as “butterfly effect”. This random position is initialized with the default
PRNG, as a one-off randomizer. Once the start position of the chaotic system
has been obtained, the system generates the next sequence using its current
position.

Generally there exist many other approaches as to how to deal with the
negative numbers as well as with the scaling of the wide range of the numbers
given by the chaotic systems into the typical range 0 – 1:
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1. Finding of the maximum value of the pre-generated long discrete sequence
and dividing of all the values in the sequence with such a maxval number.

2. Shifting of all values to the positive numbers (avoiding of ABS command)
and scaling.

Used approach is following: firstly we obtain the simulation (analytic solution)
of Ueda oscillator (See Fig. 2 - left), subsequently this simulation output is sam-
pled with selected sampling rate, as in Fig. 2 – right. Finally the scaling into
the typical range 0 – 1 for PRNG is performed (Fig. 3) based on the following
definition (2):

rndreal = mod(abs(rndChaos), 1.0) (2)
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Fig. 2. Simulation outputs – chaotic output of Ueda oscillator (left); Sampled simula-
tion output (sampling rate 0.5 seconds) (right).
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Fig. 3. Detailed sequencing and dynamics of real pseudo-random numbers transferred
into the range <0 - 1> generated by means of the chaotic Ueda oscillator
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6 Experiment Design

For the purpose of ChaosDE performance comparison within this research, the
Schwefel’s test function (3), shifted Rastrigin‘s function (4), shifted 1st De Jong’s
function (5), and shifted Ackley’s original function in the form (6), were selected.

f (x) =
dim∑

i=1

−xi sin
(√

|xi|
)

(3)

Function minimum:
Position for En: (x 1, x 2. . . xn) = (420.969, 420.969,. . . , 420.969)
Value for En: y = -418.983dim; Function interval: <-500, 500>.

f(x) =
dim∑

i=1

(xi − si)2 (4)

Function minimum: Position for En: (x 1, x 2. . . xn) = s; Value for En: y = 0
Function interval: <-5.12, 5.12>.

f (x) = −20 exp

(
−0.02

√
1
D

∑dim
i=1 (xi − si)

2

)
− exp

(
1
D

∑dim
i=1 cos 2π (xi − si)

)
+

+20 + exp (1)

(5)

Function minimum: Position for En: (x 1, x 2. . . xn) = s; Value for En: y = 0
Function interval: <-30, 30>.

f(x) = 10 dim +
dim∑

i=1

(xi − si)2 − 10 cos(2πxi − si) (6)

Function minimum: Position for En: (x 1,x 2. . . xn) = s, Value for En: y = 0
Function interval: <-5.12, 5.12>.
Where si is a random number from the 90 % range of function interval; s vector
is randomly generated before each run of the optimization process.

The parameter settings for both canonical DE and ChaosDE are following:
Population size of 75, dimension dim = 30, internal DE parameters F = 0.5 and
Cr = 0.9. Although it was experimentally determined, that ChaosDE requires
lower values of Cr parameter, we have used the same settings for canonical DE
and ChaosDE to track the changes in distribution and sequencing of pseudo
random numbers driving the selection of indices in DE under identical condi-
tions. The maximum number of generations was fixed at 1500 generations. This
allowed the possibility to analyze the progress of DE within a limited num-
ber of generations and cost function evaluations. Experiments were performed
in the environment of Wolfram Mathematica; canonical DE therefore has used
the built-in Wolfram Mathematica pseudo random number generator Wolfram
Cellular Automata representing traditional pseudorandom number generator in
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comparisons. All experiments used different initialization, i.e. different initial
population was generated within the each run of Canonical or Chaos driven DE.

7 Results

Statistical results of the selected experiments are shown in comprehensive
Tables 1, 3, 5 and 7 for all 50 repeated runs of DE/ChaosDE, four different
benchmark functions and three settings of sampling time for Ueda oscillator.

Tables 2, 4, 6 and 8 compare the progress of three versions of ChaosDE and
Canonical DE. This table contains the average cost function (CF) values for
the particular generation No. from all 50 runs. The bold values within the all
Tables 1–8 depict the best obtained results. The graphical comparisons of the
time evolution of average CF values for all 50 runs and two selected test functions
are depicted in Figs. 4 and 5.

Finally Fig. 6 shows the influence of sampling rate to the distribution of
pseudo random numbers given by particular CPRNG (left figures) and to the
dynamics inside the generated data series (right figures).

Table 1. Results for the Canonical DE and ChaosDE; Schwefel’s function

DE Version Avg CF Median CF Max CF Min CF StdDev

Canonical DE −5435.42 −5256.26 −4912.80 −6629.15 550.54

ChaosDE - Sampling 0.1s −10238.63 −10256.06 −9654.24 −10618.14 311.47

ChaosDE - Sampling 0.5s −9049.66 −8753.35 −7309.98 −10681.53 1106.91

ChaosDE - Sampling 1.0s −9055.76 −9146.33 −7408.15 −10380.80 990.87

Table 2. Comparison of progress towards the minimum for the Schwefel’s function

DE Version Gen. 300 Gen. 600 Gen. 900 Gen. 1200 Gen. 1500

Canonical DE −4508.42 −4770.18 −5115.39 −5206.44 −5435.42

ChaosDE - Sampling 0.1s −5140.43 −7232.46 −8748.71 −9202.15 −10238.6

ChaosDE - Sampling 0.5s −4359.8 −5165.49 −6407.68 −6908.04 −9049.66

ChaosDE - Sampling 1.0s −4282.59 −5324.16 −6621.68 −7050.82 −9055.76

Table 3. Results for the Canonical DE and ChaosDE; shifted Rastrigin‘s func.

DE Version Avg CF Median CF Max CF Min CF StdDev

Canonical DE −40176.4 −37747.8 −30941.2 −52349.8 6854.46

ChaosDE - Sampling 0.1s −81498.9 −81684.1 −76985.5 −86119.7 2703.62

ChaosDE - Sampling 0.5s −84168.1 −84552.4 −77165 −86418.1 2655.44

ChaosDE - Sampling 1.0s −81549.3 −81665.8 −76269.2 −85821.2 3430.74
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Table 4. Comparison of progress towards the minimum for the shifted Rastrigin‘s
function.

DE Version Gen. 300 Gen. 600 Gen. 900 Gen. 1200 Gen. 1500

Canonical DE −28227.5 −31457.9 −35281.7 −35363.3 −40176.4

ChaosDE - Sampling 0.1s −38232.8 −73870.3 −81285.0 −81451.8 −81498.9

ChaosDE - Sampling 0.5s −28698.7 −51134.0 −72439.9 −76859.2 −84168.1

ChaosDE - Sampling 1.0s −27245.2 −39324.4 −58939.3 −66641.8 −81549.3

Table 5. Results for the Canonical DE and ChaosDE; shifted 1st De Jong’s func.

DE Version Avg CF Median CF Max CF Min CF StdDev

Canonical DE 5.54E-19 5.14E-19 1.17E-18 1.07E-19 2.86E-19

ChaosDE - Sampling 0.1s 4.3E-14 1.87E-15 2.96E-13 2.26E-16 9.34E-14

ChaosDE - Sampling 0.5s 8.13E-16 1.44E-16 4.95E-15 9.86E-18 1.53E-15

ChaosDE - Sampling 1.0s 2.87E-14 3.92E-17 2.86E-13 1.8E-18 9.03E-14

Table 6. Comparison of progress towards the minimum for the shifted 1st De Jong’s
function

DE Version Gen. 300 Gen. 600 Gen. 900 Gen. 1200 Gen. 1500

Canonical DE 0,009878 9,35E-07 1,07E-10 4,72E-12 5,54E-19

ChaosDE - Sampling 0.1s 0,021934 0,000108 3,71E-08 3,52E-09 4,3E-14

ChaosDE - Sampling 0.5s 0,013758 6,51E-06 1,24E-08 9,6E-10 8,13E-16

ChaosDE - Sampling 1.0s 0,009907 5,09E-06 1,1E-09 4,52E-11 2,87E-14

Table 7. Results for the Canonical DE and ChaosDE; shifted Ackley’s function

DE Version Avg CF Median CF Max CF Min CF StdDev

Canonical DE 3.44E-09 3.49E-09 6.22E-09 1.6E-09 1.31E-09

ChaosDE - Sampling 0.1s 1.146266 1.247785 2.013315 5.78E-06 0.661722

ChaosDE - Sampling 0.5s 0.960162 1.155149 1.777997 4.18E-09 0.55887

ChaosDE - Sampling 1.0s 0.461067 2.46E-07 1.777997 2.74E-09 0.751358

Table 8. Comparison of progress towards the minimum for the shifted Ackley’s func-
tion

DE Version Gen. 300 Gen. 600 Gen. 900 Gen. 1200 Gen. 1500

Canonical DE 1.147498 0.004668 4.04E-05 8.35E-06 3.44E-09

ChaosDE - Sampling 0.1s 1.538858 1.222563 1.155629 1.149759 1.146266

ChaosDE - Sampling 0.5s 1.463927 0.962694 0.960186 0.960167 0.960162

ChaosDE - Sampling 1.0s 1.281251 0.532509 0.504672 0.49502 0.461067
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Fig. 4. Comparison of the time evolution of avg. CF values for the all 50 runs of
Canonical DE, and three versions of ChaosDE with different sampling rates of Ueda
oscillator as CPRNG. Schwefel’s function.
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Fig. 5. Comparison of the time evolution of avg. CF values for the all 50 runs of
Canonical DE, and three versions of ChaosDE with different samling rates of Ueda
oscillator as CPRNG. Shifted Rastrigin‘s function.
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Fig. 6. Comparison of the influence of sampling rate to the distribution of numbers
given by Ueda CPRNG; Left: Histogram of the distribution of real numbers transferred
into the range <0 - 1>; Right: Example of the chaotic dynamics: range <0 - 1>
generated by means of Ueda oscillator sampled with the particular sampling rate;
Sampling rates from up to down: 0.1s, 0.5s, 1.0s.

8 Conclusions

The primary aim of this work is to use investigate the utilization of the time-
continuous chaotic system, which is Ueda oscillator, as the chaotic pseudo ran-
dom number generator embedded into DE. Experiments are focused on the
extended investigation, whether the different randomization and pseudo random
numbers distribution given by particular CPRNG or hidden complex chaotic
dynamics providing the unique sequencing are beneficial to the heuristic perfor-
mance. The findings can be summarized as follows:

– Obtained graphical comparisons and data in Tables 1–8 and Figs. 4–6 support
the claim that chaos driven heuristic is more sensitive to the hidden chaotic
dynamics driving the selection, mutation, crossover or other processes through
CPRNG and less sensitive to the distribution of PRNG/CPRNG.

– Another important phenomenon was discovered – Only sampling rate of 0.1 s
keeps the information about the chaotic dynamics (as in Fig. 6 – upper, right)
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and by using such chaotic dynamics driving the selection/mutation processes
inside heuristic, its performance is significantly different: either the best or
the worst against other compared versions.

– In the first two case studies, the performance of ChaosDE was significantly
better, and the effect of different CPRNG distribution (versions with sampling
rates 0.5 s and 1.0s) became even stronger with the chaotic dynamics kept
inside CPRNG sequences (sampling rate 0.1s). Other settings of sampling
rates have given comparable performance. Distributions of all three versions
of CPRNGs were almost identical (as in Fig. 6 – left parts).

– The third and the fourth case study have given absolutely reversed character
of results. The more chaotic dynamics is present (sampling rate 0.1s) or sup-
pressed (sampling rate 0.5s) in the CPRNG sequence, the worse results are
obtained with ChaosDE.

– Sequencing of pseudo random numbers and chaotic dynamics hidden inside
pseudo random series can be significantly changed by the selection of sampling
time in the case of the time-continuous systems. Nevertheless the distributions
of CPRNGs with different sampling rates remain almost identical (See Fig. 6
– left parts). In case of discrete systems, the simplest way for changing the
influence to the heuristic is to swap currently used chaotic system for different
one, or to change the internal parameters of discrete chaotic systems.

– It is clear that (selection of) the best sampling rates are problem-dependent.
Similarly to the research focused on the adaptive switching of either discrete
chaotic systems or randomization types, it is possible to build the adaptive
tuning framework utilizing only one time-continuous system with an auto-
matic adaptation of sampling rate.
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Abstract. When we think about hybridizing of evolutionary computa-
tions and agent systems in fact two approaches are possible: (1) hier-
archical one – where agents are used as the management layer and the
evolutionary algorithms are executed inside (sub)populations “within”
agents and (2) system realized as the population(s) of evolving agents
equipped with “DNA” performing life-steps to obtain their life-goals. In
this paper we discuss aforementioned approaches and present their sam-
ple realization and application for solving a challenging portfolio opti-
mization problem defined as a multi-objective optimization problem with
maximization of the investment profit and minimization of the invest-
ment risk level.

1 Motivation

One of the promising computational techniques for solving hard and complex
optimization problems (both global and local ones especially when the problem is
defined as the multi-objective or multi-modal optimization problem) is applying
nature-inspired systems and the evolutionary algorithms in particular since they
are insensitive to the complexity of the problem to some extent.

The problem however is that evolutionary algorithm works properly (e.g. in
terms of searching for a globally optimal solution) if the population consists
of fairly different individuals, i.e. the so-called diversity in the population is
preserved [2]. Yet many algorithms tend to prematurely loose this useful diversity
and, as a result, there is possibility that population gets stuck in some part of
the search space (e.g. in the basin of attraction of some local extrema instead
of searching for a global one). Loosing the population diversity also limits the
possibilities of the application in some areas such as multi-objective optimisation
or multi-modal optimisation.

The above-described situation is related to the fact that the model of evolu-
tion employed by simple evolutionary algorithms lacks many important features
observed in organic evolution [3]. This includes dynamically changing environ-
mental conditions, neither global knowledge nor generational synchronisation
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assumed, co-evolution of species, evolving genotype-fenotype mapping, etc. That
is why many variations of classical evolutionary algorithms were proposed, intro-
ducing additional mechanisms following the most important phenomena in evo-
lutionary biology e.g. dedicated cooperation mechanisms [16], coevolutionary
mechanisms [8–10], hierarchical approaches [6] or converting problems into mul-
tiobjective optimization problems [15]. Yet still obtained results have been not
satisfying in many cases.

During the last decades intelligent/autonomous software agents have been
gaining more and more applications in various domains. The key concept in
multi-agent systems (MAS) constitute intelligent interactions (coordination,
cooperation, negotiation). Thus multi-agent systems are ideally suited for rep-
resenting problems that have many solving methods, involve many perspectives
and/or may be solved by many entities [17]. Agents play a key role in the integra-
tion of AI sub-disciplines, which often leads to hybrid design of modern intelligent
systems.

Since evolutionary algorithms are distributed by nature and since agents are
able to perform many complex operations it was then natural that the idea of
hybridization of evolutionary computations with (multi)agent systems arouse.

In this paper two fundamental approaches for hybridizing evolutionary com-
putation and agent systems i.e. (1) hierarchical approach (HEAH) with agents
used as the management layer and (2) the population of evolving agents
(MIEAH) equipped with the “DNA” and performing their “life steps” to obtain
their “goals” (i.e. better and better solutions of the problem defined) are dis-
cussed, applied for solving challenging, discrete investment portfolio optimiza-
tion defined as the multi-objective optimization problem, and then compared
and concluded.

2 Two Approaches for Hybridization of Evolutionary
Computations and Agent Systems

In most approaches for hybridization of evolutionary computations and agent
systems reported in the literature (see e.g. [13] or [5] for a review) an evolution-
ary algorithm is used by an agent to aid realisation of some of its tasks, often
connected with learning or reasoning, or to support coordination of some group
(team) activity.

But when we think about constituting a new hybrid evolutionary-agent com-
putational paradigm in fact two approaches are possible. In the first one agents
constitute a management infrastructure for a distributed realisation of an evo-
lutionary algorithm [14].

In such an approach (see Fig. 1) each agent has the population of individuals
inside of it, and this sub-population is evolving according to one of (classical)
evolutionary algorithm. Agents themselves can migrate within the computational
environment, from one computational node to another, trying to utilize in a best
way, free computational resources.
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Fig. 1. Agent-based layer used for managing evolutionary computations

In contrary, thinking about the hybridization of evolutionary and agent
systems one may imagine the population(s) of evolving agents equipped with
“DNA” performing life-steps to obtain their life-goals.

Such an idea with agents located in fixed positions on some lattice (like in
a cellular model of parallel evolutionary algorithms) was developed by e.g. [18].
This approach yet interesting was disregarding important, powerful and crucial
in facts features of agents i.e. their autonomy and mobility.

The full realization of the idea of incorporating evolutionary processes into a
multi-agent systems at a population level regarding full autonomy of agents was
the decentralised model of evolution employed by an evolutionary multi-agent
system – EMAS [12].

Agents of EMAS represent or generate solutions for a given optimisation
problem. They are located on islands, which constitute their local environment
where direct interactions may take places, and represent a distributed structure
of computation. Obviously, agents are able to change their location, which allows
for diffusion of information and resources all over the system [12].

In EMAS phenomena of inheritance and selection – the main components of
evolutionary processes – are modelled via agent actions of death and reproduction
(see Fig. 2). Inheritance is accomplished by an appropriate definition of repro-
duction, like in classical evolutionary algorithms. Core properties of the agent
are encoded in its genotype and inherited from its parent(s) with the use of vari-
ation operators (mutation and recombination). Besides, an agent may possess
some knowledge acquired during its life, which is not inherited. Both inherited
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Fig. 2. Evolutionary multi-agent system—population of evolving agents with “DNA”
performing life-steps to obtain their life-goals

and acquired information determines the behaviour of an agent in the system
(phenotype).

Assuming that no global knowledge is available (which makes it impossible
to evaluate all individuals at the same time) and autonomy of the agents (which
causes that reproduction is achieved asynchronously), selection is based on the
non-renewable resources [4].

In order to realize the selection process “better” (what means that they sim-
ply better solve the given problem) agents are given more resources from the
environment (or from other agents) and “worse” agents are given less resources
(or should give some of its resources to “better” agents). Such mechanisms result
in decentralized evolutionary processes in which individuals (agents) make inde-
pendently all their decisions concerning reproduction, migration, interactions
with other agents, etc., taking into consideration conditions of the environment,
other agents present within the neighborhood, and resources possessed.

3 Realization of Hierarchical and Interactive
Evolutionary-Agent Hybrid Systems

3.1 Realization of Hierarchical Evolutionary-Agent Hybrid System

Hierarchical approach has been implemented using Age—agent-oriented frame-
work [1] (its Java implementation i.e. jAge in fact). The framework supported
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the authors with implementation of a notion of working agent that was adapted
to create an efficient implementation of Master and Slave agents.

Because the representatives of each sub-populations had to be aggregated
(in order to form the complete solution) and also because of the necessity of
storing the complete non-dominated solutions the system consists of one Mas-
ter/Aggregate and many slaves/working agents. Master agent is responsible for
exchanging information with external world e.g. the user. It is also responsible
for forming complete solutions (composed of the representatives of each sub-
population and evaluation of the solutions. It also maintains the set of non-
dominated solutions found so far (the definition of domination relation and other
issues connected with the Pareto approach to multi-objective optimization can
be found for example in [7] or [11]). Each sub-population is responsible only for
the selected part of solution, and evolved by one working agent.

Master agent has to deal also with typical management tasks i.e. it is respon-
sible for dispatching optimization tasks among Slaves/Working agents. Working
agents can manage the populations evolving according to different algorithms.
For experiments, working agents managed the (sub)population of individuals
being evolved according to NSGA2 evolutionary algorithm for multi-objective
optimization [7].

As a result of integration of agent system and NSGA2 [7] algorithm the
agent-based co-operative version of NSGA2 was created. Thanks to the com-
puted contribution of the given individual to the quality of the complete solu-
tion, the fitness computation in agent-based co-evolutionary NSGA2 is realized
with the use of non-dominated sorting and crowding distance metric (see [7]).
Additionally, the aggregate agent joins the populations of parents and offspring,
and chooses (on the basis of elitist selection and within each sub-population
separately) individuals which will form the next generation sub-population used
for the creation of complete solutions. The applied schema implies that N best
(according to non-dominated sorting and crowding distance metric) individuals
survive.

3.2 Predator-Prey Co-Evolutionary Multi-agent System
as the Realization of Massively Interactive Approach

As it was stated in Sect. 1 one of two main approaches for hybridization of evolu-
tionary and agents systems is equipping agents with their “DNA” and construct-
ing populations of evolving agents, “living” in their environment, interacting
with the other agents realizing their own goals defined (usually) as obtaining the
best possible approximations of optimal solutions of single- or multi-objective,
local or global optimization problem(s).

Obviously the “live-step” of evolving agents as well as their interaction can
be defined in many possible ways—from very simple until complex, respecting
many possible species and nations of agents.

One of possible realization is the system of co-evolving (arm-racing in fact)
two species of agents: predators and preys which is called the co-evolutionary
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multi-agent system with predator-prey interactions (PPCoEMAS ) which is gen-
erally discussed in this section (the formal model and detailed presentation of co-
evolutionary multi-agent system with predator-prey interactions is given in [11]).

According the general description of evolutionary multi-agent system given
in the Sect. 2 the system is composed of environment with graph-like structure,
interacting agents and resources. There are two species of agents: predators (their
goal is to remove less fitted prey agents) and preys (which represent solutions of
multi-objective problem). Agents exist within the environment, they can migrate
from node to node (if only there exists connection between nodes and agent
has enough resource). Resources (which are possessed only by agents—there
is no resource within the environment itself) are used for every activity like
migration and reproduction. Agents without resources die and are removed from
the system.

Agents of prey species can reproduce when they have sufficient amount of
resource. When two ready for reproduction prey agents meet within the same
node they reproduce—new agent is created with the use of intermediate recom-
bination and mutation with self-adaptation operators (floating point representa-
tion is used). Some amount of resource is transferred from parents to the newly
created offspring.

Predators do not reproduce. They can only migrate within the environment
and seek for less fitted preys. Each predator has one criteria associated with it
(it is encoded within predator’s genotype) and it uses this criteria to seek for
the worst prey that is located within the same node. Then predator takes all
resources from the chosen prey, which dies as a result of this action.

The whole amount of resource within the system is constant—resource is pos-
sessed only by predators and preys. As a result of interactions between agents the
resource may be transferred from prey to predator (predator-prey interaction)
and from prey to another prey (prey-prey interaction).

4 Problem Formulation

As it was stated: the goal of this paper is to compare two approaches for
hybridization of evolutionary and agent-based computational paradigms run
against the problem of building effective portfolio.

The first question to be answered is how such a problem should be for-
mally defined or which well-known definition should be chosen. Practically, there
are some well known models describing building of effective portfolio i.e. Mod-
ern Portfolio Theory (MPT), one-factor Sharpe model, CAPM—Capital Asset
Pricing Model, APT—Arbitrage Pricing Theory, Post Modern Portfolio Theory
(PMPT) etc.

Taking all the pros and cons into consideration—one-factor Sharpe model
has been chosen for our experiments so it is discussed below more precisely.

According to one-factor Sharpe model the algorithm of computing the
expected risk level and income expectation related to the portfolio of p assets is
formulated as in Algorithm1.

The meanings of the symbols used in Algorithm 1 are as follows:
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Algorithm 1. The algorithm (based on the one-factor Sharpe model) of com-
puting the expected risk level and income expectation

Compute the arithmetic means on the basis of rate of returns;1

Compute the value of α coefficient αi = Ri − βiRm;2

Compute the value of β coefficient βi =
∑n

t=1(Rit−Ri)(Rmt−Rm)
∑n

t=1(Rmt−Rm)2
;3

Compute the expected rate of return of asset i Ri = αi + βiRm + ei;4

Compute the variance of random index sei
2 =

∑n
t=1(Rit−αi−βiRm)2

n−1
;5

Compute the variance of market index sm
2 =

∑n
t=1(Rmt−Rm)2

n−1
;6

Compute the risk level of the investing portfolio βp =
∑p

i=1(ωiβi);7

sep
2 =
∑p

i=1(ω
2
i sei

2);8

risk = β2
psm

2 + sep
2;9

Compute the portfolio rate of return Rp =
∑p

i=1(ωiRi);10

p is the number of assets in the portfolio;
n is the number of periods taken into consideration (the number of rates of

return taken to the model);
αi, βi are coefficients of the equations;
ωi is percentage participation of i-th asset in the portfolio;
ei is random component of the equation;
Rit is the rate of return in the period t;
Rmt is the rate of return of market index in period t;
Rm is the rate of return of market index;
Ri is the rate of return of the i-th asset;
Rp is the rate of return of the portfolio;
si

2 is the variance of the i-th asset;
sei

2 is the variance of the random index of the i-th asset;
sep

2 is the variance of the portfolio;
Ri is arithmetic mean of rate of return of the i-th asset;
Rm is arithmetic mean of rate of return of market index;

The goal of the optimization is to maximize the portfolio rate of return
and minimize the portfolio risk level. The task consists in determining values of
decision variables ω1 . . . ωp forming the vector Ω = [ω1, . . . , ωp]T , where 0% ≤
ωi ≤ 100% and

∑p
i=1 ωi = 100% and i = 1 . . . p and which is the subject of

minimization with respect of two criteria F = [Rp(Ω) ∗ (−1), risk(Ω)]T .
We gain a classical multiobjective optimization problem the Multiobjective

Optimization of Investing Portfolio Problem (MOIPP) with two contradictory
objectives the risk and expected income which can be formulated as follows:

MOIPP ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Max : Rp =
∑p

i=1(ωiRi)
Min : risk = β2

psm
2 + sep

2

Taking into consideration :
R ≥ 0 and risk ≥ 0∑p
i=1 ωi = 100%

0% ≤ ωi ≤ 100% and i = 1 . . . p
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In the course of this paper multi-objective optimization in the Pareto sense is
considered, so solving defined MOIPP problem means determining of all feasible
and non-dominated alternatives from the set (D). Such defined set is called
Pareto set (P) and in objective space it forms so called Pareto frontier (PF).

5 Results

Defined portfolio optimization problem has been solved using the hierarchical
evolutionary multi-agent system discussed in Sect. 3.1 and the massively inter-
active evolutionary multi-agent system with predator-prey interactions discussed
in Sect. 3.2.

Each individual evolved during experiments has been represented as a p-
dimensional vector. Each dimension represents the percentage participation of
i-th (i ∈ 1 . . . p) share in the whole portfolio.

During presented experiments—Warsaw Stock Exchange quotations from
2003-01-01 until 2005-12-31 were taken into consideration. Simultaneously, the
portfolio consists of the following three (experiment I) or seventeen (exper-
iment II) stocks quoted on the Warsaw Stock Exchange: in experiment I:
RAFAKO, PONARFEH, PKOBP, in experiment II: KREDYTB, COMPLAND,
BETACOM, GRAJEWO, KRUK, COMARCH, ATM, HANDLOWY, BZWBK,
HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM, GANT, PROKOM,
BPHPBK. As the market index, WIG20 has been taken into consideration.

In Fig. 3 the sample approximation of Pareto frontiers (i.e. sets of non-
dominated solutions) for both compared evolutionary-agent hybridized systems
are presented.

As one may see in first–simpler–experiments consisting in looking for the
optimal portfolio consisting of 3 stocks both hybridization approaches have been
able to obtain a similar and comparable portfolios taking into consideration
defined objectives i.e. expected (maximized) profit and (minimized) investment
risk. In particular both compared approaches have been able to obtain portfolios
with very similar level of profit and risk in the first one-third part of the Pareto
frontier. Also both systems located the majority of final non-dominated individ-
uals in this part of the Pareto frontier. The second two-third part of the frontier
is visibly worse probed. Also the difference between obtained approximation of
the Pareto frontiers is slightly bigger in this part of the frontier.

The model Pareto frontier for the problem defined is evenly dense on its
full extent. Since the high-quality solution of the multi-objective optimization
problem in the Pareto sense is the set of non-dominated solutions spread over the
full extent of the Pareto frontier–concentration of found non-dominated solution
in the first one-third part of the frontier observed in Fig. 3 in both cases—it is
for sure the space for further improvements. Anyway, since the goal of this paper
is to compare hierarchical and massively interactive hybrids of evolutionary and
multi-agent computational paradigms, it can be said that both approaches are
comparable taking the quality of obtained results into account.

Similar situation can be observed when we look at the Fig. 3(b) presenting
pareto frontiers approximation obtained by both systems when the portfolio
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Fig. 3. Pareto frontier approximations after 1000 steps obtained by mixed hierarchi-
cal approach and massively interactive approach with predator-prey mechanisms for
building effective portfolio consisting of 3 and 17 stocks

consisting of 17 stocks has been optimized. Also in this case both approaches
concentrated their solution in the first one-third part of the Pareto frontier.
But this time also the model Pareto frontier (not presented here because) is
concentrated in this area.

What is interesting, there is as the matter of fact, some slight ‘shift’ between
pareto frontier approximation obtained by compared hybridization approaches
and the massively interactive approach has been able to cover slightly better
the first half of the frontier whereas the hierarchical approach covered slightly
better its second half–what gives for sure the space for further improvements.
But again it can be said for sure that both approaches have been able to obtain
a really close approximation of the model Pareto frontiers and obtained sets of
non-dominated solutions are pretty close and similar.

From the financial point of view it is interesting how (financially) effective
is the portfolio proposed by both approaches as the optimal one. Obviously,
since we are in the space of multiobjective optimization in the Pareto sense
the solution is not the one, single optimal solution but the whole set of non-
dominated alternatives. Anyway, in the Fig. 5 the comparison of non-dominated

Fig. 4. Effective portfolio consisting of three and seventeen stocks found by hierarchical
approach and massively interactive approach i.e. coevolving agents with predator-prey
interactions
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Fig. 5. The histogram of effective portfolios found by hierarchical and massively
interactive approach

portfolios found by both systems and located closely on the frontiers diagram
are presented.

As one may see obtained portfolios are really close and similar especially in
the first–simpler experimental case (optimizing portfolio consisting of 3 stocks).
In both cases the main part of proposed portfolio is PKOBP what is the biggest
bank in Poland what is absolutely natural and expected. Probably every single
human-being investor working without any computational tools would also build
his portfolio around stable and profitable banking institution.

Obviously, analyzing the portfolio consisting of 17 stocks the greater variety
can be observed nevertheless the general trends are also really close and similar
in both cases.

For easier analysis, selected, found, non-dominated portfolios presented in
Fig. 5(a) and (b) are presented from different perspective as the percentage share
of the portfolio in Fig. 4. Also in this case it is clear that both evolutionary
multi-agent hybridized systems have been able to find reasonable and similar
(non-dominated) portfolios.

6 Summary and Conclusions

One of the promising computational techniques for solving hard and complex
optimization problems (both global and local ones especially when the problem is
defined as the multi-objective or multi-modal optimization problem) is applying
nature-inspired systems and the evolutionary algorithms in particular since they
are insensitive to the complexity of the problem to some extent.

The problem however is the premature loose of population (and solution)
diversity and, as a result getting stuck in the basin of attraction of some local
extrema instead of searching for a global one. The solution may be the hybridiza-
tion of evolutionary algorithms with agent systems since the autonomy, mobility
and generally saying the “intelligence” of agents may prevent the evolution from
getting stuck.

When we think about hybridizing of evolutionary computations and agent
systems in fact two approaches are possible: (1) hierarchical one – where agents
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are used as the management layer and the evolutionary algorithms are executed
inside (sub)populations “within” agents and (2) system realized as the popula-
tion(s) of evolving agents equipped with “DNA” performing life-steps to obtain
their life-goals.

The analysis of any economical and financial phenomena is extremely
complex and difficult mainly because of many-dimensional relations and depen-
dencies among particular components and participants of the market-game. No
wonder so that it is also so difficult to develop really efficient and effective
algorithms and computer systems supporting modeling, analyzing and finally—
solving market oriented problems. In the consequence the systems for financial or
economical modeling and analysis are more and more complex and complicated.

As one may see on presented experimental comparison, there is for sure the
space for further improvements, anyway, the general conclusion coming from the
comparison is that both systems realizing two different approaches for hybridiza-
tion of evolutionary computations and agent systems turned out to be compa-
rably effective obtaining similar sets of non-dominated portfolios.
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9. Dreżewski, R., Siwik, L.: Multi-objective optimization using co-evolutionary multi-
agent system with host-parasite mechanism. In: Alexandrov, V.N., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 871–
878. Springer, Heidelberg (2006)



516 L. Siwik and R. Drezewski
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Abstract. This research paper combines two soft computing fields –
chaos theory and evolutionary computing. The proposed multi-chaotic
system implements five different chaotic maps as a Pseudo-Random
Number Generators (PRNGs) for parent selection process in Differential
Evolution (DE) and Success-History based Adaptive Differential Evolu-
tion (SHADE) algorithms. The probabilities for selecting chaotic maps
are adapted and the adaptation process is based on the previous suc-
cessful solutions. Therefore, PRNG varies for different test functions.
The performance of multi-chaotic system induced DE and SHADE is
compared against their canonical versions on CEC2015 benchmark set.
Acquired results show that replacing classic PRNG with multi-chaotic
PRNG can lead sto improvement in terms of convergence speed and
ability to reach the global optimum.

Keywords: Differential Evolution · SHADE · Deterministic chaos ·
Parent selection · Pseudo-Random Number Generator

1 Introduction

Differential Evolution (DE) and algorithms based on it have been proven to be a
simple but effective heuristic methods for solving various optimization problems
in many fields and that they can outperform other Evolutionary Algorithms
(EAs) [1–5].

Since its discovery in 1995 [6], canonical version of DE algorithm has been
thoroughly studied and improved in terms of convergence speed, ability to find
the optimal solution and robustness. DE in its canonical form has three main
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control parameters (population size NP, scaling factor F and crossover rate
CR) and two strategies, mutation strategy and crossover strategy. One of the
most powerful directions in performance improvement of DE is adapting its
main control parameters in order to avoid the premature convergence to a local
optimum. Some of the existing algorithms which adapt control parameters CR
and F are jDE [7], SDE [8], SaDE [9] and JADE [10]. The last named algo-
rithm also implements innovative mutation strategy “current-to-pbest/1” and
an optional archive of inferior solutions A. This algorithm formed a base for
Success-History based Adaptive Differential Evolution (SHADE) algorithm [11]
which additionally extends it by the use of two historical memories MCR and
MF for storing historically successful CR and F values rather than using only
one pair of adapted values of CR and F.

Previous research has shown that utilization of Pseudo-Random Number
Generators (PRNGs) based on chaotic dissipative maps into various stages of
EAs rather than the use of classical PRNGs can be beneficial [12–15]. Addition-
ally, the effect of different chaotic maps used for PRNGs varies and so does the
performance of influenced EAs. Research to date has mostly focused on multi-
chaotic systems with two different chaotic map PRNGs and switching between
them [16,17]. Therefore, this paper proposes a novel multi-chaotic approach
which uses five different chaotic dissipative maps for pseudo-random number
generation in parent selection process of the DE and SHADE algorithms. The
performance is tested on the CEC2015 benchmark set [18] and both algorithms
are compared with their canonical versions.

The paper is structured as follows: Next section focuses on chaotic maps and
their use as a PRNGs. Section three briefly describes DE, SHADE and multi-
chaotic parent selection framework. Sections four and five depict experiment
settings and results respectively and sections that follow are result discussion
and conclusion.

2 Chaotic Maps

Chaotic maps are systems generated continuously by simple equations from a
single initial position. The current position is used for generation of a new posi-
tion thus creating a sequence which is extremely sensitive to the initial position,
which is also known as the “butterfly effect.” Sequences generated by chaotic
maps have characteristics which are not common in classical random number
generation. Therefore, their application in EA can change its behavior and might
improve the performance.

The multi-chaotic system presented in this paper uses five different chaotic
maps – Burgers, Delayed Logistic, Dissipative, Lozi and Tinkerbell. Each of these
maps is generated differently and initial positions also vary. Chaotic maps, their
generating equations with specific parameters and initial positions are shown in
Table 1. Specific parameter values were set according to [19].

The process of acquiring i -th random integer rndInti from chaotic map is
depicted in (1).
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rndInti = round
(

abs (Xi)
max(abs (Xi∈N ))

∗ (maxRndInt − 1)
)

+ 1 (1)

Where abs(Xi) is an absolute value of i -th X of a chaotic sequence with length of
N, max(abs(Xi∈N )) is a maximum of absolute values of X in chaotic sequence
and round() is common rounding function. The generated number rndInti is
from interval [1, maxRndInt ].

Table 1. Chaotic maps, their specific parameters and initial position.

Chaotic map Equations Parameters Initial position

Burgers map Xn+1 = aXn − Y 2
n a = 0.75 X0 = [−0.1, −0.01]

Yn+1 = bYn + XnYn b = 1.75 Y0 = [0.01, 0.1]

Delayed logistic map Xn+1 = AXn(1 − Yn) A = 2.27 X0 = Y0 = [0.8, 0.9]

Yn+1 = Xn

Dissipative map Xn+1 = Xn + Yn+1 (mod 2π) b = 0.1 X0 = Y0 = [0, 0.1]

Yn+1 = bYn + k sinXn (mod 2π) k = 8.8

Lozi map Xn+1 = 1 − a|Xn| − bYn a = 1.7 X0 = Y0 = [0, 0.1]

Yn+1 = Xn b = 0.5

Tinkerbell map Xn+1 = Xn + Yn + aXn + bYn a = 0.9 X0 = [−0.1, −0.01]

Yn+1 = 2XnYn + cXn + dYn b = − 0.6 Y0 = [0, 0.1]

c = 2

d = 0.5

3 Differential Evolution, Success-History Based Adaptive
Differential Evolution and Multi-Chaotic Parent
Selection

DE algorithm as aforementioned has three control parameters – population size
NP, crossover rate CR and scaling factor F. In the canonical form of DE,
these three parameters are static and set by the user. Other important fea-
tures of DE algorithm are mutation strategy and crossover strategy. This work
uses “rand/1/bin” mutation strategy (2) and binomial crossover (5). SHADE
algorithm, on the other hand, uses only two control parameters – population
size NP and size of historical memories H. F and CR parameters are auto-
matically adapted based on the evolutionary process and the values for each
individual are generated by (4) and (6) respectively. Also, the mutation strategy
is different than that of canonical DE. The mutation strategy used in SHADE is
called “current-to-pbest/1” and is depicted in (3). The concept of basic opera-
tions in DE and SHADE algorithms is shown in following sections, for a detailed
description on feature constraint correction, update of historical memories and
external archive handling in SHADE see [11].
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3.1 Initialization

The initial population is randomly generated from objective space and has NP
individuals in both algorithms. The external archive A in SHADE algorithm is
initially empty with a maximum size of NP and historical memories MCR and
MF are both set to the size H where MCR,i = MF,i = 0.5 for (i = 1, . . . , H ).

3.2 Mutation Strategies and Parent Selection

In canonical forms of both algorithms, parent vectors are selected by classic
PRNG with uniform distribution. Mutation strategy “rand/1/bin” uses three
random parent vectors with indexes r1, r2 and r3, where r1 = U [1, NP ], r2 =
U [1, NP ], r3 = U [1, NP ] and r1 �= r2 �= r3. Mutated vector v i,G is obtained
from three different vectors x r1, x r2, x r3 from current generation G with the
help of static scaling factor Fi = F as follows:

vi,G = xr1,G + Fi (xr2,G − xr3,G) (2)

Contrarily, SHADEs mutation strategy “current-to-pbest/1” uses four parent
vectors – current i -th vector x i,G, vector x pbest,G randomly selected from NP ×
p (p = U [pmin, 0.2], pmin = 2/NP) best vectors (in terms of objective function
value) from G, randomly selected vector x r1,G from G and randomly selected
vector x r2,G from the union of G and external archive A. Where x i,G �=x r1,G

�= x r2, G.

vi,G = xi,G + Fi (xpbest,G − xi,G) + Fi (xr1,G − xr2,G) (3)

The scaling factor Fi is generated from Cauchy distribution with location
parameter value of MF,r which is a randomly selected value from scale factor
historical memory MF , and scale parameter value of 0.1 (4).

Fi = C [MF,r, 0.1] (4)

3.3 Crossover and Elitism

The trial vector u i,G which is compared with the original vector x i,G is com-
pleted by crossover operation (5) and this operation is the same for both DE
and SHADE algorithms. CRi value in DE algorithm is again static CRi = CR
whereas with SHADE algorithm its value is generated from a normal distribu-
tion with a mean parameter value of MCR,r which is randomly selected value
from crossover rate historical memory MCR and with standard deviation value
of 0.1 (6).

uj,i,G =
{
vj,i,G if U [0, 1] ≤ CRi or j = jrand

xj,i,G otherwise (5)
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Where jrand is randomly selected index of a feature, which has to be updated
(jrand = U [1, D ]), D is the dimensionality of the problem.

CRi = N [MCR,r, 0.1] (6)

Individual which will be in the next generation G+1 is selected by elitism.
When the objective function value of trial vector u i,G is better than that of the
original vector x i,G, the trial vector will be selected for the next population and
the original will be placed into the external archive A. Otherwise, the original
will survive and the content of A remains unchanged (7).

xi,G+1 =
{
ui,G if f (ui,G) < f (xi,G)
xi,G otherwise (7)

3.4 Multi-Chaotic Parent Selection

Multi-chaotic framework for parent selection process is based on ranking selec-
tion of Chaotic map based PRNGs (CPRNGs). A list of CPRNGs Clist has to
be added to the EA and each CPRNG is initialized with the same probability
pcinit = 1/Csize, where Csize is the size of Clist. For example, for five CPRNGs
Csize = 5 and each of them will have the probability of selection pcinit = 1/5 =
0.2 = 20 %.

For each individual vector x i,G in generation G, the chaotic generator
CPRNGk is selected from theClist according to its probability pck, where k is the
index of selected CPRNG. This selected generator is then used to replace classic
PRNG for selection of parent vectors and if the generated trial vector succeeds in
elitism, the probabilities are adjusted. There is an upper boundary for the prob-
ability of selection pcmax = 0.6 = 60 %, if the selected CPRNG reach this proba-
bility, then no adjustment takes place. Whole process is depicted in (8).

if f (ui,G) < f (xi,G) and pck < pcmax pcj =

⎧
⎨

⎩

pcj+0.01

1.01 if j = k

pcj
1.01 otherwise

otherwise pcj = pcj

(8)

4 Experiment Setting

Canonical DE and SHADE algorithms were compared against their multi-chaotic
system induced opposites on the CEC2015 benchmark set functions in 10-
dimensional objective space. Control parameters and their values are depicted
below. The setting for DE algorithms was based on previous testing and SHADE
algorithms were initialized in accordance with [11]. Stopping criterion for all runs
was a Maximum number of Test Function Evaluations (MaxTFE). The setting
of the multi-chaotic system is shown below as well and each chaotic map was
initialized as presented in Table 1.
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4.1 Common Setting

– Dimension D : 10
– Runs R: 51
– Maximum number of test function evaluations MaxTFE : 10 000 × D = 100 000

4.2 De Setting

– Population size NP : 100
– Crossover rate CR: 0.8
– Scaling factor F : 0.5

4.3 SHADE Setting

– Population size NP : 100
– External archive A of size H : 100

4.4 Multi-Chaotic System Setting

– List of CPRNGs Clist : {Burgers, Delayed Logistic, Dissipative, Lozi,
Tinkerbell}

– Size of Clist – Csize: 5
– Initial probability pcinit: 1/Csize = 1/5 = 0.2
– Maximal probability pcmax = 0.6

5 Results

Comparison between statistical characteristics of canonical and multi-chaotic
system induced algorithms is depicted in Tables 2 and 3, where the obtained
values are differences from the global optimum of a test function from function
set. Global optimum for each test function in the CEC2015 benchmark set is
equal to 100 × function number (e.g. for function 4 the global optimum value
f(x0) = 400). Both tables show median and mean values over 51 independent
runs and better value is illustrated by bold. If the mean value obtained by multi-
chaotic system induced version of the algorithm is lower than that of canonical
version, Wilcoxon signed-rank test p-value is shown in the last column with the
null hypothesis that both versions have the same mean ranks and the alternative
hypothesis that mean rank value of canonical version is greater than that of
multi-chaotic system induced version.

Moreover, the evolution of averaged best obtained value against the Test
Function Evaluations (TFE) is shown for two selected functions from CEC2015
benchmark set in Figs. 1 and 2. These figures depict the comparison between
all four algorithm versions – canonical DE, multi-chaotic system induced DE,
canonical SHADE and multi-chaotic system induced SHADE.
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6 Result Discussion

As can be seen in Tables 2 and 3, the performance of both algorithms was improved
on the majority of test functions. The p-values obtained from Wilcoxon singed-
rank test indicate that with the significance level set to 5 %, DE algorithm induced
by multi-chaotic system performs better on 5 functions (f (1), f (4), f (5),f (6) and
f (7)) and SHADE algorithm induced by multi-chaotic system performs better on
2 functions (f (4) and f (9)).

Furthermore, Fig. 1 shows that even when the difference between obtained
function values by both versions of the SHADE algorithm is not significant, the
convergence of the algorithm is improved and same objective function value is
reached in fewer evaluations when using multi-chaotic system CPRNGs instead
of PRNG with uniform distribution.

The functions defined in the CEC2015 benchmark set are divided into four
categories. First two functions f (1–2) are unimodal functions, functions f (3–9)
are simple multimodal functions, functions f (10–12) are hybrid functions and
functions f (13–15) are composite functions. As can be seen in Tables 2 and 3,
the multi-chaotic versions of algorithms perform better mostly on the simple
multimodal functions.

Table 2. Median and mean values of canonical DE and multi-chaotic system induced
DE on CEC2015 benchmark set functions, p-values of Wilcoxon signed-rank test
between the two versions in the last column.

Canonical DE Multi-chaotic system induced DE

f(x) Median Mean Median Mean p-value

f(1) 0.256 0.299 0.049 0.083 6.90E-09

f(2) 0.000 0.000 0.000 0.000 -

f(3) 20.328 20.321 20.316 20.310 0.159

f(4) 24.563 23.714 22.150 20.676 0.003

f(5) 1101.570 1089.530 1052.760 996.971 0.021

f(6) 5.663 6.551 1.034 2.755 6.76E-07

f(7) 0.556 0.562 0.409 0.407 2.01E-04

f(8) 0.238 0.258 0.331 0.363 -

f(9) 100.222 100.217 100.230 100.224 -

f(10) 216.656 216.654 216.584 216.690 -

f(11) 4.020 131.285 3.494 107.907 0.146

f(12) 102.022 102.007 102.141 102.093 -

f(13) 33.793 33.546 33.223 33.172 0.072

f(14) 2935.540 3069.170 2935.540 3355.910 -

f(15) 100.000 100.000 100.000 100.000 -
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Table 3. Median and mean values of canonical SHADE and multi-chaotic system
induced SHADE on CEC2015 benchmark set functions, p-values of Wilcoxon signed-
rank test between the two versions in the last column.

Canonical SHADE Multi-chaotic system induced SHADE

f(x) Median Mean Median Mean p-value

f(1) 0.000 0.000 0.000 0.000 -

f(2) 0.000 0.000 0.000 0.000 -

f(3) 20.062 18.481 20.061 17.324 0.096

f(4) 3.065 2.784 2.360 2.436 2.65E-10

f(5) 31.917 45.131 35.296 48.525 -

f(6) 0.680 6.039 0.418 5.530 0.999

f(7) 0.178 0.209 0.166 0.196 0.989

f(8) 0.478 0.473 0.252 0.277 0.370

f9) 100.172 100.175 100.164 100.165 0.005

f(10) 216.537 216.640 216.537 218.455 0.999

f(11) 3.343 119.418 3.148 130.934 -

f(12) 101.460 101.445 101.403 101.419 0.453

f(13) 27.853 27.364 27.650 27.407 -

f(14) 2935.540 4267.120 2935.540 3855.180 0.478

f(15) 100.000 100.000 100.000 100.000 -

DE
MC DE
SHADE
MC SHADE

20000 40000 60000 80000 100000
TFE

318.5

319.0

319.5

320.0

320.5

321.0

321.5

Fig. 1. Average best value development from 51 runs on f (3), D = 10. DE – canonical
DE, MC – DE – multi-chaotic system induced DE, SHADE – canonical SHADE, MC
– SHADE – multi-chaotic system induced SHADE.
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DE
MC DE
SHADE
MC SHADE

20000 40000 60000 80000 100000
TFE

1000.2

1000.3

1000.4

1000.5

1000.6

Fig. 2. Average best value development from 51 runs on f (9), D = 10. DE – canonical
DE, MC – DE – multi-chaotic system induced DE, SHADE – canonical SHADE, MC
– SHADE – multi-chaotic system induced SHADE.

7 Conclusion

This research presented a novel multi-chaotic framework and demonstrated its
use on a parent selection process in DE and SHADE algorithms. In both cases,
the use of the framework was shown to be beneficial in terms of best obtained
objective function value and convergence speed on simple multimodal functions
from the CEC2015 benchmark set. The results will be examined further and will
be extended by different settings for the dimensionality of the problem.

The main goal of this research was to establish, whether the adaptivity of
SHADE algorithm will neutralize the valuable characteristics of multi-chaotic
system CPNRG which were observed on the canonical DE algorithm. Even when
the improvement is not as significant as on DE, it is apparent. Therefore, the
proposed framework may be labeled as robust.

The future research will focus on applications of the framework into different
parts of evolution process (e.g. crossover and mutation) and on its use in other
state-of-art EAs.
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Abstract. X-ray imaging is crucial in diagnosis of various musculoskele-
tal diseases. During early disease process, the X-ray changes are often
scarce and difficult to capture and the definite localization of osteophytes
or erosions is often challenging. Therefore, the attempt to use computer
methods to facilitate better diagnosing is of great value. Formal tools
for contour description are based on string languages. In Jakubowski’s
shape languages sixteen primitives are predefined. Finite collection of
primitives, however is insufficient for describing natural objects because
of irregular character of this type of objects. In this paper the general-
ized shape language, in which primitives are defined on a higher level of
abstraction, is proposed and is used for description and detection of a
special type of complex erosions in bone contours.

Keywords: Shape language · Primitives · Contours analysis · Bone
contours

1 Introduction

This paper joins two streams of scientific investigations. The first stream concerns
the shapes description and recognition. The second one concerns application of
artificial intelligence to analysis of medical images.

The problem of shape description and analysis, based on the analysis of
contours, have been solved effectively in manufacturing. Theoretical aspects of
the Jakubowski’s approach were worked out in seventies [17] and then were
applied in intelligent manufacturing [18–21]. Recently, this theory has been used
in robotic systems for description and recognition building-type objects on the
scene on which an autonomous robot operates [8–10]. In Jakubowski’s shape
languages sixteen primitives are predefined. Finite collection of primitives, how-
ever, is insufficient for describing natural objects because of irregular character
c© Springer International Publishing Switzerland 2016
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of this type of objects. In this paper the generalized shape language, in which
primitives are defined on a higher level of abstraction, is proposed.

Since the medical imaging has been developed rapidly during last decades,
there is a great demand on computer systems for automatic analysis of medical
images. X-ray pictures remains a widely used technique of imaging because of
its efficiency and low cost. Therefore, systems of their computer analysis are
developed intensively - the papers [3,4,13] can be put as examples. The palm
pictures analysis is widely used for diagnosis of musculoskeletal diseases [25,26].
The joint width analysis is a well worked out problem [11–14,28] whereas results
concerning the bone shape analysis are far from satisfactory [4,5,7]. Attempts
that were made to approximate bone contours by given a priori primitives were
finished by encoding the contour with a set of extremely short segments, in most
cases of line segments [5]. The application of Jakubowski-like primitives in Shaw
language to detect such pathological changes like erosions or osteophytes in bones
gave efficiency only about 70% [29]. The problems were caused by the fact that in
the mentioned approaches a finite set of predefined primitives were used. As it has
been aforementioned, such approach is sufficient to describe artificial objects that
are regular.They are insufficient, however, for description of irregular natural
objects such as bones. Therefore, a new approach, which consists in using more
general primitives, is proposed. The introduced primitives correspond to classical
sixteen primitives used by Jabubowski. The proposed formalism has been used
effectively for description and detection of a specific type of a complex erosion.
It should be mentioned that this paper is a continuation of the previous papers
in which the shape language was applied to palm X-ray pictures analysis [4,5,7].

2 X-ray Imaging as the Basis of Musculoskeletal Diseases
Diagnosis

X-ray imaging is still considered to be the cornerstone in differential diagnosis
of various musculoskeletal diseases. There are several X-ray signs that may help
not only to diagnose the disease but also monitor the disease progression and
response to treatment.

In musculoskeletal disorders joints and connective tissue are involved and
the most important goal is to diagnose the disease as soon as possible since
the time from the disease onset to treatment initiation is important for the
overall prognosis. Among wide variety of diagnostic tests, imaging is still a very
important tool and many diseases in their classification or diagnosis criteria must
have X-ray signs included.

The spectrum of rheumatic diseases involves the entities with inflammation
and without inflammation. Osteoarthritis (OA) is a primarily degenerative non-
inflammatory disease of cartilage, and loss of cartilage is a first triggering mech-
anism for further changes, including formation of new bone, i.e. osteophytes.
Rheumatoid arthritis (RA) in turn is inflammatory arthritis involving the syn-
ovial membrane within the joints, which transforms into the pannus invading
cartilage and bone. From the clinical point of view the key issue is to distinguish
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between inflammatory and degenerative diseases because inflammatory entities
have worse prognosis and require more aggressive pharmacologic treatment.

X-ray of hands allow to assess the width of joint space, giving the informa-
tion about the thickness of cartilage, and on the other hand bony outline which
tells us about bone damage or bone synthesis. Although OA, which is consid-
ered the model for non-inflammatory arthropathy, and RA, being the model
of inflammatory arthropathy are both characterized by joint space narrowing,
changes within the bone tissue are different. Degenerative joint disease, i.e. OA
is responsible for bony overgrowth - osteoproliferation or ostogenesis - in form
of osteophytes, which are localized on margins of cortical bone adjacent to the
attachment of joint capsule and ligaments. In contrast, RA is a disease where
pathologic process within synovial membrane of joints invades and destructs
bone, in form of erosions - which in fact represent the bone loss.

During early disease process, both in OA and RA, the X-ray changes are
often scarce and difficult to capture, and even for a very experienced radiologist
or rheumatologist the definite judgment of certain X-ray signs, eg. osteophytes
or erosions, is often challenging. That is why the attempt to use the artificial
intelligence methods to facilitate better diagnosing is of great value.

3 Generalized Shape Language

All predefined primitives of Jakubowski’s shape language are presented in Fig. 1.
They are line segments and circle quadrants.

As it has been aforementioned, these basic segments are improper for the
representation of fragments of bone contours because of irregularities of the
bone contours. In order to introduce more general primitives let us define a
four-component vector c = [c

′
, c

′′
, cx, cy]. The first component c

′
encodes the

properties of the tangent line, that can be vertical, horizontal, increasing or
decreasing. The second component encodes whether the contour fragment is
concave, convex, flat vertical or flat horizontal. The components cx and cy encode
increase of the x coordinate and the y coordinate, respectively. They can be
positive, negative or equal to zero. Let l be a line on the Euclidean plane which
has constant values of all four components of the vector c in all its points i.e.
each component of the vector c remains unchanged along the line l. In the set
of all such curves let us introduce a relation in the following way: two curves
are in relation if they are described by the same vector c. It is an equivalence
relation. Let the set of primitives be the set of the equivalence classes - see Fig. 2.

Fig. 1. The classical primitives of the Jakubowski’s shape language.
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Fig. 2. Examples of primitives p31 according to the proposed way; the Jakubowski’s
primitive p31 is marked in bold.

Since the components of vector c are mutually dependent, there are only sixteen
classes of equivalence relation. They correspond to the Jakubowski’s primitives
which means that each Jakubowski’s primitive is described by one vector c. It
should be stressed, however, that in the linear Jakubowski’s primitives the angle
between the primitive and the OX axis can only have values that are multiples
of π

4 and the curvature of curvilinear segments is constant see Fig. 1.
Let us denote the possible vectors c by using bi-index as pij , i, j ∈ {1, 2, 3, 4}.

Each of these vectors corresponds to one of quadrants of the Cartesian plane -
the index i. The vector c = [c

′
, c

′′
, cx, cy], describes the local geometric features

of a curve and can be calculated in every point of the curve. Its four components
constitute the basis that represents the essential qualitative features of the ana-
lyzed contour. The values of the components are traced along the contour. Then,
it is segmented into fragments for which the values of the components c

′
, c

′′
, cx

and cy are constant. As a result the analyzed contour, let it be denoted as k,
is described by a string of primitives i.e. the maximal fragments for which the
vector c is constant. It should be stressed that, in contrast with Jakubowski’s
approach, in such defined primitives the angle between linear segments and OX
axis can have arbitrary values and the curvature of the segment can be variance
along the primitive. The contour is characterized by its descriptor that encodes
the mentioned string of primitives: des(k) = pi1j1pi2j2 ...pinjn .

Let us recall briefly the formalism which is used in this paper.

Definition 1. The l-sinquad is a structure composed of primitives from the l-
quadrant, l = 1, 2, 3, 4.

Let k = k1 � k2 denotes concatenation of the contours k1 and k2 .

Definition 2. Let k1, k2 be i-sinquad and j-sinquad respectively. Then the con-
tour k = k1 � k2 constitutes ij-biquad.

These structures allow us to find the so-called decreasing and increasing regions
which form the global features like grooves and flanks. These regions can be
extracted in a syntactic way by transducer T see Fig. 3, [2,19,24] for which a
descriptor des(k) is an input.

It should be noticed that the transducer is widely used both in engineering
and medical applications [19,20,27]. The output of the transducer is denoted
by key(k) = a0b0w0 · a1b1w1 · · · an+1bn+1wn+1 where every pair aibj denotes
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subsequent biquad. Every switch between two sinquads is followed by the wi ∈
{0, 1} which determines whether the biquad is concave (then wi = 0) or convex
(then wi = 1) [19]. On the basis of this information it is possibly to find grooves
and flanks in the analyzed contour. They are sufficient to detect changes in a
bone contour i.e. erosions and osteophytes.

Fig. 3. Transducer where qi denotes the ith state of transducer, i = 1, 2, 3, 4 number of
sinquad; Qi/λ denotes that in the ith state appears terminal belonging to ith sinquad;
Qi→j/ij denotes that in the ith state appears terminal belonging to jth sinquad and
sequence ij is written to output.

Definition 3. If for a given subcontour g of contour k with a description
key(g) = a0b0w0 · a1b1w1 · · · an+1bn+1wn+1 the conditions w0 = wn+1 = 0
and wl = 1 for 1 ≤ l ≤ n are satisfied, then the subcontour constitutes groove -
see Fig. 4.

Definition 4. If for a given subcontour g of contour k with a description
key(g) = a0b0w0 · a1b1w1 · · · an+1bn+1wn+1 the conditions w0 = wn+1 = 1
and wl = 0 for 1 ≤ l ≤ n are satisfied, then the subcontour constitutes flank -
see Fig. 4.

Definition 5. The grooves g1, ..., gr constitute a cascade of grooves if and only
if hd(gl) = tl(gl+1) for l < r. The flanks f1, ..., fr constitute a cascade of flanks
if and only if hd(gl) = tl(gl+1) for l < r - see Fig. 4.

Fig. 4. Examples of a groove, flank and cascade.
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4 Complex Erosion Detection

It is assumed that a well-defined bone contour is given as the input of the proposed
algorithms. It should be stressed, however, that a preprocessing, in particular con-
tourisation of structures at both X-ray images and other types of medical images
is not the trivial task and intensive studies that concern this topic are conducted
- [6,15,22]. The contours analyzed in this paper - see Figs. 6 and 9 - were received
by using the statistical dominance algorithm proposed in [23].

The generalized primitives, introduced in Sect. 3, were used to generate the
description of a finger bone in a joint region - see Fig. 5. The description was
done from left to right side of the joint. The sequences of primitives that describe
the upper k1 and lower k2 side of the healthy joint respectively, are as followed:

des(k1) = p23p34p31p41p44p34p31p22,
des(k2) = p22p41p44p33p34p43.

The keys k1 and k2 received by using the transducer in Fig. 3 to the des(k1)
and des(k2) sequences are following:

key(k1) = 341.411.140.411.121,
key(k2) = 210.140.430.341.430.

It turns out that the upper side of the healthy joint is a curve with one flank
(marked in the key(k1) in bold) whereas the lower one is a curve with one groove
(marked in the key(k2) in bold). In turn, the pathologies such as erosions and
osteophytes that can appear on the bone surface [16] change the shape of the bone
contour. As a result it differs significantly from the healthy bone contour. If we
analyze the upper side of the finger joint with an erosion then we will receive con-
tour with two flanks. Analogically, for the lower side of the finger joint with an
erosion we receive contour with two grooves. Also in the case of the osteophyte
the number of flanks and grooves is bigger than one. Therefore it is possible to
distinguish immediately the healthy contour from the lesion one only on the basis
of the defined primitives and transducer - see Fig. 3 [1,2]. In order to distinguish
types of erosions (left, central or right) and osteophytes (left or right) a contex-free

Fig. 5. The example of X-ray picture of a healthy palm with the investigated joint (in
the frame).
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Fig. 6. The healthy joint with an outline made by an expert and with outline received
by using the statistical dominance algorithm.

LR(1) grammar can be used. From the medical point of view, however, erosions
can be more complex than osteophytes. The simple erosion as in Fig. 7 constitutes
two flanks in the upper side or two grooves in the lower side of the bone contour.
More complex shapes of erosions can be described by cascades. Let us analyze an
upper side of the contour depicted in Fig. 8.

Usually, erosions can be found in the segments of the contour which are
described by primitives p23p34 or by primitives p31p22. These segments are on the
left and on the right side of the contour therefore such erosions are called left-side
erosion (EL) and right-side erosion (ER). An erosion in the segment described by
a primitive p31 is called the central erosion (CE). The central erosion is presented
in Fig. 8. The sequence of primitives, shown in Fig. 8 (right), is as followed (the
primitives that represent pathological changes are marked in bold):

Fig. 7. The example of X-ray pictures with simple erosions - (left and middle), and
example of X-ray of a healthy bone (right).

des(k) =
p23p34p31p32p41p11p14p34p41p44p43p14p43p14p34p31p41p44p34p31p22,

key(k) = 341.411.121.210.140.411.140.430.341.430.341.411.140.411.121,

In the received contour we can see the cascade of three flanks and one separated
flank.
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Fig. 8. The example of X-ray picture of a complex erosion (left), outlines made by an
expert (middle) and the contour represented by using the primitives proposed in this
paper (right).
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Fig. 9. The complex erosion after preprocessing by using the statistical dominance
algorithm.

5 Concluding Remarks

The introduced generalized primitives allow us to analyze effectively the shape of
a finger bone in a joint region. In particular, fragments of bone contours can be
represented precisely by a proposed primitives. It is impossible by using classical
Jakubowski’s primitives because of their lack of flexibility - the curvilinear ones
have constant curvature and for the linear ones the angle between them and the
OX axis can only have values that are multiples of π

4 . Furthermore, the healthy
joint can be distinguished quickly from a joint with pathological changes by using
proposed primitives and the transducer. Localization of an erosion i.e. whether
it is left, right or central, is possible by using a contex-free grammar.

In the case of a complex erosion it can be detected by analyzing complex
features of the bone contour like a cascade. The possibility of a description of
such pathologies by a cascade is a simple and quick method.
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Abstract. The paper discusses how instance selection can be used to
asses the kNN performance. There exists a strong correlation between
the compression level of the dataset obtained by instance selection meth-
ods and the prediction accuracy obtained the k-NN classifier trained on
full training dataset.

Based on two standard algorithms of instance selection namely CNN
and ENN, which belong to two different groups of methods, so called con-
densation and editing methods, we perform empirical analysis to verify
this relation. The obtained results show that this relation is almost linear,
so that the level of compression is linearly correlated with the accuracy .
In other words by knowing the compression of instance selection methods
we are able to estimate the accuracy of the final kNN prediction model.

1 Introduction

In classification problems, which are defined as finding a mapping function
y = f(x) that maps each input example x ∈ �m into one of c classes
y ∈ {s1, s2, . . . sc} having a training set T of n tuples {x, y}, one of the
primary methods to build a prediction model is to use k nearest neighbor
algorithm. During the training stage it simply stores the training set T, and
than when predicting, the output label is calculated as the majority of k class
labels of the nearest examples to the query example x. This simple algorithm
works surprisingly well, but it has several serious drawbacks. It is very time con-
suming during prediction phase as it has to calculate all of the distances between
the query example and each example in the training set. Another weakness of
the kNN classifier is its noise sensitivity especially for low values of k. A possible
solution to overcome these two problems is to use instance selection methods,
which could be treated as a preprocessing step of the training phase. So in the
preprocessing these methods are used to prune training set by removing unde-
sired examples, i.e. these instances that do not influence the classification process
at all and these which have negative impact on the classifier accuracy.

Instance selection methods are often characterized by the performance mea-
sure called compression, which measures how much data of the original training
set T remains after the selection (denoted as P). This performance measure is
evaluated only on the training set and formally is independent of the prediction
c© Springer International Publishing Switzerland 2016
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accuracy obtained by the classifier as it simply measures the number of training
samples before and after pruning.

CMP =
|P|
|T| (1)

where | · | denotes cardinality of given set.
An important question arises what knowledge (if any) can be derived from

the value of compression and if there is any correlation between this value and
some other performance measures. An obvious correlation exists between the
compression and the execution time; lower values of compression lead to the
shorter execution time. Interestingly in our research on instance selection meth-
ods we have observed a phenomena that the level of compression may be related
to the value of prediction accuracy or shortly accuracy . Here we use the standard
definition of the accuracy , which is defined as

ACC =
TP + TN

TP + TN + FP + FN
(2)

where the ACC measures the ratio between all correctly classified examples (the
True Positives (TP) and True Negatives (TN), or sum of all diagonal elements
of the confusion matrix) and all of the analyzed examples.

In this paper we first describe two basic instance selection methods which
were designed to address both problems: reduction of classifier execution time
and noise filtering, and then we empirically analyze the earlier mentioned relation
between compression and prediction accuracy .

2 The Instance Selection Algorithms

The instance selection algorithms were developed to improve classifier perfor-
mance. There are two issues which are addressed by instance selection. The first
one is high time complexity during kNN prediction phase and the second one is
accuracy improvement. The first problem is a real challenge, as the time com-
plexity during prediction grows linearly with the number of training samples
O(n) as it has to calculate all of the distances between each query example and
the remaining training examples. This makes kNN very slow. On contrary many
other typical machine learning methods such as MLP neural networks or deci-
sion trees have much shorter prediction time, as only one query example must be
propagated through the model. Although the required size of a neural network
or the obtained size of a decision tree depends rather on the complexity of the
dataset than on the number of training examples, in practice the complexity
also frequently grows with the number of training examples. And thus it also
can be noticed that the size of the training dataset frequently influences not only
training but also prediction time of other classifiers than kNN.

To alleviate this problem so called condensation instance selection
algorithms were developed. These algorithms try to remove as many examples
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as possible, while preserving the classification accuracy. Usually the accuracy
should not change, or can change only within very small limits acc(kNN(T )) −
acc(kNN(condensed(T ))) < ε where ε is near 0. The first condensation algo-
rithm was CNN (condensed nearest neighbor rule) [5] which is presented and
discussed in the next subsection.

The second problem - the accuracy of kNN classifier is addressed by so called
editing methods. The source of accuracy drop in kNN is the noise, which usually
is present in the training data. To overcome it, usually larger value of k is used,
but this is not always appropriate, so the idea introduced by Wilson in [12] is to
remove all noisy examples from the data and then train the 1NN classifier. An
example of the second group of algorithms will be discussed in Subsect. 2.2. The
literature presents also a third group of instance selection methods, which com-
bines the first two groups, so usually at the first stage the data is cleaned-up and
then it is condensed. A nice overview of different instance selection algorithms
could be found in [10].

2.1 Condensed Nearest Neighbor Rule

The sketch of CNN algorithm is shown in Algorithm 1. It starts with an em-
pty dataset P also called set of reference examples or prototypes, then a random

Algorithm 1. Schema of the CNN algorithm
Require: T

n ← |T|
k ← 1
p1 ← x1

flag ← true
while flag do

flag ← false
for i = 1 . . . n do

ȳi =kNN(k,P,xi)
if ȳi �= yi then

P ← P ∪ xi;
T ← T \ xi

flag ← true
end if

end for
end while
return P

(usually first example) is added as a first prototype and in each iteration new
example is added to the set P if it is misclassified by kNN classifier trained using
recent set of reference vectors (here we denote the arguments of ȳ = kNN(k,P,x)
as follows: k - the number of nearest neighbors of kNN, P - the training set, x
- the example for which we wont to make prediction, ȳ - predicted class label).



544 M. Blachnik

Finally the set of selected prototypes is returned. This algorithm in the worst case
could have complexity of O(n3) but it happens when the training set is a pure
noise, but if there appears any redundancy in the data, such that one instance
could replace a set of other instances the algorithm starts to work very fast. In
real application this algorithm works fast, as usually redundancy is present in
the data, and compression obtained by this algorithm is on average 33 %.

(a) Dataset without noise. Obtained compres-
sion=0.12

(b) Dataset with noise. Obtained compres-
sion=0.34

(c) Dataset with nonlinear decison border. Ob-
tained compression=0.19

Fig. 1. Behavior of CNN algorithm on three simple two class datasets: simple linear
classification problem without noise, the same dataset but with 5% level of noise, and
on dataset with more complex (nonlinear) decision border. Solid line represent optimal
Bayesian decision border. Instances which remain after selection are marked in bold.

To understand the obtained results it is important to know how the condensa-
tion algorithm works and how it influences compression. First, when considering
a simple linear classification task as presented in Fig. 1(a) only a very small set
of examples is required to reconstruct the decision border of the kNN classifier,
so the CNN algorithm obtains a very low compression (only a small set of train-
ing samples are returned as prototypes). When the decision border gets more
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complex - more examples are required to reconstruct it (see Fig. 1(c)) and the
compression increases. Even higher growth of compression appears when noise is
present as any noisy examples would be stored as reference points together with
their neighbor samples, what is presented in Fig. 1(b). In all figures the selected
prototypes (after instance selection) are marked in bold.

To summarize, the properties of condensation methods - the value of com-
pression reflects both the level of noise and the complexity of the decision bor-
der. By default, when the classification task is simple the compression is very
low, but when the training data is noisy or the decision border is complex the
compression increases. We can also say that in the condensation methods the
compression reflects redundancy in the data, this is how much clean data do we
have to use to train the prediction model.

2.2 Edited Nearest Neighbor Rule

The ENN algorithm is presented in sketch (Algorithm2). Unlike CNN, it starts
with the entry set of examples as a reference set P = T and then in each iteration
it removes a single instance xi which is misclassified by its k nearest neighbors.
As a result only noise examples get rejected, so the compression ratio is rather
high. It has an O(n2) complexity, which is independent to the data distribution.
However this value can be lowered if the complexity of the nearest neighbor
search algorithm gets reduced for example by KD-Tree [2], Ball-Tree [9,11] or
Local Sensitive Hashing algorithms [4] leading to O(n · log(n)) or even lower.

Algorithm 2. Schema of the ENN algorithm
Require: T, k

n ← |T|;
P ← T;
for i = 1 . . . n do

ȳi =kNN(k, (T \ xi),xi);
if yi �= ȳi then

P ← P \ xi

end if
end for
return P

The compression level of the ENN method depends mostly on the number of
noisy examples. However, ENN can also remove some border examples, which
often are incorrectly classified as presented in Fig. 2(a). So again in contrast
to CNN as the decision border gets more complex more samples are removed
from the data, because they are treated as noisy samples what is visualized in
Fig. 2(c). So the ENN algorithm could be treated as a regularization term for
kNN classifier. Its behavior and properties with noise data are shown in Fig. 2(b),
where we can observe further decrease of compression level.

To summarize the editing methods, in perfect scenario when the decision
border is simple the compression is very high (almost no samples are rejected
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(a) Dataset without noise. Obtained compres-
sion=0.94

(b) Dataset with noise. Obtained compres-
sion=0.89

(c) Dataset with nonlinear decision border. Ob-
tained, compression=0.90

Fig. 2. Behavior of ENN algorithm on three simple two class datasets: simple linear
classification problem without noise, the same dataset but with 5% level of noise, and
on dataset with more complex (nonlinear) decision border. Solid line represent optimal
Bayesian decision border. Instances which remain after selection are marked in bold.

from the training set), but as the level of noise in the training data increases the
value of compression decreases, what result in smaller final dataset.

3 Experiments

In order to verify the relation between prediction accuracy and compression we
conducted empirical evaluations. All of the experiments were performed on 42
datasets obtained from Keel Project [6] repository, and most of them are also
available from UCI repository [1]. The properties of these datasets are provided
in the first four columns of Table 1, these are: name of the dataset, number of
attributes and its type (R-real, I - integer, N-nominal), number of examples
(in brackets is provided the number of examples with rejected examples con-
taining missing values), and number of classes. In the experiments we used only
examples without missing values.
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Table 1. Datasets used in the experiments and obtained results which are: accuracy
of kNN and compression obtained from CNN and ENN

id Name #Attributes

(R/I/N)

#Examples #Classes kNN accu-

racy

CNN com-

pression

ENN com-

pression

1 appendicitis 7 (7/0/0) 106 2 0.89 0.36 0.84

2 balance 4 (4/0/0) 625 3 0.90 0.34 0.80

3 banana 2 (2/0/0) 5300 2 0.90 0.23 0.88

4 bands 19 (13/6/0) 365 (539) 2 0.73 0.49 0.72

5 bupa 6 (1/5/0) 345 2 0.66 0.59 0.63

6 cleveland 13 (13/0/0) 297 (303) 5 0.59 0.62 0.56

7 glass 9 (9/0/0) 214 7 0.73 0.46 0.69

8 haberman 3 (0/3/0) 306 2 0.76 0.52 0.69

9 hayes-roth 4 (0/4/0) 160 3 0.72 0.46 0.61

10 heart 13 (1/12/0) 270 2 0.85 0.39 0.78

11 hepatitis 19 (2/17/0) 80 (155) 2 0.90 0.38 0.83

12 ionosphere 33 (32/1/0) 351 2 0.87 0.24 0.86

13 iris 4 (4/0/0) 150 3 0.97 0.15 0.95

14 led7digit 7 (7/0/0) 500 10 0.75 0.48 0.64

15 magic 10 (10/0/0) 19020 2 0.84 0.36 0.83

16 mammographic 5 (0/5/0) 830 (961) 2 0.81 0.44 0.77

17 marketing 13 (0/13/0) 6876 (8993) 9 0.33 0.81 0.29

18 monk-2 6 (0/6/0) 432 2 0.96 0.27 0.97

19 movement libras 90 (90/0/0) 360 15 0.86 0.36 0.81

20 newthyroid 5 (4/1/0) 215 3 0.97 0.10 0.94

21 optdigits 64 (0/64/0) 5620 10 0.99 0.07 0.99

22 page-blocks 10 (4/6/0) 5472 5 0.96 0.10 0.96

23 penbased 16 (0/16/0) 10992 10 0.99 0.04 0.99

24 phoneme 5 (5/0/0) 5404 2 0.90 0.23 0.89

25 pima 8 (8/0/0) 768 2 0.76 0.50 0.74

26 ring 20 (20/0/0) 7400 2 0.81 0.26 0.72

27 satimage 36 (0/36/0) 6435 7 0.91 0.19 0.91

28 segment 19 (19/0/0) 2310 7 0.97 0.11 0.96

29 sonar 60 (60/0/0) 208 2 0.86 0.30 0.83

30 spambase 57 (57/0/0) 4597 2 0.91 0.23 0.90

31 spectfheart 44 (0/44/0) 267 2 0.82 0.49 0.70

32 tae 5 (0/5/0) 151 3 0.61 0.60 0.50

33 texture 40 (40/0/0) 5500 11 0.99 0.07 0.99

34 thyroid 21 (6/15/0) 7200 3 0.94 0.19 0.94

35 titanic 3 (3/0/0) 2201 2 0.79 0.58 0.44

36 twonorm 20 (20/0/0) 7400 2 0.98 0.17 0.97

37 vehicle 18 (0/18/0) 846 4 0.73 0.49 0.71

38 vowel 13 (10/3/0) 990 11 0.99 0.21 0.98

39 wdbc 30 (30/0/0) 569 2 0.97 0.16 0.97

40 wine 13 (13/0/0) 178 3 0.98 0.17 0.97

41 wisconsin 9 (0/9/0) 683 (699) 2 0.98 0.10 0.97

42 yeast 8 (8/0/0) 1484 10 0.60 0.66 0.54
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Fig. 3. Processes used to evaluate and validate dataset assessment based on compres-
sion.

The experiments were executed in two independent stages presented in
Figs. 3(a) and (b). In the first one after loading the data each numerical attribute
was normalized in range [0, 1] then both instance selection algorithms were per-
formed and the compression for each of them was calculated. It is important to
note that the parameters of this stage (parameters of instance selection methods)
were not optimized and the default values were used (k = 3 for ENN and k = 1
for CNN). As in this experiment we did not train any prediction model we also
did not have to perform any cross-validation test. The second stage was dedicated
to estimate performance of pure kNN classifier without any instance selection. In
this process after loading the data, all numerical attributes were also normalized
as in the first step, and then in cross-validation the performance of kNN was esti-
mated for various values of k = [1, 3, 4, 5, 6, . . . , 15] (in all experiments Euclidean
distance was used). Finally only the highest accuracy was reported. The results
collected from both experiments are presented in last three columns of Table 1
and plotted in Figs. 4(a) and (b) where the x axis represents compression, and y
axis represents accuracy. On both figures we can observe almost linear relation
between accuracy and compression. To verify this we calculated Pearson linear
correlation coefficient (CC) which for CNN is CC(CNN, kNN) = −0.9304 and
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(a) CNN Compression vs kNN Accuracy
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(b) ENN Compression vs kNN accuracy

Fig. 4. Relation between compression of CNN and ENN instance selection algorithms
vs accuracy of optimized kNN. CNN and ENN were not optimized. Numbers represent
id of the dataset

respectively for ENN is CC(ENN, kNN) = 0.9439. In both cases |CC| suggests
very strong correlation between the two variables.
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4 Conclusions

We have analyzed the relation between compression and accuracy . We have
shown that in the case of both algorithms, CNN and ENN, this relation is linear
but with opposite sign. Low value of compression corresponds to high accu-
racy of kNN in the case of condensation methods. This means that the decision
border must be simple because many examples could be removed, moreover it
correlates with the level of noise. As the compression increases the accuracy pro-
portionally decreases, because there is higher level of noise and more complex
decision border. A completely inverse relation can be observed for editing meth-
ods where high compression corresponds to high accuracy , and as the level of
noise increases more examples are rejected from the set of prototypes, so the
compression drops.

This leads to the conclusion that the level of compression can be effectively
used for dataset assessment. It can be used to check if enough samples were
collected to perform accurate training or as replacement for so called learning
curve [14]. This issue is very important for problems where labeling data exam-
ples is very expensive. We even believe that by the analysis of rejected samples
it should be even possible to identify the subspace of the input space in which
we have to label new samples to improve the accuracy, but this topic is out of
the scope of this paper.

As the compression is linearly correlated with the accuracy, analysis of the
compression level can be also used for meta-learning as a landmark to estimate
the performance of the prediction model (at least for k-NN classifier and other
distance/similarity-based machine learning algorithms). Moreover, it does not
require any cross-validation, so it can be executed very efficiently, and much
faster than any prediction model.

Another interesting application of the phenomena of strong correlation
between accuracy and compression, is that the level of compression can be used as
evaluation stage for filters in feature selection [3,8]. So far this has been usually per-
formed using some statistical measures such as Mutual Information or Kullback–
Leibler divergence or other measures [13], but estimating these statistics on real
valued data is not easy and often require discretization as for example in [7].
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Abstract. Bagging ensembles proved to work better than boosting for
class imbalanced and noisy data. We compare performance and diver-
sity of the two best performing, in this setting, bagging ensembles:
Roughly Balanced Bagging (RBBag) and Neighbourhood Balanced Bag-
ging (NBBag). We show that NBBag makes correct prediction on a
higher than RBBag number of difficult to learn minority examples. Then
we detect a trade-off between correct recognition of difficult minority
examples and majority examples, which makes RBBag better in some
cases. We also introduce a simple but effective technique to select para-
meters for NBBag.

Keywords: Class imbalance · Ensembles · Roughly balanced bagging ·
Neighbourhood balanced bagging · Diversity · Parametrization

1 Introduction

One of the most important challenges for supervised machine learning is learn-
ing from imbalanced data [14]. The data is imbalanced when one of the classes
has small number of examples (minority class) in comparison to other classes in
the data set (majority classes). Such situation occurs in many important appli-
cations e.g. in fraud detection, medical problems, etc. Due to the importance
of the problem, many methods to counter class imbalance has been proposed.
Following [9] we divide them into two categories: data-level and algorithm-level
approaches. By data-level approaches we understand techniques which apply
data preprocessing methods, such as re-sampling, to improve classification of
imbalanced data without changing the learning algorithm. Typically, these tech-
niques focus on switching class distribution to a more balanced one. The other
group of approaches modifies existing algorithms to better model minority class
distribution. To this category we assign also specialized ensembles which are
usually modifications of bagging or boosting; see their review in [3].

Experiments [6,10] have shown that bagging ensembles work better than
extensions of boosting, especially on noisy data sets. Further studies [1,6] demon-
strated that Roughly Balanced Bagging (RBBag), which applies specific ran-
dom under-sampling to create bootstraps, achieves the best results on G-mean
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 552–562, 2016.
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and AUC measures among extensions of bagging. However, in the recent work
B�laszczyński and Stefanowski have proposed Neighbourhood Balanced Bagging
(NBBag), which modifies bootstrap sampling by weighting examples [2]. The
weight of an example depends from the class label and the number of examples
in the example neighbourhood which belong to the opposite class. The impact
of neighbourhood on weights is controlled by parameters: size of the neighbour-
hood and a scaling factor. It has been shown that NBBag achieves competitive
results on G-mean and better results on sensitivity measure than RBBag.

Besides results on G-mean or sensitivity metrics it is unknown how data diffi-
culty factors impact model learned by different specialized extensions of bagging
for class imbalance. Since NBBag proved to be better than RBBag on sensitiv-
ity measure, it is particularly interesting to analyze on which types of minority
examples it performs better then RBBag. Another important issue when com-
paring two ensembles is the diversity of theirs base classifiers. To the best of
our knowledge the diversity of NBBag was never investigated and experimental
studies measuring diversity in the context of the minority class are very limited.
Furthermore, the authors of NBBag noticed that the results of the classifier
significantly depend on the values of parameters [2], which need to be selected
after a careful analysis of results produced with different settings. Moreover, they
advocate that the best set-up should be elected for a particular data set.

To address these issues, in this paper we propose a method intended to auto-
matically parametrize Neighbourhood Balanced Bagging for imbalanced data
sets. We also experimentally study abilities of NBBag to deal with different
types of difficult distributions of the minority class and we compare this abilities
to its major competitor: RBBag. Additionally, we calculate diversity measure of
NBBag and compare the results to the reference algorithms.

2 Related Works

The data set is called imbalanced when one class has substantially less examples
then the others. Although the problem of class imbalance relates also to multi-
class classification in the majority of the research - and also in this paper - only
binary classification is considered. In this case we can define statistics which
measure the level of class imbalance: global imbalanced ratio IR = N−

N+
where

N− and N+ are the number of majority and minority examples, respectively.
Imbalanced data is causing many problems for standard classifiers. Never-

theless, it has been noticed that the global imbalance ratio is not the only or
even not the most important factor which makes learning difficult. Other data
difficulty factors such as class overlapping, small disjunct or lack of representa-
tiveness significantly deteriorate the quality of induced model even on exactly
balanced data. However, adding class imbalance to a data which suffers from
these difficulty factors creates a real challenge for machine learning algorithms.
It has been shown that in the imbalanced data the deterioration of learner’s
accuracy caused by other data difficulty factors affects in majority of cases only
the recognition of minority class, which usually is a class of particular interest.



554 J. B�laszczyński and M. Lango

In [11] a method for identification of data difficulty factors in real data sets
was proposed. The authors distinguish 4 types of examples (enumerated from
the easiest to the hardest): safe examples (lying in the region in the feature space
dominated by the same class), borderline examples (lying in the class overlapping
area), rare examples (a small group of examples in the region of the opposite
class) and outlier examples (lying in the area dominated by the opposite class).
This types can be identified by checking the distribution of the class labels among
k nearest neighbours of the example. For instance, with k = 5, if all examples in
the neighbourhood are from the opposite class then the example is considered
to be an outlier. If there is 4 opposite-class examples it is rare and if there are
more than 3 examples from the same class, the example is a safe one. Finally,
we assign borderline type to examples with the proportion of the same class
examples and the opposite class examples equal 2:3 or 3:2.

However, extensions of bagging for imbalanced data normally do not take
into account the types of examples and are just focused on construction of more
balanced bootstrap. There are two ways of achieving this goal: by under-sampling
majority class or by over-sampling minority class. For their review see e.g. [3].

Exactly Balanced Bagging (EBBag) [7] is the representative of the first group.
It copies all minority examples to each bootstrap and then, by random sam-
pling, it adds N+ majority examples to construct a fully balanced bootstrap.
Hido et al. [6] claimed that this sampling strategy does not reflect the true
bagging philosophy and they proposed Roughly Balanced Bagging (RBBag).
RBBag samples with replacement N+ examples of the minority class and then
the majority examples are sampled in the same way except that the number of
examples is taken from binomial distribution (p = 0.5, n = N+).

The most known over-sampling extension of bagging is OverBagging
(OverBag) [13]. It samples with replacement N− majority examples to each boot-
strap and then the same amount of minority examples is added. This results in
bootstraps having multiple copies of some minority examples.

The first bagging extension which uses knowledge of data difficulty factors
is Neighbourhood Balanced Bagging (NBBag) [2]. This algorithm has two vari-
ants: over-sampling (oNBBag) and under-sampling (uNBBag) both sharing the
same idea of modifying sapling probability distribution by assigning weights to
examples. NBBag focuses bootstrap sampling toward difficult minority examples.
Weight of minority example depends on the analysis of its k nearest neighbours.
Minority example is considered the more unsafe the more it has majority exam-
ples in its neighbourhood. Hence, the formula for minority example weight is

the following: w(x) = 0.5 ·
(

(N ′
−)ψ

k + 1
)

where N ′
− is the number of majority

examples among k nearest neighbours of the example and ψ is a scaling factor.
Setting ψ = 1 causes a linear amplification of example weight with an increase of
unsafeness and setting ψ to values greater then 1 effects in an exponential ampli-
fication. Each majority example is assigned a constant weight w(x) = 0.5 · N+

N−
.

As we mentioned before, both versions of NBBag use the same sampling
schema; however, they create bootstrap samples of a different size. uNBBag
samples n = 2N+ examples resulting in a sample which is smaller than the
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entire imbalanced data set. oNBBag creates a bootstrap sample consisting of
n = N+ + N− elements. Since weights of minority examples are greater then
weights of majority examples this results in over-sampling of minority examples.

3 Performance of Bagging Extensions

Most of the extensions of bagging presented in Sect. 2 are non-parametric. They
do not introduce any new parameters, which need to be adjusted during con-
struction of an ensemble of classifiers. On the one hand, one can argue that
bagging itself is a parametric method since the adequate size of the ensemble for
a given problem is not known a priori. The size of the ensemble is an important
parameter, which may influence the performance of each of the considered exten-
sions. On the other hand, fixing this parameter enables comparison of ensembles
of the same size, which should allow to distinguish ones which perform better
than the others under the same conditions.

Another type of parameters are introduced in Neighbourhood Balanced Bag-
ging (NBBag). These are two parameters that control the characteristics of
neighbourhood: size of neighbourhood k, and scaling factor ψ. In the experi-
ments comparing NBBag to other bagging extensions [2] these two parameters
were carefully selected to provide the best average performance. The selection
was made post-hoc, i.e., first results were obtained for a number of promising
pairs of parameter values and then the best values were chosen. One down-side
of this approach is additional computational cost. The second, more important,
one is the robustness of the recommendation. In general, a change in the list of
data sets used in experiment may lead to different recommended best values.

Selection of such a type of model parameters is a known problem in machine
learning [4]. However, to our best knowledge, this problem has not been yet
considered in the context of learning from imbalanced data. Data imbalance
may limit application of some more advanced parameter selection techniques. To
put it simply, minority class examples are to valuable to spare them for selection
purposes only, while majority class examples are not. Following this observation,
we investigate application of a basic technique taken from tree learning to this
end. In the same way as reduced-error pruning uses training data [12], we divide
training data set into two stratified samples. The first sample is used for training
NBBag models and the second one to validate the trained models. After the best
parameters are selected, NBBag classifier is constructed on the whole training
set. Contrary to what was presented in [2], this technique, when construction of
a classifier is repeated, as e.g., in cross-validation, does not allow to distinguish
best values of parameters for all data sets nor even for one data set. Selection of
parameters is performed independently for each constructed classifier.

In the following we present performance of two variants of Neighbourhood
Balanced Bagging: under-sampling (uNBBag) and over-sampling (oNBBag) with
selection of k and ψ. We consider a limited set of possible values of parameters.
In case of k it is: 3, 5, 7, 11. For ψ, it is: 0.25, 0.5, 1, 1.25, 1.5, 1.75, 2, 4. During
selection of best parameter phase 1/3 of the training set is used for validation.
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The Performance of uNBBag and oNBBag is compared to Exactly Balanced
Bagging (EBBag), Over-Bagging (OverBag), and the main competitor: Roughly
Balanced Bagging (RBBag). The size of ensembles is fixed to 50 components.

Table 1. Data characteristics

data set # examples # attributes minority class IR

breast-w 699 9 malignant 1.90

abdominal-pain 723 13 positive 2.58

acl 140 6 1 2.5

new-thyroid 215 5 2 5.14

vehicle 846 18 van 3.25

car 1728 6 good 24.04

scrotal-pain 201 13 positive 2.41

ionosphere 351 34 b 1.79

pima 768 8 1 1.87

credit-g 1000 20 bad 2.33

ecoli 336 7 imU 8.60

hepatitis 155 19 1 3.84

haberman 306 4 2 2.78

breast-cancer 286 9 recurrence-events 2.36

cmc 1473 9 2 3.42

cleveland 303 13 3 7.66

hsv 122 11 4.0 7.71

abalone 4177 8 0-4 16-29 11.47

postoperative 90 8 S 2.75

solar-flare 1066 12 F 23.79

transfusion 748 4 1 3.20

yeast 1484 8 ME2 28.10

balance-scale 625 4 B 11.76

The performance of bagging ensembles is measured using: sensitivity of the
minority class (the minority class accuracy), its specificity (an accuracy of recog-
nizing majority classes), their aggregation to the geometric mean (G-mean).
For their definitions see, e.g., [5]. These measures are estimated by a stratified
10-fold cross-validation repeated ten times to reduce the variance. The differ-
ences between classifiers average results are also analyzed using Friedman and
Wilcoxon statistical tests.

The results of G-mean and sensitivity are presented in Tables 2 and 3, respec-
tively. The last row of these tables contains average ranks calculated as in the
Friedman test – the lower average rank, the better classifier. Note that, the list
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Table 2. G-mean [%] of NBBag and other compared bagging ensembles

data set EBBag OverBag uNBBag oNBBag RBBag

breast-w 96.245 96.003 96.472 96.113 96.435

abdominal-pain 79.330 79.398 81.292 80.249 80.099

acl 85.576 80.866 84.359 81.927 85.310

new-thyroid 96.515 96.497 95.867 96.634 96.308

vehicle 95.038 94.934 95.440 95.115 95.417

car 96.668 96.959 96.356 96.851 96.568

scrotal-pain 73.679 74.038 72.923 71.997 75.618

ionosphere 90.540 90.559 90.874 90.568 91.002

pima 74.849 74.358 74.852 74.068 75.626

credit-g 65.737 65.513 67.450 66.628 67.963

ecoli 88.178 83.896 88.435 85.380 88.430

hepatitis 79.137 75.816 78.035 74.762 79.457

haberman 64.144 63.329 63.742 61.779 63.533

breast-cancer 58.175 60.718 58.465 58.795 60.091

cmc 64.191 61.036 65.051 63.787 65.350

cleveland 73.628 51.629 73.260 66.754 71.130

hsv 44.080 20.501 40.957 40.155 37.494

abalone 78.845 69.230 79.517 78.706 79.035

postoperative 35.569 32.657 39.877 39.142 34.847

solar-flare 83.710 64.649 83.149 79.994 83.421

transfusion 66.607 67.748 66.449 66.476 67.143

yeast 84.018 63.167 84.475 79.557 85.016

balance-scale 2.832 23.411 43.285 59.893 54.182

average rank 2.913 4 2.478 3.435 2.174

of data sets in this comparison is the same as in [2]. Data sets in the analyzed
tables are ordered from the safest one to the most unsafe one. Characteristics
of these data sets are given in Table 1. Looking at both Tables 2 and 3, we can
make an outright observation that uNBBag and RBBag stand out as the best
performing classifiers. Another observation is that over-sampling extensions of
bagging, represented by OverBag and oNBBag, provide worse performance that
under-sampling extensions (the rest of classifiers). Detailed comparison on G-
mean gives the best average rank to RBBag, however the difference between its
rank and ranks of all other classifiers except OverBag is not significant. Fried-
man test on values of G-mean results in p-value around 0.0002, and according
to Nemenyi post-hoc test, critical difference between ranks is around 1.272. An
analogous observation is valid only for NBBag and all other classifiers except
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Table 3. Sensitivity [%] of NBBag and other compared bagging ensembles

data set EBBag OverBag uNBBag oNBBag RBBag

breast-w 96.929 95.851 97.386 96.888 96.846

abdominal-pain 82.178 75.842 84.158 80.050 79.010

acl 87 74.250 87.250 82.500 84.750

new-thyroid 95.714 95.143 95.143 96 95.143

vehicle 97.236 94.523 97.286 95.477 96.935

car 100 95.652 100 95.942 100

scrotal-pain 76.271 70.169 76.441 73.051 75.763

ionosphere 86.032 85.159 87.778 86.984 85.714

pima 80.672 74.925 81.194 79.813 78.396

credit-g 72.933 60.233 73.400 69.867 68.500

ecoli 92 76 92 84 90.571

hepatitis 83.438 67.188 79.062 69.688 77.500

haberman 56.914 59.136 63.827 66.543 55.802

breast-cancer 63.412 54 65.176 59.059 58.471

cmc 70.240 50.721 68.739 63.423 64.685

cleveland 80.286 30.571 79.143 63.429 69.143

hsv 45 7.143 40 35.714 26.429

abalone 80.925 51.224 80.776 75.851 77.045

postoperative 31.250 17.917 44.167 37.917 23.750

solar-flare 88.140 46.977 86.744 81.395 85.581

transfusion 66.517 61.236 72.697 67.753 65.674

yeast 91.765 40.980 90.392 73.529 88.431

balance-scale 99.388 7.347 94.898 79.796 66.327

average rank 1.848 4.870 1.587 3.174 3.522

OverBag. Direct comparison of RBBag and NBBag in Wilcoxon test does not
show a significant difference in G-mean (p-value in this test is around 0.247).

When we move to the observed values of sensitivity in Table 3, we can notice
considerably better average performance of uNBBag and EBBag than the rest
of classifiers. This observation is supported by results of Friedman test (with
p-value close to 0) and Nemenyi post-hoc analysis. Wilcoxon tests shows the
same result in pairs of classifiers. uNBBag achieves the best average rank in this
experiment. Nevertheless, direct comparison of uNBBag and EBBag in Wilcoxon
test does not confirm a significant difference in sensitivity (p-value 0.677).

Experimental comparison of performance of bagging extensions leads to con-
clusions, which are concordant with the ones presented in [2]. RBBag and uNBBag
are distinguished as two standing out alternatives. It should be noted that the
results presented here are not entirely comparable with these from [2], since the
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set of compared classifiers has changed. We included EBBag, which proved to be
a valuable extension. Another aspect of the presented comparison is the influence
of parameter selection on the results. Application of a relatively simple selection
technique allowed us to obtain quite satisfying results. The average performance of
NBBag has not been observably improved but variability of results for unsafe data
sets has decreased (e.g., balance-scale). We expect that a technique adapted for
imbalanced data should allow to obtain even better results.

4 Measuring Diversity of Ensembles

One of the most important characteristic of an ensemble is diversity of its com-
ponent classifiers. To put it simple, if all components make the same decision
regarding example’s classes, the construction of an ensemble is pointless. In [8]
authors compare many diversity measures and recommend use of Q-statistics
basing on ease of its interpretation. Q-statistics is defined for a pair of com-
ponents as Q = n11n00−n01n10

n11n00+n01n10
where n11 is the number of examples on which

both classifiers make correct decision, n01 and n10 are the numbers of examples
on which one classifier is wrong and the other makes a correct decision, n00 is
the number of examples on which both classifiers make incorrect decisions. This
formula is calculated for each pair of components and then its averaged for the
whole ensemble. Q = 0 means independence of component classifiers, positive Q
means that classifiers tend to recognize the same elements correctly and negative
values signify that components tend to make errors on different examples.

We calculate Q-statistic for NBBag and RBBag on all data sets from previous
experiment. Due to space limits, we do not present all the results. We only briefly
summarize this analysis. The most diversified classifier according to both median
and average of Q-statistic is uNBBag (Median(Q) = 0.61). RBBag have a bit
less diversified components (Median(Q) = 0.67) and oNBBag has the highest
averaged results on Q-statistic (Median(Q) = 0.71). The biggest differences
between algorithms is visible on haberman and on balance-scale. On these
data sets the most diversified classifier has also the highest result on G-mean
measure. On other data sets these two factors are not always related.

Further investigation of Q-statistic only for minority examples (Qmin) shows
that all analyzed algorithms are more diversified on minority class. On some
data sets classifiers achieve even negative values of Qmin. Likewise the differences
between classifiers are a little higher. The ranking of most diversified classifiers
remain the same as for over-all Q-statistic: uNBBag (Median(Qmin) = 0.40),
RBBag (Median(Qmin) = 0.47) and oNBBag (Median(Qmin) = 0.51).

Another way of investigating diversity is analysis of votes of each component
during classification of a particular example. Here, we use a margin measure
defined as follows: margin = ncorr−nincorr

ncorr+nincorr
, where ncorr and nincorr is the num-

ber of components which vote for correct and incorrect class, respectively. The
margin value equal 1 means completely certain and correct decision, margin −1
means completely certain but incorrect decision. Margin close to 0 indicates
uncertainty in making final decision (the number of classifiers voting for the
correct class is close to the number of classifiers voting for the opposite class).
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We analyze the values of margin calculated for examples with respect to their
types. Additionally, we compare margins for examples on which RBBag and
uNBBag make different decisions. In Fig. 1 we present histograms of decision
margin for minority class on a representative data set (abalone). In the first
row of the plot one can see decision margins of all examples of a particular type
(white bars) achieved by RBBag. Red bars of the histogram indicate margins
for examples which are classified incorrectly by RBBag but they are correctly
classified by uNBBag. Analogically, green bars demonstrate margin for instances
which were classified correctly only by RBBag. The second row of the plot is
constructed in the same way but for uNBBag.

Fig. 1. Histogram of RBBag (top) and uNBBag (down) margins for abalone minority
examples with respect to their types.

The first impression is that both classifiers work quite similar. Differences are
more significant on difficult examples. uNBBag and RBBag do not have problems
with correct classification of safe minority examples. Almost all of them are
classified with maximal margin. However, with increase of difficulty of examples,
both classifiers makes more errors and their confidence goes down. Particularly,
a lot of outlier examples are classified incorrectly with high confidence.

Compared algorithms make different final predictions only on more difficult
examples and it is clear that uNBBag makes correct decisions on a higher number
of minority examples. Unfortunately, there seems to be some kind of trade-off
between correct recognition of more difficult minority and majority examples:
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this classifier makes more incorrect decisions on majority examples than RBBag.
This is the reason why RBBag is sometimes better than uNBBag on G-mean
measure. Furthermore, it is worth to notice that when uNBBag makes correct
prediction on a minority example and RBBag makes an incorrect one, it is with
a rather low confidence. It is quite unlikely to find an example correctly classified
by uNBBag and classified incorrectly by RBBag with margin less then −0.5.

5 Conclusions

In this work, we have experimentally compared a number of promising bagging
extensions designed to handle class imbalance problem. The best performing
extensions in this comparison are: Roughly Balanced Bagging (RBBag) and
Neighbourhood Balanced Bagging (NBBag). We have introduced a simple tech-
nique for automatic selection of parameters for NBBag during learning from
imbalanced data. This technique proved to work well. Nevertheless, we believe
that another technique better adapted for the type of learning should allow
to obtain even better results. Comparative study of diversity of RBBag and
NBBag have shown that NBBag is able to make correct prediction on a higher
than RBBag number of difficult to learn minority examples. There is, however, a
trade-off between correct recognition of difficult minority examples and majority
examples, which allows RBBag to perform better in some cases.

Acknowledgement. The research was supported by NCN grant DEC-2013/11/B/
ST6/00963.
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Abstract. In the classification task, the ensemble selection methods
reduce the available pool of the base classifiers. The dynamic ensemble
selection methods allow to find the subset of base classifiers for each
test sample separately. In finding the best subset of base classifiers many
methods used the so-called competence region determined for the valida-
tion data set. In this paper, we propose the dynamic ensemble selection in
which the validation data set is not necessary and the competence region
for the test sample is not determined. Generally, the described method
uses only the decision profiles in the selection process. The experiment
results based on ten data sets show that the proposed dynamic ensemble
selection is a promising method for the development of multiple classifiers
systems.

Keywords: Ensemble selection · Multiple classifier system · Binary
classification task

1 Introduction

For several years, in the field of supervised learning a number of base classifiers
have been used in order to solve one classification task. The use of the multi-
ple base classifier for a decision problem is known as an ensemble of classifiers
(EoC) or as multiple classifiers systems (MCSs) [6,12,16]. The building of MCSs
consists of three phases: generation, selection and integration [3]. For example,
in the third phase the simple majority voting scheme [19] is most popular. Gen-
erally, the final decision which is made in the third phase uses the prediction
of the base classifiers and it is popular for its ability to fuse together multiple
classification outputs for the better accuracy of classification. If the outputs of
all base classifiers are used in the third phase then this method is called the
classifier fusion.

The second phase of building MCSs is one of the important problems in the
creation of these recognition systems [14,20]. This phase is related to the choice
of a set of classifiers from the whole available pool of base classifiers. Formally,
if we choose one classifier then it is called the classifier selection. But if we
c© Springer International Publishing Switzerland 2016
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choose a subset of base classifiers from the pool then it is called the ensemble
selection or ensemble pruning. Generally, in the ensemble selection, there are two
approaches: the static ensemble selection and the dynamic ensemble selection [3].
In the static classifier selection one set of classifiers is selected to create EoC.
This EoC is used in the classification of all the objects from the testing set. The
main problem in this case is to find a pertinent objective function for selecting
the classifiers. In the dynamic classifier selection, also called instance-based, for
each unknown sample a specific subset of classifiers is selected [5]. It means
that we are selecting different EoCs for different objects from the testing set. In
this type of the classifier selection, the classifier is chosen and assigned to the
sample based on different features [22] or different decision regions [8,15]. The
existing methods of the ensemble selection use the validation data set to create
the so-called competence region or level of competence. These competencies can
be computed by K nearest neighbours from the validation data set.

In this work we will consider the dynamic ensemble selection. The proposed
algorithms of the ensemble selection use decision profiles. The paper proposes
new conditions for the dynamic ensemble selection that were not presented in
our earlier works [1,2]. A common part of the previous studies is the use of
decision profiles. In our approaches the validation data set is not used and the
competence region for the test sample is not determined.

The remainder of this paper is organized as follows. Section 2 presents the
concept of the ensemble of classifiers. Section 3 contains the new method for the
dynamic ensemble selection. The experimental evaluation is presented in Sect. 4.
The discussion and conclusions from the experiments are presented in Sect. 5.

2 Ensemble of Classifiers

Let us consider the binary classification task. It means that we have two class
labels Ω = {0, 1}. Each pattern is characterized by the feature vector x. The
recognition algorithm Ψ maps the feature space x to the set of class labels Ω
according to the general formula:

Ψ(x) ∈ Ω. (1)

Let us assume that k ∈ {1, 2, ...,K} different classifiers Ψ1, Ψ2, . . . , ΨK are
available to solve the classification task. In MCSs these classifiers are called base
classifiers. In the binary classification task K is assumed to be an odd number.
As a result, of all the classifiers’ actions, their K responses are obtained. The
output information from all K component classifiers is applied to make the
ultimate decision of MCSs. This decision is made based on the predictions of all
the base classifiers.

One of the possible methods for integrating the output of the base classifier
is the sum rule. In this method the score of MCSs is based on the application of
the following sums:

sω(x) =
K∑

k=1

pk(ω|x), ω ∈ Ω, (2)
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where pk(ω|x) is an estimate of the discrimination function (DF) (most often an
estimate of the posteriori probability) for class label ω returned by classifier k.

The final decision of MCSs is made following the maximum rule:

ΨS(x) = arg max
ω

sω(x). (3)

In the presented method (3) the discrimination functions obtained from the
individual classifiers take an equal part in building MCSs. This is the simplest
situation in which we do not need additional information on the testing process
of the base classifiers except for the models of these classifiers. One of the possible
methods in which weights of the base classifier are used is presented in [4].

3 Dynamic Ensemble Selection Algorithm

The proposed algorithm of the ensemble selection uses the decision profiles
(DPs) [17]. DP is a matrix containing DFs for each base classifier. In the binary
classification task it is as follows:

DP (x) =

⎡

⎢⎣
p1(0|x) p1(1|x)

...
...

pK(0|x) pK(1|x)

⎤

⎥⎦ . (4)

In the first step of the algorithm we change values of DFs which relate to
the misclassification on the training set. This set contains N labeled examples
{(x1, ω1), ..., (xN , ωN )}, where ωi is true class label of the object described by
feature vector xi. DFs are changed as follows:

p′
k(ω|x) =

{
pk(ω|x), if I(Ψ(x), ω) = 1

0, if I(Ψ(x), ω) = 0. (5)

where I(Ψ(x), ω) is an indicator function having the value 1 in the case of the cor-
rect classification of the object described by feature vector x, i.e. when Ψ(x) = ω.

In the next step our algorithm, the decision scheme (DS) is calculated accord-
ing to the formula:

DS =

⎡

⎢⎣
ds10 ds11

...
...

dsK0 dsK1

⎤

⎥⎦ , (6)

where

dskω = dskω + β

√∑N
n=1(p

′
k(ωn|xn) − dskω)2

N − 1
(7)

and

dskω =
∑N

n=1 p′
k(ωn|xn)
N

. (8)
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The parameter β in our algorithm determines how we compute DS elements. For
example, if β = 0, then dskω is the average of appropriate DFs received after
the condition (5).

For the new object being recognized x̂, the outputs of the base classifiers
create D̂P . In the receipt of the D̂P from the outputs of the base classifiers we
propose the process of normalization, which depends on the upper p and lower
p limit of D̂F . We propose the following condition:

if p̂max
ω < p and p̂min

ω > p then do normalization (9)

to execute the normalization, where p̂max
ω = maxk p̂k(ω|x), p̂min

ω = mink p̂k(ω|x),
k ∈ 1, ..,K. The normalization is executed taking into account p̂min

ω of the
opposed class label, i.e.:

p̂′
k(0|x̂) =

p̂k(0|x̂) − p̂min
1

p̂max
0 − p̂min

0

(10)

and

p̂′
k(1|x̂) =

p̂k(1|x̂) − p̂min
0

p̂max
1 − p̂min

1

. (11)

for the binary classification with class labels {0, 1}. In the selection phase DS
obtained from the learning set (6) is used as follows:

if p̂′
k(ω|x̂) < dskω then p̂k(ω|x̂) = 0, k = 1, ...,K, ω = 0, 1. (12)

The obtained decision profile using the formula (12) is applied to make the
final decision of the classifiers ensemble. In the experiments the algorithm using
the proposed above method is denoted as Ψβ

DS−N . Additionally, we use the sum
method to make the final decision of the selected classifiers ensemble.

4 Experimental Studies

In the experiential research 10 benchmark data sets were used. Nine of them
come from the UCI repository [10] and one is randomly generated - this is the
so called Higleyman sets. The details of the data sets are included in Table 1.
In the experiment 9 base classifiers were used. Two of them work according
to k − NN rule, next two base classifiers use the Support Vector Machines
models. The following two base classifiers use the Neutral Network model and
the last three base classifiers use the decision trees algorithms, with the various
number of branches and the splitting rule. This means that in the experiment
we use an ensemble of the heterogonous base classifiers. In our experiments
we did not include the impact of the feature selection process on the quality of
classifications. Therefore, the feature selection process [13,18] was not performed.
The limitations were established on p = 0.75 and p = 0.25.

Table 2 shows the results of the classification for the proposed ensemble selec-
tion method ΨDS−N . We present the classification error and the mean ranks
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Table 1. Description of data sets selected for the experiments

Data set example attribute ration (0/1)

Breast Cancer Wisconsin 699 10 1.9

Haberman’s Survival 306 3 0.4

Highleyman 400 2 1.0

Ionosphere 351 34 1.8

Indian Liver Patient 583 10 0.4

Mammographic Mass 961 6 1.2

Parkinson 197 23 0.3

Pima Indians Diabetes 768 8 1.9

Sonar 208 60 0.87

Statlog 270 13 1.25

Table 2. Classification error and mean rank positions for the proposed selection algo-
rithm produced by the Friedman test

Data set Ψ−2
DS−N Ψ−1.5

DS−N Ψ−1
DS−N Ψ−0.5

DS−N Ψ0
DS−N Ψ0.5

DS−N Ψ1
DS−N

Cancer 0.042 0.039 0.038 0.038 0.036 0.567 0.683

Haber 0.307 0.293 0.280 0.283 0.277 0.323 0.683

Hig 0.055 0.055 0.055 0.060 0.060 0.245 0.403

Ion 0.071 0.071 0.060 0.069 0.080 0.260 0.589

Liver 0.310 0.309 0.322 0.343 0.355 0.374 0.490

Mam 0.193 0.195 0.191 0.190 0.192 0.214 0.523

Park 0.089 0.084 0.089 0.079 0.095 0.153 0.305

Pima 0.237 0.245 0.243 0.259 0.250 0.261 0.576

Sonar 0.180 0.175 0.175 0.165 0.175 0.260 0.535

Statlog 0.178 0.170 0.167 0.174 0.174 0.189 0.267

Mean Rank 4.40 5.05 5.80 5.25 4.50 2 1

obtained by the Friedman test. The presented results are obtained via the 10-
fold-cross-validation method. The results in Table 2 demonstrate clearly that the
selection the value of the parameter β is important in the proposed ensemble
selection method. The performed experiments indicate that the proper value
is −1 (the greatest value of the mean rank). Therefore, the algorithm Ψ−1

DS was
selected for the comparison with other classifiers, i.e. with the base classifiers
and the algorithm without the selection used sum method (3).

The classification error with the mean ranks obtained by the Friedman test
for these classification methods are presented in Table 3. For the final compar-
ison of results the post-hoc test was used [21]. This test is useful for pairwise
comparisons of the considered methods. The critical difference (CD) for this
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Table 3. Classification error and mean rank positions for the base classifiers (Ψ1, ..., Ψ9),
algorithm ΨS without the selection used sum method (3) and the proposed algorithm
Ψ−1

DS−N produced by the Friedman test

Data set Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 ΨS Ψ−1
DS−N

Cancer 0.049 0.043 0.026 0.138 0.048 0.052 0.062 0.065 0.059 0.041 0.038

Haber 0.290 0.303 0.327 0.360 0.287 0.297 0.300 0.337 0.297 0.310 0.280

Hig 0.063 0.068 0.168 0.210 0.045 0.048 0.073 0.068 0.070 0.058 0.055

Ion 0.149 0.146 0.234 0.577 0.100 0.103 0.089 0.140 0.106 0.080 0.060

Liver 0.312 0.309 0.271 0.728 0.305 0.302 0.312 0.381 0.357 0.314 0.322

Mam 0.217 0.229 0.225 0.263 0.193 0.196 0.196 0.207 0.200 0.193 0.191

Park 0.142 0.189 0.089 0.553 0.132 0.121 0.089 0.158 0.105 0.079 0.089

Pima 0.279 0.270 0.295 0.366 0.253 0.254 0.261 0.283 0.262 0.236 0.243

Sonar 0.215 0.285 0.220 0.505 0.190 0.190 0.315 0.270 0.295 0.180 0.175

Statlog 0.315 0.311 0.196 0.270 0.196 0.207 0.163 0.319 0.237 0.174 0.167

Mean Rank 5.25 4.65 5.65 1.30 8.45 7.55 6.40 3.35 5.15 8.65 9.60

test at p = 0.05, p = 0.1, is equal to CD = 4.77 and CD = 4.41 respectively.
We can conclude that the post-hoc Nemenyi test detects significant differences
between the proposed algorithm Ψ−1

DS−N and the three base classifiers Ψ2, Ψ4 and
Ψ8 at p = 0.05. The ensemble classifier with the sum method ΨS is, however,
better than the two base classifiers Ψ4 and Ψ8. At p = 0.1 post-hoc Nemenyi
test detects significant differences between 4 base classifiers and the proposed
algorithm Ψ−1

DS−N . This observation confirms that the proposed in the paper
dynamic ensemble selection algorithm can improve the quality of classification
compared to the method without the selection.

5 Conclusion

In this paper we have proposed the dynamic ensemble selection methods with
using information from decision profiles. The main difference between the pro-
posed in the work algorithm and the existing methods of the dynamic selection
is the fact, that the proposed method do not use a validation data set. This set is
often used in the dynamic ensemble selection to determine the so-called compe-
tence region. In the proposed approach the competence region is not used. The
paper proposes new conditions for the dynamic ensemble selection that were not
presented in our earlier works [1,2].

The experiments have been carried out on ten benchmark data sets. The aim
of the experiments was to compare the proposed dynamic ensemble selection
algorithm with nine base classifiers and the ensemble classifiers based on the
sum methods. The results demonstrated the correct selection of the parameter
β value that is used in the proposed methods. Additionally, the obtained results
show an improvement in the quality of the classification with respect to the
ensemble method without selection.
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Future work might involve the application of the proposed methods for var-
ious practical tasks [7,9,11] in which base classifiers are used. Additionally, the
advantage of the proposed algorithm, its ability to work in the parallel and
distributed environment.
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Abstract. Tone has remained an interesting puzzle to the development
of language resources for African languages, mainly because its appear-
ance (within a word) is not segmentally fixed. In this contribution, we
begin by proposing a tone marking framework that intelligently tags
an input corpus using a close-copy synthesis of tone-tags generated by a
Hidden Markov Model (HMM) syllabifier. Next, we investigate the recog-
nition of tone patterns by building a generic architecture that will serve
diverse languages. The proposed architecture is a multi-layer feedforward
neural network implementing the Levenberg-Marquardt backpropagation
algorithm. The network consists of, (i) seventeen inputs describing the
tone patterns of Ibibio (ISO 693-3: nic; Ethnologue: IBB), with train-
ing data captured from an input corpus of 16,905 phrases; (ii) a target
class that learns tone recognition from a combination of the input tone
patterns and boundary tone – an important feature used for intonation
analysis. Results obtained showed that our tone marking model perfectly
tagged the input corpus, except for phonemes with more than one dia-
critic marks. Concerning the recognition of tone patterns, we deduced
from a confusion matrix that 93.1 % of the tone patterns were correctly
classified, while the remaining 6.9 % of the patterns were misclassified.
A greater chunk of the misclassified cases came from non-boundary tone
information, which presence inhibits speech quality. The ROC curve also
showed good classification of the training, testing and validation datasets.
A future direction of this paper is the introduction of an unsupervised
solution and additional tone-bearing information such as syllables and
vowels, to improve the learning system; and a comparison of our app-
roach with other methods.

Keywords: Data-driven approach · HMM · Pattern classification ·
Tone modeling · Speech recognition

1 Introduction

Tone represents one of the most essential features in African languages. Its
role ranges from simple pitch/accent type emphasis to elaborate patterns with
c© Springer International Publishing Switzerland 2016
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grammatical meanings. The prediction of this language-dependent feature there-
fore requires detailed understanding of tone generation patterns. A specific char-
acteristic of tones is that they are non-segmental features, which implies that
tones cannot be marked into a lexicon in the way they appear in surface real-
izations. Despite the central significance of tones, they are not often marked in
writing. Although, writing systems do not indicate in any way the behavior of
tones in various words, they may not pose difficulties in comprehension. Experi-
mental studies have shown that the absence of tone marks does not significantly
affect comprehension, but their presence in text(s) may decrease readability [1].
Even though there is no uniformity in tone marking, its complete absence in
any text is even more problematic, and a generic guideline on tone marking
is indeed necessary. But the absence of such guideline(s) is not computation-
ally fatal, except when building computational resources that implement tone
rates. To non-speakers, the absence of tone marks in texts may be considered as
an instance of defective writing, yet most writing systems of tone languages in
Africa do not of necessity mark tone. This neglect introduces ambiguity at the
contextual level, which can be resolved using a pronunciation dictionary. Never-
theless, the task of correctly inserting tone marks remains a major challenge to
language resource development, as tones are not segmentally fixed within a word.
To ensure an intelligent tone marking system, knowledge of lexical and structural
(or grammatical) ambiguities resolution is important. Also, because neighboring
words certainly influence tone realization patterns, the implementation appears
inflexible, and requires some form of learning to understand these patterns. In
this paper, we identify the data sources relevant for the research. Data were
collected from the Ibibio speaking community. Ibibio is a tone language widely
spoken by roughly four million (4,000,000) speakers in the south-eastern coastal
region of Nigeria, West Africa. The tone system of Ibibio has been classified as
a classical terrace tone system [2]; a type of phonetic downdrift, where the high
or mid tones (but not the low tone), shift downward in pitch (downstep) after
certain other tones. The data used for this research were obtained from exist-
ing Ibibio resources [3]. These resources include: (i) a trained Hidden Markov
Text-to-Speech Synthesis (HTS) corpus; and (ii) a syllabified corpus. The input,
output and processing designs are also given in this paper. The input design spec-
ifies the lexicon and corpus formats with appropriate pattern specifications that
ensures accurate inference regarding the lexical and structural nature of input
words. The specification format is generic and modifiable accross other language
structures. The essence of this inference is to guarantee as much as possible,
an efficient resolution of lexical and structural ambiguities. Hence, a constraint
grammar rule for sentence disambiguation is necessary before processing the
inputs.
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2 Tone Marking

Until recently, tones were generally not marked in the sub-Saharan African Lan-
guages, even though a vast majority of these Languages are tonal [4]. In such
languages, the pitch on an individual syllable may be contrastive distinguish-
ing lexical items and grammatical categories such as verb tense. Designers of
orthographies were often ignorant about tone and imported many assumptions
from the orthographic traditions of European languages [5]. Transporting phone-
mic contrasts of a colonial language into indigenous languages has led to the over-
representation or under-representation of the contrasts, and therefore suggests
that the omission of tonal marks from the orthography of many tone languages
constitute a barrier to fluent reading. African tone Languages are often writ-
ten using the IPA-based (Africa) script, which provides diacritic symbols such
as an accent for high tone (H) and grave accent for low tone (L). Most of the
existing research works on experimenting with orthography include those for
languages with established orthography aimed at discovering more about the
reading process [6,7]. In the present context, the intention is to discover what
kind of tone marking for a given language would best support efficient reading,
writing and comprehension.

2.1 Methods of Tone Marking

The two principal schemes for marking tone involve the use of accent diacritics
and numbers. The first scheme is mostly employed for representing African cor-
pus. In this method, a high tone vowel is marked with an acute accent ( ´ ); a
low-toned vowel with a grave accent (`), and a mid toned vowel with a macron
(¯) or with a vertical stroke ( | ), or without tone marking. In the second scheme,
a number between 1 and 5 is used to mark the tone level, either with the lowest
or highest tone, marked as ‘1’. In both cases, the tone number(s) may be indi-
cated with a superscript (e.g., a2ba2si2 ‘God’). Also, rising and falling tones may
combine any of these numbers, thus a falling tone for the phoneme (â), may be
marked as, a5−3, or a3−5.

2.2 Minimizing Tone Marking

The most widespread practice has been to omit one of the tone symbols such that a
certain tone is simply represented by the symbol of any mark. In some African lan-
guages, a low tone is represented by the absence of any tone mark and the symbol
omitted could represent the most dominating tone, where the frequency may be
determined by a wordlist reference. Although statistics from a large corpus of text
would suffice, no such corpus of text exists in the language for selecting a realistic
option. A second approach employs a rather ad-hoc way of choosing which tone to
omit. The tone(s) to be written are those which change the least. For instance, if
a high tone is down-stepped to become a mid or floating low tone, it is better to
use low tone because it remains the most stable. This approach requires the deter-
mination of which members of the tonal inventory manifest the least contextual
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variation. Should a low tone undergo few changes than a high tone, then the low
tone is marked instead of the high tone. Marking only the stable tones represents
an interesting compromise between the ideal of writing tone phonemically. A third
approach is to mark the tone of a syllable only when it varies from the tone of the
immediately preceding syllable [8].

2.3 Grammatical Tone Marking

In grammatical tone marking, tone melodies are responsible for conveying gram-
matical information such as verb tense [9]. This concept raises fresh concerns in
orthography design. Naturally, grammatical tone is phonemically marked, but
this implies that readers must learn to associate complex constellation of tone
marks with the grammatical meaning. However the real task lies on reducing
the language (not just the phonology) to writing. This broader perspective of
putting the language into writing, enables the direct use of morphological or
grammatical information [9].

3 System Framework and Methodology

3.1 Automatic Accent Insertion

The automatic accent insertion problem can be informally formulated as follows:
Given an unaccented text sequence of words (w1w2w3 . . . wn ), where wi corre-
sponds to any number of valid words (accented or not), wi1 . . . wim. The task is
to disambiguate each word, i.e., select the correct words, wiki

, at every position
in the text in order to generate a proper sequence of accented text. In [10], it
has been discovered that approximately 85 % of the words in some languages
text carry no accent at all, and a greater part of the remaining words can be
deduced deterministically on the bases of the unaccented form, and with the use
of an exhaustive dictionary, accents can be restored to an unaccented text with a
success rate of about 95 %. The remaining challenge at this point mostly revolve
around ambiguous unaccented words (words to which more than one valid forms
are similar, whether accented or not). Obviously, for many such ambiguities, a
simple solution is to systematically select the most frequent alternative from a
sequence of hypotheses (wi1 . . . wim). The goal can be reformulated as finding
a sequence of hypotheses (w1k1w2k2 . . . wnkn

) that maximizes the overall likeli-
hood of the output sequence. The stochastic model implemented in this paper for
word disambiguation implements the hidden Markov modeling principle, within
which a text is viewed as the result of two distinct stochastic processes. First is
to generate a sequence of abstract symbols; and second, to resolve ambiguous
sequence using a language model (LM). In our case, these symbols correspond
to the morpho-syntactic tags of a language. To illustrate our HMM approach to
automatic accent insertion, a similar description in [11] was adopted. Their algo-
rithm proceeds in two steps: hypothesis generation, which is based on a list of
valid words, and candidate selection, and relies on HMMs. The main difference
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between their method and ours is on how the HMM is used to score competing
hypotheses. Candidate selection proceeds by selecting a specific pair (wij , tij) at
each position. The goal then, is to find the sequence of word/tag pairs whose
probability is optimum according to the model,

Pi =
n∏

j=1

P (wiji |tiji)P (tiji |ti−1ji−1
, ti−2ji−2

) (1)

In order to avoid combinatorial problems (computing the product for all possible
sequences), the system locates at each position, i, in the sequence, the pair
(wij , tij) that locally maximizes the global computation of Eq. (1), thus,

Pi × Pi+1 × Pi+2 (2)

where, Pi, is as defined in Eq. (1). The basic components for automatic accent
(diacritic) insertion are given in [12]. The system is called DIAC, and consists of
a tagger and the language dictionary. The tagger QTAG* is a slightly adapted
version of Oliver Masons QTAG trigram tragger, which generic architecture is
represented in Fig. 1, to show the process flow for diacritic insertion. Figure 2
shows a modified architecture describing the components of a data-driven tone
marking system implemented in this research. We introduce a HMM syllabifier
(for the automatic syllabification of words), and a character and tone mapper (to
hadle tone mapping). The tone mapper uses a close-copy version of the syllabifier,
heavily supervised to ensure tone marking accuracy. These components rely on a
knowledgebase (i.e., language model, dictionary, tone pattern-base and Unicode
rule-base) to accomplish the tone marking process. The tone marking system was
implemented using a NLP script developed in Python with an automatic Unicode
rendering of the resultant text. The rendered text is almost 100 % accurate,

Fig. 1. Generic system architecture of a DIAC. Source [12].

Fig. 2. Modified architecture for a data-driven tone marking system
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because of the syllabified close-copy tone synthesis and mapping. This approach
is helpful for a preliminary evaluation of the system and for the estimation of
the level of exhaustiveness of the trained corpus. Training the corpus/utterances
with HMMs is useful because most out-of-vocabulary words are handled with
high accuracy. Another advantage of our framework is that the tone-tagging
algorithm infers knowledge from the trained corpus, and the syllabified output
certainly enhances reading fluency and can be used for pedagogical purposes.

3.2 Database and Corpus Design

The input corpus is a set of utterances used for the HMM training of an Ibibio
Text-To-Speech (TTS) system [13]. Two text files served as inputs to the design.
The first file is a syllabified form of trainable utterances of the language, gener-
ated from a heterogeneous relation graph (HRG), in a speech synthesis experi-
ment [3,14]. The second file is a close-copy tone-tagged version of the same file.
The Ibibio tone system is made up of the the following tone marks: High H (́ ),
Low L (̀ ), Down-Step DS (!), Low-High LH (∨), High-Low HL (∧). The input
utterances were tone-tagged according to the following labels: 1-Consonants,
2-H, 3-L, 4-DS, 5-LH, 6-HL. To resolve lexical ambiguity, a constraint grammar
rule was employed for words disambiguation to determine its usage in context
(within the sentence). However, further research works to perfect the current
design would be presented in a future paper.

In a FGN-World Bank Science and Technology Education Post-Basic (STEP-
B) project on “Towards Generic Text-To-Speech Technology – Application for
African Tone Languages”, about two hours of Ibibio speech utterances were
tagged (in a supervised manner) for a statistical-parametric speech synthesis
research [13], and is adopted in this paper for the purpose of resolving structural
ambiguity. Though the corpus does not represent an exhaustive data-set, an
exhaustive corpus is expected. The syllabified corpus are the various sentence
strings {#s1− s2− ...− sn,#s1− s2− ...− sn#,#s1− s2− ...sn|...}, where ‘#′

represents a word boundary and ‘ |′ is a phrase boundary.
Table 1 shows a sample of five (5) syllabified and close-copy tone sequences,

generated from the syllabified corpus and used for this work.

Table 1. Syllabified and close-copy tone synthesis corpora

Syllabified Ibibio sentence Close-copy tone synthesis

bO-Na-kam kuu-kpa-m-ba 13-13-131 123-112-3-13

a-ke-fee-fe-Re a-jak i-kOt a-ba-si 2-12-132-12-13 2-131 2-121 2-13-13

e-Je a-ma-a-nam a-Nwa-Na ke m-me
o-wo e-nie n-treu-bOk ke u-sVN
Om-mO keed keed

3-12 2-13-2-141 2-112-13 12 3-13 2-12
2-144 3-1133-121 12 2-121 61-15 1331
1331

a-ba-si a-ma-a-siak u-sVN u-bOk-kO
O-nO n-di-tO i-sred

3-13-13 2-13-2-1441 2-121 2-131-12 2-13
3-13-13 2-1131

e-jIn O-mO a-di-ben e-Je a-ka i-saN 2-121 2-13 2-14-121 3-12 2-16 2-131
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3.3 Tone Feature Extraction

The tone marking problem can be regarded as a pattern recognition problem.
Pattern recognition is a branch of machine learning that concentrates on the
recognition of patterns and regularities in data. To define the pattern recogni-
tion problem, a set of (16, 905×17)-input vectors specifying the various tones of
the Ibibio corpus was setup. Then, a set of one target vector for classifying the
tone patterns to which the input vectors are assigned was derived. The approach
used to derive the target vectors was to set a scalar value to either 1 or 0, signi-
fying which class a corresponding input pattern belongs to. Our output (target)
is a single class that indicates the correctness of the tone pattern prediction. The
model architecture on which our pattern prediction framework rests is presented
in Fig. 3. As shown in Fig. 3, the architecture is a multi-layer, multi-input and
multi-output (MIMO) feed-forward network, useful for function fitting (or regres-
sion) problems with sigmoid hidden and softmax output neurons. The number of
characters in the longest phrase determines the number of input neurons. In this
paper the input layer initially had 17 nodes. The network has one output neuron,
since there is only a target value (category) associated with the input vectors;
and was trained with the Levenberg-Marquardt algorithm (trainlm) – the fastest
backpropagation (network training) function in MATLAB 2015a, that updates
weight and bias values according to the Levenberg-Marquardt optimization. The
data were partitioned as follows: 70 % (11,833) for training; 15 % (2,536) for val-
idation; and, 15 % (2,536) for testing.

Input-Target Classification. Table 2 shows the Input-Target classification of
the first fifteen (15) Ibibio phrases selected from the entire corpus, and used
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Table 2. Input-Target classification for a set of Ibibio phrases.

Phrase (syllabified) Input (Tone pattern) Boundary Target

tone

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

bO-Na-kam 1 3 1 3 1 3 1 0 0 0 0 0 0 0 0 0 0 1 0

kuu-kpa-m-ba 1 2 3 1 1 2 3 1 3 0 0 0 0 0 0 0 0 3 1

a-ke-fee-fe-Re 2 1 2 1 3 2 1 2 1 3 0 0 0 0 0 0 0 3 1

a-jak 2 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

i-kOt 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

a-ba-si 2 1 3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 3 1

e-Je 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

a-ma-a-nam 2 1 3 2 1 4 1 0 0 0 0 0 0 0 0 0 0 1 0

a-Nwa-Na 2 1 1 2 1 3 0 0 0 0 0 0 0 0 0 0 0 3 1

ke 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

m-me 3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

o-wo 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

e-nie 2 1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

n-treu-bOk 3 1 1 3 3 1 2 1 0 0 0 0 0 0 0 0 0 1 0

ke 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

for the experiment. A total of 16,905 phrases (74,016 phonemes) were classified.
A breakdown of the tone statistics for tone bearing units (vowels (41,988)) are
distributed as: H (21,980), L (15,739), DH (2,399), LH (1,492), HL (378); while
the statistic of non-tone bearing units (consonants) is C (32,028). Each character
(phoneme) of the phrase was classified into 17 inputs (the longest phrase), and
coded using the tone labels defined in Sect. 3.2. The patterns formed by the input
sequences were useful for efficient modeling of the tone pattern.

Aside the tone features, the boundary tones for each phrase (i.e. 1-no tone/
consonant, 2-H, 3-L, 4-DS, 5-LH, 6-HL) – an important feature used for intona-
tion analysis, were also enumerated. Concerning the output, input phrases with-
out a boundary tone were initially marked as bad predictors (i.e., were given a
score of 0), and one, otherwise, before learning the system. Hence, the number
of inputs now varied between 1 and 18, after the boundary tones were derived.
The hidden layer of the network contained 10 neurons. The output considered
only one node enumerating the tone correctness (true/false).

3.4 Unicode Character Encoding

Table 3 shows a character encoding table containing standard Unicode combina-
tions that maps to the various graphemes and phonemes (a set of the language’s
alphabets). In this paper, we employ the Speech Assessment Phonetic Alphabet
(SAMPA) [15] – a machine readable format, for representing the phonemes of the
language. These characters represent the orthographic form (or grapheme) of the
language system and are employed to replace the input phonemes, after knowl-
edge of the tone pattern has been inferred. The Unicode equivalents of these
characters are necessary for portability purposes, as the outputs are formatted
as Unicode Text Font-8 (UTF-8).
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Table 3. Unicode mapping table

4 Results

4.1 Tone Marking

In this section, the results obtained from an implementation of the data-driven
tone processing algorithm are presented. Figure 5 shows a snippet of the result
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Fig. 4. Input corpus

Fig. 5. Tone marked corpus

obtained from the tone marking system. It was observed that the input phrases
(words) in the trained corpus (see Fig. 4) were correctly tone marked, thus veri-
fying the correctness of our HMM syllabifier. A possible limitation of this tagger
therefore, is the degree of correctness of the tone-tagged sequences (a heavily
supervised procedure). One noticeable defect was in the poor rendering of mul-
tiple diacritic marks (e.g., the under-dot and H-tone) on the same character, e.g.
‘O’ in bO-Na-kam, should have been tone marked as bò. -ηà-kàm. Also observed
was the ability of the proposed system to handle context-dependency of word
derivations that modifies the tone. We are currently investigating ways to ensure
a more robust design.

4.2 Tone Pattern Recognition

In this section, we investigate the recognition of tone patterns in the input cor-
pus with patternnet – a feedforward network, using the Levenberg-Marquardt
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algorithm. Fig. 6 is a confusion matrix showing the various types of errors asso-
ciated with the final trained network. The diagonal cells represent the number of
correctly classified cases, while the off-diagonal cells are the misclassified cases
for each class. For Target Class 0 (wrong prediction), 31.2 % instances were
correctly classified while Target Class 1 (correct prediction) had 61.9 % correct
classification. The last cell of column 3 shows the overall percentage of correctly
classified cases. As can be observed from the matrix, the overall performance of
the model is 93.1 %, which implies that after training, the network was able to
successfully classify the tone patterns with an accuracy of 93.1 %. The remain-
ing 6.9 % of misclassified cases came mainly from target class 0, indicating the
negative impact of consonants at word boundaries, on the overall speech quality.
Consequently, the introduction of other tone related measurement parameters
is necessary to improve the accuracy of the classification system. The Receiver
Operating Characteristic (ROC) curve showing the effect of the false positive
rate (1-specificity) on the true positive rate (sensitivity) is presented in Fig. 7.
As shown in the figure, the curve is closer to the vertical axis indicating a very
good classification in all cases (train, test and validation). The present outcome
of this work is useful as pedagogical tool (for teaching and learning the syllab-
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Fig. 7. ROC curve for tone pattern experiment
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ification and tone marking of an indegenous language), and in tone verification
systems.

5 Conclusion and Future Work

This paper has proposed a hybrid learning methodology in the intelligent extrac-
tion and recognition of tone patterns from Ibibio corpus. A MIMO neural net-
work consisting of 18 nodes in the input layer (consisting of a maximum of 17
tone tagged information and a boundary tone vector derived from the tone input
class), with one output neuron, was implemented using supervised learning. Most
supervised learning techniques have found application in speech processing and
the defining characteristic of supervised learning is the availability of annotated
training data. A total of 16,905 phrases of test corpus were validated by tone
marking the corpus using a data-driven approach. The test corpus was then
subjected to a pattern classifier to model the accuracy of tone patterns. Results
obtained confirm the correctness of our data-driven tone marking algorithm, and
demonstrate the possibility of an efficient tone pattern recognition system for
speech corpora. A future direction of this paper is an unsupervised tone recog-
nizer for African languages, and the comparison of our approach with other
methods.
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Abstract. In this paper, we discuss an application of the linguistic
descriptions obtained directly from experts’ and treated as the votes
when characterizing facial images to carry out face classification. Despite
various automated face recognition techniques, the expert’s opinion plays
a pivotal role in making classification decisions when recognizing faces,
say in problems of suspect identification. Here, we analyze the impact of
critical factors (e.g., a number of experts, voting schemes, distance func-
tions) and their impact on the performance of classification schemes. The
well-established Analytic Hierarchy Process (AHP) is used to quantify
importance of linguistic descriptors in the process of face recognition by
humans. As a result we produce realistic weights improving the accuracy
of classification. Experimental results are presented including a number
of parametric studies.

Keywords: Linguistic descriptors · Analytic hierarchy process · Face
recognition · Voting · Distance functions

1 Introduction

Face recognition has been one of the most visible research pursuits in image
analysis. The main reason behind these intensive studies is that the need of
biometric identification of people is omnipresent in the current digital society.
Among the most evident applications of face recognition are widely understood
safety tasks as encountered in border control, passport and driver’s license veri-
fication, surveillance systems, computer user identification, etc. There have been
many methods of facial recognition reported in the literature such as geometric
methods [14], Eigenfaces [30], Fisherfaces [2], local descriptors [1,3,4] and Gabor
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 584–596, 2016.
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wavelets [25,33], elastic bunch graph matching [31], information fusion and
aggregation [20], neural networks [9], sparse representation [32], fuzzy measure
[17], etc. Despite of the fact that the methods known in the literature produce
good results in experiments conducted in controlled laboratory environments,
many of them do not work successfully when applied in practice when one
is faced with substantial changes in age, position, illumination, emotion, etc.
Here, one of the most appealing factors which may support the accuracies of the
algorithms may be an application of the human mechanisms of recognition or
the presence of the experienced experts from the fields of cognitive psychology,
criminology, or forensic science. Moreover, understanding a way how the people
describe other individuals may be of particular relevance. The understanding of
this mechanism is crucial from this point of view.

In the literature, there are many studies discussing the complexity of the
recognition processes such as eye tracking [6], brain activity regions detection
[11], abilities to better recognize familiar than unfamiliar faces, or depth studies
on the assessment of particular facial regions saliency [8,13]. Similarly, many
authors consider the importance of face areas from the computational and clas-
sification point of view, see the works [5,7,12,17,20]. Such studies may help in
identifying and quantifying the relevance of parts of faces in the classification
processes. For instance, one could assess the relevance of the upper and lower
portions of the face, regions of face in the discrimination process. A focused
summary of discussion on this topic can be found in [17]. Finally, the problem
of utilizing of the manner the people describe other individuals using natural
language has been present in the research for more than twenty years. One of
the approaches was an application of fuzzy numbers as the vehicles to carry
the linguistic descriptions obtained from the pictures [10,21,22]. The authors
considered a system where 19 facial features such as the size of eyes were consid-
ered. These features were described, for instance, as small, rather small, medium,
rather big, and big. The matching based on a certain measure of overlap was
applied to the classification process. In [23] descriptions related to impressions,
e.g. intelligent, childish, or cold face, were added to the system. Other inter-
esting approaches were the use of an Amazon Mechanical Turk service [18] or
an attempt to an application of Granular Computing [19]. Finally, in [16] the
authors proposed a model of a system where the experts’ estimates of facial
images are the input to the Analytic Hierarchy Process (AHP, [24,27–29]) which
can be used to build a hierarchy of both the abstract facial features according
to their saliency and the concrete features associated with the concrete persons
according to their shape, length, etc. A comprehensive survey of the works on
linguistic descriptors in the context of face recognition is presented in [15].

The main goal of this study is to present a way of classification of faces real-
ized without relying on the use of numeric measurements. We want to examine
how the use of Analytic Hierarchy Process involving experts can improve the
accuracy of facial recognition process based on the experts’ answers regarding
particular facial features of a given individual. We establish a novel application
of the AHP to the process of ranking the most important and descriptive, in
our opinion, facial features. Moreover, our objective is to discuss how to form
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the description of the face in terms of a collection of fuzzy sets. Furthermore, a
particular attention is paid to the process of forming membership functions of
the linguistic descriptors so that such functions are reflective of the judgments
offered by the experts.

The paper is organized as follows. In Sect. 2 presented is the role of the
Analytic Hierarchy Process followed by a description of the general processing
scheme. Section 3 covers the experimental results while Sect. 4 delivers the con-
clusions and the perspectives for the future work.

2 Main Flow of Processing and the Role of AHP

Our objective is to develop a linguistic feature space for face recognition and
assess it discriminatory capabilities. The underlying motivation is that faces are
described by intuitively appealing and understood features whose quantification
is realized in terms of only a few linguistic terms (e.g. small, medium, large).
Humans do not measure these features but use only the labels. Formally, follow-
ing this way of description, considering n features and having the quantification
carried by ci, i = 1, . . . , n, linguistic labels, we are concerned with Boolean vec-
tors with total number c1 + c2 + . . . + cn of 0–1 entries. In contrast, the numeric
feature space is formed by n-dimensional vectors. In case of several experts, the
Boolean vector can have 0–1 entries built upon the use of the probabilities esti-
mating occurrence of some linguistic labels. Let us consider an example face
and its selected set of particular n features (descriptors) f1, f2, . . . , fn such as
eyebrows direction, inter-eye distance, or length of the nose. Each descriptor
assumes a finite (small) number of granular values (fuzzy sets) quantified as
small, medium, large, etc. The descriptors could be concatenated resulting in
a single vector delivering a description of a given face, say f = [f1, f2, . . . , fn].
An overall collection of faces is denoted as Ω. Our goal is to classify any pic-
ture (face) as belonging/not belonging to one of the faces present in Ω. The
face is characterized by some vector g. The classification is based on the near-
est neighbor rule by determining a minimal distance between g and f coming
from Ω.

To illustrate this issue, we can look for example at the feature eye length.
Let us assume that the set of faces were assessed by five experts and that two of
them described someone’s eyes as short, two experts said they are middle, while
one expert estimated their length to be long. In this manner we get the vector of
membership values f = [0.4, 0.4, 0.2]. If all the features are estimated, the person
is described by the c1 + c2 + . . . + cn-dimensional vector containing the values
from the interval [0, 1] and being the result of concatenation of all the n vectors
built in the same way as the vector f .

To determine the values of the weights of these features one can apply the
well-known Analytic Hierarchy Process. The main idea of the process is that
the experts do the pairwise comparisons between the features answering the
questions of the form:

To which extent the feature A is preferred over the feature B?
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Fig. 1. An overall flow of processing

They can use the nine levels scale and, for instance, the answer 1–1 means
that both features A and B are equally preferred while the answer 1–9 means that
the feature B is extremely preferred over the feature A. Of course, the experts
may choose from the values of 1, 2, . . . , 9. This way the so called reciprocal matrix
is created. It has the values 1 on the main diagonal and the values aij = 1/aji,
otherwise. The values of the main eigenvector’s elements are the weights or
priorities of the features compared in the experiment. The details of the AHP
process and its comprehensive analysis can be found, for example, in [29].

The main flow of this classification method is presented in Fig. 1. A group of
experts evaluate abstract facial features using AHP. These results, after aggrega-
tion, form a reference point to be used to weight the evaluations of specific facial
parts. Vectors obtained from abstract and real facial features are compared by
the Nearest Neighbors (NN) algorithm.

Assuming that p experts took part in the process of pairwise comparisons of
the n features one can obtain p vectors of weights, i.e., w1, . . . , wp related with the
importance of these facial cues of the form wi = [wi1, wi2, . . . , win] , i = 1, . . . , p.
Similarly as in the case of concatenated vectors corresponding to particular facial
features we form the weight vectors producing c1 + c2 + . . .+ cn -element vectors
w̄i. Of course, if needed weights can be applied in such an obtained form or in
the form of their inversions, namely

v̄i = max {w̄1, . . . , w̄n} − w̄i. (1)

The vectors representing the faces are compared using the distance/similarity
functions such as well-known Euclidean, Manhattan, cosine, correlation, modi-
fied Euclidean, i.e.,

d (x, y) =
∑n

i=1 (xi − yi)
2

∑n
j=1 (xj)

2 ∑n
j=1 (yj)

2 , (2)
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x = (x1, . . . , xn) �= 0, y (y1, . . . , yn) �= 0, and their weighted versions (Euclidean,
Manhattan, squared Euclidean, and modified Euclidean).

3 Experimental Results

For the purpose of our experimental study we choose the well-known FERET
dataset [26]. We consider the first 50 images from the FERET’s set called ba
and first 50 images from the FERET’s set, which is called by the creators of the
dataset bk. The first group of images stands for the set A (let it be the training
set) while the second is the set B (testing set).

Next, we asked 17 people (lab members or friends) to serve as experts and
assess the images in the assumed feature space. When describing the faces, each
of them could serve as a witness describing a facial image and was given either
fifty images from the set A or fifty images from the set B. No one estimated the
images coming from both sets A and B. The experts filled the questionnaires
using specially prepared application to make this task easier. In this manner we
got 9 questionnaires regarding to the set A and 8 questionnaires regarding to
the set B consisting of Boolean values related to the linguistic descriptions of
faces.

In this study, we narrow the set of such features to n = 27, in our opinion,
relatively easy to estimate by people. All these features and possible values they
can get are presented in Table 1.

Moreover, we asked 4 experts being (again, lab members or friends) to esti-
mate 27 abstract facial features from Table 1 in the AHP process of pairwise
comparisons. The weight values and the average weights obtained by the experts
are presented in Fig. 2. One can see that the weights are intuitively appealing
since the confidence in the experts’ assessments seems to be at a high level
except with the case of features related with shapes of the head and forehead
and strictly these strictly related with human description and experience such
as gender and origin. It probably comes from the fact that a few experts put
the weight on the meaning of some features in the process of automatic face
recognition while others treated more seriously the features related with human
feelings and, more generally, face recognition by humans.

In the first series of numerical experiments we run the tests for all the com-
binations of 3 experts estimating the images from the training set and all the
possible combinations of experts estimating the testing set. The most intuitive
approach is majority voting with no weights. We summed the experts’ votes
regarding to each image and each facial feature, and compared the results increas-
ing the voting result by one point if the results were the same and zero otherwise.

The rank-1, rank-5, and rank-10 recognition rates are included in Tables 2, 3,
and 4 for all the combinations of three, five, and seven experts estimating the train-
ing and testing sets, respectively.The best distance function itself is theManhattan
one. However, the versions with weights show that the weights obtained from the
experts’ knowledge about the importance of the facial features in the face recogni-
tion process can be very helpful here. It is important that if the weights are intro-
duced then the recognition rates at the level 100 are reached for the lower ranks.
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Table 1. Facial features and their linguistic descriptors

Index Feature Linguistic descriptors

1 Shape of the face rectangular, pentagonal, oval, round,
triangular, ellipsoidal, trapezoidal,
rhomboidal

2 Height of the forehead low, average, high

3 Width of the forehead narrow, average, wide

4 Shape of the forehead rectangular, square, trapezoidal, inversely
trapezoidal

5 Length of the eyebrows short, average, long

6 Direction of the eyebrows horizontal, turned up, turned down

7 Distance between the eyebrows merged, narrow, average, wide

8 Position of the eyebrows low, average, high

9 Shape of the eyebrows arched, straight, broken-lined, wavy, bushy

10 Thickness of the eyebrows narrow, average, wide

11 Shape of the lower eyelid normal, average, saggy

12 Distance between eyelids narrow, average, wide

13 Eye length short, average, long

14 Direction of the fissures horizontal, turned up, turned down

15 Inter-eye distance narrow, average, wide

16 Length of the nose short, average, long

17 Width of the nose narrow, average, wide

18 Length of the nasal bridge narrow, average, wide

19 Shape of the nasal tip rounded, spiked, blunt, angular

20 Height of the upper lip low, average, high

21 Height of the lower lip low, average, high

22 Width of the mouth short, average, long

23 Shape of the chin round, oval, angular, triangular, concave

24 Size of the chin small, average, big

25 Protrusion of the ears fitting, average, protruding

26 Gender female, male

27 Origin Caucasian, Spanish, Asian, African

Moreover, in Tables 5, 6, 7, and 8 there are shown the recognition rates for the cho-
sen classifiers, i.e. voting, NN with Manhattan distance, NN with modified Euclid-
ean distance and NN with weighted modified Euclidean distance, respectively. All
the combinations of experts were considered. It is easy to see that the more experts
is involved in the process of estimating the facial features of the particular subjects,
the recognition rate is closer to 100%. Furthermore, one can see that the weights
can improve the accuracy of the classifier when are applied for the lower number
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Fig. 2. Average weights of the facial features obtained by four experts taking part in
the experiment

Table 2. The recognition rates obtained by majority voting and the comparison of
concatenated vectors by using distance functions for all the combinations of three
experts estimating the training set and three experts estimating the images from the
testing set

Rank Voting Euclid. Manh. Cosine Correl. Mod.

Euclid.

W.

Euclid.

W.

Manh.

W. sq.

Euclid.

W.

mod.

Eucl.

1 56.03 77.96 78.18 77.85 77.70 77.61 76.90 76.64 78.24 78.87

5 85.82 96.97 97.00 97.01 96.90 96.81 97.66 97.20 97.99 97.84

10 93.93 99.21 99.23 99.25 99.20 99.16 99.63 99.46 99.74 99.65

Number of rank for which 100% recognition rate has been reached

- 48 39 36 36 38 42 32 28 25 27

Table 3. The average recognition rates obtained when five experts estimate the training
and five experts estimate the testing set, respectively

Rank Voting Euclid. Manh. Cosine Correl. Mod.

Euclid.

W.

Euclid.

W.

Manh.

W. sq.

Euclid.

W. mod.

Eucl.

1 71.40 92.36 92.65 92.77 92.64 92.85 91.60 91.28 92.42 92.99

5 93.13 99.86 99.84 99.87 99.86 99.86 99.88 99.85 99.94 99.91

10 97.68 99.99 99.99 99.99 99.99 99.99 100.00 99.99 100.00 100.00

Number of rank for which 100% recognition rate has been reached

- 47 17 15 17 18 19 11 20 11 11



Linguistic Descriptors and AHP in Face Recognition Realized by Humans 591

Table 4. The average recognition rates obtained when seven experts estimate the
training and seven experts estimate the testing set, respectively

Rank Voting Euclid. Manh. Cosine Correl. Mod.

Euclid.

W.

Euclid.

W.

Manh.

W. sq.

Euclid.

W. mod.

Eucl.

1 79.38 97.40 97.80 97.21 97.20 97.40 96.72 97.42 97.28 97.18

5 96.43 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 99.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Number of rank for which 100% recognition rate has been reached

- 21 3 4 3 3 4 4 4 4 3

Table 5. Average recognition rates for voting for all the combinations of experts’
number

Number of experts estimating the testing set

1 2 3 4 5 6 7 8

Number of experts estimating the
training set

1 38.94 36.52 46.16 45.46 50.62 49.10 53.14 52.67

2 42.23 47.55 50.58 55.57 56.36 57.99 58.45 58.94

3 46.26 44.18 56.03 55.77 61.79 60.13 64.65 62.95

4 51.38 53.95 61.60 65.63 68.60 69.62 71.85 71.95

5 52.92 51.25 64.05 65.02 71.40 70.60 74.55 74.21

6 55.07 56.56 66.25 69.95 74.10 75.08 77.64 77.88

7 55.93 54.92 68.33 69.54 75.87 75.55 79.38 77.50

8 58.06 58.46 70.05 73.24 77.87 78.95 81.81 80.44

9 56.00 55.86 70.46 71.26 78.68 78.21 82.75 78.00

Table 6. Average recognition rates for comparison of concatenated feature vectors
with Manhattan norm for all the combinations of experts’ number

Number of experts estimating the testing set

1 2 3 4 5 6 7 8

Number of experts estimating
the training set

1 38.94 48.13 53.79 57.47 59.97 61.90 63.00 62.67

2 47.21 62.75 69.41 74.42 76.93 79.23 80.39 82.56

3 52.31 69.49 78.18 82.38 85.33 87.70 88.61 89.69

4 55.78 75.06 82.51 87.41 89.83 91.81 92.76 93.79

5 58.25 77.58 85.78 89.90 92.65 94.03 95.13 95.94

6 59.99 80.52 88.23 92.05 94.10 95.76 96.50 97.14

7 61.40 81.59 89.28 93.02 95.32 96.61 97.80 98.06

8 62.58 83.24 90.40 94.16 96.19 97.77 98.31 99.11

9 63.50 83.57 91.43 94.51 96.71 98.64 99.75 100.00
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Table 7. Average recognition rates for comparison of concatenated feature vectors
with modified Euclidean distance for all the combinations of experts’ number

Number of experts estimating the testing set

1 2 3 4 5 6 7 8

Number of experts estimating
the training set

1 38.94 48.13 53.79 57.47 59.97 61.90 63.00 62.67

2 44.38 60.38 69.06 74.35 77.88 80.20 81.94 83.83

3 50.13 68.48 77.61 82.87 86.11 88.39 89.99 91.29

4 54.34 73.36 82.45 87.44 90.44 92.42 93.81 94.71

5 57.08 76.52 85.48 90.11 92.85 94.60 95.73 96.35

6 59.12 78.65 87.53 91.83 94.29 95.86 96.82 97.55

7 60.67 80.21 88.94 92.96 95.23 96.69 97.40 97.89

8 62.39 81.24 89.92 93.83 95.77 96.95 97.47 97.78

9 62.25 82.43 90.50 94.51 96.21 97.07 97.50 98.00

Table 8. Average recognition rates for comparison of concatenated feature vectors
with weighted modified Euclidean distance for all the combinations of experts’ number

Number of experts estimating the testing set

1 2 3 4 5 6 7 8

Number of experts estimating
the training set

1 38.25 49.26 55.06 59.01 61.66 63.35 64.69 66.22

2 49.30 63.70 71.06 75.60 78.43 80.35 81.70 83.00

3 55.54 71.08 78.87 83.41 86.36 88.30 89.70 90.88

4 59.16 75.57 83.41 87.82 90.50 92.39 93.62 94.57

5 61.61 78.45 86.33 90.44 92.99 94.62 95.77 96.51

6 63.25 80.52 88.30 92.19 94.44 95.89 96.69 97.31

7 64.67 81.96 89.78 93.40 95.36 96.57 97.18 97.44

8 65.83 82.95 90.75 94.25 95.98 96.93 97.33 97.56

9 67.50 83.93 91.46 94.80 96.57 97.36 97.00 98.00

of the experts. It can be justified by the fact that the weights can fill the lack of the
data coming from the experts’ estimation. Note that the weights can be changed
depending on the distance function characteristic, i.e. the higher weight obtained
the less impact on the classification result. Adding the mentioned weights to the
modified Euclidian distance improved average classification result by 1 % point. In
cases of the number of experts estimating training set bigger than one and only one
expert estimating testing set, the obtained results were better in average by even
5 % points. When the number of experts estimating testing set was 6 and above,
the results of weighted modified Euclidian distance were worse by almost one per-
cent point. What is interesting, for only one expert estimating training set, this
tendency was reversed and one can note that improvement of classification rate
grows with the number of experts estimating testing set from up 3.55 % point.
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Fig. 3. Percentage recognition rates with regard to rank n (n = 1, . . . , 50) when the
normalized lengths of features are considered only

Fig. 4. The recognition rates obtained with distortion (i.e. with injected mistakes to
the experts’ questionnaires). Here presented are the values of rates obtained when one
expert estimates the training set and one expert assesses the testing set (1×1), two
experts estimate training and testing set (2×2), etc.

It is worth noting that if we consider only the numeric space of features
(15 features which values can be ordered linearly, i.e. short, medium, long) and
we apply the weighted squared Euclidean distance function for their normalized
lengths (i.e. 1 is equal to the longest feature in the dataset), then the recognition
rate is 54% (see Fig. 3) and it easy to see that the presence of experts and an
application of the linguistic variables can importantly enhance the accuracy of
recognition.

In our last series of experiments we check how the controlled distortion of the
experts’ assessments can afford the final accuracy of the method. We randomly
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distorted the entries by replacing the values of experts’ answers. We compared
the classification results for modified Euclidean distance after changing exactly
0.1%, 0.2%, . . . , 10% of all experts’ assessments before the comparison. The
regression of the classification results is nearly linear with respect to the number
of injected errors. It is intuitively appealing that the method is reliable and rel-
atively robust to the mistakes committed by the experts estimating the images,
see Fig. 4.

4 Conclusions and Future Studies

In this work we have presented a novel combination of the Analytic Hierarchy
Process and linguistic descriptors of human faces received from the experts’
answers. This new approach works great as a complement to standard classifiers.
The most obvious extension of the approach described here can be the use of
automatically collected data. Moreover, the other processes of obtaining and
applying the weights related to particular facial features should be considered.
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31. Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face recognition
by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19,
775–779 (1997)

32. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition
via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227
(2009)

33. Zhang, W., Shan, S., Qing, L., Chen, X., Gao, W.: Are Gabor phases really useless
for face recognition? Pattern Anal. Appl. 12, 301–307 (2009)



Quick Real-Boost with: Weight Trimming,
Exponential Impurity, Bins, and Pruning

Przemys�law Kl ↪esk
(B)

Faculty of Computer Science and Information Technology, West Pomeranian
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Abstract. The central point of attention for this paper is weight trim-
ming — a technique known for speeding up boosted learning procedures.
The loss of accuracy introduced by the technique is typically negligible.
Recently, an elegant algorithm has been proposed by Appel et al.: it
applies weight trimming under AdaBoost, prunes some features using a
special error bound, but simultanouesly guarantees the same outcome
(ensemble of trees with exactly the same parameters) as if with no trim-
ming. Thus, no loss of training accuracy occurs. In this paper, we sup-
plement the idea by Appel with a suitable extension for real-boosting.
We prove that this approach gives the same outcome guarantees, both
for stumps and trees. Additionally, we analyze the complexity of Appel’s
idea and we show that in some cases it may lead to computational losses.

1 Introduction

Boosting consists in applying the same learning algorithm over multiple rounds
on reweighted data examples. Since the early concepts of weak learnability [6],
first, the AdaBoost algorithm with binary {−1, 1} responses of weak learners
has been developed [2,3], then, more conteporary RealBoost [7] and variants
(LogitBoost, GentleBoost [4]) have appeared, where responses are real-valued.

The mechanism of examples reweighing is in fact the heart of boosting. In
[4], Friedman et al. noted a property that brings out the essence of reweighing
and allows for speeding up the procedure. They observed that as the learning
progresses the distribution of weights becomes highly skewed towards very small
values. A large majority of examples has those tiny weights, whereas only a
small fraction of examples has some ‘meaningful’ weights that contribute to
the error measure. One can take advantage of this observation and trim off the
‘meaningless’ examples before each round. This can be carried out by imposing
a certain probability mass, say 1−α = 0.99, cumuluted by examples with largest
weights that one wants to keep. All remaining examples are discarded. Typically,
this technique — weight trimming — leads to a negligble loss of accuracy.

We like to look at weight trimming the following complementary way. In early
rounds, discarding some of the examples can be viewed as a mild subsampling.
In later rounds the preserved examples, that concentrate 1 − α probability, can
be regarded as support vectors by an analogy to SVM algorithm. Those are
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 597–609, 2016.
DOI: 10.1007/978-3-319-39378-0 51
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hardest to classify examples, lying closely to the decision boundary, or even on
the wrong side of it. Simultaneously, they are the ones that should be shaping
the decision boundary being learned the most. Making the procedure focused
solely on those examples leads to great computational savings. Figure 1 shows
an exemplary illustration of weights distribution on several boosting rounds. We
also encourage the reader to look ahead at Fig. 2 (experiments section) depicting
‘support vectors under boosting’ on both sides of a non-linear decision boundary.

Fig. 1. Weights distribution skewed towards small values as boosting progresses (exem-
plary experiment); t denotes the round, weights are sorted decreasingly: wi � wi+1.

Recently, Appel et al. [1] have proposed a very elegant algorithm (named
Quick stumps or trees) where weight trimming is tailored in a specific fashion.
The authors benefit from the speed up only partially but they do not sacrifice
the training accuracy. The algorithm looks for best stumps (or splits in a deci-
sion tree) and trims off different number of examples for different features using
a certain bound on the error measure. Examples are included incrementally in
portions and placed in bins (to consider possible splits), and if at a certain point
a feature gives no chances to beat the current best, the remaining portions are
ignored. Hence, the feature gets pruned. Appel et al. proved their algorithm to
guarantee the same outcome — the ensemble of stumps (or trees) with exactly
the same parameters — as if no weight trimming was applied. The proof per-
tains to the AdaBoost algorithm (binary responses of weak classifiers) and three
possible criterions used for splits selection: zero-one loss, entropy or Gini index.

The contribution of our paper is minor with respect to [1], it includes two
elements: (1) we build on the Appel’s idea and supplement it with a small exten-
sion suitable for real -boosting, (2) we indicate the way to analyze the complexity
of such ‘quick’ algorithms. As regards (1), in our real-boosting the responses of
weak classifiers are calculated as half the logit transform and the exponential
error is used as splits selection criterion. We prove that the above settings also
give the same outcome guarantee. We use a similar line of proofs as in [1]. In
particular, we point out an interesting connection between the Gini index and
the superposition of exponential error with logit transform, useful in the proofs.
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As regards (2), we show that the complexity can be viewed as a certain trade-off,
which in some cases may lead to computational losses.

2 Notation and Short Review of Appel’s Idea [1]

Let {(xi, yi)}i=1,...,M denote the set of examples, where xi = (xi1, . . . , xid) ∈ R
d

are input vectors of features and yi ∈ {−1, 1} are corresponding class labels. Let
{wi}i=1,...,M represent weights of examples on the current boosting round. In
many places, we shall use Iverson convention to denote indicator expressions: [s]
yields 1 when s is a true statement and 0 otherwise; see e.g. [5].

For classifiers f with binary responses, the weighted error using a zero-one
loss function (misclassification probability) is:

ε =
1
Z

∑

1�i�M

wi[f(xi) �= yi], (1)

where Z =
∑

1�i�M wi can be treated as a normalization constant, and Z = 1
if the whole data set is taken into account. When a decision stump is made on
the k-th feature at the threshold τ with polarity p ∈ {−1, 1}, the error is:

ε(k)(τ, p) =
1
Z

(
∑

xik�τ

wi[p �= yi] +
∑

xik>τ

wi[−p �= yi].

)
, (2)

The learning procedure seeks the best stump (k∗, τ∗, p∗) = arg min(k,τ,p) ε(k)(τ, p).
Suppose that data examples are always sorted (on each boosting round) in

order of decreasing weight: wi � wi+1 for all i. Define Zm as the mass of the
heaviest subset of m examples:

Zm ≡
∑

i�m

wi. (3)

Let us call these examples an m-subset (or subset of size m).
Consider a preliminary error calculated with respect to the m-subset for the

k-th feature with optimal parameters τ
(k)
m , p

(k)
m (minimizers for given m-subset):

ε(k)m (τ (k)
m , p(k)m ) =

1
Zm

(
∑

i�m

xik�τ(k)
m

wi[p(k)m �= yi] +
∑

i�m

xik>τ(k)
m

wi[−p(k)m �= yi].

)
, (4)

The crucial observation by Appel et al. [1] is:

m < n ⇒ Zmε(k)m � Znε(k)n , (5)

which means that the product of probability mass and error increases (or
stays equal) when larger data subsets are considered for given feature. For the
proof of (5) the reader is addressed to [1] or may see an analogous result we
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prove for the exponential error. Appel benefits from the observation as follows.
Suppose ε′ stands for the current best (and exact) error attained in the progresses
of algorithm by some feature. Then, for another feature (k-th) we have:

Zmε(k)m � Zε′ ⇒ Zε(k) � Zε′ ⇒ ε(k) � ε′, (6)

which means that if Zmε
(k)
m � Zε′ then the k-th feature shall certainly not

improve the best-so-far error and can be pruned without checking the remaining
data. The trick to look at the Zmε

(k)
m product rather than ε

(k)
m alone, can be

viewed simply as denormalization. It allows us to work with a partial sum of
elementary errors rather than error frequency within a given subset.

3 Bound on Exponential Error

We now switch to the real-boosting scenario. Consider half the logit transform as
classifier’s response on the left and right side of a split (symbolic superscripts):

f (k�)
m (τ) =

1
2

log

∑

i�m
xik�τ

wi[yi = +1]

∑

i�m
xik�τ

wi[yi = −1]
, f (k>)

m (τ) =
1
2

log

∑

i�m
xik>τ

wi[yi = +1]

∑

i�m
xik>τ

wi[yi = −1]
. (7)

Given a k-th feature and a split threshold τ , the preliminary exponential
error (or impurity) for the m-subset is defined as follows:

ε
(k)
exp
m

(τ) =
1

Zm

(
∑

i�m
xik�τ

wie
−yif

(k�)
m (τ) +

∑

i�m
xik>τ

wie
−yif

(k>)
m (τ)

)
(8)

From now on in the paper we do not refer anymore to the zero-one loss error.
Therefore, for simplicity we shall be writing just ε meant as the exponential
error, instead of writing εexp, unless explicitly needed otherwise.

Let the best split value (the minimizer) be denoted as τ
(k)
m = arg minτ ε

(k)
m (τ)

and for short let the optimal value of the criterion be written as ε
(k)
m ≡ ε

(k)
m

(
τ
(m)
k

)
.

Theorem 1. For any n > m the following inequality for the products of proba-
bility masses and exponential errors of the subsets holds true:

Znε(k)n � Zmε(k)m . (9)

Proof. First, note that for a fixed τ
(k)
m both f

(k�)
m

(
τ
(k)
m

)
and f

(k>)
m

(
τ
(k)
m

)
, in their

forms (7), are miniminizers of respective left and right parts of the error (8) for
the m-subset. Let us show it only for the left part (the right is analogous):
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∂

∂f
(k�)
m

(
τ
(k)
m

)

(
∑

i�m

xik�τ(k)
m

wie
−yif

(k�)
m (τ(k)

m )

)
= 0

∂

∂f
(k�)
m (τ (k)

m )

(
e−f(k�)

m (τ(k)
m )

∑

i�m

xik�τ(k)
m

wi[yi=+1] + ef(k�)
m (τ(k)

m )
∑

i�m

xik�τ(k)
m

wi[yi=−1]

)
= 0

− e−f(k�)
m (τ(k)

m )
∑

i�m

xik�τ(k)
m

wi[yi=+1] = −ef(k�)
m (τ(k)

m )
∑

i�m

xik�τ(k)
m

wi[yi=−1]. (10)

Taking the logarithm side-wise yields the minimizer, as in formula (7).
Now, the following inequalities hold for the product under consideration:

Zmε(k)m =

(
∑

i�m

xik�τ(k)
m

wie
−yif

(k�)
m (τ(k)

m ) +
∑

i�m

xik>τ(k)
m

wie
−yif

(k>)
m (τ(k)

m )

)

�
∑

i�m

xik�τ(k)
n

wie
−yif

(k�)
n (τ(k)

n ) +
∑

i�m

xik>τ(k)
n

wie
−yif

(k>)
n (τ(k)

n ) (11)

�
∑

i�n

xik�τ(k)
n

wie
−yif

(k�)
n (τ(k)

n ) +
∑

i�n

xik>τ(k)
n

wie
−yif

(k>)
n (τ(k)

n ) = Znε(k)n (12)

The first inequality is true since we have switched from settings: τ
(k)
m , f

(k�)
m ,

f
(k�)
m — optimal for the m-subset — to possibly non-optimal ones: τ

(k)
n , f

(k�)
n ,

f
(k�)
n . The second inequality is true since the summation is taken over a larger

set of summands (i � n), which are positive, and thereby the sum may only be
increased. Finally, we note that the right-hand-side is now equal to Znε

(k)
n . �

4 Quick Tree Growing Algorithm for Real-Boost

In Algorithm 1 we write down the ‘quick’ tree growing recursion (based on
Appel’s idea) for the real-boost scenario, where the exponential error works
as impurity for splits selection and half the logit transform constitutes responses
of tree leafs. The following notation is used: T stands for the tree built so far
and n for the node index for which the current call is made; {i} is the set of
indexes of examples falling into the current node; α is the probability mass to
be trimmed off for the calculation of preliminary errors; q is the number of data
portions (within the α mass) for incremental and more accurate error evaluation;
s is the number of bins into which weights are placed for split selection. Also, let
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Algorithm 1. QuickRealTree
1: procedure QuickRealTree(T , n, {i}, α, q, s)

2: calculate probability masses: W+:=
∑

i wi[yi=+1], W −:=
∑

i wi[yi=−1], Z:=W++W −

3: memorize n-th node response as: 1/2 log(W+/W −) � take care of W ± = 0 cases
4: stop recursion if n-th node is pure or maximum depth was reached
5: calculate cumulative probability on {wi} and use it to prepare a sequence (m0, . . . , mq) such

that
∑

i<mj
wi/Z < 1 − α + jα/q and

∑
i�mj

wi/Z � 1 − α + jα/q.

6: prepare bins B(k),+ = (0, . . . , 0), B(k),− = (0, . . . , 0) of length s for all features 1 � k � d
7: calculate preliminary errors:

8: for 1 � k � d do

9: width(k) := (max(k) −min(k))/s
10: for 1 � i � m0 do

11: b := �(xik − min(k))/width(k)� � make bin index bounded to {1,. . . ,s}
12: if yi = +1 then

13: B
(k),+
b := B

(k),+
b + wi

14: else
15: B

(k),−
b := B

(k),−
b + wi

16:

(
Zm0

ε(k)
m0

, τ(k)
m0

)
:=SelectBinSplit(k, B(k),+, B(k),−, s)

17: update errors in portions or prune:

18: Zε′ := ∞
19: order features indexes as (k1, . . . , kd) using preliminary errors, so that ε(k1)

m0
� · · · � ε

(kd)
m0

20: for k := k1, k2, . . . , kd do

21: if Zm0
ε(k)

m0
> Zε′ then

22: continue � prune k-th feature (!)

23: j0 := [Zε′ < ∞] · 1 + [Zε′ = ∞] · q
24: i0 := m0
25: for j0 � j � q do � loop over portions within α mass
26: for i0 < i � mj do

27: b := �(xik − min(k))/width(k)� � make bin index bounded to {1,. . . ,s}
28: if yi = +1 then

29: B
(k),+
b := B

(k),+
b + wi

30: else
31: B

(k),−
b := B

(k),−
b + wi

32:

(
Zmj

ε(k)
mj

, τ(k)
mj

)
:=SelectBinSplit(k, B(k),+, B(k),−, s)

33: if Zmj
ε(k)

mj
� Zε′ then

34: break � jump out from subsets loop to prune k-th feature

35: i0 := mj

36: if Zmj
ε(k)

mj
� Zε′ then

37: continue � prune k-th feature (!)
38: else
39: Zε′ := Zmq

ε(k)
mq

, k′ := k, τ ′ := τ(k)
mq

� new best feature found, Zmq
≡ Z

40: L := {i : xik′ � τ ′}, R := {i : xik′ > τ ′}, nL := #T + 1, nR := #T + 2
41: memorize within n-th node the best split parameters

(
k′, τ ′) and children indexes nL, nR

42: T :=QuickRealTree(T , nL, L, α, q, s)
43: T :=QuickRealTree(T , nR, R, α, q, s)
44: return T

1: procedure SelectBinSplit(k, B+, B−, s)

2: W+
L := B+

1 , W −
L := B−

1 , W+
R :=

∑s
b=2 B+

b , W −
R :=

∑s
b=2 B−

b , Z ≡∑s
b=1 B+

b +
∑s

b=1 B−
b

3: Zε∗:=W
−
L

e
1
2 log(W+

L
/W

−
L

)
+W

+
L

e
− 1

2 log(W+
L

/W
−
L

)
+W

−
R

e
1
2 log(W+

R
/W

−
R

)
+W

+
R

e
− 1

2 log(W+
R

/W
−
R

)

4: width(k) := (max(k) −min(k))/s

5: τ∗ := min(k) +1width(k)

6: for 2 � b � s do
7: W+

L := W+
L + B+

b , W −
L := W −

L + B−
b , W+

R := W+
R − B+

b , W −
R := W −

R − B−
b

8: Zε:=W
−
L

e
1
2 log(W+

L
/W

−
L

)
+W

+
L

e
− 1

2 log(W+
L

/W
−
L

)
+W

−
R

e
1
2 log(W+

R
/W

−
R

)
+W

+
R

e
− 1

2 log(W+
R

/W
−
R

)

9: if Zε < Zε∗ then
10: Zε∗ := Zε, τ∗ := min(k) +bwidth(k)

11: return (Zε∗, τ∗)
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min(k), max(k) denote the endpoints of the k-th feature (either actual extremes,
or endpoints after outliers have been removed).

We are now going to formulate a theorem which proves, inductively with
respect to trimmed subsets, the guarantee of the same outcome for the ‘quick’
real-tree procedure (Algorithm 1). Suppose a tree has been grown according to
the procedure, with weight trimming involved on each recursive stage (α > 0).
Let εexp

n
denote the exponential error committed by the tree trained on the

n-subset. This error can be expressed as a weighted average taken over all tree
leafs {l}:

εexp
n

=
∑

l

Zρl

Zn

εexp
ρl

, (13)

where ρl denotes the set of indexes of data points from the n-subset that fall into
the l-th leaf. Think of the optimal tree parameters that led to the smallest value
of εexp

n
based on the training data within the n-subset. Assume these parameters

have been found and fixed. Now, consider a smaller m-subset, m < n. Let ρl =
ul ∪ ūl, where ul denotes elements from ρl that are in the m-subset, while ūl be
the elements that are not:

ul = {i : i ∈ ρl, i � m}, ūl = {i : i ∈ ρl, m < i � n}. (14)

Theorem 2 For all tree leafs true are the following relations:

Zρl
εexp

ρl
= Zρl

√
2εgini

ρl

� Zul

√
2εgini

ul

= Zul
εexp

ul
, (15)

therefore for the whole tree we have:

Znεexp
n

=
∑

l

Zρl
εexp

ρl
�

∑

l

Zul
εexp

ul
� Zmεexp

m
. (16)

Note that optimal tree parameters for the m-subset may differ from optimal ones
for the n-subset, which explains the last inequality. The proof is in AppendixA.

5 Complexity Analysis

Consider the computations needed to populate a single node inside a tree growing
recursion. Clearly, a standard procedure, without Appel’s modification, requires
Θ (d(M + s)) time, since for each feature all data examples must be visited,
i.e. placed into bins, plus a single call to SelectBinSplit must be made with
the cost proportional to the number of bins. Let us get rid of Θ(·) notation and
introduce two constants c1, c2 representing the costs of bin placement operations
(as an example see lines 11–15 or 27–31 of QuickRealTree) and split selections
(SelectBinSplit) respectively. Then, the total time cost can be written down
as: d(c1M +c2s). Instead, for the ‘quick’ procedure — with Appel’s modification
— the total cost becomes1:
1 For simplification, assume data indexes mapped to successive integers, so that there

are no indexing holes and therefore mj − mj−1 differences reflect sizes of portions.
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d(c1m0 + c2s) +
∑

k=k1,k2,...,kd

qk∑

j=1

(
c1(mj − mj−1) + c2s

)
, (17)

where qk ∈ {0, 1, . . . , q} represents the number of data portions (within α mass)
that must be checked for k-th feature before it can be pruned.

Note that q1, . . . , qd quantities are a consequence of the (k1, . . . , kd) permuta-
tion, which describes the ordering of features after preliminary error calculation.
That permutation is in turn implied by the chosen α. Since at least one of the
features has to be later checked in full, then the necessary condition to reach the
minimal cost is that the best feature comes first in the permutation: k1 = k∗.
Note that this makes Zm0

ε
(k∗)
m0 the tightest bound, thereby causing most pruning.

To dispose of the sums from (17) let us introduce an average number q̄ of
data portions to be checked, instead of q1, . . . , qd. More precisely, let q̄ be the
smallest integer such that the following expression in an upper bound for (17):

d(c1m0+c2s)+
∑

k=k1,k2,...,kd

q̄∑

j=1

(
c1(mj −mj−1)+ c2s

)
= dc1mq̄ + dc2(1+q̄)s. (18)

It is now possible to see that (18) can beat the original cost d(c1M + c2s) when:

dc2sq̄ < dc1(M − mq̄) (19)

— additional costs paid for split selections must be lower than the gains from
non-visited data — a trade off. Obviously, q̄ is a quantity dependent on data
characteristcs. Hence, we rephrase the gain condition with respect to the number
of bins (a parameter we control). It needs to be smaller than the following ratio:

s < c1(M − mq̄)
/
(c2q̄). (20)

6 ‘Ball in Ball’ Experiments

Similarly to [4], we construct synthetic data sets according to a ‘ball in ball’
pattern, where the inner ball represents the positive class. Results show these sets
pose difficulties to boosting when the dimension d increases. More specifically, the
input vectors are drawn from a standard multidimensional normal distribution,
xi ∼ Nd(0, 1), whereas class labels yi are dependent on radiuses ‖xi‖, obeying
the conditional distribution P (y|x) = 1/

(
1 + e−γy(‖x‖2−r2)

)
. Hence, in general

the problem is non-deterministic, with some overlap of the classes implied by
the γ > 0 parameter. We set up γ = 5 and for each dimension we choose
such r, so that P (y = +1) ≈ 0.4. The sphere ‖x‖2 = r2 represents the optimal
decision boundary. Knowing all settings, we can accurately estimate the Bayesian
error (or so called true error) — the best possible for any classifier. Data sets
are described in Table 1. The goal of the last data set (D6) was to simulate a
more realistic situation where there are 1 000 features but only 10% of them
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Table 1. Data sets description.

Fig. 2. Ensembles for D2 and D3 data sets. Sizes of data points are marked proportional
to their current weights under the real-boost procedure.

Fig. 3. Errors for ensembles with both internal (α) and external (β) weight trimming.
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are relevant (contributing to the decision boundary — being a cylinder in that
case).

All experiments were carried out in Wolfram Mathematica 9.0, but with
crucial procedures compiled to C language (CompilationTarget -> C). Table 2
summarizes the results with the main focus on the speed of execution. In par-
ticular, we observe the trade-off between computational gains (less data usage)
and losses (more select split calls) for different settings of α parameter. There-
fore, percentages reported in each row should be understood as ratios of given
quantity for the ‘quick’ procedure with respect to its ‘non-quick’ counterpart.
The number of bins in all experiments was s = 64 and the maximum number
of portions for error updates was q = 5. In half of experiments the procedure
was additionally coupled with a standard (external) weight trimming, where the
probability mass to be cut off is represented by β = 0.01. We group rows in
pairs to compare directly ‘quick’ RealBoost (Q-Real for short) against ‘quick’
AdaBoost (Q-Ada) procedures. In each row we mark in gray those time cells
where a computational gain occured and we bold out the experiments for which
the smallest time ratio was attained among different α values. Figure 2 depicts
obtained ensembles for small dimensionalities d = 2, 3. Figure 3 presents errors
of ensembles along training when the additional (external) weight trimming was
applied.

7 Conclusions

Following the idea from [1], we have proved that a ‘quick’ algorithm for
real -boosted trees can be constructed with a guarantee of the same outcome
ensemble. Experimental results show we have set up difficult conditions to test
the ‘quick’ procedures, both in terms of errors and time performance. In 45/72
cases computational losses, rather than gains, were registered. This is due to
additional split selections required to incrementally update error bounds. The
gains, if appeared at all (for given experiments), were small, of order ≈ 6% on
average. As regards test errors, RealBoost was better than AdaBoost in majority
of cases, especially for higher dimensionalities. Despite a possible scepticism from
most of experiments, the case of D6 data set indicates that in a more realistic
setting, where many features exist but most of them are irrelevant, the ‘quick’
procedures ought to do well computationally, pruning more features.

A Proof of Outcome Guarantee for ‘quick’ Tree Growing
Procedure with Exponential Impurity

Proof (Theorem 2). First, let us define the Gini error (for the n-subset):

εgini
n

=
∑

l

Zρl

Zn

εgini
ρl

=
∑

l

Zρl

Zn

(
1 −

(
Z+

ρl

Zρl

)2

−
(

Z−
ρl

Zρl

)2
)

, (21)
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where Z+
ρl

=
∑

i∈ρl
wi[y = +1], Z−

ρl
=

∑
i∈ρl

wi[y = −1] are probability masses
for classes. Let us write two representations (22), (23) for the products — mass
times Gini error — that will be useful later on:

Znεgini
n

=
∑

l

(
Zρl

−
(
Z+

ρl

)2

Zρl

−
(
Z−

ρl

)2

Zρl

)
, (22)

=
∑

l

Zρl

(
1−

(
Z+

ρl

Zρl

)2

−
(

1−Z+
ρl

Zρl

)2
)

=
∑

l

Zρl
2
Z+

ρl

Zρl

(
1−Z+

ρl

Zρl

)

︸ ︷︷ ︸
εgini

ρl

. (23)

We now write out the exponential error and show its connection to Gini error.

εexp
n

=
∑

l

Zρl

Zn

εexp
ρl

=
∑

l

Zρl

Zn

(
Z+

ρl

Zρl

e
− 1

2 log
Z+

ρl

Z
−
ρl +

Z−
ρl

Zρl

e
1
2 log

Z+
ρl

Z
−
ρl

)
=

∑

l

Zρl

Zn

(
Z+

ρl

Zρl

·
√

Z−
ρl

Z+
ρl

+
Z−

ρl

Zρl

√
Z+

ρl

Z−
ρl

)
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l

Zρl

Zn

2

√
Z+

ρl

Zρl

Z−
ρl

Zρl
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l

Zρl
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2

√
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ρl

Zρl

(
1 − Z+

ρl

Zρl

)
. (24)

Znεexp
n

=
∑

l

Zρl
2

√
Z+

ρl

Zρl

(
1 − Z+

ρl

Zρl

)

︸ ︷︷ ︸
εexp

ρl

=
∑

l

Zρl
2

√
1
2
εgini

ρl

=
∑

l

Zρl

√
2εgini

ρl︸ ︷︷ ︸
εexp

ρl

. (25)

We aim at showing that Zρl
εexp

ρl
� Zul

εexp
ul

, which means that if one removes
from a leaf the examples that are not in the m-subset but keeps the tree parame-
ters fixed then the mass times error product must decrease or stay unchanged.
We remind that ρl = ul ∪ ūl and n > m, see back to definitions (14). Let us
observe the square of Zρl

εexp
ρl

using a representation from (25) for the leaf error.

(
Zρl
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)
(26)

Note the similarity of the last expression to a Gini representation (22).
We shall now expand (26) taking advantage of the following lemma (for

straightforward algebraic proof see [1]) true for either class label y ∈ {−1,+1}:

−
(
Zy

ρl

)2

Zρl

= −
(
Zy

ul
+ Zy

ūl

)2

Zy
ul + Zy

ūl

� −
(
Zy

ul

)2

Zul

−
(
Zy

ūl

)2

Zūl

. (27)
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Therefore, we have:

(
Zρl

εexp
ρl

)2

� Zρl
2

(
Zul

+ Zūl
−

(
Z+

ul

)2

Zul

−
(
Z+

ūl

)2

Zūl

−
(
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)2

Zul

−
(
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2
(
Zul

εgini
ul

+ Zūl
εgini

ūl

)
� Zρl
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�
(
Zul

)2 2εgini
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. (28)

The equality pass comes from grouping odd and even terms using representations
(22). Hence, finally: Zρl

εexp
ρl

� Zul

√
2εgini

ul

= Zul
εexp

ul
. �
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Abstract. Performing instance selection prior to the classifier training
is always beneficial in terms of computational complexity reduction of
the classifier training and sometimes also beneficial in terms of improving
prediction accuracy. Removing the noisy instances improves the predic-
tion accuracy and removing redundant and irrelevant instances does not
negatively effect it. However, in practice the instance selection methods
usually also remove some instances, which should not be removed from
the training dataset, what results in decreasing the prediction accuracy.
We discuss two methods to deal with the problem. The first method is
the parameterization of instance selection algorithms, which allows to
choose how aggressively the instances are removed and the second one is
to embed the instance selection directly into the prediction model, which
in our case is an MLP neural network.

1 Introduction

There are two purposes of instance selection: to decrease noise in the data and
to reduce the data size. One of the most popular instance selection methods
for noise filtering is ENN (Editted Nearest Neighbor) [21] and for data size
reduction is CNN (Condensed Nearest Neighbor) [9]. Although ENN and CNN
as single methods are quite simple and there exists methods that perform better
both in terms of noise filtering and data compression, when they are applied
sequentially ENN followed by CNN they produce exceptionally good results.
First ENN removes noise, this is the instances that are wrongly classified by k-
NN. Then CNN removes redundant instances in the following way: first it selects
one instance and then if the next instance is correctly classified by k-NN using
the already selected instances as the training set, it is considered redundant and
not selected. If classified incorrectly it is added to the selected instances. Then
the process repeats with each remaining instance. The ENN and CNN algorithms
are well described in the literature [9,21] and in [12,17,18] the interesting reader
can find a detailed comparative study of many instance selection methods.

The standard instance selection methods are rather filters than wrappers
and thus have no real-time adjustment to the classifier performance. In practice
there are two problems: some of the instances that should be selected do not get
selected and some of the instances that should not be selected get selected. That
is because ENN and CNN consider only the local neighborhood of each instance
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 610–620, 2016.
DOI: 10.1007/978-3-319-39378-0 52
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and do not take into account how the classification model works. What it means
in practice is that there is no guarantee that the set of selected instances will be
the optimal one for a given classifier.

Recently there have been several approaches to improve instance selection
methods by addressing some of their shortages. In [2] Antoneli et al. presented
a genetic approach using a multiobjective evolutionary algorithms for instance
selection. In [8] Guillen et al. presented the use of mutual information for instance
selection. Their proposition was based on a similar principles as the k-NN based
instance selection, but after finding the nearest neighbors of a given example
instead of using k-NN to predict its output value, the mutual information (MI)
between that example and each of its neighbors was determined. In the next step
the loss of mutual information with respect to the neighbors was calculated. If
the loss was similar to the example neighbors then this example was selected
to the final dataset. The method was experimentally evaluated on artificially
generated data with one and two input features. Then in [19] the idea was
extended to instance selection in time series prediction.

In [16] a class conditional instance selection (CCIS) was presented. CCIS
creates two graphs: one for the nearest neighbors of the same class and one
for other class instances than the current example. Next a scoring function,
which is based on the distances in graphs, is used to determine the selected
instances. In [3] the authors proposed to use ant colony optimization with one
classification model used in the instance selection process and another model as
the final predictor. In [1] the authors analyzed how instance and feature selection
influence neural network performance. In [4] a method to reduce the number of
support vectors in SVM training was considered.

From our perspective, very interesting ideas were presented in [20]. The
authors designed an instance selection method that took into account the deci-
sion boundaries of neural networks like distance from decision boundary, dense
regions and class distributions and they proposed an instance selection method
adjusted to neural network properties. Their method consisted of two parts:
removing far instances and removing dense instances. In the far part they calcu-
lated the distance between each instance and the closest instance of the opposite
class (the far distance) and removed the instances for which the distance was
farther then the average + standard deviation of the far distances. In the dense
part they calculated the distance between each instance and the closest instance
of the same class (the dense distance) and iteratively removed the instances for
which the distance was closer then the average of the dense distances, starting
from those with the smallest dense distance and updating the average dense
distance at every iteration.

We discuss two methods to deal with the problem. The first method is the
parameterization of instance selection algorithms, which allows to choose how
aggressively they remove the instances and the second one is to embed the
instance selection directly into the prediction model, which in our case is an
MLP neural network. To use the MLP neural network for an on-line instance
selection no adjustments are required to the error function, neuron transfer func-
tions, to the learning algorithm or to the network architecture.
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2 Instance Selection Prior to Neural Network Training

The common problem with instance selection performed before classification
is reduction of the classification accuracy. That is true not only for ENN and
CNN but also for many other instance selection methods. That may be not of
a great concern if the purpose is primary to reduce the dataset size and the
accuracy reduction is very little. However, frequently the objective is to obtain
high accuracy at the first place and then the possible data size reduction.

As the instance selection method we use a modified ENN (Editted Nearest
Neighbor) followed by a modified CNN [9]. The choice of the instance selection
algorithms is dictated by their simplicity and by the fact that when whey are
both applied in this order, they perform exceptionally well. First ENN removes
noise, then CNN removes redundant instances. k-NN can be used as the final
prediction algorithm and as the internal CNN and ENN algorithm. In both cases
it works best with an optimal k value, which according to our experiments for a
broad range of problems can be set to k= 9 and moreover this algorithm is not
very sensitive to little changes of k. For that reason in all the experiments we
will keep k= 9 (at the beginning of CNN, when the number of selected instances
is fewer than 9 we use all the already selected instances as the neighbors).

However, to address the above mentioned problem we must make some mod-
ifications to ENN: we will require that in order for an instance to be rejected by
ENN, it must have different class than more as m=5 of its neighbors, which will
cause only more outlying instances to be removed. If we want to reject even more
outlying instances, we can rise the requirement to m=7 neighbors of a different
class or even 8 or all 9 (which will be the weakest instance selection, preserving
most instances in the selected set).

In a similar way, we can apply modifications to CNN to require a different
numbers of the instance neighbors to belong to the same class to reject the
instance. The more instances of the same class are required the weaker the
selection is, resulting in rejecting only the instances situated far from the decision
boundaries (and thus very few or none of their neighbors belong to a different
class). That is exactly why we need to perform noise reduction first. If some noisy
instances, this is instances of a different class surrounded by the current class
instances, are still present, they would not allow us to successfully remove the
redundant data points, especially when we rise the requirements for the number
of the same class neighbors.

All possible values of m=5, 6, 7, 8 and 9 for ENN and CNN lead to 25
different combinations. Since there is no place in the paper to show the results
of all 25 combinations, we selected four of them in such a way that m for ENN
(menn) equals m for CNN (mcnn) and both m increase from 5 to 8. We found
these four combinations to be most representative, well reflecting the general
trend and the easiest to interpret.

The modified ENN+CNN algorithm pseudo-code is presented in Algorithm1,
where T is the original training set, P is an intermediary set, which is an output
in ENN and input to CNN and S is the selected training set. C̄(xi) is the class
of a at least mENN or mCNN nearest neighbors of the instance xi reduced to



Instance Selection Optimization for Neural Network Training 613

Algorithm 1. The modified ENN+CNN algorithm
Require: T, k,mENN ,mCNN

n ← |T|;
P ← T;
for i = 1 . . . n do

C̄(xi) =kNN(k,mENN , (T \ xi),xi);
if C(xi) �= C̄(xi) then

P ← P \ xi

end if
end for
S ← empty;
S ← S ∪ x1;
flag ← true
while flag do

flag ← false
n ← |P|
for i = 1 . . . n do

k0 = min(k, sizeof(S))
m0 = mCNN · k0/k
C̄(xi) =kNN(k0,m0,S,xi)
if C̄(xi) �= C(xi) then

S ← S ∪ xi;
P ← P \ xi

flag ← true
end if

end for
end while
return S

two-class problem: the same class vs. different class, C(xi) is the class of the
instance xi, k is the k in k-NN. S ← S ∪ xi means that the vector xi is added
to the set S and P ← P \ xi means that vector xi is removed from the set P.
k0 and m0 are used to set k and mCNN to smaller values when the number of
already selected instanced in the new training set is less than 9.

3 Instance Selection Embedded in Neural Network
Training

It seems reasonable to embed instance selection in the classifier learning process.
One advantage is solving the problem of different decision borders of k-NN and
a neural network. Another advantage is that in some cases the instance can be
not removed totally, but be treated differently in the model learning - as the
less liable example and thus less contributing to the model parameters. Still
another advantage is the possibility of assessing during the network training
how the selection influences the results and adjust the selection accordingly.
The drawback of this approach may be in some cases higher computational
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complexity of the classification process than the joint complexity of the prior
instance selection followed by learning the classifier on the reduced set. This is
especially evident for large datasets, where k-NN can be efficiently accelerated
by methods like k-means clustering and then searching for the nearest neighbors
only within one cluster, KD-Tree [5] or Local Sensitive Hashing [11].

We use an MLP neural network with hyperbolic tangent transfer function
and we have as many neurons in the output layer as the number of classes. Most
of the existing neural network training algorithms can be used. When a vector
is given to the trained network inputs, the output neuron associated with this
vector class gives signal = 1 and all the other output vectors associated with
different classes give the output signal = -1. The error for a single vector xi used
for instance selection is given by the following formula:

Error(xi) =
n∑

i=1

(yai − yei)2 (1)

where n is the number of classes, which equals the number of output layer
neurons, yai is the actual value of i − th output neuron signal and yei is the
expected value of i− th output neuron signal (which is 1 if the current instance
class is represented by the i − th output neuron and 0 otherwise). We assume
that a vector is classified correctly if the neuron associated with its class gives a
higher signal than any other output neuron. If an instance of the training set is
classified incorrectly by a trained neural network, the error that the network gives
as a response to that instance is high (Error(xi) > maxError). On the other
hand if an instance is classified correctly and is situated far from a classification
boundary (because of the hyperbolic tangent transfer function), the network
error obtained for that instance will be very low (Error(xi) < minError).
Thus a solution is to remove from training set T the instances that produce very
high and very low errors. The pseudo-code for the embedded instance selection
is shown in Algorithm 2.

Algorithm 2. Instance selection embedded in neural network training
Require: T,minError,maxError

n ← |T|;
train the network on T
for i = 1 . . . n do

if Error(xi) > maxError or Error(xi) < minError then
T ← T \ xi

end if
end for
if restart = true then

retrain the network on T from random weights
else

continue training the network on T from the current weights
end if
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There are several parameters in this instance selection. The first two para-
meters are the maxError and the minError. The next one is the time point
in the network training, when the errors should be calculated and the instances
rejected. And the final one is what to do after the instances get removed: train the
network further from the current point or start the training anew. For maxError
we use a value be greater than 1 and smaller than 2 due to the shape of hyper-
bolic tangent for two class problems, but for multiply classes it may be set to
higher values.

The rationale behind using the maxError and not simply rejecting all mis-
classified instances, is that the instances that are situated close to the decision
boundaries maybe frequently misclassified, although it is rather due to the neural
network properties than due to the instances being noisy. However, if a single
instance of one class is in the middle of different class instances then it is surely
noise and the error value produced by the network for such an instance will
be higher then for the misclassified border instances. However, the minError
depends more on the neuron weights values and thus a better solution than
using a constant value is to use a relative value in relation to the error the net-
work makes on other examples. We use for minError some percentage of the
average error values of all correctly classified instances of a given class. In the
experiments we use four different values of maxError and minError

While removing irrelevant examples as those, on which the neural network
makes the least error, the examples that get removed are those far from the
decision border, so those that are not necessary to determine the decision border
and thus the decision border remains intact. But while removing them with CNN
we have no guarantee that only the irrelevant ones will get removed, because that
may depend on the order of the instances being considered. Let us illustrate this
in Fig. 2.

Fig. 1. Left: MLP neural network decision border with minError and MaxEror shown
for the class for which an expected neuron signal is -1. Right: Examples of decision
borders that make some instances to be incorrectly classified by k-NN.
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Fig. 2. The instances of Iris dataset selected by CNN (dot inside circle), by neural
network (cross) as those with low error values and by both (big solid circle). Neural
network selected instances more correctly at the border of red and green class and of
blue class, only failed to select border instances of the green class from the blue class
side. (Color figure online)

In the case of noise reduction also different examples may get removed by
ENN and the neural-network embedded noise reduction, however in this case the
difference is not so dramatic, but rather determined by the decision boundary
shape of particular learning algorithms. In k-NN, which is the baseline algorithm
for ENN mostly the edges get smoothed and narrow stripes get removed (see
Fig. 1. right). Neural networks are able to accommodate more complex decision
boundaries and particularly if the neuron weights have enough big values and
the problems shown in Fig. 1. right can be eliminated, although on the other had
it may lead to over-fitting if there are many neurons and large weight values. To
overcome this weight pruning methods can be used.

4 Experimental Evaluation

We conducted the experiments with several datasets from the UCI Machine
Learning Repository [6]. The datasets were selected to cover different levels of
noise, of leaning difficulties (the neural network could achieve the prediction
accuracy from 0.6 to 1.0 depending on the dataset) and different number of
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classes. In this way the approach can be tested for various types of problems.
The following dataset were used: Banknote Authentication (4 features, 1372
instances, 2 classes), Climate Simulation Crashes (4 features, 1372 instances, 2
classes), Image Segmentation (19 features, 2310 instances, 7 classes), Satellite
Image (36 features, 6435 instances, 7 classes), Vehicle (18 features, 846 instances,
4 classes) and Yeast (8 features, 1484 instances, 10 classes).

We implemented the algorithms in C# language. As the network learning
algorithms we use VSS [13], which uses a search-based approach for finding the

Fig. 3. Processes used to evaluate and validate dataset assessment based on compres-
sion. Either ENN and CNN blocks are used or the instance selection embedded in a
neural network training.

Table 1. Classification accuracy

method/dataset Banknote Climate ImgSegm SatImage Vehicle Yeast

no selection 99.5 95.1 96.4 90.6 81.6 60.0

ENN-CNN 5/9 97.5 94.0 92.3 86.5 81.7 55.7

ENN-CNN 6/9 98.2 94.3 94.6 87.8 82.0 55.9

ENN-CNN 7/9 99.8 95.1 95.7 90.2 78.4 56.2

ENN-CNN 8/9 98.2 94.5 96.6 89.8 80.3 59.0

NN-inc 0.02/1.7 99.4 94.0 94.8 89.3 76.1 59.3

NN-inc 0.05/1.6 99.8 92.2 87.3 91.0 77.2 55.2

NN-inc 0.10/1.5 - 90.8 81.6 91.6 78.1 -

NN-inc 0.20/1.4 - 87.0 70.3 90.2 73.4 -

NN-res 0.02/1.7 99.8 96.2 94.8 92.3 81.1 59.0

NN-res 0.05/1.6 99.8 96.0 94.3 92.4 80.6 56.5

NN-res 0.10/1.5 - 94.8 93.6 91.6 78.1 -

NN-res 0.20/1.4 - 93.4 80.1 91.3 81.4 -

ENN-CNN std. dev 1.3 2.3 1.2 1.9 2.8 3.5

NN std. dev 1.6 4.0 4.4 2.0 3.5 4.5
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Table 2. Ratio of selected instances to all instances

Method/Dataset Banknote Climate ImgSegm SatImage Vehicle Yeast

No selection 100 100 100 100 100 100

ENN-CNN 5/9 3.03 2.80 12.0 10.4 20.7 17.2

ENN-CNN 6/9 3.91 9.18 19.0 11.9 40.4 22.0

ENN-CNN 7/9 5.10 18.5 27.2 18.0 40.3 25.9

ENN-CNN 8/9 7.22 32.9 35.6 35.3 62.4 38.4

NN 0.02/1.7 22.1 11.6 14.8 88.2 77.1 33.3

NN 0.05/1.6 17.8 7.96 9.75 63.7 53.0 24.2

NN 0.10/1.5 − 5.64 7.17 41.7 42.6 −
NN 0.20/1.4 − 2.53 4.37 28.1 34.5 −
ENN-CNN std. dev 1.6 1.5 0.6 1.8 0.9 4.0

NN std. dev 1.6 0.6 0.6 1.9 1.5 4.5

optimal path downwards the error surface [14]. The software can be downloaded
from [7]. Also some tests were performed in RapidMiner [10]. We run each test
in five 10-fold crossvalidations (50 runs together). Figure 3 shows the diagram
representing the experimental setup, where k=9 the values m for ENN and CNN
are the same and change from 5 to 8. The same setup is used for neural network
based instance selection and in this case the ENN and CNN blocks are not used.
In this case the instance selection was performed at the final stage of the network
learning. Then the network learning was either restarted (res in Tables 1 and
2) from random weights or the network trained further “incrementally” (inc in
Tables 1 and 2) from the point where the selection was done - in both cases using
the selected instances only.

The standard deviations of accuracy were relatively constant for each dataset
and instance selection parameters, so they are reported once in the bottom row
of Tables 1 and 2 as the average standard deviation of the 50 runs (five 10-fold
crossvalidations) of each set of instance selection parameters. In ENN+CNN
selection the first value is m (here m = mENN = mCNN ) and the second k.
For neural network based selection the first value is minError and the second
is maxError. maxError is presented in absolute values and minError in the
fraction of the average error value.

5 Conclusions

It was in several cases possible to obtain higher classification accuracy than
without instance selection using about 20–30% of the training vectors and always
to significantly reduce the dataset size with only a very little accuracy drop -
much less then caused by ENN+CNN with standard parameters. However, other
experiments showed that ENN with default parameters is very good at removing
noise artificially added to the training dataset and thus improving results on such
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data. However, in the case of the datasets used here, ENN seems to perform too
strong instance selection and in particular it removes too many instances situated
close to decision boundaries, what shift the decision boundaries causing decrease
in the classifier performance. Increasing the required m we can get removed only
the instances situated inside other class and thus only noise is removed and the
decision borders are left intact. ENN selection does not have much impact on
the data size reduction. In the experiments ENN usually reduced the data size
about 5 % and CNN up to 85 %. Also standard CNN selection tends to shift
the decision boundaries due to the removal of the instances situated close to the
boundaries. And again increasing m from the default 5 to 7 or to 8 helped, but
the total number of selected instances at least doubled. However, if decreasing
the dataset size is as important as accuracy improvement, the position of the
class boundary can be determined first, and then more aggressive elimination can
be performed for the instances that are far from the boundary and less aggressive
to those that are close. Some of the ideas (the “far” instances) presented in the
introduction that were proposed in [20] may be useful. Another good idea is to
embed instance selection in the classifier, as was discussed in the paper.

Instance selection performed during the neural network training usually
allowed for achieving higher classification accuracies with a comparable num-
ber of instances. Thus for the size of datasets presented here it seems to be a
good solution. On the other hand, the time of the whole process was significantly
longer. It was about 3-4 times faster to perform instance selection first and then
to train the network only on about 20 % of selected instances. With the increase
of the dataset size usually higher percentage of instances can be rejected thus
making the difference even bigger. The Yeast dataset is an especially difficult
problem with many classes and probably with high noise level. In that case also
the maxError parameter did not work as expected. That was, because the net-
work error exceeded the value of 2 for many vectors and probably the maxError
should be set to a higher value for such datasets. However, how to determine
the optimal value in such cases requires further investigations. The minError
already realized the “far” instances idea and it worked quite well. In general
a similar solution is used in Support Vector Machines, where vectors that are
close to the decision border are of special consideration. In some cases, when one
vector is removed as being below the minError, another vector that is left in
its proximity should be counted with an increased coefficient while calculating
the network error in order to prevent shifting of decision borders.

In summary we were able to improve the neural network classifier perfor-
mance and to observe several interesting properties of the instance selection
process. A further research examining all the parameters individually on a large
number of datasets is probably going to help develop more effective methods.
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Abstract. This paper presents implementation of the system for sub-
ject classification of text documents based on the Apache Spark distrib-
uted computing framework. Classification of text documents starts with
generation of high-dimensional feature vectors from documents; the task
realized with methods and tools for natural language processing. The
next steps involve reduction of dimensionality of feature vectors and
training classifiers. In the paper we show how these consecutive steps
can be realized on the Apache Spark platform dedicated to distributed
processing of big data. We illustrate the proposed method by a sample
classifier aimed to predict subject category of a document in English-
language Wikipedia.

Keywords: Text subject classification · Natural Language Processing
(NLP) · Machine learning · Apache Spark

1 Introduction

Automatic classification of text documents has recently become an important sub-
field of text mining. Its popularity and importance is on one hand due to growing
availability of large collections of text documents in electronic format and on the
other on the need to effectively manage documents in these collections.

Some of the most prominent applications of text classification include subject
categorization of scientific papers or news articles, identification of authorship of
documents, analysis of sentiment of reviews or comments, recognition of spam
e-mail, automatic categorization of customer e-mail messages or tech-support
requests, etc. [1–3].

Initial approaches to text categorization were based on expert knowledge
encoded in the form of sets of rules on how to assign documents to given
predefined classes. Although this approach is still attempted in some real-life
applications, recently an alternative methods has emerged based on automatic
induction of models/rule sets for text classification given a training collection of
documents with known categories. This approach uses methods of natural lan-
guage processing (NLP) and methods of machine learning (ML), [4,5], and can
be broadly outlined in the following steps: (i) Documents in the training collec-
tion are represented by vectors of features; this typically yields high-dimensional
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 621–630, 2016.
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training data. (ii) Dimensionality of feature vectors needs to be reduced. (iii)
Classification models are built based on the training data and evaluated based
on independent data. Methods of NLP are commonly used to successfully imple-
ment step (i) of this procedure, i.e. to provide relevant document representation,
but they can also facilitate dimensionality reduction of the representation which
is done in step (ii).

The main objective of this work is to demonstrate how this procedure,
i.e., steps (i) through (iii), can be realized using the Apache Spark distributed
processing framework [6]. Distributed realizations of various text mining tasks
have recently attracted a lot of interest, [7], which is motivated by the fact that
collections of documents to be processed are becoming very large, comprising
millions of documents, and are often available in distributed environments, such
as the Web.

In this work we want to answer the specific questions: how native mecha-
nisms of Apache Spark can be used to distribute NLP-based preprocessing of
text documents used to generate feature vectors and, secondly, what library for
distributed machine learning tasks can be used to train models for document cat-
egorization. To illustrate this, we present a distributed system for subject (topic)
classification of text documents obtained from English language Wikipedia [17].
The system is implemented in Python, with the NLP tasks realized with the
NLTK toolkit, [8,12], and MLlib library for machine learning on Apache Spark.

The structure of the paper is as follows. In the following section we provide the
details on the NLP-based procedure to generate feature vectors representing the
text documents. This task is implemented in our system using the NLTK tools
for the English language. In Sect. 3, we present the mechanisms of distributed
processing in Apache Spark framework that we used in our system. Next in
Sect. 4, we present the distributed version of text classifier based on Apache
Spark. Finally, in Sect. 5 we report scalability and accuracy of our classifier
deployed on a sample cluster on the Amazon MapReduce service.

2 Subject Classification of Text Documents

In this section we outline the supervised-learning approach to subject classifi-
cation of text documents. The specific challenge related to this task is how to
represent documents in the process of training prediction models for text cat-
egorization. Generation of effective representations of documents (i.e. feature
vectors) can be done with application of NLP methods.

We assume that a collection of m documents is given, (d1, c1), ..., (dm, cm) as
the training set, where each of the documents di has a category ci ∈ C assigned.
The task is to build the classifier f(d) → C and to estimate the expected pre-
dictive performance of f for the new data.

The task can be solved in the following procedure.

1. Each of the documents is tokenized into sentences and sentences are tokenized
into words. This can be done with the NLTK tokenization methods for English
(example shown in Sect. 4).
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2. Words in each of documents are normalized by identifying base, i.e. the dictio-
nary forms for each of the words. This process is referred to as lemmatization
and can be implemented by the NLTK WordNetLemmmatizer class. Technically,
lemmatization requires that word sense disambiguation is performed, based on
probabilistic models encoded in the lemmatizer class, which yields the gram-
matic class of the word, including its part of speech (POS) designation.

3. List of words included in each of the documents can be reduced by filter-
ing out stopwords (which include such words as conjunctions, pronouns and
other common words which are unlikely to be relevant for topic classification).
Optionally, further reduction can be tried by filtering by POS tags, leaving
only presumably most meaningful words such as nouns, verbs or adjectives.

4. We estimate the vectors of features to represent each of the documents using
the bag-of-words approach [4]. Technically, if W denotes the set of n different
words (base forms) in the collection D of m documents in the training set, as
left by the filtering procedure in the previous step, then a vector of features for
a document di, i = 1, ...,m is defined as [fik], k = 1, ..., n, where fik denotes
the frequency of word wk in the i-th document (referred to as term frequency).

5. Elements of the feature vectors are commonly weighed [vkfik], k = 1, ..., n,
where the weight vk = log2(

1
P (wk)

) + 1, (with P (wk) denoting the proportion
of documents in the training collection D which include the term wk) is knows
as the inverse document frequency. The purpose of this is to strengthen the
terms which are likely to be most relevant for classification. The resulting
terms are then called term frequency-inverse document frequency, or TF-IDF.

6. Using the feature vectors generated from the m documents, along with the
known categories c1, ..., cm, predictive models are trained. Several approaches
to this were reported in literature, ranging from the SVM algorithm to non-
parametric methods, see e.g., [9–11].

7. Estimation of predictive performance of the trained classifiers is commonly
done empirically, by comparing the actual vs predicted categories as observed
on the testing dataset, and is quantified using the following measures of qual-
ity of prediction of class ci: precision P = TP

TP+FP , recall R = TP
TP+FN (also

referred to as sensitivity), specificity S = TN
FP+TN , where TP , FP , TN , FN

denote the number of true positive, false positive, true negative or false neg-
ative events, respectively, when analyzing results of prediction of documents
of class ci by the classifier.

A slightly simplified variant of this procedure was later implemented in Sect. 4
on the Apache Spark distributed processing framework (the simplification was
that the orthographic rather than the base forms of words were used to form the
set W ).
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3 Apache Spark Architecture

3.1 Review

Apache Spark is a distributed computing framework which performs operations
on working data sets. These data sets are called resilient distributed datasets
(RDDs).

Apache Spark’s programming model is based on processing RDD objects in
an acyclic data flow manner, using a set of operators called transformations. This
model provides operations derived from functional programming like mapping,
filtering, set unification, etc. It gives ability to easily split the computation that
would be normally performed in a single thread way over multiple cluster nodes.
To gain maximal scalability, at first the data should be placed in distributed file
system like Hadoop Distributed File System (HDFS) [15] or Amazon S3.

Apache Spark is written in Scala and is run on Java Virtual Machine. How-
ever, it also supports Python which was used for implementing the text classifi-
cation algorithm presented in this article.

Apache Spark was developed to overcome the issues of Apache Hadoop.
Hadoop was a previously developed distributed computing framework, based
on the MapReduce paradigm which was introduced by Google [13]. The main
drawback of Hadoop is that it always performs hard drive read/write operations
for each MapReduce task. On the contrary, Apache Spark can cache the data in
the memory and only if data do not fit in memory, it serializes RDD structures
and stores them on the hard drive.

It is also problematic that the Apache Hadoop provides only batch mode
of processing data, whereas Apache Spark uses micro-batching technique for
processing data using internal Spark Streaming library or external Apache Storm
framework [16]. This gives the ability to run applications interactively.

In the first phase of data processing Apache Spark creates RDD objects from
loaded data. The order of the operations on RDD sets is transformed into direct
acyclic graph, scheduled and processed in parallel by the cluster worker nodes.
The main program - driver controls the evaluation.

Apache Spark has native libraries that support common Machine Learning
algorithms for Clustering, Classification and Data Dimensionality Reduction,
which are optimized for RDD datasets processing. Most of them can be used in
Python programming language.

3.2 Apache Hadoop Vs Apache Spark in Machine Learning

Apache Spark supports parts of Apache Hadoop environment, for instance the
Apache Hive data warehouse solution. It also can use Hadoop Distributed File
System (HDFS) and can use Hadoop YARN resource manager.

It is very common in Machine Learning algorithms that the input dataset is
read multiple times, for instance when testing different algorithms or providing
input data for the model training algorithm. This is called iterative process-
ing. Apache Hadoop has the disadvantage that is not efficient for this type of
computations.
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In such situations latency is expected to appear due to disk reloading oper-
ations. The problem will also occur when performing interactive analytics by
Apache Pig and Apache Hive SQL interfaces. All these issues are overcome in
Apache Spark as a result of the new approach, based on caching temporary RDD
objects in memory.

4 Distributed Text Classifier of Apache Spark

The main idea of this work is to show the scalability of Distributed Text Classifier
using Apache Spark and Natural Language Processing Toolkit library (NLTK).

It should be stressed that the approach we show here is very generic, as
the user can use in a similar manner virtually any Python libraries, not designed
for distributed processing, to achieve processing distribution with Apache Spark.
This is possible once the data are stored in resilient distributed datasets (RDDs).
RDDs are very similar to the distributed memory concept. From the point of
view of a Python developer, RDDs resemble lists, however they cannot be directly
accessed and modified. This is the main difference between distributed memory
and RDDs. Only after performing operations like collect() we can gather the
data from distributed datasets. This can be problematic from the debugging
perspective, however it provides the high performance for distributed processing
on the cluster.

As described in Sect. 2, the text classifier is based on the Bag-of-Words model
which is used for representing feature vectors in Machine Learning algorithms.
Each number in the vector represents the frequency of occurrence of a word
from the Bag-of-Words model. Training and reference vectors include also a
value which codes the category of the article. The data used in the process
of classifier training and was taken from the English-language Wikipedia. This
choice was convenient as the Wikipedia data is free, easy to access and is readily
categorized.

Apache Sparks reads the input text files from the HDFS and puts them into
the RDD objects. Each line of a file is read as a string an becomes part of a RDD
object. For the purpose of simplifying further processing, in our system each
article was previously converted into a one-line string. This approach provides
an easy way to process the text data and convert the documents into feature
vectors. The reason for this is that Apache Spark reads the data from files to
RDDs by splitting the input file one-by-line to RDDs elements. To optimize the
usage of memory provided for RDDs, all the text files were split into 1MB chunks
containing a few hundred articles each.

Now we explain how distributed processing of data stored in RDDs is realized;
to illustrate this we focus on tokenization. The standard (non-distributed) way
is to use the NLTK word tokenizer to obtain tokens from text that can be next
used as features. In Apache Spark, we can use the same functions and methods
to do this in distributed way. However, it is important to keep in mind that the
data will be processed on cluster and how the computing will be distributed.
It means that there are restrictions depending on the size and settings of the
cluster.
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The mechanism to provide distributed processing is based on operations like
Map(), Filter(), etc. It means that on each of the RDD elements the same oper-
ation will be performed. In our text classifier system, each article is tokenized
using the Map operation combined with a Python lambda function that takes
as an argument the element of RDD and performs the provided operation on it,
as illustrated by the following sample code.

Listing 1.1. Example of performing file tokenization using NLTK RegexpTokenizer
and RDD object Map() function

import pyspark

import nltk

sc = pyspark.SparkContext(appName="MyApplication")

rdd = sc.textFile(’path/to/file’)

regexp_tokenizer = nltk.RegexpTokenizer("[\w ’]+")

rdd.map(lambda x: regexp_tokenizer .tokenize(x))

tokens = rdd.collect ()

Using this mechanism, we can achieve full distribution of the code for gen-
erating feature vectors, which is the first phase for document classifier. Exactly
in the same way the remaining operations outlined in Sect. 2 were distributed,
including [14]:

– sentence tokenization for each articles,
– word tokenization,
– conversion words to lowercase,
– hashing the words,
– calculating TF-IDF statistic and creating Bag-of-Words model,
– converting words hashes into frequency of words appearance vectors,
– split of vectors into training and testing data.

Most of the operations were done directly on RDDs, however during the
generation of Bag-of-Words model the collect() operation was performed. It was
necessary because only a part of tokens with highest TF-IDF values were stored
as intermediate results in a classical, non-distributed form as constants. These
words were then compared with tokens in RDDs and the number of occurrences
of the words in subsequent documents were recorded as elements of the feature
vectors.

To gain the advantage of distributed environment, we used the Apache Spark
MLlib library which implements several machine learning algorithms such as
Naive Bayes Classifier, Decision Tree and Random Forests for building the clas-
sification model.

5 Example

The document classifier was deployed on Amazon MapReduce service. The
research was performed on m3.xlarge instance based on Intel Xeon E5-2670 run-
ning at 2.6 GHz with 15 GiB Memory and 2×40 GB SSD storage. This instance
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provided 4 virtual CPU cores for each cluster node. Firstly, the tests were started
with 1 Master Node instance and 2 slave nodes. After that, the cluster was
extended to 4 slave nodes.

The instance was tested in YARN client cluster mode, because this is the
only one that is supported for Python. In tests the number of the executors
was changed as well as the number of cores per each executor. Executors are
the processes launched on worker nodes. They run tasks on RDD objects and
keep data in the memory or disk storage. The number of cores is the number of
concurrent tasks that each executor can run.

The classifier was verified using 15 MB of data. In the training data there were
three categories: Art, History and Law, with ca. 5 MB of data per category. The
categories were split randomly with weights 75 % and 25 % to generate training
and testing vectors. The efficiency of classifier was calculated as an average of
14 measurements.

The Naive Bayes algorithm was used with default parameters within MLLib
from Apache Spark 1.4.1. The Decision Tree used Gini index for calculating node
impurity. The Random Forests algorithm was used to generate 2 sub-trees. Bag-
of-Words model used 200 tokens. Predictive performance of the different models
is summarized in the following tables.

In terms of accuracy, the best was the Naive Bayes algorithm (Table 1).
The worse accuracy was observed for the Decision Tree and Random Forests.
The result can be improved by increasing the number of input data and size
of the Bag-of-Words vectors. The classifier had problem with History category
(Table 2). We can see that there is high misclassification rate in all algorithms
and sensitivity below 50 %. The result can be improved by increasing the size of
data and length of feature vectors.

Table 1. Accuracy results

Algorithm Accuracy [%]

Naive Bayes 75.28

Decision Tree 67.90

Random Forests 62.68

Table 2. Classifier parameters for three category classification

Algorithm Naive Bayes Decision Tree Random Forests

Category Arts Hist. Law Arts Hist. Law Arts Hist. Law

Sensitivity [%] 86.99 49.20 78.94 77.69 47.21 70.40 77.09 8.14 80.15

Specificity [%] 76.48 93.78 90.98 76.78 84.06 90.95 71.48 99.21 68.38

Precision [%] 70.46 70.16 84.41 73.39 57.27 85.70 69.53 71.79 66.31

Miss rate [%] 13.01 50.80 21.06 22.31 52.79 29.60 22.91 91.86 19.85
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Fig. 1. Total evaluation times in yarn-client mode for 3-node and 5-node cluster.

The scalability performance of the distributed text classifier was tested by
changing the combinations of number of Apache Spark’s executors and execu-
tor cores (Fig. 1). Amazon Elastic MapReduce provides ability to increase the
number of slave nodes on the working cluster instance. Therefore, the number
of these nodes was changed from 2 to 4. The time of evaluation for the classi-
fier decreased from 750.58 seconds on 1 executor and 1 executor cores to 251.87
seconds 4 executors with 2 cores. Afterwards, the result further improved on
4-slave node cluster as it changed to 177.14 seconds. We can see that the result
was almost 3 times better in the 2-node approach and 4 times better in 4-node
tests as compared with the single-thread executor evaluation.

As we can see, it is also interesting to realize that to gain the full performance
it is important to properly set the cluster and the settings depend on its size.

6 Conclusions

In this work, we demonstrated the distributed version of the text-mining process
used to build a model for document topic categorization. Our approach is similar
to the previously proposed system based on the Hadoop distributed processing
framework [14], however, in our system Apache Spark is used in place of Hadoop.
According to our knowledge, it is the first implementation of text categorization
system on Apache Spark in Python using the NLTK framework. We showed how
NLP tasks for text preprocessing and for generation of feature vectors can be
distributed and executed in parallel on subsets of data included in the RDDs by
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the native mechanism of Apache Spark. In our system we also used the Spark
MLLib library for distributed execution of machine learning algorithms. In our
simple preliminary study, we showed that the system scales well on a sample
Amazon Elastic MapReduce cluster.

There are however several limitations in our study that the reader should be
aware of. Firstly, the system was designed for the task of topic categorization of
text documents, as this is what the simple Bag-of-Words method is commonly
used for. This approach does not necessarily guarantee best performance for text
classification tasks such as sentiment analysis or authorship attribution. In these
cases, more subtle characteristics of the text/its language should be included
into the feature vectors (in addition to, or in place of the features generated in
steps 4–5 of the process in Sect. 2). Secondly, even for the problem of text topic
categorization that we focus on in this work, smarter feature vectors could be
constructed, e.g. including collocations in addition to single terms, or using some
additional language knowledge on named-entities or on semantic relationships
between terms. This could presumably lead to information-heavier features and
to further reduction of dimensionality and presumably to better accuracy of
classification. Finally, it will be interesting to further test the proposed system
on much larger volume of text documents and on a larger-scale cluster.
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Abstract. A novel nonparametric model is introduced to model and control
emission densities of a non-ergodic hidden Markov model. Having both mul-
ticlass and one-class classifications simultaneously, for recognizing the best
match between multiple classes and then accepting or rejecting the given input
pattern, is the major characteristic of this algorithm. Also, since the proposed
method creates independent feature spaces and trains by positive samples only,
it allows the vocabulary of trained patterns to grow without any concern about
growing into a negative set (which is a problem with algorithms that use
negative/garbage sets for binary training).

1 Introduction

Temporal manifolds are used in many applications including speech, hand gesture, and
human action recognition. Hidden Markov models (HMM) have been very successful
in detecting temporal events in those applications including speech and gesture
recognition [1–4]. There have been different versions of HMM including the HMMs
with discrete and continuous density emissions [1, 5] used in applications where
observations occur with spatial diversity.

Spatially diverse data in a feature space play a major role for applications such as
recognition of trajectories for flow detection [6, 7] and gesture recognition [4]. Popular
methods used for modelling spatially diverse data include K-means and Gaussian
Mixture Models (GMM) [2]. In a vocabulary of words (e.g. spoken words, trajectories,
or gestures) individual sequences of symbols from an alphabet create individual words
(trajectories, gestures, etc.).

HMMs are particularly good at dealing with temporal variations. A problem with
detection of spatio-temporal patterns is, however, controlling the range of acceptable
spatial variations. It is of significant value to be able to reject a sequence which is
considerably different from the learned patterns. This means that although the HMMs
are good at multiclass classifications, they cannot effectively be used for binary clas-
sification of accepting/rejecting an input sequence. There have been solutions to this
problem in the literature from which creating a garbage model and training a separate
HMM for that is popular [8]. However, in those solutions, local range of variations are
not controlled and, therefore, there is no way for limiting the acceptable range of
deformations. Moreover, in the standard HMM and many variations, having a fixed
alphabet for all words cannot model local variations of each word in a high resolution
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feature space by a set of discrete alphabet codevectors extracted through quantizing the
training set.

The continuous density HMM (CDHMM) [1] may seem to be a good candidate for
modeling the spatial diversity. However, a problem with this method is that there is no
solid way of deciding how to control the range (support) of distributions in the mixture.
The mixture density likelihoods used in this model as the probabilities for observations
cannot provide a solid way of limiting the range of variations since the likelihoods
change smoothly over an area. This is due to the fact that the distance of an observation
from the mixtures affects the likelihood. We need to recognize or reject a sequence.
Therefore, a clear and strong border for acceptable variations is desirable.

In the next section, we present our motivation for the new method in more detail
and some related work in the literature will be discussed. Then the theory of our
proposed non-ergodic HMM (on which a left-right topology is imposed) is presented in
Sect. 3. At the end an evaluation of the algorithm against a large database of
hand-drawn symbols demonstrates advantages and disadvantages of this model against
more standard HMMs popular in the literature.

2 Motivation and Recent Related Work

We are interested in rejecting data points in the areas far from the components of a
mixture model constituting emissions of a hidden Markov model. In CDHMM, the
likelihood of a data point in a given sequence is evaluated through the likelihoods
generated by the components in the emission mixture model mixed by a vector of
coefficients. This causes a soft passage from high likelihood observations to low
likelihoods with a mild slope. Identifying a clear border for accept/reject range of the
mixture is, therefore, a problem. We define a more effective range (support) control tool
by replacing the popular mixture model with a mixture model controlled by a non-
parametric Pitman-Yor process (PYP) in which the discount parameter is controlled by
a Gaussian process covariance regression. It is necessary to understand the role of each
method in controlling the border of accept/reject regions. The Pitman-Yor process
foresees future variations of data points around each component of the mixture model.
It allows large deviations from the established components to be included in the
acceptable range. We will see in the next section that the border defined through this
method alone, when the discount parameter of the PYP is zero, may be too far from the
centers of components and may include too much deviations from the training dataset.
We use Gaussian processes covariance regression to define a surface of covariance
values for adjusting the discount parameter of the Pitman-Yor process throughout the
feature space for controlling the borders.

Since both methods of PYP and GP covariance regression significantly depend on
the training datasets of each model in a vocabulary individually, it will be inappropriate
to allow the components of the emission mixture model to be constructed using the
training sets of all models in a vocabulary as is popular in general context of left-right
HMM in speech, gesture, and action recognition [2]. For example, if the vocabulary
includes five models (words), it is popular in traditional HMM that the training sets of
all these words are employed to quantize a set of codevectors as the alphabet of HMMs,
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therefore, creating a shared alphabet among all the models. However, we want to
control the range of the components of the emission mixtures for each of the models in
the vocabulary individually. It, therefore, is rational that each component be the best
representative of variations of data in the associated area of the feature space for each
model separately. We, therefore, allow only the training set of each individual word in
the vocabulary to participate in constructing the components of the emission mixture
for that model. This makes separate alphabets (set of components) for each word in the
vocabulary. In other words, the feature spaces are individualized for the HMMs when
we use a separate set of component labels for each HMM’s table of emissions. Using
the component labels as an alphabet creates a high resolution feature space as the
mixtures are continuous. However, it has some limitations that need to be addressed
separately. The suggested method is good in supervised contexts meaning the HMMs
and their emission densities need to be fully trained. Also, since the HMMs have fixed
length left-right state topologies that need to be set a priori, in an unsupervised clus-
tering context, where the number of hidden states may vary depending on the models,
this method requires more future work to be suitable.

There are methods reported in the literature that may seem to have some similarities
with the method presented in this paper. Hierarchical Dirichlet Process-Hidden Markov
Model (HDP-HMM) [9] uses a hierarchical Dirichlet process to control both state
changes and emissions of an HMM making it a powerful method for an unsupervised
topic modeling where the hidden states represent topics. Topic changing is, therefore,
modelled by switching from one hidden state to the next one. Non-markovian behavior
of data causes this model to generate unnecessary extra hidden states and rapid
switching between the states. This issue has been addressed in the sticky variation of
HDP-HMM [11] where a global self-transition bias discourages rapid switching of
states. A drawback with this method is the global bias that makes it unsuitable for
state-specific duration dynamics to be learned [24]. Moreover, a major issue with all
these methods is that each topic needs to be modelled with a single hidden state. Also,
in these methods, it is permitted to switch to all other states from an emitting state.
These issues make the methods less desirable in applications where a complex pattern
in the vocabulary requires more than one hidden state in a strict sequence. It has been
demonstrated in [25] that only simple patterns can be modelled with HDP-HMM
methods in the context of complex patterns such as action/gesture recognition. On the
other hand, since the topics are defined through a common alphabet for the HMMs,
variations in each codevector of the alphabet cannot be properly modelled where issues
such as co-articulation causes these variations to be different from pattern to pattern.
These are major issues in the contexts of gesture, speech, and action recognition.
A recent work on dealing with complex words [26] introduces a left-right HDP-HMM
in the context of speech recognition where the topology of the sequence of hidden
states are set a priori. It addresses the problem of complex patterns but the issues of
controlling the range of emissions and rejecting undesirable deviations remain unan-
swered. Also, each codevector in the alphabet is not necessarily the best representative
for the variations of the associated speech unit given that all the models share the same
feature space.
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3 The Algorithm

In this section we present theoretical details of the proposed algorithm by first
explaining a Bayesian nonparametric model (PYP) for learning the mixture model of
each word in the vocabulary and inferring from it. Each mixture constitutes the
emission density of a hidden Markov model for the associated word. The standard
HMM emission table is then modified to accommodate the empty clusters inferred by
the PYPs. Finally, the discount parameters of PYPs are modelled by another non-
parametric method for controlling the borders of emissions.

3.1 Nonparametric Infinite Emissions for HMM

For controlling the range (support) of each distribution of emission densities of the
HMMs a Dirichlet process mixture model (DPM) [10] is imposed on the infinite feature
space. If G is distributed according to a Dirichlet process i.e. G�DPða;HÞ, a draw
from G is hi where hi jG � G for i ¼ 1; 2; . . .;N and the prediction distribution is
given by

pðhiþ 1 ¼ hjh1; h2; . . .; hi; a;HÞ ¼ a
aþN

h hð Þ þ 1
aþN

RK
k¼1Nkd h; hkð Þ: ð1Þ

where Nk is the number of observations at partition k, N is the total number of
observations, hðhÞ is the base distribution’s density, dðh; hkÞ is the Kronecker delta
function, and a is the parameter of the symmetric Dirichlet distribution.

This Equation indicates that a new observation will be assigned to any of the
currently non-empty partitions k with probability Nk

aþN or it will be given a new empty
partition with probability a

aþN. This is great for learning parameters of a mixture model
and allowing a theoretically infinite number of components to be created in order for
each component to best represent variations in the training set in the associated region
of the feature space. However, when the components of a mixture have many data
points assigned to them (large components), they negatively affect the range of the
mixture as large components attract large areas around them. The range of the mixture
is therefore not controlled.

The Pitman-Yor process (PYP) [13, 14] as a generalization of the Dirichlet process
has a discount parameter d, and the prediction probability is characterized by

pðhiþ 1 ¼ hjh1; h2; . . .; hi; a;H; dÞ ¼ aþ Hj jd
aþN

h hð Þ þ 1
aþN

RK
k¼1ðNk � dÞdðh; hkÞ:

ð2Þ

where Hj j is the current number of partitions, and d is defined as the discount
parameter in PYP where 0� d\1 and a[ � d. When d ¼ 0, Pitman-Yor process
becomes Dirichlet process as in Eq. 1.

For learning the emission mixture, we model the training data points of a given
pattern (a word in the vocabulary) in the feature space by a Pitman-Yor process mixture
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model with d ¼ 0, which is equivalent to DPM. This is due to the fact that we consider
all the data points in the training set of a given model to be representing valid varia-
tions, therefore, they should be part of variations included in the components. For
prediction, however, the Pitman-Yor process with spatially adjusted d is used for
controlling the range of components in the mixture model.

The idea is to partition the feature space of a given model into an infinite number of
components (clusters) in the learning phase with some components having training data
points assigned to and an unlimited number of empty components. In prediction phase,
a data point assigned to an empty component is represented by an extra observation
(codevector) added to the emission table of an associated HMM. For a given data point
in the prediction phase, PYP assigns the point to either a trained component or initiates
an empty component:

pðhiþ 1 ¼ hj�h1; �h2; . . .; �hi; a;H; dÞ ¼ aþ �H
�� ��d

aþN
h hð Þ þ 1

aþN
RK
k¼1ðNk � dÞdðh; �hkÞ:

ð3Þ

where �hk s are the trained Gaussian components. The PYP of Eq. 3 defines the borders
of Gaussian components and considers initiating a new component when the data point
iþ 1 is considerably unlikely to be generated by one of the trained components. The
position of a new cluster initiated by the Pitman-Yor process can therefore be any-
where. It should be noted that the mixture model of each word is trained separately and
therefore the Gaussian components of each word’s mixture are the representation of the
variations for that word according to its training data.

The base distribution for the PYP of Eqs. 2 and 3 should be of Gaussian family as the
mixture model is Gaussian [19]. Since both mean and covariance of the Gaussians in the
mixturemodel are unknown, the conjugate prior for this case is aNormal-inverse-Wishart
distribution [12, 15, 20]. As a proper choice of sampling method for inference from the
PYP, we use the Gibbs sampler algorithm for both training and inference [16, 22].

3.2 A Modified Hidden Markov Model

The PYP models the emissions of the hidden Markov models where the component
labels are used as alphabet. The PYP likelihood for observing data points not belonging
to any of the non-empty components allows for extending the observations into an
infinite set of empty components. Let’s call this set collectively the complement par-
tition (see Fig. 1). The HMM is thus needed to be modified to accommodate obser-
vations from the complement partition. Since there has been no instance of such
observations in the clustering process (training) of the PYP mixture model and training
of the HMMs, the complement partition is added to each HMM’s table of emissions as
an extra codevector with a very small probability partially subtracted from other
observations (this makes sure that the emission matrix remains stochastic). Assume Bw

is the matrix of emissions for the HMM of word w. The probability of an observation
from the complement partition is then given by:
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bs;w oKw þ 1ð Þ ¼ Kwj j � e
b̂s;w okð Þ ¼ bs;w okð Þ � e ; k ¼ 1; . . .;Kw; 0\ e � 1; e � minðBwÞ ð4Þ

where b̂s;w okð Þ is the adjusted emission probability of observation ok at state s for the
word w; oKW þ 1 represents observations from the complement partition, and Kwj j
denotes the number of occupied partitions in the mixture model for the word w. e is set
to be a very small value (e.g. e ¼ 10�16). The role of the extra observation is to
significantly lower the likelihood for a sequence when there are undesirable defor-
mations. A data point from the complement partition lowers the likelihood of the HMM
dramatically. A sequence, therefore, needs to be mainly within the borders of the
components of a trained mixture in order for the likelihood to be large. The likelihoods
of the HMMs, therefore, is a major factor in accepting/rejecting a sequence.

For training the HMMs, we use the forward-backward algorithm using the com-
ponent labels as the alphabet [1, 2]. Then the emission matrices of the HMMs are
modified to accommodate the extra observation. For evaluation, the Viterbi algorithm
is employed. Figure 2 shows a graphical representation of the proposed HMM with
PYP emissions.

3.3 Controlling the Border of Emission Densities

Due to the spatial nature of data in a multidimensional feature space, a spatial model is
needed to model the discount parameter of the PYP i.e. d. We choose the variance of
the training set at all locations in the feature space as a hint for adjusting d. Let’s
consider the conditional distribution of a multidimensional Gaussian variable given a
set of Gaussian variables with the same dimensionality [2].

If x� is a d-dimensional variable and X represents a set of Gaussian variables, the
covariance of the conditional distribution pðx�jXÞ is given by:

Rx�jX ¼ Rx�x� � RT
x�XR

�1
XXRx�X ð5Þ

To avoid the computational burden of a high-dimensional data regression, we can
allow the mean and covariance of the data to be modelled by functions sampled from

Fig. 1. The partitioned feature space according to the PYP of Eq. 3 with a non-Gaussian base
distribution. A1 to A4 are the non-empty components. Acomplement represents all the empty
components.
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some prior distributions [18]; which is a Gaussian process (GP) [17, 21]. Considering
the data to be stationary is reasonable since the shape of patterns are independent of
location of observations in the feature space. Therefore, a stationary covariance
function such as the squared exponential is suitable:

k x; x�ð Þ ¼ s2e�
x�x�j j2
l2 ð6Þ

where s denotes the magnitude and l is the smoothness of the function. We are
interested in the spatial distribution of the data in the space; therefore, we only consider
the covariance of the Gaussian process for a given data point:

cov x�jXð Þ ¼ K x�; x�ð Þ � Kðx�;XÞTðK X;Xð Þþ r2IÞ�1Kðx�;XÞ ð7Þ

The covariance of GP is independent of the outputs and can model the distribution
of training data in the feature space. There are two hyper-parameters in the covariance
function of Eq. 6 that need to be set in order for the regression to be useful for the
Pitman-Yor process. Since we have no output for the data points, we cannot proceed
with maximizing the marginal likelihood of the outputs given X and the
hyper-parameters. Therefore, we need to use some heuristics. To abide with the con-
straint 0� d\1 for d in Eq. 3, the magnitude s of the covariance function is
accordingly set to a value smaller than but close to 1 (e.g. s ¼ 0:99). On the other hand,
the smoothness parameter l (also called length-scale) need to be set to an appropriate
value representing how smoothly the data changes.

Equation 7 can be interpreted as a conditional likelihood of a mixture of basis
functions each centered at a data point from the training data set X. The variance of
each basis function is then controlled by the length-scale parameter l. In order to set l
appropriately so that the mixture of the basis functions do not over fit or under fit the

…

Fig. 2. The graphical representation of the HMM with nonparametric emissions. Note that only
emissions are controlled by PYP and not the state changes.
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data, we set it to be equal to the average minimum distance between the observations
multiplied by a coefficient:

l ¼ g �D; �D ¼ mean D1; . . .;DNð Þ ; for all Dn ¼ min xi � xj
�� ��2� �

; 8i 6¼ j ð8Þ

The regression process produces values between 0 and 1 (not including 1). For the
points close or on the given data set X, the regressed covariance is very small and for
the points away from the set, it will be large. The GP covariance alone is not a suitable
method for adjusting the mixture components borders since it will miss areas unob-
served in training with no power to foresee future variations. However, the Pitman-Yor
process with the Gaussian base distribution can foresee future variations. Setting PYP’s
d to be the GP covariance of the samples can provide an excellent hint for the PYP to
include and foresee variations while the range of distributions is controlled. We recall
that a small d in Eq. 3 makes the process to behave more similar to a Dirichlet process
with higher probability that a given point is assigned to an already occupied compo-
nent. A large d causes the process to allow for a new component to be initiated if the
point is far away and, therefore, unlikely to have been generated by an occupied
component. The GP covariance at a given point x� is, therefore, used as d i.e. d ¼
k cov x�jXð Þ for the Pitman-Yor process in order to allow the process to initiate a new
component sampled from the base distribution hðhÞ if x� is far away, or assign one of
the trained components if x� is close to the emission mixture. Figure 3(b, c, d) show the
result of applying the PYP to the feature space given the space is modeled by a
Pitman-Yor mixture model for the training set presented in Fig. 3(a). In Fig. 3(b), d is
set to zero meaning the process is equal to a DPM. In Fig. 3(c), d is set to the GP
covariance with length scale l = 0.0244 and k ¼ 1. The range of the occupied distri-
butions is more limited in this case. In Fig. 3(d), d is multiplied with a coefficient
k[ 1. It should be noted that for prediction purposes only, we set d to the GP
covariance multiplied with k[ 1. Since at this stage, PYP is used for inference only, it
is safe to multiply the GP covariance by a coefficient larger than 1 as long as the result
d remains smaller than the minimum of number of training data points in all the
components.

A necessary step in verifying the completeness of a recognized pattern in a given
sequence of data points is to make sure all the trained areas of a pattern are met
properly by a given sequence. This requires most of the populous partitions (compo-
nents) in the trained mixture model to be met throughout the given sequence.
Non-populous clusters are of less interest as they probably were not present in all the
training samples or they just represent non-significant variations in the training set.

4 Performance Evaluation

The presented algorithm is a method for accepting/rejecting variations. It has the
tendency of rejecting unacceptable patterns. High resolution hand-drawn letter recog-
nition is an application for this algorithm (as shown in Fig. 3).
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Fig. 3. Classification of space according to the PYP with d set to the GP covariance for the
trajectories shown in (a). The classified space with (b) d = 0, (c) d set to the GP covariance with
length-scale l = 0.0244, (d) the space according to PYP with d multiplied with a coefficient larger
than 1.
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An experiment on Android mobile platforms’ touch screen hand-drawn letters is
presented here. In this experiment, we gathered many samples for seven letters of c, e,
L, m, s, v, and z all in lower case except for L, from 70 people drawn on touch screens
of each person’s personal smart phone. Due to size and model variations of the devices
(touch screen resolutions varied from 640 � 480 to 1920 � 1080) used for data
collection, all the samples were normalized to [0-1].

These samples were captured in a period of one week with each user submitting
samples on different days. We also collected a set of arbitrary touch trajectories
intended to be none of the seven letters, although occasionally some of them look
similar to more simple patterns such as c or L. The latter set was collected for eval-
uating the false positive rate of the algorithm. We call it the arbitrary set. A total of
2156 samples were captured from which 700 samples of the seven letters were used for
training the algorithm. The users’ samples used for training were not participated in
evaluation of the algorithm. Also the people who participated in training were not
participated in evaluation. The rest of samples (1456 including the arbitrary set) were
used for evaluating the algorithm.

In classification phase, the range of components in each pattern is controlled by the
GP covariance regression and the coefficient k in addition to the PYP of Eq. 3. In fact k
has a dramatic effect on the range of components. By calculating the GP length-scale
for the given data to be about 0.03, we calculated the GP covariance and evaluated the
algorithm against different coefficient values. We chose values of 1, 10, 15, and 20 for

k causing ds to be always smaller than the minimum number of members in all
components of all models. Evaluation results are presented in Fig. 4. The correct
recognition rate decreases by increasing coefficient k. However, at k ¼ 20, the rejection
rate of arbitrary sequences shows an increase as is expected. In order to do more
evaluation of the algorithm, we compare it with two other algorithms presented in the
literature [8, 23] given the same evaluation set, and k ¼ 1.

Table 1 shows the results of evaluating the three algorithms of HMM-NPIE pre-
sented in this paper, HMM-GB based on a garbage model presented in [8], and
HMM-MD based on a state-median model presented in [23]. HMM-GB creates a
garbage model using a set of garbage sequences, a set of sequences that are not similar
to any pattern in a vocabulary. It then compares the HMM likelihoods of all the models,

Table 1. Recognition rate of hand-drawn
letters and rejection rate of arbitrary
trajectories

HMM-GB HMM-MD HMM-NPIE

c 0.964 0.958 0.982

e 0.976 0.947 0.990

L 0.923 0.913 0.976

m 0.936 0.931 0.972

s 0.834 0.902 0.927

v 0.890 0.794 0.978

z 0.923 0.913 0.923

arbitrary 0.773 0.886 0.902

Table 2. Performances of the three algorithms

HMM-GB HMM-MD HMM-NPIE

Recognition 0.9222 0.9131 0.9638

Precision 0.9683 0.9734 0.9667

Recall 0.9087 0.9107 0.9581

F1 Score 0.9375 0.9410 0.9624
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including the garbage model, for a given sequence and selects the highest likelihood.
A sequence for which the garbage model produces the highest likelihood is therefore
rejected. HMM-MD creates vectors of medians of state observations in HMMs. For a
given sequence, it compares the median of observations in each state with the minimum
of the medians of observations in the same state for the training set. Those who are
equal or greater than the trained minimums are accepted, and based on the number of
accepted states a sequence is accepted or rejected. From Table 1, the HMM-NPIE
algorithm shows superior performance both in recognizing the hand-drawn letters and
rejecting the trajectories in the arbitrary set. The standard Precision, Recall, and F1
score for the three algorithms are presented in Table 2. The algorithm presented in this
paper (HMM-NPIE) has higher recognition, recall, and F1 rates. However, the two
other algorithms present a slightly better precision rate. We observed a slightly higher
misclassification rate for our algorithm compared to the other two.

A few samples of the captured set of hand-drawn letters and the arbitrary trajec-
tories are presented in Fig. 5(a) and (b). In Fig. 5(c), a few samples which were
rejected by the algorithm are presented. The orientation of letter e and extra line drawn
in the middle of letter z do not match the boundaries of our models trained with simple
drawings of these letters and, therefore, the algorithm has rejected them. For letter m,
the extended trajectory at the beginning and end of this sample are beyond the
boundaries of the correct trained partitions and, therefore, caused the extra observation
we added to the HMM’s emission matrix to be experienced many times compared to
the HMM of letter m; and therefore the HMM likelihood became very small for this
sample and the sample got rejected.

Fig. 5. (a) Samples from the evaluation set showing variations in the captured hand-drawn
letters. (b) some samples from the arbitrary set, (c) some of the samples rejected by the algorithm

A Hidden Markov Model with Controlled Non-parametric Emissions 641
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Abstract. The paper deals with the problem of reducing the cost of
mutation testing using artificial intelligence methods. The presented app-
roach is based on the similarity of mutants. The mutants are coded as
control flow diagrams representing the programs structure, variables and
conditions. The similarity is then calculated with the use of a new graph
kernel and used to predict if a given test case detects a mutant or not. The
prediction process is performed by a classification algorithm. Experimen-
tal results are also presented in this paper on the basis of two systems.

Keywords: Mutation testing · Machine learning · Graph distance ·
Classification · Test evaluation

1 Introduction

Testing plays a vital role in developing high quality software systems. Testing
aims at detecting faults in a system. It involves the execution of the system by
providing it with specific inputs and comparing the outputs produced by the
system in response to the inputs with expected outputs. The input, expected
output and conditions that should hold for a given input are called a test case
[25,28]. Selection of an adequate suite of such test cases, being able to detect
faults with a high accuracy, is one of the most important activities concerning
testing, as the testing results are used for establishing the degree to which a
system being developed satisfies certain requirements. This in turn is one of the
most important criterion for assessing the system quality and to deciding if it is
ready for release.

Thus, adequate assessment and measurement of the quality of a suite of test
cases is essential in order to gain confidence in testing results. Over the years a
number of different approaches for evaluating test suites were proposed [25,28].
Mutation testing [10] is considered to be the most effective of them [4,18]. The
main idea behind the approach is to generate a number of so called mutants by
replicating the original system, introducing into each copy one syntactic mod-
ification and then executing the mutants with test cases from the suite being
assessed. The quality of the suite is determined basing on the value of so called
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 644–654, 2016.
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mutation score that is calculated as a ratio of the number of mutants killed
(detected) by test cases belonging to the suite over the number of all generated,
non-equivalent [18] mutants. The higher the value of mutation score is the higher
is the quality of the suite. The mutants are generated using so called mutation
operators that define how to modify particular items of the system. Use of such
operators ensures that mutants are generated in a systematic and human unbi-
ased way. Although the modification making mutants usually do not reflect real
faults, it was shown by several studies that a mutation score calculated for a
given suite of test cases is an accurate measurement of the suite ability to detect
the real faults (detailed references can be found in [18]).

Mutation testing is a powerful technique supporting various testing activi-
ties at different stages of developing systems [1,8,22,27,32,33]. However it is also
time consuming due to the necessity to generate and execute a large number of
mutants [18]. Intensive research on reducing the costs of applying mutation test-
ing has provided a number of various approaches. Offut and Untch [26] classified
the approaches accordingly to strategy they follow into three groups: do fewer, do
faster, do smarter. The “do fewer” approaches aim at decreasing the number of
mutants to be generated (e.g. selective mutation [23]) or executed (e.g. mutant
sampling [2], mutant clustering [7,16]), the “do faster” approaches try to gener-
ate and run mutants as fast as possible (e.g. mutant schemata [36]) and the “do
smarter” ones usually take advantage of the environment (e.g. parallel computa-
tion [24]) or internal information (e.g. week mutation [15]). A survey of the costs
reduction approaches can be found in [18]. Nevertheless, the growing size of mod-
ern systems requires even more efficient ways of cutting the costs be search for.

The approach to reducing the costs presented in this paper is based on using
the similarity between mutants which allows to reduce the number of mutants
that have to be executed. The similarity is calculated on the basis of the struc-
ture of a mutant. As mutants are programs their structure can be represented
as control flow diagrams. Hence each mutant is converted into a specific hier-
archical control flow graph, which represents the program’s flow, variables and
conditions. The calculated similarity is then used within a classification algo-
rithm for predicting if a test would detect a mutant or not. This approach helps
to decrease the number of mutants which have to be executed and at the same
time helps to assess quality of test suits without the need of running them.

The approach falls into the “do fewer” category, as it aims at reducing the
number of mutants to be executed, but it uses the mutants similarity in a given
problem instead of basing the assessment only on results obtained for a randomly
selected subset of all mutants. It shows some proximity with mutants clustering
approaches, such as the ones presented by Hussain [16] or Ji et al. [7] that also
attempt to measure similarity between mutants to decide which mutants are
likely to be killed by given test cases. Hussain [16] used clustering algorithms
to divide all mutants into clusters basing on information gained from execution
of mutants to reduce the size of the suite of test cases. Ji et al. [7] proposed to
weight the mutants basing on domain analysis. They applied static methods to
analyze the domain, hence they were able to avoid the execution of all mutants
before their clustering.
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The use of graphs to represent different objects is gaining in popularity with
growing acceptance in many domains like system modeling and testing, bioinfor-
matics, chemistry and others. In this paper the representation is used to calculate
the similarity between mutants. The need to analyze and compare graph data
is not new and hence has been a lot of research in this direction and there can
be noticed three different, partially overlapping, approaches. The first one uses
standard graph algorithms, like finding a maximal subgraph or mining for fre-
quently occurring subgraphs to compare or classify graphs [3,13,17,31,37,38].
The second approach is based on transforming graphs into vectors by find-
ing some descriptive features. Having a graph encoded in a vector a standard
statistical learning algorithms can be applied. The main problem is in find-
ing appropriate features/substructures and in enumerating them in each graph.
This approach has successfully been applied in many domains like image recog-
nition [6], and especially the recognition of handwritten texts [20,21]. The third
method uses the theory of positive defined kernels and kernel methods [29,30].
The research on different kernels for structured data included tree and graph
kernels [5,9,11,12,19]. For graph kernels there is a number of different ones pro-
posed so far, for example the all subgraph kernel [11], kernels on computing
random walks on graphs, product graph kernel [11] and the marginalized kernels
[19]. Such kernels are computable in polynomial time, (O(n6) [12]).

Currently the main research focuses on finding faster algorithms to compute
kernels for simple graphs, mainly for use in bioinformatics. To author’s best
knowledge, there is no research in the area of defining and testing kernels for
different types of graphs, such as hierarchical control flow graphs proposed in
this paper.

2 Graph Representation of Programs

In order to be able to classify programs in mutation testing some way of rep-
resenting the structure of the code has to be decided upon. Representing such
a structure of a program by a diagram is a well known approach. It allows us
to show the components of the program and the flow of its execution. Such a
diagram is called a control flow diagram (CFD) and can be represented by a
simple graph. A simple graph G is defined as a non-empty set of nodes (called
also vertices) V and a set of edges E, where E ⊂ V 2. Each node and edge can
be labeled by a function ξ assigning labels to nodes and edges.

Such a representation is unfortunately insufficient and cannot be directly used
to compare programs, as we need to compare each element of any expression or
condition separately and a traditional CFD usually labels its elements by whole
expressions. So in this paper a combination of CFD and hierarchical graphs is
used. Such an approach adds a hierarchy to the traditional flow diagram enabling
us to represent each element of a program in a single node and thus making the
graphs more adequate to comparison.

Let for the rest of this paper RV and RE be the sets of node and edge labels,
respectively. Let ε be a special symbol used for unlabelled edges. The set RV
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contains all possible keywords, names of variables, operators, numbers and some
additional grouping labels (like for example declare or array shown in Fig. 1.
The set RE = {T, F, ε}, where ε represents the empty edge label. Then the
hierarchical control flow graph is defined formally in the following way:

Definition 1. A labelled hierarchical control flow graph HCFG is defined as a
5-tuple (V,E, ξV , ξE , ch) where:

1. V is a non-empty set of nodes,
2. E is a set of edges, E ⊂ V × V ,
3. ξV : V → RV is a labelling function, which assigns labels to nodes,
4. ξE : E → RE is an edge labelling function,
5. ch : V → 2V is a function assigning to each node a set of its children, i.e.

nodes directly nested in v.

Let, for the rest of this paper, ch(v) denotes the set of children of v, and
|ch(v)| be the size of this set. Let anc be a function assigning to each node
its ancestor and let λ be a special empty symbol (different from ε),anc : V →
V ∪ {λ}, such that anc(v) = w if v ∈ ch(w) and λ otherwise (i.e. anc(v) = λ
denotes the fact that node v does not have an ancestor).

An example of such a hierarchical control flow graph (HCFG) is depicted
in Fig. 1a and b. It represents a method Search(...) and its mutant depicted in
Fig. 2a and b, respectively. It can be noticed that the insertion of ++ into variable
v in an if statement results in replacing a simple node v by an appropriate
expression tree inside node labelled if .

3 Graph Classification

A well known approach to use traditional classification algorithms for non-vector
data is based on the so called kernel trick, which consists in mapping elements
from a given set A into an inner product space S (having a natural norm),
without having to compute the mapping, i.e. graphs do not have to be mapped
into some objects in space S, only the way of calculation the inner product
in that space has to be well defined. Linear classifications in target space are
then equivalent to classifications in source space A. Using the trick and avoiding
the actual mapping relies on using the learning algorithms needing only inner
products between the elements (vectors) in target space. Moreover the mapping
has to be defined in such a way that these inner products can be computed on
the objects in the source (original) space by means of a kernel function.

For the classifiers a kernel matrix K must be positive semi-definite (PSD),
although there are empirical results showing that some kernels not satisfying
this requirement may still do reasonably well, if a kernel well approximates
the intuitive idea of similarity among given objects. Formally a positive semi-
definite kernel on a space X is a symmetric function K : X2 → R, which
satisfies

∑n
i,j=1 aiajK(xi, xj) ≥ 0, for any points x1, . . . , xn ∈ X and coefficients

a1, . . . , an ∈ R.
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a b

Fig. 1. Examples of flow graphs (a) a graph for program from Fig. 2a, (b) a flow graph
for one of AOIS mutants (from Fig. 2b)

The approach that has been successfully used for many types of data is based
on convolution kernels [14], which are a general method for structured data (and
thus very useful for graphs). Convolution kernels are based on the assumption
that structured object can be decomposed into components, then kernels are
defined for those components and the final kernel is calculated over all possible
decompositions.

To incorporate the information represented in the hierarchical form of the
control flow diagram a hierarchical substructure kernel KH is proposed in this
paper. This kernel takes into account the label of a given node, number of its
children (hence incorporating the internal complexity), the label of its hierar-
chical ancestor (and thus its position within the structure of the program), and
the number and labels of edges connecting this node with its neighbourhood
nodes (both incoming and outgoing edges are taken into account) as well as the
labels of the neighbouring nodes. Such a kernel uses two different node kernels,
an edge and a tree kernels as base kernels. The node and edge kernels are defined
below. The tree kernel, used within the node one to compare expression trees,
is a standard one [9].
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Definition 2. A binary node kernel, denoted kn(v, w), where v, and w are nodes
of a hierarchical control flow graph, is defined in the following way:

kn(v, w) =
{

1 : ξV (v) = ξV (w)
0 : ξV (v) �= ξV (w).

Definition 3. A node kernel, denoted kv(v, w), where v, and w are nodes of a
hierarchical control flow graph, is defined in the following way:

kv(v, w) =

⎧
⎨

⎩

0 : ξV (v) �= ξV (w)
kn(ch(v), ch(w)) : ξV (v) = ξV (w) ∧ |ch(v)| = |ch(w)| = 1
kt(ch(v), ch(w)) : ξV (v) = ξV (w) ∧ (|ch(v)| > 1 ∨ |ch(w)| > 1)

It can be observed that for the nodes which have more than one child, i.e.
containing an expression tree, a tree kernel Kt is used to compute the actual
similarity. For nodes having different labels the kernel returns 0, while for nodes
containing one children the binary node kernel is computed on the labels of the
child nodes.

Definition 4. An edge kernel, denoted ke(e, f), where e, and f are edges of a
hierarchical flow graph, is defined in the following way:

ke(e, f) =
{

1 : ξE(e) = ξE(f)
0 : ξV (e) �= ξV (f).

On the basis of the above base kernel a hierarchical kernel for HCFG is
defined. Let Gi, Gj be two hierarchical control flow diagrams. Moreover let Si

be a substructure of Gi consisting of a node vi, its direct ancestor anc(vi), all its
children ch(vi) and its neighbourhood Nb(vi). Let Cn is the number of children
of a given node and cn(vi) - the n − th child of vi.

Definition 5.

KH(Gi, Gj) =
m∑

i=1

n∑

j=1

KS(Si, Sj), (1)

where m and n, is the number of hierarchical nodes in each graph and

KS(Si, Sj) = kn(vi, vj) + kn(anc(vi), anc(vj)) +
Cn∑

r=1

Cm∑

t=1

kn(cr(vi), ct(vj))

+
∑

wi∈Nb(vi)

∑

wj∈Nb(vj)

ke((vi, wi), (vj , wj))kn(wi, wj), (2)

This kernel is based on the decomposition of a graph into substructures
according to the concept of R − convolution kernels [14], and so acceptable as a
kernel function [29].

It has to be noted that graph kernels are known to have a high computational
cost, but in case of HCFG we have some additional knowledge i.e. as each graph
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represents a first order mutant, two graphs can differ in at most two places and
we also know a priori the places where the change happened. Apart from these
two places all other elements of both graphs are identical. Hence the actual
computation of HCFG kernel can be done much more efficiently than in general
case of two random graphs.

4 Experimental Results

The experiment were carried out for two different programs and mutants for them
were generated using Mujava tool [22]. One of the examples was a simple search,
for which Mujava generated 38 mutants. The second one was binary search,
presented in Fig. 2a. For the example there were 87 mutants. The mutants were
then converted into graph form described above and depicted in Fig. 1a and b.

public int search(int v){
int l=0;
int r=size-1;
while(l<=r){

int mid = (l+r)/2;
if(v == values[mid]) return mid;
if(v < values[mid]) r = mid-1;
else l=mid+1;

}
return -1;
}

public int search(int v){
int l=0;
int r=size-1;
while(l<=r){

int mid = (l+r)/2;
if(v == values[mid]) return mid;
if(++v < values[mid]) r = mid-1;
else l=mid+1;

}
return -1;
} ba

Fig. 2. (a) A binary search method, and (b) one of its AOIS (Arithmetic Operator
Insertion [22]) mutants

For each set of mutants a k-NN classification algorithm (k was set to 5 after a
number of experiments) was run using two different distance measures. The first
one was based on standard graph edit distance (GED, used in [34,35]), while the
second was obtained from the KH kernel introduced in this paper. In each case
the set of mutants was randomly divided into three sets of roughly equal size: a
training set and two control sets.

For the first example three test suites were used and for the second one -
five test suites. Tables 1 and 2 present the results obtained for the respective
examples. The results for mutants classified incorrectly are presented separately
for those classified as detectable, while actually they are not (column labelled
“incorrect killed”) and for those classified as not detected, while they actually
are detected by a given test suite (column labelled “incorrect not killed”). This
distinction results from the fact that the meaning of these misclassifications in
context of testing is different. Classifying a mutant as not detected leads to
overtesting, while the misclassification of the second type can result in missing
real errors in code and thus is more dangerous as it may lead to undetected
errors in code.
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Table 1. The classification of mutants for the example 1 with the use of GED and KH

Method Correct Incorrect killed Incorrect not killed

(True positive/negative) (False positive) (False negative)

TS 1 GED 65.2 % 13.06 % 21.74 %

TS 1 KH 70.2 % 11.10 % 20.70 %

TS 2 GED 78.25 % 8.7 % 13.5 %

TS 2 KH 83.35 % 9.4 % 7.25 %

TS 3 GED 82.6 % 8.7 % 8.7 %

TS 3 KH 83.8 % 7.7 % 8.5 %

Table 2. The classification of mutants for the example 2 with the use of GED and KH

Method Correct Incorrect killed Incorrect not killed

(True positive/negative) (False positive) (False negative)

TS 1 GED 75.7 % 12.1 % 12.2 %

TS 1 KH 76.8 % 11.3 % 11.9 %

TS 2 GED 73.4 % 6.5 % 20.1 %

TS 2 KH 86.5 % 5.9 % 7.9 %

TS 3 GED 60.5 % 26.2 % 16.3 %

TS 3 KH 72.4 % 10.7 % 16.9 %

TS 4 GED 78.2 % 10.3 % 11.5 %

TS 4 KH 88.4 % 6.4 % 6.2 %

TS 5 GED 76.4 % 11.3 % 12.3 %

TS 5 KH 84.9 % 5.4 % 11.7 %

The results depicted in tables show that the classification worked well for
all test suits. Especially it can be noticed that using GED for TS1 in the first
example and for TS3 in the second one performs significantly worse then the
graph kernel introduced in this paper. The analysis of this case seems to suggest
that it results from the random partition of the set of mutants in which the
training set contained unproportionally large number of undetectable mutants.
It can also be noticed that results obtained with the use of KH kernel are slightly
better in general, especially the classification for the two tests with the worse
results with the use of GED improved significantly, although it may be due to
better choice of training sets. It can be also noticed that, in nearly all cases the
number of the mutants misclassified to the “incorrect not killed” class is lower
thus resulting in better program testing.

It has to be also mentioned that the classification performed for a given
program and test suite can be used to evaluate the quality of the test suite itself
thus allowing for the improvement of test suites.
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5 Conclusions

The paper deals with a dynamic approach to the reduction of costs of mutation
testing. A classification approach was proposed in this paper allowing to reduce
the number of mutants to be executed. A novelty of this approach consists in
the fact that the number of mutants to be executed depends on the program for
which they are generated rather than on using some statical method based on the
operators or programming language. The approach needs still more experiments
to fully confirm its validity, but the results obtained so far are encouraging.

The further research is planned to be focused on two main areas. As men-
tioned in the description of the results some classification problems result from
the way the set of mutants is partitioned into training set and control sets. It
seems that performing the partition of mutants in a smarter way instead of ran-
dom could lead to some improvements. The first idea of how to deal with it could
be based on selecting proportional number of mutants of each type (generated
by a given type of mutation operators) but this idea needs further development.

The second issue we plan to follow is to do further research related to kernels.
On one side we plan to investigate if replacing the k − NN algorithm by more
sophisticated methods like for example support vector machines, could lead to
better results. On the other hand also new kernels could be developed for the
structured data used to represent programs. The node kernel proposed in this
paper is based on the label of the node and its direct ancestor but does not take
into account higher level ancestors so including this type of information about
the node is also planned to be analyzed.
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Abstract. This article addresses the medical problem of early detec-
tion of the malignant melanoma skin cancer. We present ensemble clas-
sification of dermoscopic skin lesion images into two classes: malignant
melanoma and dysplastic nevus. The features used for classification are
derived from wavelet decomposition coefficients of the image. Our research
purpose is to select the best wavelet bases in terms of AUC classification
performance of the ensemble. The ensemble learning is optimized by some
common quality measures: accuracy, precision, F1-score, FP- rate, speci-
ficity, BER and recall. Within the statistics of our machine learning exper-
iments the best model of melanoma uses reverse bi-orthogonal wavelet
pair (3.1) and is optimized by FP-rate. This wavelet base performs very
well with downscaled image resolutions which matters future small ARM-
based devices for computer aided diagnosis of melanoma.

Keywords: Melanoma detection · Wavelets · Ensembling

1 Introduction

1.1 Medical Problem

Pigment cells of the skin (melanocytes) can undergo transformations to benign
(melanocytic nevus), atypical (dysplastic nevus) or malignant stages (malignant
melanoma) [1]. Medical doctors examine the moles with bare eyes and with help
of dermatoscopy (ELM-Epiluminescence Microscopy). The latter is a non-invasive
technique that consists in optical enlarging and illumination of the skin by halo-
gen light. The magnified lesion can be displayed on a computer screen or stored for
further comparative analysis [2]. The most common are the cheapest, handy der-
matoscopes. There are also advanced, dedicated instruments that allow for trans-
illumination at an angle of 45◦ or for a set of wavelengths to penetrate deeper
layers of the skin to reveal its spatial structure. Their coverage is however limited.
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Dermatoscopy images of the same mole recorded and stored on a computer
can be compared for how the lesion develops in time or can be transmitted to a
clinic/remote specialist for a (tele)consultation [3,4,11].

The most dangerous aspect of cutaneous melanoma is its high mortality rate
even in people at an early age. This problem refers to all of the countries but
particularly these where melanoma morbidity rate is elevated [5]. Melanoma is
a fatal disease due to early metastases. Its prognosis is based on the histologic
criterium which is the micrometer measurement of the lesion depth (<0.75 mm,
0.75–1.5 mm, 1.5–4.0 mm and >4.0 mm). Early biopsy of the malignant mole can
be a life-saving factor [6] and is the only fully reliable method to identify nevi and
melanoma lesions. Unfortunately due to medical (surgical complications, ANS-
Atypical Nevus Syndrome) and economic reasons the excision is not always feasi-
ble. The key role of the effective treatment is the precise detection of the tumor.

1.2 Computer Aided Melanoma Diagnosis

Stages of pigment cells atypia are recognized by medical doctors with help of
the well known descriptive measures: ABCD(E), the 7-Point Checklist, Menzies
and other less common [7]. The earliest and still important approaches to the
melanoma detection have been based on segmentation techniques of the mole
border and inner structures ([9] and references therein). Similar, but synthesis-
based approach to the melanoma characteristic structures has been carried out
by Hippe and Grzymala-Busse over several years (see [10,11] for references).
Although very comprehensive, the segmentation-like approaches seem to suffer
from two kinds of problems:

1. Discrimination between benign (dysplastic nevus) and malignant mole
(melanoma) at the earliest stages of malignancy is extremely difficult due
to the lack of the classic differential structures [8]. The same applies to the
clinical descriptive measures which are not sensitive enough even for experi-
enced specialists.

2. Quality/resolution of dermoscopic images may be an extra bias.

For those deficiencies some methods for wavelet based decomposition of the skin
lesion images have been proposed [14]. They assume analysis of frequency and
scale information of the skin texture for the search of probes of the skin atypia
and the melanoma progression. Discrete wavelet transforms are closely related
to the theory of digital filtering so the properties of the decomposition filters
play an important role in the skin texture characteristics [15,16]. The important
factors are [17]:

– decomposition path: recursive decomposition of the low-frequency (averaged)
signal (=the pyramidal algorithm) or a selective tree-structured analysis
where the consecutive decomposition is applied to the output of any chan-
nel (=wavelet packets/trees),

– wavelet base: this choice has a diverse impact on the texture classification,
– wavelet order: decomposition over an optimal finite range of resolutions,
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– model constraints: orthogonality (the wavelet transform is energy preserving
and non-redundant) versus bi-orthogonality (separate filters for decomposition
and synthesis are present, wavelets are more compact and symmetric at the
cost of orthogonality),

– sampling of 2D signals: the Mallat algorithm [18].

Pioneering contributions on wavelet based decomposition of melanoma der-
matoscopy images belong to Patwardhan et al. [15,16]. This group successfully
studied binary classification models for benign nevus and melanoma by decompos-
ing different frequency scales of the skin texture (wavelet packets). This approach
corresponds to the observations that the significant sub-bands of the pigmented
skin texture belong to the middle frequency range and the standard (recursive)
analysis of the low-frequency sub-band only, is less optimal than the wavelet pack-
ets (also called selective wavelet trees). Since that time the wavelet-based features
have also been successfully studied by other groups [19–27].

1.3 Motivations and Objectives

Beyond the pure scientific interest recently some research groups have been work-
ing over handy dermatoscope-like devices with optics and ARM-based processors
for computer supported melanoma diagnosis. Such decision supporting devices
would help medical doctors in diagnosis of early melanoma. Since the developed
algorithms for image recognition and interpretation may demonstrate high com-
plexity and small handheld devices have limited processing power and memory,
it is of great importance to use features that preserve high efficiency also in
downgraded image resolutions. Our working hypothesis is that wavelet features,
as contrasted to segmentation-like methods, can fulfil this requirement.

Melanoma binary classifiers from Patwardhan [15,16] and following contribu-
tions [19–21], were using only one wavelet base (Daubechies 3) to build classifica-
tion models. In this work we study different wavelet bases and analyze how they
affect the quality of the classification models. As a framework to test wavelet
features we use an ensemble of six different model types. We don’t aim at opti-
mization (fine-tuning) of any single model or an ensemble of models beyond the
standard machine learning procedure i.e. cross-validation (e.g. through feature
selection), but use the ensembling technique as a ’blind’ learning environment
to find one (a few) optimal wavelet base (bases) in terms of the OOT technique
based on the optimization of the well known quality measures: accuracy, preci-
sion, recall, specificity, FP-rate, F-score and BER (Balanced Error Rate). This
work does not focus or contribute to the methodology of the ensembling, but
the standard ensemble technique is used to test how different wavelet bases act
(in terms of classification performance) on a collection of different weak learners
and to select the best wavelet base.

Melanoma incidence rate may fluctuate over countries, but clinical statistics
show an average of about 5 % melanoma images as a fraction of all the dermo-
scopic images of the melanocytic naevi. This means that the melanoma class is
under-represented compared to the benign class. Learning classifiers from such
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cases would require special rules to properly treat the imbalanced class i.e. to
draw equal attention to the minority class [12,13]. In this experiment we build
classifiers for almost equal classes (102 malignant melanoma versus 83 dysplas-
tic nevus cases) and we do not take into account the (clinical) class imbalance
problem.

Our objectives are:

– to select the best wavelet bases in terms of absolute classification performance
– to analyze how the latter perform in the downgraded image resolutions in

terms of absolute classification performance and its variance

In the following sections we show methodology of our machine learning experi-
ments and present and discus the results.

2 Data Analysis

2.1 Signal Processing

The 185 anonymous images of the moles (JPEG pixel resolution: 2272 × 1704,
RGB color depth: 24-bit) were collected from patients after separate examina-
tions with Minolta Z5 digital camera with an extra dermatoscopy extension. The
resection and hist-pat examination of the moles allowed to assign labels to 102
malignant melanoma and 83 dysplastic nevus cases. In the analysis there were
three sets of images: the original set 2272 × 1704 and the two downscaled sets
(by averaging neighbor values in 2×2 elements) of 1136×852 and 568×426 pix-
els respectively. The dermatoscopy images of all three sets were transformed to
indexed images with linear, monotonic color maps of double precision numbers
to support wavelet transformations. Since each iteration of the wavelet decom-
position downscales the input image by a factor of 2 both in rows and columns,
to allow for three wavelet iterations the 568 × 426 set was padded with zeros
(two rows 427 and 428). To eliminate any bias on the final wavelet base selection
no preprocessing tasks to the images were done i.e. no removal of any artefacts
(hairs, droplets of immersion fluid, etc.) took place. Our classification setup was
coded in Matlab R2015a [28] with Image processing Toolbox, Wavelet toolbox
and Entool [29].

Wavelet analysis of signals is well established in theory after works of Gabor,
Morlet, Daubechies, Mallat and the others [17,20]. It is also widely used espe-
cially for discrete signals in the form of DDWT-Discrete Dyadic Wavelet Trans-
form to analyze the signal structure, signal de-noising and compression capabil-
ities. Images are two-dimensional signals so one iteration of the Mallat filtering
algorithm produces 4 sub-images which can be considered as LL, LH, HL and
HH filters (L-low-pass, H-high-pass filter) after one-dimensional wavelet trans-
form on the rows and then on the columns. In our analysis we used the wavelet
packets so each of the four filters was subject to further wavelet decompositions
(not only LL). Altogether in three iterations 1 + 4 + 16 = 21 different transfor-
mation branches were produced. In one branch the following 12 features were
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calculated: (ei, i = 1, 2, 3, 4) - energies of the sub-images, (ei/emax, i = 1, 2, 3, 4)
- maximum energy ratios and (ei/Σek, k �= i, i = 1, 2, 3, 4) - fractional energy
ratios [15,16,19]. Energy was defined as a sum of absolute values of the pixels.
This procedure was repeated for each wavelet base for the three sets of different
image resolutions yielding 21 × 12 = 252 attributes in each single set. For the
skin pattern analysis we took orthogonal wavelets:

– Haar (wavelet number = 1)
– Daubechies db1-db10 (wavelet numbers = 2 − 11),
– Symlets: sym2-sym8 (wavelet numbers = 12 − 18),
– Coiflets: coifN (wavelet numbers = 19 − 23)

and bi-orthogonal/reverse bi-orthogonal wavelets:

– BiorNr.Nd (wavelet numbers = 24 − 38),
– RbioNr.Nd (wavelet numbers = 39 − 53).

(Reverse) Bi-orthogonal wavelets (wavelet pairs) have the property of perfect
reconstruction i.e. X = A+D, where: X-image, A-reconstructed image of approxi-
mation and D-reconstructed image of details. This property is possible due to two
separate filter sets, one for decomposition and another one for image reconstruc-
tion. Those wavelets are not orthogonal. Orthogonal wavelets, on the other hand,
fulfil the formula X2 = A2 + D2. Symlets, coiflets and (reverse) bi-orthogonal
wavelets are symmetric functions, whereas Daubechies - asymmetric [17].

The wavelet features mentioned above were used in the classification proce-
dure by ensembling.

2.2 Machine Learning

Ensembling is a machine learning paradigm to combine predictions of separate
classification models by voting or weighted averaging [30]. The generalization
error of the ensemble can be decomposed into an average error of the individual
models and average ambiguity of the ensemble. The ensemble generalization
error is always smaller than the mean of the generalization error of the single
ensemble members, which makes this technique a good tool to maximize the
classification performance. In order to increase the ensemble ambiguity it should
consist of well trained but diverse models (no assumptions are made about the
constituent models). To build an ensemble of models starting from an empty
ensemble we were selecting step-by-step the best models by a cross-validation
scheme for model training (the OOT-Out-of-Train procedure) [31]. The cross-
validation was done in several training rounds on different training sets, because
this increases the ambiguity of the ensemble and leads to better generalization.
The advantages of such approach are as follows:

– Training on slightly different data sets leads to different models so this helps
introduce diversity of models,

– An unbiased estimator of the ensemble generalization error can be estimated
out of hand.
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Our ensembling procedure consisted of the following steps:

1. Data are divided into (A) a training/testing set (80 %) and (B) a validation
set (20 %); there are five cross-validation partitions, the final quality of the
trained ensemble by means of AUC is calculated as the mean of the five
samples.

2. The training/testing data (A) are divided into (A1) a training set (90 %) and
(A2) a testing set (10 %) - there are ten cross-validation partitions.

3. Several models are trained on the training set (A1).
4. These models are compared by evaluating the prediction errors on the testing

set (A2).
5. The best models are picked up and become ensemble members.
6. Data are divided again in a way that the new testing set has minimal overlap

with the former ones.
7. The procedure stops if the ensemble has the desired size.

Training in step (2) was performed with the following six model families:

– Penalized Fishers Linear Discriminant Analysis: classical LDA classifier with
spatial constraints on many highly correlated predictors (a model for pixels in
an image) [32],

– Kernel Ridge Regression: a model with the Tikhonov-Phillips regulariza-
tion capable of controlling bias-variance trade-off, with a polynomial kernel
k(x, x′) = (a + x.x′)b, where a and b are the coefficients [33],

– Multi Layer Perceptron: trained with the first order weight update mechanisms
(RPROP descent), with the changeable number of nodes [34],

– Perceptron: trained with a second order gradient decent [34],
– Decision Trees: based on the C4.5 algorithm, with pruning procedures based

on the cross-validation scheme [35],
– Matlab data trees (dtree) [28].

In binary classification a confusion matrix presents instances of predicted and
actual classes [36]. This visualizes performance of the model on validation data.
The four statistical entities: tp = true positive, tn = true negative (they both are
the desired results) and fp = false positive (type I error) and fn = false negative
(type II error) form a set of values out of which numerous quality measures
are derived. The choice for a measure and its application in the classification
scheme depends on the research purpose. In our machine learning experiments we
used (one by one) seven different quality measures to control how the ensembles
of primary models are constructed. The following measures were optimization
factors when accumulating best constituent models [36]:

– Accuracy: an overall measure of all desired outcomes in the test (tp+tn)/(tp+
tn+fp+fn); this is a common quality measure when no particular requirements
are imposed,

– Precision (PPA-positive predictive value) is a fraction of retrieved instances
that are relevant, tp/(tp + fp); this is a quality measure of exactness/quality,
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– Recall (sensitivity) is a fraction of relevant instances that are retrieved, tp/(tp+
fn); this is a quality measure of completeness/quantity.
Absence of type I and type II errors corresponds respectively to maximum
precision (no false positive) and maximum recall (no false negatives).

– F-score (F1) is a harmonic mean of precision and recall: 2*(preci-
sion)*(recall)/(precision+recall) = 2 ∗ tp/(2 ∗ tp + fn + fp),

– Fp-rate is a false positive rate fp/(tp + fp),
– Specificity is a fraction of true negatives, tn/(tn + fp); a high specificity has a

low type I error rate
– Ber: balanced error rate is an average of the errors on each class 0.5∗(fn/(tp+
fn) + fp/(fp + tn)).

The ensembles trained according to the above mentioned quality measures were
finally tested on validation data (B). For the quality measure at this step we
chose AUC - the area under the ROC curve (Receiver Operating Characteristic)
[37] obtained by plotting sensitivity against (1-specificity), for each confidence
value. We selected the ROC curve as the ensemble quality measure as it is better
in presenting the quality of the classification system than any single quality
measure. With ROC one can show sensitivity and specificity as a function of
the confidence level (thresholds between single values of calculations from the
model). The values of AUC presented in all the figures were calculated from the
ROC curve using the trapezoid method.

3 Results and Discussion

In Sect. 2.1 we explained how wavelet bases were used to decompose a set of
dermoscopic images and to calculate corresponding feature sets. These wavelet
features were learnt (set A) by an ensemble of models in this way, that the
ensemble optimized (one by one) seven different quality measures: accuracy,
precision, F1-score, Fp-rate, specificity, Ber and recall. The final model was
every time validated on a separate unseen set of data (B). Figure 1 presents the
absolute AUC values for different dermatoscopy image resolution for the best
wavelet bases. The wavelet bases that produce the highest AUC are:

– Rbio 3.1 (Reverse biorthogonal wavelet pair: (3,1))
– Rbio 2.2
– Rbio 1.5
– Rbio 4.4
– Bior 1.5 (Biorthogonal wavelet pair: (1,5))
– Bior 1.1
– Coif 1 (Coiflet 1)

The AUC values have error bars that reflect standard deviation of the AUC
value over different validating rounds.

For most of the quality measures the magnitudes of the error bars are bigger
than the fluctuations of AUC over the shown (best) wavelet bases. This confirms



662 G. Surówka and M. Ogorza�lek

Table 1. Numerical results (value ± standard deviation) for the ensembles.

Wavelet base Image resolution AUC for different ensemble optimization factors:

accuracy precision fscore fp rate specificity ber recall

Rbio 3.1 2272 × 1704 0.9379 0.8855 0.7329 0.9234 0.5590 0.9117 0.9165

±0.0440 ±0.0448 ±0.2156 ±0.0252 ±0.0957 ±0.0304 ±0.0451

1136 × 852 0.9211 0.8631 0.8187 0.9364 0.6690 0.8982 0.9336

±0.0148 ±0.0445 ±0.1889 ±0.0271 ±0.0857 ±0.1126 ±0.0424

568 × 426 0.8699 0.8578 0.8187 0.8967 0.7192 0.8342 0.8668

±0.0829 ±0.0733 ±0.1782 ±0.0420 ±0.1334 ±0.0423 ±0.0670

Rbio 2.2 2272 × 1704 0.8304 0.8400 0.6666 0.8541 0.7072 0.8079 0.8331

±0.0794 ±0.0894 ±0.1627 ±0.0262 ±0.1257 ±0.0427 ±0.0539

1136 × 852 0.8928 0.8581 0.8232 0.8858 0.6409 0.8307 0.8782

±0.0326 ±0.0742 ±0.0813 ±0.0465 ±0.1824 ±0.0824 ±0.0525

568 × 426 0.9178 0.7730 0.8151 0.8624 0.8114 0.8297 0.8871

±0.0447 ±0.0883 ±0.0610 ±0.0147 ±0.0618 ±0.1232 ±0.0327

Rbio 1.5 2272 × 1704 0.8580 0.8804 0.8500 0.8730 0.7749 0.8594 0.9306

±0.0554 ±0.0421 ±0.0467 ±0.0459 ±0.1282 ±0.0697 ±0.0728

1136 × 852 0.8237 0.8247 0.6830 0.7886 0.5785 0.7814 0.8128

±0.0681 ±0.0910 ±0.1059 ±0.0956 ±0.1115 ±0.0367 ±0.0524

568 × 426 0.8661 0.7311 0.7218 0.8605 0.7031 0.7246 0.8270

±0.0460 ±0.0898 ±0.1057 ±0.1081 ±0.1675 ±0.1433 ±0.0557

Rbio 4.4 2272 × 1704 0.8641 0.8557 0.7741 0.8740 0.7234 0.8375 0.8019

±0.0820 ±0.0762 ±0.0885 ±0.0306 ±0.0997 ±0.0498 ±0.0661

1136 × 852 0.8236 0.8401 0.7165 0.8379 0.6091 0.7917 0.8281

±0.0293 ±0.0938 ±0.0779 ±0.0391 ±0.1398 ±0.0573 ±0.0485

568 × 426 0.8764 0.8834 0.8113 0.8876 0.7123 0.7961 0.9092

±0.0353 ±0.0707 ±0.0676 ±0.0215 ±0.1676 ±0.0855 ±0.0586

Bior 1.5 2272 × 1704 0.8858 0.8758 0.8390 0.8758 0.7045 0.8764 0.9049

±0.0350 ±0.0704 ±0.0913 ±0.0396 ±0.1583 ±0.0621 ±0.0819

1136 × 852 0.8737 0.8531 0.7453 0.9048 0.6376 0.8472 0.9130

±0.0516 ±0.0683 ±0.1544 ±0.0514 ±0.1890 ±0.0775 ±0.0285

568 × 426 0.8729 0.9027 0.8777 0.9019 0.6881 0.8318 0.9045

±0.0442 ±0.0575 ±0.0932 ±0.0341 ±0.1183 ±0.0697 ±0.0520

Bior 1.1 2272 × 1704 0.8587 0.8829 0.8323 0.8078 0.7607 0.8675 0.8454

±0.0568 ±0.0434 ±0.0497 ±0.1054 ±0.0985 ±0.0857 ±0.0625

1136 × 852 0.8976 0.8582 0.7056 0.8605 0.7890 0.8176 0.9120

±0.0629 ±0.0761 ±0.1155 ±0.0825 ±0.1123 ±0.0735 ±0.0670

568 × 426 0.8960 0.7993 0.8245 0.8873 0.7551 0.8008 0.8569

±0.0310 ±0.0434 ±0.0980 ±0.0543 ±0.1599 ±0.0577 ±0.0549

Coif 1 2272 × 1704 0.8713 0.8507 0.8031 0.8564 0.7513 0.8763 0.8550

±0.0976 ±0.0494 ±0.1443 ±0.0604 ±0.0450 ±0.0664 ±0.0972

1136 × 852 0.8495 0.8522 0.7175 0.8692 0.7441 0.8512 0.8745

±0.0557 ±0.0734 ±0.1829 ±0.0757 ±0.1409 ±0.0691 ±0.0216

568 × 426 0.9104 0.7820 0.8171 0.8794 0.7313 0.8447 0.9110

±0.0308 ±0.0932 ±0.0425 ±0.0548 ±0.1567 ±0.0803 ±0.0511



On Optimal Wavelet Bases for Classification of Melanoma Images 663

0.6

0.8

1
A

U
C

Rbio 3.1 Rbio 2.2

0.6

0.8

1

A
U

C

Rbio 1.5 Rbio 4.4

0.6

0.8

1

A
U

C

Bior 1.5
acc. precision f-score fp-rate specificity ber recall

Bior 1.1

accur. precision f-score fp-rate specificity ber recall

ensemble optimization condition

0.6

0.8

1

A
U

C

Coif 1

2272x1704
1136x852
568x426

Fig. 1. Results for AUC for three resolutions of the Melanoma dermoscopic images as
a function of the ensemble optimization factors: Accuracy, Precision, F-score, FP-rate,
Specificity, BER and Recall.

that the learning environment plays an important role in the stability of the mod-
els and this factor may screen the impact of a wavelet base. As we can see in
Fig. 1 the best wavelet base is Reverse Biorthogonal pair (3,1) which outperforms
the following best wavelet bases by 5–10 %. It is clear that careful selection of
the wavelet base is a good starting point to fine tune the final classifier model(s).
For all the shown wavelet bases the best measure is Fp-rate, accuracy and recall
(i.e. sensitivity). All the quality measures show apparent correlations between
different wavelet bases which proves stability of the ensemble learning process.
Regardless of the particular wavelet base (except Rbio 1.5 and Bior 1.1) the
best measure, Fp-rate, shows stable performance between different pixel resolu-
tions and show the least error bars. This is a very encouraging result especially
for the downgraded image resolutions which, due to apparent deficiencies in the
computing power of the contemporary ARM-based hand-held devices, may be
successfully used for an on-site dermatoscopy-based melanoma classification. An
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interesting observation is that for some wavelet bases and some quality mea-
sures the 568 × 426 and 1136 × 852 may outperform the genuine 2272 × 1704
image resolution. In this work we don’t draw any conclusions about associations
between the skin texture and the mathematical properties of different wavelet
bases, the latter observation, however may manifest certain symmetries between
the melanoma differential structures and the raster size.

4 Conclusions

We performed some machine learning experiments to search for optimal wavelet
bases for decomposition of dermoscopic images of melanoma (102 cases) and
dysplastic nevus (83 cases). This is motivated by the medical problem of pat-
tern recognition of early stages of the cutaneous melanoma. We studied wavelet
bases of all possible types and selected those maximizing the classification per-
formance. In order to diversify the learning environment, we used an ensemble
composed of models with different learning paradigms. This ensemble was opti-
mized according to different (arbitrary) quality measures. Our work shows that
the bi-orthogonal wavelet pairs are best suited to be the probe of the human
skin when it undergoes transformations to atypical (dysplastic nevus) or malig-
nant (melanoma) stages. The best wavelet base is the reverse bi-orthogonal pair
(3,1). This work also shows how the studied wavelet bases preserve classification
performance for the case of 2× and 4× image resolution degradation. This is
extremely important for projects aiming at designing small, hand-help devices
for online automatic melanoma diagnosis.

References

1. Odom, R.B., James, W.H., Berger, T.G.: Melanocytic nevi and neoplasms.
Andrews Diseases of the Skin, 9th edn. WB Saunders, Philadelphia (2000)
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Abstract. This work addresses the challenging task of text categoriza-
tion. The main goal is the comparison of two different approaches, i.e.
Vector Space Model and ontology-based solutions. The authors com-
pare and contrast them with respect to accuracy and processing flow,
which affect the classification results. The ontology-based method out-
performs its counter-part when it comes to category resolution, i.e. the
number of categories which can be processed. On the other hand, the
SVM-based module is much faster and performs well when trained on
an appropriately-structured learning set. The authors performed a series
of tests to compare the methods and, as expected, the ontology-based
solution outperformed the SVM classifier. It reached a micro averaged
F1-score of 0.90 with 2.8 million Wikipedia articles, whereas the SVM-
based module did not exceed 0.86 with the same data set. The macro
averaged F1-score of both solutions was inferior to the micro one and
reached values of 0.75 and 0.57, for ontology and SVM-based solutions
respectively.

Keywords: Text classification · Vector space model · Ontology-based
methods · Support vector machine · Wikipedia

1 Introduction

A broad range of classification methods have been developed over the course
of the past years for text processing and analysis [1]. This paper compares two
commonly-used techniques: statistical and ontology-based classification.

Most of the statistical classification methods are taken from the field of
machine learning (ML), where classified objects are treated as feature vectors
and there are multiple ways to transform documents into such vectors [2,3].
On the other hand, the ontology-based solutions assume a set of interrelated
concepts (an ontology) that are mapped to the terms that appear in the text.
c© Springer International Publishing Switzerland 2016
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668 K. Wróbel et al.

The number of concepts is much smaller than the number of terms, allowing for
a dimensionality reduction [4].

The most common way to transform text documents into feature vectors
adopts a “bag-of-words” approach [5], which essentially, is a representation where
each feature is a single token. However, there is no single definition of a feature
and a token, which can either be local or global depending on the scope of the
comparison. Consequently, a feature can be either as simple as a single word or
phrase, or a much more complicated structure.

The features extracted from the texts are fed into a classifier which decides to
which topic group the given document belongs to. Different classification meth-
ods were used in text document classification, but the Support Vector Machine
(SVM) is considered to be the dominant algorithm in terms of performance
[6]. Thus, it was employed in the experiments of the vector space model and
ontology-based classification method comparison [7,8].

The ontology-based approach, on the other hand, performs a sophisticated
transformation of the analyzed text and, as a result, is computationally much
more demanding. Its basic idea is the identification of concepts defined in the
ontology that appear in the analyzed text. Then, the classification is performed
in a smaller space defined by the concepts. Since the concepts form a hierarchy or
a heterarchy, post-processing is employed, in which concepts that are too specific
and too general are eliminated, yielding a desired level of generalization.

The mapping of terms into concepts might be performed in many ways. The
most basic approach assumes that each concept can be represented by a set of
terms in the text. The appearance of a given term is equated with the presence
of the concept, and ambiguous terms are not resolved [4]. In more sophisticated
approaches, the ambiguity is resolved and the concepts are not represented by a
small set of terms, but Named Entity Recognition (NER) is performed in order
to represent the underlying semantics of proper names [9].

The aim of this paper is the comparison of performance between vector space
model and ontology-based text classification. This general goal is restricted
by the application of both methods into the problem of the classification of
Wikipedia articles into the Cyc ontology [10]. In our previous research [11], we
have developed a set of ontology-based classification methods that were used
to classify the articles of the English Wikipedia into OpenCyc. However, these
methods have the following limitations: they are quite slow and they require sub-
stantial implementation effort. Thus, we wanted to find out whether they can
be substituted with fast and generic text classification methods such as SVM.

The text is structured as follows: First, we discuss the idea of the vector space
model with special attention to SVM. Then, we briefly discuss the ontology-based
methods used to classify the articles. We test both methods on two data sets
based on the English Wikipedia. We conclude our paper with the comparison of
the results and our future research ideas.
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2 Vector Space Model

A text categorization task requires that all symbols (words or n-grams) are
converted into a numerical representation, i.e. vectors. In the case of this imple-
mentation, single words are used as terms. The vector space model has been
successfully used as a conventional method for text representation. This model
represents a document as a vector of features [5].

2.1 TF-IDF Representation

The most common algorithm for weighing words in vector space model is the
computation of the so-called Term Frequency (TF) and Inverted Document Fre-
quency (IDF) coefficients. TF-IDF is a numerical statistic that is intended to
reflect how important a word is to the document in the context of the whole
collection. The TF-IDF value increases proportionally to the number of times
a word appears in the document, but it is scaled down by the frequency of the
word in the corpus, which helps mitigate the fact that some words are generally
more common than others. Therefore, common words which appear in many
documents, will be almost ignored. Words that appear frequently in a single
document will be scaled up.

2.2 Support Vector Machines

Support vector machines were originally devised and described by Vapnik [12].
They are used for binary classification, which means that there are exactly two
classes of objects and the classification formula is found in the training process
of the classifier.

The SVM algorithm can be envisioned as a process of creating a hyperplane
which separates data in an n-dimensional space. It is conducted in an iterative
manner, in which a selected plane is gradually adjusted to provide the optimal
so-called generalization margin [13].

3 Ontology-Based Solution

An alternative solution used to classify the documents leverages an ontology –
a structured schema that explicitly lists concepts used to classify entities and
relations that hold between these concepts. WordNet [14,15] is a quite popular
classification scheme, since the number of measures can be defined to compute
the semantic relatedness between the concepts that occur in the given text and
the target classification scheme, allowing for selecting a type that is closest to
the meaning of the document.

However, in our case we have selected OpenCyc [10] as our target classifi-
cation system. This ontology has a number of interesting features that make it
particularly useful for the classification task. Namely, its structure is well defined,
its coverage is broad, especially compared to other general purpose ontologies
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such as DBpedia [16,17], its server implements a number of algorithms for query-
ing and effectively traversing the taxonomy, it has a modular structure (thanks
to microtheories), allowing for encoding alternative perspectives on the organi-
zation of entities, the definitions of types and relations are strict, leaving little
room for misinterpretation, the ontology embraces meta-modelling (cf. [18]) that
greatly simplifies the encoding of some of the types of meta-properties, the com-
pound types are, to a large extent, avoided thanks to type functions, roles, as a
special type of entity, are also available, and, last but not least, there is a built-in
inconsistency detection mechanism based on predicate constraints and relation
of disjointness.

On the other hand, classifying articles into Cyc types is not as easy, since
there is not any publicly available large set of documents classified into Cyc,
that could serve as a training set for the machine learning algorithms.

For that reason, we have selected articles found in the English Wikipedia to
compare both approaches. First of all, each Wikipedia article usually describes
a particular concept or entity, thus, the classification task can be determined as
the selection of the generalization of the concept or the selection of the semantic
type of the entity. Moreover, these documents have many semi-structural features
that can be leveraged to heuristically classify them into Cyc:

– The first sentence of the articles can be treated as the definition – recognizing
the types of objects mentioned in the definition and automatically mapping
them to Cyc can be a method of article classification,

– They usually include infoboxes – pieces of structured data, that can be used
to infer the semantic categories of the documents; the most popular infoboxes
were manually mapped to Cyc types, providing classification for the articles
including them,

– They are organized into a broad set of categories – these categories can be
automatically mapped to Cyc concepts, providing classification for the articles
included in the mapped categories.

For example the article for Madagascar starts with the following text1:

Madagascar (...), officially the Republic of Madagascar (...), and previously
known as the Malagasy Republic, is an island country in the Indian Ocean,
off the coast of Southeast Africa,

indicating the semantic type of the entity, namely island country. The article
includes a Country infobox which indicates that it is a country. The article
is also included in categories such as: Island countries, East African countries,
Countries in Africa,... which provide similar classification hints.

It should be noted, that the availability of these semi-structured data is
varying between articles. Not all of them include infoboxes; some of the specified
categories do not indicate the semantic type of the entities; sometimes it is hard
to determine the phrase in the first sentence that indicates the semantic type.
On the other hand, the types assigned by different methods might be in conflict.
1 cf. http://en.wikipedia.org/wiki/Madagascar.

http://en.wikipedia.org/wiki/Madagascar
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As a result, a voting mechanism has to be implemented. In our case, we have
implemented a simple voting strategy: the number of times a given article was
assigned a particular semantic type was counted and the type with the highest
count was assigned to the article. In the case of a tie, both types were assigned
to the article, allowing for multi-type classification.

4 Experimental Setups Overview

There were two separate series of experiments conduced, separately for the
vector-based and ontology-based solutions. Both of them required different
experimental setups.

4.1 Vector-Based Solution

The system is composed of several stages which constitute the document process-
ing flow presented in Fig. 1. In the first step, the files are read from external fold-
ers in order to train the SVM classifier. All of the files are fed into text cleaner
and stoplist modules which remove all non-alphabetic characters. This happens
regardless of the working mode, i.e. for both train and test modes. Then, pre-
processed files are used to create the dictionary as well as TF-IDF model which
is a core structure for mapping from text to vector space. It is worth noting that
the dictionary and model can be either loaded from an external file or generated.

The size of both the dictionary and the model has a significant impact on the
processing results since they determine the dimensionality of the vector space.
Once the documents are converted to vectors, they may be used to train the
classifier, or for classification. In the final step, the classification results are passed
on to the quality evaluator, which measures the performance of the algorithm in
terms of precision, recall, and F1-score.

4.2 Ontology-Based Solution

The processing of documents in the case of the ontology-based solution was much
more sophisticated, primarily due to the fact that it tried to extract structured
data from semi-structural Wikipedia articles. The second important problem
that had to be taken care of was a problem that is characteristic for any Nat-
ural Language Processing approach which explicitly models language semantics,
namely ambiguity. There were also differences in the processing pipeline, depen-
dent on the source of the classification data.

The first implemented method of extracting the types from the first sen-
tences implemented the following processing approach. It started by detecting
the first sentence in the document, that sentence was parsed by the Stanford
parser [19], and the phrases linked to the subject of the sentence were extracted
as the potential names of the entity described in the document. In the case of
Madagascar, this stage would extract the island country phrase as its type. In
the last stage, that phrase was mapped to one concept in Cyc using contextual
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Fig. 1. Algorithm processing flow in the case of vector-based classification.

data (e.g. the categories of the article) to disambiguate the phrase against the
available Cyc concepts.

The second implemented method, using infoboxes, was the easiest to imple-
ment, since in our earlier research [11], we have manually built mapping from
infoboxes to Cyc types. As a result, this method was quite straight-forward and
relied on Wikipedia infobox data extracted by the DBpedia extraction frame-
work [20]. The documents were assigned Cyc types that corresponded with the
infoboxes. Since this dataset included data of relatively high accuracy (relying
on manual mapping), they were used as input for the vector-based method.

The last method relied on the automatic mapping of Wikipedia categories
to Cyc types. This method was the most sophisticated, since its core problem
was very similar to the problem of ontology mapping (Wikipedia categories do
not form a taxonomy, but rather a folksonomy). It started with cleaning up the
categories (removal of administrative categories), continued with parsing the
categories (with help from the Stanford parser), the identification of categories
whose syntactic heads were plural (since they usually correspond to classification
types) and mapping these categories to Cyc types. The last stage was crucial
due to ambiguity. To overcome the problem, we have implemented a disambigua-
tion strategy similar to the first method. We have used the local context of the
mapped category (i.e. its parent and child categories together with articles in
that category) to select the most probable mapping. When the correspondence
between categories and types was established, all articles included in the mapped
category received its corresponding type. For instance, the Madagascar article
would receive the Cyc #$Country type, since the Countries in Africa category
would be mapped to that type.
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The final step of the classification involved the selection of one or more types
that would best capture the semantics of the given Wikipedia article. Since
there were several classification methods implemented, each capable of producing
zero, one, or more types, a voting procedure was applied. In the first stage, all
types produced by the methods were substituted with a small set of general,
but meaningful concepts by following the generalization relation that is well
defined in Cyc (the list of types is present in Table 1). Then, the type or types
that appeared the most frequently in the classification were selected as the final
classification for the article.

5 Experiments

The primary question we wanted to answer during the experiments with both
of the approaches was: is it possible to achieve classification results rely-
ing on one relatively simple method (SVM) that would be as good
as the results obtained with a combination of several ontology-based
methods?

The problem of Wikipedia article classification is quite popular in literature
and there are reports showing that ML methods can achieve very good results
(cf. [21]). Usually the training and evaluation of ML methods are performed
with classification that is automatically generated from Wikipedia based on the
mapping between Wikipedia infoboxes and DBpedia ontology classes [17]. The
reason for that is the requirement for a large number of examples needed to train
ML classifiers and the belief that the DBpedia classification is almost perfect.

However, as our earlier study shows [11], this classification is not always per-
fect. Thus, our second question regarding the classification was: how much will
the reported quality of the results change if we substitute the (auto-
matically generated) DBpedia evaluation dataset with a manually val-
idated dataset? This is why we have manually validated 3,500 examples taken
from the English Wikipedia. Each example was independently evaluated by two
annotators and disagreements were jointly solved.

5.1 Performance Comparison for Automatic and Manual Validation

We started our experiments trying to answer the second question first, since that
result would shed light on the proper way of comparing the implemented meth-
ods. Thus for every class in Table 1 we have collected a set of 5,000 Wikipedia
articles relying on the mapping between Wikipedia infoboxes and Cyc concepts.
For some of the classes the number of examples was smaller than 5,000 – in such
cases. all of them were taken. In each case, the set of examples was split, and
80 % of them were used for training and 20 % for evaluation. Each example was
described in a file which contained a single (the top) paragraph of the original
Wikipedia text extended with the names of its Wikipedia categories. The tokens
in the category names were prefixed, thus they formed a different set of features
in the feature vectors.
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The results of this experiment are presented in Table 1. All scores are provided
using standard information retrieval metrics: precision, recall, and F1-score. Due
to skewed class distribution, we also report the micro and macro averaged results.

It is apparent that the manually validated dataset poses a much harder chal-
lenge for the classification algorithms than the second one. For each and every
class, the F1-score is worse for the manually evaluated dataset. The same holds
for micro and macro averaged results and is especially apparent for the macro
averaged F1-score, where the results are 35 % points worse. For that reason,
when comparing the results of SVM and ontology-based classification, we only
relied on the manually validated dataset.

5.2 Performance Comparison for SVM and Ontology-Based
Methods

In the second series of experiments we directly addressed the first question
regarding the main topic of this article. To make the most out of SVM when
building classification models for the defined ontology classes we have used the
full Wikipedia dataset (2.8 million articles with infoboxes). Since the class dis-
tribution is very skewed (with #$Person class dominating), some of the models
contained hundreds of thousands of examples, while the others contained only
several thousand. To process such a big dataset, we have used the Vowpal Wabbit
SVM implementation.

Regarding the ontology-based solution we have employed a much more
sophisticated pipeline of tools named cycloped.io. They are available as an
open source project at github.com/cycloped-io. The processing of the entire
English Wikipedia took several days and its details are out of the scope of this
article.

The results of the comparison are given in Table 2. It is apparent that for
most of the individual classes the results are better for the ontology-based
methods. The micro averaged F1-score is 4 % points better for these methods,
while the macro averaged F1-score is 18 % points better. We can conclude that
although the SVM-based classification gives relatively good classification results,
the ontology-based methods still perform much better.

5.3 Discussion of the Results

The SVM-based classifier requires high quality training data. Unfortunately, the
articles acquired from infobox mapping are not perfect, which may, to some
extent, affect the performance of the classifier. However, even if it was compe-
tently accurate, it would not change the fact that the SVM-based classifier is
blind in regards to articles belonging to classes which it was not exposed to dur-
ing training. In other words, all of the documents belonging to classes which did
not exist in the training set are classified with zero accuracy.

The processing speed was not the focus of this paper, but it is worth noting
that the Vowpal Wabbit [22] linear SVM performed much better than the Python
sklearn module [23].
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Table 1. SVM performance on automatically and manually created validation datasets.

Class Automatically annotated testing set Manually annotated testing set

Precision Recall F1-score Precision Recall F1-score

Action 0.75 0.63 0.68 0.85 0.17 0.29

Animal 1.0 1.0 1.0 0.96 0.92 0.94

Artifact-Generic 0.77 0.87 0.81 0.64 0.14 0.23

AspatialInformationStore 0.84 0.84 0.84 1.0 0.34 0.51

BiologicalLivingObject 1.0 1.0 1.0 0.55 0.75 0.63

ChemicalObject 0.43 0.23 0.3 0.0 0.0 0.0

CommercialOrganization 0.99 1.0 0.99 0.97 0.74 0.84

ConceptualWork 0.98 0.87 0.92 0.99 0.67 0.8

ConstructionArtifact 0.42 0.25 0.32 0.38 0.22 0.28

Drink 1.0 1.0 1.0 1.0 0.67 0.8

EdibleStuff 0.4 0.24 0.3 1.0 0.11 0.19

Event 0.71 0.69 0.7 0.55 0.57 0.56

FictionalThing 1.0 1.0 1.0 0.93 0.72 0.81

Food 1.0 1.0 1.0 0.56 0.83 0.67

GeographicalRegion 0.53 0.35 0.42 0.9 0.14 0.25

GeopoliticalEntity 1.0 1.0 1.0 0.85 0.91 0.88

Group 0.67 0.4 0.5 0.84 0.18 0.3

InanimateObject-Natural 0.68 0.73 0.71 0.6 0.64 0.62

InformationBearingThing 1.0 1.0 1.0 0.2 0.06 0.1

InorganicMaterial 1.0 1.0 1.0 1.0 0.4 0.57

IntelligentAgent 1.0 1.0 1.0 0.5 0.04 0.08

MathematicalOr-

ComputationalThing

1.0 1.0 1.0 0.25 0.39 0.3

Microorganism 1.0 1.0 1.0 1.0 0.06 0.11

NonProfitOrganization 1.0 1.0 1.0 0.0 0.0 0.0

OrganicMaterial 0.4 0.16 0.23 0.0 0.0 0.0

OrganismPart 1.0 1.0 1.0 1.0 0.8 0.89

Organization 0.98 0.98 0.98 0.92 0.7 0.8

Person 0.99 1.0 1.0 0.99 0.97 0.98

PhysicalDevice 0.3 0.1 0.15 0.89 0.07 0.14

Place-NonAgent 0.31 0.07 0.11 0.71 0.04 0.07

Plant 1.0 1.0 1.0 0.92 0.95 0.93

Product 0.98 1.0 0.99 0.5 0.1 0.17

Technology-Artifact 0.77 0.92 0.84 0.74 0.64 0.69

Thing 0.9 0.88 0.89 0.0 0.0 0.0

TimeInterval 1.0 1.0 1.0 0.0 0.0 0.0

Weapon 1.0 1.0 1.0 0.6 0.67 0.63

Micro averaged 0.85 0.74 0.79 0.89 0.63 0.74

Macro averaged 0.82 0.78 0.79 0.66 0.4 0.44
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Table 2. Classification performance for SVM and ontology-based implementations.

Class SVM Ontology-based

Precision Recall F1-score Precision Recall F1-score

Action 0.66 0.52 0.58 0.64 0.76 0.69

Animal 0.97 0.95 0.96 0.95 0.99 0.97

Artifact-Generic 0.88 0.17 0.28 0.83 0.53 0.65

AspatialInformationStore 0.98 0.76 0.86 0.89 0.87 0.88

BiologicalLivingObject 0.5 0.62 0.56 0.75 0.75 0.75

ChemicalObject 0.33 0.2 0.25 0.54 0.47 0.5

ColoredThing 0 0 0 1 0.5 0.67

CommercialOrganization 0.89 0.89 0.89 0.88 0.97 0.92

ConceptualWork 0.95 0.91 0.93 0.97 0.97 0.97

ConstructionArtifact 0.92 0.91 0.92 0.92 0.9 0.91

Drink 1 0.67 0.8 1 0.67 0.8

EdibleStuff 1 0.47 0.64 1 0.7 0.82

Event 0.29 0.71 0.41 0.78 0.64 0.7

FictionalThing 0.94 0.89 0.91 1 0.5 0.67

Food 0.67 1 0.8 1 1 1

GeographicalRegion 0.97 0.49 0.65 0.94 0.7 0.8

GeometricFigure 0 0 0 1 1 1

GeopoliticalEntity 0.82 0.99 0.9 0.86 0.97 0.91

Group 0.64 0.28 0.39 0.79 0.64 0.71

InanimateObject-Natural 0.89 0.82 0.86 0.93 0.98 0.95

InformationBearingThing 0.33 0.06 0.1 0.76 0.76 0.76

InorganicMaterial 1 0.4 0.57 1 0.4 0.57

IntelligentAgent 0.57 0.08 0.14 0.75 0.24 0.36

MathematicalOrComputationalThing 0.21 0.39 0.27 0.38 0.57 0.45

Microorganism 1 0.06 0.11 0.93 0.72 0.81

NonProfitOrganization 0.67 0.2 0.31 0 0 0

OrganicMaterial 1 0.36 0.53 0.92 0.88 0.9

OrganismPart 0.83 1 0.91 1 0.9 0.95

Organization 0.9 0.86 0.88 0.89 0.89 0.89

Person 0.99 0.98 0.99 0.97 1 0.99

PhysicalDevice 0.86 0.85 0.85 0.88 0.93 0.9

Place-NonAgent 0.91 0.83 0.87 0.92 0.9 0.91

Plant 0.95 0.98 0.97 0.95 1 0.98

Product 0 0 0 1 0.67 0.8

Technology-Artifact 0.83 0.83 0.83 0.84 0.89 0.87

Thing 0 0 0 0 0 0

TimeInterval 0 0 0 0.75 0.75 0.75

Weapon 1 0.64 0.78 1 0.82 0.9

Micro averaged 0.89 0.82 0.86 0.91 0.90 0.90

Macro averaged 0.69 0.55 0.57 0.81 0.71 0.75
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The ontology-based solution delivers much more detailed results and allows
for inference. It is reflected in the module’s capability of yielding proper results
for categories which it was not trained for. On the other hand, the superior
performance of the ontology-based module (Table 2) is achieved at the expense
of longer processing time when compared to the SVM-based solution.

6 Original Contribution

The presented research and the results of the experiments should be consid-
ered as a step towards building an ensemble of classifiers capable of both fast
and accurate document classification. The system is to be composed of a set of
modules, as presented in Fig. 2.

Fig. 2. Architecture of the classifier ensemble

Incoming text documents are to be preprocessed by and fed into the clas-
sifier ensemble to be concurrently processed by both SVM and Ontology-based
classifiers. If, in the past, the results of both modules more or less matched, the
user is instantly presented with the results of the SVM-based classifier, which
significantly reduces the system response time.

The results from both modules are cached in the cache module and evaluated
by the quality evaluator in terms of any discrepancy in their quality according
to the adopted quality assessment measures for all of the covered document
categories. If the difference in quality between the results yielded by the SVM
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and ontology-based solutions according to past statistics is high, the ontology-
based result is preferred, and the user has to wait for the module to produce the
result. In the opposite scenario (i.e. when the discrepancy in the result quality
between the SVM and ontology-based classifiers is low), the result generated by
the SVM-based classifier is chosen and sent as the classification result. In the
latter case, the classification result is available much faster and with insignifi-
cantly worse quality than the one produced by the ontology-based classifier. It
is worth noting that the difference in result generation between the SVM and
ontology-based classifiers is huge, i.e. minutes vs days in the case of processing
the entire Wikipedia corpus.

The decision of which result to choose is made based on past statistics col-
lected by the result cache module for all of the categories the ensemble is sup-
posed to recognize. The statistics are updated for every classification instance.
This means that even when the SVM-based result is preferred in a given case,
the classification result of the ontology-based module is not wasted and is used
to update the global statistics. Consequently, the module progressively builds
classification statistics. This improves the future performance of the ensemble.

The main contribution of the paper is the experimental proof of
the feasibility of the concept for performance boosting by using hybrid
SVM and ontology-based solutions.

Tables 1 and 2 show that for some categories, the differences in the classifica-
tion quality in terms of the adopted measures between the SVM and ontology-
based classifiers are low. In those cases, it is possible to use SVM-based results
to speed up the classification process at the expense of very little degradation of
quality. On the other hand, there are cases (Tables 1 and 2) where the SVM-based
classifier yields results significantly inferior to its ontology-based counterpart or
does not produce anything at all (if it was not trained to recognize instances
of this particular category). In those cases, it takes much longer for the ensem-
ble to generate results, but eventually they are produced by the ontology-based
module.

7 Conclusions and Future Work

In this paper, we have presented two solutions to the problem of the classification
of Wikipedia articles. The first one uses an SVM classifier and accomplishes the
training in 21 min. This approach needs a large set of annotated data. The second
solution applies ontology knowledge and relies on structural information already
present in Wikipedia. The micro averaged scores of the classification are similar
(the ontology-based methods are 4 % points better), however the ontology-based
solution performs much better in terms of macro averaged measures (18 % points
difference).

The ontology-based solution outperformed the statistical approach in eval-
uation metrics. However, the amount of time necessary to develop the system
and run the classification is significantly longer. An interesting idea is to use a
statistical classifier to limit or extend the category candidates in ontology-based
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methods. This limitation can lead to a shorter running time. The extension of
candidates is more challenging as the classification is performed using more spe-
cific classes, but can potentially gain a better score. Another option is to treat
the SVM results as equal with the results from ontology-based methods, and
treat them as yet another method that participates in the voting for the most
reliable classification.

In our future research, we want to further investigate the problem of turning
Wikipedia into a computable knowledge base. We plan to particularly focus our
efforts on the problem of processing multilingual data. SVM seems to be a good
choice for this, since, to a great extent, it is language-agnostic.
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Abstract. Mobile phone network data routinely collected by providers
possess very valuable and encoded information about human behaviours.
In order to obtain the information it is necessary to carry out an ardu-
ous extraction process. Nevertheless, this information would be of funda-
mental importance for a successfully building and operating smart urban
ecosystem understood as a self-organized and open system gathering and
using knowledge about smart city environment. Intensive tourist activi-
ties in urban spaces bring smartness via mobile phone fingerprints into
urban ecosystems and municipal services. This paper provides a unified
approach comprising both informal (use cases) and formal (algorithms)
elements to obtain a common framework which after ignoring redundant
information maps pervasive datasets into a collection of individual pat-
terns and anonymized tourist behaviours in urban spaces. They strongly
influence municipal services to understand urban context and operate
more effectively to support tourist activities to become more safe and
comfortable.

Keywords: Pervasive dataset · Mobile phone network · Base Trans-
ceiver Station · Urban ecosystem · Individual behavior recognition ·
Multi-agent system · Tourist movement.

1 Introduction

Data ubiquitously generated during the plain interaction between mobile phone
and the serving telecommunication network are a rich source of information.
These pervasive datasets are recorded and stored in Base Transceiver Station
BTS which are basic devices providing wireless communication between mobile
phones and a telecommunication network. General availability of mobile phones
accompanying us in everyday life in most of the time creates a great potential
towards identifying people activities. (Anonymized) Call Detail Records CDRs
produced during the above-mentioned interactions allows to estimate locations
of important places as well as other behavioural aspects of user/tourist activ-
ities especially when some other open and available technologies are applied
c© Springer International Publishing Switzerland 2016
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supportively. Thus, the purpose of this paper is to map population datasets into
a collection of individual behaviours to support urban ecosystem which produce
context-aware and pro-active decisions. Activities and use cases for municipal
services that support urban management, as well as refer to tourist movement
in a destination, are considered.

Quality is always crucial for a successful tourism industry. Thus, the evalu-
ation of effectiveness in achieving the goals of the assumed and expected sus-
tainable tourism development is fundamental. Tourist trajectories and patter
behaviours might be extracted from mobile phone datasets, and thus replace
inefficient/traditional destination questionnaires, no matter manual/paper or
web-based, within leisure, recreation and tourism settings. Since manual surveys
are so expensive to conduct in terms of time and money, the automatic surveys
based on the analysis of pervasive datasets from mobile networks seems to be
an excellent alternative the benefits of which is hard to overestimate. Another
advantage of this approach is impartiality as well as the generation in real-time
reliable information covering tourist activities.

The aim of this paper is to show how to use information about tourist activity
in urban spaces obtained from CDRs for context-aware smart decisions in urban
ecosystem. The contribution of the paper is an unified approach consisting of
sample use cases for an urban context-aware system and algorithms for software
agents which are evidence and an argument validating the proposed system.
Another contribution is a novel method of mapping filtered pervasive streams of
datasets into a collection of individual and anonymized tourist activities located
in a tourist destination. To the best of our knowledge, this early research paper
presents the first study for mentioned area as well as the tourist movement case.
This research opens some new directions especially related to implementation
and experiments in particular.

There are works considering behavior recognition in ubiquitous computing;
however, their relevant subset which focuses on pervasive datasets stored in BTS
stations is a subject of these research interests. On the other hand, most of works
focus on the entire streams of behaviors rather not considering individual one.
For example, in work [12] mobile phone data are analyzed as data that create
holistic and dynamic city system. It allows to build a dynamic and real-time
representation that goes city-wide. Work [6] provides a method of identifying
inhabitants’ important locations by clustering and regression. Based on some
simple rules, algorithms for selecting home and work locations are described,
and both individual and population behavior is considered. Work [2] describes
mobile phones in a real-time urban monitoring system based on fixed sensors
and GPS receivers. These combined approaches allow to prepare a monitoring
platform to visualize a vehicular traffic and movements of pedestrians. Behavioral
patterns are discussed in work [4]. Summarizing these works, there is a lack of
a strong focusing limited only to the individual behaviors within mobile phone
datasets. However, the works influence this research showing challenging research
direction as well as considering some patterns of behaviors. In work [13] not only
current research trends for leisure, recreation and tourist are surveyed but there
are also numerous questionnaires included.
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2 Mobile Phone Infrastructure

Systems for mobile communications (e.g. GSM or UMTS) are well established.
There are many works introducing the world of data communication procedures,
e.g. work [5].

Fig. 1. A sample BTS network
(source: btsearch.pl)

The most obvious part of the mobile phone
network is a base station. A base transceiver sta-
tion (BTS) is a piece of equipment that enables
wireless communication between a user and the
network. Nowadays, cities and regions are cov-
ered with a relatively dense network of BTSs, see
for example Fig. 1. Although outside the cities
networks are less dense, in each case they gather
and store important and interesting information
about different types of users’ activities.

A call detail record (CDR) contains data
recorded and produced by telecommunications equipment. CDRs, as collections
of information, have a special format [3]. Below is a sample fragment of a CDR
text decoded from the binary format. The first row must contain a header row
which includes the field names:

Call Type,Call Cause,Customer Identifier,Telephone Num Dialled,Call Date,

Call Time,Duration,Bytes Transmitted,Bytes Received,Descript,Chargecode,

Time Band,Salesprice,Salesprice (pre-bundle),Extension,DDI,Grouping ID,

Call Class,Carrier,Recording,VAT,Country of Origin,Network,Tariff code,

Remote Network,APN,Diverted Number,Ring time,RecordID,Currency

The meaning of the columns is not analysed here since they are intuitive and
the detailed discussion is outside the scope of the paper. Location information
is extracted as part of the interaction data. These location observations, i.e. the
moment of the phone’s/object’s entry into the area of a station (log in), and the
moment they leave that area (log out), are of fundamental importance to the
considerations given in the following sections of the paper.

3 Smart Urban Ecosystem

Ecosystem is a distributed, self-organized and open system gathering knowledge
about (selected aspect of) smart city environment. It constitutes a community of
digital devices and their environment functioning as a whole (hardware, software,
services). This system might be extended considering other aspects of smart city,
for example urban pollutions, fire and emergency systems, water and sanitation,
energy, etc.

A sample urban system is shown in Fig. 2. Some users (actors) for a smart
ecosystem that is context-aware are identified: Emergency services, Municipal
police, and Public transportation management. Emergency services are orga-
nizations ensuring public safety and deal with emergencies when they occur
(ambulance service, the police, the fire brigade, and others). Municipal police
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Fig. 2. A use case diagram for a smart urban ecosystem (fragment)

are law enforcement agencies that are under the control of a town, city, or bor-
ough or its local government. Public transportation management are systematic
processes collecting and analyzing information on the condition and needs as
inputs to the urban planning processes to support decision-makers for appropri-
ate strategies.

The above actors operate in the context-aware urban system which consist
of the following sample use cases: Manage crisis, Urban surveillance (UC2), and
Manage transport (UC3). Brief descriptions of use case features are provided
instead of a formal scenario.

Manage crisis (UC1) means process dealing with events that threaten for gen-
eral public. When tourist activities in selected areas increased, responses might
comprise: launching/establishing the special emergency call number, increas-
ing the number of open/active, and night shifts, pharmacies in selected areas,
increasing the number of hospital emergency rooms, improved security and
enforcement of regulations, etc.

Urban monitoring (UC2) means checking processes or tracking in a system-
atic way, supervising activities in progress. When tourist activities in selected
areas increased, responses might comprise: intensification of monitoring in
selected areas, increased energy consumption/production, increased waste and
pollution issues, additional patrols, sending drones, etc.

Manage transport (UC3) means to supply chain management for transporta-
tion operations in the public area. When tourist activities in selected areas
increased, responses might comprise: increasing the frequency of buses/trams
courses, shuttle services if necessary, activating additional bicycle rental systems,
etc.
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4 Tourist Destination Questionnaires

A questionnaire is a form containing a set of questions usually addressed to
statistically important tourist activities. A tourist questionnaire is a typical way
of gathering information which can be used for managing context-aware urban
ecosystem. A questionnaire for tourist movement in destinations is discussed now
to clarify how smart systems basing on recognising tourist activities work.

Fig. 3. Lisbon and close/distance surroundings.

Lisbon, the capital city of Portugal, as well as its surroundings are considered
and used as an example.

Tourists/visitors stay in Lisbon and, probably day by day, visit its monu-
ments and various tourist attractions. However, some tourists during their whole
stay in the city may wish to visit its surroundings, e.g. Fátima (religious reasons)
or Cascais (recreational reasons), as well as Sintra which is known for historical
and architectural monuments and is classified as a UNESCO World Heritage
Site, see Fig. 3. All these places/sub-destinations, except Fátima, are located in
the Grande Lisboa subregion1.

Sample and common questions for visitors are shown in Table 1. There are
also available many other tourist questionnaires, for example [1,14]. These ques-
tionnaires are distributed to visitors during their stay at a destination. They
refer to many details of visitors’ trip and stay. Forms are usually designed by
tourism organizations for people who are going to spent at least one night at the
destination. Questionnaires are conducted anonymously.

1 See http://en.wikipedia.org/wiki/Grande Lisboa.

http://en.wikipedia.org/wiki/Grande_Lisboa
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Table 1. A sample tourist questionnaire (a sketch).

Questions Answers

1. When did you come to Lisbon and what day of your
stay is it today?

. . .

2. Did you come to Lisbon directly from your residence? Y/N

3. How long are you going to stay in Lisbon? . . .

4. Are you accommodate in Lisbon? Y/N

5. In what type of accommodation in Lisbon do you
stay, if any?

hotel, hostel, etc.

6. What were your main aims when selecting this
destination?

business, culture,
religion, etc.

7. What means of transport did you use to arrive to
Lisbon?

train, car, airplane, etc.

8. Do you travel in a group? Y/N

9. Do you use local guides? Y/N

10. How many times have you been in Lisbon before? . . .

11. How much money do you spend per person? . . .

12. Which places outside Lisbon do you want to visit
during your stay?

. . .

13. How do you find selected aspects of your visit (from
1 to 5)?

[aspects to evaluate]

14. How do you find selected services in Lisbon (from 1
to 5)?

[services to evaluate]

15. What are the most attractive places in Lisbon? . . .

16. What sources of information did you consult before
arrival?

[options to select]

17. How would you like to spend your time during your
next stay in Lisbon

. . .

18. Are you going to recommend Lisbon to your friends? Y/N

19. Are you going to come to Lisbon again? Y/N

20. Personal information about a respondent . . .

One of the main objectives of the questionnaires is to know more about
visitor characteristics for marketing purposes, as well as to identify the size
of the tourism activity. Other characteristics cover types of visitors (foreign or
home, business or leisure, overnight or day trip). They also allow to identify
where visitors, if any, go outside the examined basic destination and what is the
scale of sub-destination visits.

The purpose of this paper is also to provide methods of gathering automat-
ically information about tourist movements, that is to replace manual surveys
by a fully automatic process, and then use this information for smart urban
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ecosystem. It should be noted that the typical granulation for the BTS station
is about 500 m in a city (urban areas) and about 1,000 m outside a city. On the
other hand, there are some advanced algorithms and models [2] enabling an esti-
mation of a phone position between stations with an accuracy of about 150 m
in urban areas. Let us also note that Home Location Register HLR is main-
tained in mobile networks in order to provide information about subscribers
who are registered in a core/local network. The opposite meaning has the Vis-
itor Location Register VLR which provides information about network visitors
(outside/country or foreign). These two records are important for the approach
since they allow finding who is a visitor and who is not. Although there are some
exceptions, the probability of correct verification based on VLRs/HLRs is very
high. In the case of any difficulties or doubts, the billing databases of mobile
providers might additionally be examined.

5 Towards Algorithm

The analysis of points/questions in Table 1 leads to the following taxonomy
based on the information expected to be obtained from the BTS datasets, which
constitute an informally expressed algorithm:

1. answers that are obviously easy to obtain, e.g. point 1 or 3;
2. some answers are available through digging deeper but still direct analysis

of the BTS data is needed, e.g. point 2 and the VLR/HLR records;
3. a certain number of answers need a pattern analysis for individuals, e.g. the

comparison of the locations during day and night for point 4, or less/limited
mobility (business) and greater mobility (an active city exploration typical
for tourists) for point 6;

4. some answers require a pattern analysis for a group, if any, of visitors, in
other words, it is examined whether a group of objects are moving together,
e.g. the city exploration with a group of mobile phones/visitors for point 8,
or with a one local (c.f. VLR/HLR records) mobile phone of a local guide
for point 9;

5. some points need additional (open) technologies to answer questions, e.g.
OpenStreetMap OSM2 to locate/identify selected objects like airports or
railway stations for point 7, hotels/hostels for point 5, museums/churches
for point 6, or suburban areas (close or distant) for point 12;

6. there are some answers that require the historical data analysis, e.g. previous
presence in a destination for point 10;

7. some answers require accesses to commercial/bank data, e.g. credit/debit
cards used in the destination for point 11;

8. several answers could be obtained while analyzing, for example, social net-
works, reservation systems or web vendors, e.g. sources of information for
point 16;

2 See: http://en.wikipedia.org/wiki/OpenStreetMap.

http://en.wikipedia.org/wiki/OpenStreetMap
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9. some answers could be obtained when web forms are sent directly to mobile
phones, after the visit in the destination is over, e.g. sources of information
for points 13–15, 20;

10. some points for which obtaining answers basing on BTS datasets are impos-
sible or problematic, e.g. points 17–19;

11. last but not least, there is some information that could be extracted from
the BTS data, and which usually is not a subject of any questionnaire (thus,
no points in Table 1 are indicated here) but it could be used to analyze other
parameters of tourist activities, e.g. intensity of call/sms/mms/web trans-
missions during the entire visit or in particular places, and thou numerous
valuable conclusions that follow.

The above classification is crucial and gives an idea of the foundations for solu-
tions and methods proposed in the paper, that is how use information gathered
in CDRs treated as a base for pro-active decisions of an urban ecosystem. In
other words, the above classification constitute a base for methods of building
knowledge about tourist activities, c.f. line 2 in Algorithm 2.

6 A Multi-agent System

A multi-agent system and its architecture is proposed in this Section. The system
is used to solve the problem of surveying the tourist movement in a destination
in the way as described in the previous Section.

The following taxonomy of agent is proposed:

A – Angel-the-guard agent, that is an agent created for a new object that appears
in the entire destination network when this object is classified as a visitor.
From this moment the agent exist in a system until the object leaves the
entire network; the agent stores all events that refer to the object. After the
object leaves a destination then the gathered information are passed to the
agent Q and the agent A is removed from the system;

E – Event agent, that is an agent that exist in a system permanently the purpose
of which is to process new events that appear. It is assumed that a list of
basic events is pre-defined and only these events are handled;

Q – Questionnaire agent, that is an agent that exists in a system and its pur-
pose is to update a questionnaire which is build in this destination. The
questionnaire is updated when an object leaves the entire destination and
its agent A is to be removed. There is one questionnaire agent for one type
of questionnaire;

M – Managing agent, that is an agent that exists in a system permanently,
and the purpose of this agent is to initiate system variables, and to han-
dle two (selected) events as well as to manage questionnaire agents in this
destination.

Summing up, the number of agents A in a system is equal to the number of
visitors in a given destination; there is only one agent E in a destination; the
number of agents Q in a system is equal to the number of questionnaire types
built in the system, and there is only one agent M in the system.



Mapping Population and Mobile Pervasive Datasets 691

7 Methods and Algorithms

Several algorithms for handling the entire system are proposed in this Section.
They refer to the classification of the agents defined in the previous Section, that
is agents that operate in a system.

Some assumptions related to the algorithms are made. There is a pre-defined
set/list of BTSs BTSlist that belong to a considered destination. This set/area
is closed, and only these BTSs constitute the destination. (A “BTS corridor”, for
surroundings, see Fig. 3, must be built from a destination to a sub-destination.)
An event loop (message dispatcher) EventList is the primary method of process-
ing. There is also predefined set of events PredefEvent which are registered and
inserted into loop EventList. Every event e defines an event type/name and
the associate/coupled object o (mobile phone). In other words, an event always
means a pair of an event’s name and an object. The events describe different
aspects of objects’ activities registered in BTSs and are not widely discussed
here. There are two special cases of events objCome and objLeave which mean
that an object enters or exits a destination defined by BTSlist, respectively. The
“nil” means empty event. The “others” stands for events that are outside the
scope of (tourist) interest. Loop EventList as well as PredefEvent are placed
in a basic/native mobile network system, and the system inserts every registered
event to the loop which is processed by Algorithms 1–4.

The entire system is initiated by agent M whose operations are shown as Algo-
rithm 1. Firstly, the agent initiates system/global variables and questionnaires.
Secondly, agent M processes in the loop two (special) events that appear in the
system. The global variables are V is (all active visitors observed/registered in
a destination), Res (all active residents observed/registered in a destination),
PredefEvent (list of legal and predefined events that are handled), and list of
events EventList that are currently being processed in a system. Two of these
events are handled directly in the main loop, that is only the agent M processes
these events.

The agent Q, shown as Algorithm 2, processes data gathered by the agents
A. Data are (temporary) stored in the system. Questionnaire Que is updated
using data of agent a in the way it is required by this questionnaire. The agent
A gathers data for object o and event e and is shown as Algorithm 3. Object
o is a visitor and event e belongs to the list of legal events PredefEvent. The
agent E performs events as defined in EventList and is shown as Algorithm 4.
Events are processed in the (main) loop similar to the loop in the agent M’s
operations, however, the right to process two events from EventList is reserved
for the agent M.

Call “call process M−operations” (see also line 8 in Algorithm 1) starts
the system. The system does not need a synchronization because of disjoint
subsets of events processed in two separate loops (see, line 12 in Algorithm 1
and line 4 in Algorithm 4). If more agents E are introduced to speed up the entire
system, e.g. call “call process (1..p) E−operations” (line 8 in Algorithm 1), the
synchronization is mandatory.
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Algorithm 1. The M agent operations (M-operations)
1: BTSlist = ..........; � destination covered by BTSs
2: PredefEvent = (objCome, objLeave, ..., others);
3: V is := ∅; Res := ∅; � lists of Visitors and Residents
4: EventList := ∅; � events to handle, dispatcher, FIFO
5: for i = 1, .., n do � many questionnaires, if i > 1
6: InitQuestionnaire(Quei) � initialize every Que
7: end for
8: call process E−operations; � concurrently
9: loop

10: e := Get(EventList); � read
11: if e �= nil then
12: if (e ∈ {objCome, objLeave}) then
13: v := V erifyV isitor(o); � using VLR/HLR
14: if v ∧ (e = objCome) then
15: NewAngel(a, o); � agent a for object o
16: A−operations(e);
17: V is := V is ∪ {o}
18: end if
19: if v ∧ (e = objLeave) then
20: A−operations(e);
21: for i = 1, .., n do
22: Q−operations(Quei, a);
23: end for
24: DisposseAngel(a); � remove agent
25: V is := V is \ {o}
26: end if
27: Delete(e) � remove from EventList
28: end if
29: end if
30: end loop

Algorithm 2. The Q agent operations (Q-operations)
Input: Que, a; � a questionnaire and one agent A
Output: Que
1: Store data of a; � in a global repository
2: Update Que using data gathered by agent a;

Finding time complexity, which signifies the total time required by the algo-
rithm to run to completion, for Algorithms 1–4 begins with Algorithms 2
and 3 which are elementary and called from other algorithms. Time com-
plexity for Algorithm 2 depends on the length of a particular questionnaire
O(qn), where qn is a total number of questions in a questionnaire, c.f. Table 1.
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Algorithm 3. The A agent operations (A-operations)
Input: e � event, e ∈ PredefEvent
Output: a � agent A for object o
1: Search agent a for event e of object o;
2: Update a using data of event e;

Algorithm 4. The E agent operations (E-operations)
1: loop
2: e := Get(EventList); � read
3: if e �= nil then
4: if (e �∈ {objCome, objLeave}) then
5: if (e �= others) ∧ (o ∈ V is) then � o in e
6: A−operations(e);
7: end if
8: Delete(e) � remove from EventList
9: end if

10: end if
11: end loop

Time complexity for Algorithm 3 depends on the number of predefined and
considered events O(ep) for an agent. Line 6 in Algorithm 4 contains its
dominant operation, hence, time complexity for Algorithm 4 is O(p′), where
p′ = (PredefEvents \ {others}) \ {objCome, objLeave}, that is all predefined
events minus other ones, which are omitted and not considered for question-
naires, and minus two events processed separately in Algorithm 1. Most instruc-
tions of Algorithm 1 are fixed cost instructions, even the loop instruction in line 8
has fixed cost. The main purpose of the Algorithm is to pre-handle two special
events objCome and objLeave, as well as to create/delete the angel for an object.
Moreover, Algorithm 3 is always called, as well as Algorithm 2 is called in one
case. Thus, worst case time complexity for Algorithm 1 is O(el + n · qi=1,...,n),
where el is a number of predefined events, and n is a number of considered
questionnaires, see lines 16, 20, and 22.

8 Conclusion

The paper presents a novel method for mining individual behaviours of visitors
in a destination from pervasive BTS datasets. The questionnaire behaviour, see
Table 1, is expressed informally in an introduced classification giving an idea
how it works, and then authenticated through an architecture of a multi-agent
system and more formally through Algorithms 1–4. The gathered information
constitute a base for the context-aware urban ecosystem shown in Fig. 2.

Future works should cover more detailed algorithms as well as an architec-
ture for a multi-agent system. Formal logic is an appropriate background, when
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considering workflows for software models [7,8], applications of formal reasoning
processes, e.g. [10,11], or mining behaviours from datasets [9]. More theoretical
and especially experimental evaluations are also required for future work.
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Abstract. Various metaheuristic approaches have emerged in recent
years to solve the capacitated vehicle routing problem (CVRP), a well-
known NP−hard problem in routing. In CVRP, the objective is to design
the route set at a lower cost for a homogenous fleet of vehicles, starting
from and going back to the depot, to meet the needs and expectations of
all the customers. In this paper, we propose an ILS-VND approach which
is a hybrid of Iterated Local Search (ILS) and Variable Neighborhood
Descent (VND) approaches. Although both ILS and VND approaches,
independently provide good solutions, we found that the hybrid approach
gives better solutions than either approach independently. We demon-
strate the effectiveness of our approach through experiments carried out
on widely used benchmark instances. Numerical experiments show that
the proposed method outperforms other local searches and metaheuris-
tics. We also, propose a Decision Support System (DSS) that integrates
a Geographical Information System (GIS) to solve the problem under
scrutiny. In order to demonstrate the performance of the proposed DSS
in terms of solution quality, we apply it for a real case on the city of
Jendouba in the north west of Tunisia. The results are then highlighted
in a cartographic format using Google Maps.

Keywords: CVRP · Hybrid ILS-VND metaheuristic · ILS · VND ·
Decision support systems · Geographical information system

1 Introduction

Supply chain involves many activities like supply and production. For a long
time, research on logistics has focused on optimizing these activities since this
optimization has eliminated the waste of time. The transport activity is one of
the most important activities in logistics. A better organization of this activ-
ity mainly vehicle routing presents an economic challenge. Because of this eco-
nomic importance and priority, researchers have paid great interest to the vehicle
c© Springer International Publishing Switzerland 2016
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routing problem VRP. The Vehicle Routing Problem (VRP) is considered as an
NP−hard combinatorial optimization problem, which was proposed, by Dantzig
and Ramser in [1]. VRP is identified as a plan to follow for serving a number of
customers by a number of vehicles, knowing that the cost of allocating vehicles
to customers must be reduced. There are many variations of VRP, such as the
Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem with
Pickup and Delivery (VRPPD), Dynamic Vehicle Routing Problem (SVRP) and
the Vehicle Routing Problem with Time Windows (VRPTW).

The Capacitated Vehicle Routing Problem (CVRP) was first introduced by
Dantzig and Ramser (1959) [1]. It consists, in its basic version, of designing a set
of minimum cost-routes for a number of identical vehicles having a fixed capacity
to serve a set of customers with known demands.

From a theoretical point of view, CVRP is known to be NP−hard [2], and
hence is not expected to be solved by any exact algorithm in a polynomial
time in the general case. The computational difficulty of solving CVRP is also
confirmed in practice. Indeed, the best existing exact algorithms are limited
to moderate only small instances [3–5]. For these reasons, intensive research
has been devoted to developing heuristic and metaheuristic methods. Repre-
sentative heuristic methods include [6,7]. Among the metaheuristic methods,
neighborhood search approaches are popular, e.g., tabu search [8,9], variable
neighborhood search [10], Iterated local search [11]. As another class of pop-
ular metaheuristics for tackling CVRP, population-based algorithms generally
achieve better performances, such as the memetic algorithm [12] and the ant
colony algorithm [13].

Contributions and Paper Outline: The main contributions of this paper
are (i) to solve an important VRP variant named CVRP using a hybrid meta-
heuristic ILS-VND. (ii) to model mathematically the CVRP. (iii) to propose a
DSS based on GIS to aid decision makers on solving the CVRP. And (iiii) to to
validate the designed DSS using a Tunisia real case study.

The remainder of this paper is structured as follows. The CVRP is stated
mathematically in Sect. 2. In Sect. 3 the main steps of the proposed DSS are
outlined. Section 4 provides a description of the resolution methodology ILS-
VND. Section 5 describes the computational results. Section 6 details the case
study. And in the final section, we close with some concluding remarks.

2 Mathematical Model

For more clarity, we define the CVRP on a connected graph G. Let G = (V,A),
where V = {v0, v1, ..., vn+1} is a vertex set and A = {(vi, vj) | vi, vj ∈ V ; vi �= vj}
is an arc set. Vertices v0 and vn+1 correspond to the depot at which K homo-
geneous vehicles are based, and the remaining vertices denote the customers.
Each arc (vi, vj) is associated with a non-negative weight cvivj

, which represents
the travel distance from vi to vj . Each customer has a delivery demand qi. The
CVRP consists of determining a set of least cost vehicle routes such as: Each
route starts and ends at the depot. Each customer is visited exactly once by
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Table 1. List of used parameters

Route Distance

n Set of customers

m Set of vehicles

Q Capacity of vehicle

Di Demand of customer i

dij Distance between customer i and customer j

cij Total cost

exactly one vehicle. And the total demand of the customers assigned to any
vehicle must not exceed the vehicle capacity Q.

The previous description of the VRPTW can be stated mathematically. We
enumerate in what follows (Table 1) the main symbols used in the mathematical
model (1)–(8):

Min z =
n∑

i=1

n∑

j=1

m∑

k=1

dijx
k
ij (1)

S.t
∑

k=1

∑

i=0

xk
ij = 1; ∀j = 0, ..., n (2)

∑

k=1

∑

j=0

xk
ij = 1; ∀i = 0, ..., n (3)

n∑

i=0

xk
it −

n∑

j=0

xk
tj = 0; ∀k = 1, ...,m t = 0, ..., n (4)

n∑

j=0

qj(
n∑

i=0

xk
ij) ≤ Q; ∀k = 1, ...,m (5)

n∑

j=0

xk
0j ≤ 1; ∀k = 1, ...,m (6)

n∑

i=0

xk
i0 ≤ 1; ∀k = 1, ...,m (7)

xk
ij ∈ {0, 1}; ∀i, j = 0, ..., n k = 1, ..., n (8)

– Objective function: Eq. (1) expresses the total distance traveled by all vehicles
that must be minimized in accordance with the set of system constraints.

– System constraints: Constraints (2) and (3) impose that each node is vis-
ited only once by one vehicle. Constraints (4) ensure the continuity of vehicles
pathways. Constraints (5) enforce the capacity constraint of the vehicles. Con-
straints (6) and (7) ensure that each used vehicle starts and ends at the depot.
Constraints (8) are of a binary type.
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Table 2. Main steps of the DSS.

slooTnoitazimitpOstupnIataD Numerical and Geographical so-
lution

3 Decision Support System Architecture

Our DSS (Table 2) is based on a ILS-VND that responds to all customer requests
trying to optimally generate vehicles paths. The DSS starts by inputting prob-
lem parameters, namely the number of customers to be served, the number of
available vehicles and the vehicles capacity. Once these data were provided, cus-
tomer demands and geographical coordinates are to be set. The VND approach
proceeds iteratively by an alternative use of the Local Search in order to diver-
sify the search. Once the numerical solution is generated, the DSS moves to
the design of the cartographical solution that well illustrates the real itinerary.
Vehicles pathways are then highlighted.

4 Resolution Methodology: Hybrid ILS-VND

4.1 Variable Neighborhood Descent

The Variable Neighborhood Descent (VND) was proposed by Hansen and
Mladenovic (2003). VND is a relatively young metaheuristic concept that has
successfully been applied to several combinatorial optimization problems. It per-
forms as follows:

Let N1, ..., Nn be the set of predefined neighborhood structures, and Nk(s)
be the set of solutions using the kth neighborhood of s. The local optimum s′ of f
regarding to Nk(s), is a feasible solution, where no solution s ∈ Nk(s′) such that
f(s) < f(s′). The VND is a metaheuristic that switches between neighborhoods
N1, ..., Nn according to a predefined order.

Starting with the first neighborhood N1, VND performs a local search until
no further improvements are available. Then, from local optimum, it continues
the local search with neighborhood N2. If there is improvement in the current
solution, VND restarts with N1 again; otherwise, it continues with N3, and so
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forth. If the last structure Nn has been performed and no additional improve-
ments are feasible, the solution corresponds to a local optimum with respect to
all neighborhoods. The performance of the VND depends significantly on the
choice of the neighborhoods at each iteration.

4.2 Iterated Local Search

Local search methods can get stuck in a local minimum, where no improving
neighbors are available. A simple modification consists of iterating the local
search and each time starting from a different initial configuration, this is called
Iterated Local Search (ILS) methods. The main components that need to be
tackled to operate an ILS algorithm in order to achieve high performance [14] are:
Generate Initial Solution, Local Search, Perturbation, and Acceptance Criterion.

– Generate Initial Solution: a random solution or a returned solution by some
greedy construction heuristic;

– Local Search: replaces the current solution by an improvement neighbor solu-
tion.

– Perturbation: a scheme of how to perturb a solution.
– Acceptance Criterion: decide from which solution the search is continued.

An initial solution S0 is generated and improved by a local search (LS) proce-
dure. The local optimum that is obtained is indicated by S. The following steps
are repeated, until predetermined termination criteria are not met. The solution
S is perturbed (modified) and a new current solution S∗ is obtained. The LS
is appliedto S∗ and a solution S∗∗ is obtained. If S∗∗ is accepted (for example,
based on its quality) it becomes the new current local optimum.

4.3 ILS-VND Approach for VRPTW

Due to the NP hardness of the addressed problem, we propose to solve it with
a hybrid VND-based ILS metaheuristic (Algorithm 1). The main steps of the
proposed method are as follows:

Step 1 - Initial Solution: The proposed algorithm starts off by generating an
initial feasible solution as the starting point of search by the VND procedure. We
applied the saving algorithm by Clarke and Wright (1964) [15] to rapidly obtain
a solution, which is based on the notion of savings: firstly, dispatch a vehicle to
each customer; then merge two routes into a single one which can generate the
maximum distance savings. This heuristic method terminates when there are no
more two routes can feasibly be merged, i.e., be merged without violating the
route duration or capacity constraints.

Step 2 - Variable Neighborhood Descent: The VND procedure is to search
for better solutions in the neighborhood defined by different operators, which is
described by Algorithm 3. The operators used in the VND procedure are four
operators commonly used for standard VRP, i.e., insert, swap, 2-opt∗ and 2-opt.
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Algorithm 1. Hybrid ILS-VND for the CVRP
Initialize parameters

2: S0 ← Generate Initial Solution S0
S∗
0 ← VND (S0)

4: S∗ ← S∗
0

Let the best solution found S∗∗ ← S∗

6: repeat

S
′ ← Perturbations (S∗)

8: S
′∗ ← VND S

′

if f(S
′∗ < f(S∗∗ then

10: S∗∗ = S
′∗

end if
12: until terminational rule is met

return S∗∗

The aim of using multi-operator is to explore the solution space more exten-
sively. When no further improvement can be obtained, the VND procedure stops.
The VND procedure is described by Algorithm 1, where LocalSearch(s,Nk)
refers to the local search in the neighborhood of solution s defined by the oper-
ator Nk. In our VND we used the following operators:

– The relocation consists of removing a customer from its current place and
reinserting it into another position in the same route or in an alternative one.

– A swap move consists of exchanging the places of two customers belonging to
different routes.

– The 2-opt∗ operates on two different routes. Firstly, each route is divided into
two parts by removing an arc; then, the first part of one route and the second
part of the other are combined to generate a new route by introducing a new
arc. The remaining two parts build another new route analogously.

– The 2-opt operator is used for intra-route improvement. In a 2-opt move, two
non-adjacent arcs are replaced by another two new ones, and the visited order
of the customers between the two arcs is reversed.

Step 3 - Perturbation: Once the VND procedure is stopped, a perturbation is
started. The perturbation should neither be too strong nor too weak. If the per-
turbation is too strong, the algorithm may reduce to a random restart method;
otherwise, the possibility of escaping from the current local optimum is quite
low. In the proposed method, the perturbation move is realized by applying
the method in Fig. 1, in which a customer segment of customers on the upper
route is exchanged with another on the lower one, while solution feasibility is
guaranteed.

Step 4 - Acceptance Criterion: After perturbation and local search phases
have been completed, the resulting solution should be compared with the current
one. Deciding whether it will be selected or not we adopted an acceptance crite-
rion. In our ILS-VND method only solutions that improve the cost and respect
the time windows will be considered.
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Fig. 1. Illustration of perturbation process

5 Experimentations

In this section, we report the experimental results generated by the proposed
ILS-VND to handle the CVRP. The experimentations were conducted on the
CVRP benchmarking problems known as Li et al. benchmark instances (2005)
[16]. The implementation of the ILS-VND was coded in JAVA language and
executed on a computer with a 8.00 GB RAM and an Intel Core i5, 2.50 GHz
CPU. In order to evaluate the ILS-VND, its performance is compared to previous
best known solutions and to some other approaches that were tested on the same
set of instances.

The results for the 12 benchmark instances of Li et al. (2005) [16] are pre-
sented in Table 3. In Table 3, the best results reported in three recently published
papers [16–18] for comparison. For this set of instances, the proposed algorithm
found new best solution (numbers in bold font). The average deviation of our
best solutions found from the previous best known is 2.12 %. According to this
measurement, our results give new best results by the ILS-VND. We can note
from these results that the hybridization of the ILS with the VND algorithm
has a significant importance since it provides better results in term of solution
quality for corresponding problem.

Table 3. Comparison of the results on the benchmark instances

Problem Previous best known [16] 2005 [17] 2007 [18] 2011 ILS-VND

21(560) 16212.74 16602.99 16224.81 16212.83 16212.74

22(600) 14584.42 14651.27 14631.08 14631.73 14433.32

23(640) 18801.12 18838.62 18837.49 18801.13 18837.49

24(720) 21389.33 21616.25 21522.48 21390.63 21390.63

25(760) 16763.72 17146.41 16902.16 17089.62 16663.62

26(800) 23971.74 24009.74 24014.09 23977.73 23971.74

27(840) 17433.69 17823.40 17613.22 17589.05 17433.69

28(880) 26565.92 26606.11 26791.72 26567.23 26606.11

29(960) 29154.34 29181.21 29405.60 29155.54 29154.34

30(1040) 31742.51 31976.73 31968.33 31743.84 31976.73

31(1120) 34330.84 35369.17 34770.34 34333.37 34240.56

32(1200) 36919.24 37421.44 37377.35 37285.90 37377.35
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6 Real Case Study

In order to test the proposed approach, we experiment it for a Transport Com-
pany named SRTJ in the region of Jendouba in the north west of Tunisia. The
SRTJ made seven routes of different directions and distances available to its
customers as illustrated in Table 4. This Table proves that the costs of the exist-
ing routes exceed their incomes, which requires the minimization of these costs,
that’s why we must also minimize the covered distance.

Table 4. Characteristics of the existing routes

Route Distance Cost Income

1 Jendouba → Bousselem → Fahs → Kairouane 218 507 448

2 Jendouba → Ain drahem → Tabarka 68 158 140

3 Jendouba → Bousselem → Beja 52 121 107

4 Jendouba → Bousselem → Tborsok → Siliana 125 291 257

5 Jendouba → Essaada → Kef 49 113 101

6 Jendouba → Beja → Ghazela → Bizerte 167 388 343

7 Jendouba → Wed mliz → Ghardimaou 35 81 72

6.1 Distance Minimization

Let us consider an example of 1 depot and 4 customers dispersed around the
city of Jendouba as shown in Fig. 2. Different setting parameters of the problem
are presented in Table 5 and customers demands are as follows: Kef = 35, Sers
= 15, Siliana = 30 and Kairouan = 23.

Table 5. Description of example parameters

Parameters Distance

Vehicle capacity (kg) 120

Number of vehicles for each depot 1

Number of customers to be served 4

In order to pick out the shortest path between each couple of customers,
we need an additional parameter called the distance matrix that calculates the
shortest paths between each pair of customers and depots. It consists of distances
in meter.
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Fig. 2. Geographical solution using the
DSS

Fig. 3. Evolution of costs

⎛

⎜⎜⎜⎜⎜⎜⎝

Jendouba Kef Sers Siliana Kairouan
Jendouba 0 56 76 120 196

Kef 56 0 30 60 175
Sers 76 30 0 30 100

Siliana 120 60 30 0 80
Kairouan 196 175 100 80 0

⎞

⎟⎟⎟⎟⎟⎟⎠

Figure 2 presents a geographical view of the obtained results after solving
the example. It illustrates the best traveling path for each vehicle, while taking
into account the capacity and the cost constraint. This map is used to guide
vehicles drivers to serve customers through the shortest itinerary presented in
blue color. In this example, the vehicles leave the depot Jendouba to serve Kef,
Seres, Siliana then Kairouan orderly at a cost of 456.

6.2 Cost Minimization

After the minimization of the total traversed distances, we applied the proposed
DSS to minimize the costs of these routes. The improvements of the costs before
and after minimization are as follows: before minimization (Ghardimaou = 81,
Siliana = 291, Bizerte = 388 and Kairouan = 507), after minimization (Ghardi-
maou = 81, Siliana = 218, Bizerte = 358 and Kairouan = 456) (Fig. 3).

7 Summary and Conclusions

In this paper the Capacitated Vehicle Routing Problem (CVRP) is evoked and
solved using hybrid meta-heuristic which gathers the Iterated Local Search app-
roach (ILS) and Variable Neighborhood Descent approach (VND). In order to
better visualize the obtained results and make it more intuitive, we proposed a
GIS to design a Decision Support System (DSS). The proposed DSS provides
assistance to operating managers in transportation logistics. To assess the effi-
ciency of our framework, we proposed to solve an application of a Tunisian case.
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And by applying the algorithms to benchmarkS in the literature, the experimen-
tal results also showed that the ILS-VND algorithm consistently produces high
performance.
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Abstract. Learning of stochastically independent decisions is a well
developed theory, the main of its part being pattern recognition algo-
rithms. Learning of dependent decisions for discrete time sequences, e.g.,
for patterns forming a Markov chain and decision support systems, is
also developed, but many classes of problems still remain open. Learn-
ing sequences of decisions for systems with continuously running time
is still under development. In this paper we provide an approach that
is based on the idea of iterative learning for repetitive control systems.
A new ingredient is that our system learns to find the optimal control
that minimizes a quality criterion and attempts to find it even if there are
uncertainties in the system parameters. Such approach requires to record
and store full sequences of the system state, which can be done using a
camera for monitoring of the system states. The theory is illustrated by
an example of a laser cladding process.

Keywords: Iterative learning · Repetitive optimal control · LTI sys-
tems · Camera in the loop

1 Introduction

The idea of learning algorithms can be traced back to the early 1960s. The
main stream of research then was (and ut still is) learning classifiers or more
generally, learning the Bayes decision rules when underlying probability distri-
butions are unknown and the learning is based on a sequence of examples –
called the learning sequence. At the first stage of development of this theory
the learning was reduced to estimating unknown parameters of unknown distri-
butions. Then, the so called nonparametric approach emerged, which is based
on estimating completely unknown probability density functions (p.d.f.’s) either
by Parzen-Rosenblatt kernel methods (see [9]) or by expanding it into a com-
plete and orthonormal bases with estimated coefficients (see [12]). Up to now,
these kinds of classifiers have been further developed [17,28], the support vector
machines being the most popular. All these approaches have a common feature,
namely, after the learning phase they are applied as follows: when a new vector of
features appears, then it is classified without taking into account neither earlier
nor future decisions. Furthermore, the result of a classification does not depend
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 705–717, 2016.
DOI: 10.1007/978-3-319-39378-0 60
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on time, i.e., a vector of features is classified in the same way independently
of a time instant when it appears. Rutkowski [25,26] developed the theory of
learning when an environment is non-stationary. Recently, such approaches are
called: learning when a concept drift is present.

A parallel stream of research (see [15,16]) extended the bayesian decision
theory by considering that the next decision should take into account our pre-
vious decisions as a local context, as it happens in recognizing letters in a word.
In [21,22] an outer context approach in learning decisions is proposed.

However, none of the above sketched approaches to learning do not takes into
account future consequences of earlier decisions. In the framework of learning, an
approach that explicitly incorporates a system dynamics into a decision process
has been proposed by Feldbaum (see [2,3] and the bibliography cited therein).
His theory, although pleasing from the methodological point of view, occurred
to be too demanding for data, which are necessary for learning. Therefore, many
approaches, known under a common name adaptive control, have been proposed
[3]. Their common feature is gaining information about unknown parameters of
a system (or its model) during a decision process, which is split into consecutive
steps. In adaptive control approaches usually only one, but sufficiently long,
decision process is considered and the emphasis of researchers is on the stability
of the adaptation process [27].

However, a large number of control processes in industry and in robotics is
repetitive in the sense that they are repeated many times in similar circum-
stances. Repetitions of passes of a process provide additional opportunities for
learning and they are in the main focus of this paper. This class contains strictly
periodic processes (see [29]), which are not discussed here. We shall also leave
outside the scope of this paper the so called run-to-run control approach, since
it concentrates mainly on statistical, but static models of processes.

As a motivating example consider a laser cladding process. The laser head
moves back and forth, pouring and melting a metal powder. The temperature
of the melting lake is observed by an infrared camera. This temperature has to
be precisely controlled by changing the power emitted by the laser. The main
difficulty is at the end points, in which the laser head changes its direction it stays
longer than at other points. This results in an unwanted additional dropping of
a material. One can design a desirable trajectory of changing (decreasing) the
lake temperature near end points. However, the optimal control signal cannot be
calculated once and repeated without changes because of changes of the powder
properties when different parts are produced. These changes are rather slow
and we can improve the control signal, using information gained from earlier
passes. Almost the same general pattern arises in a 3D printing process. Similar
control problems arise also in the chemical industry when a batch type chemical
reactors are used. Later on we shall call a pass: one run of the laser or a robot
arm movement from place to place, or one full batch reaction etc.

In this paper we put an emphasis on learning from pass-to-pass, which is
called an iterative learning control (ILC). ILC is a common name for a large num-
ber of algorithms (see [31] for a recent survey paper). ILC theory puts emphasis
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on designing control systems for repetitive processes – see [5,20]. They should be
designed in such a way that the stability of the control process is ensured. The
stability notions for repetitive processes and ILC are nontrivial (see [7]). A num-
ber of approaches to the control problems for such systems has been proposed
(see [11,13,14]). In a number of papers the authors optimized ILC procedures
(see [1,24]). ILC for optimal control of processes is much less developed, although
some results in this direction have been obtained – see [10,19,23] – as close to
the problem statement considered in this paper. However, our approach is differ-
ent, namely, we propose an iterative learning of optimal control that is based on
functional analog of the gradient search procedure. We shall provide theorems
on its convergence and robustness to small changes of unknown parameters, but
the proofs are omitted due to page limitations. They will be published elsewhere.

The paper is organized as follows. In Sect. 2 we state the problem of iterative
learning of optimal control (ILOC). Then, in Sect. 3 we provide the algorithm of
learning for nominal system parameters. Finally, its on-line version is presented,
which is able to work when parameters are uncertain, since it collects informa-
tion from pass-to-pass behavior of the system. Notice that there is no explicit
parameters estimation in our approach. Finally, we provide an example of how
the laser power control behaves under the proposed ILOC algorithm.

2 Problem Statement

As the first step toward the problem statement we consider the well known
problem of minimization of a quadratic cost function for finding the optimal
control of the linear, time-invariant (LTI) dynamic system (LQ problem), but
with uncertain parameters. Assumptions concerning their uncertainty will be
imposed later.

Generic LQ Optimal Control Problem. The dependence of the system state
x(t) ∈ Rd at time t ∈ [0, T ] on a scalar input signal u(t) is given by

ẋ(t) = A(θ0)x(t) + b u(t), x(0) = x0, (1)

where A(θ) is a d × d matrix that depends on a vector of uncertain parameters
θ ∈ Rm, while θ = θ0 are their nominal values. In (1) b ∈ Rd is a vector of
known1 amplifications. In the above, ẋ(t) stands for d x(t)

dt , x0 is the initial state
and T is the control horizon, which is finite and this assumption is important.
We confine ourselves to scalar input signals to keep the notation simple. It will
be clear that the results can be generalized to the multi-input case.

In the standard setting (see, e.g., [4,18]) the problem is to find a control signal
u∗ ∈ L2(0, T ) for which the following cost functional J(u) attains its minimal
value:

J(u) =
∫ T

0

[
(xref (t) − x(t))tr (xref (t) − x(t)) + r u2(t)

]
dt, (2)

1 For simplicity of the exposition we omit an easy generalization to the case when also
b contains uncertain parameters.



708 E. Rafaj�lowicz and W. Rafaj�lowicz

subject to (1) as constraints, where xref is the known reference signal to follow,
but with not too excessive use of the control signal energy, which is tuned by
selecting a weighting factor r > 0.

One can consider also a more general criterion

J(u) =
∫ T

0

[
(xref (t) − x(t))tr Q (xref (t) − x(t)) + r u2(t)

]
dt, (3)

where Q is a d×d symmetric and positive definite matrix of known weights, but
it can be reduced to (2) by transforming the state variables using Q1/2.

Assuming that there is no uncertainty in parameters, i.e., θ assumes nominal
value θ0 that are known, then also the solution of this problem is well known
(see, e.g., [4]), but we summarize it for further references. Define the Hamiltonian

H(x(t), u(t), ψ(t)) = (xref (t) − x(t))tr (xref (t) − x(t)) + r u2(t) + (4)

+ ψtr(t)
[
A

(
θ0

)
x(t) + b u(t)

]
,

where ψ(t) ∈ Rd is a vector of the adjoint variables, for which the following
ordinary differential equations (ODE) hold

ψ̇(t) = −Atr(θ0)ψ(t) + 2 (xref (t) − x(t)), ψ(T ) = 0. (5)

According to the Pontriagin’s minimum principle, if u∗(.) and x∗(.) solves the
problem (2) and (1), then there exists ψ∗(.) for which the following equations
hold:

ψ̇∗(t) = −Atr(θ0)ψ∗(t) + 2 (xref (t) − x∗(t)), ψ(T ) = 0, (6)

ẋ∗(t) = A
(
θ0

)
x∗(t) + b u∗(t), x∗(0) = x0 (7)

and for each t ∈ [0, T ] the following condition holds

d

d v
H(x∗(t), v, ψ∗(t))

∣∣∣
v=u∗(t)

= 0. (8)

For LTI systems with criterion (2) it can be proved that condition (8) is also
sufficient for the optimality of u∗(.). Furthermore, u∗(.) is the unique solution of
this problem and (8) yields

2 r u∗(t) + btr ψ∗(t) = 0, t ∈ [0, T ]. (9)

Thus, u∗(t) = P (t) (xref (t)−x(t)) where P (t) is a d×d matrix that solves the well
known matrix Riccati quadratic differential equations. Notice that both P (t) and
ψ∗(t) in (9) depend on θ0. When d is large, then finding a numerical solution
of the Riccati equations is not easy task and one can consider the approach
proposed in this paper as an alternative to the classic approach based on solving
these equations. We shall not develop this idea here in order to concentrate on
the main topic.

The following facts are crucial for further considerations.
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Fact 1. The Gateaux differential (see, e.g., [18]) of J at u ∈ L2(0, T ) in the
direction U ∈ L2(0, T ) has the following form:

d J(u + ε U)
d ε

∣∣∣
ε=0

=
∫ T

0

F (x(t), u(t), ψ(t))U(t) dt. (10)

If the Frechet derivative of J exists (see, e.g., [18]) then F is equal to it and
– in our case – it is given by

F (x(t), u(t), ψ(t)) =
d

d v
H(x(t), v, ψ(t))

∣∣∣
v=u(t)

= (11)

= 2 r u(t) + btr ψ(t),

where ψ(.) solves (5).
Fact 2. Direction U(t) = −F (x(t), u(t), ψ(t)) is locally the steepest descent

direction oh J at u(.). Furthermore, F (x∗(t), u∗(t), ψ∗(t)) ≡ 0. As one can
notice, when searching the minimum of J the Frechet derivative F can play
the same role as the gradient in searching for the minimum of a multivariate
function.

The problem of iterative learning of the optimal control for repetitive
processes. When θ in (1) is the uncertain vector of parameters, then it is
customary to invoke one of the following two approaches:

Plug-in approach – firstly estimate (identify) unknown parameters, then plug
them into (1) instead of θ0 and consider it as certain,

Adaptive control approach – estimate θ on-line and substitute it into the
control law.

Both approaches have been historically developed without taking into account
that a large number of processes to be controlled are repetitive (see the Intro-
duction section for examples). In the proposed approach we consider repeti-
tive processes and uncertainty of parameters is taken into account by feedback
between the passes of a repetitive process that bears information about the
uncertain parameters, which is then used for iterative learning approach,
without explicitly estimating them.

For n-th pass the system is described by

ẋn(t) = A(θ0)xn(t) + b un(t), xn(0) = x0, n = 1, 2, . . . , (12)

where xn(t) ∈ Rd and un(t), t ∈ [0, T ] are the system state vector and the con-
trol signal along n-th pass, respectively. Equation (12) are seemingly unrelated
between passes, but our aim is to design a learning procedure that improves
un(.), taking into account un−1(.) and xn−1(.) and introduces links between
passes. In other words, we are looking for an operator Ψ

un(.) = Ψ(xn−1(.), un−1(.)), n = 1, 2, . . . (13)
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such that
(a) limn→∞ J(un) = J(u∗), when θ = θ0,
(b) limn→∞ J(un) convergent to a value not far from J(u∗), when θ = θ1 and

δθ
def
= ||θ1 − θ1||m is sufficiently small, where ||.||m is the Euclidean norm in

Rm. Our reference point is the solution of the generic problem described in the
previous subsection.

3 Iterative Learning Algorithm

In this section we derive an iterative learning algorithm for a repetitive process,
assuming that its parameters take nominal values θ0. Then, we shall prove its
convergence and local robustness against uncertainty of parameters.

Derivation of the Learning Algorithm. According to Facts 1, 2, one can
expect that the following updates of un(.) will lead to improvements of J

un+1(t) = un(t) − γ Fn(t), t ∈ [0, T ], (14)

where γ > 0 is the step size,

Fn(t)
def
= F (xn(t), u(t), ψn(t)) =

(
2 r un(t) + btr ψn(t)

)
(15)

while ψn(.) is defined as a solution of the following adjoint equations:

ψ̇n(t) = −Atr(θ0)ψn(t) + 2 (xref (t) − xn(t)), ψn(T ) = 0. (16)

Their solution can be expressed as

ψn(t) = exp(−Atr(θ0) t)ψ0
n +

∫ t

0

exp(−Atr(θ0) (t − τ)) en(τ) dτ, (17)

where en(τ)
def
= 2 (xref (τ)−xn(τ)) and ψ0

n is selected so as to ensure ψn(T ) = 0.
After finding such ψ0

n and substituting it into (17), we obtain

ψn(t) = −
∫ T

t

exp
[−Atr(θ0) (t − τ)

]
en(τ) dτ. (18)

Substitution of this expression into (14) leads to the following learning procedure:
for t ∈ [0, T ] and n = 0, 1, . . . iterate

un+1(t) = (1 − γ 2 r)un(t) + γ btr

∫ T

t

exp
[−Atr(θ0) (t − τ)

]
en(τ) dτ. (19)

At this stage, it is worth comparing (19) with the structure of a typical ILC
algorithm that for LTI systems has (in our notation) the following form

un+1(t) = α un(t) + β̄1 en(t) + β̄2 (xn(t) − xn−1(t), t ∈ [0, T ], (20)
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where α ∈ R, β̄1, β̄2 ∈ Rd are selected in such a way that the repetitive system
with such a control law is asymptotically stable.

The similarities between (20) and (19) are apparent, but there are also impor-
tant differences: (1) the term (xn(t)−xn−1(t)) is not present in (19) and it seems
that its presence may slow down the rate of convergence of learning algorithms,
but – on the other hand – it may stabilize them, (2) the main updating com-
ponent en(t) is present in the both cases, but in (19) it is integrated (with the
weighting matrix) from t to T , which can be interpreted as the integrated pre-
diction error from now to the end of n-th pass, (3) the structure of (19) has been
derived as the descent direction of J at un(.) and all the weights, except γ, are
specified by the system description and J .

Convergence of the Learning Process. In order to select γ > 0 that locally
speeds up the learning process let us J(un − γ Fn) into the Taylor series, which
is exact in this case,

J(un+1) = J(un − γ Fn) = J(un) − γ ||Fn(.)||2 + (2 r)
γ2

2
||Fn(.)||2. (21)

A proper selection of γ > 0 requires (1−r γ) < 0, i.e., γ < 1/r in order to ensure
J(un+1) < J(un). Indeed, then we have

J(un+1) = J(un) − 1
(r + ν)

||Fn(.)||2 (22)

for arbitrary ν > 0.

Theorem 1. The learning process

un+1(t) = un(t) − 1
r + ν

(
2 r un(t) + btr ψn(t)

)
, t ∈ [0, T ], (23)

where ν > 0 and ψn(.) solves

ψ̇n(t) = −Atr(θ0)ψn(t) + 2 (xref (t) − xn(t)), ψn(T ) = 0. (24)

designed for the following repetitive process

ẋn(t) = A(θ0)xn(t) + b un(t), xn(0) = x0, n = 1, 2, . . . , (25)

is convergent to the solution of the optimal control problem for one pass in the
following sense: (a) limn→∞ J(un) = J(u∗), (b) limn→∞ ||un(.) − u∗(.)|| = 0,
(c) limn→∞ ||xn(.) − x∗(.)|| = 0.

Pass-to-pass on-line Learning. In Theorem 1 it was assumed that θ0 is
known, hence we can calculate xn(.) as a solution of (25). In this section we
present an on-line version of the learning process that uses observations of the
system state instead in order to cope with possible inaccuracies in knowledge
of θ0 and/or with from pass to pass fluctuations of these parameters, assuming
that they are not too far from θ0.
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Algorithm 1. (Pass-to-pass Learning (PPL))

Step 0. Select û0(.) ∈ L2(0, T ) (preferably obtained by running off-line several
iterations of (23), (24) and (25)). Set n = 0. Select ε > 0 as the level when
a desired accuracy is obtained.

Step 1. Apply ûn(.) along the pass to a real system, then observe and store x̂n(.).
Step 2. Calculate the adjoint states ψ̂n(.) along the pass by solving the following

equations:

˙̂
ψn(t) = −Atr(θ0) ψ̂n(t) + 2 (xref (t) − x̂n(t)), ψ̂n(T ) = 0. (26)

Adjoint states contain information on the system behavior in the future and
therefore they cannot be observed. Hence, we are forced to calculate them using
the nominal parameter values θ0 as the only available.

Step 3. Calculate F̂n(t)
def
= (2 r ûn(t) + btr ψ̂n(t), t ∈ [0, T ]. If

max
t∈[0, T ]

|F̂n(t)| > ε, (27)

then skip updating ûn(.) and use it in the next iteration. Set n := n + 1 and
go to Step 1. Otherwise, go to Step 4

Step 4. Update ûn(.) as follows:

ûn+1(t) = ûn(t) − γ F̂n(t), t ∈ [0, T ], (28)

where γ ≤ 1/(r + ν), ν > 0. Set n := n + 1 and go to Step 1.

When uncertainties in parameters are allowed, we can not be sure that the step
length in (28) is properly selected to ensure the monotonicity of the criterion. If
it does not decrease, than one should decrease γ.

Condition (27) is usually used as the stopping condition. Here, it is used to
temporarily skip updating un(.), but the algorithm is not halted, since we allow
small fluctuations of the parameters between passes. In this version the PPL
algorithm is able to detect them and reduce their influence by updating un(.)
again.

A Limiting Point of the PPL Algorithm. For theoretical considerations we
assume that:

(a) the parameters can change to a certain θ1 �= θ0 and these values are kept
for a long (infinite) time,

(b) θ1 is not too far from θ0 in the following sense: ||θ1 − θ0||d ≤ Cγ, where
γ > 0 is the step size of the PPL algorithm, while C > 0 is a certain constant,

(c) Step 3 is omitted in order to have an infinite sequence of passes with
updates.

When assumptions (a), (b), (c) hold, then the PPL algorithm can stop updat-
ing ûn only when there exists a triple x̂(.), û(.), ψ̂(.)) such that

(
2 r û(t) + btr ψ̂(t)

)
= 0, t ∈ [0, T ], (29)
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˙̂
ψ(t) = −Atr(θ0) ψ̂(t) + 2 (xref (t) − x̂(t)), ψ̂(T ) = 0, (30)

˙̂x(t) = A(θ1) x̂(t) + b û(t), x̂(0) = x0. (31)

Existence of such a triple is further assumed. Notice that in (31) we have θ1

instead of θ0. Thus, we cannot check these conditions, but we can do it in a
certain vicinity of θ0.

Theorem 2. If ||θ1 − θ0|| ≤ γ, then for the PPL algorithm we have

lim
n→∞ J(ûn) = J(û),

where û is defined through (29), (30) and (31). Furthermore,

lim
n→0

||F̂n(.)|| = ||F̂ (.)|| = 0. (32)

In order to prove the convergence of ûn to û we have to specify more precisely
the dependence of A(θ) on perturbations of θ.

Assumption 1. We shall assume that a perturbation from θ0 to θ1 for suffi-
ciently small ||θ1 − θ0|| ≤ C0 γ invokes the following change

A(θ1) = (1 + ς)A(θ0) (33)

where ς ∈ R is a parameter dependent on θ1 and θ0.

We sketch the rational arguments in favor of the above assumption. Let us
suppose that a perturbation can be expressed as follows: A(θ1) = A(θ0) + ΔA.
Notice that A(θ1)Δun(t) =

∫ T

0
exp(A(θ1) τ)Δun(t−τ) dτ . It is well known that

|| exp(A(θ0 t))||d×d ≤ exp(ω t) for a certain ω, where ||.||d×d is the matrix norm.
Furthermore, from the theory of perturbations of semigroups (see, e.g., [6,8]) it
is also known that

|| exp(A(θ0 t + ΔAt))||d×d ≤ exp((ω + ||ΔA||d×d) t) (34)
≈ 1 + ω t + ||ΔA||d×d) t.

Convergence of Learning under Perturbations. If Assumption 1 holds
and a perturbation is such that (2 r + (1 + ς)λmin) > 0, then for the sequence
generated by Algorithm PPL we have: limn→∞ ||û(.) − ûn(.)|| = 0.

4 ILOC for Laser Cladding Process

In this section we summarize simulation experiments of ILOC applied to the
laser cladding process described in the Introduction.

Lake Temperature – Laser Power Model. Our starting point is a model
that links the laser power U(t) [W], which is our input signal and the temperature
of the lake induced by the laser, which is simultaneously our state and output
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Fig. 1. The starting point Ustart(.) (panel A) and ystart(.) (panel B). Approximately
optimal input signal (panel C) and the resulting approximately optimal system state
(panel D).

variable and therefore it is denoted as y(t) [K] Using [30] as a guideline, assume
the following model:

τ ẏ(t) + y(t) = K (U(t))β , y(0) = ỹ (35)

where ỹ - given initial temperature. The parameters are explained below,
following [30] with small changes. Overall system gain (amplification) K =
K1 (V α) (Mϑ) = 1418.9, where K1 = 1.42 ∗ 103 is the system amplification,
α = −7.1 10−3, β = 6.25 10−2, ϑ = 3.0 10−3, where V = 2 [mm/sec] is the
laser traverse speed. M = 4.0 [g/min] is the cladding powder supply rate, while
τ = 210−2 [sec.] is the system time constant.

Results of simulations. We have developed ILOC procedures for linear sys-
tems, while (35) is a nonlinear system, but a simple substitution u(t) = Uβ(t)
converts it into the following linear system:

τ ẋ(t) + y(t) = K u(t), x(0) = x0. (36)

It suffices to run ILOC algorithms for (36), since rising to a positive power is the
invertible transformation and at each iteration we can calculate Un(t) = u

1/β
n (t)

and apply it to the real system.
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Notice that the adjoint equation for n-th pass has the form

ψ̇n(t) = 2 (xref (t) − xn(t)) + τ−1 ψn(t), ψn(T ) = 0., (37)

while the Frechet derivative of J is given by

F (xn(.), un(.), ψn(.))(t) = (K τ−1)ψn(t) + 2 r un(t). (38)

In the simulations reported below γ = 152 has been used. As a starting point a
signal that is shown in Fig. 1 (upper left panel) has been selected. The response
of the system (35) to this signal is shown in Fig. 1 (upper right panel).

Our aim is to simulate the learning process, which provides the temperature
shape that is close to the profile shown in Fig. 1 by the dashed line. The learn-
ing process converges quickly at the first several passes. Then, it slows down,
which is typical for gradient improvement procedures. It is however crucial that
the learning process provides quick improvements at the first phase and it is
sufficiently simple to be learnt from pass-to-pass observations. The shape of the
approximately optimal input signal is shown in Fig. 1 (lower left panel), while
the system response is sketched in Fig. 1 (lower right panel) by the solid line.
As one can notice, the lake temperature differs from the desired one by no more
than 5 [K], which is sufficient in practice. It can be further reduced by setting
less penalty for the usage of the laser energy.

Acknowledgements. This work has been supported by the National Science Center
under grant: 2012/07/B/ST7/01216, internal code 350914 of the Wroc�law University
of Technology.
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Abstract. In container seaport terminals, one of the most important problems is
the one related to the storage of containers. Seaport authorities have invested in
means and decision support systems to solve such problems, referred to in this
paper as the Container Storage Problem (CSP). Moreover, many unexpected
events may occur during the container storage process and, consequently, sched‐
uled position of containers must be modified. Although the number of developed
Decision Support System (DSS) for the management of container storage, there
is still a need for DSS able to deal different type of disturbance simultaneously.
In this paper, we suggest a set of knowledge based DSS for the distributed control
of container storage process in an uncertain and disturbed environment. The
suggested system is based on a set of knowledge models and learning mechanisms
which are integrated in a multi-agent system. Numerical experiments show that
knowledge based systems combined with Multi-Agent Systems seems be effec‐
tive for the real time Container Storage in seaport terminals.

Keywords: Multi-agent system · Knowledge models · Learning mechanism ·
CSP

1 Introduction

Nowadays, container terminal management becomes a difficult task due to the increasing
number of containers, the different types of incoming containers and the treatment of
dangerous containers. It involves a large number of problems. One of these problems is
related to the storage of containers in the storage yard (a storage yard is a surface in
which containers are temporary stacked in order to be imported or exported). A storage
yard is divided into several blocks perpendicular or parallel to the berth. Each block is
composed by a number of bays and each bay consists of a certain number of rows (called
also stacks) which are characterized by a number of tiers representing its height (see
Fig. 1).
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Fig. 1. A container terminal

In this context, the CSP consists of deciding, at the arrival of an imported or exported
container, the exact location of the container from the empty slots in order to make
efficient its loading onto a ship, truck or train. The CSP is modeled as a complex system
consisting of several components in dynamic and continuous interaction not only with
each other but also with other elements in the outside world, including ships and
cranes [1].

As it will be discussed in Sect. 2, many DSS for container storage have been devel‐
oped in the literature but these systems suffer from limitations with regards to the
knowledge management, the distributed control of containers allocations, the efficiency
of used real-time storage strategies particularly in presence of dangerous containers and
the disturbances management [2].

This paper presents a Multi Agent System for the real time control of the stacking
operations. The allocation decision consists on determining in a first way the allocation
strategy adopted and then the application of this strategy to determine the allocation
position. The main contribution of the paper concerns the development of a set of
knowledge models, learning mechanisms and reactive decision making. The knowledge
models allow the structuring and representation of knowledge related to both seaport
environment and disturbances such as the arrival of damaging containers with flammable
or toxic substances. The learning mechanisms allow the system to use and reuse knowl‐
edge related to disturbances and decision in order to be able to learn from past encoun‐
tered experiences and adjust their decision accordingly. The new suggested reactive and
distributed decision making approach combining agents and Artificial Neural System
paradigms allowing the system to deal with disturbances and select of the most appro‐
priate block, bay and slot for inbound containers. To the best of authors’ knowledge,
this paper is the first to suggest an explicit and generic knowledge models to model
disturbance and terminal environment.

The remainder of this paper is organized as follows: Sect. 2 introduces a classi‐
fication of the different stacking rules and the existing studies related to the CSP.
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Section 3 presents the different knowledge models and the learning mechanism
proposed in this study. Section 4 presents the architecture of the suggested system
and a description of each agent. Finally, Sect. 5 reports the numerical experiments
of the proposed multi-agent approach.

2 Related Work

To improve terminals performance, several container stacking rules (noted also strat‐
egies or policies) have been proposed in the literature [3]. According to the authors, a
staking rule may be related to the selection of a block, a bay, or a stack. Thus, we
categorize existing stacking rules into three main families: Block Assignment Rules,
Bay Assignment Rules, and Slot Assignment Rules. To the best of authors’ knowledge,
no such classification is presented in the literature.

The Block Assignment rules are responsible for the selection of the “appropriate”
block for stacking incoming containers. Several container storage strategies related to
the block allocation have been proposed in the literature including Dedicated areas,
Role Separation of Blocks, Role Separation of Rows and many others. The Bay Assign‐
ment rules are related to the choice of a bay from the pre-selected block. Strategies
dealing with bays include: Concentrated Location Principle, Nearest Location Prin‐
ciple, and Sequence rule. Finally, the Stack Assignment rules include strategies adopted
to determine the exact storage location in the assigned bays of the assigned block. Several
assignment rules have been studied in the literature, such as the Random rule, Levelling
rule, Closest Position rule, Maximum Remaining Stack height rule. In a previous paper
[2], we have detailed these classification.

Many DSS were developed for the CSP using different artificial intelligence
approaches Artificial Neural Network (ANN), fuzzy logic or expert systems. However,
face to the complexity of real-world applications as well as the continuous changes in
the environment, centralized and optimization approaches may become insufficient. For
this reason, decentralized approaches, especially, agent technology has attracted a wide
attention in various fields. Some container storage management systems were developed
using multi-agent systems as the system developed by [6] and denoted COSAH
(COntainer Stacking via multi-Agent approach and Heuristic method) that allows to
simulate, solve and optimize the amount of storage space for the loading/unloading of
incoming containers within a fluvial or maritime port. [9] proposed also a Multi-Agent
System for the automatic planning of the operations of a container terminal via market-
based allocation of resources. [8] have developed hybrid architecture, using a Cellular
Automaton and a Multi-Agent System to handle dangerous containers so as to minimize
the safety distance between two dangerous containers. In this context, [11] developed a
decentralized and reactive system that determines, for each new ship, the appropriate
allocation depending on the assigned ship, its destination port, dimensions, weight,
availability, and bay allocation.

The literature review conducted and briefly presented in this paper revealed that there
are still limitations of exiting DSS with regards of different aspects. First, most of
existing stacking systems are based on pre-defined stacking rules for the determination
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of exact locations. They use the same storage rule for all containers (even for dangerous
containers) and for all situations without taking into account the real-time change in the
terminal [4, 5]. Secondly, we noted that there are no generic approaches dealing simul‐
taneously with a variety of disturbances. Indeed, most of the studies so far performed
have treated a restricted number of disturbances (dynamic arrival and departure of
containers in most studies) but did not take into account the interaction between the
different containers stacked in the yard and all disturbances which may occur. Therefore,
further studies that take unexpected events and uncertain environments into considera‐
tion through suitable reactive assignment strategies remain a relevant global research
direction. Finally, we have noted that MAS are not widely used for the real time container
staking in port terminals and especially when dangerous containers are considered.
There is also no work, as far as we know, using neither Multi Agent System nor knowl‐
edge based systems for the disturbances management in seaports terminals.

This paper presents the architecture of an agent-based architecture for a real-time
container stacking system. This proposal approach introduces two novel aspects that are
not addressed in previous works. Firstly, this approach is conceived as a distributed
system for determining in a first way the allocation strategy of an incoming container
and in a second way the exact allocation position of this container in the yard by applying
this selected strategy. Secondly, knowledge models and learning mechanisms are
provided for the system to perform autonomous control of the different disturbances that
may occur at any time. This aspect is included in response to the need for an approach
for managing disruptive events by taking into account the distributed nature of the
container stacking problem.

3 Knowledge Representation and Management

The suggested system has to deal with different types of knowledge, capture, store,
use and reuse them. In this section, we introduce a set of knowledge models to be
used by the system as well as learning mechanisms allowing the allocation deci‐
sions and the disturbances management in order to learn from past encountered good
and bad decisions.

3.1 Knowledge Models

Regarding knowledge related to decisions, we suggest a knowledge model with two
parts: the first is for knowledge related to the allocation strategy and the second for the
exact position of containers in blocks, bays and stacks. The final decision of the system
can be represented by the following vector (see Eq. (1)):

Decision:<allocation strategies, container position> (1)

Where Allocation strategies represents the rules or strategies used for determining
how candidates blocks, bays and stacks are selected for the storage of a container. The
objective of such rules is not to determine the exact position of containers but how the
position will be determined.
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The attribute Allocation strategies is represented by the following vector (see
Eq. (2)):

Allocation strategies: < Block assignment rules, Bay assignment rules,
Stack assignment rules >

(2)

Container position is also represented by the following vector (see Eq. (3)):

Container position:<Block no, Bay no, Stack no> (3)

Where

– Block no: represents the block where the container must be allocated,
– Bay no: represents the bay where the container must be allocated,
– Stack no: represents the stack where the container must be allocated

The system should also capture all knowledge related to events. Knowledge related
to containers to be stored which should be captured are structured as represented in
the following vector (see Eq. (4)):

Knowledge = <Container, Terminal, Event, [disturbance]> (4)

The container knowledge are represented by the following vector (see Eq. (5)):

Container knowledge: < Container ID, Origin, Destination, Date in,
Date out, Container out, Container Type,

[
Dangerous goods class

]
>

(5)

In addition to the ID, the origin and the destination of the container, the type of
container is also collected. Indeed, a container can be: a regular container, an open top
container, an empty container, a tank containers, a reefer container or a container with
dangerous goods. In case of dangerous goods, the class of goods are also collected
(represented by the attribute Dangerous goods class).

The system should also have a detailed representation of the actual configuration of
the storage space and available positions in all blocs. This knowledge is formalized by
the Eq. (6):

Terminal Knowledge:<Nk

i,j , Tk

i,j> (6)

Where Nk
i,j represents the number of containers in the ith stack of the jth bay of the kth

block and Tk
i,j is its type.

The system has also to identify the type of the events and the type of the disturbance.
An event is characterized by the type of the event and its cause (see Eq. (7)):

Event Knowledge:<Event Type, Cause> (7)

Three types of events are identified: Allocation request, Re-allocation request,
Retrieval request and Disturbance events. Such events can be generated by the detection
of a disturbance, the need to retrieve a container or a request from another agent.
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Finally, the system should also collect data and knowledge related to disturbance if
it is detected. A disturbance is characterized by its type and the degree of gravity of the
disturbance (which should be indicated by the decision maker. Thus, a disturbance is
represented by the following vector (see Eq. 8):

Disturbance Knowledge:<Disturbance Type, gravity> (8)

Three types of disturbances exists: resources disturbances (yard crane breakage),
equipment disturbances (blocks breakdown etc.) and containers disturbances (fault in
container placing, container breakdown, container’s date out change etc.).

3.2 Knowledge Based System

The proposed system should be able to handle a big number of knowledge. Indeed,
learning mechanisms is required in order to allow the envisaged DSS to learn from past
encountered experience. Accordingly, we suggest two types of mechanisms: the memo‐
rization and the reuse of decisions. These two types of mechanisms are based on an IF…
THEN rule based system. The first consists on the memorization of any “good” decisions
in order to be used directly by the system in similar situations. In such a case, the system
will check its knowledge base for similar situations and select the corresponding allo‐
cation strategy to be applied without having to simulate its efficiency. The association
between the decision (see Eq. 1) and the knowledge related to a given situation (see
Eq. 4) is represented by a rule having this form:

IF (Container Knowledge is … AND Terminal Knowledge is … 
AND Event Knowledge is AND Disturbance Knowledge is …  )
THEN (Decision is …)

The second mechanism is related to the storage of “bad” decisions encountered in
the past. Such decisions were not appropriate and have not improved the performance
of the port. However, some conflicts between these two mechanisms. Indeed, a given
decision for a given situation can be recommended by the first mechanism and consid‐
ered as bad by the second mechanism. To deal with such conflicts, we introduce a func‐
tion named Bad_Impact(Decision) which will quantify how much the impact of the a
decision was bad for the associated situation. It can have one of the three linguistic values
presented above (Low, Medium and high).

Two types of rules are used in this second mechanism. The first is used to update the
state of this function and have the following form:

IF (Container Knowledge is … AND Terminal Knowledge is … 
AND Event Knowledge is AND Disturbance Knowledge is …  
AND Decision is …AND Bad_Impact(Decision) is Low)
THEN (Bad_Impact(Decision) is Medium)

The second type of rules allows the system to update its decision if a bad decision
is determine using the memorization mechanisms. In such a case, the system will take
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into consideration this new knowledge to build its final allocation strategy. Such rules
have the following form:

IF (Container Knowledge is … AND Terminal Knowledge is … 
AND Event Knowledge is AND Disturbance Knowledge is …  
AND Bad_Impact(Decision 1) is High)
THEN (select Decision 2)

As it will be discussed in next subsections, the knowledge models and learning
mechanisms presented in this section will be integrated in a multi-agent system for the
use and reuse of knowledge and for the reactive and decentralized decision making.

4 The Multi Agent System

The suggested Multi Agent System architecture is based on a three steps methodology
according to the assignment rules classification presented in Sect. 2 for the determination
of the exact position of containers: block allocation, bay allocation and stack allocation.
Each step is constituted by two phases: the first is the determination of the allocation
strategy and the second is the determination of the exact position of containers in blocks,
bays and stacks. In general, the determination of a location must be made to minimize
the completion time of the loading operation. The final decision of the system is repre‐
sented by the vector of the Eq. 1 (see Sect. 3.1).

The analysis and the design of our proposed system led us to define five types of
agents distributed into three modules including the Decision Support System module,
the evaluation module and the interface agent. The Decision support system module
contains three agents which cooperate together to generate an allocation decision: the
Block Agent which determines the block where the container will be allocated and
monitor the state of blocks, the Bay Agent which determines the Bay where the container
will be allocated and monitor the state of bays, and the Stack Agent which determines
the Stack where the container will be allocated and monitor the state of stacks. The
evaluation module is composed of the evaluation agent which evaluates the efficiency
of the proposed allocation decision. This agent is solicited particularly by Stack agent.
Finally the Interface Agent detects and analyses, in a real time manner, the different
requests of containers allocation/retrieval and also the unexpected events and distur‐
bances from the common environment (see Fig. 2).

We present in next sub-sections the goals and behaviors of the different agents
constituting our system.

4.1 Interface Agent

The Interface agent plays two main roles. The main objective of this agent is to detect
and analyze the different events received from the common environment. These events
are of three types: allocation event, retrieval event and disturbances. This agent captures
all knowledge corresponding to the terminal configuration, the container in question and
the detected disturbances. This agent corresponds also to the HMI (Human Machine
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Interface) where the final allocation decision is represented in order to inform the
managers about this decision.

4.2 Block Agent

The block agent is a cognitive agent as it is able to reason before acting. It performs two
functions. The first function consists on determining the allocation strategy of the yard
blocks by using the knowledge based system presented in Sect. 3.2. The strategy to be
selected varies dynamically according to the knowledge captured by the Interface agent.
Each time the adopted strategy is changed; the block agent must update its new strategy.
Thus, this agent uses a set of rules having the following form to select the block assign‐
ment rule.

IF (Container Type= Dangerous) AND (Dangerous goods class 
= 3) AND (Dwell time is high) 
THEN (Block Strategy = DA)

After the determination of the allocation strategy, the block agent consults the
knowledge based system in order to check selected block assignment rule (to be rejected
to approved) that have been applied to a state similar to the current state of the system
and that did not give good results.

The second goal of the agent consists then on the selection of the block that is most
favorable by a simple application of the allocation strategy selected. After selecting a
block, this agent sends to the bay agent a bay allocation or re-allocation order to select
a bay of this block to store the incoming container in question.

4.3 Bay Agent

As the Block agent, the Bay agent is also intelligent. It performs also two functions. It
allows firstly determining in a real time manner the allocation strategy adopted for the

Fig. 2. Multi agent system architecture
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allocation of Bay and then consults the knowledge base to reject bad bays. The selection
of the allocation strategy is based on the knowledge based system and mechanisms
presented in Sect. 3.2.

The second function of the bay agent allows the selection of the most effective bay
among the candidates from the selected block by the application of the strategy selected
to allocate the bay.

4.4 Stack Agent

After receiving an allocation request from the bay agent, the stack agent should deter‐
mine in a first way the stack assignment rule to determine the list of candidate stacks.
Then, the stack agent uses an Artificial Neural Network (ANN) for the selection of the
allocation strategy. The big number of rules related to the Stack Assignment led us to
use ANN instead of a rule base system.

As the Block and Bay agents, this agent uses the knowledge base for the selection
of candidate stacks and neglect bad ones. After the identification of the stack assignment
strategy and the list of candidate stacks, the stack agent apply this strategy to these
candidate stacks in order to select the most appropriate stack.

4.5 Evaluation Agent

The main task of this agent is the calculation of the performance indicator of the allo‐
cation solution constructed by the Block, Bay and Stack agents. The agent evaluates the
suggested position with regards to the performance indicator evaluation using the Eq. 9.

P
(
d1, q, d2, h

)
= 𝛼d1 + 𝛽q + 𝛾d2 + 𝛿h (9)

P
(
d1, q, d2, h

)
 represents the weighted sum of four criteria: d1 which represents the

distance separating the given block to the gate; q represents the waiting queue in front
of the given block; d2 represents the distance separating the given stack to the gate; and
h represents the remaining stack height. 𝛼, 𝛽, 𝛾 , and 𝛿 represent the related weights.

If P is greater than a predefined threshold, then a request is sent to the Stack agent
to change the stack (or bay or block) and another stacking solution will be generated by
the block, bay and stack agents. In such case the Evaluation agent will register this
ineffective allocation solution to the knowledge base as new IF…THEN rule in order to
avoid the reallocation of such containers in future allocation requests with the same
situation of the terminal. Otherwise this solution will be accepted and sent to the interface
agent to be applied.

5 Implementation and Assessment

The proposed approach has been evaluated based on data collected from the certified
ISO Tunisia Sfax seaport in Tunisia. The port has a capacity of 83 000 TEUs and a
storage area of 28 hectares. The presented port contains 30 non homogeneous blocks.
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Each block is constituted of 5 bays and each bay contains 4 stacks (the maximum stack
height is 4). In this work, we simulate the arrival of three kinds of containers: regular,
dangerous (with different class of goods) and open top. We assume that only one
container is entering to the yard for being stored in each time.

For the assessment of our system, we have defined three scenarios with different
initial configurations and different arrival and departure rates of containers: scenario 1
with an empty yard at the beginning of the planning horizon; scenario 2 with a 50 %
utilization of the yard; and scenario 3 with an 80 % utilization of the yard. We have also
implemented the DSS implemented in [10] using a combined strategy. The Table 1,
presents the detailed performance for each type of container with regards the perform‐
ance indicator of the Eq. 9.

Table 1. Experimental results

Empty yard 50% congestion 80% congestion

Regular Open top
Danger-

ous Regular Open top
Danger-

ous Regular Open top
Danger-

ous
Combined 

strategy
1004.320 1377.500 621.033 1534.125 1633.914 1337.320 1833.066 1763.374 1336.632

The devel-
oped sys-

tem
1020.497 1152.362 625.762 1462.153 1515.558 803.996 1607.380 1689.880 899.148

As shown in Table 1, the agent system combined with knowledge based system and
the learning mechanisms can be efficient for the real time container storage co paring
with combined system and in presence of dangerous containers. The performance of the
system is assessed with different scenario and seems to be promising.

6 Conclusion

In this paper, we presented the prototype of a multi-agent based decision support system
for the real-time container stacking management system. The main objective of the
system is to monitor terminals, supervise container allocation and react to unexpected
events, change and disturbances, as handling of dangerous materials, in an intelligent,
self-organizing and real-time manner. The system is based on a set of knowledge models
and learning mechanisms allowing it to capture, store, use and reuse knowledge related
to disturbances and the agents’ environment. The performance of the system is compared
to another combined system taken from the literature and the obtained results seem to
be promising. The system presented in this paper can be improved in future works by
integrating problems related to berthing and quay crane assignment.
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Abstract. The model of human decision making involves reusing of
earlier gathered experience together with retaining of knowledge related
to currently undertaken decisions and its results. Presented here research
focuses on the retaining of experience that should enable learning on
the basis of results following currently undertaken actions. Such model
of human decision making can be used as the basis by construction of
a reasoning system in various application areas, one of which can be
the control of a semi-continuous production process. Solutions in this
application domain are presented, designed and implemented taking into
account the paradigm of agent approach to design computer systems and
the paradigm of case-base reasoning (CBR) as the methodology of solving
present problems with the use of past made solutions.

Keywords: The model of human decision making · Case-base reason-
ing · Semi-continuous production process · Multi-agent systems

1 Introduction

The main motivation of the research presented here is an attempt to explore and
formalize a methodology of resolving problems that relate to situations charac-
terized by an a-priori unknown relationship between an undertaken action and
its result. Such type of problems is well resolved by humans using experience
which enables to make decisions in a nondescript environment. According to the
mentioned motivation, the general scope of the article is an analysis of processes
occurring in a human mind. Those processes relate to using and retaining of
knowledge being experience gained by resolving of problems that humans are
facing at work or everyday life. The analysis of mentioned processes leads to
presentation of a methodology that is possible to implement as a problem solver
in computer systems in many domains of application areas where proper rules
of decision making are difficult to descript in the time of the computer system
design and implementation. The control of the oxidizing roasting process of sul-
phide zinc concentrates [1] is one of exemplary application areas. The nature of
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 729–738, 2016.
DOI: 10.1007/978-3-319-39378-0 62
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this industrial process prevents obtaining proper values of control parameters by
computing it with the use of determined dependences in the form of mathemat-
ical equations. Proper rules of its control are also difficult to formalize, which
handicaps the construction of a knowledge base of an expert system. Due to the
problems related to the control of the oxidizing roasting process of sulphide zinc
concentrates, this control is still performed by human operators, who use their
experience in order to control the mentioned process.

The research presented here focuses on the retaining of experience as the
part of processes related to the general use of knowledge. Observation of made
decision and its result can be a basis for expanding of experience, which is a
form of a knowledge base of a reasoning system. In order to study the impact of
the retaining of experience on the overall decision making a simulation is used
that results are presented in the article.

2 Human Decision Making and Case-Based Reasoning

The main point of human decision making is the conception of experience as a
collection of distributed and autonomous episodes. An individual episode refers
to a specific problem that was resolved in the past, an action that was under-
taken in order to solve the specific problem, and an observed result. A human
making decision according a present problem chooses an episode, which refers to
a problem similar to the present one and refers to a result being desired accord-
ing principal goals. The chosen episode is the basis for final deciding according
an action, which has to be presently undertaken. After the present action is
undertaken, the human can observe its results. Those results are the basis for
creation of a new episode and its adding to experience. The process of creation of
episodes relates to the retaining of experience, which enables learning together
with and due to human decision making.

Presented view on human decision making is consistent with case-based rea-
soning (CBR) methodology. Case-based reasoning uses past made experience
during solving of a problem associated with the present situation [2]. Such rea-
soning requires knowledge according made in the past solutions related to spe-
cific past problems. This knowledge is organized as a collection of past made
experience items, which are called past cases, or cases in CBR conception.

2.1 Cases as Experience Episodes

A case represents an experience item that is referred as an episode by presen-
tation of the general view of human decision making. A case ci is defined as a
triple:

ci = (pi, si, ei) (1)

where pi is the solved problem, si is the solution resolved in order to solve
the problem pi, and ei is the effect of applying the solution si to the situation
described by the problem pi. Definition of a case as a triple corresponds to the
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concept of a case that is proposed in [3]. This concept is suitable for situations
in which an action can result with an a-priori unknown effect.

A single case represents one episode that is an item of human experience. A
reasoning system should use knowledge related to many episodes registered in
the past (as similar to processes of human decision making). This knowledge is
organized as a finite set of cases called a case base Δ:

Δ = {c1, c2, ..., cN} (2)

where ci is a case and N is the number of cases in the case base.

2.2 The CBR Cycle

The CBR cycle is the template of four processes that are invoked sequentially in
the time of emergence of a new problem that has to be solved. Those processes,
called also phases, are invoked in the following order: (1) retrieve phase, (2) reuse
phase, (3) revise phase, and (4) retain phase [2].

The retrieve phase starts when a new problem pn has to be solved. The
goal of the retrieve phase is to select one past case from the case base Δ that
is relevant to the current situation characterized by the new problem pn. The
retrieve phase is proposed to consist of two steps:

1. choose a number of cases from the case base with the highest similarity rate,
2. select among chosen cases only one that is associated with the effect that

represents the highest quality (the most desirable result) of applied solution.
The selected case becomes the relevant case cr.

The notion of similarity plays an important role in CBR, however is highly
subordinated to the area of application of the reasoning system. Similarity is
usually formalized as a function sim : P ×P → [0, 1] that compares two problems
from P and returns a similarity assessment as a real value from [0, 1] (as presented
in [4]). In many CBR applications a similarity measure is inverse Euclidean or
Hamming distance. The quality of the solution should indicate how much is
desired result of this solution being applied in order to solve the new problem
pn. The notion of a quality is related to the domain of system application. In
the case of control of industrial process, the quality of solution can be equal to
the measured quality of made products. In many application areas the quality
of the made products is not possible to compute. Measurement of the quality is
performed often manually by workers and is not part of the reasoning system.

The reuse phase starts when the relevant case cr = (pr, sr, er) is selected.
The solution sr is reused in order to solve the current problem pn. The reuse
phase can be different in various application areas of the reasoning system – in
some domains the solution sr can be returned unchanged as the solution for the
problem pn, but some application areas require an adaption of the solution sr to
the problem pn [2]. The result of the reuse phase is the solution sn that should
solve the problem pn.



732 G. Rojek

The revise phase is related to an evaluation of the solution sn. In many
application areas of the discussed reasoning system the evaluation of the solution
sn is possible only by the application of this solution to the real environment,
what is performed outside the CBR system. The outcome of the evaluation phase
is the effect en of the solution sn applied to the problem pn.

The retain phase enables learning due to the retaining of the current experi-
ence. This experience relates to the application of the solution sn to the problem
pn that results with the effect en. This retaining usually occurs by creation of
the case cn = (pn, sn, en) and addition this case to the case base Δ [4].

3 The Multi-Agent System Modeling Experience

The basis for human decision making is experience that is a set of episodes.
This assumption is consistent with CBR methodology, which relates to a case
base as the source for decision making. The case base Δ consists of various
past cases that are independent each other and that are autonomous items of
the general experience. The perceived autonomy of episodes is the ground for
implementation of agent technology at the formalization of the human decision
model. As presented in [5], the autonomy is the main characteristic of an agent,
what indicates usefulness of agent approach at the design of the human decision
model consisting of distributed and autonomous episodes.

The case base Δ is modeled as a set of agents. An agent belonging to this
set is named a Past Episode Agent (PEA) and should contain all data related
to an episode (a past case) that represents. Past Episode Agents are aimed to
communicate with a Control Agent that goal is to solve the current problem pn
and retain the experience related to application of the proposed solution to the
current situation. Taking into consideration presented remarks, the set of agents
acting in the whole system contains:

Ag = {PEA1, PEA2, ..., PEAN , CA} (3)

where each Past Episode Agent PEAi represents one case ci (1 ≤ i ≤ N , N
is the number of cases in the current case base Δ) and the Control Agent CA
performs all phases of the CBR cycle.

3.1 Interactions in the Multi-Agent System

The Control Agent (CA) starts its functioning when a new problem pn has to
be solved. Next it begins to perform the CBR cycle that involves interactions
between agents existing in the system:

1. The CA sends a request of problem statement to all Past Episode Agents.
2. Every PEAi (1 ≤ i ≤ N , N is the number of PEAs) replays by sending back

description of the problem pi, which is related to the case ci = (pi, si, ei).
3. The CA chooses Past Episode Agents, which represent cases that are most

similar to the present problem pn. Next it sends a request of effect statement
to all agents chosen in this step.
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4. A PEAi replays by sending back description of the effect ei.
5. The CA selects PEAr, which is associated with the effect that represents the

highest quality. The PEAr represents the retrieved case cr = (pr, sr, er).
6. The CA adopts the solution sr to the current problem pn. The adopted

solution is returned as the solution sn.
7. The solution sn is applied in order to resolve the problem pn.
8. The CA obtains en – the information concerning the effect of applying the

solution sn to the problem pn.
9. The CA creates a new Past Episode Agent PEAn that represents the case

cn = (pn, sn, en).

4 Semi-Continuous Production Process

Semi-continuous production process is the term that refers to production orga-
nized into batches [6]. It is assumed that every batch is continuously controlled,
but some circumstances can have influence on the control for a batch, which
remain unchanged during an individual batch. This assumption results in dis-
tinction of several signals (parameters), which may have influence on production:

– Independent signals I are signals that do not change during a batch and are
independent of other process parameters (e.g. chemical characteristics of raw
materials). It is assumed that independent signals are measured once at the
beginning of a batch.

– Dependent signals X are signals that change during a batch and can be
dependent on other production parameters. It is assumed that this depen-
dency is unknown, but can be a hypothetical function of other measured or
unmeasured signals and a possible time delay. Dependent signals are mea-
sured frequently during a batch period.

– Controllable signals U are signals that can be directly controlled. Controllable
signals U are set (adjusted) with the same frequency as the measurement of
dependent signals X.

The aim of a production process control is to achieve products characterized
by the optimal quality Q. The influence on the quality can have all signals:
Q = f(U, I,X). Assuming the quality Q is measured once per a batch, the control
of a hypothetical process should be adjusted to specific values of independent
signals I, which are measured only once for a whole batch of production. Because
dependent signals X can not be directly changed, the only one possibility is to
set values of controllable signals U . Summarizing presented reflections on a semi-
continuous production process control, it can be noticed that:

– the optimal quality for products made in an individual batch can differ accord-
ing to values of independent signals I (e.g. the quality of final products
depends on chemical characteristics of raw materials),

– the way of control of a hypothetical process can be different for specific values
of independent signals I (e.g. characteristics of raw materials influence the
way of control),
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– controllable signals U should be set in order to obtain desirable values of
dependent signals X taking into consideration the characteristic of a current
batch, which relates to values of independent signals I.

The oxidizing roasting process of sulphide zinc concentrates [1,7] is one of indus-
trial processes that is consistent with above presented characteristic.

5 Simulation of a Semi-Continuous Production Process

The research presented in [7] concerns the application of the human decision
model to a real world production process. Because the real control of that process
is not linked to results obtained by the reasoning system, it is impossible to
implement the revise and the retain phases of the CBR cycle performed by the
Control Agent. These phases require estimation of quality, what can be obtained
only by application of the solutions returned by the reasoning system to the
environment, which is the production process. Only one way, which may allow
to bypass this handicap, is to use a simulation that enables to compute quality
of hypothetical products. This is very important for the research presented here,
which focuses on the retaining of experience and its later reuse.

5.1 Input Data

According to the remarks on a semi-continuous production process, a simulation
is developed that enables to compute quality of hypothetical products. The input
data for one batch of production is specified in the form of values of the signals
that are stated as (according to the signals featured in the Sect. 4):

– independent signal I = [i] is one-dimensional value in the range (0, 20) mea-
sured once before the start of every hypothetical batch,

– dependent signals X = [x1, x2, ..., x20] are one-dimensional values in the range
(0, 20) measured 20 times during every batch,

– controllable signals U = [u1, u2, ..., u20] are one-dimensional values in the
range (0, 20) set (adjusted) 20 times during every batch.

The simulation does not assume any dependencies among values of the specified
signals. All initial data (the initial case base Δ) of the multi-agent system are
generated randomly. During the functioning of the multi-agent system (for all
simulated batches) also independent signals I and dependent signals X are gen-
erated randomly, but controllable signals U are set by the Control Agent CA in
order to obtain the best possible quality.

5.2 Output Data

The goal of the simulation is to compute the quality Q of hypothetical products
made during one batch of production. The batch is specified by values of the
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signals that are presented as the input data. The quality Q of hypothetical
products is obtained according to dependency:

Q =
20∑

n=1

(xn + un − i)2 (4)

where xn (1 ≤ n ≤ 20) are 20 individual measures of dependent signal X,
un (1 ≤ n ≤ 20) are 20 individual settings of controllable signal U , and i is
the value of independent signal I measured once for every hypothetical batch.
It is assumed that the goal of the simulated production is to obtain products
characterized by the minimal value of the quality criterion Q – the lower is the
value of Q, the better is the quality.

6 Implementation of the Multi-Agent System

Design of the multi-agent system modeling human decision making is adjusted
to the control of the production process, which simulation is presented in the
previous section.

6.1 Construction of a Case

A case ci is defined by the Eq. (1) and is represented by a Past Episode Agent
PEAi in the multi-agent system. Adopting this definition to the specific of the
presented simulation, the case ci represents one batch of production:

ci = (I, (X,U), Q) (5)

The problem pi is described by the value of independent signal I. The solution
si relates to values of X and U . The effect ei of the solution si applied to
the problem pi relates to the quality Q, which is computed by the simulation
presented in the previous section. It should be emphasized that the dependence
given by the Eq. (4) is known only by the simulation. The Eq. (4) is unknown by
the multi-agent system, which performs reasoning according controllable signals
U of the present batch.

6.2 Implementation of Interactions

Interactions in the multi-agent system are shown in the Sect. 3.1. Those inter-
actions are adopted to the specific of the presented construction of a case. All
adaptations do not disturb the interactions specified in the Sect. 3.1, however the
6. step of the interactions needs explanation. The Control Agent CA adopts the
solution of the retrieved case to the present problem with the use of a multilayer
perceptron. The goal of the use of a neural network is related to the necessity
of approximation of the way, how values of controllable signals U are adjusted
to values of dependent signals X. The multilayer perceptron is trained with the
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data referring the solution sr represented by the PEAr. After this neural net
is trained, it is used for setting of the present value of controllable signal U
according to the presently measured value of dependent signal X. In the 8. step
of the interactions, the presented simulation is used as the source for obtaining
the effect en that is equal to the computed quality Q.

6.3 Initial Case Base

Before the first start of the multi-agent system 30 initial batches of production
are generated by setting random values of signals I, X and U (as presented
in the Sect. 5.1). The simulation is used in order to compute the quality Q for
the initial batches (as presented in the Sect. 5.2). Those batches are basis for
construction of the initial case base of the system. It means that at the start
of the multi-agent system 30 Past Episode Agents exist, which represent earlier
retained experience related to the 30 initial batches. The average quality for
those initial batches is equal to Qinitial = 49.45.

6.4 Obtained Results

The first run of the multi-agent system concerns the model of human decision
making that does not allow the retaining of experience. The Control Agent CA
does not perform the retain phase – the 9. step of the interactions presented in
the Sect. 3.1 is not performed. It means that the initial case base is used for all
batches of production and the case base Δ does not change during the functioning
of the system. The multi-agent system is run for 300 batches. The diagram
onto Fig. 1 presents the quality obtained during every batch of production. The
average quality for this run of the system is equal to Qno retaining = 41.65.

Fig. 1. The system modeling human decision making without the retaining of experi-
ence.

The second run of the multi-agent system concerns the model of human deci-
sion making that allows the retaining of experience. The Control Agent performs
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the retain phase – all interactions presented in the Sect. 3.1 are performed. At the
end of every batch the case base Δ is enlarged by adding one Past Episode Agent
related to the experience that is retained by the control of this batch period. All
others parameters of this run of the system are the same as the parameters of
the first run of the multi-agent system. The diagram onto Fig. 2 presents the
quality obtained during every batch of production. The average quality for this
run is equal to Qretaining = 38.94.

Fig. 2. The system modeling human decision making with the retaining of experience.

Obtained results show that application of the multi-agent system modeling
human decision making even without the retaining of experience enables to get
the quality, which is better than the quality of the initial batches. It is evident
that Qinitial > Qno retaining and the goal of the simulated production is to
obtain the minimal value of the quality criterion Q. Addition of the retaining
mechanisms allows the reasoning system to gain new experience due to and
together with regular problem solving of current problems. It means that after
the end of every batch, the knowledge according its characteristic (including the
control and obtained quality) is retained. This enables to get even better quality
than the quality obtained by the run of the system without the mechanisms of
experience retaining – Qno retaining > Qretaining.

7 Conclusions

The analysis of humans making decisions in an uncertain and indeterminate
environment enables to present the model that central notion is experience.
Experience is used to contemplate how to solve problems, and is retained due to
observations of effects, which are consequences of deployed solutions. The model
of retaining and reusing of experience can be applied as a reasoning engine to
various fields of problems, especially to these ones, for which it is impossible
to specify any a-priori rules of proper decision making. The discussed design
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of the multi-agent system modeling human decision making can be a pattern
for the design of computer systems resolving problems to which other known
computational techniques do not bring desired effects.

In order to determine the effectiveness of the discussed model an exemplary
problem is chosen as the application area of the multi-agent system. This prob-
lem is related to the control of a hypothetical industrial process that production
is organized into individual batches. Each batch is characterized by a constant
parameter, but the control of a batch is continuous. Obtained results show that
the presented model of human decision making enables to resolve problems with-
out stating any a-priori rules according proper reasoning. The addition of mech-
anisms related to the retaining of experience increases the effectiveness of the
researched model as compared to the model, which enables to use only initially
gathered knowledge.

Acknowledgments. Financial support of the Ministry of Science and Higher Educa-
tion (AGH UST, project no. 11.11.110.300) is acknowledged.
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Abstract. Mobile agents can migrate among multiple nodes to perform
their tasks at each of the visited nodes. The itineraries of agents seriously
affect the availability and performance of mobile agent-based processing.
However, they tend to be complicated, for example, the order of the
nodes that agents should visit may be alternative or commutable. This
paper proposes a framework for specifying constraints on the itineraries
of agents and generating the itineraries that can satisfy the constraints.
The contribution of this framework is to automatically generate the
itineraries of mobile agents among computers from application-specific
constraints. A prototype implementation of this framework and its appli-
cation were built on a Java-based mobile agent system.

1 Introduction

Mobile agents are autonomous programs that can travel from computer to com-
puter in a network under their control [4]. The state of the running program
is saved, by being transmitted to the destination. The program is resumed at
the destination continuing its processing with the saved state. Mobile agent
technology is still a convenient, efficient, and robust framework for implement-
ing distributed applications, because of reducing the latency of communications
between clients and servers and vulnerability to network disconnection.

Mobile agents visit multiple computers through their own itineraries, so that
their itineraries greatly affect their achievements and efficiencies. Most existing
mobile agent platforms have no mechanisms to migrate agents among two or
more destinations, because they assume that each agent executes their applica-
tion programming interface (API) for agent migration with at most one desti-
nation, e.g., go(host-address). Since such APIs are directly embedded in their
agent programs, it is almost impossible to modify the itineraries of agents after
developing the agents. Furthermore, agent itineraries depend on the structures of
networks, which may change due to the connection or disconnection of networks
and the addition or removal of nodes. Therefore, mobile agents tend to depend
on their target networks and cannot be adapted to changes in the structure of
networks.

Therefore, we need an approach to dynamically generating the itineraries
of mobile agents according to the structures of the target networks and the
c© Springer International Publishing Switzerland 2016
L. Rutkowski et al. (Eds.): ICAISC 2016, Part I, LNAI 9692, pp. 739–748, 2016.
DOI: 10.1007/978-3-319-39378-0 63
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requirements of applications after developing the agents. On the other hand,
mobile agents do not need to observe their itineraries as long as agents can
satisfy the requirements of their applications. Suppose a remote information
retrieval, which is one of the most typical applications of mobile agents. Agents
can migrate among multiple servers in an arbitrary order if the agents read data
sets from these servers. If agents write data sets dependent on the data that
they read at other servers beforehand, their itineraries must keep the causality
of reading and writing the data. The key idea behind the framework proposed in
this paper is to introduce the notion of a constraint satisfaction problem (CSP)
into the itineraries of mobile agents. Our framework enables the application-
specific requirements of agent itineraries to be specified as constraints and our
constraint solver generates agent itineraries that can satisfy constraints corre-
sponding to their agents’ requirements. Although our CSP for agent itineraries
are evaluated in our original mobile agent platforms, they can be almost directly
used in other platforms.

2 Basic Approach

This section presents the requirements of our proposed framework with an exam-
ple scenario: mobile agent-based information retrieval.
– If a mobile agent can travel among multiple database servers to query and

aggregate interesting data from the servers without writing on any of them,
the order of its movement is independent of its achievement and the servers
(the upper of Fig. 1).

– If a mobile agent queries and carries data from a database server and reflects
the data on other database servers, the order of its movement affect the
content of the servers (the lower of Fig 1).

The framework specify application-specific requirements imposed on the
itinerary of such an agent as a constraint. Note that our approach does not intend
to find the shortest path among nodes, because the performance of migrating
agents between nodes tends of depend on the workload of their visiting nodes in
addition to the latency of transmitting agents through networks.

Since our goal is to present a mechanism that would generate agent itineraries
that can satisfy the constraints imposed on their agents. Some readers may
think that simple executable languages, such as Lisp and Prolog, should be
used to specify itineraries, but it is not easy to exactly verify whether or not
itineraries written in such languages satisfy the itinerary required by a request.
Note that the order relation selects a better itinerary from a finite set of given
itineraries, but is not intended to generate the most efficient itinerary. Thus, the
computational complexity for this relation is not large.

3 Constraint-Based Agent Itinerary Generation

This section defines two languages for specifying agent itineraries and con-
straints, called C and E. To accurately express such itineraries, we need to define
a specification language based on a process calculus such as CCS [3].



Constraint Solving-Based Automatic Generation of Mobile Agent Itineraries 741

Fig. 1. Agent itineraries and constraints

Definition 1. The set E of expressions of the language, ranged over by
E,E1, E2, . . . is defined recursively by the following abstract syntax:

E ::= 0 | � | E1 ; E2 | E1 + E2 |
where L is the set of location names, ranged over by �, �1, �2, . . .. We often
omit 0. ��
Intuitively, the meaning of the terms is as follows:

– 0 represents a terminated itinerary.
– � represents agent migration to a node whose name or network address is �.
– E1;E2 denotes the sequential composition of two constraints E1 and E2. If

the migration of constraint E1 terminates, then the migration of E2 follows
that of E1.

– E1+E2 represents an agent moving according to either E1 or E2, where the
selection can be explicitly performed by the processing of the agent.

Figure 2 shows basic agent itineraries specified in the E language.

Fig. 2. Agent itinerary language
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Example 1.

– �1 ; �2 ; �3 means that an agent migrates to �1 and then to �2. Finally, it
migrates to �3

– �1 ; (�2 + �3) means that an agent migrates to �1 and then to one of either �2
or �3.

The semantics of the language is defined by the following labeled transition
rules:

Definition 2. The language is a labeled transition system 〈 E , L{ �−→⊆ E ×
E | � ∈ L} 〉 is defined as the induction rules below:

−
�

�−→ 0

E1
�−→ E′

1

E1 ; E2
�−→ E′

1 ; E2

E1
�−→ E′

1

E1 + E2
�−→ E′

1

E2
�−→ E′

2

E1 + E2
�−→ E′

2

where 0 ; E is treated as being syntactically equal to E. ��
The framework provides a library for interpreting the itineraries of agents and
migrating the agents to their itineraries. Next, we define a language for specifying
constraints on agent itineraries.

Definition 3. The set C of expressions of the language, ranged over by
C,C1, C2, . . . is defined recursively by the following abstract syntax:

C ::= 0 | � | C1 	 C2 | C1 #C2 | C1 &C2 | C1 %C2

��
Intuitively, the meaning of the terms is as follows:

– � means that an agent itinerary need to contain a node whose name or network
address is �, as one of its destinations.

– C1 	 C2 denotes that agent itinerary must satisfy C2 after satisfying C1,
where C1 and C2 are constraints.

– C1#C2 means that an agent itinerary has to satisfy at the least one of either
C1 or C2, where C1 and C2 are constraints.

– C1&C2 means that an agent itinerary has to satisfy two constraints specified
as C1 and C2, although iterates for C1 and C2 constraints can be interleaved.

– C1%C2 means that an agent itinerary need to satisfy at the least one of either
C1 before C2 or C2 before C1 in its itinerary, where C1 and C2 are constraints.

Figure 3 shows basic constraints described in the C language.

Example 2.

– Causality An agent travels between two database servers, named �1 and �2,
and to read data from the �1 server and then write the data to the �2 server.
The agent has to migrate to �1 before �2 as follows:

�1 	 �2
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Fig. 3. Constraints for agent itineraries

– Data Aggregation An agent travels between two database servers, named �1
and �2, to aggregate data from the servers and then reflects the data to
another server, named �3

(�1 % �2) 	 �3

– Independent causality An agent has to do two independent tasks, where the
first task is to read data from the �1 database server and then write the data
to the �2 database server and the second task is to read data from the �3
database server and then write the data to the �4 database server.

(�1 	 �2) & (�3 	 �4)

Expressions in the C language can be transformed into the structures of
directed graphs according to the rules proposed in this paper, where each directed
graph is defined by a set of operations (vertices) and dependencies (edges). The
operation is an equation with the left side consisting of a dependency (acting
as a short-term name for the result of the operation), and the right side being
the application of an operator to zero or more dependencies. An operation is
a source for the dependency on the left side of the equation and a sink for
dependencies listed on the right side. A dependency has exactly one source but
can have many sinks. Our rules map constraints into graphs. The itinerary of
each agent is generated as a path on the graph from at most one source node to
destination nodes.

Example 3.

– The first constraint of Example of 2 is transformed into agent itinerary: �1 ; �2.
– The second constraint of Example of 2 is transformed into two agent

itineraries: �1 ; �2 ; �3 or �2 ; �1 ; �3.
– The third constraint of Example of 2 is transformed into an agent itinerary:

(�1 ; �2 ; �3 ; �4) + (�1 ; �3 ; �2 ; �4) + (�1 ; �3 ; �4 ; �2) + (�3 ; �1 ; �2 ; �4) +
(�3 ; �1 ; �4 ; �2) + (�3 ; �4 ; �2 ; �3)
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Next, we describe the process of CPS-based automatic generation of agent
itineraries.

– Step 1: A mobile agent is loaded from storage and initialized, where its
application-specific requirement on its movement among computers is speci-
fied in the C language.

– Step 2: The requirement is solved by using the graph-based CSP approach
mentioned in this section. As a result, an agent itinerary described as an
expression of the E language that can satisfy the constraints corresponding
to the requirement is automatically generated and is given to the agent.

– Step 3: The agent is migrated among computers through its generated
itinerary.

4 Design and Implementation

There have been many mobile agent platforms so far. Although the framework
itself is independent of any platforms, the current implementation is constructed
as our original mobile agent platform. As shown in Fig. 4, the platform con-
sists of three parts: runtime system, agent itinerary interpreter, and constraint
solver. The first is responsible for migrating mobile agents and executing their
application-specific tasks defined as Java programs, the second for interpreting
the itinerary of each agent, and third for solving constraints on agent itineraries.

Fig. 4. System structure

4.1 Runtime System

Runtime systems are executed on computers for executing and migrating agents
to other runtime systems. Each runtime system is built on the Java virtual
machine (Java VM), which conceals differences between the platform architec-
tures of the source and destination computers. Each runtime system governs all
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the agents inside it and maintains the life-cycle state of each agent. When the life-
cycle state of an agent changes, e.g., when it is created, terminates, or migrates
to another computer, the runtime system issues specific events to the agent.
Each runtime system can exchange agents with another system through a TCP
channel using mobile-agent technology. When an agent is transferred over the
network, not only the code of the agent but also its state is transformed into a
bitstream and then the bit stream is transferred to the destination. Therefore,
the arriving agents can continue to execute its processing at the destination. The
runtime system on the receiving side receives and unmarshals the bit stream.

Our system uses the Java object serialization package for marshaling agents.
The package does not support the capturing of stack frames of threads. Conse-
quently, our system cannot serialize the execution states of any thread objects.
Instead, when an agent is serialized, the core system propagates certain events
to its descendent agents in order to instruct the agent to stop its active threads,
and then automatically stops and serializes them after a given time period.

4.2 Agent Itinerary Interpreter

The framework provides a Java-library for interpreting expressions in E based
on the semantics of Definition 2. Each agent is equipped with the library to
evaluate the expressions. The library invokes API for agent migration with the
next destination to migrate the agent to there. Each runtime system periodically
monitor connection to neighboring runtime systems and the availability of the
systems by using a peer-to-peer manner through multicasting UDP. The +
operator is evaluated as one of either sub-itineraries by this current runtime
system according to the connectivity and availability of the destinations of the
sub-itineraries. When there are two or more possible sub-itineraries, one of the
sub-itineraries is selected by the runtime systems. Since the size of the library
is smaller than 10 KB, the cost of migrating the library can be ignored in most
practical applications.

4.3 Constraint Solver for Agent Itinerary

Each constraint is specified on a dependency graph. Constrained path problems
have to do with finding paths in graphs subject to constraints. One way of con-
straining the graph is by enforcing reachability between nodes. For instance, it
may be required that a node reaches a particular set of nodes by respecting some
restrictions like visiting a particular set of nodes or edges in a given order spec-
ified in our constraint language. Our constrain solving system is responsible for
generating agent itineraries as paths that can satisfy constraints. Our framework
has three arguments for solving constraints: (1) a directed graph, i.e., a directed
graph with a source node; (2) the relation graph on nodes and edges of one or
more directed graphs; and (3) the transitive closure of the directed graphs. The
second represents operators in C and the third is to find paths that can satisfy
multiple constraints connected with the relations in the second. Agent itineraries
are generated through the reachability on the transitive closure of the directed
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graphs by finding a simple path in a directed graph containing a set of manda-
tory nodes. A simple path is a path where each node is visited once, i.e., given
a directed graph, a source node, a destination node, and a set of mandatory
nodes mandnodes, we want to find a path in the graph from the source to the
destination, going through mandnodes and visiting each node only once.

Remarks. Security is essential in deployable software. The current implemen-
tation can directly use the security mechanisms provided in the Java language
environment. The Java VM explicitly restricts agents so that they can only
access specified resources to protect hosts from malicious agents. To protect
against malicious agents being passed between agent hosts, each runtime sys-
tem supports a Kerberos-based authentication mechanism for agent migration.
It authenticates users without exposing their passwords on the network and gen-
erates secret encryption keys that can be shared selectively between parties that
are mutually suspicious parties.

5 Evaluation

The framework is constructed and available on Java version 7 or later. Its cur-
rent implementation was not built for performance, but a basic agent migration
experiment was done using eight computers (Xeon E5 3.5 GHz), named �1,. . .,�8,
connected through a giga-ethernet network. We measured the cost of migrating
a null agent (a 5-KB agent, zip-compressed) between two computers to be 28 ms.
The cost of agent migration included that of opening TCP transmission, mar-
shaling the agents, migrating the agents from their source computers to their des-
tination computers, unmarshaling the agents, and verifying security. The costs
of solving three kinds of constraints were 7 ms, 8 ms, and 10 ms, where the first
was specified as (�0 	 �1) & (�1 	 �2) & · · · & (�7 	 �8), the second as (�0 	
�8) # (�1 	 �8) # · · · & (�7 % �8), and the third as (�0 	 �8) & · · · & (�7 	 �8). We
already implemented typical applications of mobile agents with the proposed
framework.

5.1 Remote Information Retrieval

As we mentioned in the first section, this is one of the most traditional appli-
cations of mobile agents. A mobile agent migrates to four database servers and
queries about certain data from the servers, named �1, �2, and �3, and then car-
ries the results of their queries to a specified computer, e.g., its client, named �4.
The order of visiting the servers are arbitrary if their queries have no side effect
to the servers. Therefore, a constraint on such an agent is described as follows:

(�1 % �2 % �3) 	 �4

The framework generated the following itinerary that could satisfy the
constraint.

(�1 ; (�2 ; �3 + �2 ; �1)+ �2 ; (�1 ; �3 + �3 ; �1)+ �3 ; (�1 ; �2 + �2 ; �1)) ; �4
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The generated itinerary consisted of six alternative paths. One of them was
selected according to the reachability of �1, �2, and �3. In fact, the mobile agent
migrates among nodes through the itinerary with keeping its constraints.

5.2 Sensor Network Management

Sensor networks for monitoring nature environments and factories are often used
to detect abnormal data to find omens. On the other hand, while the environ-
ments are stable, such sensor networks continue to measure steady state. Mobile
agents can locally observe and control equipment at each node by migrating
among nodes with their program codes to detect abnormal data. As code is very
often smaller than the data it processes, the transmission of mobile agents to
sources of data creates less traffic than transferring the data itself. Sensor net-
works may lack routing mechanisms for communications, because their network
management systems tend to be poor. Since mobile agents are autonomous enti-
ties, they may be able to detect proper destinations or routings on such networks.

(�1 ; �h) & (�2 ; �h) & · · · & (�8 ; �h)

The framework generated multiple paths for the above constrains. For example,
one of them is described as:

�1 ; �2 ; �3 ; �4 ; �5 ; �6 ; �7 ; �8 ; �h

The selection of multiple paths depends on the availability and connectivity of
the destinations of the paths. This proved that our framework could generate
agent itineraries that can satisfy the requirement of the agent.

6 Related Work

Many mobile agent systems have been developed over the last twenty years.
Most of these studies explicitly or implicitly assume that the itineraries of mobile
agents were defined in the development phases of their agents. Like our frame-
work, there have been several attempts to introduce theoretical foundations into
mobile agents. The ambient calculus [1] allows mobile agents (called ambients in
the calculus) to contain other agents and to move as a whole with all its subcom-
ponents. The Seal calculus [5] is similar to the mobile ambients and ours in its
expressiveness of hierarchical structure of mobile agents, but its main purpose is
to reason about the security mechanism of mobile agents. The Polis language [2]
is a theoretical framework for specifying and analyzing mobile entities, including
mobile codes and mobile agents, which can contain other entities inside them.
However, it is not executable and needs a kind of shared memory over remote
nodes, whereas our framework can operate reusable mobile agents for network
management in a decentralized manner. Unlike software agents, which are not
mobile, there have been a few attempts to merge CSP and mobile agents. They
used mobile agent technology as just a solution to distributed constraint prob-
lems [6]. As long as our knowledge, there have been no attempts to introduce
the notion of CSP into the multiple hop itineraries of mobile agents.
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7 Conclusion

We presented a framework for enabling the itineraries of mobile agents to be
specified as constraints and the agents to be migrated through paths that could
satisfy the constraints. As a result, mobile agents could migrate among multiple
nodes to perform their task tasks at each of the visited nodes. The contribution
of this framework is to automatically generate the itineraries of mobile agents
among computers from application-specific constraints. In fact, it is useful in
operating mobile agent-based applications, because the itineraries of agents seri-
ously affect the availability and performance of their processing. This paper
presented a framework for specifying constraints on the itineraries of mobile
agents and solving the itineraries that could satisfy the constraints. Since the
framework is independent of the underlying mobile agent platforms, it is useful
to other platforms.
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Abstract. The paper focuses on establishing plans for autonomous off-
grid lighting devices. Such a device is equipped with photo-voltaic panels,
an energy storage and light points. The plan enables the device to take
actions depending on energy availability to ensure compliance with user
preferences. The preferences define how the device has to (hard require-
ments) or should (soft requirements) illuminate a given area. The hard
requirements have to be met, while the soft requirements are optional.
Having the preferences and the plan enables the device to conserve har-
vested energy simultaneously meeting all hard requirements and, when
possible, fulfilling the soft ones, optimizing energy consumption.

Keywords: Rules · Planning · Multi-variant planning · Energy usage
optimization · Power management · Off-grid device

1 Introduction to Autonomous Off-Grid Lighting

The main goal of the research described here is to provide a smart battery
management system for off-grid applications such as outdoor lighting systems.
An autonomous off-grid lighting system optimizes its actions by fulfilling user
preferences, and improves its capabilities by extending battery life and their
health. It has to be intelligently managed to deliver it. This paper focuses on
user preferences which model energy usage patterns and serve as a basis for its
operations planning. The main goal of such planning is to fulfill the preferences
under fluctuating energy constraints.

The lighting system under consideration consists of two distinctive compo-
nents: an instance and a control center. An instance is an autonomous device
consisting of a photo-voltaic panel (PV), energy storage and light points. PV
generates energy which is stored locally using Lithium-Ion cells. Depending
on particular application the light points are of different forms ranging from
street luminaires to LED strips. In addition, an instance is also equipped
with a control and communication modules which allows to manage charging,
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discharging, light intensity, collecting diagnostic data and to communicate with
the control center.

An instance is autonomous, and self-sustainable. It harvests energy which in
turn is used to power light points. To do so it uses a plan, which is a sequence of
control commands, telling when and how to discharge the batteries, turn on and
off or dim the light points. Thus it is to optimize energy flow increasing battery
health and obeying user preferences.

The plans are distributed to each of the instances by the control center. Each
plan depends on particular instance’s features, parameters, and user preferences
as well as weather forecasts. The control center is also responsible for gathering
diagnostic data from the instances.

2 Motivation

There are multiple competitive solutions for energy storage available on the
market in up to 10 kWh segment which are gathered in Table 1. It needs to be
pointed out that no storage solution currently offered is designed to work with
renewable energy sources. While each of them optimizes battery health they
are not aware of characteristic of the energy generation used for charging. And
in case of renewable energy sources their power output, thus the generation,
fluctuates directly affecting both battery health and performance of the system.
Similarly they are not aware of energy consumption patterns. Thus they do not
tackle energy usage optimization at all.

Table 1. Energy storage, competition

Name Capacity Technology

1 Hoppecke Sun.Systemizer 11.6 kWh Lead-gel

2 EnerSys home energy storage 9.2 kWh Thin plate pure lead

3 Varta engion 6.9/13.8 kWh Lithium iron phosphate

4 Victron energy 4.75 kWh Lithium iron phosphate

5 Samsung SDI 3.6 kWh Lithium-ion

6 Panasonic SESS 1.35–1.6 kWh / module Lithium-ion

7 Sony IJ1001M 1.2 kWh / module Lithium iron phosphate

A key differentiator of the proposed system comparing with the competition
is to enable it to be aware of both energy generation and consumption character-
istics. Such awareness could increase battery life and allows to fulfill consumption
requirements.

The generation is planned based on predictions, such as weather forecast,
and generation-storage interaction simulations. Consumption is planned based
on user preferences. Generation prediction uses PV simulation [1] employing
GridLab-D [2].
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The paper focuses on the consumption planning. The planning is enabled by
a two-way communication between the actual storage and the control center.
It allows the instance to obtain energy usage plans based on current and fore-
casted environmental conditions such as: temperature, capacity, battery health
or weather, and user preferences. What is more, it also enables advanced diag-
nostics which is performed by the control center. Simultaneously it stays eco-
nomically viable making an instance to be relatively inexpensive in terms of
electronic components.

This paper focuses on establishing a viable plan for an instance. The plan is
parametrized by available power gathered by storage and bound by user prefer-
ences. The preferences define hard and soft requirements. The hard requirements
have to be met, while the soft requirements are optional and they should be met.
The plan is robust, being multi-variant, which means that, depending on avail-
able charge, the instance is able to make decisions regarding control which max-
imize fulfillment of the preferences. It is guaranteed that the hard requirements
are met at all times while the soft ones if there is enough charge left.

3 General Architecture

The proposed system is physically subdivided into multiple instances and a single
control centre. The instances employ energy storage, control and communication
hardware. The control centre is responsible for storing and processing control and
diagnostic information for the instances and establishing communication with
them. It synthesizes energy consumption plans based on user preferences and
sends them to the instances. The plan is synthesized by the planning software
module which takes into considerations preferences and sunrise/sunset times for
given instance. Timestamps of sunrise/sunset events are sent by every instance
to the control centre (Fig. 1) which enables calculations of time-based plans in
relation with actual sunrise or sunset times.

4 User Preferences

Initial user preferences are modeled with use of the following features:

– a time stamp, in relation with sunrise or sunset,
– a light point power level, being a percentage of the nominal value.

The proposed model is open for incorporating other features such as: presence,
movement, ambient light etc., which can be easily added. Similarly, the power
level can be replaced with lighting profile if meeting certain formal requirements,
such as lighting norms, is needed [3]. In such a case the lighting profile for
particular physical area can be subsequently resolved into power levels for each
of the light points involved in illuminating the area.

The preferences are categorized as:

– required (hard requirements), which must be met, or
– preferred (soft requirements), which should be met.
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Fig. 1. Planning and control

The preferences are formally expressed as logic rules and processed, together
with Sunrise/Sunset data, by a rule-based system (part of Planning module
see Fig. 1) to synthesize a plan. For logic representation predicate logic [4] and
especially horn clauses are used which are directly processed by a Prolog based
rule engine [5].

Fig. 2. User preferences rules, preferred behavior (soft requirements).

Example rules for soft requirements in Prolog language are given in Fig. 2.
Predicate time/3 indicates time in relation to its first argument in minutes (e.g.
time(sunset, +120, T) provides T being 120 min after sunset), Predicate set/3
represents a control action setting power outputs (e.g. set(pref, 30, T) means
preferred 30 % power output of the light point at time T), then serves structural
identification of conditions and actions. Hard requirements are represented in
a similar way (see Fig. 3). As it can be seen number of preferred and required
preferences does not have to match. It is assumed that time stamps have a single
minute resolution.
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Fig. 3. User preferences rules, required behavior (hard requirements).

4.1 Prediction of Load Characteristics and Power Consumption

Based on the user preferences a state-space is built. A state is considered as a
point in time at which a decision about changing light intensity is performed
according to the preferences. A transition regards the decision, thus there might
be multiple transitions between states depending on particular light intensities
to be enabled.

The state-space for the example preferences in Figs. 2 and 3 is given in Fig. 4
as a graph. Vertices 1, 2, 3, 4 correspond to: sunset time, 120 min past sunset,
60 min before sunrise, and sunrise time, respectively. The actual values come
directly from the time stamps defined by time/3 predicate.

4 320%
30%

220%
30%

190%
100%

Fig. 4. State-space.

The plan is established based on arbitrarily chosen point in time for 24 h
period prior to it. The point defines an instance’s time horizon. It is a time
to which the instance is assumed to function. Usually it is a sunrise time for
outdoor lighting. This point in time becomes a goal for the search algorithm.

Table 2. Example instance’s parameters.

Parameter Value

Power 30W

Sunrise time 8:00

Sunset time 18:00
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The purpose of the plan is to verify if there is enough energy stored if par-
ticular decisions regarding energy consumption are made according to the pref-
erences. Thus it enables making such decisions. The hard requirements have to
be met at all times, while the soft requirements should be met. It enables plan-
ing and optimization since not meeting the soft requirements leads to energy
savings. On the other hand meeting the soft requirements has to be maximized.

While power consumption depends on physical characteristic of the instance,
in this case light point power rating, the sunrise and sunset times are constantly
updated which is reported on a daily basis back to the control centre. Example
instance’s parameters are given in Table 2.

Starting with the goal, being state 4 (sunrise), a backward breadth-first
search is performed resulting in a complete search tree given in Fig. 5. Each node
represents a state, starting with 4 which is labeled 4a. Then there are edges to
3a and 3b indicating that there are two distinct path to reach state 3 depending
on chosen power level being either 30 % or 20 %, which are indicated as edge
labels. Suffixes “a” and “b” are arbitrary to keep vertex labels unique, similarly
for other vertices and subsequent letters. At each edge additional information
regarding energy being used is given in a form: watts used by the transition /
watts used by all the transitions to the goal. For example, if the instance is in
state 1 and storage reports 160 Wh capacity then plans starting at vertices: 1c,
1d, 1g, 1h, including all their predecessors, should be considered as viable ones.
For example, picking 1c means that there is enough energy to turn lights at
100 % from 1 to 2, than 20 % from 2 to 3 and finally 30 % from 3 to 4. Picking
1 h would follow a plan with enough energy to complete it which turns lights at
90 % from 1 to 2, 20 % from 2 to 3 and 20 % from 3 to 4. Plans starting at other
vertices do not meet the energy requirements.

Such a complete tree is not practical. The instance has to choose arbitrarily
which plan to follow, either: 1c, 1d, 1g, or 1 h in the example above. Instead
of building a complete search tree the following heuristic algorithm based on
backward search is proposed:

1. if there are no more transitions from a given state then stop,
2. calculate energy usage for all transitions from a given state,
3. follow to the state with the least energy usage, go to 1.

Applying the above algorithm results in a search tree indicated by dashed vertices
in Fig. 5. It is still a multi-variant plan however it becomes more viable for the
instance, reducing number of choices. At each state the instance decides which
transition to follow, assuming that subsequent transition would use the least
energy. For example starting at state 1 and transiting to 2 while storage reports
130 Wh, gives a clear choice of turning lights at 90 % – turning lights at 100 %
would require at least 132 Wh which is not available. Thus it enables energy
usage optimization at each instance simultaneously maximizing meeting the soft
requirements.
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4a

3a

30%
9/9

3b

20%
6/6

2a

30%
99/108

2b

20%
66/76

2c

30%
99/105

2d

20%
66/72

1e

100%
60/165

1f

90%
54/170

1g

100%
60/132

1h

90%
54/126

1a

100%
60/168

1b

90%
54/164

1c

100%
60/136

1d

90%
54/130

Fig. 5. Example search tree.

The search tree is transformed into a time-based plan. It is calculated by
the control center, based on the instance’s parameters regarding sunrise and
sunset times, in a form of set of tuples given in Fig. 6. Each tuple consists of
three entries: time (in minutes), preference or requirement indication, power level
(%), energy needed to execute the rest of the plan.

Fig. 6. Example plan.

The plan is sent to the instance and executed by its control module. The
instance is able to set light point output depending on current time and energy
available, assuming that it is less than or equal to the one needed to execute the
plan. For example, considering the first entry which is read as:
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1. at time 420, being 7:00, it is preferred to set output at 30 % which, would use
9 Wh, if followed,

2. at time 420, being 7:00, it is required to set output at 20 % which, would use
6 Wh, if followed.

Taking the above into consideration the Control module should execute #1 if
there is at least 9 Wh energy available. But it must follow at least #2 which
would lead to consuming 6 Wh.

There are two alternatives in the example above than. In general case there
might be more of them offering energy-wise choices. Number of alternatives
depends on particular preferences.

In general case alternative plans may be synthesized based not only on avail-
able energy but also other factors represented as sensory data such as: presence,
movement, ambient light etc.

The proposed plan generation is based on domain-independent planning. It
has been researched since the 1980s [6], it is still being actively investigated [7].
In case of state-space explosion heuristic search methods can be used [8].

5 Conclusions

The paper outlines interactions in an autonomous outdoor lighting system. The
system consists of a central control center and multiple instances. The instances
are autonomous equipped with photo voltaic panels, an energy storage and light
points.

The paper focuses on an issue of synthesizing a plan for controlling energy
consumption based on user preferences and energy availability. User preferences
are expressed with predicate logic and serve a purpose of generating a state-
space. The planning is based on a backward breadth-first search through the
state-space. As a result a robust, multi-variant plan is delivered to each instance.
Thanks to the plan the instance can control power output of the light points,
depending on energy availability. Utilizing the plan allows to ensure fulfillment
of user preferences regarding instance operations, thus meeting all hard require-
ments. Simultaneously, meeting the soft requirements is maximized. The pro-
posed algorithm has been tested and confirmed in a simulated environment.

Further work regards employing different heuristics for calculating energy
usage based on actual user experience and different domain-specific goals for
other applications. If the state-space size becomes considerably large using other
search algorithms is also considered including A-star [9] with proper heuristics
[2]. If robustness or number of states grows even more advanced heuristic algo-
rithms for establishing such plans [10] are also considered.
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Control of the Compass Gait Biped Robot
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Abstract. In this paper, two different controllers have been designed to follow
the desired trajectory. The robot, known as Compass Gait Biped Robot (or Under‐
actuated Biped Robot), is assumed to have 2 legs known as the stance leg and the
swing leg. Both legs have the same mass, with each center of mass located at the
midpoint of the leg. The hip’s mass is assumed to represent the weight of the
entire upper body. The locomotion of this kind of robot is constrained in the
sagittal plane, where the friction between links and the energy lost at the impact
are ignored. The dynamic model of the system (i.e. the equation of motion) is
obtained, and is validated by analyzing the kinetic and potential energy. Trajec‐
tory is generated by Cubic Spline Method, and the desired joint velocity and
acceleration are obtained by inverse kinematics. Controller design involves the
comparison between the Proportional Integral and Derivative (PID) controller
and the Computed Torque Control (CTC), which indicate that the CTC method
is better for tracking the generated trajectory.

Keywords: Compass gait · Underactuated robot · Trajectory planning · PID ·
Computed torque control

1 Introduction

The compass gait biped robot, known as a kind of passive dynamic system with multiple
input and multiple output, nonlinear characteristics, variable structure and strong
coupling, has become a popular research and experimental platform for control engi‐
neering [1–3]. It is also a complex mechanical system with multi-degree of freedom, of
which the walking dynamics is underactuated and unstable. Compared with other types
of robot (tracked and wheeled), the biped robot has better environmental adaptability
and mobility, allowing it to operate under hazardous conditions [4]. The bipedal walking
technology can also provide a theoretical and technical foundation for Exoskeleton
device and any other auxiliary motion mechanisms. It also plays an important role in
the field of rehabilitation therapy, biomedical engineering and even military. The passive
gait biped robot, known as underactuated or passive gait biped robot, was first designed
by McGeer [2]. The simple structure developed in his research, known as the compass-
like biped robot contains two legs with high energy efficiency, which can walk at the
slope steadily under the force of gravity without additional actuated joint forces. He

© Springer International Publishing Switzerland 2016
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introduced the basic principle about the passive gait, and obtained the dynamic model
of the single support and the double support phase. A periodical walking for biped robot
consists of the Double Support Phase (DSP) and Single Support Phase (SSP) [5], and
the focus of this paper is on SSP only.

In this paper, the mathematical model of the 2 links biped robot is calculated using
Lagrange equation in accordance with several assumptions. Then both PID controller
and CTC are designed for performance and robustness comparison purposes. Finally,
the trajectory is generated using cubic spline approach. Detailed simulation result has
shown is each section.

2 Dynamic Modeling

The compass gait biped robot is defined as a mechanical system with 2 degree of freedom
(DOF) that consists of two legs (stance and swing leg) and three joints (one ankle on
each leg, and the hip).

As shown in Fig. 1, the parameter of the above robot are as follows:

m: mass of each leg
M: mass of hip
a: distance between the lower joint of leg and the center of mass
b: distance between the hip joint and the center of mass
q1: angle of stance leg with respect to horizontal axis
q2: angle of swing leg with respect to stance leg (relative angle)
l1: length of the stance leg
l2: length of the swing leg

Several assumptions has been made for the analysis of the dynamics of the compass
robot [6]:

1. The dynamics of the biped robot is assumed at the sagittal plane
2. The model can be presents in N − 1 coordinates with N rigid links
3. The mass of each link is distributed evenly
4. The periodic walking phase can be divided into three parts, which are single support,

double support and impact
5. The swing leg and the stance leg are at the same position at the start of walking, and

is placed in front of the stance leg at the end of swing phase
6. The double support phase is an instant state after impact, where the impact phase is

instantaneous too
7. No friction or sliding at the instant of impact
8. The relative angle 𝛼 is defined as the angle between the stance leg and the swing leg.

Given m = 10 kg, M = 30 kg, l1 = l2 = 1 m, a = b = 0.5 m. The dynamic equation of
biped robot can be obtained by Lagrange equation of motion, which is the most used
method in calculating the dynamics of robot manipulators [7]. This paper only considers
SSP for dynamic modeling, where the stance leg is in contact with the ground as shown
in Fig. 1. Define the Lagrange of 2-DOF robot manipulator as
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L(q, q̇) = Ke(q, q̇) − Kp(q) (1)

where Ke(q, q̇) and Kp(q) are kinetic energy and potential energy respectively. Also
notice that q = [q1 q2]

T and q̇ = [q1 q2]
T are the column vector that represent the

angle and angular velocity for each point of mass. In accordance with function (1), the
dynamic model of the 2-links compass gait biped robot can be derived by applying Euler-
Lagrange equation

d

dt

[
𝜕

𝜕 qi

L(q, q̇)

]
−

𝜕

𝜕qi

L(q, q̇) = 𝜏i, i = 1, 2 (2)

where 𝜏i is the torque applied on each joint. According to Eqs. (1) and (2), the Lagrange
equation can be presented more detailed as

d

dt

[
𝜕

𝜕 qi

Ke(q, q̇)

]
−

𝜕

𝜕qi

Ke(q, q̇) +
𝜕

𝜕qi

Kp(q, q̇) = 𝜏i (3)

Fig. 1. Compass gait biped robot.

The energy lost during impact phase and the friction is ignored, the energy of biped
robot only contains kinetic and potential energy. The potential energy can be calculated as:

Kp =
∑3

i=1
Kpi =

∑3

i=1
migYi (4)

At the same time, the kinetic energy can be represented as

Ke =
∑3

i=1
Kei =

1
2
∑3

i=1
mi

⎡
⎢
⎢
⎣

d

dx
Xi

d

dx
Yi

⎤
⎥
⎥
⎦

2

(5)

where Kpi and Kei represent the potential and kinetic energy of each point of mass, and
Xi, Yi are the horizontal and vertical coordinate respectively. By referencing the position
of each point mass (P1, P2, P3) shown on Fig. 1, the velocity (P1, P2, P3) can be easily
calculated (i.e. the derivative of the position). As a result, the kinetic energy for each
point mass can be obtained respectively for each joint. Applying the energy of each joint
into Eqs. (4) and (5), the equation of motion can be written as:
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Mq̈ + Cq̇ + g = 𝝉 (6)

where M =
[
Mij

]
∈ R2×2 is the inertial matrix, C =

[
Cij

]
∈ R2×2 is the centripetal vector

of rotational forces, g =
[
gi

]
∈ R2 is the gravity vector and 𝛕 =

[
𝜏i

]
∈ R2 is the vector

of applied torque. Assuming the input signal 𝛕, known as the given torque, equals to
zero (u = τ = 0). The nonlinear equation of motion for the swing phase can be re-written
in state space form

[
q̇

q̈

]
=

[
q̇

M(q)
−1
(𝜏 − C(q, q̇)q̇ − g(q))

]
, x =

[
q

q̇

]
(7)

The initial condition is set to [q1 =
𝜋

2
, q2 = 𝜋], which lead to the initial potential

energy Kp = 180.3 J. Validation of the above nonlinear mathematical model can be
simulated in Matlab platform.

Fig. 2. Kinetic and potential energy (Color figure online).

As shown in Fig. 2, the potential energy (the red curve), decreases from 180.3 after
0.5 s due as a result of gravity. The lost potential energy is transferred into the kinetic
energy, which triggers the increase of the kinetic energy (the blue dash). Figure 3 shows
the total energy remains constant (approximate 180.3 J) during the simulation period,

Fig. 3. Total energy of the compass robot (Color figure online).
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which equals to the initial potential energy value. Both simulation results validate the
correctness of the dynamic model from Lagrange equation.

3 Trajectory Planning

Suppose the robot’s swing foot pass through the following sets of points represented in
Cartesian Space:

The problem can be separated into two parts: T ∼ X and T ∼ Y .
Considering the relationship between T(s) and X(m), a cubic polynomial p(t) is used

to describe the position with time t as the independent variable

pk(tk) = ak1 + ak2tk + ak3t2
k
+ ak4t3

k (8)

where k = 1, 2, 3, 4 respectively.
Furthermore, define Tk and Ak as:

Tk =
[
1 tk t2

k
t3
k

]

Ak =
[
ak1 ak2 ak3 ak4

]T

Bk =
[
bk1 bk2 bk3 bk4

]T (9)

where Ak and Bk represent the parameters with respect to X(m) and Y(m) respectively.
Considering an interpolating spline passes through the value supplied at knots, Exterior:
p1
(
t1
)
= x1, pk−1

(
tk

)
= xk

Interior: pk−1
(
tk

)
= xk = pk

(
tk

)
. The trajectory can be easily represented as

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

T1 ∗ A1 = x1
T2 ∗ A1 = x2
T2 ∗ A2 = x2
T3 ∗ A2 = x3
T3 ∗ A3 = x3
T4 ∗ A3 = x4

(10)

Also consider the internal smoothness constrains, which ensures the smoothness of
the two neighboring polynomial at interior knots, 1st derivative: ṗk−1

(
tk

)
= ṗk

(
tk

)
 2nd

derivative: p̈k−1
(
tk

)
= p̈k

(
tk

)
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

(T2 ∗ A1) = (T2 ∗ A2)(
T2 ∗ A1

)
=
(
T2 ∗ A2

)

(T3 ∗ A2) = (T3 ∗ A3)

(T3 ∗ A2) = (T3 ∗ A3)

(11)

The boundary conditions required the derivatives at the two exterior knots t1 and t4
to be zero:

{
(T1 ∗ A1) = 0
(T4 ∗ A3) = 0 (12)

The parameters can be obtained by solving the above functions, which yields the
trajectory function about movement in horizontal direction and vertical direction. Each
function represents the trajectory of the swing leg during the specific period that given
in Table 1.

Table 1. Two sets of via points

T(s) X(m) Y(m)
0 0.05 0
0.3 0.15 0.2
0.7 0.4 0.2
1 0.5 0

⎧
⎪
⎨
⎪
⎩

x1 = 0.05 + 1.4461t2 − 1.1166t3

x2 = 0.0397 + 0.1029t + 1.1029t2 − 0.7353t3

x3 = 0.1705 − 0.4575t + 1.9036t2 − 1.1166t3

⎧
⎪
⎨
⎪
⎩

y1 = 4.2424t2 − 6.7340t3

y2 = −0.1818 + 1.8182t − 1.8182t2

y3 = −2.4916 + 11.7172t − 15.9596t2 + 6.7340t3

(13)

As shown in Fig. 4, the swing leg moved one step in one second after being picked
up and then put down. The next step is to obtain the desired joint velocity and acceler‐
ation using inverse kinematics approach. Given the forwards kinematic map is

X = f (q) =

[
l1 cos

(
q1
)
+ l2 cos

(
q1 + q2

)

l1 sin
(
q1
)
+ l2 sin

(
q1 + q2

)
]

(14)
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Fig. 4. Trajectory of swing leg in Cartesian space (Color figure online).

By referencing the triangular relationship, the relative joint angle can be obtained by

q1 = arctan(y∕x) − arcsin(
l2sin(q2)

X
)

q2 = arccos

(
X2 − l2

1 − l2
2

2l1l2

)

(15)

The velocity kinematics are found by differentiating the forwards kinematic map

dX

dt
=

df (q)

dq

dq

dt

Ẋ = J(q)q̇ (16)

where

J(q) =

⎡
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

df1(q)

dq1

df1(q)

dq2
df2(q)

dq1

df2(q)

dq2

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

(17)

known as Jacobian matrix. As a result, the demanded joint velocity can be calculated by

q̇ = J(q)−1Ẋ (18)

Similarly, the acceleration kinematics are obtained

q̈ = J(q)−1Ẍ + J(q)−1 J(q) (19)
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4 Controller Design

4.1 PID Controller Design

The nonlinear dynamic model obtained in Sect. 2 is inherently unstable. Thus control
scheme is needed to track the desired trajectory. There are many approaches to control
the biped robot. The most common and simple way is the PID controller, which converts
the problem into the design of controller for swing leg and the design of controller for
stance leg. PID controller is designed for the stance leg and swing leg respectively in
accordance with the non-linear compass gait dynamics that has been described in
Sect. 2. Considering the swing leg first, the non-linear model can be represented as

mb2q̈ − mgbsin(q) = 𝜏 (20)

The 2nd order ordinary differential equation (ODE) can be written as

mb2Δq̈ − mgbcos(q∗)Δq = 𝛥𝜏 (21)

This can be linearized about the vertical downwards for the swing leg
(q∗ = [𝜋, 0], τ∗ = 0) to produce a linear ODE of the form

Δq̈ −
mgbcos(q∗)

mb2 Δq =
1

mb2 𝛥𝜏 (22)

Using a PID controller for the swing leg

q̈ +
g

b
q =

1
mb2

(
kpe + kI ∫ e + kDė

)
(23)

where e = r − y and r is the reference trajectory, the close loop ODE can be written as

q⃛ +
kD

mb2 q̈ +

(
g

b
+

kp

mb2

)
q̇ +

kI

mb2 q =
1

mb2

(
kIr + kpṙ

)
(24)

For stability, kp must bigger than mgb although the system is not expected to operate
outside the design region. The relatively short time constant requires distinct poles so
that parameters variation does not introduce oscillations in the response. Three poles are
chosen at s = −20, s = −25, s = −30 (time constant T = 0.05, 0.04, 0.033). This
produces a desired equation of the form s3 + 75s2 + 1850s + 15000. Comparing the
close loop ODE, the PID gains for swing leg can be calculated as:
kp = 4575, kI = 37500, kD = 187.5.

PID controller gains for the stance leg can be calculated using the same method
above. The generated path from Sect. 3 can be implemented into the system as the input
signal. Simulation results have shown below (Fig. 5)
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Fig. 5. System response in and axis x and y axis (Color figure online)

Simulation results shows that the maximum error at the beginning is approximate
0.04 m and the settling time is 0.25 s, which basically fulfills the demand. However, that
the error can be found in the whole walking period in Cartesian space and drop to zero
after 1.5 s, which means the controller is not perfect. Improvements need to be made to
eliminate the tracking error.

4.2 Computed Torque Control

Although many advanced control scheme like Sliding Model Robust Control [8] or
Neural Network [9] have been proposes, the Computed Torque Control (CTC) is still
an effective and widely used approach to control robotic systems, which provides a feed
forward compensator to offset the nonlinear part of the system. CTC is also an applica‐
tion of feedback linearization of non-linear systems, which calculate how much torque
is needed for each joint to track the reference signal. Considering the dynamic Eq. (6)
on Sect. 2, the joint vector q ∈ R2 is a column vector contains two angles for four joints
respectively. The input signal 𝝉 ∈ R2 is also a column vector, which stores the energy
needed for each joint to follow the given trajectory. Suppose that the desired trajectory
qd(t) has been obtained by inverse kinematics, where qd(t) is the function of time. The
tracking error can be defined as

e(t) = qd(t) − q(t) (25)

where q(t) is the feedback signal from the robotic system. Substituting the angular
acceleration into Eq. (6) yields

ë = u = qd +M−1(Cq̇ + g − 𝝉) (26)

where u ∈ R2 is defined as a column vector that represents the feedback signal for each
joints i.e. the input signal. Now, defining the state, x, as

x =

[
e

ė

]
(27)

The tracking error dynamics can be written as
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d
dt

[
e

ė

]
=

[
0 I

0 0

][
e

ė

]
+

[
0
I

]
u (28)

It is clear that Eq. (28) is a linear error system, where u is the control input. The error
e ∈ R2 is a column vector. According to the feedback linearizing Eq. (26), the control
torque can be derived by

𝝉 = M
(
qd −u

)
+ (Cq̇ + g) (29)

Figure 6 shows the basic structure of CTC. The complex nonlinear control problem is
transformed to a simple linear system problem. The input signal for nonlinear part is qd −u,
where u(t) is the “error control” that control the error dynamics determined by the error of
joint angle qe(t) and joint angular velocity qe (t), and qd is the reference signal with respect
to angular acceleration. The error of angle and angular velocity is defined as

qe(t) = qd(t) − q(t)

qe (t) = qd (t) − q̇(t) (30)

where qd(t) and qd (t) are the reference signal obtained by the joint position in 2-D space
to calculate the corresponding angle and angular velocity in Cartesian space. This method
is called Inverse Kinematics Approach. The outer loop feedback control can be realized by
adding a proportional and derivative (PD) controller into the system, where the input signal
can be expressed as

u = −KPe − KDė (31)

Fig. 6. Computed torque control structure

As a result, the close loop error dynamics are

ë + KPe + KDė = 0 (32)

where KD = diag
[
KDi

]
 and KP = diag

[
KPj

]
. In order to make the error system stable, the

controller gains KP and KD must be positive (i.e. KDi > 0 and KPj > 0), which guarantees
that the poles are at left half plane. Normally, the PD gains are chosen to guarantee that
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the system has no oscillation and overshoot with fast response, which requires a critical
damping system (ζ = 1). This gives the final representation of KD and KP

KD = diag
[
2𝜔n

]

KP = diag
[
𝜔2

n

]

The natural frequency is supposed to be reasonably large to get a fast response,
however it cannot be too large due to the high frequency disturbance. Here, selecting
repeated poles to ensure the required properties that P1 = P2 = −25.

This guarantees that the system response is relatively fast with no oscillation. The
PD gain KD and KP can be calculated as KP = 625 and KD = 50 (Fig. 7).

Fig. 7. Trajectory tracking for CTC (Color figure online)

When applied to the system, CTC gives an almost non-error response in Cartesian
Space. Indicated in Fig. 8 that the absolute value of the maximum error of x and y are
2 ∗ 10−4 and 2 ∗ 10−3 respectively, and converge to zero after 0.4 s. As a result, the
error can be ignored.

Fig. 8. Tracking error
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5 Conclusion

In this paper a compass gait biped robot dynamic system is developed. The proposed
mathematical model is obtained using Lagrange equation in Cartesian space. Both PID
and CTC controller have their own characteristics in information obtaining, designing
and performance. While designing a PID controller, the number of parameters need to
be calculated depends on how much legs the system has, which means the more legs the
robot has the more PID controller are needed. Two independent PID controller need to
be designed in this case for stance leg and swing leg collecting less information.
However, this complex procedure can be simplified by CTC controller. CTC controller
can be applied in any circumstance for any number of legs, which means one CTC
controller can be used for amount of legs. In this case, only one set of parameters are
needed for both stance and swing leg collecting more information. Compared to PID
controller, CTC respond faster and produces negligible error. Another advantage is that
CTC is designed globally while PID controller is designed locally. As a result, CTC
performed better than PID control. However, the control gains for both PID and CTC
are very high and lead to an extremely high needed-torque, which is consequently unre‐
alistic in real robot. Thus, and alternative control method should be considered in future
works which involve an impulsive toe-off or leg extension at the beginning of swing
phase.
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for Linear Systems
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Abstract. Optimizing the placement of actuators and sensors for the control
and monitoring tasks is one of the most important and challenging research
topics in the comprehensive aircraft control systems. This paper proposes a new
way to address this issue, in which Heat and Wave Equation discretized by the
Finite Differential Method (FDM) were used to describe the inputs/outputs
propagation mode for control systems. By utilizing a robust controller design to
the models, the complicated optimal actuator and sensor placement problem can
be transformed to a judgement on specific characteristics. The feedback con-
troller was designed based on the H1 Optimal Control Principles, where the
external input w is considered to be the perturbation. The optimal placement is
able to be obtained at the place with the best performed controller. The simu-
lation results show that it is reasonable to solve the actuator and sensor place-
ment optimization problem using the proposed method and the results for the
two models shared an agreeable trend. Therefore, the process of optimizing the
placement of sensors and actuators for control and monitoring system could
serve as a natural extension to other structures.

Keywords: Optimal placement � Sensor and actuator � H1 optimal control �
H1 norm � Finite Differential Method (FDM)

1 Introduction

Finding the best position of sensors and actuators to obtain a better control result with
the least numbers is one of the most important parts in the field of the modern control.
The unsuitable placement of sensors may lead to an accuracy reduction of sensing, while
the unsuitable placement of actuators may generate less efficient control. Tremendous
work has been done by the researches of the optimal sensor and actuator placement since
1970s. Yu and Seinfeld determined the observability to optimal sensor placement [1].
After that, researchers such as Kumar and Seinfeld [2] and Morari and O’Dowd in 1980
[3] paid more attention on how to minimize estimated error and find the optimal location
for sensors. The Optimal Actuator Placement was first proposed by Arbel [4], who
measured the controllability of Partial Differential Equation (PDE) models with linear
controllers. In order to minimize the cost on system, S. S. Rao introduced the Genetic
Algorithms to the research of the optimal controller gain and actuator location [5].

As the control system design of aircraft is becoming a challenge, some researches
about optimal sensor and actuator placement problem started to focus on aircraft systems

© Springer International Publishing Switzerland 2016
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especially. Researchers from Vienna University of Technology minimized the sensor
positioning based on the actuator and considered the different mass in the controller
design for BWB passenger aircraft with respect to the size of actuators, which indicated
that the wingtip is a suited place to put actuator and sensor [6]. K. B. Lim from NASA
Langley Research Center used controllability and observability of the system as an
appropriate indicator to measure the number and optimal locations of actuators and
sensors for large flexible structures [7].

With the development of modern control theory, Robust Control is involved in this
area. K. Chen and C. W. Rowley implemented linear Ginzburg-Landau model and
designed an H2 optimal controller to find the optimal actuator and sensor placement by
minimizing H2 norm [8]. They found that adding the number of sensors and actuators
may not significantly increase the performance of the controller, while a suitable place-
ment of actuators or sensors may greatly improve the result. Afterwards, they also used
the eigenvalue sensitivity analysis to predict the performance of controllers when actu-
ators and sensors are collocated [9]. M. Pfister, and P.Wolfrum presented two algorithms
to solve the sensor and actuator placement problem in linear systems using both H1 and
H2 optimization and then relaxed the ‘0 norm to a weighted ‘1 norm [10]. S. Pequito and
S. Kar addressed minimizing the number of required inputs to make sure the character-
istics of a Linear Time Invariant (LTI) system satisfied the control principles [11]. The
aim of optimizing actuator location is to find the best position where the system could
provide the best attenuation in the case with the worst disturbance. D. Kasinathan and
K. Morris also carried out a future topic on how to approximate the convergence in a
linear quadratic case when calculating the optimal actuator location [12].

In this paper, the author proposed a new methodology to solve the placement
optimization problem. Heat Equation and Wave Equation were used to simplify the
model and the Linear PDE could be derived from physical principles [13]. The Finite
Differential Method (FDM) [14] was used to discretize the PDEs. When designing the
robust controllers, H1 optimal control theory was used, which combines the advan-
tages of classical control theory and balances the trade-off between its performance and
robustness. Compared to the H2 optimization method used before, H1 optimal control
gives less limitation. The aim of H1 optimal control was to minimize the closed-loop
norm c1 of the system between external inputs w and outputs z.

2 The Proposed Methodologies

2.1 Partial Differential Equation (PDE)

Considering the propagation mode satisfied the Heat Equation for an Lm long rod or
beam with a temperature gradient at the end [15].

@xðs; tÞ
@t

¼ a
@2xðs; tÞ
@s2

; 0� s� L; t� 0 ð1Þ
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where x is the vector of temperature, s is the vector of position, a is a constant
coefficient. The Initial Condition (IC) is the initial temperature of the rod. The
Boundary Condition (BC) is the affected temperature of the rod. Assuming there is a
step input at the end of the rod, then the IC and BC is

IC : x s; 0ð Þ ¼ 0; BC :
x 0; tð Þ ¼ 0

x L; tð Þ ¼ u tð Þ ¼ 0; t\0
uL; t� 0

�
8<
: ð2Þ

The one Dimensional Wave Equation with damping in PDE form [16] is

@2xðs; tÞ
@t2

¼ c2
@2xðs; tÞ
@s2

� 2k
@xðs; tÞ

@t
; 0� s� L; t� 0 ð3Þ

where x is the vector of wave, s is the vector of position, c is the propagation speed of
the wave and k is the damping coefficient. The damping term make sure the system is
stable. Assuming that there is an impulse input at the end of the rope, then the IC and
BC is

IC :
x s; 0ð Þ ¼ 0
@xðs;0Þ

@t ¼ 0

�
; BC :

x 0; tð Þ ¼ 0

x L; tð Þ ¼ u tð Þ ¼ 0; t 6¼ 0
uL; t ¼ 0

�
8<
: ð4Þ

2.2 Finite Differential Method (FDM)

The Finite Difference Method involves using discrete approximations [17]. Here are
two way to discretize.

Fully-Discretized Method. Discretized the Heat Equation both in time and space by
using the Forward Time Central Space (FTCS) method and discretized the Wave
Equation by the Second Order Central Difference.

xjþ 1
i � x ji
Dt

¼ a
x jiþ 1 � 2x ji þ x ji�1

Ds2
ð5Þ

xjþ 1
i � 2x ji þ xj�1

i

Dt2
¼ c2

x jiþ 1 � 2x ji þ x ji�1

Ds2
� 2k

x ji � xj�1
i

Dt
ð6Þ

where i is the mesh point in space and j is the mesh point in time. Letting r ¼ aDt
Ds2 for

Heat Equation, while r ¼ c2Dt2
Ds2 for Wave Equation, and rearranging formulas (5) and (6)

could get the iteration formulas (7) and (8) respectively.
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xjþ 1
i ¼ rx jiþ 1 þ 1� 2rð Þx ji þ rx ji�1 ð7Þ

xjþ 1
i ¼ r x jiþ 1 þ x ji�1

� �þ 2 1� rð Þx ji þ xj�1
i � 2kDtðx ji þ xj�1

i Þ ð8Þ

Therefore the discretized equations could be written in a matrix form

xjþ 1 ¼ Ax j ð9Þ

Semi-Discretized Method. Discretized the whole rod into N points, Ds ¼ L=ðN � 1Þ,
so n ¼ 0; 1 � � �N � 1.

Rewrite the open-loop system in state space form by using Semi-discretized
Method

dx
dt ¼ AxþBu
y ¼ CxþDu

�
ð10Þ

Assuming the external input and control input are at the first and the last node
separately, u ¼ x N � 1ð ÞDs; tð Þ x 0; tð Þ½ �T¼ w tð Þ u tð Þ½ �T .

For Heat Equation, x ¼ x̂T½ �T¼ x Ds; tð Þ � � � x N � 2ð ÞDs; tð Þ½ �T2 RN�2, while
for Wave Equation, the state vector .

Used the Second Order Central Difference method as the formula (11) to dis-
cretized the PDEs, we could write all the A, B, C, D matrices.

@2x
@s2

����
s¼nDs

¼ x nþ 1ð ÞDs; tð Þ � 2x nDs; tð Þþ x n� 1ð ÞDs; tð Þ
Ds2

ð11Þ

2.3 H1 Optimal Control Theory

A general H1 feedback control system, shown as Fig. 1 [18], could be rearranged as a
lower Linear Fractional Transformation (LFT): u is control inputs, y is measured
outputs, w is all external inputs including disturbances or noise and z is outputs or error
signals.

G(s)

K(s)

w

u

z

y

Fig. 1. The configuration of a general H1 control problem
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The system could be written as the equations below

z
y

� �
¼ G11 G12

G21 G22

� �
w
u

� �

u ¼ Ky

8<
: ð12Þ

The transfer function F G;Kð Þ from external inputs w to error signals z shown as
formula (13) could be derived [19].

F G;Kð Þ ¼ G11 þG12K I � G22Kð Þ�1G21 ð13Þ

The H1 norm of the system represents the worst case or the largest possible gain. It
is defined as [18, 19]

c ¼ FðG;KÞk k1¼ sup�r FðG;KÞðjwÞð Þ ð14Þ

where �r is the maximum singular value of the matrix F G;Kð Þ jxð Þ at each frequency.
The H1 Optimal Control is to find the stabilizing controller K sð Þ to minimize the

H1 norm of the closed-loop system.

2.4 H1 Optimal Feedback System

Using H1 optimal theory to create a closed-loop system as formula (15).

_x tð Þ ¼ Ax tð ÞþB1w tð ÞþB2u tð Þ
z tð Þ ¼ C1x tð ÞþD11w tð ÞþD12u tð Þ
y tð Þ ¼ C2x tð ÞþD21w tð ÞþD22u tð Þ

8<
: ð15Þ

First, setting z ¼ x̂T r � u
� 	T

and y ¼ x̂T½ � to create an H1 optimal controller
K sð Þ. Then, changing error signals to z ¼ x̂T½ � to get a new closed-loop system.

Optimal Sensor Placement. Fixing the control input and external input at different
nodes of the rod. Then changing the measured outputs from the state of all points to just
one point on the rod, that means y ¼ x i � Ds; tð Þ½ � and i ¼ 1; 2; � � � ;N � 2. It needs to
be noted that the outputs cannot be at the same position as the inputs.

Optimal Actuator Placement. Fixing the measured outputs y ¼ x̂T½ �. Then, changing
the control input u from the first node to the last node of the rod. The first node could
only use the Second Order Forward Difference, while for the last node, only Backward
Difference method could be used. All other position could use forward, backward and
central difference method.

3 Simulation Results

Assuming that the constant a ¼ 0:1, the propagation speed of the wave c ¼ 1, the
boundary condition of both step and impulse input uL ¼ 20, and the damping coefficient
is k ¼ 1.
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3.1 FDM

The differential results of the open-loop system by using Fully-discretized method is
shown in Fig. 2. The result of Fully-discretized method includes the position of inputs,
while the results by using Semi-discretized method excludes.

3.2 H1 Optimal Control System

After adding the H1 Controller, the relationship of r and the norm of the closed-loop
system is showed in Fig. 3. Comparing the results with the open-loop system, it is clear
that the closed-loop norm cclosed converges to the open-loop norm copen when r is big

Fig. 2. The result of Fully-discretized Heat Equation

Fig. 3. The closed-loop norm cclosed when r increases for Heat Equation

H1 Optimal Actuator and Sensor Placement for Linear Systems 775



enough, which means the controller makes little effect to the system. For different
r values, the step response of the closed-loop is showed in Fig. 4(a) to (b). When r ¼ 0,
the temperature at the position near the control input u is negative in order to control
the external noise at the end of the rod. As the coefficient r increases, the absolute value
becomes smaller and approaches zero.

Fig. 4. The step responses of closed-loop system for different r for Heat Equation
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3.3 Optimal Placement of Sensor or Actuator

In order to find the optimal sensor placement, the norm of closed-loop system cclosed
with fixed control input and changing measured output is represented in Fig. 5.
The gain of the controller improves a little as the sensor moving towards the external
noise.

This is also proved in Fig. 6, the step responses when i is changing. As i moves, the
temperature at the position near the control input increases in negative amount, because
when output y moves towards w with positive temperature, it needs to increase in
negative amount for the purpose of controlling the positive noise and minimizing the
errors.

For the Wave Equation, compared the results shown in Fig. 7, the impulse
responses at the beginning part of the rope reacts faster when i is larger, which also
proved the conclusion got from the Heat Equation as well.

In order to find the optimal actuator placement, fixed the measured outputs y ¼ x̂T½ �
and moved the control input u from the first node to the end of the rod. Placing the
actuator at the beginning of the rope may generate a better result because of its smaller
cclosed .

Fig. 5. The norm of closed-loop system as i moving for Heat Equation
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3.4 Multiple Actuator or Sensors Problem

For one sensor problem, it may lose its detectability at some position. Thus, the
situation with two sensors could be considered. On the other hand, because it is not
stabilizable in some cases by only using one actuator, which means it’s not stable by
using only one actuator, the cases with two actuators could be also discussed.

Fig. 6. The step responses of closed-loop system as i moving for Heat Equation
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Fig. 7. The impulse responses as i moving for Wave Equation with Damping
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4 Conclusions and Discussion

On the issue about optimizing the placement of sensor and actuator, there is still a long
way to go. In this paper, the author started from the one dimension Heat Equation and
Wave Equation which gave an accordant result and received the following conclusions
and discussions which may produce extension to other structures.

• It could approximate the PDE well by using both Fully and Semi-discretized
method, although there are numerical errors.
When using the derivation of Finite Differential Method (FDM) to approximate the
numerical solutions of PDE, the existing of numerical errors makes the result
different. The error term is proportional to the time step and the square of the space
step for Heat Equation, while proportional to the square of both the time step and
the space step. Although the error is already very small, it can’t be ignored. There is
another limitation that it might result in the unstable solution of the Fully-
discretized method causing by large time step.

• The results by using Heat and Wave Equation shared an agreeable trend. The
consequence of H1 optimal control, which measured by H1 norm, declines when r
is increasing.
One of the most important properties to measure in the performance of H1 optimal
closed-loop system is its H1 norm. The closed-loop norm cclosed is approximating
the open-loop norm copen when r is approaching the infinite. Because as r is
increasing, which will make the control input u become very small, the controller
could produce little effect on the system. Therefore, the closed-loop system is very
much similar to an open-loop system.

• The optimal placement for sensor and actuator can be determined by H1 Optimal
Control.
Assuming that there is only one actuator and one sensor. Fixing u at the first node
and changing the position of measured output y could find the optimal placement of
sensor. As y moves towards w at the end of the rod, the norm becomes slightly
smaller, which means the sensor could have a better performance on detecting the
external inputs. The state of each position gives a more obvious reaction when
output y moves towards the external disturbance w. Then, fixing u at the second
node of the rod and changing the position of y could find the optimal placement of
sensor in this situation.
In order to find the optimal actuator placement, fixing the measured outputs y ¼ x̂T½ �
and then changing the control input u. The result is smaller when the control input u
is at the first node than in other cases, which gives a better location of the actuator.

• More sensors and actuators could be added to overcome the problem of losing
detectability and stabilizability in some cases.

Acknowledgement. I would like to express my great appreciation to my supervisor, Dr. Eric
Kerrigan from Department of Aeronautics, Imperial College London, for his guidance and
constructive advice throughout the project.
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