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Preface

What can still be written about graphite, the multi-graphene layer material that has
not yet been experimentally and theoretically throughout studied and discussed in
the last, let us say, 60 years? The study of this carbon-based material has provided
us not only with interesting, non-simple basic physics (and chemistry), but also with
several industrial applications—as bulk materials (nowadays commercially avail-
able and known as highly oriented pyrolytic graphite (HOPG)), polycrystalline
pressed powder (pencil mine, for example), or just as highly pure powder—
described in a very rich and exhaustive literature. However, the experimental and
theoretical work done in the last*15 years points to the existence of phenomena in
graphite that were either unknown or not seriously considered by the community in
the time before. On the other hand, the rise of the single-layer two-dimensional
material graphene in the last 10 years, with all its interesting physics and appli-
cations, pushed a reconsideration of graphite and its properties. Therefore, we
believe that to publish a book that reviews the new, and to some extent, redis-
covered phenomena of graphite is timely.

The aim of this book is to provide the reader with three important and new
aspects of the physics of graphite that triggered the interest of the community the
last years. The three basic phenomena this book considers are as follows: magnetic
order, superconductivity, and high magnetic field-induced phase transitions. We
consider them as unavoidable parts of the basic physics of functionalized graphite.
Firstly, the possibility of having magnetic order at high temperatures in graphite
without the need of any magnetic ions, only through lattice defects or with the help
of, e.g., protons. This magnetic order phenomenon, nowadays called defect-induced
magnetism (DIM), has actually been discovered and confirmed first in graphite,
before its existence was recognized later in a large number of other materials,
mainly non-magnetic and nonmetallic materials such as several oxides. The first
three chapters of this book deal with the theoretical basis of this phenomenon and
the experimental evidence for its existence in graphite.
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In Chap. 1 of this book, Oleg Yazyev provides an overview of the theory of
magnetism and magnetic order in graphitic materials. This chapter starts consid-
ering first the electronic band structure within tight-binding and mean-field Hubbard
models of a single graphene layer. It discusses the so-called counting rule theorems,
useful to understand the physical mechanism of magnetic ordering in
graphene-based systems, and as alternative approach, the magnetic states at arm-
chair and zigzag nanoribbon edges are also considered. Although the influence of
temperature fluctuations and the necessary small size a graphene-based device
needs, restrict severally its realization and possible applicability at room tempera-
ture, the high spin stiffness and a further functionalization of the edges of
graphene-based systems suggest a less pessimistic realization of magnetic order on
nano-, two-dimensional devices in the future. It continues discussing magnetic
order triggered by defects within the atomic lattice (DIM) in graphene and graphite,
providing the main concepts to understand its realization above room temperature.

Chapters 2 and 3 deal with the experimental evidence for the existence of
magnetic order at temperatures above room temperature in graphite with defects
and/or hydrogen (protons). In Chap. 2, Hendrik Ohldag discusses the results of
X-ray magnetic circular dichroism (XMCD) obtained in magnetic graphite, whereas
its magnetic order is triggered by carbon vacancies or the influence of hydrogen.
The XMCD method is of importance because it is element specific, can rule out the
influence of magnetic impurities, and provides a hint for the origin of the magnetic
order. Chapter 2 describes in detail all the necessary concepts to interpret XMCD
results in graphite and why those results can be taken as the “smoking gun”
experiment to prove the intrinsic character of the magnetic order induced by lattice
defects or non-magnetic ions in a (pure) carbon material.

In Chap. 3 Daniel Spemann and the editor review the experimental evidence
from magnetization and transport measurements that support the existence of
magnetic order triggered by defects and/or non-magnetic ions in graphite. It pro-
vides the reader the key experimental facts and characterization methods, including
trace element analysis to obtain the magnetic and non-magnetic impurity concen-
tration, necessary to arrive at such conclusion. Chapter 3 provides also an overview
of the literature that supports the existence of magnetic order at high temperatures in
graphitic materials, without the need of magnetic elements.

Chapter 4 deals with the quantum limit of a three-dimensional metal, which is
attained at a sufficiently strong magnetic field with only a few occupied Landau
levels. Benoît Fauqué and Kamran Behnia argue that the small Fermi surface found
in graphite samples is an ideal candidate to explore this limit. For example,
a magnetic field of 7.5 T confines already the carriers to their lowest Zeeman split
Landau level. The chapter discusses results obtained in the early 1980s for the
in-plane magnetoresistance of graphite at magnetic fields above 20 T as well as
recent transport measurements up to 80 T that reveal a rich and complex field phase
diagram of graphite as a function of temperature and magnetic field. Whether part
of the observed phenomena is related to the existence of internal interfaces in the
measured samples remains a subject to be clarified in the near future.
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The phenomenon of superconductivity in (non-intercalated) graphite is the
subject of the last three chapters (Chaps. 5–7) of the book. In the first chapter
of these three, Eduardo Marino and Lizardo Nunes describe theoretically the pos-
sible superconducting properties of layered systems of Dirac electrons under the
assumption that some pairing mechanism exists. The phase diagram, quantum
critical points, the effects of temperature, magnetic field, chemical potential
(through doping), number of layers, as well as the interplay between supercon-
ductivity and excitonic interaction are discussed. According to the results presented
by the authors, a novel mechanism, other than the traditional BCS, is required to
explain superconductivity of Dirac electrons.

In Chap. 6, Tero Heikkilä and Grigori Volovik stress the importance of a dis-
persionless (flat) energy dispersion relation as a possible route to increase sub-
stantially the critical temperature for superconductivity, assuming that a finite
Cooper pair coupling exists, whatever its strength. According to the authors, these
flat bands might be generated only on surfaces or interfaces and indicate that
graphite is a good candidate where high-temperature flat-band interface supercon-
ductivity could be found. Related to this prediction, in Chap. 7, Yury Lysogorskiy
and the editor review the experimental evidence that speaks for the existence of
embedded interfaces between crystalline regions with Bernal and rhombohedral
stacking or between twisted Bernal stacking ordered regions in usual graphite
samples, and their relationship with the observed metallic and superconducting
behavior.
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Chapter 1
Theory of Magnetism in Graphitic Materials

Oleg V. Yazyev

Abstract This chapter provides a pedagogical introduction into the theoretical
models of magnetism in graphene nanostructures and graphite. The onset of mag-
netism in the considered systems is mostly discussed at the level of very simple mod-
els, namely, the tight-bindingmodel and theHubbardmodel in themean-field approx-
imation. The simplicity of thesemodels further allows to introduce two counting-rule
theorems that establish basic intuition behind the emergence of ferromagnetic and
antiferromagnetic correlations in graphene systems. The chapter covers different
models of magnetic graphene systems categorized according to their dimensional-
ity. First, several examples of magnetic graphene molecules are discussed for the
purpose of illustrating the application of counting-rule theorems. Next, the physical
mechanism behind the magnetic ordering at one-dimensional edges of graphene is
extensively covered. It will be shown how the presence of localized edge states results
in the onset ofmagnetism in zigzag and chiral graphene nanoribbons. Finally, wewill
discuss common defects in graphene and graphite created as a result of irradiation
by high-energy particles and the physical mechanism of defect-induced magnetism
in these materials. The theoretical developments of this chapter are presented along
with the latest achievements in studying the electronic structure and magnetic prop-
erties of graphene-based systems using experimental methods, notable a range of
scanning probe microscopy techniques.

1.1 Electronic Structure Models

1.1.1 Tight-Binding and Mean-Field Hubbard Models

The simplest model Hamiltonian that one can use for studying magnetic systems
based on graphene is the one-orbital mean-field Hubbardmodel. This model includes
only the electronic states formed by unhybridized pz atomic orbitals of carbon atoms.

O.V. Yazyev (B)
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
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These electronic states constitute the leading contribution to low-energy properties
of graphene, includingmost of magnetic effects discussed in this chapter. TheHamil-
tonian for the Hubbard model can be written as

H = H0 + H ′. (1.1)

In this expression, the first term represents the nearest-neighbor tight-binding Hamil-
tonian [1]

H0 = −t
∑

〈i,j〉,σ
[c†iσcjσ + h.c.]. (1.2)

The operators ciσ and c
†
iσ annihilate and create, respectively, an electronwith spinσ at

site i; 〈·, ·〉 denotes the pairs of nearest-neighbor atoms. It is important to point out that
the honeycomb lattice of graphene represents a bipartite lattice, that is carbon atoms
belong to either sublattice A or sublattice B, and each atom has its nearest neighbors
only in the complementary sublattice (see Fig. 1.1a). Since we restrict ourselves to
only the interactions between nearest-neighbor atoms located at 1.42Ådistance away
from each other, the only empirical parameter is the hopping integral t that defines
the energy scale. The often-quoted value of t is 2.7 eV, although the hopping integral
can also be related to the Fermi velocity νF at the Dirac point as t = 2νF/(

√
3a) (a =

0.246nm is the lattice constant of graphene). The experimental values νF ≈ 106m/s
results in a larger t = 3.09eV [2]. This simple one-parameter tight-binding model
is sufficient for describing the vast majority of low-energy electronic properties of
graphene such as the linear dispersion of electronic bands at the K and K ′ points of
the Brillouin zone (see Fig. 1.1b–d). This model can be systematically improved by
including farther nearest-neighbor hopping parameters, although their magnitudes
are much smaller than the one of parameter t [3]. Finally, interlayer hopping terms
can be included in order to reproduce the differences between monolayer graphene
and multilayer systems such as bilayer graphene and graphite [4, 5]. The leading
effect corresponds to the hopping between two carbon atoms in different layers
located directly on top of each other at a distance of 3.35Å. The magnitude of the
corresponding hopping parameter t′ is an order of magnitude smaller than that of
t. In below, we will be considering only the simplest tight-binding model based on
intralayer nearest-neighbor hopping.

From computational point of view, theHamiltonianmatrix of the nearest-neighbor
tight-binding model is the sparse N × N matrix for a system with N carbon atoms
in sp2 hybridization. The off-diagonal matrix elements (i, j) and (j, i) are equal to
−t if atoms i and j participate in a covalent bond, and to 0 otherwise. In a neutral
graphene system each atom contributes one pz orbital and one π electron, hence
the system is half-filled. Under realistic conditions the discussed graphene-based
systems are at half-filling or sufficiently close to it. One important property of the
nearest-neighbor tight-binding model is electron-hole symmetry, that is the energy
spectrum is symmetric with respect to zero energy (Fermi level at half-filling). For



1 Theory of Magnetism in Graphitic Materials 3

(a)

(b)

(c)

(d)

Fig. 1.1 a Honeycomb crystalline lattice of graphene with lattice vectors a1 and a2 indicated.
The atoms belonging to sublattices A and B of the bipartite lattice of graphene are distinguished.
b Brillouin zone of graphene with reciprocal lattice vectors b1 and b2 and high-symmetry points Γ ,
M and K indicated. c Band structure of graphene calculated from first-principles. The π-symmetry
bands forming a linear intersection at the K point are highlighted. d Schematic illustration of the
low-energy region of the band structure of graphene showing Dirac cones at the inequivalent points
K and K ′ of the two-dimensional Brillouin zone of graphene

each eigenvalue ε < 0 corresponding to a bonding state, there is an anti-bonding state
with ε� = −ε. The states with ε = 0 are refereed to as non-bonding or zero-energy
states.

Investigating the electronic structure and properties of magnetic systems based on
graphene demands for explicit treatment of electron–electron interactions.Within the
Hubbard model electron–electron interactions are described by the on-site Coulomb
repulsion term

H ′ = U
∑

i

ni↑ni↓, (1.3)

where niσ = c†iσciσ is the spin-resolved electron density at site i while parameter
U > 0 defines themagnitude of the on-site Coulomb repulsion. Thismodel considers
only the short-range Coulomb interaction, i.e. two electrons interact with each other
only if they occupy the pz atomic orbital belonging to the same atom. Straightforward
application of theHubbardmodel to realistic systems is no longer trivial inmost cases
and requires further simplification. This is achieved by the mean-field approximation
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H ′
mf = U

∑

i

(
ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉) , (1.4)

which allows for considerable reduction of the computational demand. In this approx-
imation, a spin-up electron at site i interacts with the mean population of spin-down
electron 〈ni↓〉 at the same site, and vice versa. This model is a lattice equivalent of
the unrestricted Hartree–Fock method. Several works employing exact diagonaliza-
tion, quantum Monte-Carlo and functional renormalization group techniques [6–8]
confirmed the validity of the mean-field approximation up to U/t ∼ 1, which cor-
responds to the strength of electron–electron interaction in graphene-based systems
discussed in more details below. This conclusion implies that magnetic graphitic
materials are not strongly-correlated electronic systems in most situations.

From the point of view of practical computations, the mean-field Hubbard model
term concerns only the diagonal elements of the Hamiltonian matrix. These matrix
elements in the spin-up and spin-down blocks depend on the unknown expectation
values of spin-resolved electron densities 〈ni↓〉 and 〈ni↑〉, respectively. The problem
thus has to be solved in a self-consistent way starting from some initial values of
〈ni↓〉 and 〈ni↑〉, which can in principle be chosen randomly. One important point
to keep in mind is that in certain cases the broken-symmetry (antiferromagnetic)
solutions can be found only if the initial guess of spin-resolved electron densities
breaks the spin-spatial symmetry [9]. The iterative process involving (1) calculating
the Hamiltonian matrix elements, (2) diagonalization of the Hamiltonian, and (3) the
computation of updated spin densities is then repeated until all values of 〈ni↓〉 and
〈ni↑〉 are converged. The final solution provides the spin densities

Mi = 〈ni↑〉 − 〈ni↓〉
2

(1.5)

on each atom i as well as the total spin of the system S = ∑
i Mi. One can notice that

for a given graphene system described within themean-field Hubbardmodel both the
local magnetic moments and the total spin depend exclusively on the dimensionless
ratio U/t.

We shall now discuss the magnitude of the U/t ratio. Its straightforward exper-
imental determination in graphene-based systems appears to be difficult. The clos-
est material extensively investigated in this context already long time ago is trans-
polyacetylene. This one-dimensional polymer is formed by sp2 carbon atoms and can
be considered as the smallest possible width zigzag graphene nanoribbon. Magnetic
resonance studies of neutral solitons hosting unpaired electrons in this material con-
cluded on the approximate valuesU ≈ 3.0eV [10, 11]. It has also been shown that the
results of calculations performed using the mean-field Hubbard model are very close
to those obtained using first-principles methods based on density functional theory
for certain values of U/t [12–14]. In particular, the results of the local-spin-density
(LDA) approximation calculations correspond to U/t ≈ 0.9, while the generalized-
gradient-approximation (GGA) density functionals matchU/t ≈ 1.3 results. Hybrid
functional calculations explicitly including exact exchange were shown to corre-
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spond to larger values of U/t [13]. A more recent work addressed the magnitude
of U/t using the constrained random phase approximation (cRPA) [15], resulting
in a considerably large value U/t ≈ 3. However, one has to bear in mind that these
calculations are based on amodel that goes beyond the on-site Coulomb interactions.
It was later pointed the range of effective on-site Coulomb interaction parameter in
graphene is U�/t = 1.6 ± 0.2 [16].

Overall, U/t = 1 can be considered as a reasonable choice for modeling the
onset of magnetism in graphene systems. Increasing U/t inevitably results in the
enhancement of local magnetic moments, and at U/t ≈ 2.23 within the mean-field
Hubbard model pristine graphene undergoes a Mott–Hubbard transition into an anti-
ferromagnetic insulating phase [17]. One should also keep in mind that U/t is an
effective parameter, hence its magnitude is affected by a range of external conditions.
For example, a reduced value of U/t would be appropriate for graphene systems
deposited on metallic substrates due to the enhanced screening of electron–electron
interactions.

1.1.2 Counting-Rule Theorems

One important advantage of electronic structure models introduced in the previous
section, as compared to more accurate first-principles techniques, is their simplicity.
This allows for the formulation of mathematically rigorous theorems that can be used
for making important conclusion regarding the electronic structure of graphene sys-
tems without performing straightforward numerical calculations. Two such ‘count-
ing rule’ theorems that are very useful for understanding the physical mechanism
of magnetic ordering in graphene-based systems will be discussed and illustrated
in this section. We first define the benzenoid system as a fragment of honeycomb
lattice with all faces being hexagons, and hence all carbon atoms being either 2- or 3-
fold coordinated. The spectrum of eigenvalues of the nearest-neighbor tight-binding
Hamiltonian of such a system can be addressed using the so-called benzenoid graph
theory [18]. In particular, the benzenoid graph theory allows determining the number
of zero-energy states in a very simple way. The number of zero-energy states is equal
to the nullity of benzenoid graph

η = 2α − N, (1.6)

whereN is the total number of sites,α is the maximum number of non-adjacent sites,
that is the sites that are not nearest neighbors to each other. The onset of magnetism in
a system is determined by the Stoner criterion that refers to the competition between
negative exchange energy and positive kinetic energy as the system undergoes spin-
polarization. The gain in exchange energy as a result of exchange splitting of the
electronic states due to spin polarization [19]

�S = ε↑ − ε↓ = U

2

∑

i

n2i , (1.7)
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where
∑

i n
2
i is the inverse participation ratio which quantifies the degree of local-

ization of the electronic state under consideration. The kinetic energy penalty, on
the other hand, is proportional to the energy of this state. This implies that the zero-
energy states become spin-polarized at any U > 0 irrespective of their degree of
localization. Spin-polarization is thus one of the mechanisms allowing to relieve the
instability associated with the presence of large density of low-energy electronic
states in the system. Other possible mechanisms, e.g. the Peierls distortion, were
demonstrated to be inefficient for neutral graphene system [13].

The benzenoid graph theory is useful for predicting the occurrence of zero-energy
states that undergo spin polarization, but it does not provide any information on how
the electron spins align in these states. The complementary knowledge is contributed
by Lieb’s theorem [20] that determines the total spin of any bipartite system of
any dimensionality described by the Hubbard model with repulsive (U > 0) on-site
Coulomb interactions. This theorem states that the ground state of such a bipartite
system at half-filling is characterized by the total spin

S = 1

2
|NA − NB|, (1.8)

where NA and NB are the numbers of sites in the two sublattices A and B.
The application of these two theorems can be demonstrated with the help of

three scenarios of magnetic ordering realized in small finite size graphene fragments
described below. These simple examples reproduced from [21] help understanding
the physical mechanism underlying the onset of magnetic ordering in more com-
plex graphitic systems that will be considered later. Below, we compare the results
obtained with the help of counting-rule theorems to the ones resulted from explicit
model Hamiltonian calculations. The π-bonding networks of these graphene frag-
ments shown inFig. 1.2 can be realized in the polycyclic aromatic hydrocarbon (PAH)
molecules with the edge carbon atoms assumed to be passivated by hydrogen atoms.

The first molecular fragment of hexagonal shape shown in Fig. 1.2a corresponds
to what is called coronene in chemistry. In this molecule, the number of sites in
the two sublattices is equal, that is NA = NB = 12, due to the presence of inversion
symmetry. The number of non-adjacent sites α is maximized if all atoms in one of
the sublattices are selected (shown as circles in Fig. 1.2a), i.e. α = 12. Hence, the
benzenoid graph theory and the Lieb theorem conclude that the number of zero-
energy states η and the total spin S should be zero. Explicit tight-binding model
calculation predicts a relatively wide band gap of 1.08t ≈ 3.0eV for this system
(bottom panel of Fig. 1.2a). Themean-fieldHubbardmodel calculations do not reveal
any local magnetic moments, which agree with what is known for this molecule from
experiments.

The second model system of triangular shape is shown in Fig. 1.2b. This graphene
fragment corresponds to the hypothetical molecule triangulane, derivatives of which
have been synthesized. In this system the two sublattices are no longer equiva-
lent, thus NA = 12 and NB = 10. The choice of non-adjacent sites maximizing α is
unique and corresponds to atoms belonging to sublatticeA (circles in Fig. 1.2b), hence
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Fig. 1.2 Atomic structures of three small-size graphene fragments: a coronene, b triangulane, and
c a bowtie-shapedmolecule. The circles show the selections of sites that correspond to themaximum
number of non-adjacent sites α. For clarity, empty and filled circles correspond to sublattice A and
sublattice B, respectively. The bottom panels show the respective tight-binding model spectra with
arrows indicating the presence of zero-energy states. Adapted with permission from [21]

α = NA = 12. Therefore, the benzenoid graph theory predicts the presence of dou-
bly degenerate zero-energy state on sublattice A, while according to Lieb’s theorem
triangulane has spin-triplet (S = 1) ground state (that is 2 μB). This can be viewed
as two electrons populating the doubly degenerate zero-energy state according to
Hund’s rule or, in other words, the electron spins are ferromagnetically correlated.
The results of explicitmean-fieldHubbardmodel calculation performed atU/t = 1.2
are shown in Fig. 1.3a. The degeneracy of zero-energy states is lifted due to spin-
polarization opening a gap of �S = 0.30t ≈ 0.8eV. The spin-up density (shaded
circles in Fig. 1.3a) localized on sublattice A originates from the two electrons popu-
lating the zero-energy states. However, a sizable spin-down electron density can also
be observed on sublattice B. This is a manifestation of the so-called spin-polarization
effect related to exchange interaction between the half-occupied zero-energy states
and the fully occupied states at lower energies.

The third example is represented by a bowtie-shaped fragment composed of two
triangulane parts joined together by one common hexagon (Fig. 1.2c). This molecule
is inversion symmetric, hence NA = NB = 19 and its ground state is spin-singlet
following the arguments of Lieb’s theorem. Unlike in the other two cases discussed
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Fig. 1.3 Results of mean-field Hubbard model calculations performed at U/t = 1.2 for a trian-
gulane and b the bowtie-shaped molecule. Local magnetic moments, visualized by circles, and
spin-resolved one-electron energies are shown. Area of each circle indicates the magnitude of local
magnetic moment. Shaded and empty circles correspond to spin-up and spin-down electron densi-
ties, respectively. The corresponding mean-field Hubbard model spectra are shown for spin-up and
spin-down states separately. Adapted with permission from [21]

above, the set of atoms maximizing the number non-adjacent sites α is less trivial
for this system. Figure1.2c illustrates such a selection resulting in α = 20, which
involves atoms pertaining to sublattice A in the left and to sublattice B in the right
part of the fragment (delimited by dashed line in Fig. 1.2c). Therefore, there are
η = 2 × 20 − 38 = 2 zero-energy states as confirmed by the tight-binding model
calculations (Fig. 1.2c). These states are spatially separated in the left and right parts
of the molecule. In order to obtain the S = 0 ground state, the doubly degenerate
zero-energy states has to be populated by two electrons with oppositely oriented
(that is antiferromagnetically correlated) spins. This result is also easily verified by
means of the mean-field approximation Hubbard model calculations presented in
Fig. 1.3b. The molecule corresponding to such bowtie-shaped graphene system was
hypothesized by Eric Clar and called “Clar’s goblet” [22].

The examples discussed above illustrate how three different scenarios—
nonmagnetic, ferromagnetic and antiferromagnetic—can be realized in very sim-
ple systems owing to the bipartite symmetry of graphene lattice. Next sections of
this chapter will explain how magnetism emerges in extended graphene systems.
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1.2 Magnetic Edge States in Graphene-Based Systems

Aviewpoint alternative to the one presented in the previous section considers only the
boundaries of graphene systems. The edges of graphene are defined by their crys-
tallographic orientation and the atomic structure details of their termination [23].
The commonly used model for studying the effects of edges are graphene nanorib-
bons, one-dimensional periodic strips of graphene. In this case, the additional degree
of freedom is the nanoribbon width. At the very basic level, one can consider two
high-symmetry crystallographic orientations, the zigzag and the armchair directions,
which correspond to the (1, 0) and (1, 1) translational vectors on graphene lattice.
Figure1.4 shows the structures of armchair and zigzag nanoribbons of≈1.5nmwidth
assuming the simplest edge termination.

Themost striking point is that armchair and zigzag nanoribbons reveal remarkably
different electronic properties. Figure1.4a shows the tight-binding band structure of
an armchair nanoribbon. This particular configuration of armchair graphene nanorib-
bon has an electronic band gap of 0.27t. The density of states shows a series of Van
Hove singularities that are characteristic of quantum confinement in one dimen-
sion. These Van Hove singularities are located symmetrically with respect to E = 0
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Fig. 1.4 Atomic structures of a armchair and b zigzag graphene nanoribbons. Right panels show
the corresponding tight-binding band structures and density of states plots
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since electron-hole symmetry is guaranteedwithin the nearest-neighbor tight-binding
model. Generally speaking, the tight-binding model predicts either metallic or semi-
conducting band structures for armchair nanoribbons [24–28], with these two types
alternating upon the increase of nanoribbon width. The band gap of semiconducting
armchair nanoribbons decreases monotonically upon the width increase. In the band
structures of metallic armchair nanoribbons two bands cross the Fermi level E = 0
at the Γ point.

Within the nearest-neighbor tight-bindingmodel all zigzag graphene nanoribbons
are found to be metallic irrespective of their width. The band structures exhibit the
presence of a flat band spanning one-third of the one-dimensional Brillouin zone
length at k ∈ (2π/3a;π/a) (here, a = 0.25nm is the unit cell of the zigzag edge,
which is equal to the lattice constant of graphene) as shown in Fig. 1.4b [29]. The
electronic states that correspond to this flat band are localized at the edges. The lack
of dispersion of this band results in high density of low-energy electronic states, thus
suggesting a possibility of the onset ofmagnetic ordering close to the half-filling after
including electron–electron interactions. Indeed, the mean-field Hubbard model cal-
culations performed for the zigzag graphene nanoribbon show the presence of mag-
netic moments localized at the edges (Fig. 1.5a) [30]. The ground state configuration
exhibits ferromagnetic arrangement of localmagneticmoments along the edge,while
the relative orientation of local magnetic moments at the opposite edges is antipar-
allel. Therefore, the total magnetic moment of a zigzag nanoribbon is zero, which
is fully consistent with the expectation of Lieb’s theorem as in this case the balance
between the two sublattices is preserved (NA = NB). Figure1.4b compares the band
structures and the density of states plots for the mean-field Hubbard model and the
tight-binding model. The introduction of the Hubbard term splits the entire flat-band
segment opening a band gap of �0

z = 0.16t (at U/t = 1). The single peak at E = 0
in the tight-binding density of states splits into two pairs of Van Hove singularities.
One pair of Van Hove singularities characterized by splitting �0

z corresponds to the
band extrema at k ≈ 2π/3a that define the band gap. The other pair of peaks with a
larger splitting�1

z = 0.27t is due to the band extrema at the Brillouin zone boundary
k = π/a. Spin-polarization affects only the low-energy flat band and has practically
no effect on the electronic states at higher energies. All Van Hove singularities at
higher energies result from the quantum confinement in one dimension, as verified
by their presence in the tight-binding density of states plot. The band structures for
the spin-up and spin-down channels are identical, although spin-spatial symmetry of
electronic states is broken.

The dependence of splittings �0
z and �1

z on the nanoribbon width investigated in
[25] by means of first-principles calculations is reproduced in Fig. 1.6. The states at
theBrillouin zone boundary k = π/a are strongly localized states at the edges.Hence,
the corresponding splitting�1

z is practically independent onwidth beyondw = 1nm.
On the contrary, the states at k = 2π/3a penetrate deep into the bulk region and the
corresponding�0

z splitting shows aw
−1-dependence on the nanoribbon width. These

slowly decaying states are responsible for the antiferromagnetic correlation between
magnetic moments localized at the opposite edges. The magnitude of this exchange
interaction was shown theoretically to have a w−2-dependence on the nanoribbon
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Fig. 1.5 a Atomic structure of a zigzag graphene nanoribbon with local magnetic moments cal-
culated using the mean-field Hubbard model. Area of each circle is proportional to the magnitude
of the local magnetic moment. Filled and empty circles indicate spin-up and spin-down moments,
respectively. bMean-field Hubbard model (U/t = 1) band structure and the corresponding density
of states plot (solid lines) compared to the results of the tight-binding model calculations (dashed
lines). The band structures for spin-up and spin-down electrons are equivalent. c Atomic structure
of a chiral graphene nanoribbon defined by periodicity vector (3, 1) and chirality angle θ = 13.9◦.
Area of each circle is proportional to the magnitude of the local magnetic moment. Filled and
empty circles indicate spin-up and spin-down moments, respectively. dMean-field Hubbard model
(U/t = 1) band structure and the corresponding density of states plot (solid lines) compared to the
results of the tight-binding model calculations (dashed lines)

width w [31]. First principles calculations predict coupling strength of ∼25meV
per unit cell for a zigzag nanoribbon of ∼1.5nm width [13]. Unlike the insulating
antiferromagnetic ground state, a zigzag graphene nanoribbon with ferromagnetic
orientation of edge-localized magnetic moments is metallic with a pair of bands
crossing the Fermi level at k ≈ 2π/3a. The possibility of switching between these
two states was proposed theoretically as a basis for graphene-based magnetic sensor
[32]. Exchange coupling between magnetic edges can also be controlled by means
of either electron or hole doping of the nanoribbons [33, 34]. High levels of doping
are expected to suppress magnetism since the flat band moves away from the Fermi
level, thus eliminating the instability associated with the high density of low-energy
electronic states [34].
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Fig. 1.6 Bands splitting �0
z

and �1
z calculated from

first-principles as a function
of width wz for zigzag
graphene nanoribbons.
Reproduced with permission
from [25]
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In fact, the presence of zero-energy states is a general property of low-symmetry
edges irrespective of their crystallographic orientation, not only of the high-symmetry
zigzag edges. This was pointed out already in the pioneering work by Nakada et al.
[29] and supported by the tight-binding calculations. The edge direction of low-
symmetry edges can be characterized by the so-called chirality angle

θ = arcsin

√
3

4

(
m2

n2 + nm + m2

)
, (1.9)

where the pair of integers n and m defines the translational vector (n,m) oriented
along the edge. Thus, chirality angles of θ = 0◦ and θ = 30◦ correspond to zigzag
and armchair edges, respectively. Chirality angles of low-symmetry edges, below
referred to as chiral, span the range of values between these two values of θ. It was
later demonstrated analytically that the density of localized zero-energy states per
edge unit length depends on chirality angle θ as [35]

ρ(θ) = 2

3a0
cos

(
θ + π

3

)
. (1.10)

The maximum value of ρ = 1/(3a) achieved for the case of zigzag edges directly
corresponds to the flat band spanning one-third of the one dimensional Brillouin
zone. Importantly, only strictly armchair edges are characterized by zero density of
edge states as in this case the presence of the edge does not break the sublattice
compensation. An example of chiral graphene nanoribbon characterized by θ =
13.9◦ is shown in Fig. 1.5c. The chirality angle of this edge corresponds to the (3, 1)
translational vector, and the edge can be viewed as composed of one armchair and two
zigzag units. Similar to the case of zigzag nanoribbons, their chiral counterparts are
expected to undergo the onset of spin polarization upon including electron–electron
interactions. This is illustrated by the mean-field Hubbard model calculations of
the above-mentioned (3, 1) chiral graphene nanoribbon as shown in Fig. 1.5d. The
results look qualitatively similar to the case of zigzag graphene nanoribbon, although
the energy splittings, in particular �1, are reduced compared to the corresponding
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values for zigzag graphene nanoribbon of equivalent width. More generally, the
magnetic moments per edge length follow closely the density of edge states provided
by expression (1.10) [36]. It is worth stressing once again, only graphene nanoribbons
with edges oriented along armchair direction or close to it have non-magnetic ground
state.

Beyond the structures of ordered edge terminations considered above it is worth
highlighting the results of a tight-binding investigation carried out for a model of
large graphene quantum dot [37]. The local density of states revealed the presence of
localized edge states along the entire perimeter of the considered irregularly shaped
graphene quantum dot. However, it is reduced in the regions with edge orienta-
tion close to the armchair direction. The effects of random atomic-scale disorder
at the edge were also studied in this paper. It was found that at rough edges the
density of zero-energy states decreases, but do not vanish. Thus, one can expect
that the edge magnetism in graphene is robust with respect to disorder. On the
other hand, Wassmann et al. have shown that certain types of ordered termina-
tions of zigzag edges lack localized edge states as a result of recovered sublattice
compensation [38].

It was immediately recognized that the discussed novel magnetic properties of
graphene nanostructures combined with the low-dimensional nature of this material
offer exciting perspectives for technological applications, especially in spintronics.
The most interesting device concept was introduced by Son et al., who predicted
that external electric field applied across a zigzag graphene nanoribbon induces half-
metallicity [39]. Here, the half-metallic state refers to the metallic band structure
for electrons in one spin channel combined with a gapped insulating state in the
other. At zero field zigzag graphene nanoribbons are characterized by the energy
gap �0

z in both spin channels as discussed previously and illustrated in Fig. 1.5b.
An applied electric field breaks this symmetry and closes the gap in one of the spin
channels. Importantly, the direction of electric field defines in which spin channel the
metallic conductivity is established. First-principles calculations of [39] showed that
the critical field required for the onset of the half-metallic state is 3.0/wV, wherew is
the nanoribbon width in Angstrom. Such a simple device would offer a new approach
for electrical control of spin transport that is instrumental in spintronic circuits.

In practice, however, such devices would inevitably face physical limitations
related to the fact thatmagnetic order in low-dimensional systems is strongly affected
by thermal fluctuations. In particular, the Mermin–Wagner theorem [40] states that
long-range magnetic order in one-dimensional systems, e.g. the magnetic edges in
graphene, does not exist at any finite temperature. More specifically, the range of
magnetic order is established by the spin correlation lengths ξα (α = x, y, z) that
define the decay of the spin correlation function

〈ŝαi ŝαi+l〉 = 〈ŝαi ŝαi 〉exp(−l/ξα), (1.11)
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which is expected to be strongly temperature dependent. In this expression ŝαi are the
components of normalized magnetic moment vector ŝi at site i. The spin correlation
length would thus impose practical limitations on the device dimensions.

The energetics of possible spin fluctuations that contribute to the breakdown of the
ordered zero-temperature ground-state configurationwas estimated bymeans of first-
principles calculations [41]. In particular, the investigated transverse and longitudinal
spin excitations are shown in Fig. 1.7a. The magnetic correlation parameters in the
presence of spin-wave fluctuations, the dominant type of spin disorder in this case,
were obtained with the help of one-dimensional Heisenberg model Hamiltonian

H = −a
∑

i

ŝi ŝi+1 − d
∑

i

ŝzi ŝ
z
i+1, (1.12)

where the Heisenberg coupling a = 2κ/a2z = 105meV corresponds to the spin-
wave stiffness κ = 320meVÅ2 calculated from first principles. The estimated small
anisotropy parameter d/a ≈ 10−4 originates from the weak spin-orbit interaction
in carbon. This simple model Hamiltonian has known analytic solutions [42].
Figure1.7c shows the spin correlation lengths calculated for our particular case.
Above the crossover temperature Tx ≈ 10K, weak magnetic anisotropy does not
play any role and the spin correlation length ξ ∝ T−1. However, below Tx the spin
correlation length grows exponentially with decreasing temperature. At T = 300K
the spin correlation length ξ ≈ 1nm.

Fromapractical point of view, thismeans that the dimensions of spintronic devices
based on themagnetic zigzag edges of graphene and operating at normal temperature
conditions are limited to several nanometers. At present, such dimensions are very
difficult to achieve, which can be regarded as a pessimistic conclusion. Nevertheless,
one has to keep in mind that the spin stiffness predicted for the magnetic graphene
edges is still higher than the typical values for traditional magnetic materials. That is,
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Fig. 1.7 a Schematic illustration of the transverse and the longitudinal spin excitation at zigzag
graphene edges. The localmagneticmoments at the edge atoms are shown by arrows.bComponents
of spin correlation length at the zigzag edges perpendicular (ξz) and parallel (ξx , ξy) to the graphene
plane as a function of temperature. Reproduced with permission from [41]
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graphene outperforms d-element based magnetic materials, and there is a room for
improvement. Achieving control over the magnetic anisotropy d/a could possibly
raise the crossover temperature Tx above 300K and thus significantly extend ξ.
Possible approaches for reaching this goal include chemical functionalization of the
edges with heavy-element functional groups or coupling graphene to a substrate.

The low-dimensional nature of the edge-state magnetism in graphene makes its
experimental detection challenging. During the past several years, the edge-state
magnetism in graphene received indirect experimental confirmations from local
probe measurements. Tao and co-authors reported a scanning tunneling microscopy/
spectroscopy investigation performed on graphene nanoribbons produced by chemi-
cal unzipping of carbon nanotubes [43]. Such nanoribbons havewell-ordered straight
edges while their crystallographic orientation is inherited from the one of precur-
sor carbon nanotubes. Due to the broad distribution of carbon nanotube chiralities,
the edges of such nanoribbons typically show low-symmetry (chiral) orientation
(Fig. 1.8a). Scanning tunneling spectroscopy reveals the presence of edge states local-
ized along all such observed chiral edges. Importantly, the edge-localized states are
split into a pair of peaks (Fig. 1.8b) with the magnitude of splitting showing a clear
dependence on the nanoribbon width, which qualitatively agrees with the theoretical
predictions involving the magnetic origin of the splitting [36, 43]. Further exper-
imental investigation of the hydrogen etched edges of such graphene nanoribbons
allowed accessing the details of their atomic structure (Fig. 1.8c, d) [44]. The latter
appeared to be consistent with the simple models employed in theoretical studies.

More recently, Magda and colleagues reported an investigation [45] of 3–12nm
wide graphene nanoribbons produced using a nanofabrication technique [46] based
on scanning tunneling microscopy. This approach allowed for controlling the crys-
tallographic orientation of the edges. The scanning tunneling spectroscopy showed
both the presence of confinement gap in armchair graphene nanoribbons as well as
0.2–0.3eV band gaps in zigzag graphene nanoribbons. The latter was attributed to
the magnetic ordering at the edges. In addition, the observed semiconductor-to-metal
transition at nanoribbon width of approximately 7nm was related to the change of
magnetic coupling between the opposite edges from the antiferromagnetic to the
ferromagnetic configuration. Importantly, the observed band gap was found stable
even at room temperature.

Narrower graphene nanoribbons with well defined structure can be obtained using
the bottom-up approach pioneered by Cai and co-workers [47]. This method relying
on the surface-assisted self-assembly starting from precursor molecules allows pro-
ducing armchair graphene nanoribbons down to sub-nanometer width. Exploiting
this route for producing chiral [48] and zigzag [49] graphene nanoribbons has been
reported only recently. In particular, Ruffieux et al. reported ca. 1nm wide zigzag
graphene nanoribbons that showed localized edge states with splittings �0

z = 1.5eV
and �1

z = 1.9eV in agreement with the results of GW (Green’s function screened
interaction) calculations [49].

Other related scenarios of the onset of magnetic ordering in carbon-based materi-
als have been investigated. For instance, with the help of scanning probe techniques,
notably the magnetic force microscopy, and magnetization measurements, Červenka
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Fig. 1.8 a Atomically-resolved scanning tunneling microscopy (STM) image of the edge of (8, 1)
chiral graphene nanoribbon on Au(111) surface. b dI/dV spectra of (8, 1) graphene edge measured
at different points (black dots, panel a) along a line perpendicular to the edge at T = 7K. Inset
shows a higher resolution dI/dV spectrum for the edge of another graphene nanoribbon of (5, 2)
chirality. Reprinted with permission from [43]. c Room-temperature STM image of a hydrogen
etched chiral graphene nanoribbon. d Enlarged STM image (VS = 0.97V, It = 50pA) showing the
atomic structure of a straight segment of the edge with orientation that roughly corresponds to (2,
1) chirality. The localized edge states are clearly visible in the image. Reprinted with permission
from [44]

and colleagues have concluded that the intrinsic ferromagnetism of highly-oriented
pyrolitic graphite is related to the presence of grain boundaries [50], which are intrin-
sic defects in polycrystalline materials [51]. These observations have been rational-
ized by the fact that grain boundaries are effectively arrays of dislocations [52], and
each dislocation may carry a localized magnetic moment depending on the struc-
ture of its core [53]. The electronic properties of grain boundaries in highly-oriented
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pyrolitic graphite were found to be qualitatively similar to what was observed for
the edges graphene nanoribbons and exhibited strong dependence on the distance
between the dislocations. Regarding the results in [50], however, Martínez-Martín
et al. raised serious doubts on the validity of these MFM measurements and their
interpretation [54].

1.3 Defect-Induced Magnetism in Graphene and Graphite

Experimental observations of ferromagnetic ordering in irradiated graphite are
responsible for the renewal of interest to carbon-based magnetism. These results are
especially exciting since such defect-induced magnetic ordering persists till room
temperature and well above. State-of-the-art experimental advances are covered in
Chaps. 2 and 3. In this section, we shall try to understand the origin of magnetism
in irradiated graphite from the theoretical point of view. The phenomena discussed
in this section apply to both graphene and graphite, a three-dimensional crystalline
lattice composed of graphene sheets bound by weak Van der Waals interactions.

At its very basic level, the picture of the radiation damage in carbon materials
is relatively simple. Irradiation of graphite with high-energy particles (for instance
protons) creates several types of defects. The defects are produced as a result of the
so-called “knock-on collisions” that involve direct transfer of momentum from the
high-energy incident particles to individual atoms in the crystalline lattice of irradi-
ated material [55, 56]. If the transferred kinetic energy is sufficiently large, above
the displacement threshold Td , the affected atom may leave its equilibrium position
in the crystalline lattice resulting in the formation of a pair of complementary point
defects—a vacancy defect and an interstitial. Their stable structures in graphite are
shown in Fig. 1.9a. The magnitude of displacement threshold Td in graphitic materi-
als was found to be around 20eV in a number of investigations [57–60]. Creation of
defects by means of electron stopping, that is the process involving electronic exci-
tations and ionization of individual atoms, is less relevant to carbon materials. This
is because electronic excitations in metals and narrow-gap materials are delocalized
and quench instantly [55, 56].

In addition to vacancies and interstitials, certain high-energy particles after slow-
ing down may also produce chemisorption defects. In particular, protons bind to car-
bon atoms in graphite lattice leading to the change of their coordination sphere from
triangular to tetrahedral and rehybridization into the sp3-state. The resulting defects
are referred to as hydrogen chemisorption defects (see Fig. 1.9a). From the standpoint
of single-orbital models discussed above the vacancy and hydrogen chemisorption
defects very similar—one pz-orbital is removed from the π-conjugate system of
graphene sheet. In the case of vacancy, the pz-orbital is eliminated as a result of
removing the knocked-out carbon atom. In the case of hydrogen chemisorption the
carbon atom remains close to its initial position in the crystalline lattice, but once
rehybridized it is no longer able to provide its pz-orbital to the π-conjugate system.
Below, we will collectively refer to these two types of defects as pz-vacancies.

http://dx.doi.org/10.1007/978-3-319-39355-1_2
http://dx.doi.org/10.1007/978-3-319-39355-1_3
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Fig. 1.9 a Atomic structures of three types of primary defects in graphite created upon irradiation
with high-energy protons—single-atomvacancies, interstitials and hydrogen chemisorption defects.
b Density of states curves of ideal graphene (dashed line) and graphene with large concentration
of pz-vacancies calculated using the tight-binding model. Reproduced with permission from [65].
c Scanning tunneling microscopy image of a vacancy defect on the surface of graphite. d Corre-
sponding dI/dV curves recorded in vicinity of the defect and at a distance from it. Reproduced
with permission from [72]

The three types of defects described above are the primary defects produced upon
the radiation damage process. More complex defect structures can be formed at later
stages of the process. For example, single-atom vacancies and interstitials, the later
being particularly mobile, may aggregate producing extended defects. Complexes
involving two or more different types of defects, such as the complexes of hydrogen
with vacancies and interstitials [61], and intimate Frenkel pairs [59, 62], can also be
formed upon irradiation. Radiation in graphitic materials may also result in creation
of Stone–Wales defects [63, 64] and other kinds of in-plane disorder.

Single-atom vacancies and chemisorption defects have a particularly strong effect
on the electronic structure of graphene and graphite. Consider a periodically repeated
supercell of ideal graphene containing 2N carbon atoms (NA = NB = N). Removal
of one carbon atom from sublattice A creates a zero-energy state localized in the
complementary sublattice B (α = NB; thus η = 2NB − ((NA − 1) + NB) = 1). Such
zero-energy states giving rise to a sharp peak in the density of states (Fig. 1.9b) and
extending over large distances are called quasi-localized states due to their power-law
decay [65–68]. The quasi-localized states have been observed in numerous scanning
tunneling microscopy (STM) measurements performed on the surface of graphite.
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These states appear as triangular
√
3 × √

3R30◦ features typically extending over
several nanometers and localized around point defects [69–72]. Figure1.9c, d repro-
duce the results of one of such measurements reported in [72].

According to Lieb’s theorem, a magnetic moment of |(NA − 1) + NB| = 1μB per
supercell is expected for the described model with single defect in the supercell.
That is, the presence of defects induces ferromagnetic ordering within this partic-
ular model. This conclusion has been widely confirmed by calculations using both
density functional theory [61, 73–75] and the mean-field Hubbard model [19, 76].
Figure1.10 reproduces the spin-resolved density-of-states (DOS) plots calculated
using density functional theory for the hydrogen chemisorption and vacancy defects
[74]. In the case of the hydrogen chemisorption defect, the DOS plot exhibits a sharp
peak at the Fermi level that corresponds to the quasi-localized state band (Fig. 1.10a).
The peak is fully exchange-split and the magnetic moment is 1μB per supercell irre-
spective of its size. The spatial distribution of electron spin density around the defect
site shows a clear

√
3 × √

3R30◦ superstructure [74]. The case of vacancy defect
appears to be more complicated. The DOS exhibits a peak due to the quasi-localized
state, but is shifted to lower energies compared to the Dirac point energy that is
clearly recognized as a V-shaped feature (Fig. 1.10b). Such a shift is related to the
structural reconstruction of the vacancy defect, which results in the formation of an
additional covalent bond coupling two atoms that belong to the same sublattice [74].
In turn, the shift to lower energies gives rise to self-doping and partial suppression
of the contribution of the quasi-localized state to the total magnetic moment. How-
ever, one can also observe an exchange-split DOS peak originating from the localized
non-bonding state due to the presence of oneσ-symmetry dangling bond at the single-
atom vacancy defect (Fig. 1.10b, inset). The magnitude of exchange splitting is much
larger due to the very high degree of localization of the dangling bond states, hence
it contributes 1μB to the total magnetic moment induced by the defect. The overall
magnetic moment per vacancy defect varies between 1.12μB and 1.53μB for defect
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Fig. 1.10 Spin-resolved density of states (DOS) plots for a the hydrogen chemisorption defect and
b the vacancy defect in graphene calculated using density functional theory. Solid and dashed curves
refer to the majority and minority spin channels, respectively. Dotted curve shows the reference
density of states of pristine graphene. Exchange-split features that correspond to the quasi-localized
(QL) and dangling-bond (DB) states are indicated. Reproduced with permission from [74]
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concentrations within the range of 0.5–20%. Magnetic moments can also be created
by dangling bonds present in other types of defects, such as the bridge interstitial
defect in graphene [77]. However, magnetic ordering due to only localized magnetic
moments in graphene-based system seems improbable at high temperatures. The
Ruderman–Kittel–Kasuya–Yosida interaction is weak in graphene due to its semi-
metallic electronic structure [78, 79]. On the other hand, magnetic ordering due to
defect-induced quasi-localized states can be viewed as a scenario realizing itinerant
magnetism without excluding a possible contribution of dangling-bond magnetic
moments to the net magnetic moment.

The model that we considered so far, with one defect located in a periodically
repeated supercell, is only a very rough approximation of disordered graphene for the
following two reasons. First, in this case all defects are in the same sublattice of the
graphene layer. Second, the defects themselves form an ordered periodic superlattice.
Amore realistic description of disorder can be realized, for example, by constructing
models in which a large number of defects is randomly distributed in a sufficiently
large supercell [80]. Such models eliminate any short-range structural order and
allow defects to occupy both sublattices at arbitrary concentrations. However, larger
supercells needed for building such disorderedmodels render first-principles calcula-
tions difficult. Large models of disordered graphene can be treated using calculations
relying on the Hubbard model within the mean-field approximation.

Results of such calculations are shown in Fig. 1.11 as average magnetic moment
per carbon atom in sublattice A and sublattice B, 〈MA〉 and 〈MB〉, as a function of
defect concentration x [80]. Additionally, the resulting values were averaged over
many randomdistributions of defects in the simulation supercell for the following two
scenarios: defects equally distributed over the two sublattices (Nd

A = Nd
B , Fig. 1.11a)

and defects located in sublattice B only (Nd
A = 0, Fig. 1.11b). In the case of equal

distribution, the net magnetic moments in the two sublattices are equal in magnitude
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Fig. 1.11 Average magnetic moments on sublattices A and B as a function of defect concentration
x calculated for large models using the mean-field Hubbard model (here, U/t = 1.33). The defects
are either a distributed equally between the two sublattices or b belong to sublattice B only. The net
magnetic moment per carbon atom (sum of the two contributions, dotted line) is shown. Reproduced
with permission from [80]
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but have opposite signs. Thus, the overallmagnetic correlation is ofantiferromagnetic
type. For defects populating one of the sublattices, the system exhibits ferromagnetic
ordering with a net magnetic moment per carbon atom 〈M〉 = (〈MA〉 + 〈MB〉)/2 =
x/2. That is, 〈M〉 scales linearly with the defect concentration x. It is easy to see that
both results are in full accord with Lieb’s theorem.

Experimental evidence of ferromagnetic ordering in irradiated graphite points to
the evident conclusion that the concentration of defects in the two sublattices of
individual graphene sheets in bulk graphite is not equal. Therefore, there must be a
mechanism, which discriminates between the two sublattices. In bulk ABA graphite
such amechanism is provided by the stacking order of graphene layers, which breaks
the equivalence of the two sublattices [80], as illustrated in Fig. 1.12a. Only local
ABA stacking order of three adjacent graphene layers is required in order to break the
sublattice equivalence in the middle sheet. For the case of hydrogen chemisorption
defects, this mechanism can be demonstrated by means of first-principles calcula-
tions. Configuration with hydrogen chemisorbed on a carbon atom in sublattice B
is 0.16eV lower in energy than if hydrogen is chemisorbed on sublattice A (see
Fig. 1.12b, c). Such energy difference is sufficient to produce a considerable dif-
ference in equilibrium concentration of hydrogen atoms chemisorbed in the two
sublattices. The energy barrier for the hopping of hydrogen atoms is sufficiently
small (∼1eV) [81] to allow for thermally activated diffusion at temperatures that
correspond to typical experimental conditions.

Similar sublattice discriminating mechanisms can not be excluded for other types
of defects produced upon irradiation, for instance vacancies. Cross-sections for
momentum transfer during knock-on collisions are probably very similar for both A
and B carbon atoms in graphite. However, the stacking order is expected have strong
effect on the recombination dynamics of interstitial and vacancy defects close to
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Fig. 1.12 a Crystalline lattice of ABA stacked graphite with inequivalent carbon atoms (A and
B) indicated. b Scheme of diffusion pathways of chemisorbed hydrogen in graphite. c Schematic
illustration of the potential energy surface for the in-plane diffusion of chemisorbed hydrogen in
graphite. Relative energies of the local minima and transition states are indicated. Reproduced with
permission from [80]
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equilibrium conditions. It was also demonstrated by means of first-principles mole-
cular dynamics simulations that instantaneous recombination of low-energy recoil
atoms in graphite is significantly more probable for atoms belonging to the A sub-
lattice [59]. That is, more vacancies in sublattice B are created assuming an equal
number of knock-on collisions involving the atoms of both types. These results lead
to a natural conclusion that the most probable physical picture of defect-induced
magnetic order in irradiated graphite is ferrimagnetism. The magnetic moment in
sublattice A is expected to be larger than the one induced in sublattice B.

The temperature dependence of magnetic ordering in defective graphene and
graphite remains largely unaddressed. Similarly to the one-dimensional system, a
two-dimensional system without magnetic anisotropy cannot develop long-range
magnetic ordering at finite temperatures [40]. However, the presence of even a small
magnetic anisotropy d/a ∼ 10−3 already results in very high transition temperatures
[82, 83]. Weak magnetic exchange coupling between the individual graphene layers
in graphite also leads to a strong effect on the magnetic transition temperature [84].
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Chapter 2
Soft X-ray Dichroism Studies of Graphite

Hendrik Ohldag

Abstract With the recent advance of spintronics, an area of science and technology
that proposes to use the spin of electrons to store and process information instead
of their charge, carbon based nanomaterials have experienced increased interest. In
particular the possibility to induce magnetic order through small modification of
the structure has fascinated researchers for over a decade now. However, the origin
of magnetism in carbon-based materials is still quite controversial from a scientific
point of view. Unlike traditional magnetic materials, there are no d- or f-electrons
present and contradictory experimental results have complicated theoretical work
even further. To characterize the magnetic properties of an unknown sample one
often uses conventional magnetometers that measure the total magnetic moment of
a sample. However, these instruments do no allow to pin point the exact microscopic
origin of themagnetism to rule out the presence of other magnetic impurities. For this
reason it is crucial to study the magnetism of carbon based materials using element
specific magnetic probes like e.g. x-ray absorption spectroscopy. In this chapter
we will present an introduction to dichroism soft x-ray absorption spectroscopy
and microscopy and the ability of this experimental approach to characterize the
electronic, chemical andmagnetic structure of a complex sample, element by element
and in some cases even layer by layer.

2.1 Soft X-ray Spectroscopy and Microscopy

2.1.1 Evolution of Magnetic Devices and X-ray Technology

Magnetism is a fascinating field of physics because of its fundamental challenges as
well as its technological relevance. Together with gravitation, magnetism is one of
two basic physical phenomena that have been employed for the benefit of humankind
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Fig. 2.1 Left: Picture of original IBM350hard disk capable of storing 5Megabyte of data [1].Right:
Examples of different magnetic memory devices on the nanoscale as they are currently realized [2].
Miniaturization down to the nanoscale has been made possible by using complex materials, alloys
and multilayers to control electronic and magnetic properties on an atomic or granular scale

for thousands of years. Considering the fact that magnetism is such a well studied
phenomena it is remarkable that the field reached another turning point towards the
end of the last millennium. Up to then it had been well established that elements like
the 3d transitionmetals Iron, Cobalt andNickel aswell as some of the 4fmaterials and
alloys thereof show ferromagnetic order at finite temperatures. The bulk properties
of ferromagnetic materials appeared to be well understood and magnetic materials
were routinely used in data storage, sensors, motors and generators to just name a
few examples. In a way magnetism seemed to be heading towards becoming more
relevant to engineers than physicists. However, this changed dramatically with the
advent of nanotechnology and in particular with the discovery of the so called giant
magneto resistance, independently by Albert Fert and Peter Grünberg who received
the Nobel Prize for their discovery in 2007. Suddenly, the possibility to increase the
functionality and decrease the size of magnetic devices by using complex material
combination and multilayers instead of conventional ones opened up new avenues
to take magnetism into the 21st century. Figure2.1 is shown to demonstrate this
development. In 1956 the IBM305RAMAC(RandomAccessMethod ofAccounting
and Control) computer system was sold to the first US customers. While the central
processing unit still used traditional vacuum tubes, the revolutionary new feature was
that the systemwas equippedwith amovableHEADhard drive system. The drivewas
capable of storing 5Megabytes of data on 24 disks each 610mm in diameter. Each
bit required an area of 0.1mm2 or 10kbit per in2. Modern hard drives and devices
in contrast allow to store 1 Terabit per in2, corresponding to a bit diameter of 25nm.
This increase in storage density of 108, has been made possible by engineering new
materials with properties and nanosized shapes that are much more favorable for
magnetic data storage indexmagnetic storage and processing. For example, instead
of using simple magnetic alloys of Fe and Ni as for the RAMAC drive, we now
use precisely designed multilayers of ferromagnetic, antiferromagnetic and non-
magnetic alloys.
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Fig. 2.2 Since the discovery of x-rays in the late 1800s x-ray sources have made significant
advances. Conventional x-ray tubes were used in the early stages, while electron accelerators have
been used for research purposes since the 1970s. Accelerator-based sources have been refined and
advanced over the last decades. Today free electron lasers can deliver x-ray beams with unprece-
dented intensity into micron sized spots. For comparison the increasing storage density of hard
drive devices is plotted as well indicating that advances in this field require probes that can address
smaller and smaller length scales [2]

To further fundamentally explore the field of carbon based magnetism, a joint
effort between advanced synthesis of magnetic systems, state-of-the-art theoreti-
cal and computational approaches is needed. Such an approach will provide guid-
ance for the design of new magnetic materials and requires a fundamental scientific
understanding obtained by cutting edge analytic tools able to address the nanoscale.
Figure2.2 shows how x-ray sources have become more and more powerful over the
past few decades. From simple x-ray tubes to parasitic use electron storage rings in
the early 1970s all the way to modern free electron lasers the brightness (intensity
per area) of x-ray sources has been increased by 25 orders (!) of magnitude. While
the acquisition of a simple x-ray absorption spectrum of a bulk sample could take
hours in 1970, it is now possible to acquire the scattering pattern of a single protein
in a few femtoseconds. At the same time, magnetic devices have become smaller and
often only a limited number of atoms determine their behavior. This is in particu-
lar true, since interfaces and surfaces started to play an important role. Polarization
dependent x-ray absorption spectroscopy and microscopy have been shown to be
an indispensable tool to understand the science behind the miniaturization of data
storage devices. In the next section we will describe in more detail how polarization
dependent x-ray spectroscopy can be used to address the magnetic properties on an
atomic scale. In the following we will give a brief introduction into the subject.
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Magneto-optical effects, i.e. the interaction of light with magnetic materials is
well known since the mid 1800s, when Faraday [3] and Kerr [4] discovered that
the polarization state of an electromagnetic wave will be altered if reflected from
or passed through a magnetic medium. The Faraday and the Kerr effect have since
been used extensively for the characterization of magnetic properties, such as mea-
suring the magnetic hysteresis loop in a Magneto Optical Kerr (MOKE) setup or the
observation of magnetic domain patterns with the Faraday effect using conventional
optical microscopy [5]. Both effects manifests themselves in small changes of the
optical constants by 0.1% or less. However, in view of advanced nanoscale mag-
netic materials, optical techniques face severe limitations. The wavelength of light,
which is in the sub-micrometer regime, can not provide nanoscale information and
the optical transitions occur in the conducting bands, which are not element-specific
and can therefore not provide fundamental quantitative magnetic information.

Probing magnetic materials with x-rays, in particular with polarized soft x-rays,
overcomes the limitations of optical techniques. The interaction of polarized soft
x-rays with magnetic materials gives rise to x-ray magnetic dichroism effects, that
can be seen as x-ray counterparts of magneto-optical effects. However in contrast to
magneto-optical effects in the visible spectrum x-ray dichroism effects are generally
large, which makes their detection rather easy. Also, since the wavelength of soft
x-rays is of the order of a few nanometer, x-ray microscopy techniques naturally
provide access to the nanoscale. The following list summarizes the features offered
by polarized soft x-rays. Medical x-rays as well as x-ray images of magnetic devices
shown in Fig. 2.3 are shown to demonstrate the capabilities of x-ray microscopy.

1. Soft x-rays are electromagnetic radiation with an energy between about 200eV
and about 2keV, which matches the element-specific inner core binding energies
of 3d, 4d, 4f, and 5d elements. Therefore, element-specific information can be
obtained for these elements, which feature some of the most prominent elements

Fig. 2.3 Evolution of x-ray microscopy. The first x-ray image taken by Conrad Röntgen in 1895.
Almost 100 years later polarized x-ray microscopy [6] allowed to observe magnetic bits on a real
hard drive media. Only ten years later [7] the rapid increase in x-ray brightness made it possible to
reveal the magnetic structure in a ferromagnetic/antiferromagnetic Co/NiO bilayer and the interface
in between consisting of a mixed Co/Ni oxide
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in magnetism research. The spectral resolution of state-of-the-art x-ray mono-
chromators enables fingerprinting the (spin-resolved) electronic structure.

2. The wavelength of soft x-rays is in the nanometer regime, which inherently gives
access to the nanoscale.

3. The polarization of the x-rays can be tuned so that ferro-, ferri-, and antiferro-
magnetic materials can be probed.

2.1.2 Soft X-ray Absorption Spectroscopy

Since we will only discuss experiments involving x-ray absorption spectroscopy
(XAS) in the later part of this chapter we will now focus on the physics behind the
x-ray absorption process. Magnetic x-ray dichroism can also be observed in x-ray
reflection, scattering or incoherent as well as coherent diffraction, however this is
outside the scope of this chapter. For an introduction into these areas the reader is
referred to the appropriate chapters in [2].

Experimentally, the x-ray absorption cross section as a function of photon energy
E can be measured e.g. in a transmission experiment. Independent of the photon
energy the transmitted photon intensity I1(E) after penetrating a thickness t of the
sample is related to the incoming photon intensity I0(E) by the Lambert–Beer rule,

I1(E) = I0(E)e−μ(E)·t . (2.1)

Here, μ(E) is the element specific absorption coefficient. To calculate μ(E) one
can employ the so called Fermi’s Golden Rule. An incoming electromagnetic wave
polarized along the z-direction will lead to an electronic dipole transition from the
initial state |i〉 to the final state 〈 f |.

�i→ f ≈ 2π

�
|〈 f |z|i〉|2ρ(E) (2.2)

Some fundamental but important properties of the x-ray absorption cross section
can be extracted from this simple equation.

1. A transition will occur if the energy of the incoming photon, matches the energy
difference between an occupied core level and unoccupied valence state. One
factor that determines the strength of the transition is given by the overlap of
initial and final state. Since the initial state is a core level, transitions that involve
a final state with significant probability closer to the nucleus are strong transitions.

2. ρ(E) is the density of unoccupied states above the Fermi energy in a solid. That
means another factor that determines the strength of the line is the availability
of empty states. The line shape of the x-ray absorption spectrum will mimic the
density of states above the Fermi level. This is illustrated on the right hand side
of Fig. 2.4.
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Fig. 2.4 Elemental and Chemical Sensitivity of Soft X-rays. The left hand side shows absorption
spectra of Fe, Co, Ni and some oxides. The panel of the right shows a simple picture of the transition
of a core level electron to a final state. Figure taken from [2]

3. X-ray absorption is capable of probing the symmetry of the electronic structure.
The dipole operator exhibits axial symmetry (along z in this example). If the
electronic structure is different alongdifferent, orthogonal directions of the sample
the x-ray absorption cross section will be as well. This directional or polarization
dependence is referred to as dichroism.

4. Thex-ray absorption line is referred to asK (when the initial state is a 1s electrons),
L (for the 2s, p electrons), orM (for the 3s, p, d electrons) x-ray absorption edges.

More general, one finds that the x-ray absorption cross section is a direct measure
of the number of empty states of unoccupied the electronic structure. For example,
for a 2p to 3d, or L-transition, the integrated intensity of the x-ray absorption cross
section is proportional to the number of empty d-states, which is why the Fe L-edge
appears stronger than the Co L-edge or the Ni L-edge. This effect is also sometimes
referred to as white line sum rule (see e.g. [2]), and it has to be considered, when
spectra are analyzed quantitatively to determine relative concentrations. The white
line sum rule states that the x-ray absorption cross section is proportional to the
isotropic (not spin resolved) density of states where polarization or symmetry effects
do not play a role. A direct consequence of this is that it allows to easily distinguish
between a metal and an oxide as shown in Fig. 2.4. While the available d-states in a
metal are degenerate the absorption line appears as a single peak, since all available
states are centered around the Fermi energy. Hybridization of metal d-electrons and
oxygen p and s electrons the resulting crystal fields will lift that degeneracy and
therefore the available empty states will be spread out and grouped over a larger
energy range. The resulting, spectrum, unique for each compound, can be used to
identify different chemical states of the sample [8] as shown in Fig. 2.4.

In combination with the uniaxial nature of the dipole operator this also implies
that one can easily detect symmetries of the electronic structure. For example, the
fact that the electronic structure of a layered oxide is highly asymmetric leads to a
strong L-resonance when the x-rays are polarized perpendicular to the plane, while
the line vanishes otherwise [9]. Generally speaking, any deviation of the electronic
structure from perfect cubic symmetry will lead to a similar asymmetry of the x-ray
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absorption cross section (optical tensor), that can be detected by varying the linear
or circular polarization of the incoming x-rays.

Finally we note that typical L-edge spectra consist of two main peaks, caused
by the spin-orbit (L S) which leads to a splitting of e.g. the p-electron levels into
a p3/2, i.e. (L + S) and a p1/2, i.e. (L − S) state, corresponding to the L3 and L2

absorption edges. This splitting is absent for K-edges. The spin-orbit splitting will be
of particular importance for the interpretation of x-ray magnetic dichroism effects,
as we will see later. Typical examples of experimental L3,2-edge XAS spectra are
shown in the left panel of Fig. 2.4. With x-ray monochromators providing an energy
resolution of typically better than 0.1 eV, both the spin-orbit coupled edges separated
by several eV, as well as absorption resonances of Fe, Co and Ni, which are separated
by more than 50eV can be easily distinguished.

2.1.2.1 Detection Approaches: Surface Versus Bulk

There are essentially two ways to detect the soft x-ray absorption cross section.
One can either detect the transmitted photons or utilize secondary probes, such as
electrons and fluorescence photons, which are generated in the x-ray absorption
process as shown in Fig. 2.5.

Fig. 2.5 Different approaches to measure x-ray absorption. Top row: Transmission through the
sample is measured using appropriate photon counting devices upstream of the samples. Absorption
resonances appear as strong reduction in the transmitted intensity. Bottom row: Collecting the
(secondary) electron yield from the surface of the sample provides a surface sensitive approach.
Absorption edges are characterized by an increase in electron yield
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In the first case one directly records the transmitted intensity through the sample
and calculates the absorption cross section using the Lambert–Beer rule (2.1). Com-
paring the transmitted intensity to the incoming x-ray intensity allows for a direct
quantitative measurement of the x-ray optical properties of the sample. As typical
penetration depths of soft x-rays are about 100nm, XAS measured in transmission
mode requires x-ray transparent specimens. X-ray detectors located downstream of
the sample are used in thin films that are deposited on x-ray transparent substrates,
such as Si3N4, which are commonly used in transmission electron microscopy and
readily available. In cases, where thin films are used in conjunction with substrates
where the transmitted x-ray intensity is converted into visible light (luminescence)
[10] regular photo diodes can be used.

The indirect way to detect the x-ray absorption cross section is to collect the
electrons or fluorescence photons emitted from the sample. Within a few attoseconds
after the initial photo excitation process there is an emission of Auger electrons or
fluorescence photons. The latter can be detected using appropriate photo diodes or
photo multiplier. However, the fluorescence yield is strongly affected by saturation
effects (self-absorption) if the magnetic film is thicker than a few nm, since the
penetration depth and hence the probing volume changes and is reduced in the same
way as the fluorescence yield increases. For this reason the fluorescence detection
method is typically used for diluted samples e.g. magnetic semiconductors [11] or
to access the magnetism of metal ligand in biological molecules [12]. In addition,
the fluorescence yield is very weak for soft x-ray energies since the Auger channel
dominates the recombination process. Each emitted Auger electron that is produced
by x-ray absorption processes within several tens of nanometers from the surface
will lead to the generation of hundreds of low energy secondary electrons, because
the mean free path of the initial Auger electron is only a few nm. However, since
also the mean free path of the secondary electrons is limited the vast majority of the
emitted electrons will originate from the first ten nanometer of the sample, providing
the high surface sensitivity using electron yield detection. In contrast to fluorescence,
which is a rather bulk sensitive detection method, sample current measurements are
surface sensitive, but are limited to electrically conducting samples.

2.1.2.2 Soft X-ray Dichroism

Using polarized x-rays, XAS becomes sensitive to study the magnetic properties
of materials. Depending on the polarization, i.e. linear or circular polarization, two
x-ray magnetic dichroism effects can be distinguished (2.6).

• X-raymagnetic circulardichroism (XMCD)uses circularly polarized x-rays and
is used to characterize ferro- and ferrimagnetic materials, i.e. magnetic materials
with a net magnetic moment. Since time reversal symmetry is broken in amagnetic
material, a dichroism effect is observed using circular polarized x-rays, which
exhibit a defined direction.
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Fig. 2.6 Soft X-rayMagnetic Dichroism. Circular polarized x-rays preferably excite electrons with
a particular spin as shown on the right hand side. In a magnetic material a different number of spin
up and spin down electrons is observed at the Fermi level, which is why left and right circular
polarized x-rays “see” a different number of final states. For this reason the line strength depends
on the relative orientation of spin, orbital and x-ray angular momentum as shown for the example
of Iron on the left hand side

• X-ray magnetic linear dichroism (XMLD) uses linearly polarized x-rays and
allows in particular investigating antiferromagnetic materials with no net magnetic
moment, but where the electronic structure exhibits a uniaxial symmetry.

The XMCD effect describes the fact, that the absorption of circularly polarized
x-rays depends on the relative orientation of the helicity of the x-rays σ and the
direction of the magnetization of the ferro-/ferrimagnetic sample M, i.e. an either
parallel or antiparallel orientation projected onto the photon propagation direction,

XMCD ∼ σ · 〈M〉. (2.3)

Experimentally, XMCD contrast can be obtained by

• modulation of circular polarization (left and right)while keeping themagnetization
direction constant,

• reversing the direction of the magnetization through application of an external
magnetic field for fixed polarization, and

• utilizing the reversed spin-orbit coupling at corresponding absorption edges, e.g.
L3,2 edges at fixed polarization and magnetization.

Similarly, the XMLD effect describes the difference in absorption of linearly
polarized x-rays, where the x-ray polarization (E) is parallel and perpendicular to
the magnetization axis. XMLD is generally assumed to be proportional to the square
of the magnetization

XMLD ∼ E · 〈M2〉 (2.4)
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and therefore, magnetic moments in both ferromagnetic and antiferromagnetic mate-
rials contribute to the XMLD signal. However, as in itinerant metallic ferromagnets
the XMLD signal is much smaller than the corresponding XMCD effect, XMLD is
primarily used to study antiferromagnetic systems, whereas XMCD is the dominant
effect in ferro- and ferrimagnetic materials.

Figure2.6 shows a typical experimental XMCD spectrum obtained at the L3,2

edges in a metallic Fe thin film. Large changes in the absorption μ(E) occur at the
resonant energies for the two opposite orientations between the magnetization of the
sample and the helicity of the x-rays. The difference of the two absorption profiles is
referred to as the XMCD signal. A pronounced feature of XMCD is the sign reversal
between the L3 and the L2 edge. It can be understood within the physical origin of
XMCD based on a simple two step model.

We consider the XMCD effect at the L edges in a 3d metal, such as Fe, Co,
Ni. As stated above, the spin-orbit coupling splits the 2p electronic levels into a
j = 3/2 and a j = 1/2 level, with spin and orbit being parallel in the former and
antiparallel in the latter case, and which correspond to the L3 and L2 absorption
edges, respectively. In the first step, due to angular momentum conservation and
spin-orbit coupling the absorption of a circularly polarized photon with its helicity
parallel (antiparallel) to the 2p orbital moment yields a photoelectron with its spin
pointing down (up). The second step is the dipolar transition of the spin polarized
photo electron into an unoccupied electronic state of the valence band above theFermi
level. As the exchange interactions shifts the majority valence band relative to the
minority valence band, there is a difference of spin up and spin down holes, which
the photoelectron can occupy. Following Fermi’s Golden Rule (2.2) coefficients,
therefore has a negative peak at the L3 edge and, due to the reversed LS coupling a
positive peak at the L2 edge (see Fig. 2.6). As the difference in spin-up and spin-down
density of states determines the local spin moment, XMCD can directly probe the
spin and orbital magnetic moments separately.

The theoretical foundation for this important feature of XMCD are the magneto-
optical sum rules, which were developed by Thole [13] and Carra [14]. As can be
seen from Fig. 2.6 the XMCD spectrum can be split into a contribution from the
L3 resonance and one from the L2 resonance, where the respective areas under the
experimental XMCD spectrum are labelled as A3 and A2. The spin moment sL can
then be obtained in its general form from

mS = −3nhμB(A3 − 2A2) + mT (2.5)

with nh the number of holes and mT taking into account an anisotropic spin density
through a magnetic dipole operator. Similarly, the orbital moment mL can be derived
from

mL = −2nhμB(A3 + A2). (2.6)

The fact, that XMCD spectroscopy can directly and quantitatively determine local
and element-specific magnetic moments [15], is one of its most important features.
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2.1.3 Soft X-ray Absorption Microscopy

2.1.3.1 Instruments—Photon Out Versus Electron Out

Optical microscopies are diffraction limited in spatial resolution to the
sub-micrometer regime, while the nm wavelength of soft x-rays opens the door
to nanoscale spatial resolution. The major advantage of x-ray based microscopy
techniques compared to magneto-optical microscopies is its elemental sensitivity
and quantitative information, originating in the X-ray dichroism effect as magnetic
contrast mechanism. Soon after the x-ray magnetic dichroism effects had been estab-
lished [16–18], it became clear that using those effects as magnetic contrast mecha-
nism enables magnetic x-ray microscopies providing a unique combination of high
spatial and temporal resolution, inherent element-specificity and quantitative mag-
netic information as described in the previous section. In the following we will
describe three different x-microscopy techniques, which are able of using x-ray
magnetic dichroism effects as a a contrast mechanism. They are shown in Fig. 2.7.

Historically, the first x-ray magnetic microscopy images were reported using an
X-ray photo emission electron microscope (X-PEEM) by Stöhr et al. [19]. There,
secondary electrons, which are generated in the x-ray absorption process propa-
gate to the surface, where they escape and are being detected by electron optics.

Fig. 2.7 Three different types of x-ray microscope. From right to left. Photoemission Electron
Microscope (PEEM) images the spatial variation of the electron yield excited by an incoming unfo-
cused x-ray beam. Conventional electron optics generate a magnified image on a screen. Trans-
mission X-ray Microscope (TXM), operates very much like a conventional optical microscope
but employs Fresnel zoneplates as lenses. Scanning Transmission X-rat Microscope (STXM) is a
scanning probe microscope using a small x-ray spot as probe and a simple photo diode as detector
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X-PEEM is a so-called photon-in electron-out technique [20]. Relying on classic
electron optics, commercial X-PEEM systems were available early on and have
been installed at nearly every synchrotron facility worldwide. Today, state-of-the-art
X-PEEM systems use aberration corrections to push the spatial resolution into the
nanometer regime and to increase the throughput such as the PEEM-3 instrument at
the Advanced Light Source in Berkeley CA [21]. The probing depth of X-PEEM is
limited to the escape depth of electrons. As this is a few nm only, X-PEEM is rather
surface sensitive [22, 23].

Although X-rays have been discovered already in 1895, x-ray optics, which are
needed as the refractive index of normal optics is close to unity, were not avail-
able until the mid 1980s, when the advent of electron beam lithography enabled the
development of circular gratings, so-called Fresnel zone plate (FZP) lenses. Those
FZPs are now commonly used as focusing x-ray optics in soft x-ray microscopes.
In 1996, the first image of a magnetic domains at 59nm spatial resolution, recorded
with the full-field transmission soft x-ray microscope (TXM) at BESSY I in Berlin,
was reported [24]. A few years later an interference-controlled scanning transmis-
sion x-ray microscope was developed [25]. Both the zone plate based x-ray micro-
scopes, TXM and STXM, as well as X-PEEM, which provide real-space images of
magnetic structures and their dynamical behavior, have become workhorses to the
magnetic imaging communities and can be found at nearly all synchrotron labora-
tories worldwide. In this chapter we will discuss results obtained using STXM and
PEEMmicroscopy. While TXMmicroscopy typically provide higher spatial resolu-
tion, about 10nm compared to 20nm, PEEMand STXMmicroscopy are better suited
for studies that require high spectral resolution as it was the case for the examples
presented here.

2.1.3.2 Carbon Based Nanostructures in X-ray Microscopy:
An Application

Before we discuss some examples of x-ray microscopy and spectroscopy of carbon
based materials with particular focus on their magnetic properties, we would like to
show a fascinating example of how “carbon” can be used to boost the performance of
an x-ray microscope. Figure2.8 shows several PEEM images of a so called patterned
media device.1 These are magnetic films that are lithographically patterned so that
magnetic switching occurs only in pre-defined regions. In this case a lithography
process was used to define 25 by 25nm islands, separated by 35nm grooves. Images
on the right hand side are taken of the bare sample, while the surfacewas coveredwith
a self assembledmonolayer of diamondoids [26] for the images shownon the left hand
side of Fig. 2.8. Magnetic PEEM images are obtained by tuning the photon energy to
an absorption resonance, in this case the Co L3 resonance and acquiring two images
with opposite x-ray helicity. The difference between these two images, the XMCD
image, shows only magnetic contrast as we have seen in Fig. 2.6, while the sum or

1 These samples have been provided by Olav Hellwig, Hitachi Global Storage Technology.
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Fig. 2.8 Functionalized
Carbon in Electron
Microscopy. A self
assembled monolayer of
diamondoids improves the
resolution of magnetic
PEEM. See the text for a
detailed explanation [26]

average contains information about variation of topography, concentration or in the
case of PEEM the work function. That means that the magnetization in black squares
is pointing in one direction, e.g. up, while it is pointing in the opposite direction in the
white areas. The lower panel shows linescans taken from the topography images, with
(black) and without (red) diamondoids . The images were taken from the same spot
of the sample under identical imaging conditions. So, why is it that the diamondoid
layer improves the resolution of the PEEM?

As we discussed earlier, PEEM microscopy is based on an electrostatic lens sys-
tem that is used to image the lateral distribution of secondary electrons [27]. It is
important to realize that the emitted secondary electrons exhibit a very large energy
spread, so that without any additional filtering the resolution is limited by chro-
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matic aberrations. However, the application of filters will reduce the image intensity
significantly, so that ultimately, even with filtering, the resolution is limited to about
25nm. This is confirmed in the PEEM images shown in Fig. 2.8.Without diamondoid
layer the 35nm grooves are well visible while the 25nm islands are at the limit of the
resolution. However, once the surface is covered with diamondoids the resolution
improves dramatically and the islands are clearly visible int he topography images
and themagnetic images appear sharper as well. The reason is that the electrons emit-
ted from the magnetic layers are now recaptured in the diamondoid layer, because
diamondoids have a significant negative electron affinity. In addition diamondoids
exhibit a strong peak in their unoccupied valence states. That means that the captured
electrons after thermalization can be re-emitted with a very small energy distribution.
This particular feature of acting as a monochromator in electron emission (see [26]
and references therein), makes diamondoids very fascinating tools for the develop-
ment of new cathode materials. Here, it presents a simple, disruptive approach to
improve the spatial resolution of a microscope without actually changing the optical
column of the microscope.

2.2 X-ray Spectromicroscopy of Magnetic Graphite

In this section we will give several examples of how x-ray microscopy, x-ray spectro-
microscopy and high resolution XMCD spectroscopy have provided unique insight
into the origin of magnetism in carbon and the relevant physical processes. We will
start with simple magnetic domain images of proton irradiated carbon that show that
no magnetic impurities are needed to establish ferromagnetic order in carbon. Closer
inspection of the spectroscopic signatures that are responsible for forming the image
contrast will then reveal, which electronic states are responsible for the magnetic
order and how these states are possibly formed during irradiation.

2.2.1 Elemental Probe of Magnetism

In 2003 Esquinazi and co-workers were able to demonstrate that pure graphite can be
made magnetic by simply introducing defects using proton bombardment [28]. The
possibility of magnetic order in metal-free carbon is fascinating from a fundamental
as well as from a technological point of view. As mentioned before, classical mag-
netism is observed in elements with d and f electrons, while one would not expect
to observe long range magnetic order in a light element with only s and p electrons.
Also, due to the “renaissance” of carbon based materials over the past two decades
thanks to the development of reproducible methods to fabricate carbon nanotubes,
bucky balls and graphene, the technological implication of making these devices
magnetic would be far reaching.
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There have been numerous reports of ferromagnetism in virgin graphite [29] as
well as graphite treated by ion bombardment [28, 30, 31] and carbon nanoparticles
[32–34] in recent years. It could be shown that the observed magnetism in proton
irradiated carbon is not caused by magnetic impurities but is related to the π -states
of carbon [35] as we will discuss later. However, the question how it is possible to
establish ferromagnetic order in carbon-based systemswithout anymetallicmagnetic
or non-magnetic elements still remains in general unanswered. Several theoretical
studies in the past have suggested that absorption of hydrogen at the edges of [36]
or on [37] graphene sheets as well as hydrogen chemisorption in graphite [38] may
lead to the formation of a spin polarized band at the Fermi level and robust fer-
romagnetic order. While it is obvious that defects or ad-atoms play a central role,
the origin of the magnetic moment observed in graphite [29] is still under discus-
sion, see Chap. 1. Another intriguing question arises from the observation that the
apparent magnetization (calculated taking the whole sample mass) detected in mag-
netic graphite is typically many orders of magnitude smaller than the one found
for “classical"magnets like the 3d-transition metals. Apart from the fact that this
makes it challenging to obtain a reliable and detailed understanding of the relevant
processes that cause the ferromagnetic order in graphite [39], it also leads to the
question of how such a system exhibiting a small magnetization and presumably
negligible magnetic exchange coupling can be a ferromagnet at room temperature.
The explanation of such extremely small magnetization resides in the uncertainty of
the total ferromagnetic mass in the measured samples and in the role of non-metallic
defects. Recent studies on proton- [30] and carbon-irradiated [31] graphite managed
to provide maximum limits for the induced ferromagnetic mass allowing to estimate
magnetization values exceeding 5 emu/g. Although important evidence has been
obtained that supports the role of vacancies in the graphite ferromagnetism [40], the
very origin and extent of surface magnetism [41] remains open [39].

Any study that addresses the magnetism of carbon has to address the purity of the
samples or the presence of magnetic contaminants first. Again, the element speci-
ficity of x-ray absorption is crucial. The upper panel in Fig. 2.9 shows conventional
laboratory based scanning probe microscopy images of a proton irradiated spot on a
200nm thick graphite film. Atomic force microscopy is sensitive to the topography
of the samples, showing that at the point of impact material has been removed. In
addition a ring of magnetic material has formed around the irradiated spot as evident
from the magnetic force microscopy image on the right. The sample was then trans-
ported to a scanning transmission x-ray microscope to determine if the impact area
shows any presence of ferromagnetic 3d metals like Fe, Co or Ni. However, none of
these materials could be observed within the detection limit of the setups which is
around 100 parts per million.

Local x-ray absorption spectra acquired in this area at the carbonK-edge using lin-
ear polarization also showed that the number of occupied electronic states is reduced
in the area around the point of impact, essentially indicating that this area is less
metallic or the p-electrons are more localized [42] as we will discuss in detail in the
next section. Evidently, the proton irradiation introduces defects that help to localize
p-electrons, which in turn leads to the existence of long range ferromagnetic order of

http://dx.doi.org/10.1007/978-3-319-39355-1_1
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Fig. 2.9 The top row
compares atomic force and
magnetic for microscopy
images of a proton irradiated
spot on graphite. The bottom
row shows x-ray microscopy
images of the same area
obtained at the Fe-, Co- and
Ni-L absorption resonance
[35]

the slightly distorted graphite lattice. However, if the distortion becomes too large,
like in the center of the impact area, the ferromagnetic order is destroyed and one
observes an increase in delocalization of the p-electrons again. The fact that fer-
romagnetism exists only in a very small window of defect concentration explains
why the observed magnetization values are small since the optimum doping level is
generally not realized throughout a macroscopic sample.

However, stable ferromagnetic order at room temperature may be realized in
small regions or nanostructures as it is the case in this example. The diameter of
the magnetic ring is about 3µm and its width is less than 1µm. In general it will
be very difficult to detect the magnetic moment using macroscopic probes, which is
why conventional approaches usually require a sample with thousands of irradiated
spots. On the other hand typical scanning probes like magnetic force microscopy
are sensitive enough to detect the magnetic stray field originating from such a spot
as seen in Fig. 2.9, however without element specificity it remains unclear what the
origin of the magnetic signal is. Using XMCD as a contrast mechanism in an x-ray
microscope finally allow the successful observation of an element specific magnetic
signal originating only from carbon atoms in the sample as shown in Fig. 2.10. Again
the magnetic ring can be identified, this time as a result of the difference between
two images of the spot obtained with circular polarized x-rays. The image contrast

Fig. 2.10 XMCD images of
proton irradiated carbon
prepared at different
temperatures. Higher
preparation temperature lead
to a more robust magnetic
order that exists over a wider
range of irradiation fluences
and even the formation of
magnetic domains [35]
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Fig. 2.11 STXM images of the same irradiated spot as discussed previously. Images were obtained
by averaging over two images acquired at a resonance with opposite helicity. The images were also
normalized to an image acquired off resonance to account for small thickness variations as seen by
AFM similar to Fig. 2.9

is a direct measure of the magnetic moment aligned with the polarization vector
of the x-rays. In [35] the authors conclude that the magnetic order is caused by an
atomic magnetic moment of the order of 0.1 . . . 0.5µB , which is consistent with
the full magnetic moment of a single carbon atom. This means that indeed the full
magnetization can be obtained in small structures and furthermore explains why the
ordering temperature is above room temperature for these materials (Fig. 2.11).

2.2.2 Magnetic Order and Electronic Structure

In Sect. 2.1.3.2 we discussed how one can compare difference and sum images in x-
raymicroscopy to obtain information about the magnetic order as well as topography
and concentration. In the proton irradiated samples the typographydoes not play a role
since film roughness (≈1nm) is small compared to the total thickness of the sample
(200nm), at least on the scale of the resolution of the microscope (25nm). Also the
samples are pure carbon, so we would not expect any variation of the concentration.
However, if we evaluate the sum images acquired at the π and σ resonance we find
a variation of available empty π and σ states in the irradiated area. The grey scale
represent the transmitted x-ray intensity through the sample. Bright areas mean that
the transmission is high or absorption is low. For a given resonance the absorption
is directly proportional to the number of available final states in this case π or σ ,
as described in (2.2). This means the bright areas in the images represent areas in
the sample with a reduced number of empty states π or σ states, or vice versa an
increase in the (occupied) π or σ electron density. What we can clearly deduce from
these images is that the proton irradiation leads to a shift of π -type electron density
from the center of the area towards the magnetic ring, leaving behind an area with
an electronic structure that has more σ -type character. The size of the contrast is of
the order of 10% and because of the white line sum rule we can therefore estimate
that the relative changes of π to σ bonds in the irradiated area of similar order of
magnitude.
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Altogether, polarizationdependent x-ray absorption spectromicroscopyhas shown
us that:

1. Magnetic impurities are not required to establish long range magnetic order in
carbon.

2. One requirement for establishing ferromagnetic order is the correct balance
between π and σ type bonds between carbon atoms. This can be achieved by
irradiation with protons, which disturb the crystallographic structure and there-
fore redistribute electronic weight.

2.2.3 High Resolution XMCD Spectroscopy of Magnetic
Carbon

The last questionwewill address regarding themagnetism of carbon in this chapter is
which electronic states are responsible for the magnetic order as shown in Fig. 2.12.
For this purpose XMCD spectra of irradiated graphite samples were acquired using
an XMCD spectroscopy setup. The magnetization of the sample was reversed in a
magnetic field of 0.5T for every data point while the photon energy was scanned
through the carbon 1s resonance. This was done for virgin as well as irradiated
samples. Themost obvious difference between the two samples is the drastic decrease
in intensity of the so called π� resonance, which can be readily understood by the
decrease in crystallographic order due to proton irradiation and the redistribution of
spectral weight as discussed in the previous section.

Fig. 2.12 X-ray absorption
spectra of irradiated (black)
and virgin (red) HOPG
samples measured using EY
at room temperature, as well
as the XMCD difference
(×100) detected using an
applied field of ±0.5 T. The
spectra were obtained at 30◦
grazing incidence using
circular polarization. From
[43]
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The XMCD spectra of both samples show a broad feature in the valence band
around 280eV. The feature can already be observed in the virgin sample, which
exhibits very weak ferromagnetic signal (not to be mixed up with a “weak ferro-
magnetic order”) [29]. However, the magnetization increases upon proton irradia-
tion leading to a significant increase in the XMCD intensity originating from the spin
polarized valence band. In addition proton irradiation leads to the formation of a peak
in the XMCD spectra around 286eV that can be readily attributed to C-H bonds due
to the implantation of protons into the graphite lattice. This feature is absent in the
virgin sample. The fact that we observe a rather strong XMCD signature from the
valence band is consistent with our observations in the previous section, in which
we found that proton irradiation leads to a redistribution of electronic states.

References

1. E. Thelen, The ramac 350 resoration web site. http://www.ed-thelen.org
2. J. Stöhr, H.C. Siegmann, Magnetism: from Fundamentals to Nanoscale Dynamics (Springer,

Berlin, 2006)
3. M. Faraday, Phil. Trans. R. Soc. 136, 1 (1846)
4. J. Kerr, Phil. Mag. 3, 321 (1877)
5. A. Hubert, R. Schäfer, Magnetic Domains (Springer, Berlin, 1998)
6. J. Stöhr, Y. Wu, B.D. Hermsmeier, M.G. Samant, G.R. Harp, S. Koranda, D. Dunham, B.P.

Tonner, Science 259, 658 (1993)
7. H. Ohldag, A. Scholl, F. Nolting, S. Anders, F.U. Hillebrecht, J. Stöhr, Phys. Rev. Lett. 86,

2878 (2001)
8. T. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, Phys. Rev. B 64, 214422 (2001)
9. C.T. Chen, L.H. Tjeng, J. Kwo, H.L. Kao, P. Rudolf, F. Sette, R.M. Fleming, Phys. Rev. Lett.

68(16), 2543 (1992)
10. C. Jacobsen, S. Lindaas, S. Williams, X. Zhang, J. Microsc. 172(2), 121 (1993)
11. H. Ohldag, V. Solinus, F.U. Hillebrecht, J.B. Goedkoop, M. Finazzi, F. Matsukara, H. Ohno,

Appl. Phys. Lett. 76, 2928 (2000)
12. T. Funk, S. Friedrich, A. Young, E. Arenholz, S. Cramer, Rev. Sci. Instrum. 73, 1649 (2002)
13. B. Thole, P. Carra, F. Sette, G.V. der Laan, Phys. Rev. Lett. 68 (12)(12), 1943 (1992)
14. P. Carra, B.N. Harmon, B.T. Thole, M. Altarelli, G.A. Sawatzky, Phys. Rev. Lett. 66, 2495

(1991)
15. C.T. Chen, Y.U. Idzerda, H.J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F.

Sette, Phys. Rev. Lett. 75, 152 (1995)
16. G. van der Laan, B.T. Thole, G.A. Sawatzky, J.B. Goedkoop, J.C. Fuggle, J.M. Esteva, R.

Karnatak, J.P. Remeika, H.A. Dabkowska, Phys. Rev. B 34, 6529 (1986)
17. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev.

Lett. 58(7), 737 (1987)
18. C.T. Chen, F. Sette, Y. Ma, S. Modesti, Phys. Rev. B 42, 7262 (1990)
19. J. Stoehr, Y. Wu, B.D. Hermsmeier, M.G. Samant, G. Harp, S. Koranda, D. Dunham, B.P.

Tonner, Science 259, 658 (1993)
20. X.M. Cheng, D.J. Keavney, Rep. Prog. Phys. 75, 026501 (2012)
21. J. Feng, E. Forest, A. MacDowell, M. Marcus, H. Padmore, S. Raoux, D. Robin, A. Scholl,

R. Schlueter, P. Schmid, J. Stoehr, W. Wan, D.H. Wei, Y. Wu, J. Phys. Cond. Matt. 17, S1339
(2005)

22. D. Wei, Y.L. Chan, Y.J. Hsu, J. Electron Spectrosc. Relat. Phenom. 185(10), 429 (2012)

http://www.ed-thelen.org


44 H. Ohldag

23. P. Fischer, M.Y. Im, C. Baldasseroni, C. Bordel, F. Hellman, J.S. Lee, C.S. Fadley, J. Electron
Spectrosc. Relat. Phenom. 189, 196 (2013)

24. P. Fischer, G. Schütz, G. Schmahl, P. Guttmann, D. Raasch, Z. Phys, B Cond. Matt. 101(3),
313 (1996)

25. A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B.
Harteneck, E.G. Rightor, G.E. Mitchell, A.P. Hitchcock, L. Yang, T. Warwick, H. Ade, J.
Synchrotron Radiat. 10, 125 (2003)

26. H. Ishiwata, Y. Acremann, A. Scholl, E. Rotenberg, O. Hellwig, E. Dobisz, A. Doran, B.
Tkachenko, A. Fokin, P. Schreiner, J. Dahl, R. Carlson, N. Melosh, Z. Shen, H. Ohldag, Appl.
Phys. Lett. 101, 163101 (2012)

27. A. Scholl, Curr. Op. in Solid State & Mater. Sci 7, 59 (2003)
28. P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.H. Han, T. Butz, Phys. Rev. Lett. 91, 227201

(2003)
29. P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B.

Kohlstrunk, M. Lösche, Phys. Rev. B 66, 024429 (2002)
30. J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, T. Butz, N. García, Phys. Rev.

B 76, 161403(R) (2007)
31. H. Xia, W. Li, Y. Song, X. Yang, X. Liu, M. Zhao, Y. Xia, C. Song, T.W. Wang, D. Zhu, J.

Gong, Z. Zhu, Adv. Mater. 20, 1 (2008)
32. Y. Kopelevich, R.R. da Silva, J.H.S. Torres, A. Penicaud, T. Kyotani, Phys. Rev. B 68, 092408

(2003)
33. R. Caudillo, X. Gao, R. Escudero, M. José-Yacaman, J.B. Goodenough, Phys. Rev. B 74,

214418 (2006)
34. N. Parkanskya, B. Alterkopa, R.L. Boxmana, G. Leitusb, O. Berkhc, Z. Barkayd, Y. Rosenberg,

N. Eliaz, Carbon 46, 215 (2008)
35. H. Ohldag, T. Tyliszczak, R. Höhne, D. Spemann, P. Esquinazi, M. Ungureanu, T. Butz, Phys.

Rev. Lett. 98(18), 1 (2007)
36. K. Kusakabe, M. Maruyama, Phys. Rev. B 67, 092406 (2003)
37. E.J. Duplock, M. Scheffler, P.J.D. Lindan, Phys. Rev. Lett. 92, 225502 (2004)
38. O.V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008)
39. P. Esquinazi, J. Barzola-Quiquia, D. Spemann, M. Rothermel, H. Ohldag, N. Garcia, A. Setzer,

T. Butz, J. Magn. Magn. Mater. 322, 1156 (2010)
40. X. Yanga, H. Xiab, X. Qinc, W. Lia, Y. Daia, X. Liua, M. Zhaoa, Y. Xiaa, S. Yana, B. Wangc,

Carbon 47, 1399 (2009)
41. M. Dubman, T. Shiroka, H. Luetkens, M. Rothermel, F.J. Litterst, E. Morenzoni, A. Suter, D.

Spemann, P. Esquinazi, A. Setzer, T. Butz, J. Magn. Magn. Mater. 322, 1228 (2010)
42. K. Schindler, N. Garcia, P. Esquinazi, H. Ohldag, Phys. Rev. B 74, 045433 (2008)
43. H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer, T. Butz, New J.

Phys. 12, 123012 (2010)



Chapter 3
Evidence for Magnetic Order in Graphite
from Magnetization and Transport
Measurements

Daniel Spemann and Pablo D. Esquinazi

Abstract This chapter reviews the experimental evidence obtained for the existence
of magnetic order triggered by defects and/or non-magnetic ions in graphite with
very low magnetic impurities concentrations. We demonstrate how and where this
magnetically ordered state is produced in graphite bulk, thin flakes and powders
in a reproducible manner. The experimental evidence obtained in the last 12years
leaves no doubt that this ferro- or ferrimagnetism is intrinsic of the graphite struc-
ture containing certain defects and not related to magnetic impurities. The main aim
of this chapter is to provide the reader the key experimental facts and characterisa-
tion methods necessary to arrive at such a conclusion. We restrict the discussion to
results obtained from two main magnetic characterisation methods, namely magne-
tization and transport measurements. In addition, we describe in Sect. 3.2 the main
characterization method for trace element analysis to obtain the magnetic and non-
magnetic impurities concentration. The chapter is concluded with an overview of
further, independently obtained evidence for magnetic order in graphitic materials
from literature.

3.1 Magnetic Signals from Defects in Graphite

As we learn in Chap.1 of this book, a carbon vacancy or a hydrogen atom bonded
to a carbon p-electron, or carbon atoms near a vacancy of the graphite structure
can produce a finite magnetic moment. Several theoretical descriptions of possible
magnetic states in the graphite/graphene structure were published since 2003, see
[1–3] and supported, e.g., by STMmeasurements on single carbon vacancies [4]. The
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idea that graphite or a carbon-based material can show ferromagnetism is, however,
much older, see the review in [5]. From theory and experiments we have learned that
a delicate balance between the defect density, i.e. distance between defects, and at
which positions within the graphite lattice those are located, is necessary to produce
a magnetically ordered state. As will be shown below, ion irradiation proved to be
a suitable method for the controlled introduction of defects in the graphite lattice.
In the last years several reviews were published on defect-induced magnetism in
graphite and other carbon-based materials [5–7].

Though the appearance of amagnetically ordered state through defects depends on
the details of the lattice structure and the elements involved, themain concepts gained
from the physics of defect-induced magnetism (DIM) in graphite can nevertheless
be used to understand qualitatively how this state can occur in other materials, like
in non-magnetic oxides [8].

3.1.1 Ion Irradiation: A Simple Way to Produce Defects

As shown in Chap.1, a C-vacancy or a H-chemisorption defect can produce a mag-
netic moment in the graphite structure. The key to get a magnetically ordered state
lies in the position and the distance between these vacancies/defects, i.e. their con-
centration. A simple way to produce them is via irradiation with protons or heav-
ier ions. Were the formation energy of a vacancy or H-chemisorption defect equal
in both sublattices A and B of graphite, we would have a completely balanced
(anti)ferrimagnetically ordered state with zero total magnetic moment, e.g. after
proton irradiation. This is due to the fact that the spin direction of a given C-vacancy
or H-chemisorption defect in a graphene layer depends on which sublattice it resides,
see for example [9]. As we shall demonstrate below, this, however, does not happen
because both the formation energies of a C-vacancy and H-chemisorption defect dif-
fer in the A and B sublattices of graphite due to the stacking of the graphene sheets
[10–12]. In a single graphene sheet, however, the formation energies are the same for
both sublattices and the number of defects created in a statistical process, e.g. due to
ion irradiation, is expected to be the same on both sublattices. Consequently, nomag-
netic order is expected for this type of defective graphene in line with experimental
findings [13–17].

3.1.1.1 Defect Production in Graphite by Proton Irradiation

When a highly energetic proton traverses matter it interacts with the electrons and
nuclei of the atoms in the material via Coulomb interaction thereby transferring its
kinetic energy to the electrons and nuclei in a large number of binary collisions. As
a consequence, the proton slows down, a process called stopping until it exits the
target material or is stopped completely at a depth called range. There are two con-
tributions to stopping, electronic and nuclear stopping originating from interactions

http://dx.doi.org/10.1007/978-3-319-39355-1_1
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Fig. 3.1 a Electronic and nuclear stopping of protons in graphite calculated using SRIM. b Ion
trajectories of 2 and 2.25 MeV protons in graphite as well as the resulting range distributions
calculated fromMonte Carlo simulations using SRIM. The scale for the lateral spread of the proton
beam is the same as the depth scale which demonstrates the low amount of lateral straggling
compared to the proton range

with electrons and nuclei, respectively. The amount of stopping strongly depends on
the atomic number and velocity of the ion as well as the electron density and the
mean ionization potential of the target material. Figure3.1a shows the stopping of
protons in graphite as a function of kinetic energy calculated using the Stopping and
Range of Ions in Matter (SRIM) software package [18]. As can be seen, the stop-
ping increases with decreasing proton energy until a maximum, the Bragg-Peak, is
reached. The energy loss due to interactions with electrons vastly exceeds the energy
lost to nuclei, which only becomes noticable at the end of proton range. Since the
stopping of the protons typically requires a huge number of single collision events
the initial direction of the proton remains well preserved with a low amount of lateral
straggling and the range is characterized by a narrow depth distribution, see Fig. 3.1b.

The energy transfer to the electrons can lead to breakage of chemical bonds and
creation of vacancies in the electron shells of atoms which will subsequently be
refilled under the emission of Auger electrons or characteristic X-rays. The latter
can be employed for trace element analysis as described in Sect. 3.2. The energy
transfer to nuclei on the other hand can lead to the production of point defects, e.g.
vacancy-interstitial-pairs (Frenckel defects). This requires that the energy transfer
to a single nucleus is equal or greater than the material-specific lattice displacement
energyEd. Figure3.2 shows the depth profile of the C-vacancies produced in graphite
by 2 and 2.25 MeV protons calculated using SRIM. Starting from the surface the
vacancy concentration shows a moderate increase with depth until it steeply rises to
the maximum close to the proton range where the nuclear stopping is largest. From
theses plots defect densities can be calculated as a function of depth and ion fluence.

The range and the number ofC-vacancies are listed inTable3.1 for 2 and 2.25MeV
protons and compared to 2 MeV He+ ions. Whereas the protons penetrate several
tens ofmicrons into graphite, the 2MeVHe+ ion is already stopped after 5.5µm.The
total number and density of C-vacancies differ substantially between the ion types
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Fig. 3.2 Number of C-vacancies per 1 µm depth interval and incident proton for 2 and 2.25 MeV
protons in graphite (SRIM simulation assuming a displacement energy of Ed = 32 eV)

Table 3.1 Ion range and number of carbon vacancies for MeV protons and He+ ions extracted
from SRIM simulations

Ion Range R Carbon vacancies Ñv

µm Surface Maximum Total

µm−1· ion−1 µm−1· ion−1 ion−1

2MeV He+ 5.5 1.6 200 83

2MeV H+ 38.5 0.09 5.0 15.9

2.25MeV H+ 46.5 0.08 4.3 16.7

too with a 2 MeV He+ ion creating 83 vacancies on average whereas the protons
only produce around 16 vacancies each in total.

The number of vacancies nv produced per unit volume of the target material
can be calculated as nv = Φ · Ñv with Φ being the ion fluence, i.e. the number of
ions incident per unit area. In case of 2 MeV protons, a fluence of Φ = 1017 cm−2

will result in nv = 900 cm−1 ion−1 × 1017 ion cm−2 = 9 × 1019 cm−3 C-vacancies
in the near-surface area which corresponds to an atomic vacancy concentration of
cv = nvM/(ρNA) = 7.9 × 10−4 with the molar mass M = 12 g/mol of carbon and
the density ρ = 2.26 g/cm3 of graphite.

3.1.1.2 Localization of Hydrogen After Proton Irradiation

Since H-chemisorption defects provide magnetic moments and therefore might con-
tribute to the observed magnetic order in graphite, 3D hydrogen microscopy was
employed to study the location of the hydrogen after proton implantation (see [19]
for more details). The results can be summarized as follows: (i) The intrinsic hydro-
gen content of virgin ZYA grade HOPG from Advanced Ceramics is <0.3 at.-ppm
which represents the minimum detection limit (MDL) of the method; (ii) There is
an amount of ∼5 × 1015 cm−2 hydrogen adsorbed on the surface of the graphite
sample. This is a very important observation as will become clear below; (iii) The
implanted protons remain localized in the regions where they came to rest after the
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stopping process, i.e. there is no indication of hydrogen diffusion over length scales
more than 2 µmwhich represents the lateral and depth resolution of this microscopy
technique.

3.1.2 Curie Paramagnetism and Magnetic Order

One of the clearest ways to check for the effect of irradiation on the magnetic prop-
erties of graphite is through the measurement of the temperature dependence of the
magnetic moment before and after irradiation. This experiment has been realized in
2007 using a 3.5 mg HOPG sample of size 2 × 3 × 0.3 mm3 glued with varnish on
a high-purity Si substrate [20]. The possibility of measuring the sample before and
after irradiation without detaching it from the sample holder has the advantage that
direct handling of the sample is avoided which might otherwise introduce impuri-
ties if done without care. Figure3.3a shows the magnetic moment of this sample
(sample 1) as a function of temperature in a semilogarithmic scale. The tempera-
ture dependence of the virgin curve shows a minimum (maximum diamagnetism) at
T ∼ 30 K, which is usual for HOPG samples of good quality. After a broad proton

Fig. 3.3 a Total magnetic
moment (HOPG sample 1
with the Si substrate) as a
function of temperature at a
constant magnetic field
applied parallel to the
graphene planes for the
sample before and after
proton irradiation with a
broad beam of 0.8mm
diameter (total charge
450 µC at 100 nA proton
current). b The difference
between the two curves from
(a). This difference reveals
directly the irradiation effect.
The continuous line is the
function 3 × 10−5[emu
K]/T + 3 × 10−6[emu].
Taken from [20]

(a)

(b)
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Fig. 3.4 Hysteresis loops
for the same sample as in
Fig. 3.3 obtained for 5 and
300K as the difference
between the loops measured
after and before irradiation at
the same magnetic fields.
The inset blows up the data
in a smaller field range. After
[20]

beam irradiation covering most of the sample area, the magnetic moment shows a
clear increase in the whole temperature range, see Fig. 3.3a.

Figure3.3b shows the difference between the magnetic moment after the irradia-
tionminus that of the virgin state as a function of temperature at a constant field of 1 T.
This difference can be understood as the sum of two contributions, namely, a para-
magnetic one, which follows roughly the Curie law 3 × 10−5/T emu, and a constant
ferromagnetic contribution 3 × 10−6 emu, i.e. m(T ,B > Bs) � 3×10−5

T + 3 × 10−6

in emu, where Bs is the minimum saturation field for the ferromagnetic part. The
small but clear deviation between the fit and the data shown in Fig. 3.3b can be inter-
preted as being due to a small deviation from the Curie law, which is only valid for
low enough fields and high enough temperatures, i.e. only for x ∝ B/T � 1 one is
allowed to keep the first term only of the Brillouin function that provides the simple
1/T Curie law. Part of the deviation may also come from the assumption of a strictly
temperature-independent ferromagnetic contribution.

Thehysteresis loops shown inFig. 3.4, obtained at two temperatures by subtracting
the loops after irradiation from those obtained in the virgin state, justify the assump-
tion of the two magnetic contributions. The increase of the magnetic moment after
irradiation at room temperature is mainly due to the increase of the ferromagnetism
of the sample; only ∼25% of the increase is due to a paramagnetic contribution at
300K and 1 T. The paramagnetic contribution is clearly recognized in Fig. 3.4 from
the slope of the loops at fields above ∼0.25 T. The inset in this figure shows clearly
the finite irreversibility produced by the irradiation with coercivity fields of the order
of 0.02 T. The results shown in Fig. 3.3 clearly indicate that broad beam irradiation—
at the used proton current and fluence—triggers twomagnetic contributions, one due
to independent, localized magnetic moments and a second one with all the character-
istics of magnetic order with a Curie temperature above room temperature. Note that
the effect on the magnetic properties of graphite due to proton irradiation depends
on several parameters as the total implanted or irradiated charge, fluence and proton
current as well as on the geometry of the used proton beam, see [20] for more details.

In [21] different ions were used to check the correspondence between Curie para-
magnetism and a magnetically ordered state with the density of nominally expected
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N

Fig. 3.5 Paramagnetic parameter C, see (3.1), obtained from the fits to the magnetic moment
difference data as a function of the nominal total vacancy number produced by the irradiation for all
measured samples. The labels show the sample number and the label “FM” in brackets means that
this sample shows ferromagnetism induced by the irradiation. The point with the label “V” refers to
the samples in virgin, non-irradiated state, with similar sample volumes. The continuous line is the
function C = 0.075 · 2.08 × 10−15(NV + 6 × 1016) µemu K. The dashed and dotted lines follow
the same function but with the first numerical coefficient equal to 0.085 and 0.065, respectively.
From [21]

total vacancies NV produced in the sample by ion irradiation. In general, the induced
paramagnetic contribution is clearly observed at T < 100 K in all samples, see e.g.
Fig. 3.3. From the fits to the data one obtains the paramagnetic coefficient or Curie
constant C shown in Fig. 3.5 as a function of NV [21]. Note that only single C-
vacancies were taken into account because at MeV ion energies it is expected that
these are produced with the highest probability in comparison with multi-vacancy
defects. These multi-vacancy defects are, however, produced at low-energy irradia-
tion and may play an important role in the induced effects there [22]. Measurements
of electron spin resonance (ESR) line widths and signal intensity as a function of
temperature of graphite samples irradiated with protons, deuterons and helium ions
indicate that the spins produced by the irradiation are of a localized nature [23].

For the case that the temperature dependence of the magnetic moment is obtained
always at a fixed field of μ0H = 1 T, as done in [21], the classical paramagnetic
contribution of N paramagnetic centers, each with an effective magnetic moment
μeff = pμB (μB is the Bohr magneton), is given by:

mP = C/T , (3.1)

C = N
μeff

2

3kB
= N p2 2.08 × 10−15 µemu K. (3.2)

For atomic paramagnetic centers the effective Bohr magneton number is given by
[24] p = g(JLS)

√
J(J + 1) where g(JLS) is the Landé factor. The case presented

here to estimate p from experimental data assumes a single multiplet, whereas the
case of a paramagnetic contribution due to more than one multiplet was observed
experimentally and described in detail in [21].
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Roughly speaking and within the data dispersion we can take a linear correlation
between C and NV given by the equation C = (0.075 ± 0.01) · 2.08 × 10−15(NV +
6 × 1016) µemu K, see Fig. 3.5. Then, the effective magneton number for a vacancy
would be given by p = (0.27 ± 0.02) μB according to (3.2). We can compare
this number with the simplest atomic multiplet case. For example, using p =
g(JLS)

√
J(J + 1) with J = S = 1/2,L = 0, g = 2 gives p = 1.73. One may spec-

ulate that a vacancy itself has no spin, i.e. S = 0 and J = L = 1/2, yielding
p = 0.87. On the other hand, from theoretical estimates [2, 3, 11, 25–28] one expects
p ∼ 0.5 . . . 1. Assuming that each vacancywould have an effectivemagneticmoment
of 0.5 μB the experimentally obtained p is a factor two smaller than expected.

Some of the irradiated samples show also a ferromagnetic contribution triggered
by the generation of defects with a certain density, those samples are marked with
“(FM)” in Fig. 3.5 [21]. With the estimated average distance of the produced C-
vacancies at 50nmdepth from the samples’ surface one obtains the correlation shown
in Fig. 3.6,which implies a rather narrowwindow for the average distance betweenC-
vacancies to obtain a ferromagnetic contribution. The reason for the absence of more
experimental data in Fig. 3.6 is due to self-heating effects during irradiation, which
detrimentally influence the defect density and impede their accurate estimation, mak-
ing a comparison between differently irradiated samples difficult. The increase of
temperature during irradiation has been measured in [21] and is, in general even for
reasonably low ion beam currents, not negligible.

It should be noted that apart from defect generation in the bulk of graphite, ion
irradiationmight also result in chemisorption of the hydrogen adsorbed on the surface
on graphite samples. This would provide additional magnetic moments and possibly
magnetic order in the near-surface region.

Fig. 3.6 Ferromagneticmoment at saturation as a function of the nominal distance between induced
vacancies calculated at 50nm depth from the HOPG surface for most of the samples prepared in
[21]. The error bars are the maximum estimated ones considering the sensitivity and reproducibility
of the SQUID measurements as well as the range of parameters needed to estimate the average
vacancy distance within a graphene layer using SRIM. The continuous line follows a Gaussian
function and is a guide to the eye only. Taken from [21]
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3.1.3 Localization of the Ferromagnetism Triggered
by Proton Irradiation

For the following let us assume that C-vacancies are responsible for the observed
magnetic order. As shown in Fig. 3.6 the mean distance between vacancies needs
to be in a comparably small range to trigger ferromagnetism in graphite. Starting
from SRIM simulations of the vacancy production shown in Fig. 3.2 we can esti-
mate the mean distance between vacancies for the 2D (graphene) and 3D (graphite)
case as a function of ion fluence [29]. Let us assume a vacancy production of
Ñv = 0.1 µm−1 ion−1 (see Table3.1) as found for 2 and 2.25 MeV protons in the
near-surface region and a fluence of Φ = 1015 cm−2. The defect density then is
n2Dv = 1015 cm−2 · 3.35 × 10−5 = 3.35 × 1010 cm−2 taking into account the distance
between the basal planes of graphite of 0.335nm and n3Dv = 1015 cm−2 · 0.1µm−1 =
1018 cm−3. Comparing with the atomic density of n2D = 3.82 × 1015 cm−2 of
graphene and n3D = 1.14 × 1023 cm−3 of graphite one gets the same relative vacancy
concentration of 8.78 × 10−6 for both cases. In order to calculate the mean distance
between vacancies we assume that each vacancy is in the center of a square (2D) or
cube (3D)of sidelengtha andwe take the averageof the distance to the next neighbors.
For the 2D case we get an area of a2 = 2.98 × 103 nm2 per vacancy and an average
distance of d2D = 66 nm. In the 3D graphite case we get a volume a3 = 1000 nm3

per vacancy, yielding an average distance of d3D = 14.2 nm. Figure3.7a shows the
dependence of the mean distance between vacancies as a function of proton fluence
Φ for the 2D and the 3D graphite lattice.

(a) (b)

Fig. 3.7 aMean distance between next neighboring vacancies versus fluence of 2.25 MeV protons
for the two dimensional graphene case (straight line) and the three dimensional graphite lattice
(dashed line) assuming a vacancy production of 0.1 per micron depth interval and incident proton
[18]. b Mean distance between vacancies in the graphene case versus depth from the surface of
a graphite sample estimated using Monte Carlo simulations [18] for three fixed fluences. The
shadowed area is a guide to the eye to realize the different depths and total sample mass (∝ to the
boxes drawn at the top of the figure) at which a mean distance between vacancies of (2.1 ± 0.3) nm
exists



54 D. Spemann and P.D. Esquinazi

The depth dependency of the vacancy production rate given by the SRIM
simulation [18] can be used to calculate the mean distance as a function of depth,
see Fig. 3.7b. Assuming that the largest signal due to the induced magnetic order
is produced at a distance between vacancies of (2.1 ± 0.3) nm in the 2D case, dif-
ferent depth intervals contribute to the magnetic signals for different fluences. The
calculations indicate that from the three selectedfluences in Fig. 3.7b the largest ferro-
magnetic signal would be given for φ � 1018 protons per cm2 from the first∼20 µm
depth. These estimates indicate also that the largest ferromagnetic mass one can
produce with a single energy proton beam will be located within the first ∼30 µm
depth where the curve is rather flat. In [30] the maximum magnetic moment was
observed for 2.0 MeV protons at a fluence of φ ∼ 2 × 1017 cm−2, whereas the mag-
netic moment already decreased for φ ∼ 4 × 1017 cm−2, compatible with the rough
estimates above. Raman and XPS measurements on 2.25 MeV proton implanted
HOPG showed that sp3 hybridization increases upon irradiation, but that the lattice
structure is still preserved at fluences of φ ∼ 2 × 1017 cm−2 [31]. This proves that a
mostly intact graphite lattice with preserved stacking order is required for magnetic
order, see also [32].

Figure3.8 shows results that indicate the measured magnetic signal is located in
the first micrometers depth [34] in qualitative agreement with the estimates presented
in Fig. 3.7 and also with the results in [12]. It is interesting to note that the H-
chemisorption defects created at the end of ion range of ∼40 µm do not trigger
magnetic order, most probably because the graphite lattice is too heavily damaged by
the proton implantation at this depth.On the other hand, the restriction of the observed
magnetic order to the near-surface region might also indicate that the hydrogen
adsorbed on the surface of the sample indeed undergoes chemisorption assisted by

Fig. 3.8 Magnetic moment as a function of applied field for the irradiated sample 2 at 300 K (o) and
5 K (�) obtained after subtracting the data of the non-irradiated sample. The points (�) are obtained
for the same sample at 300K after taking out the first ∼5 micrometers from the irradiated surface
side. The inset blows up the data at low fields to show the finite hysteresis and the clear temperature
dependence of the coercive field and remanent magnetic moment. Sample 2 mass was 12.5mg of
a HOPG sample of grade A. The sample was irradiated with 25600 spots of ∼2 µm diameter each
and separated by a distance of 10 µm. The fluence was 5.0 × 1016 cm−2, total irradiated charge
44.8 µC and 1 nA proton current at 110 K. Taken from [33]
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the proton irradiation as already discussed above. In fact, hydrogenation has been
found to effectively trigger magnetic order in graphite [35, 36] or other graphitic
materials [37–41].

In contrast, neutron irradiation of bulk graphite only led to spin 1/2 paramagnetism
in [42], but no magnetic order induced by defects in the bulk. A comparison with the
Raman spectra in [43] indicates that the damage introduced in the graphite lattice by
the neutron irradiation was substantial for the data presented in [42]. Therefore, it
cannot be excluded that magnetic order was suppressed due to the loss of the Bernal
stacking order required for the coupling of the magnetic moments.

Following the estimates done in [9] based on the ferromagnetic contribution of
coupled defects from the same sublattice of a graphene lattice, a mean distance
between vacancies of 1.5nm would give a critical temperature of ∼450 K in very
good agreement with experimental observations [34, 44]. We note that due to the
statistical process of vacancy production and the simplicity of the model used for the
estimate of the vacancy density, an error of at least a factor of two is expected for
the calculated damage production rates and the derived mean vacancy distance. Note
that in our energy range a lower proton energy will decrease the distance between
vacancies at a given depth.

3.2 Magnetic Impurities: Trace Element Analysis
Using PIXE

In order to prove the intrinsic nature of the magnetic order in graphite a reliable
trace element analysis of the samples was mandatory as this allowed to calculate
the maximum possible contribution of magnetic impurities to the magnetic moment.
Later, XMCD measurements could successfully prove that the magnetic moments
are associated with π -electrons of carbon atoms and are not due to impurities [45].

Since the magnetic moments of the samples are typically small, tiny amounts
of contamination can already be sufficient to dominate their magnetic properties—
e.g. the sample in Fig. 3.8 has a magnetization M = 4.5 × 10−6 emu/12.5mg =
3.6 × 10−4 emu/g at 5K after irradiation, a magnetization that would correspond
to a Fe concentration in the sample of 1.6 µg/g. This illustrates that careful sample
handling to avoid contamination, but also the possibility of successive trace element
analysis after any sample treatment is important. Therefore, a method is required
that allows an accurate measurement of impurity concentrations in the ppm and sub-
ppm range, preferably in a non-destructive manner. Furthermore, the ability to image
the distribution of impurities would be welcome. Particle Induced X-ray Emission
(PIXE) [46] using MeV protons for excitation has the necessary requirements for
this kind of studies as will be shown below. Another technique with excellent sensi-
tivity and quantification is Instrumental Neutron Activation Analysis (INAA) which
however lacks imaging capabilities and is not easily available on a daily basis, not
to mention the analysis times that can easily take days for sufficient sensitivity. X-
ray Fluorescence analysis (XRF) on the other hand will in general not be sensitive
enough.



56 D. Spemann and P.D. Esquinazi

In this sectionwe show the results of PIXE analysis of commercial HOPG samples
and compare this withmeasurements using EnergyDispersiveX-ray analysis (EDX),
a wide-spread technique that has been used for analysis of HOPG in the literature
[47–49].

3.2.1 Trace Element Content of Commercial HOPG Samples

The samples studied are commercially available HOPG from Advanced Ceramics
(now Momentive Performance Materials), NT-MDT and SPI Supplies with three
available structural grades designated as ZYA,ZYBandZYH. In case of SPI Supplies
the corresponding designation is SPI-1, -2 and -3. In the following of Sect. 3.2, the
samples are named by the company (Advanced Ceramics is abbreviated as AC) and
the structural grade, e.g. AC ZYA denotes the ZYA-grade sample from Advanced
Ceramics.

Trace elemental analysis was performed at the LIPSION facility of the University
of Leipzig [50] with PIXE [46] and Rutherford Backscattering Spectrometry (RBS)
[51] using a 2.28MeV protonmicrobeam focused to 1 − 2µmdiameter. The protons
penetrate 47 µm deep into graphite where they generate 90% of the total X-ray
yield from Fe atoms within the first 27 µm [52] making PIXE a truly bulk-sensitive
technique. More details of the sample preparation, experiments and results can be
found in [53].

Figure3.9 shows a typical PIXEspectrum fromZYA-gradeHOPGfromAdvanced
Ceramics together with the extracted elemental concentrations. We note that the

Ti
V

Cr

Fe

Ni

Q=4.98 µC

Advanced Ceramics ZYA

Fig. 3.9 PIXE spectrum from ZYA-grade HOPG from Advanced Ceramics recorded with a col-
lected proton charge of Q = 4.98 µC. The green curve are the measured data, the violet and red
curve are the background simulation and fit to the data, respectively, from GeoPIXE II [52]. The
extracted concentrations as well as minimum detection limits are given and the corresponding X-ray
lines for the detected elements indicated. Taken from [53]
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measured concentration of 0.72 µg/g Fe, if magnetic, would imply a contribution to
the magnetization at saturation of the order of 1.6 × 10−4 emu/g.

3.2.1.1 Sideface Contamination of As-Received Samples

In order to check for contaminations in the as-received state the HOPG samples of
ZYA grade were analyzed with the proton beam incident on both top surface and
sideface designated as “surface” and “sideface” in Fig. 3.10 where the X-ray yields,
i.e. elemental concentrations, are displayed in false color scale for the SPI-1 sample.
As can be seen in Fig. 3.10a, the sideface is strongly contaminated with Cr, Fe, and
Ni, all three showing an identical distribution indicating that they originate from the
same source. The quantitative analysis of this contamination reveals a composition
of 16.0% Cr, 77.2% Fe and 6.8% Ni by weight which fits with the frequently used
non-magnetic, austenitic SAEgrade 301 stainless steel [54]. It is therefore reasonable
to assume that this contamination originates from the cutting of the samples prior
shipping using a stainless steel tool.

Contaminations of similar distribution and composition can be found on the side-
faces of AC ZYA and NT-MDT ZYA samples as well, however, to a less severe
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Fig. 3.10 X-ray yield in false color scale for the background and the elements Cr, Fe and Ni: a
SPI-1 sample in the as-received state (200 µm × 200 µm scan size, Q = 0.87 µC applied proton
charge) showing a severe sideface contamination with Cr, Fe and Ni, probably originating from a
stainless steel tool used for sample cutting. Some loose particles of contamination can even be found
on the top surface close to the sideface; b SPI-1 after ultrasonic cleaning (2.24 mm × 2.24 mm
scan size,Q = 5.24µC applied proton charge) with the samemaximum concentration values of the
color scale as in (a). As can be seen between the two dashed lines, the sideface is not contaminated
anymore and therefore appears black. Taken from [53]
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Table 3.2 Sideface contamination with Fe and bulk concentrations of trace elements in HOPG

Sample Sideface Concentrations in HOPG bulk (µg/g)

Fe
(ng/cm2)

Ti V Cr Fe Co Ni

AC ZYA 15.8 ± 1.1 2.4 ± 0.2 18.2 ± 0.9 <0.30 0.72 ±
0.07

<0.19 0.47 ±
0.05

AC ZYB n.d. 4.9 ± 0.4 10.5 ± 0.5 <0.32 <0.23∗ <0.21 <0.28

AC ZYH n.d. 1.9 ± 0.2 24.5 ± 1.2 <0.30 22.6 ± 1.1 <0.25 4.2 ± 0.3

NT-MDT
ZYA

155 ± 8 <0.50 <0.40 <0.28 0.55 ±
0.05

<0.20 <0.27

NT-MDT
ZYB

n.d. 12.6 ± 0.9 0.80 ±
0.10

<0.29 10.4 ± 0.5 <0.23 <0.31

NT-MDT
ZYH

n.d. 5.6 ± 0.3 1.40 ±
0.14

0.30 ±
0.04

10.2 ± 0.5 <0.22 <0.28

SPI-1 702 ± 35 <0.50 <0.40 <0.27 0.66 ±
0.06

<0.19 <0.27

SPI-2 n.d. 1.5 ± 0.2 <0.40 <0.31 9.4 ± 0.5 <0.24 <0.31

SPI-3 n.d. 2.1 ± 0.2 5.4 ± 0.5 <0.33 8.4 ± 0.4 <0.23 <0.33

With the exception of AC ZYB the ZYA samples with the highest structural quality have the lowest
Fe concentrations <1 µg/g. In addition to the elements listed the concentrations of Mn, Cu and Zn
were determined for all samples as well and found to be <0.28 µg/g for Mn, <0.33 µg/g for Cu
and <0.34 µg/g for Zn. Reproduced from [53]
n.d.: not determined; ∗Fe concentration in a similar AC ZYB sample: (0.17 ± 0.03)µg/g [29]

degree. As Table3.2 shows, 702 ng Fe per cm2 sideface area was found for SPI-1,
whereas for the AC and NT-MDT samples Fe concentrations amount to 15.8 ng/cm2

and 155 ng/cm2, respectively. Even though they were not measured it is reasonable
to assume that the sidefaces of the ZYB and ZYH samples are contaminated as well
in the as-received state.

After thorough ultrasonic cleaning, however, the sidefaces are free of contami-
nants as can be seen from the large scan shownFig. 3.10b.We conclude that ultrasonic
cleaning is mandatory prior use of these HOPG samples in contamination-critical
applications.

3.2.1.2 Bulk Concentrations of Trace Elements

PIXE trace element analysis was performed by simply scanning the proton beam
over a 2.24 mm × 2.24 mm sized area covering a substantial portion of the whole
sample and collecting the X-ray photons from the trace element atoms. The PIXE
spectra (see as example Fig. 3.9 for the AC ZYA sample) were analyzed and the
concentrations extracted are given in Table3.2.

The findings can be summarized as follows: (i) The ZYA-grade samples have Fe
concentrations below 1µg/g; (ii) The ZYBandZYH samples ofNT-MDTand SPI all
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have similar Fe concentrations of the order of 10 µg/g, whereas the AC ZYB has the
lowest Fe contamination of <0.23 µg/g ((0.17 ± 0.03) µg/g was determined for a
similar sample a few years ago [29]) and the ACZYH the highest Fe concentration of
22.6µg/g; (iii)Most of the samples also contain Ti andVwith varying concentrations
between the different samples.

We would like to point out that, with the exception of AC ZYA and AC ZYB
samples, we have not analyzed any of the other samples before and can therefore not
make any statement about the variation of the concentration values between different
batches of these samples. AC ZYA samples have been used in our studies on DIM
and therefore frequently analyzed in the last ten years. We found that their trace
element content shows little variation between different batches.

The impurities are not distributed homogeneously within the sample, but located
in micrometer large grains that are homogeneously dispersed within the bulk
[29, 47, 49]. This is illustrated in Fig. 3.11 where the Ti, V and Fe maps are shown
for the AC ZYA and SPI-3 sample. A detailed inspection of the maps reveals that Ti
and V are strongly correlated showing identical distributions within the scan area. In
most of the (Ti,V) grains Fe is present too. However, there are a few (Ti,V) grains that
do not contain Fe and a few Fe grains that do not contain Ti or V. The maps indicate
that the grain density is significantly higher in SPI-3 and that the grains itself are
slightly smaller compared to AC ZYA. Assuming that grains can be detected up to a
depth of 27 µm their density in AC ZYA can be estimated to about 6 × 106 cm−3.

(a)

(b)

Concentration0 max

Cr iNeF

Ti V Fe

Ti V Fe

Fig. 3.11 Ti, V and Fe distribution in a 400 µm × 400 µm sized scan area for a AC ZYA and b
SPI-3. Taken from [53]
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3.2.1.3 Analysis of Single Metallic Grains

In order to draw some conclusions on their magnetic properties single grains of con-
tamination were selected from larger scan areas and analyzed in detail by simultane-
ous PIXE and RBS. As an example, Fig. 3.12a, b show the PIXE and RBS analysis,
respectively, of a single grain in the AC ZYA sample. As stated above, Ti and V have
identical distributions, different from Fe and Ni that are located at the outside of the
grain, both with a similar and irregular distribution along the grain’s perimeter. This
is also illustrated in the composite map of Fig. 3.12a showing the distribution of Ti,
Fe, Ni in red, green and blue color, respectively, with brighter colors referring to
higher concentrations of the respective element.

Figure3.12b shows the RBS spectrum extracted from the grain alone. The broad
peak around channel 720 are protons backscattered from themetals where peakwidth
and area reflect grain thickness and the total number of metal atoms, respectively.
The grain is also visible as “missing” carbon in the dip around channel 530. From this
dip position the depth of the grain can be determined. As quantitative analysis shows,
this 7.0 µm × 5.5 µm sized grain has a mass thickness of (0.13 ± 0.01) mg/cm2,
consists on average of 13.7% Ti, 82.0% V, 2.4% Fe and 1.9% Ni by weight and
is located 4.35 µm below the graphite surface. It contains (1.2 ± 0.1) pg Fe and
(0.96 ± 0.10) pgNi.Assuming for simplicity that the grain ismade of pureVanadium
with a mass density of ρ = 6.1 g/cm3, the geometrical thickness can be calculated to
d ≈ 210 nm. This and the analysis of other grains show that they are not spherical,
but flat disks that are oriented parallel to the graphene planes. This finding agrees
well with the EDX and TEM analysis of an AC ZYA sample reported in [49]. Taking
into account the high temperatures T > 2000 ◦C and pressures used in the production

Ti, V,
Fe, Ni

Fe

corresponds
to thickness

corresponds
to depth of grain

C

(b)

TiFeNi

5 µm

Ti V

Fe Ni

(a)

Concentration0 max

Fig. 3.12 Ion beam analysis of a single grain inACZYA (17.5µm × 17.5µmscan area): a Element
maps and composite map of Ti, Fe and Ni showing a homogeneous distribution of Ti and V inside
the grain and the location of Fe and Ni at the perimeter; b RBS spectrum extracted from the grain
(the green curve in the Fe map represents the extracted scan area). From the XRUMP [55] analysis
(red curve) the metallic content, thickness and depth of the grain can be determined. Taken from
[53]
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of HOPG from pyrocarbons [56], this flat shape is to be expected. Metallic particles
in the pyrocarbons, whatever their origin might be, melt at these temperatures and
spread out perpendicular to the direction of pressure, i.e. perpendicular to the c-axis
of the formed HOPG. Furthermore, the formation of iron carbides is to be expected
under these conditions. Indeed, electron diffraction analysis showed that Fe in the
grain is notmetallic, but present as cementite Fe3C [49] in agreementwith thefindings
in [57–59]. It might be interesting to note that DFT calculations of the influence of
small iron clusters on graphene showed that a possible intrinsic carbon magnetism
is in fact reduced due to the spin pairing between Fe and C atoms [60].

Figure3.13 shows composite maps of grains for all investigated samples with the
exception of SPI-1 and NT-NDT ZYA where no grains could be detected within the
detection limits of PIXE imaging. Indeed, these two samples are the only ones that
do not contain Ti or V (see Table3.2). They do, however, contain Fe of comparable
amount as AC ZYA, presumably more or less homogeneously distributed within
the bulk and not concentrated in grains as for the latter one. As can be seen, the
grains differ substantially in size from 2µm (NT-MDT ZYB) to≈30 µm (AC ZYH)
and composition between different samples, but also within the same sample as
is demonstrated for AC ZYH. Here, three grains of very different shape and size
are displayed. In view of these variations, it is obvious, that the estimation of bulk
concentrations from the analysis of a few single grains only can lead to substantial
errors. Indeed, taking the 1.2 pg Fe from the grain in Fig. 3.12 and the grain density of
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Fig. 3.13 Composite maps of single grains for all investigated samples except SPI-1 and NT-MDT
ZYAwhere no grains could be found. The displayed elements and assigned colors are given in each
map. As demonstrated, size and composition of the grains differ substantially between different
samples, but also within the same sample (see AC ZYH). Taken from [53]
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6 × 106 cm−3 estimated fromFig. 3.11 one gets about 3µg/g Fe as bulk concentration
for ACZYAwhere the true value is (0.72 ± 0.07)µg/g. Obviously, themetal content
of this grain is above the average compared to the other grains in AC ZYA.

3.2.2 Comparison with EDX Analysis

EDX is a wide-spread technique for elemental analysis and imaging and has been
used recently in the characterization of contaminations in HOPG in [47–49]. In order
to compare its capabilities and limitations with those of ion beam microscopy some
of the HOPG samples were studied with EDX using 20 keV electrons. Figure3.14
shows theX-ray spectra recorded from aNT-MDTZYB samplewith EDXand PIXE,
respectively, using a large scan area.Whereas the PIXE spectrum shows peaks for Ti,
V and Fe, no peaks can be discerned for these trace elements in the EDX spectrum,
despite Ti and Fe having concentrations �10µg/g. As a detailed analysis shows, a
typical MDL for Fe amounts to ∼200 µg/g in EDX analysis, about a factor 1000
larger than for PIXE and far above the Fe bulk concentrations in all the HOPG
samples. It is clear, that EDX cannot be used to measure the bulk concentrations of
trace elements in HOPG directly.

In case of HOPG samples, where the trace elements are strongly concentrated in
grains, EDX can at least be performed on single grains. Figure3.15 shows such an
EDX analysis on a grain in AC ZYA. First, Backscattered Electron (BE) imaging is
used to detect single grains directly below the graphite surface due to the Z-contrast
in electron yield. Then, a small scan is made and the emitted X-rays are recorded (see

NT-MDT ZYB 

EDX

PIXE

Fe (10.4 µg/g)

C

O
Ti

V

Fig. 3.14 EDX spectrum (black line) and PIXE spectrum (green line, together with GeoPIXE II
fit, see Fig. 3.9 for explanation) recorded on NT-MDT ZYB. In both cases, a large scan was made to
obtain reliable bulk concentration values, however, no peaks for the trace elements can be detected
in the EDX spectrum, demonstrating its insufficient sensitivity for trace element analysis in HOPG.
Taken from [53]
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Fig. 3.15 EDX analysis of a single grain in AC ZYA: a BE and elemental maps of a 2.5 µm ×
4.5 µm sized grain. The Fe and Ni map indicate that both elements are enriched at the outer edge
as already seen in Fig. 3.12. b EDX spectrum showing peaks for the 3d-metals inside the grain. The
peaks of Fe and Ni suffer from a comparably poor statistics. Taken from [53]

Fig. 3.15). From the spectrum, however, no direct information on depth and thickness
of the grain can be obtained making a quantitative analysis, e.g. the determination
of the metallic content, difficult. Qualitative analysis though shows that the Ti/V
concentration ratio matches quite well the results from PIXE/RBS on the grain in
Fig. 3.12 from the same sample, whereas the Fe and Ni concentrations are both
twice as large as for PIXE. This might be due to differences in the composition of
individual grains as pointed out earlier and/or due to the rather poor statistics in the
EDX spectrum (see Fig. 3.15b) and the insufficient knowledge of grain thickness and
depth.

Let us assume that the metallic content of single grains can be accurately deter-
mined with EDX, then bulk concentrations can in principle be estimated from these
data with the help of the grain density as was done in [47–49]. This approach,
however, has several weaknesses: (i) It requires that all the grains in a sample are
comparable in metallic content and composition which is not necessarily the case as
Fig. 3.13 shows; (ii) The number density of grains must be determined, e.g. using
BE imaging. Since only a very low number of grains is present in HOPG in the
near-surface area of �1 µm depth even for large scan areas (e.g. in [49] only three
grains are visible for ACZYA in a 1.0mm × 0.9mm scan area) substantial statistical
errors exist; (iii) Trace elements not enriched in grains are not taken into account
at all. These difficulties lead us to the conclusion that EDX is useful for identifying
and imaging metallic grains in HOPG, but cannot be considered as a reliable method
for quantitative trace element analysis in graphite. Indeed, the Fe concentration in
AC ZYA estimated from SEM analysis (and magnetization data) was 6 µg/g in [49],
whereas PIXE analysis always gave <1 µg/g Fe for numerous of AC ZYA samples
in the last ten years.
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3.3 Quasi Two-Dimensional Spin Waves Excitations
in the Ferromagnetic Response in Virgin and Ion
Irradiated Graphite

As will be shown below in Sect. 3.3.1 and Fig. 3.16 therein, the ferromagnetic
contribution to the magnetization of proton irradiated HOPG decreases linearly with
temperature T . This indicative result suggests the existence of 2D spin waves exci-
tations [61–63], either in the saturated region (field applied much above the coercive
field), at intermediate fields or, as we shall see below, also in the remanent state at
zero field [29, 33, 44].

The analysis of the measured temperature dependence of the magnetization is
done in terms of the two-dimensional Heisenberg model 2DHM with anisotropy
that provides a linear dependence with temperature [34]. The discrete Hamiltonian
describing the 2DHM reads:

H = −J
∑

ij

[SizSjz + (1 − Δ)(SixSjx + SiySjy)] , (3.3)

where Si = (Six, Siy, Siz) is a unit vector pointing in the direction of the classical
magnetic moment placed at site i of a 2D lattice. The sum (i, j) is taken over all
nearest neighbor pairs with J being the exchange coupling. The parameter Δ is the
uniaxial anisotropy in the z-direction.WhereasΔ = 0 represents the isotropic 2DHM
which is known to have TC = 0, a small anisotropy already raises TC considerably
because TC ∝ −1/ lnΔ for Δ → 0.

Fig. 3.16 Normalized magnetic moment (m(0) = 4.9 µemu at 10 kOe) obtained for a 6mg sam-
ple (sample 4 in [33]) at (10,3,1) kOe (•, �, �) after subtracting the data from the same sample
before irradiation and a paramagnetic (Curie) contribution mp(T) = 1.18H/T [µemu K/kOe]. The
different theoretical curves are: The continuous line follows (3.5), the dashed-dotted line the Ising
model, the dotted line the 3D case Bloch T3/2-law that includes spin waves in 3D systems, and the
dashed line the 2D spin waves case that follows (3.4). The used parameters are: TC = 450 K and
Tsw
C = 1050 K. Taken from [34]
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As can be shown [61–63], the normalized spin wave magnetization in the
anisotropic axis can be expressed as:

Msw
z = 1 − T/Tsw

C − 2T 2/(T �Tsw
C ) − (2/3)(T/Tsw

C )3 , (3.4)

at low temperatures (T � = 4J) [61–65]. Here, Tsw
C is the spin wave critical temper-

ature due to low-energy spin wave excitations, given by kBTsw
C = 2πJ/K(1 − Δ)

with K(x) being the elliptic function. Note that near the Curie temperature TC the
2D Ising model provides a better description of the spin flip excitations. In this case
TC(Ĵ) = 1.52Ĵ [64], where Ĵ is the renormalized exchange due to spin waves exci-
tations and given by Ĵ(T) = J(1 − 2T/Tsw

C ). Finally, the measured magnetization
Mz(T < TC) can be described as:

Mz(T) ≈ Msw
z (T , J)MI

z [T , Ĵ(T)]. (3.5)

The first factor Msw
z (T , J) on the right hand side of (3.5) is the magnetization due

to spin waves, whereas the second one, MI
z [T , Ĵ(T)] describes the magnetization

based on an Ising model with the exchange Ĵ renormalized by the spin waves. In
[33, 63] this theoretical result was checked against Monte Carlo calculations and
good agreement was obtained, especially for low anisotropies.

There is one more issue that deserves a discussion, namely how to treat the lattice
disorder in case the magnetic phase transition does survive. Remember that irradi-
ation produces C-vacancies everywhere and the graphite lattice remains intact only
up to a certain density, let us say around 5%. At much larger densities of defects
the graphite lattice will collapse and no magnetic order will appear. In fact, amor-
phous carbon shows no magnetic order but paramagnetism [66]. In case of “soft”
disorder the stiffness 2〈S〉J is modified to 2〈S〉J[1 − (pz/(z − 2))] with z being the
number of nearest neighbors and 0 ≤ p ≤ pc, where p = 0 means no disorder and pc
is a critical percolation disorder parameter (pc ≈ 0.4) above which no spontaneous
magnetization occurs [67, 68]. For the effective stiffness that fits the experiment this
renormalization should be taken into account.

3.3.1 2D Spin Waves in Irradiated and Virgin HOPG Samples

Figure3.16 shows the normalized magnetic moment obtained from a HOPG sample
irradiated with 6 spots of 2.0 MeV protons, each of 0.8mm diameter and 1.9 ×
1017 cm−2 fluence (total irradiated charge 900µC) at a proton current of 100 nA [34].
In addition, different 3D and 2D models, including spin waves using an anisotropy
Δ � 10−4 are plotted which demonstrate that the temperature dependence of the
magnetic moment can be best described by the 2D spin wave model.

It is worth noting that the data in Fig. 3.16 show the direct influence of the irradi-
ation on the magnetic response of the sample, because the signal before irradiation
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was subtracted, as well as a paramagnetic signal (due to irradiation) that contributes
significantly only atT � 25K.Aswe clarify below, if themeasurement is done under
a magnetic field, the subtraction of the signal before irradiation is necessary because
of the non-negligible temperature dependent background of the HOPG samples. For
all measurements done under a magnetic field, the temperature dependence of the
total magnetic moment of a HOPG sample (in the case discussed here with field
parallel to the graphene layers) is given by the sum of: (i) The intrinsic Landau dia-
magnetism of the HOPG sample, which is given by a small misalignment between
the field and the parallel to the graphene planes direction; (ii) The possible tem-
perature dependence of the magnetic contribution from the substrate/sample holder,
which in general should be negligible, if an appropriate holder is used; (iii) The
temperature dependence of the ferromagnetic contribution itself. We note that there
is an uncertainty in the temperature dependence of the corresponding diamagnetic
background. This is a non-negligible source of error when a quantitative comparison
of the temperature dependence of the saturation magnetization Msat(T) with appro-
priate models is required. Therefore, one possible way to avoid this uncertainty is to
compare the remanent magnetization measured at zero applied field, see Fig. 3.17. In
the case of the ferromagnetism found in the HOPG samples the remanent (zero field)
magnetizationMrem(T) can show a similar temperature dependence as the saturation
one Msat(T) (or at applied fields below saturation as shown in Fig. 3.17).

This is expected when the applied field does not change the energy landscape of
the domain walls and when there is no magnetic anisotropy that strongly changes
with temperature. The similarity between the temperature dependence ofMsat(T) and
Mrem(T) can be observed in hard as well as soft ferromagnets. As an example of some

Fig. 3.17 Remanent moment versus temperature of: (◦) virgin HOPG sample of mass 14.2 mg.
The continuous line is the functionm[µemu] = 3.78 − 0.43 × 10−2T with T in Kelvin. (+): virgin
HOPG sample of mass 11.1 mg. (•): HOPG sample (mass 14.2 mg) irradiated with low proton
fluence (Φ � 6 × 1016 cm−2) with a broad proton beam. The dashed line follows the function
m[µemu] = 5.78 − 2.65 × 10−2T0.8. Note that the absolute values of the diamagnetic signals are
rather meaningless due to the large influence of the sample misalignment with respect to the applied
field direction on the diamagnetic contribution, a misalignment that changes from sample to sample.
Taken from [29]
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soft ferromagnets where Mrem(T)/Msat(T) � 0.1 and constant in the temperature
region clearly below the corresponding Curie temperature, see [69].

The unequivocal quasi-linear temperature dependence is an indication of 2Dmag-
netism, see Fig. 3.16, and the slope of m(T) can be interpreted as due to the exci-
tation of 2D spin waves [34]. Because virgin HOPG samples are not ideal and can
also have lattice defects as vacancies and/or hydrogen, we expect that, if the mag-
netic impurities contribution is negligible, they also should show the 2D spin waves
influence in their magnetic response. Figure3.17 shows the temperature dependence
of the remanent magnetic moment of two virgin samples and an irradiated one, for
comparison. The samples with a finite remanent magnetization show also a quasi-
linear irreversible temperature dependence in the warming up state, see Fig. 3.17.
Ferromagnetic order in pristine HOPG was also observed by Miao et al. [70] who
demonstrated that sample annealing at 2300 ◦C leads to the extinction of themagnetic
order, indicating that the magnetic order is related to vacancies, defect and localized
edge states.

3.4 Transport Measurements: Magnetoresistance
and Anisotropic Magnetoresistance Results

Adirect, alternativemethod to detect and studymagnetic order is tomeasure themag-
netoresistance (MR). TheMRdevelops a characteristic butterfly loopwhenmeasured
versus magnetic field. Additionally, for a ferromagnet we might expect that the MR
depends on the orientation of the magnetization with respect to the electric current
direction, i.e. the so called Anisotropic MR (AMR), see for example [61, 71–73].
The AMR was discovered by William Thomson (Lord Kelvin) in 1867 and is nowa-
days considered one key transport property of a magnetically ordered material. To
understand the origin of the angular dependence of the resistance on θ , the angle
between the magnetization and the input current directions, in conventional, e.g.
d-ferromagnets, one takes the following concepts into account: (i) There are two
bands, s- and d-band, where the d-band has a spin splitting due to the exchange
interaction; (ii) The resistivity increases due to the scattering of s-electrons into the
d-band, a band where the carriers have higher effective mass and less mobility; (iii)
If due to the spin splitting the d-band remains full (i.e. below the Fermi level EF) for
one spin direction, s-electrons with the same spin direction cannot be scattered into
that spin part of the d-band so that a decrease of the resistivity is expected as long
as no spin-flips occur; (iv) However, if spin-flips occur, then the above mentioned
scattering process is still possible.

A spin-flip process is introduced in the Hamiltonian via the LS coupling. In this
case s-electrons can be scattered in free 3d-states (or other states that are involved
in the magnetic order) only if their momentum k is in the same plane as the classical
orbital of the free 3d-states. The occupation of the 3d-orbital states (spin-up and
-down) is given by the magnetization direction. Note that the free 3d-states will
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have a L-component always normal to the magnetization direction. For example,
if we consider free 3d-states of the type 3dx2−y2 and the current I is parallel to the
magnetization M and both are parallel to the (x, y) plane, the free 3d-states will
have an angular momentum component normal to I. That means that the classical
orbits will be on the same plane as the electron momentum originating in a larger
scattering cross section, increasing in this case the resistance. Neglecting the explicit
dependence of the resistivity on the angle to the principal axes of the crystal (i.e. the
magneto-crystalline anisotropy) and for a large enough applied magnetic field, the
angular dependence of the AMR is given by:

ρ(θ) = ρ⊥ + (ρ‖ − ρ⊥) cos2(θ) , (3.6)

where ρ‖ (ρ⊥) denotes the longitudinal resistivity measured for I ‖ (⊥)M [73]. This
angular dependence is common for the AMR of polycrystalline magnetic samples.

Clearly, in graphite there are no d-bands. Nevertheless, in case the graphite sample
showsmagnetic order there is a spin splitting in theπ - but also, and in a broader energy
range, in the σ -band as XMCD results indicate [12, 45]. Therefore, we may expect
that an AMR should be measurable. Leaving apart details of the orbital moments
involved in this property, the origin of the AMR in magnetic graphite should be
qualitatively similar to that in conventional transition metals-based ferromagnets,
instead of s − d scattering one should think on a π − σ one. A rigorous theoretical
description of the AMR in magnetic graphite on this basis is, however, not yet done.

Figure3.18 shows the results of the resistance versus applied field at a constant
temperature and at different angles between current and field direction of an irra-
diated HOPG sample. The HOPG sample of dimensions 4.4 × 1.0 × 0.01 mm3

was irradiated with 12 spots, 0.8 mm diameter each, of 2 MeV protons of nomi-
nal 6 × 1016 cm−2 fluence [29], see the sketch in Fig. 3.18a. The four-point van der
Pauw arrangement and experimental conditions used in [29] allowed for low-noise
transport measurements with a relative resolution of ∼10 ppm in the resistance R.
The irradiated sample had 100 times larger resistivity than in its virgin state. Firstly,
a negative MR is observed independently of the field direction (within the plane).
This negative MR means that the scattering probability for, e.g., s − π or s − σ

scattering decreases with increasing spin-ordering of the magnetic moments in the
sample. Therefore, the solely negative MR already suggests the existence of mag-
netic ordering in the irradiated sample. The clear magnetic hysteresis loop within the
negative MR, see Fig. 3.18b, leaves no doubt on the magnetic state and the existence
of magnetic domains.

Figure3.18a shows the MR at 25K for three angles θ between the field and the
external input current (θ = 0means field parallel to the current and the sample’smain
axis). The observed behavior as well as the absolute change of the MR is compatible
with the AMR effect (see, for example, the results in ferromagnetic Co-nanowires
[74]). In the upper inset of Fig. 3.18a the MR at 6T field versus angle θ follows the
expected cos2(θ) dependence given by (3.6). From the AMR data one can estimate
the change of the magnetization at saturationMsat assuming thatMsat ∝ (MR)1/2 at
high enough fields. The obtained Msat decreases linearly with T in agreement with
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(a)

(b)

Fig. 3.18 a Magnetoresistance (MR) versus magnetic field at 25K for three angles between field
and current of a HOPG sample irradiated with 12 spots (see sketch). The error in the angle θ was
±10◦. The inset shows the MR (R0 = R(0, θ)) versus θ and the continuous line follows a cos2(θ)

dependence. The magnetic field is always parallel to the surface of the sample, i.e. to the graphene
layers. b Hysteresis loops in the MR for the same sample. The measurements were done starting
at a field of +8 T. The asymmetry in the hysteresis at θ = 0◦ might be due to different domain
structures between the positive and negative direction of the applied field and/or the contribution
of a Hall-like signal. Taken from [29]

SQUID results in other, irradiated andnon-irradiated ferromagnetic graphite samples,
see Fig. 3.17, and indicate a critical temperature TC ∼ (190 ± 10)K.With the simple
model from [9] and this TC we expect a distance between vacancies between 2.5 and
3 nm, in reasonable agreement with the estimated distance the magnetic moments
from vacancies should have in the first 10 µm depth for the nominal fluence [29].

In [75] the changes in the ferromagnetic behavior of graphite powder and graphite
flakes after treatment with diluted sulphuric acid have been studied. This kind of
acid treatment enhances substantially the ferromagnetic magnetization of virgin
micrometer-sized graphite powder as well as in graphite flakes. In that study, the
anisotropic magnetoresistance (AMR) has been measured in a graphite flake before
and after acid treatment.



70 D. Spemann and P.D. Esquinazi

Fig. 3.19 Relative change of the electrical resistance versus the angle between the magnetic field
(μ0H = 0.5 T) and the applied current for the graphite flake at 300K before (+, right y−axis) and
after acid treatment (�, right y−axis). (©): data obtained after acid treatment at 30K under same
conditions (left y-axis). The continuous line follows the cos2(θ) function. For comparison the AMR
measured in a Co polycrystalline film at 300K is also shown (�, left y−axis). Taken from [75]

Figure3.19 shows the change in resistance with the angle between the magnetic
field and input current, where the field was always applied parallel to the main area
of the graphite flake. Whereas the graphite flake does not reveal any AMR within
experimental resolution before acid treatment, the change is clearly resolved after
acid treatment, even at room temperature, see Fig. 3.19. One can also see that the
AMR follows very well the expected cos2(θ) dependence. It is worth emphasizing
that the remarkable observation of the AMR in irradiated as well as in acid-treated
graphite indicates the existence of a spin-splitting, or a non-spherical symmetry of the
charge distribution, and a non-negligible spin-orbit interaction. A theoretical study
of the anisotropy of the MR has yet to be done and several details are to be clarified
in future studies.

3.5 Further Evidence for DIM in Graphite: A Literature
Review

In the following, we will concentrate on further experimental evidence for defect-
induced magnetism in graphite taken from literature. However, DIM was also found
in numerous other materials, e.g. carbon nanotubes [76–79], carbon nanofoam [80–
84], ion irradiated fullerene films [85–87], ion implanted nano-sized diamond [88],
diamond-like carbon [89] aswell as SiC irradiatedwith ions [90–95] or neutrons [96].
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3.5.1 DIM in HOPG by Ion Irradiation

The first independent proof of defect-induced magnetism in HOPG created by ion
irradiation was published in 2008, five years after the first report of DIM induced by
proton irradiation in HOPG [30]. Xia et al. demonstrated room-temperature ferro-
magnetism with a Curie temperature of TC = 460 K in HOPG after 70 keV 12C+ ion
implantation [97]. The maximum magnetization achieved was 9.3 emu/g for an ion
fluence of φ = 2 × 1015 cm−2. The temperature dependence of the remanent mag-
netic moment was found to follow an uniaxial anisotropic 2D Heisenberg model in
line with the findings on MeV proton irradiated HOPG [34]. Furthermore, impurity
concentrations were determined to ∼1 µg/g using PIXE, clearly demonstrating the
intrinsic nature of the magnetic order.

In 2009, Yang et al. reported room-temperature ferromagnetism, again in 70 keV
12C+ implantedHOPG [98]. Using various positron annihilation techniques for depth
profiling of the defect density andDFT calculations they concluded that themagnetic
order is closely related to vacancies and vacancy clusters, the authors cannot exclude
a contribution from hydrogen though. It is interesting to note, that sample annealing
at 200 ◦C was found to reduce the vacancy density and led to a complete loss of the
magnetic order.

In 2011, medium energy 225 keV proton and He+ irradiation was used by
Makarova et al. to trigger magnetic order in HOPG [32]. The magnetic moments
of the samples were in the range of (2 − 25) × 10−6 emu, clearly above potential
contributions from the ∼1 µg/g impurities determined with high-resolution ICP-
MS and PIXE. Whereas for high ion fluences the magnetic response was found to
be isotropic, an anisotropic response was reported for low fluences. Raman studies
indicate that the degradation of the magnetic ordering at high ion fluences starts well
before the amorphization of the graphite lattice.

In the same year, He et al. used successive 12C+ implantations with various ion
energies in the range from 15 keV to 70 keV in order to get a homogeneous depth pro-
file of the defects [99]. In this way, room-temperature ferromagnetism was induced
with magnetization Msat up to 17.6 emu/g. This value is in agreement with that
obtained in [12] for a proton irradiated HOPG sample where the graphite mass to
which the ferromagnetism is restricted is known. The average magnetic moment was
estimated to 0.02–0.03 μB per carbon atom [99], consistent with proton irradiated
HOPG [34].

Several studies on this topic were published in 2012. Mohanta et al. studied the
magnetic response of HOPG after 40MeV 12C+ irradiation with SQUIDmagnetom-
etry and γ -ray differential perturbed angular distribution (TDPAD)measurements of
the hyperfine field using 19F nuclei recoil-implanted into a depth ∼7 µm below the
surface [100]. Whereas SQUID data show a ferromagnetic response, the hyperfine
field data only show enhanced paramagnetism, but no long-range magnetic ordering.
The authors therefore believe that the magnetic ordering is restricted to the near-
surface region, in line with XMCD measurements on proton irradiated HOPG [12].
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Shukla et al. reported magnetic moments up tomsat ∼ 1.4 × 10−4 emu for 1MeV
12C+ irradiated HOPG [101], approximately 100 times larger than reported for MeV
proton irradiation and still a factor 10 larger than for 70 keV 12C+ irradiation. For
the sample with the largest magnetic moment the defect separation was estimated to
be 0.3–0.7 nm varying with depth below surface, significantly smaller than reported
in [21]. The magnetic moment decreases again on further increasing ion fluences.

Near edge X-ray absorption fine structure angular resolved (NEXAFS) combined
with magnetization measurements were used by He et al. to study the role of defect
electronic states in the magnetism of HOPG implanted with 15–70 keV 12C+ ions
[102]. They found a clear correlation of pre-edge features in X-ray absorption with
the observed magnetization for different fluences and annealing temperatures and
attribute the origin of the ferromagnetism to defect-induced electronic states near the
Fermi level. The authors admitted that C-H bonds might contribute to the magnetic
order as well.

Pires et al. implanted 120 keV Na in HOPG with concentrations up to 2 at% and
studied themagnetization and planarmagnetoresistance—both showing a strong cor-
relation [103]. Themaximummagnetic moment was observed for a Na concentration
of 1 at% and the ferromagnetic response attributed to point defects or small vacancy
clusters.

In the study of Shukla et al. 2MeV proton and 1MeV 12C+ irradiation was used to
trigger ferromagnetic ordering in HOPG [104]. Magneto-resistance measurements
showed that the magnetic ordering sensitively depends on defect separation which
ranges between 1.7nm at the surface and 0.5nm near the ion range for the sample
irradiated with Φ ∼ 2 × 1017 cm−2 protons. The authors state that under these con-
ditions magnetic ordering can only be achieved in part of the sample. The findings
for the 12C+ implanted sample are similar.

3.5.2 Defective Graphitic Materials

Besides the deliberate introductionof defects into graphite by ion irradiationdefective
graphitic material can also be obtained by chemical synthesis, e.g. from suitable
precursor compounds.One example is the pyrolytic carbonobtained byKamishima et
al. from triethylamine [105]. The authors report ferromagnetismwith amagnetization
at saturation of Msat ∼ 0.5 emu/g at room temperature. From XRD measurements
they conclude that this magnetic order cannot be attributed to impurities but may be
related to a graphite-like structure.

In 2008, Li et al. produced Pb-C nanocomposites from which carbon nanocom-
posites were extracted by chemical treatment [106]. XRD and magnetization mea-
surements allowed to relate magnetic properties to the degree of crystallization. It
was found that disordered carbon is diamagnetic while oriented pyrolytic graphite
shows ferromagnetism. For HOPG nanospheres magnetizations at saturation up to
Msat ∼ 0.18 emu/g were obtained at T = 2 K.
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Local room-temperature ferromagnetism at the grain boundaries of untreated
ZYH-grade HOPG was reported by Červenka et al. [107]. Bulk magnetization mea-
surements showed hysteresis and magnetization up to Msat ∼ 2.5 × 10−3 emu/g at
room temperature, whereas magnetic force microscopy was used to study the mag-
netic response at grain boundaries. Those, forming a two-dimensional array of point
defects, were proposed to be the most probable source of magnetism in graphite. It
should be noted, however, that Martínez-Martín et al. raised serious doubts on the
validity of these MFM measurements and their interpretation [108].

In 2015, Wang et al. reported strong magnetism in pure carbon films grown by
electron irradiation assisted PVD [109]. In the amorphous film matrix, which only
showed weak paramagnetism, the development of graphene nanocrystallites was
observed exhibiting strong ferromagnetism with Msat up to 0.37 emu/g at room
temperature. This magnetism was attributed to spin magnetic moments at the edges
of the graphene layer.

Finally, we note that the magnetic order in graphite-related materials should be
detectable by carbon nuclei in the surroundings of the defects responsible for themag-
netism. Recently, Freitas et al. determined the hyperfine magnetic field at the atomic
13C nucleus using nuclear magnetic resonance (NMR) technique [110]. The direct
measurement of the hyperfine field, its value (�24 T) and the agreement with the
results of the Density Functional Theory calculations confirm further the intrinsic,
defect-related origin of the magnetic order in carbon-based materials, and rule out
magnetic impurities as possible source for the observed behavior.
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Chapter 4
Phase Transitions Induced by a Magnetic
Field in Graphite

Benoît Fauqué and Kamran Behnia

Abstract The subject of this chapter is the the so-called quantum limit of a three-
dimensional metal, which is attained at a sufficiently strong magnetic field with only
a few occupied Landau levels. Graphite, which has a small Fermi surface, is an ideal
candidate to explore this limit. A magnetic field of 7.5T confines the carriers to
their lowest Zeeman-split Landau level. In the early 1980s, a sharp increase in the
in-plane magneto-resistance of graphite at high magnetic field (typically B >20 T)
was discovered and attributed to a phase transition induced by the magnetic field.
Numerous studies followed, and this phase transition is generally believed to be a
density-wave instability triggered by the one-dimensional nature of the electronic
spectrum and the enhancement of the electron–electron interactions in the quantum
limit. Recent transport measurements up to 80T revealed that not one but two succes-
sive field-induced instabilities are present. After a brief description of the quantum
limit, we review the rich and complex field phase diagram of graphite as a function
of temperature and magnetic field. We discuss possible electronic states associated
with these instabilities and end the chapter with a study of the quantum limit in other
dilute metals, such as bismuth or lightly-doped semiconductors.

4.1 Introduction: The Effect of a Large Magnetic Field
on a Three Dimensional Electron Gas

In the presence of a magnetic field, electrons of a three-dimensional (3D) Fermi sea,
while still propagating freely along the magnetic field (B), circulate in quantized
orbits in the plane perpendicular to it. As the magnetic field is swept, the radius
of the orbits (the cyclotron radius rc) shrinks with increasing B and crosses the
different characteristic length scales of the system. When rc becomes shorter than
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the electronic mean free path (le), electrons can follow a complete orbit without
being scattered. In this regime, quantum oscillations become observable by various
probes, such as magnetization and electrical transport [1]. This is a consequence of
the quantification of the Fermi sea by the magnetic field. In the simplest picture,
where there is only one type of carrier, no Zeeman splitting and no anisotropy, the
electronic dispersion can be written as:

E = (n + 1/2)�ωc + �
2

2m0
k2z (4.1)

where n is the Landau level index, ωc = eB
m0
, m0 and e are the mass and the charge of

the electrons and kz is the momentum in the z-direction, i.e. parallel to the field. As
sketched in Fig. 4.1, the magnetic field redistributes the states among the n Landau
levels (LLs). With the magnetic field, the degeneracy in each Landau level increases
[2] and the number of occupied LLs decreases. At highmagnetic field, all the carriers
are confined in the n = 0, the lowest Landau level (LL) and one attains the quantum
limit, where the shape of the electronic spectrum is very different from what it is
in absence of a magnetic field: starting from a 3D Fermi sea, we are ending with a
one-dimensional spectrum, which has numerous electronic instabilities [3].

While the physics of the quantum limit has been intensively studied for two-
dimensional electron gas systems [4], it has been a longstanding problem for three-
dimensional gases, and it remains an open question [5]. One of the reasons for this
is that the magnetic field required to attain this regime for a standard 3D metal is out
of reach with current technology. Typically for a metal with a carrier density of one
electron per formula unit, the quantum limit would be reached for a magnetic field as
high as several thousand Tesla. However, it is possible to overcome this difficulty by
studying systems with larger Fermi wavelengths: dilute metals. The quantum limit
of the semimetals bismuth, graphite or narrow-gap doped semiconductors can be
reached using a moderate magnetic field, i.e. of the order of few Tesla. Therefore,

B

(a) (b) (c)

Fig. 4.1 a, b and c Sketches of the Fermi surface of a 3D dimensional electron system as a function
of magnetic field, starting at zero (a). As the magnetic field increases, there are fewer Landau levels
(LLs) occupied, until all the carriers are confined in the n = 0, the lowest Landau level (LL)
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these simple elements are ideal to explore the nature of the electronic organization
in the quantum limit regime, which is the subject of this chapter.

Each system is characterized by a number of properties (orbital mass anisotropy,
g-factor, number of valleys, etc.) which deeply affect its electronic spectrum in the
quantum limit regime. As an example, let us compare two simple cases: the first is the
simplest, a single isotropic electron pocket; the second is a compensated systemwith
a Fermi surface consisting of two pockets, one isotropic electron-like and another
isotropic hole-like.

At zero field, both systems have the same carrier concentration (n = 2.5 ×
1017 cm−3) and the same Fermi energy (EF ). Once the magnetic field is applied,
the systems begin to differ significantly, as shown on Fig. 4.2. In the case of uncom-
pensated system, EF adjusts in order to keep the carrier concentration constant. As
a result, EF changes with the magnetic field. In particular, each time a LL is depop-
ulated, there is a sharp change in EF . Once all carriers are confined to the n = 0 LL
(at about 10 T), EF increases linearly, following the cyclotron energy of the elec-
trons at n = 0 LL. In the case of a compensated system, on the other hand, it is the
carrier concentration, which is fixed by the overlap between the hole and electron
bands. Contrary to the uncompensated case, the carrier concentration can vary with
the magnetic field as long as the charge neutrality is preserved. In this simple picture
where we assume a perfect electron-hole symmetry, the Fermi energy is thus field
independent. Once the holes and electrons are in their lowest Landau level, the carrier
concentration decreases to reach zero at about 25 T. This is simply the result of the
difference of behavior of the hole and electron lowest Landau levels: one moves up
when the other moves down. Thus, when the cyclotron energy becomes larger than
the overlap energy, the carrier concentration goes to zero. This simple example illus-
trates that the electronic ground state in the quantum limit has not a unique fate and
is sensitive to the specific properties of the Fermi surface (FS) under consideration.
In the first case, the system stays metallic, but in the second it becomes an insulator.

0 10 20 30 40

4

6

8

10

12

14

E
F
 (

m
eV

)

0 10 20 30 40
1.5

2

2.5

3

3.5

B (T)

n 
(1

e2
3 

m
-3

)

0 10 20 30 40

5.5

6

6.5

7

7.5

8

8.5

9

E
F
 (

m
eV

)

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

B (T)

n 
(1

e2
3 

m
-3

)

(a) (b)

Fig. 4.2 Field dependence of the Fermi energy and the carrier concentration for an isotropic electron
pocket with n = 2.5 × 1017 cm−3 on (a) and for a compensated system formed by one hole and
one electron pockets (n = p = 2.5 × 1017 cm−3) on (b)
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The focus of this chapter is graphite, a compensated system, in which electronic
instabilities have been found in the quantum limit. In Sect. 4.2 we review and discuss
the most recent experimental studies at high magnetic fields, which establish the
existence of a complex phase diagram. In Sect. 4.3, we discuss the theoretical ideas
put forward to explain this phase diagram. Finally, in Sect. 4.4, we compare graphite
to other dilute systems for which one can go deep into the ultraquantum limit.

4.2 Field-Induced Phase Transitions in Graphite

The FS of graphite has been intensively studied over the last fifty years, by numerous
experiments including quantum oscillations andmagneto reflectionmeasurements. It
is well captured by the Slonczewski–Weiss–McClure (SWM) model [6, 7]. A sketch
of this FS is shown in Fig. 4.3a. It is formed by one electron and one hole pocket
elongated along the two inequivalent edges H-K-H and H′-K′-H′ of the Brillouin
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Fig. 4.3 a Sketch of the Fermi surface of graphite: the electron and hole pockets located along the
H-K-H and H′-K′-H′ direction of the graphite Brillouin zone. b In-plane magnetoresistance (Ra)
of kish sample with a thickness of 50µm, up to 70T for temperatures between 1.5 and 10K. The
magnetic field is applied along the c-axis. The curves are shifted for clarity. c The magnetic field
dependence of the transition temperature plotted as log T versus B−1. Data for kish and natural
graphite obtained from the in-plane resistance (Rxx ) and Nernst effect (Sxy) are shown. The dot
line corresponds to the behavior expected from (4.2)
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zone. The electronic density is very low (n ≈ p ≈= 3 × 1018 cm−3), four orders
of magnitude lower than in copper. When the magnetic field is applied along the
c-axis, two frequencies of quantum oscillation can be detected. They are as low as
Fhole =4.6± 0.1 T for holes and 6.2± 0.1 T for electrons [8]. A magnetic field as
low as 7.5T is sufficient to confine both the electrons and holes into the n = 0 (spin
splitted) LL, respectively labeled (0, ±) and (−1, ±).

4.2.1 Evidence for a Field Induced State in Graphite

In 1981, Tanuma et al. [9] reported a sharp increase in the in-planemagnetoresistance
of graphite at around B = 25 T. Following this pioneering work, numerous experi-
mental studies confirmed the existence of a field-induced many-body state beyond
a temperature-dependent critical magnetic field. A detailed review on this work is
provided by Yaguchi and Singleton [11]. To illustrate the signature of this phase tran-
sition on in-plane resistivity, we present in Fig. 4.3 our own data for a kish graphite
sample, as a function of the magnetic field up to 70T for temperatures ranging from
1.5 to 10K. In this figure (and the following), the magnetic field is oriented along the
c-axis. At T = 10 K, upon the application magnetic field, the resistivity increases by
several orders of magnitude, before saturating around 15T and then starting a slow
decrease when the field exceeds 30 T. As the temperature decreases, we observe the
emergence of a sudden increase in resistivity (labeled α) on top of this monotonic
background. This sharp increase indicates a change in the electronic ground state.
The onset of the α-transition is shifting to lower magnetic fields as the temperature
decreases. A close look of the low temperature curves reveals the existence of addi-
tional structures, possibly associated with another transition [10, 12]. In particular at
T = 1.5 K, a plateau in the in-plane resistance Ra has been observed near 35T and
has been attributed to a second transition, labeled β on Fig. 4.4b. At higher magnetic
field (typically 53 T) in-plane resistivity drops and erases the field-induced enhance-
ment. Remarkably, and contrary to the onset of the transition, the field at which this
re-entrance occurs is temperature-independent.

Soon after the discovery reported by Tanuma et al. [9], Yoshokia and Fukuyama
[15] suggested that this field-induced state was the result of the formation of charge
density waves (CDW) along the magnetic field in the (n = 0,+) LL of the electrons.
As we will discuss in the next Sect. 4.3, while there is currently no consensus on the
precise nature of the density wave (DW) state, three experimental observations are
in agreement with a DW scenario. They are detailed below:

(i) The temperature dependence of the onset of the transition: in a mean-field
approach the onset of the transition Tc depends on the magnetic field following a
BCS-like result [14]:

Tc = T ∗ exp
(

− B∗

B

)
(4.2)
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(a) (b)

Fig. 4.4 a Field dependence of the in-plane resistance in log scale (in blue) and of the Nernst
voltage (in red) at T = 1.3 K measured in the same sample. The magnetic field is applied along
the c-axis. (b) A zoom of (a) in the magnetic field window from 22T to 34 T. Sample thickness :
0.2 mm

where T ∗ is a temperature scale related to the Fermi energy [15]. Figure4.3c presents
the onset temperature of the transition, deduced by the resistance and Nernst effect
in two different types of graphite (kish and natural) as a function of the inverse of
magnetic field. In good agreement with early [14, 17–19] and with recent results
[12, 13], we find that log Tc follows B−1 linearly and Equation (4.2) captures the
evolution of the onset of the α-transition with temperature and magnetic field, using
T ∗ =80 K and B∗ ≈ 110 T as fitting parameters.

(ii) The re-entrance at 53 T: as the magnetic field increases, the distance between
the Landau levels (n = 0,±) of the electrons and (n = −1,±) of the holes increases
due to the Zeeman energy. According to [16], close to 53 T, both Landau levels (0,
+) and (−1, −) depopulate, which leads to the collapse of the DW that had formed
within these Landau levels [14].

(iii) Non-linear transport: an electric field can make a density wave to move
collectively and provide an additional contribution to electric conductivity. Non-
ohmic behavior was first observed in the case of in-plane measurements [20] (i.e.
in the direction perpendicular to the CDW state). It was also observed in c-axis
measurements [21], which is more consistent with the sliding motion of a CDW
state given that the nesting vector is expected to be along the c-axis. It should be
noted that the electrical field threshold crucially depends on defects, which pin the
DW and is therefore sample-dependent.

4.2.2 Nernst Effect in the Field Induced State

Experimentally, the field-induced state in graphite has been mainly studied using
electronic transport measurements [11]. No evidence of this field-induced state has
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been reported by magnetization measurements or any other thermodynamic probe
[13, 19]. In this section we discuss the consequences of this phase transition for the
Nernst effect, which is a probe of entropy transport by electrons. The Nernst effect
(Sxy = Ey

ΔTx
) corresponds to the generation of a transverse electrical field by a thermal

gradient in the presence of a magnetic field.
The study of electrical and entropy transport in graphite at low magnetic field has

revealed that among four transport coefficientsρxx ,ρxy , Sxx and Sxy , theNernst effect
is the most sensitive probe to the quantum oscillations [23]. Figure4.4a compares the
in-plane resistance (Rxx ) and the Nernst voltage (Vxy) as a function of the magnetic
field at T = 1.3K. For Rxx , the amplitude of the quantumoscillations is about≈ 10%
of the overall signal. On the other hand, the amplitude of the quantum oscillations
in the Nernst response dominate the signal. The remarkable sensitivity of the Nernst
response still holds at high magnetic field, as reported on Fig. 4.4b. A drop of a factor
two in the Nernst voltage is concomitant with an increase of the resistance of about
10% [24]. At first sight, a decrease in the Nernst effect seems to contradict the DW
scenario. Typically, in DW state systems such as the iron pnictide [25], the Nernst
effect increases at the onset of the Fermi surface reconstruction that occurs with
the formation of a spin density wave. This is qualitatively understood in the semi-
classical limit where the Nernst coefficient (ν = Sxy

B ) is roughly set by the ratio of
electron mobility to Fermi energy [26]. When the Fermi surface reconstruction leads
to a decrease in the Fermi energy, one expects the Nernst coefficient to increase.

In the specific case of graphite, we are in the quantum limit with only a few
occupied Landau levels. Bergman and Oganesyan [27] proposed a general theory for
the transverse thermoelectric conductivity (αxy), αxy = − ekB

h
π2

3

∑nmax
n=0

kBT
2π�vFn

where
nmax = [ν], the index of the highest occupied Landau level, equal to the integer part
of ν = (EF/�ωc − ν0) and vFn =

√
2(EF − �ωc(n + 1

2 ))/mz , the Fermi velocity
along the magnetic field for the Landau level n. In the limit where only the (0, ±)
and (−1, ±) Landau levels are occupied, the amplitude of αxy is imposed by the
Fermi velocity of the (0,±) and (−1,±) LLs. In the case of graphite (a compensated
system), αxy is simply related to Sxy through αxy = Sxy

ρxx
. The opening of a gap along

one of the four Landau levels would result in a loss of the contribution of this Landau
level to αxy . A decrease of Nernst voltage is therefore expected. The discrepancy is
simply the result of the difference in the nature of the electronic spectrum between
the semi classical (where the Landau quantification does not play a major role) and
the quantum limit (where only few Landau levels are occupied). Quantitatively, the
drop of a factor two in Vxy suggests that the contribution of two Landau levels has
been lost [24], possibly as a result of simultaneous nesting of the electron and/or
hole pockets.
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4.2.3 In Plane Versus c-Axis Transport

First observed in natural graphite, the field induced state has been observed over years
in synthetic graphite such as kish and HOPG (Highly Oriented Pyrolytic Graphite)
[9, 14, 29], mainly using in-plane resistance measurements. In comparison, c-axis
transport (when both the electrical current and the magnetic field are parallel to the
c-axis) were studied less intensely over the years, even though the field-induced
state dramatically affects c-axis transport [21, 22], as we will see in the next section
in more detail. One reason is that it is extremely difficult to measure the c-axis
resistance (Rc) without any in-plane contribution. In addition, the anisotropy ratio
varies significantly from one type of graphite to another. For example, the resistivity
anisotropy between the c-axis and the in-plane is around 20 for kish graphite and
around 1000 for HOPG at room temperature. Moreover, the field dependence of Rc

differs between the two systems. In Fig. 4.5b we compare the field dependence of Rc

for a kish sample (in black) and a HOPG sample (in green), at T = 1.5 K. Below the
transition, Rc remainsweak inKish graphite, but becomes very large inHOPG. These
differences have been a subject of debate. Ono et al. [30] suggest that HOPG is more
anisotropic thankish graphite due to a larger number of stacking faults. Thus, a current
applied along the c-axis of a HOPG sample would not only be perpendicular but also
parallel to graphene layers. Rc can be then described by two parallel resistors, one
coming from the intrinsic c-axis contribution and the other from in-plane resistance
[31]. As a result, Rc in HOPG is naturally more contaminated by the large in-plane
resistance than in kish samples, giving rise to a large magnetoresistivity below the
field-induced state in HOPG.

In spite of this difficulty, the study of the c-axis transport in the field-induced state
has been very fruitful [21, 22]. The remarkable sensitivity of Rc to the field induced
state can be realized in Fig. 4.5a where we show a comparison of the in-plane (Ra)
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Fig. 4.5 a Comparison of the in-plane (Rxx ) and longitudinal (Rc) magnetoresistance for kish
sample (thickness 0.2 mm) at T = 1.3 K, b, c-axis resistance Rc (B//I//c) for kish samples (in
black, left axis) and HOPG sample (in green, right axis, thickness 1.2 mm) as a function of the
magnetic field at T = 1.5 K
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and the c-axis (Rc) resistance in kish graphite at the same temperature T = 1.3 K
and up to 32 T. While Ra increases by about 10%, Rc increases by at least one
order of magnitude in this field window. In addition, there are different onsets of the
transition in Ra and in Rc. As first noticed byYaguchi et al. [22], Rc increases sharply
at a magnetic field slightly higher than the onset of the α-transition. The increase
in Rc has been identified as a second, β transition. Thus, Rc is not sensitive to the
α-transition, but is very sensitive to the β-transition.

4.2.4 c-Axis Transport Measurement: Multiple Instabilities
in the Quantum Limit of Graphite

Motivated by the recent progress in magnetic field technology [32] and the large
variation of Rc at the β-transition, we extended the measurements of the out-of-
plane resistivity at LNCMI-Toulouse up to 80 T [28]. In Fig. 4.6 we present the field
dependence of Rc at temperatures from T = 0.44 K to T = 10 K. In good agreement
with previous reports [21, 22], we find that at low temperatures Rc dramatically
increases when the magnetic field lies between 30 and 53T. Surprisingly, beyond
53T and up to 75 T, we find a second field window of dramatic Rc enhancement.
The temperature dependence of Rc at the maximum of the two domes of Fig. 4.6a at
B= 47 and 64T is shown in Fig. 4.6b. In both states, log Rc varies linearly with T−1,
over several orders of magnitude, and then saturates at low temperatures. This is the
typical behavior associatedwith the opening of a gap (labeledΔ). Using anArrhenius
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Fig. 4.6 a Out-of-plane magnetoresistance in semi-logarithmic scale for a kish graphite sample
(thickness 100 µm) up to 80T and to 0.44 K. b Rc as a function of T−1 at B = 47 T (circles) and
B = 64 T (squares). Dashed lines are Arrhenius fits to Rc. Both plots are adapted from [28]
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Fig. 4.7 Field dependence of the gap deduced from the thermally activated behavior of Rc. Sketch
of occupied Landau sub-levels with increasing magnetic field. When B > 7.5 T, there are four
occupied sub-levels. The onset of the field-induced transition at 30T opens a gap in all these sub-
levels. At B = 53 T, one sub-level crosses the Fermi energy and the field-induced state is destroyed.
At B > 53 T, a second field-induced state emerges, opening a gap in the last three occupied sub-
levels. At B = 75 T, another sub-level becomes empty and the second field-induced state vanishes

law (blue dotted lines on Fig. 4.6b) we estimate Δ � 2.4 and 1.1 meV at B= 47 T
and 64 T, respectively. The determination of the gap can indeed be performed at all
magnetic fields. The field dependence of the gap estimated from Rc measurement
is shown in Fig. 4.7a. We note that the amplitude of the gap first increases to reach
a maximum at B = 47 T where Δ = 2.4 meV and then sharply decreases at the
(first) re-entrance field. Afterwards, the gap increases again and saturates between
60 and 75T at a value of about 1 meV, and then sharply decreases at 75 T, the second
re-entrance field. It is interesting to note that the ratios of the activation gap with the
critical temperature (defined as the temperature at which the Arrhenius fit crosses the
normal state resistance value) at B= 47 T and 64 T are almost the same and equal
to 2Δ

kBTc
= 3.7.

The existence of multiple instabilities in the quantum limit regime of graphite,
first observed in kish samples, was later confirmed in HOPG samples, see Fig. 4.5b,
in super graphite made by graphitization of piled polyimide sheets [13] and in natural
graphite [73]. Besides the large magnetoresistance discussed previously, a double-
peak structure emerges above 25 T. This structure is similar to what was observed in
kish samples. Thus, according to Rc measurements, the magnetic field induces not
one but two successive phase transitions, consisting of two distinct ordered states.
The existence of another field-induced state above 53T modifies deeply the high-
magnetic field phase diagram of graphite and raises several questions.
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(i) How does the Landau level spectrum of graphite evolve with magnetic field
above 7.5 T?What is the nature of the instability above 53 T? Following the scenario
of Yaguchi et al. [14] and supported by theoretical work [16], only the two LLs (0,-)
(for the electrons) and (−1,+) (for the holes) are occupied above 53 T. As in the case
of the first instability, one can speculate on the formation of a CDW in the two LLs
or an exciton-like state combining the (0,−) and (−1, +) LLs [13, 73]. However, this
picture is challenged by the second re-entrance field at 75 T. If both LL (0,−) and (1,
+) are occupied, the depopulation of one LL implies the depopulation of the other
due to charge conservation. As a result, if one attributes the 75T re-entrance to the
depopulation of LL ((0, −) or (1, +)), the system should become an insulator, which
would contradict the result of the experiment. We have proposed another scenario,
sketched in the insert of Fig. 4.7. At 53 T, only one (and not two) Landau level is
depopulated. The LL (0,+) would then be depopulated at 75 T, which would explain
the collapse of the second phase. Indeed, the only difference between both scenarios
is the number of LLs, which depopulate close to 53 T (i.e. one or two). Recently,
Arnold et al. [12] have observed two resistance hysteresis (slightly below and above
53 T) possibly associated with the destruction of two CDW states concomitant with
the depopulation of two LLs. We note, however, that in this scenario the existence
of a second re-entrance transition at B = 75 T remains unexplained.

(ii) Why the in-plane resistivity would have a phase transition at 53 T? As one
can see in Fig. 4.3, at low temperatures and above 53 T, Ra has a monotonic behav-
ior, which does not suggest a dramatic change in the electronic ground state. More
precisely, at B = 64 T, as it is shown in Fig. 4.5b, Ra has a metallic behavior with
a linear T -dependence. This is in contrast with Rc(T ), which displays an activated
behavior. This residual in-plane metallicity is indeed surprising and different from
the case of Bechgaard salts, which is a well-documented family of quasi-one dimen-
sional conductors hosting a density-wave transition. In the spin-density-wave system
(TMTSF)2PF6, all three components of resistivity display an activated behavior with
a gap of similar amplitude [44]. In the case of graphite, the in-plane kinetic energy is
quenched by themagnetic field and a gap is formed along the c-axis. As the result, the
spectrum is fully gapped and an activated behavior is expected for any direction of
the current injection. This remarkable dichotomy between in-plane and out-of-plane
transport is the hallmark of a peculiar electronic organization that will be discussed
in the next section.

4.3 Theoretical Overview of Different Electronic States
Expected for a Three-Dimensional Electron Gas
in the Quantum Limit

We review below theoretical ideas describing the electronic organization in the quan-
tum limit regime of graphite.
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4.3.1 Field Induced Density Waves

Within the Hartree–Fock approximation for a repulsive interaction Celli andMermin
found in 1968 [33] that the ground state of a 3D electron gas system in a uniform
magnetic field is subject to an electronic instability. According to their work, at suffi-
ciently low temperatures, there is always a spin density wave directed along the field.
This instability is the result of a logarithmic divergence of the electronic polarization
function at zero energy when the values of qz connecting the Fermi-surface points
in the z-direction in momentum space. Over years, a large number of theoretical
works have extended and refined this early work [34–37]. A consensus emerged on
the essential ingredients in favor of an electronic instability in the quantum limit:
(i) the change in the effective dimensionality of the charge carriers induced by the
magnetic field from 3D to 1D, as discussed in Sect. 4.1, and (ii) the enhancement of
the electron-electron interaction, in particular when the magnetic field is near a field
at which the low LLs start to depopulate.

Yet, no consensus has emerged on the precise nature of the instability. In the case
of an attractive interaction, the numerical solution of the parquet equation confirmed
the formation of a DW [37], and both SDW and CDW states have been proposed as
possible candidates. Depending on the parameters of the system (such as the number
of valleys, the anisotropy of the mass tensor and the Zeeman factor), the SDW or
CDW state may have lower energy [35]. For example, in a system with two valleys,
even if the SDW ismore favorable in each valley, the cancellation of the direct energy
by a shift of 180◦ of the CDW in each valley can favor a (charge) valley density wave
state [36]. It should be noted that more exotic instabilities have also been proposed,
such asWigner crystallization [38], Luttinger-liquid phase [40] and even a re-entrant
superconductor [41] in the case of an attractive interaction. More recently, based on
the works of Abrikosov et al [39], an excitonic phase have been also proposed [73].

Most of these theories have been developed for multi-valley dilute doped semi-
conductors. In the case of graphite, the compensated nature of the FS has to be
considered in addition to the valley degree of freedom. As discussed in the Sect. 4.2,
above 7.5 T, four Landau levels are occupied (respectively (0, ±) for the hole pocket
and (−1, ±) for the electron pocket), and therefore several instabilities involving
either a CDW or a SDW have been proposed. Quickly after the discovery of a field
induce state in graphite, Yoshokia and Fukuyama [15] suggested the formation of
two CDWs along the c-axis in the two valleys along the H-K-H and H’-K’-H’ direc-
tions of the Brillouin zone. These CDWs are out of phase in order to minimize the
Coulomb interaction. However, this scenario has been challenged by Takahashi et
al. [43], who argued that the electrons along the (H,K,H) and (H’,K’,H’) directions
do not belong to the same layers. In other words, the cancellation of the Coulomb
interaction cannot be at work in each layer. Instead, they suggest that a transverse
SDW forms in the (n = 0,±) LLs. There is thus currently no consensus on the nature
of instability observed at high magnetic field in graphite.

The experimental results discussed in the previous section impose novel con-
straints on the theory. First, the observation of an activated gap for transport along
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the c-axis means that all Landau levels are gapped at the β-transition. Not only the
electrons (considered in the theory of [15, 43]) but also the holes have a gapped
spectrum following the formation of the DW state. However, in most theories, only
two (instead of four) Landau levels have been considered: either (0, ±) [15, 43] or
(0,+) and (−1,−) [12, 15, 43]. Second, the field induced state in graphite is the only
case in which an activated conductivity along one axis coexists with metallic con-
ductivity perpendicular to it. This dichotomy contrasts with what has been reported
in other 1D density-wave systems. Thus, beyond the DW scenario, other ingredients
are required to capture the physics of the electrical transport properties of graphite
at high magnetic fields.

4.3.2 The Three Dimensional Quantum Hall Effect

Since the early work of Tanuma et al. [9], the understanding of the electron orga-
nization in the presence of a large magnetic field has been deeply affected by the
physics of the quantum Hall effect. In particular, the discovery of particular types
of quantum Hall effects (QHE) in graphene and multilayer graphene [45, 46] opens
new perspectives in understanding the high-field physics in graphite. For instance,
one can wonder whether it would be possible to adiabatically connect the quantum
Hall state of the multilayer graphene to the field-induced states of graphite.

The possibility of a 3D quantum Hall effect has been discussed since the 80’s.
As pointed out by Halperin [36], if the Fermi level lies inside the gap, one expects
the conductivity tensor of a 3D system to take the form: σi j = e2

2πh

∑
k εi, j,kGk , where

εi, j,k is the fully antisymmetric tensor and G a reciprocal tensor of the lattice or of
the incommensurate potential produced by a DW state. A theory of the 3D QHE in
graphite has been proposed [47]. In that work, the Fermi energy was shifted into the
bulk gap. A plateau in the Hall conductance was predicted as a result of the formation
of chiral surface states. Experimentally, plateaus in the Hall resistivity have been
reported in HOPG samples. They are a possible signature of the fractional quantum
Hall effect in graphite [29]. However, no quantum-Hall plateau-like structure was
observed in kish or natural graphite samples [13]. The understanding of the quantum
Hall conductance in graphite is non trivial due to the compensated nature of its FS.

These chiral states were first postulated for layered samples (which exhibit a bulk
quantumHall effect) such as the Bechargard salts and for 2D electron gasmulti layers
system [49]. They correspond to the formation of a metallic sheet on the surface of
the system as the result of the interlayer coupling of independent 2D quantum Hall
systems. Experimentally, such states have been tested and observed in multilayer
structures formed by 50 periods of 150 Å GaAs quantum Hall alternated with 150 Å
Al0.1Ga0.9As barriers [50].Within theQH states, the conductivity σzz has an activated
behavior. At low temperature, σzz saturates and scales with the perimeter of the mesa
structure, which establishes that the transport is mainly dominated by the edge state,
not by the bulk state.
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Our work has revealed the existence of a gap along the c-axis. From a theoretical
point of view, this means that graphite would thus fulfill the condition required for the
quantification of the conductivity tensor [47]. Yet, no evidence of a metallic surface
state has been reported so far. In the simplest picture, the modulation of the charge or
the spin is fixed by the nesting vector, which continually changes with the magnetic
field. However, for the two lowest Landau level (0,+) and (−1,−), in the field range
of (30 T, 60 T), 2kF is about half of the c-axis length of the Brillouin zone.

It is instructive to think of graphite as a stack of “weakly-coupled graphene bilay-
ers” in the n = 0 LL. Note that the tight-binding parameters for graphite in the
so-called SWM picture are such that the coupling energy between such adjacent
bilayers would be 50–70 meV. This is much lower than the intra-bilayer coupling
energies, but an order of magnitude larger than the energy gaps, which according
to our results, the field-induced phase transition opens in the energy spectrum of
graphite.

Seen from another perspective, in a magnetic field of 54 T, the magnetic length is
lB =35Å, shorter than the in-plane inter-electron distance r0 in each graphene plane.
This implies that strong correlations have to be considered [16], known to generate
a variety of electronic phases in the two dimensions [4]. What happens to them once
the third dimension is turned on, remains an open question. Interestingly, in most
DW scenarios, the spin or charge modulation is along the field and the possibility of
an in-plane DW state [34] has not been considered in detail.

Even though the link between quantum Hall physics and field-induced states is
appealing, it is still speculative. Further experimental and theoretical works should
be carried out to clarify its relevance to field induced states in graphite.

4.4 Discussion

Since the early work of Celli and Mermin [33], it is theoretically expected that at
a sufficiently high magnetic field and at a sufficiently low temperature, any system
in the quantum limit regime is unstable towards a DW instability. Yet, evidence for
such a phase transition has only been reported in graphite. In this last section, we
discuss the case of other dilutes metals.

As in the case of graphite, the FS of bismuth (sketched in Fig. 4.8) is compensated,
and both carriers are characterized by a very large mobility (even larger than in
the case of graphite) and a total number of electrons (and holes) as low as n =
3 × 1017 cm−3 [51]. When the field is oriented along the bisectrix direction, the
quantum limit for the three electron pockets can be reached for a magnetic field as
low as 2.5 T, which makes bismuth another ideal system to explore the physics of
the quantum limit. Experimentally, a sharp increase of the magneto-transmission has
been observed for amagnetic field as high as 88T oriented along the binary axis. This
sharp increase has been attributed to a field induced transition from a semi-metal to a
semiconductor state [61] and later observed in Bi1−xSbx by transport measurements
[62]. As discussed in section , for a compensatedmetal with only one valley, when the
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Fig. 4.8 Sketch of the Fermi
surface of bismuth. The three
electron pockets labeled
e1,2,3 (in green) are almost
orthogonal to the single hole
pocket (in red), while for
graphite, both the hole and
the electron pockets are
elongated along the same
axis
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0− LL of the hole (and the electron) pocket depopulates, a gap forms and the system
becomes insulating. We note that in the case of graphite, the field scale associated
with SM-SC is still unknown. Theoretical estimates vary from around 85 T [12] to
200 T [16].

More recently, several anomalies have been reported in the quantum limit of bis-
muth. Firstly, Nernst effect measurements have revealed the existence of unexpected
peaks in the Landau level spectrum at high magnetic fields [52, 53]. The study of
their angular dependence has shown that they can be attributed to the Landau level
spectrum of a twin minor domain of the rhombohedral crystallographic structure of
bismuth [54]. Interestingly, as the magnetic field increases, the electronic density
in each domain changes in a different way, resulting in a significant field induced
discontinuity in carrier density across the twin boundary. This allows studying the
electronic organization at the junction of two compensated systems when only few
Landau levels are populated.

Second, a first order field-induced phase transition has been reported by torque
magnetometry for a field above 15T and oriented close to the trigonal axis [55].
This phase transition was first attributed to the formation of a valley-polarized state,
and later to the crossing of the Fermi energy and the LL 0+ of the electron pockets
[56]. However, no evidence of an hysteresis behavior at this crossing was reported
by transport measurements [54].

Third, the angular dependence of the magnetoresistance of bismuth has shown
that at low temperatures and high magnetic fields, the threefold symmetry of the
lattice is suddenly lost [57, 58]. Since the work of Kapitza, it has been known that
bismuth displays a very large magnetoresistance [59]. When the magnetic field is
oriented in the (binary, bisectrix) plane, the magnetoresistance (measured along the
trigonal axis) shows large oscillations associated with the contribution of the three
anisotropic Dirac electron valleys. At low temperatures and high magnetic fields,
the C3 symmetry in the angular dependence of the magnetoresistance is lost. The
three Dirac valleys cease to be rotationally invariant, which could be related to the
formation of a “valley-nematic Fermi liquid state” [60].
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However, none of these features resembles the field induced state of graphite. The
fate of the three-dimensional electron gas in bismuth and in graphite diverges. Let us
point out several differences between the electronic structure of bismuth and graphite
that could explain the absence of a DW state in bismuth. First, the orientation of the
hole and electron pockets is different. For graphite, both the hole and electron pockets
are elongated along the c-axis, while for bismuth the hole and electrons pockets are
almost perpendicular to each other. Indeed, holes and electrons have much more
in common in the case of graphite than in the case of bismuth. For bismuth, even
when all the electrons are in the lowest Landau level, at B = 2.5 T and parallel to the
bisectrix direction, the n = 8LL of holes is still occupied and the holes in bismuth are
still far away from the quantum limit. Second, the amplitude of the Zeeman energy
is different. In the case of graphite, the Zeeman energy is rather small. In the case of
bismuth, the Zeeman energy is large, and very anisotropic for the hole pocket. These
differences may prevent the formation of a common nesting vector for both carriers.
Third, the number of valleys is different. While graphite has two valleys for each
carrier, bismuth has one valley for holes and three valleys for electrons. As discussed
in Sect. 4.3.1, the valley degrees of freedom could play an essential role to stabilize
the DW state. The presence of only one valley for holes could be another factor that
prevents the stabilization of a DW state in bismuth. Finally, beyond the difference in
the electronic spectrum, we can also invoke the difference in the dielectric constant
between both systems. The dielectric constant is smaller for graphite (ε =9 [63])
than for bismuth (ε =80). As a result, the amplitude of the Coulomb interaction—
the motor of the electronic instability in graphite—would be smaller in the case of
bismuth.

The second set of candidate systems are doped semiconductors, where a well-
defined Fermi surface is experimentally resolved to low concentrations (i.e. low
enough to allow for the exploration of the quantum limit with a reasonably low
magnetic field). The simplest system is certainly Bi2Se3. Due to anti-site defects,
EF is pinned down in the conduction band and a well-defined FS is experimentally
resolved down to a carrier concentration of n ≈ 1 × 1017 cm−3 [64]. The FS is one
single pocket with a modest anisotropy. At high magnetic fields, a large increase of
the Nernst effect has been reported and attributed to field-dependence of EF [65]. A
similar behavior has been also reported in the thermopower of Pb1−xSnxSe [66]. No
evidence of a field induced state has been reported in any of these systems.

Evenmore dilute systems, such as InSb,Hg1−xCdxTeorPbTe, canbeused to probe
the physics deep inside the quantum limit. Ametal-insulator transition (MIT) induced
by a magnetic field has been observed in these systems [67, 68]. Figure4.9 shows
log-log plots of the longitudinal (ρzz ), transverse (ρxx ), and Hall (ρxy) resistivities as
a function of the magnetic field for a n-type InSb sample with a carrier concentration
n = 2.2 × 1015cm−3. For such a low carrier concentration, all carriers are confined
to the (0,−) LL when magnetic field exceeds 0.8 T. Above this field, a second
field scale, labeled BMI = 3.3 T, can be identified when ρxy rises suddenly. In the
case of InSb, both ρxx and ρzz change by several orders of magnitude when the
magnetic field increases and the temperature decreases. This contrasts with the case
of graphite where only Rc has an activated behavior. The origin of the MIT has been
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Fig. 4.9 Longitudinal (ρzz), transverse (ρxx ), and Hall (ρxy) resistivities of an n-type InSb sample
as a function of the magnetic field B in a log-log scale. These figures are extracted from [67]

a subject of debate and several explanations have been proposed, such as magnetic
freezeout, Wigner crystallization or Anderson localization. While in the case of InSb
and Hg1−xCdxTe, a consensus emerged in favor of the magnetic freezeout scenario
[67, 69], the case of PbTe remains controversial [68].

Contrary to semimetals, in which the FS is the result of an overlap between
two bands, the FS of doped semiconductors is the result of the population of the
conduction (or valence) band through the ionization of a dopant. The overlap energy
is then replaced by the interaction energy between the electrons and the distributed
ionized impurities. In the presence of a magnetic field, the reduced spatial extension
of the wave function can favor a situation where the electrons prefer to bound to the
impurity sites [70, 71], pushing the system towards an insulating state: this is the
so-calledmagnetic freezeout. TheMott criterion predicts an insulating state when the

dopant density n becomes smaller than a critical value nc that satisfies aBn
1
3
c ≈ 0.25,

where aB is the average Bohr radius.
In principle, the magnetic freezeout scenario should not apply to semi metals

due to the absence of a dopant. Nonetheless, graphite samples are not free from
impurities and it is interesting to compare the different length scales involved in
the metal-insulator transition in graphite. At zero field, aB =(a2⊥a//)1/3 =41Å with
a// ≈ 7 Å and a⊥ ≈ 100 Å, where a// and a⊥ correspond to the longitudinal and
transverse Bohr radius of graphite, respectively [72]. At B = 54 T the magnetic
length lB is equal to 34 Å, which is of just below aB . In contrast to InSb, this is
outside the “strong field limit”, where the MIT is expected to occur. Yet, in both
systems, the magnetic field induces an insulating state at least from the point of view
of longitudinal transport. Further work should be carried out to clarify the difference
in origin and nature of these insulating states.
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4.5 Conclusion

In this chapter, we reviewed the electronic phase transitions induced by the mag-
netic field in graphite. At low temperature, where only the two lowest hole-like and
electron-like Landau levels are populated, graphite hosts a succession of electronic
instabilities induced by the one-dimensional nature of the electronic spectrum and
the enhancement of electron-electron interaction with the magnetic field. Despite
numerous experimental studies many question remain unsolved. In particular, the
evolution of the Landau level spectrum above 7.5T and the nature of the instabili-
ties have not been settled yet. Interestingly, thanks to the formation of a gap along
the c-axis the system is qualified (at least from a theoretical point of view) to host
the 3D quantum Hall effect, providing another theoretical route to understand these
electronic instabilities. Thus, the field-induced states of graphite offer an interesting
opportunity to understand the electronic organization of quantum Hall edge states
when the interlayer coupling between independent graphene layers increases, i.e. as
a third dimension is added to the two-dimensional electron gas. The comparison with
other dilute systems has shows that the electronic ground state in the quantum limit
is not unique and that a rich variety of electronic grounds state may be formed in this
context.
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Chapter 5
Superconductivity in Layered Systems
of Dirac Electrons

Eduardo C. Marino and Lizardo H.C.M. Nunes

Abstract Dirac electrons have been discovered in many advanced materials
including, among others, graphene, cuprates, pnictides and rare-earth dichalchoge-
nides. These materials are either two-dimensional, such as graphene or exhibit a lay-
ered structure formed by planes where the most relevant physics occurs. Interestingly
many of them undergo a transition to a superconducting phase, under appropriate
conditions. However, the kinematical properties of Dirac electrons, which imply the
absence of a Fermi surface at zero doping, rules out the traditional, phonon-mediated
BCS mechanism of superconductivity. In this chapter, we describe a theoretical study
of the superconducting properties of layered systems of Dirac electrons, assuming
the existence of some mechanism behind it. We analyze in detail the phase diagram
identifying quantum critical points, the effects of temperature, magnetic field, chem-
ical potential (doping), number of layers, as well as the interplay of the SC with
an excitonic interaction. The results unequivocally indicate that a novel mechanism,
other than the traditional BCS, is required to explain the superconductivity of Dirac
electrons.

5.1 Introduction

Dirac electrons have been discovered in many advanced materials including, among
others, graphene, cuprates, pnictides and rare-earth dichalchogenides [1]. These
materials are either two-dimensional, such as graphene or exhibit a layered struc-
ture formed by planes where the most relevant physics occurs. Interestingly many of
them undergo a transition to a superconducting phase, under appropriate conditions.
However, the kinematical properties of Dirac electrons, which imply the absence
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of a Fermi surface at zero doping, rules out the traditional, phonon-mediated BCS
mechanism of superconductivity. In this chapter, we describe a theoretical study of
the superconducting properties of layered systems of Dirac electrons, assuming the
existence of some mechanism behind it. We analyze in detail the phase diagram
identifying quantum critical points, the effects of temperature, magnetic field, chem-
ical potential (doping), number of layers, as well as the interplay of the SC with
an excitonic interaction. The results unequivocally indicate that a novel mechanism,
other than the traditional BCS, is required to explain the superconductivity of Dirac
electrons.

5.1.1 Dirac Fermions in the Honeycomb Lattice

In this section we explain how Dirac fermions appear in the honeycomb lattice. We
start our analysis considering the honeycomb lattice presenting a bipartite lattice
formed of sublattices A and B, such as in graphene.

Let a†
i,σ = ∑

k eik·ri a†
k,σ and b†

i,σ = ∑
k eik·ri b†

k,σ be, respectively, electron cre-
ation operators, with spin σ , on site i of sublattices A and B respectively. (For the
sake of simplicity, � = 1, as usual.) The Hamiltonian, which describes the hop-
ping of electrons between adjacent sites of different sublattices A and B, is given
by [2, 3]

Ht = −t
∑

k,σ

sk
(

a†
k,σ bk,σ + h.c.

)
, (5.1)

where t ≈ 2.8 eV is the hopping energy between nearest neighbors and sk = 1 +
eik·a1 + eik·a2 , with a1 = aêx, 2a2 = a

(
êx − √

3êy

)
, as shown in Fig. 5.1, and the

lattice parameter is a = 2.46 Å.

Fig. 5.1 Lattice structure of
graphene
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Since we have two atoms per unit cell, we may introduce the two component

spinorial field ψ
†
k,σ =

(
a†
k,σ b†

k,σ

)
in order to rewrite the hopping Hamiltonian in

(5.1) as
Ht =

∑

k,σ

ψ
†
k,σAkψk,σ , (5.2)

where the 2 × 2 matrix Ak is given by

Ak = −t

(
0 sk
s∗
k 0

)
. (5.3)

It is straightforward to calculate the dispersion relation,

±t|sk| = ±t

√√√√3 + 2

[
cos(akx) + 2 cos

(
akx

2

)
cos

(√
3aky

2

)]
, (5.4)

which is plotted in Fig. 5.2. We see that there are six Dirac points at the corners of the
first Brillouin zone in the honeycomb lattice, as indicated by the inset; however, only
two of them are non-equivalent and we choose the Dirac points to beK = −4π/3a êx

and K′ = 4π/3a êx. Taking q = |k − K| = |k − K′| as the momentum measured
relatively from the Dirac points, we expand (5.4) in the vicinity ofK andK′ collecting
only the linear term. Hence, the low energy dispersion becomes ±vFq, which is the
relativistic dispersion from the Dirac equation. However, vF = √

3ta/2 is the Fermi
velocity, which replaces the velocity of light in ordinary relativistic systems, but for
a much lower value, vF ≈ 106 m/s. This result was first obtained by Wallace [4].

Fig. 5.2 Dispersion relation as defined by (5.4). kx and ky are given in units of 1/a
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Now, we obtain the continuum limit of the non-interacting Hamiltonian given by
(5.1) in the vicinity of the two Dirac points. First, we take q = k − K and redefine
the momentum components as

k =
(

qx

2
+

√
3qy

2
,−

√
3qx

2
+ qy

2

)
, (5.5)

which represents a π/3 clockwise rotation of the original reference frame. We may
expand the non-interacting Hamiltonian in (5.1) around the Dirac point K, so that
(5.3) becomes

AK(k) = vF

(
0 kx − iky

kx + iky 0

)
, (5.6)

which is simply expressed as AK(k) = vFσ · k, with σ = (
σx, σy

)
given in terms

of the well-known Pauli matrices. Analogously, the momentum may be redefined
as a 4π/3 clockwise rotation of the original reference frame in order to expand the
hopping Hamiltonian in the vicinity of K′, so that AK ′(k) = vFσ † · k. Therefore, the
continuum approximation of the non-interacting Hamiltonian is given by

Ht =
∑

κ=K,K, σ

∫
d2k

(2π)2 ψ†
σ,κ (k)Aκ(k)ψσ,κ(k), (5.7)

where we have introduced the fermion field ψ†
σ,κ (k) = (

a†
σ,κ (k) b†

σ,κ (k)
)

and κ =
K, K ′ denotes the Dirac points. We see that the above expression is essentially the
Dirac Hamiltonian with vF replaced by the velocity of light.

In the following we investigate the conditions for the appearance of superconduc-
tivity in the system introducing a phenomenological interaction, which is responsible
for the Cooper pair creation in the singlet state [5].

5.2 Superconductivity in Dirac Fermions Systems

Motivated by the discussion above, in this section we analyze the conditions for
the appearance of superconductivity in two dimensional (2D) spatial Dirac fermion
systems.

Let us consider a fermionic system consisting of a stack of planes containing
two Dirac points. We introduce an internal index a = 1, . . . , N that characterize the
different planes to which the fermions belong. For the case of graphene, there are
two inequivalent Dirac points at the corners of the first Brillouin zone. Therefore,
presently the fermionic operator is denoted by ψ

†
iσa, where the Dirac indices i = 1, 2

correspond to those two Fermi points, the z-component of the fermionic spin are
σ =↑,↓. Moreover, we assume that there is a BCS-type superconducting interaction,
produced by some underlying microscopic mechanism, whose origin is not important
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for our purposes at the moment, so that the interaction Lagrangian contains four terms,
describing the various possible BCS interactions in which a Cooper pair would form
between electrons with opposite spins, belonging to different Fermi points but in the
same plane. Nevertheless, the interaction of electrons belonging to different planes
is allowed. The complete Lagrangian of our system is given by

L = iψσa � ∂ ψσa + g
(
ψ

†
1↑a ψ

†
2↓a + ψ

†
2↑a ψ

†
1↓a

) (
ψ2↓b ψ1↑b + ψ1↓b ψ2↑b

)
, (5.8)

where g > 0 is the strength of the interaction coupling and the sum over a, b is
implicit. Notice that we use the following convention for the Dirac matrices: γ 0 = σ z,
γ 0γ 1 = σ x, γ 0γ 2 = σ y. Moreover, � ∂ = γ μ∂μ and ψσa = ψ†

σaγ
0.

As usual, we may now introduce the order parameter for the superconducting
phase,

Δ∗ = −g 〈ψ†
1↑a ψ

†
2↓a + ψ

†
2↑a ψ

†
1↓a〉 , (5.9)

where 〈· · · 〉 denotes the the expectation value in the grand canonical ensemble.
Notice that |Δ| is the superconducting gap. Introducing the Nambu fermion field
Φ†

a = (ψ
†
1↑a ψ

†
2↑a ψ

†
1↓a ψ

†
2↓a), our model Lagrangian in momentum space can be

written in terms of Δ as

L = −1

g
Δ∗Δ + Φ†

aA Φa , (5.10)

where the matrix A is given by

A =

⎛

⎜⎜⎝

−k0 k− 0 −Δ

k+ −k0 −Δ 0
0 −Δ∗ −k0 −k+

−Δ∗ 0 −k− −k0

⎞

⎟⎟⎠ , (5.11)

with k± = vF (k2 ± ik1) (the Planck’s constant � = 1, for the sake of simplicity). The
determinant of the matrix A is det A [Δ] = [

(k2
0 − v2

F|k|2) − |Δ|2]2.

5.2.1 Quantum Phase Transition

We now consider the T = 0 case. We shall see that there is a quantum critical point
connecting the superconducting and normal phases at a certain critical coupling.
We start our analysis considering the free energy (effective potential) per plane for
the Lagrangian in (5.10), which is denoted by Veff . We assume that there must be
constant configurations of Δ that minimize the effective potential per plane, which
indicates a superconducting phase.
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Since the partition function may be written as a functional integral in the complex
time representation,

Z = 1

Z 0

∫
DΦ†DΦ exp

{
i
∫

d3k L

}
, (5.12)

we perform the standard gaussian integration over the fermionic fields in order to
obtain the effective potential per plane at T = 0,

Veff (|Δ|) = |Δ|2
λ

− 2
∫

d2k

(2π)2

∫
dk0

2π

{
ln

[
det A [Δ]
det A [0]

]}
, (5.13)

where we have introduced the new coupling λ in terms of the numbers of layers, g =
λ/N . The above expression corresponds to a mean field approximation. Conversely,
this would be the leading order approximation in an 1/N expansion and it becomes
the exact result for N → ∞.

We may evaluate the effective potential by introducing a physical cutoff in energy
or momentum [5]. When considering applications in condensed matter systems, one
usually finds a natural energy cutoff Λ (momentum cutoff Λ/vF). In this case, no
renormalization is needed and the coupling λ is the physical one. The results are
obtained in terms of an arbitrary energy cutoff Λ, which is always provided by the
lattice in condensed matter systems. Indeed, we have Λ = 2π�vF/a. For the partic-
ular case of graphene, Λ is estimated about 17 eV for a = 2.65 Å and vF = 106 m/s.
Since a is the smallest distance scale, Λ becomes a natural high-energy cutoff. A
familiar example is the Debye frequency (energy), a natural cutoff that emerges in the
BCS theory in the case of conventional phonon mediated superconductivity. How-
ever, we would like to stress that we are not assuming that Λ is large compared to
|Δ|, rather, we are considering a completely arbitrary finite cutoff. This is not the
situation usually found in conventional BCS superconductors. However, it is likely
to be found in nonconventional ones such as high-Tc cuprates.

We evaluate (5.13) with a finite physical momentum cutoff Λ/vF,

Veff (|Δ|) = |Δ|2
λ

− 2

3α

[(|Δ|2 + Λ2
) 3

2 − |Δ|3 − Λ3
]
, (5.14)

where α = 2πv2
F. Let us study now the minima of the effective potential per plane.

For a real order parameter, the first derivative of Veff with respect to Δ is given by

V ′
eff (Δ) = 2Δ

⎡

⎣1

λ
−
(
Δ2 + Λ2

) 1
2

α
+ Δ

α

⎤

⎦ = 0 (5.15)
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This admits two solutions, namely, Δ̃0 = 0 or

Δ̃0 = λα

2

[
Λ2

α2
− 1

λ2

]
. (5.16)

The second derivative of the potential, evaluated at Δ̃0 = 0 is

V ′′
eff

(
Δ̃0 = 0

)
= 1

λ
− Λ

α
(5.17)

and we conclude that Δ̃0 = 0 is a solution only for λ < λ̃c, with λ̃c = α/Λ.
Conversely, the second derivative of (5.14) evaluated at Δ̃0 �= 0 (given by (5.16)) is
positive for λ > λ̃c. As a consequence the superconducting gap now will be given by

Δ̃0 =

⎧
⎪⎨

⎪⎩

0 λ < λ̃c

αλ
2

(
1
λ̃2

c
− 1

λ2

)
λ > λ̃c

(5.18)

Therefore, we find a quantum phase transition at the critical coupling λ̃c = α/Λ,
see Fig. 5.3. Observe that, since Λ is a physical parameter, the value of the quantum
critical point λ̃c is predicted by the theory.

Moreover, observe that for λ > λ̃c,

Δ̃0 = α

(
1

λ̃c

− 1

λ

)(
λ + λ̃c

2λ̃c

)
(5.19)

and in the region where λ � λ̃c, we have Δ̃0  Δ0, with Δ0 given by the result for
the weak coupling limit, the regime where Λ � Δ̃0 [5].

Fig. 5.3 The zero
temperature superconducting
gap as a function of the
interaction coupling λ/λ̃c
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5.2.2 Finite Temperature Results

In this section we calculate the superconducting transition temperature (also denoted
critical temperature Tc) analyzing the minima of the effective potential. The nonzero
solutions for Δ at a finite temperature are supposed to hold a priori only in the N → ∞
limit. This limit corresponds to a physical situation where the three-dimensionality
of the system is explicitly taken in account. Otherwise temperature phase transitions
for lower dimensions are ruled out by the Coleman-Mermin-Wagner-Hohenberg
theorem [6]. For finite values of N and T �= 0 the situation is quite subtle and it will
be discussed in Sect. 5.2.3. Furthermore, we set the Boltzmann’s constant to be one
henceforth, for the sake of simplicity as a shorthand notation.

At T �= 0, the effective potential from (5.10) must be

Veff (|Δ|, T) = |Δ|2
λ

− 2T
∫

d2k

(2π)2

∞∑

n=−∞

{
ln

[
det A [Δ]
det A [0]

]}
, (5.20)

where ωn = (2n + 1)πT are the fermionic Matsubara frequencies (with the
Boltzmann constant kB = 1).

Since we are looking for the minima of the Veff with respect to the order parameter,
we consider the following condition,

V ′
eff (|Δ|, T) = 2|Δ|

{
1

λ
− 1

2α

∫ Λ2

0
dx

1√
x + |Δ|2 tanh

(√
x + |Δ|2

2T

)}
= 0,

(5.21)

which must be satisfied by the order parameter. Notice that in the above expression
we have performed the sum over the Matsubara frequencies and also performed the
derivative of (5.20) with respect to |Δ|. Furthermore, Λ is the same cutoff used
before.

As in the T = 0 case, this admits two solutions, either Δ(T) = 0 or Δ(T) �= 0.
In the latter case, the superconducting order parameter satisfies the gap equation

1 = λ

α

∫ √
Δ̃2+Λ2

Δ̃

dy tanh
( y

2T

)
. (5.22)

Solving the integral, we find an implicit equation at an arbitrary temperature for the
superconducting energy gap in the presence of a physical cutoff Λ, namely

Δ̃(T) = 2T cosh−1

⎡

⎢⎣e− α
2Tλ cosh

⎡

⎢⎣

(
Δ̃2(T) + Λ2

) 1
2

2T

⎤

⎥⎦

⎤

⎥⎦ . (5.23)
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Using the fact that Δ̃0 satisfies the equation V ′
eff = 0, where the effective potential

is given by (5.14), we may verify that indeed

Δ̃(T)
T→0
∼ 2T cosh−1

[
e

Δ̃0
2T

2

]
T→0−→ Δ̃0, (5.24)

where Δ̃0 is given by (5.18).
Since Δ̃(Tc) = 0, one can determine the Tc for the onset of superconductivity in

the presence of a physical cutoff from (5.23),

cosh

(
Λ

2Tc

)
= e

α
2Tcλ . (5.25)

This equation yields the following relation between Tc and the zero temperature
gap,

Δ̃0 =
(

λ + λ̃c

2λ̃c

)
2Tc ln

[
2

1 + e− Λ
Tc

]
, (5.26)

where λ̃c = α/Λ.
It is remarkable that the expression we find for the superconducting energy gap in

the case of Dirac fermions, strongly differs from the one obtained in the BCS theory
in any dimensions. There the gap has an exponential dependence on the inverse of
the coupling λ. Here, in spite of still being non-analytical in the coupling constant
λ, the gap has a power-law dependence on it and vanishes below a critical value at
zero temperature. The different behavior can be traced back to the fact that in the
case of Dirac fermions the density of states vanishes at the Fermi points. In the BCS
case, however, we have a Fermi surface with a non-vanishing density of states at the
Fermi level and the momentum integrals used for obtaining the effective potential
may be evaluated as ∫

d2k

(2π)2
 N(εF)

∫ Λ

−Λ

dξ, (5.27)

where N(εF) is the density of states at the Fermi level. This leads to a gap proportional
to exp{− 1

N(εF)λ
}.

We conclude this section calculating Δ(T) numerically. But first, we investigate
the Δ0/Tc ratio. A particular regime that is frequently studied is the one where the
cutoff is large compared to the critical temperature and to Δ̃0, namely, when Λ � Tc

and λ � λ̃c. This last condition guarantees that Λ � Δ̃0, according to (5.18) and
(5.19). Since the previous relations imply

Tc � Λ = α

λ̃c

 α

λ
, (5.28)
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Fig. 5.4 The
superconducting gap Δ̃(T)

divided by Tc as a function of
the normalized temperature
T/Tc for several values of
λ̃c/λ. The two arrows
indicate the values for Δ̃0/Tc
given by the BCS theory and
the λ  λ̃c case (λ̃c = α/Λ)
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we may infer that the conditions above hold in the weak coupling regime. In this
case, (5.26) simply becomes Δ̃0/Tc = 2 ln 2 [5, 7]. This relation gives the ratio
Δ̃0/Tc ∼ 1.39, which should be compared with the corresponding ratio in the BCS
theory for conventional superconductors, namely, 1.76, which is also derived in the
weak coupling limit. The pre-factor in the latter expression, describing the behavior
of the gap around Tc, is 2.36, whereas the corresponding value in BCS theory is
3.06. We solve (5.23) numerically for Δ̃, using different values for the ratio λ/λ̃c

and display the result in Fig. 5.4. We observe that in the weak coupling regime the
ratio Δ0/Tc approaches the 2 ln 2 result indeed. On the other hand, as the coupling
increases, we see that this ratio surpasses the value obtained in BCS theory and
approaches the values obtained experimentally in strongly coupled systems.

We finish this section with a final remark, there are condensed matter systems for
which the weak coupling condition (5.28) is not valid, if such systems contain Dirac
fermions, we should use (5.18) and (5.23) for the superconducting gap, respectively
at T = 0 and T �= 0. The critical temperature, by its turn, would be given by (5.26).

5.2.3 Dynamical Gap Generation Versus Spontaneous
Symmetry Breaking

We know that the Coleman-Mermin-Wagner-Hohenberg theorem [6] forbids the
occurrence of spontaneous breakdown of a continuous symmetry at a nonzero tem-
perature for systems below the three spatial dimensions. Therefore, in this section
we analise the nature of the superconducting critical temperature calculated above.
However, for N → ∞ the system is effectively three-dimensional and the occurrence
of a nonzero gap Δ(T) for finite temperature is not in conflict with the theorem. For
T = 0, either for finite or infinite N , we have a non-vanishing superconducting gap,
which was investigated above, in Sect. 5.2.1. In both cases the Coleman-Mermin-
Wagner-Hohenberg theorem does not apply.
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We start pointing out that our model Lagrangian given by (5.8), in addition to a
complex valued O(N) symmetry [8] and the chiral U(1) symmetry, also possesses
the U(1) symmetry,

ψiΔa → eiθψiΔa ψ
†
iΔa → e−iθψ

†
iΔa i = 1, 2 . (5.29)

Assuming that the superconducting order parameter Δ = 〈Δ〉 is complex, it can be
expressed in terms of polar coordinates as

〈Δ〉 = Δeiθ , (5.30)

where Δ in the rhs of the above equation is in fact the real superconducting energy
gap. Hence, from the above, we infer that a nonzero value for the gap would imply,
in principle, the spontaneous breakdown of the U(1) symmetry, (5.29) and a nonzero
gap leads to a nonzero order parameter according to (5.30).

In the case of finite N and T �= 0, in order to have a a superconducting phase
and yet complying with the Coleman-Mermin-Wagner-Hohenberg theorem, we may
invoke the mechanism proposed by Witten [9], by means of which we may have
dynamical generation of a superconducting gap without the corresponding U(1)
symmetry breakdown. It goes as follows: whenever the gap is nonzero, according to
(5.30), we must shift the field Δ as

Δ → Δ − Δeiθ . (5.31)

This will produce an extra term in the effective Lagrangian

L [Ψ,Δ] = iψΔa � ∂ ψΔa − 1

g
Δ∗Δ

− Δ∗ (ψ2↓b ψ1↑b + ψ1↓b ψ2↑b
)− Δ

(
ψ

†
1↑a ψ

†
2↓a + ψ

†
2↑a ψ

†
1↓a

)
.

(5.32)

in terms of new fermion fields, defined as ψ̂iΔa ≡ e−i θ
2 ψiΔa. The extra term in (5.32)

above reads

Δ
[(

ψ̂
†
1↑a ψ̂

†
2↓a + ψ̂

†
2↑a ψ̂

†
1↓a

)
+
(
ψ̂2↓b ψ̂1↑b + ψ̂1↓b ψ̂2↑b

)]
. (5.33)

This is an explicit superconducting gap term that will make

〈ψ̂†
1↑a ψ̂

†
2↓a + ψ̂

†
2↑a ψ̂

†
1↓a〉 �= 0. (5.34)

Since the U(1) symmetry acts as ψiΔa → eiωψiΔa and θ → θ + 2ω we immedi-
ately see that the field ψ̂iΔa is invariant under U(1) rotations and therefore the non-
vanishing expectation value above does not imply spontaneous breakdown of the
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U(1) symmetry. Thus, we can have dynamical generation of a superconducting gap
without the associated spontaneous symmetry breaking [9]. Moreover, it should be
noticed that the chiral U(1) symmetry, ψiΔa → eiθψiΔa, is also unbroken.

The investigation of the thermodynamic conditions for the occurrence of this
mechanism has been done in detail for the case of the Gross-Neveu model in 2+1D
[10] and also in the case of the semimetal-excitonic insulator transition that occurs
in layered materials [11], both related to the potential spontaneous breakdown of the
chiral symmetry. The results of these analysis also apply here. The basic point is that,
in order to check whether the order parameter (5.30) is zero or not, we must analyze
the thermodynamics of the phase θ of the superconducting order parameter. It turns
out that this phase decouples and suffers a Kosterlitz-Thouless [12] transition at a
temperature TKT . For temperatures above TKT there is no phase coherence and the
superconducting order parameter vanishes because then 〈cos θ〉 = 〈sin θ〉 = 0 (even
though Δ may be different from zero). Below TKT there is a phase ordering and there
will be a nonvanishing gap provided the condition T < Tc is also met (otherwise
Δ = 0). As it is, TKT ≤ Tc [10] and, therefore, the actual superconducting transition

occurs at TKT . However, it can be shown that TKT
N→∞−→ Tc [10]. This clearly indicates

that, in spite of the fact that we may have a nonzero superconducting gap at T = Tc,
only in a really three-dimensional system we will have phase coherence developing
at the same temperature that the modulus of the order parameter becomes nonzero, as
determined by the gap equation. Therefore, Tc presently calculated may be regarded
as a mean-field upper bound critical temperature for the KT transition, which sets
the actual temperature for the appearance of superconductivity in the N → ∞ limit.

We conclude this section with a final remark: it has been speculated [13] that the
above scenario could provide a framework for explaining the pseudogap transition
that precedes the superconducting transition in high-Tc cuprates in the underdoped
region. Our model provides a concrete realization of this mechanism.

5.3 Superconductivity in Graphite

In this section we investigate the superconducting phase diagram of a system con-
sisting in a stack of graphene layers with a interlayer hopping between adjacent
sheets, where we have assumed the existence of a specific on-site attractive inter-
action between the electrons [14]. We will see that the hopping between adjacent
layers increases the critical temperature for small values of the chemical potential,
what might explain why intrinsic superconductivity is observed in graphite and not
in graphene [15, 16]. For higher values of chemical potential, our results predict a
crossover and the 2D Tc is greater than the 3D Tc, but that only happens to higher
values of the chemical potential.

We start our discussion considering a stack of N graphene layers with a hopping
term between adjacent planes, where the upper layer has its B sublattice on top of
sublattice A of the underlying layer (Bernal stacking), as can be seen in Fig. 5.5. The
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Fig. 5.5 Lattice structure of two adjacent graphene layers (after [2])

Hamiltonian of each coupled layer is described by the following [2],

Ht,l = −μ
∑

k,σ

(
a†
k,σ,lak,σ,l + b†

k,σ,lbk,σ,l

)

− t
∑

k,σ

sk

(
a†
k,σ,lbk,σ,l + a†

k,σ,l+1bk,σ,l+1

)
+ h.c.

− t⊥
∑

k,σ

a†
k,σ,lbk,σ,l+1 + h.c., (5.35)

where the index l = 1, . . . , N characterizes the different planes and μ is the chemical
potential. The second line in the rhs of the above equation describes the hopping
between electrons of different sublattices within a graphene sheet, while the third
line describes the hopping between layers. As already seen in Sect. 5.1.1, The hopping
parameter is about t ≈ 2.8 eV, and now we also have added the out-of-plane hopping
parameter t⊥ ≈ t/10. Moreover, for the honeycomb lattice, sk = 1 + eik·a1 + eik·a2 ,

where a1 = aêx and 2a2 = a
(

êx − √
3êy

)
, as shown in Fig. 5.5. and also seen in

Sect. 5.1.1 as well.
In order to investigate the conditions for the appearance of superconductivity in

the system, we add an on-site attractive interaction between the electrons within each
graphene layer forming Cooper pairs in the s-wave state,

HSC,l = −λsc

∑

k,k′,σ,l

(
a†
k,σ,la

†
−k,−σ,la−k′,−σ,lak′,σ,l

+ b†
k,σ,lb

†
−k,−σ,lb−k′,−σ,lbk′,σ,l

)
, (5.36)

with λsc > 0. The origin of the interaction is to be determined by some underlying
microscopic theory, which is not considered here. However, the symmetry of the
gap originated from this interaction is consistent with the isotropic s-wave symmetry
gap observed in some graphite intercalation compounds (GICs) [17]. Moreover, we
assume λsc to be a free parameter of the Hamiltonian which takes any arbitrary
positive value.
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Introducing the superconducting order parameter

Δ = −g
∑

k

〈a†
k,↑,la

†
−k,−↓,l〉 = −g

∑

k

〈b†
k,↑,lb

†
−k,−↓,l〉 (5.37)

and the Nambu fermion field Φ
†
k,l =

(
ψ

†
k,l, ψ

†
k,l+1

)
, where

ψ
†
k,l =

(
a†
k,↑,l b†

k,↑,l a−k,↓,l b−k,↓,l

)
, (5.38)

we may now rewrite the combined Hamiltonian as Ht,l + HSC,l

H =
∑

k

Φ
†
k,l A Φk,l − |Δ|2

g
, (5.39)

where the 8 × 8 matrix A in (5.39) is given by

A =
(
A1 A12

A21 A2

)
, (5.40)

with

A1 = A2 =

⎛

⎜⎜⎝

−μ −tsk 0 Δ

−ts∗
k −μ Δ 0

0 Δ∗ μ ts∗
k

Δ∗ 0 tsk μ

⎞

⎟⎟⎠ (5.41)

and

A12 = A T
21 =

⎛

⎜⎜⎝

0 −t⊥ 0 0
0 0 0 0
0 0 0 t⊥
0 0 0 0

⎞

⎟⎟⎠ . (5.42)

5.3.1 Phase Diagram for Bilayer Graphene

Graphene dispersion relation has six Dirac points at the corners of the first Brillouin
zone; however, only two of them are non-equivalent [2, 3] Therefore, the low energy
of our model Hamiltonian is obtained expanding (5.39) in the vicinity of the Dirac
points. Redefining the coupling g = λ/N , the effective potential per bilayer for each
Dirac point will be [14]

Veff = 2
|Δ|2
λ

− 1

β

∑

n

[∫
d2k

(2π)2 ln

(
detA ′

K,n[Δ]
detA ′

K,n[0]

)]
, (5.43)
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where A ′
α,n = −iωn1 + Aα and 1 is the 8 × 8 unity matrix. As in Sect. 5.2, the above

expression in (5.43) is the leading order in a 1/N expansion and would be the exact
result for N → ∞.

The occurrence of superconductivity corresponds to the existence of nonzero
solutions of the superconducting gap that minimizes the effective potential. Taking
the derivative of Veff with respect to the order parameter and summing over the
Matsubara frequencies, we obtain

V ′
eff (T) = Δ∗

⎡

⎣ 2

λ
− 1

2

4∑

j=1

∫
d2k

(2π)2
1√

|Δ|2 + ξ2
j

tanh

(
β

2

√
|Δ|2 + ξ2

j

)⎤

⎦ , (5.44)

where

ξj = ±
√

v2
Fk2 +

(
t⊥
2

)2

± t⊥
2

− μ (5.45)

and vF = √
3ta/2 (� = 1) for graphene. The nonzero solutions for |Δ| are given

equalizing to zero the expression within brackets in (5.44), which provides the self-
consistent gap equation. Introducing the momentum cutoff Λ/vF, we get

1

λ
− 1

8α

∑

a,b

∫ Λ2

0
dx

1

Eab(x)
tanh

[
Eab(x)

2T

]
= 0 , (5.46)

where

Eab(x) ≡
√

|Δ|2 + ξ 2
ab(x) , (5.47)

with

ξab = a

√

Λ2 +
(

t⊥
2

)2

+ b
t⊥
2

− μ , (5.48)

α = 2πv2
F and a, b = ±1.

A priori, the nonzero solutions for Δ are supposed to hold only in the N → ∞
limit at a finite temperature, because, otherwise, they are ruled out by the Coleman-
Mermin-Wagner-Hohenberg theorem [6], as previously discussed in Sect. 5.2.3.
However, Tc calculated in the present section for an arbitrary N may be regarded as a
mean-field upper bound critical temperature for the Berezinskii-Kosterlitz-Thouless
transition, which sets the actual temperature for the appearance of superconductivity
in the N → ∞ limit.

In particular, notice that for T = μ = t⊥ = 0 in (5.46), the nonzero solutions for
the superconducting gap yields the same result in (5.18) for λ > α/Λ, which is the
quantum critical point calculated in Sect. 5.2.1. Moreover, the case T = t⊥ = 0 and
finite μ with different values of interaction couplings will be discussed in Sect. 5.4.2.

Presently, we calculate the Tc making Δ = 0 at T = Tc in (5.46). We also constrain
ourselves to positive values of the chemical potential up to μ/Λ = 0.9, given the half
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Fig. 5.6 The
superconducting critical
temperature as a function of
the chemical potential for
t⊥ = 0, 0.3 and 0.5. The
inset shows the same plot for
a smaller range of the
chemical potential.
λ/λc = 0.8 and all the other
quantities are given in unities
of Λ

bandwidth Λ. Our numerical results for Tc are shown in Fig. 5.6 for several values
of t⊥. The inset of Fig. 5.6 shows that, for a small value of μ (μ/Λ < 0.13), given in
terms of the cutoff, Tc increases as t⊥ increases, indicating that the hopping between
layers favours the appearance of superconductivity in the system for small values of
the chemical potential.

5.3.2 Phase Diagram for Graphite

We now consider calculating the superconducting phase diagram of many coupled
graphene layers for a finite chemical potential. To simplify the problem, we consider
only the minimal model where only the electron tunneling amplitudes between the
nearest sites in the plane t and out of the plane t⊥ are regarded. The same approach
was employed in [18].

Consider a graphene bilayer described by the following Hamiltonian in the vicinity
of each non-equivalent [2],

HBL =
∑

k,σ

Φ
†
k,σBkΦk,σ , (5.49)

where the above 4 × 4 matrix Bk is given by

Bk =
(

vF k · σ B12

B21 vF k · σ

)
, (5.50)

the vector σ = (
σx, σy

)
is written in terms of the well-known Pauli matrices, the

matrix B12 is
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B12 = BT
21 =

(
0 t⊥
0 0

)
, (5.51)

and Φ
†
k,σ =

(
ψ

†
k,σ,1, ψ

†
k,σ,2

)
, with ψ

†
k,σ,j =

(
a†
k,σ,j b†

k,σ,j

)
, j = 1, 2 denotes the layer

index.
The model Hamiltonian for graphite is assumed to be described as an infinite num-

ber of graphene layers coupled by the hopping between adjacent sheets. Therefore,
introducing the operator

Φ̃
†
k,σ =

(
· · · ψ

†
k,σ,l−1 ψ

†
k,σ,l ψ

†
k,σ,l+1 · · ·

)
, (5.52)

the Hamiltonian becomes
HGr =

∑

k,σ

Φ̃
†
k,σCkΦ̃k,σ , (5.53)

where

Ck =

⎛

⎜⎜⎜⎜⎜⎜⎝

. . .

vF k · σ B12

B21 vF k · σ B12

B21 vF k · σ

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.54)

Introducing the momentum kz in the z direction, it is possible to re-express the
Hamiltonian for graphite taking the first-neighbors hopping between adjacent layers
in the momentum representation, which is written in terms of a 4 × 4 matrix similar
to Bk in (5.50) [18],

HGr =
∑

k,kz,σ

Φ
†
k,kz,σ

Dk,kzΦk,kz,σ , (5.55)

where

Dk,kz =
(

vF k · σ 2B12 cos kzd
2B21 cos kzd vF k · σ

)
, (5.56)

and d is the distance between layers.
For this minimal model, the dispersion relation is given by

EGr = ±
√

|vF k|2 + (t⊥ cos kzd)2 ± t⊥ cos kzd (5.57)

and, for kzd = π/2, we recover the Dirac-type dispersion found in graphene.



114 E.C. Marino and L.H.C.M. Nunes

Taking into account the attractive interaction forming Cooper pairs within each
graphene layer, as seen in (5.36), and introducing the operator

Ψ̃
†
k,σ =

(
· · · ψ

†
k,σ,l−1 ψ

†
k,σ,l ψ

†
k,σ,l+1 · · ·

)
, (5.58)

where ψ
†
k,σ,l is given by (5.38), the model Hamiltonian which describes the super-

conducting graphite becomes

HGr,SC =
∑

k,σ

Ψ̃
†
k,σEkΨ̃k,σ , (5.59)

where

Ek =

⎛

⎜⎜⎜⎜⎜⎜⎝

. . .

A1 A12

A21 A2 A12

A21 A1

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (5.60)

with A1 = A2 and A12 = A T
21 given by the (5.41) and (5.42) respectively.

Accordingly, taking Δ ≡ 〈0|σ |0〉, it is possible to re-express the Hamiltonian for
the superconducting graphite in terms of an 8 × 8 matrix, which is similar to Ak in
(5.40),

HGr,SC =
∑

k,kz,σ

Ψ
†
k,kz,σ

Fk,kzΨk,kz,σ , (5.61)

where

Fk,kz =
(

A1 2A12 cos kzd
2A21 cos kzd A2

)
(5.62)

and the dispersion is given by the 8 eigenvalues

E±(k, kz) = ±
√

|Δ|2 + (EGr − μ)2 , (5.63)

with EGr given by (5.57).
Therefore, the self-consistent equation for the superconducting gap becomes

2

λ
= 1

2

4∑

j=1

∫ π
d

− π
d

dkz

2πd

∫
d2k

(2π)2

1

E+(k, kz)
tanh

[
β

2
E+(k, kz)

]
, (5.64)
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Fig. 5.7 The
superconducting critical
temperature as a function of
the chemical potential for a
t⊥ = 0.3 and b t⊥ = 0.5 for
both graphene bilayer (solid
line) and graphite
(dotted line). The inset in
each pane shows the same
plot for a smaller range of
the chemical potential.
λ/λc = 0.8 and all the other
quantities are given in unities
of Λ

(a)

(b)

where the four values of E+(k, kz), labeled by the index j in the above expression,
are given by EGr in (5.57), in analogy to the discussions in the previous sections.

We calculate the superconducting transition temperature from (5.64) and our
results are compared with Tc obtained for graphene bilayer, from the former
section. Our results are shown in Fig. 5.7 and we see that for small values of
the chemical potential the critical temperature for graphite is bigger than the Tc

obtained for graphene bilayer for a given value of t⊥, indicating that the first neigh-
bors hopping between adjacent sheets favors the superconductivity in the system.
This might explain why intrinsic superconductivity is observed in highly oriented
pyrolytic graphite (HOPG) [15] and also with critical temperature Tc ∼ 25 K in thin
samples [16].
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5.4 Interplay Among Superconducting Phase Transitions,
Excitonic Phase Transitions and Doping

A remarkable feature presented by the high-temperature superconductivity of the
cuprates is the insulator-superconductor transition as charge carriers are pumped into
the system. Motivated by this, in this section we investigate the conditions for the
appearance of excitons or the superconducting gap in planar Dirac fermion systems
with two Dirac points.

We start our analysis assuming that the excitonic gap is similar to the one appearing
in the chiral symmetry-breaking phenomenon, which has been largely studied in
relativistic fermion theories [19]. The same approach has been employed previously
[20] and the interaction controlling the excitonic phase should be

Hexc = λexc

∑

i,σ

(
a†

i,σ ai,σ − b†
i,σ bi,σ

) (
a†

i,σ ai,σ − b†
i,σ bi,σ

)
, (5.65)

where λexc should be treated as a free parameter here.
Introducing the excitonic order parameter,

σ = λexc

∑

i,σ

〈a†
i,σ ai,σ − b†

i,σ bi,σ 〉 , (5.66)

we can rewrite the combined Hamiltonian Ht + HSC + Hexc, where Ht denotes the
hopping of electrons within a layer, which is given by (5.35) for t⊥ = 0, and the super-
conducting interaction is seen in (5.36). For a particular layer, our model Hamiltonian
in a mean-field approximation becomes

H =
∑

k

Φ
†
kAkΦk , (5.67)

where the auxiliary Nambu field is Φ
†
k =

(
a†
k,↑ b†

k,↑ b−k,↓ b−k,↓
)

and the matrix Ak

is given by

Ak =

⎛

⎜⎜⎝

μ + σ −tsk 0 Δ

−ts∗
k μ − σ Δ 0

0 Δ∗ σ − μ ts∗
k

Δ∗ 0 tsk −(μ − σ)

⎞

⎟⎟⎠ . (5.68)

Notice that we have Fourier transformed (5.65) in order to obtain our model
Hamiltonian above. Moreover, the chemical potential has been introduced as well.

At zero temperature, the effective potential per Dirac point becomes [19]

Veff = |Δ|2
λsc

+ σ 2

λexc
−
∫

d2k

(2π)2

[
∑

l

√
|Δ|2 + ξ 2

l − 2vFk

]
, (5.69)
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where ξl(x) = √
x + σ 2 + lμ, with l = +1 or −1. Introducing the momentum cutoff

Λ/vF, we arrive at the following expression for the effective potential,

Veff = |Δ|2
λsc

+ σ 2

λexc
+ 2Λ3

3α
− 1

3α

∑

l

[
E3

l (Λ
2) − E3

l (0)
]

+ 1

2α

∑

l

lμ
{
ξl(x)El(x) +|Δ|2 log [ ξl(x) + El(x) ]

}∣∣Λ2

0 , (5.70)

where α = 2πv2
F and El(x) =

√
|Δ|2 + ξ 2

l (x). In particular, for μ = σ = 0, (5.70)
is reduced to (5.14), which is exactly the same result obtained for a single layer of
Dirac electrons interacting via a BCS-type superconducting interaction.

In the remaining of this section, we analyze the conditions for the appearance of
superconductivity or excitonic fluctuations at zero temperature, taking into account
the two competing interactions present in our model.

5.4.1 Zero Chemical Potential

From (5.69), introducing the momentum cutoff Λ/vF and integrating over k, the
effective potencial for μ = 0 becomes

Ṽeff ≡ α

Λ3 Veff = Δ̃2

λ̃sc
+ σ̃ 2

λ̃exc
− 2

3

[(
Δ̃2 + σ̃ 2 + 1

) 3
2 −

(
Δ̃2 + σ̃ 2

) 3
2 − 1

]
, (5.71)

where now the order parameters are expressed in terms of the cutoff, σ̃ = σ/Λ

and Δ̃ = |Δ|/Λ and also the interaction couplings are written as λ̃sc = λsc/λ̃c and
λ̃exc = λsc/λ̃c, with λ̃c = α/Λ.

We start our analysis considering the particular case where the excitonic and
superconducting interactions are the same, λ = λsc = λexc. In such case, from a
simple inspection of (5.71), it is straightforward to see that a new order parame-
ter ζ 2 = |Δ|2 + σ 2 can be defined so that Veff becomes exactly the same effective
potential already analysed in Sect. 5.2.1. As previously, we find a quantum phase
transition at the critical coupling λc = α/Λ. But now we also have the possibility
of coexistence of superconductivity and the excitonic fluctuations. Indeed, as can be
seen in the tridimensional plot shown in Fig. 5.8, the minima of the Veff presents a
radial symmetry. Therefore, it is possible to find simultaneously nonzero values for
σ and Δ which minimize the effective potential, indicating that excitons and Cooper
pairs coexist in the system.

The same result was obtained in the framework of nuclear physics [21], where the
formation of chiral and diquark condensates involving two quark flavours in QCD
was investigated. In their case, the values for the quark-antiquark and quark-quark
interactions strengths were set equal by construction, via a Fierz transformation
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Fig. 5.8 Effective potential
including both cases:
excitonic and
superconducting
interactions. The parameters
are taken as μ = 0,
λ̃exc = λ̃sc = 1.5. All
parameters are in units of Λ

applied to the Nambu-Jona-Lasinio model. In our case, on the other hand, we are not
restricted to the relation λsc = λexc and therefore we shall analyze the situation for
which λsc �= λexc below.

First, we assume the case λsc > λexc. The nonzero point for which the effective
potential Veff(Δ, σ), given by (5.71), reaches its minimum for positive supercon-
ducting energy gap Δ and and excitonic order parameter σ is

(Δ0, σ0) =
(

λ̃2
sc − 1

2λ̃sc

, 0

)
, (5.72)

but only if λ̃sc > 1 and δ > 0. Inserting (5.72) in the above definition of ζ , we get
the minimum ζ0 = Δ0 and there is only superconductivity in the system, provided
λsc > λexc, and also λ̃sc > 1.

The same discussion follows for λsc < λexc and the effective potential reaches its
minimum for positive values at

(Δ0, σ0) =
(

0,
λ̃2

sc − 1

2λ̃sc

)
, (5.73)

if λ̃exc > 1. Therefore, we only have excitons in the system.
In summary, for μ = 0, we have seen that excitons and Cooper pairs can coexist

whenever the corresponding interactions couplings are equal. If one of the inter-
actions is stronger than the other, then only its corresponding order parameter is
non-vanishing.

5.4.2 Finite Chemical Potential

Now we consider the conditions for the appearance of the superconducting energy gap
or excitons in the system at T = 0. From (5.69), we notice that Veff(μ) = Veff(−μ).
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Therefore the minima for positive μ > 0 are exactly the same for negative μ < 0,
and we constrain the analysis to positive values of the chemical potential in this
section.

We start taking into account only the presence of superconducting interactions (in
the absence of excitonic interactions). In such case (5.69) becomes

Ṽeff = |Δ̃|2
λ̃sc

+ 2

3
− 1

2α

∑

l

∫ 1

0
dy
√

|Δ̃|2 + (√
y + lμ̃

)2
. (5.74)

where μ̃ = μ/Λ. Notice that replacing μ = 0 in the above expression was already
investigated above. Moreover, some results for μ �= 0 have been previously reported
considering the s-wave and an exotic p-wave pairing [22]. We can calculate numeri-
cally the positive values of Δ̃ that minimize the effective potential in (5.74), as long
as the values for the parameters μ̃ and λ̃sc are furnished.

For the case λ̃sc < 1, our results are shown in Fig. 5.9. Starting at μ̃ = 0, the
system is in the normal state. However, as μ̃ increases, the system asymptotically
becomes superconducting and the order parameter also increases up to a maximum
value at an optimal chemical potential. As μ̃ increases even further, Δ̃0 decreases
and the energy gap displays a dome-shaped plot.

Our results are consistent with [23], where chiral and diquark condensates are
calculated for two-color and two-flavor QCD. For a certain choice of parameters,
the authors obtain the same dispersion relation we have found and their numerical
results for Δ also display a dome-shaped plot, as can be seen in Fig. 1 of [23], for
the choice of parameters I, referred as the weak-coupling case.

Since the energy gap and the superconducting critical temperature Tc are pro-
portional, our results qualitatively reproduce the superconducting phase diagram of
several compounds, like 122 pnictides and cuprate superconductors, where the crit-

Fig. 5.9 Plots of the
superconducting gap Δ̃0 as a
function of the chemical
potential μ̃ for several values
of λ̃sc < 1. All parameters
are in units of Λ
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ical temperature displays a characteristic dome as charge carriers are doped into
the system. Also, a dome-like structure of the superconducting phase for strongly
interacting two-dimensional Dirac fermions has been previously obtained in [24],
where the authors observed a dome-shaped plot of the superconducting phase at inter-
mediate filling fractions, surrounded by the normal phase for fillings close to unity
or zero, which is consistent to our results. Also, a dome for Tc as a function of hole
concentrations has been previously obtained in a brief letter by some of us [25] for
a relativistic version of the spin-fermion Hamiltonian to describe the Cu-O planes
in the cuprates. Those results and the phase diagram presently calculated suggest
that Dirac fermions may play a relevant role in the description of systems containing
Dirac fermions, like cuprates and iron pnictides [26, 27].

Regarding the conditions for the appearance of superconductivity in the system:
contrary to what happens at μ = 0, where superconductivity appears in the system
only when λsc > λc, at finite chemical potential we could always find a finite μ̃ that
provided nonzero superconducting gaps, even at small values of λsc, as can be seen
in Fig. 5.9, where plots of Δ̃0 as a function of μ̃ for small values of λ̃sc are shown.
This result suggests that even for very small superconducting interaction strengths,
one can always find superconductivity as charge carriers are added to the system.

We conclude this section analysing the conditions for the appearance of a nonzero
superconducting gap or excitons in the system as the chemical potential is varied.
Taking into account both the excitonic and superconducting interactions, the effective
potential in (5.69) can be written as

Ṽeff = |Δ̃|2
λ̃sc

+ σ̃ 2

λ̃exc

+ 2

3
− 1

2

∑

l

∫ 1

0
dy

√
|Δ̃|2 +

(√
y + σ̃ 2 + lμ̃

)2
(5.75)

and, once again, we constrain ourselves to positive values of the chemical potential,
since Veff is even with respect to μ.

When both λ̃exc, λ̃sc < 1, we do not have the presence of superconductivity or
excitonic fluctuations in the system at zero value of the chemical potential. However,
as the chemical potential increases we can find a nonzero superconducting gap and
this indicates that, as charge carriers are added to the system, superconductivity sets
in, as we have discussed above.

On the other hand, taking λ̃exc, λ̃sc > 1, and assuming that λ̃exc is larger then
λ̃sc we cannot have coexistence of superconductivity and excitonic fluctuations at
μ̃ = 0, since the interaction strengths are different, as we have discussed above.
Actually, since λ̃exc > λ̃sc, we have zero superconducting order parameter and σ̃0 =
(λ̃2

exc − 1)/2λ̃exc. Indeed, as can be seen in Fig. 5.10a, the point (0, σ̃0) is the minimum
of the effective potential for non-negative values of σ̃0 and Δ̃0. Moreover, as we start
to increase the values of the chemical potential, the minimum of the effective potential
remains the same as long as we constrain ourselves to small values of μ̃ and we have
no superconductivity even for finite values of chemical potential.

However, when μ̃ continues to increase, we regain the radial symmetry of the
minima for the effective potential, as can be seen in Fig. 5.10b. In other words, we
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Fig. 5.10 Effective potential including both cases: excitonic and superconducting interactions.The
parameters are taken as λ̃exc = 1.75, λ̃sc = 1.5. and aμ = 0.1; bμ = 0.3; cμ = 0.5. All quantities
are given in units of Λ

recover the coexistence of superconductivity and excitonic order fluctuations even if
λ̃exc > λ̃sc.

Furthermore, as the chemical potential increases even more, other interesting
results show up, as can be seen in Fig. 5.10c. In that case, the plot for the effective
potential shows the minimum at the point σ̃0 = 0 and finite Δ̃0, which means that the
excitonic fluctuations were suppressed from the system and only superconductivity
remains. In other words, even if λ̃exc > λ̃sc, as charge carriers are added to the system,
doping effects eliminate the excitonic order parameter and favours superconductivity.

These results are consistent to the results obtained in hadronic physics, where, as
the baryonic chemical potential increases, chiral symmetry in the system is restored
and color superconductivity sets in [28].

Moreover, we see that the insulating excitonic gap is suppressed and it becomes
superconducting as charge carriers are added to the system, which is the same feature
observed in some strongly correlated systems, as the cuprates, for instance. Therefore,
our results resemble the insulator-superconductor transition observed in the cuprates.
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5.5 Conclusions and Overview

We have studied the superconductivity of Dirac electrons in monolayered systems,
bilayers and multilayers, either at T = 0 or at a finite temperature. The effects of
doping, associated to a finite chemical potential were also included. Then, the inter-
play of the superconductivity and excitonic interactions was also considered. In all
cases, a detailed phase diagram was determined. The study of superconductivity of
Dirac electrons in layered systems contained in this chapter clearly indicates that the
mechanism behind it must be different from the traditional BCS mechanism.
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Chapter 6
Flat Bands as a Route to High-Temperature
Superconductivity in Graphite

Tero T. Heikkilä and Grigory E. Volovik

Abstract Superconductivity is traditionally viewed as a low-temperature phenom-
enon. Within the BCS theory this is understood to result from the fact that the pairing
of electrons takes place only close to the usually two-dimensional Fermi surface
residing at a finite chemical potential. Because of this, the critical temperature is
exponentially suppressed compared to the microscopic energy scales. On the other
hand, pairing electrons around a dispersionless (flat) energy band leads to very strong
superconductivity, with a mean-field critical temperature linearly proportional to the
microscopic coupling constant. The prize to be paid is that flat bands can probably
be generated only on surfaces and interfaces, where high-temperature superconduc-
tivity would show up. The flat-band character and the low dimensionality also mean
that despite the high critical temperature such a superconducting state would be more
vulnerable to strong fluctuations than ordinary superconductors. Here we discuss the
topological and non-topological flat bands discussed in different systems, and show
that graphite is a good candidate for showing high-temperature flat-band interface
superconductivity.

The purpose of this chapter is to propose a route to increasing the critical temper-
ature of superconductivity by searching for special electronic dispersion that would
promote the superconducting strength. We first show that a huge increase in the
(mean-field) critical temperature is possible, if a dispersionless energy spectrum, a
flat band can be created in the system in the absence of the interaction leading to
superconducting correlations. We then discuss a few known schemes to generate
such (approximate or exact) flat bands.
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6.1 Superconductivity: Pairing Energy Versus Dispersion

Within the BCS mean-field theory, the occurrence of Cooper pairing at zero
temperature can be studied via the free energy density for the pairing energy Δ:

FΔ = −1

2

∫
ddp

(2π�)d

(
Ep(Δ) − Ep(Δ = 0)

) + Δ2

2|g| , (6.1)

where d is the dimensionality, g < 0 describes the interaction strength, and Ep(Δ) =√
ε2
p + Δ2 is the quasiparticle excitation energy at momentum value p, evaluated in

a system with the normal-state dispersion εp. The first term in (6.1) demonstrates
that the formation of a gap Δ decreases the energy of quasiparticles, which fill the
negative energy levels of Dirac vacuum. The second term is the cost of the formation
of the gap, which perturbs the vacuum. For simplicity, we consider spinless fermions
and the gap that does not depend on momentum.

Requiring Δ to minimize FΔ, we get the self-consistency relation

Δ = |g|
2

∫
ddp

(2π�)d

Δ

Ep(Δ)
, (6.2)

or

1 = |g|
2

∫
ddp

(2π�)d

1

Ep(Δ)
. (6.3)

Equation (6.3) dictates the behavior of Δ at different dimensionalities d and for
different normal-state energy spectra εp.

For s-wave superconductivity in conventional metals with an isotropic Fermi
surface and dispersion ε = vF(p − pF) expanded around the Fermi energy εF , the
integral in (6.3) is concentrated in the vicinity of the Fermi surface

1 = |g|Ad

(2π�)dNF

∫ εuv

0

dε√
ε2 + Δ2

εuv�Δ≈ |g|νF ln
εuv

Δ
. (6.4)

Here NF = Ad

(2π�)dvF
is the density of states in the normal metal; Ad is the area of

the d-dimensional Fermi surface; and εuv � εF is the ultraviolet cut-off of the log-
arithmically diverging integral, such as the Debye temperature. This leads to the
exponentially suppressed gap:

Δ = εuv exp

(
− 1

|g|νF
)

, (6.5)

and correspondingly to the exponential suppression of the transition temperature Tc.
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Situation drastically changes when the spectrum of the normal state has a flat
band—a region in momentumpwhere εp = 0. Since within the flat bandEp(Δ) = Δ,
(6.3) becomes

1 = |g|Vd

2(2π�)dΔ
, (6.6)

where Vd is the volume of the flat band in momentum space. Hence instead of the
usual exponentially suppressed behavior in (6.5) we have the gap Δ that is linearly
proportional to the interaction strength:

Δ = |g|Vd

2(2π�)d
, (6.7)

Since the critical temperature of the superconductors is typically of the same order
of magnitude as the gap at zero temperature, the resulting superconductivity may
exist at high temperatures.

It is instructive to consider the intermediate case when the quasiparticle spectrum is

ε(p) = ε0

(
p

p0

)M

. (6.8)

Then for M > d, (6.3) gives the power law dependence of transition temperature on
the coupling constant:

Δ ∝ |g| M
M−d . (6.9)

In the limit of large M � 1, the spectrum (6.8) transforms to the flat band concen-
trated at p < p0, and the gap (6.9) asymptotically approaches the linear dependence
on the coupling g in (6.7). The case with d = 1 and M = 2, where Δ ∝ g2, has been
considered by Kopaev [1] and Kopaev–Rusinov [2].

In the sections below, we consider different systems where the exact or approxi-
mate flat bands could be realized.

6.2 Flat Band Induced by Interaction

6.2.1 Landau Phenomenology

We start with the flat bands induced by interaction between the fermions. As was
found by Khodel and Shaginyan [3], the interaction may lead to the merging of
different fermionic energy levels, which results in the formation of a dispersionless
band, see also [4, 5]. The effect of the merging of discrete energy levels due to
interaction has been reported in a recent paper, [6].
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Their argument is based on the phenomenological Landau’s consideration on the
derivation of the distribution function np of fermions at T = 0. It is determined by
the energy functional E {n(p)}, whose variational derivative εp is the quasiparticle
energy. The variation of this functional gives the equation for np and εp:

δE {n(p)} =
∫

ddp

(2π�)d
εpδnp = 0. (6.10)

Since the quasiparticle distribution function is constrained by the Pauli principle
0 ≤ np ≤ 1, there are two classes of solutions of the variational problem. One class
is εp = 0, which is valid if 0 < np < 1; another one is δnp = 0 with np = 0 or np = 1.
In the following we illustrate these two classes of solutions.

6.2.2 Landau Fermi Liquid and Its Topological Stability

Let us start with the Fermi gas—the system of free fermions with the spectrum
εp = p2/2m − μ, where μ > 0. The energy functional for free fermions isE {n(p)} =∫ ddp

(2π�)d
εpnp, which gives the solution shown in Fig. 6.1 (left). The solution of the

class εp = 0 forms the Fermi surface with radius pF , where p2
F/2m = μ. Outside of

p
p2p1

flat  band

Fermi surface  flat band 

two solutions:     ε(p) = 0     or      δn(p)=0

δn(p)=0 δn(p)=0

splitting of 
Fermi surface
to Fermi ball
(flat band)

p

ε(p) ε(p)n(p) n(p)

pF

δn(p)=0 δn(p)=0

ε(p) = 0 ε(p) = 0

δE{n(p)} =  ε(p)δn(p)ddp = 0

Fig. 6.1 Illustration of the formation of the Khodel–Shaginyan flat band due to interaction between
fermions. Top the Landau model of the Fermi liquid considers the energy E {n(p)} as the functional
of the distribution function n(p) of quasiparticles. The variation of the functional gives two types of
solutions: εp = 0 or δnp = 0. Left distribution of quasiparticles in the class of Fermi liquids. Two
regions with solutions δnp = 0 are separated by the surface with solution εp = 0. This is the Fermi
surface. Topological stability of this class is demonstrated in Fig. 6.2. Right for strong interaction
(large interaction constant), the intermediate region with the solution εp = 0, may become finite.
This is the flat band. Topological structure of such flat band is demonstrated in Fig. 6.3
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the Fermi surface the distribution function np = const, with np = 1 for p < pF and
np = 0 for p > pF . This corresponds to the class of solutions with δnp = 0.

The structure with the Fermi surface is topologically protected. The topological
stability can be illustrated using the d = 2 system, when the Fermi surface p = pF is
the 1d circle. For that one has to consider the Green’s function at imaginary frequency:

G(ω,p) = 1

iω −
(

p2

2m − μ
) . (6.11)

The Green’s function in (6.11) has singularities at ω = 0 for p belonging to the
Fermi surface. These points form a closed line in the three dimensional (ω, px, py)-
space, see Fig. 6.2 for d = 2. This line has a topological winding number: the phase
Φ of the Green’s function, G = |G|eΦ changes by 2π along an arbitrary contour C
around the line. In other words, the Fermi surface represents the p-space analog of the
vortex lines in superfluids and superconductors, where the phase of the order parame-
ter changes by 2π around the vortex. The 2π winding of the phase Φ cannot change
under small deformations of the parameters of the system, and thus is robust to the
interactions between the particles, if we do not consider the superconducting, mag-
netic or other phase transition, which drastically (non-perturbatively) reconstructs
the energy spectrum. This topological stability is the reason why interacting Fermi
liquids preserve the Fermi surface.

For more complicated cases, when the Green’s function has spin, band and other
indices, and for arbitrary dimension d the winding number N of the Fermi surface is
expressed analytically in terms of the matrix Green’s function in the following form:

N = tr
∮

C

dl

2π i
G(ω,p)∂lG

−1(ω,p). (6.12)

C

p
xp

F

p
y 

ω

Fig. 6.2 Illustration of the topological stability of the Fermi surface on an example case with
dimension d = 2, when the Fermi surface forms a closed loop. Green’s function has singularities
on the line ω = 0, p2

x + p2
y = p2

F in the three-dimensional space (ω, px, py). Stability of the Fermi
surface is protected by the invariant (6.12) which is represented by an integral over an arbitrary
contour C around the Green’s function singularity
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Here the integral is taken over an arbitrary contour C around the Green’s function
singularity in the d + 1 momentum-frequency space. For the Green’s function in
(6.11) the topological invariant N = 1.

6.2.3 Khodel–Shaginyan Flat Band and Its Topology

When the interaction between the particles is strong enough, so that it starts dominat-
ing over the fermionic statistics, a more classical behavior of the distribution function
may emerge, in which the natural solution of the variational problem corresponds
to a zero value of the variational derivative, δE {n(p)}/δnp = 0. Therefore, with an
increasing interaction strength one may expect the topological quantum phase tran-
sition to the distribution in Fig. 6.1 (right), where the solution εp = 0 is spread over
a finite region in momentum space, i.e., forming a flat band.

The topological structure of the Khodel–Shaginyan flat band is shown in Fig. 6.3.
The vortex line with 2π winding transforms to a domain wall in the momentum
frequency space, at which the Green’s function has a jump, G(ω = +0, px, py) −
G(ω = −0, px, py) �= 0. This domain wall terminates on π vortices.

6.2.4 Flat Band Near the Saddle Point

Here we consider the formation of the Khodel–Shaginyan flat band in the vicinity
of a saddle point in the d = 2 quasiparticle spectrum using the phenomenological
Landau theory [7] and compare it with the results of numerical simulations of the
Hubbard model [8].

Fig. 6.3 Illustration of the topological structure of the Khodel–Shaginyan flat band in a d = 2
system. According to Fig. 6.1 (right) the Fermi surface at p = pF spreads into a flat band concen-
trated in the region p1 < p < p2. Correspondingly the line of the Green’s function singularities
in Fig. 6.2—a vortex line—is spreading to an analog of a domain wall terminating on a pair of
π -vortices at p = p1 and p = p2 [4]
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The simple Landau-type functional for the interacting Fermi liquid is

E {n(p)} =
∑

p

npε
(0)
p + 1

2

∑

p,p′
f (p,p′)npn′

p . (6.13)

We illustrate the flat band solution using an even simpler functional with contact
interaction:

E {n(p)} =
∑

p

[
ε(0)
p np + 1

2
U

(
np − 1

2

)2
]

, (6.14)

where U > 0. This functional has always a flat band solution with 0 < np < 1:

εp = δE

δnp
= ε(0)

p + U

(
np − 1

2

)
= 0, (6.15)

np = 1

2
− ε(0)

p

U
, 0 < np < 1. (6.16)

In the vicinity of the saddle point the non-perturbed spectrum (i.e. at U = 0) has
the form ε(0)

p = pxpy
m − μ. For μ �= 0, there are two hyperbolic Fermi surfaces. They

interconnect at the Lifshitz transition, which takes place at μ = 0. When the inter-
action U is switched on, the flat bands emerge. Figure 6.4 (left) demonstrates the flat
band at μ = 0. The same shape of the region with the flat band has been obtained
from the numerical simulations of the Hubbard model [8], see Fig. 6.4 (right).

Fig. 6.4 Flat band emerging near a saddle point. Left from the simplified Landau-type theory in
(6.14)–(6.16) with μ = 0. The flat band is concentrated in the black region.Right from the numerical
solution of the Hubbard model [8], showing the spectral function within the reciprocal space of an
interacting triangular lattice. The lower left sextant corresponds to the noninteracting case U = 0.
For large U the band flattening is clearly seen near the saddle points
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6.3 Flat Bands in Topological Semimetals

In the previous section we discuss the fermion condensate—a flat band emerging due
to interactions in the vicinity of a singularity in the non-interacting spectrum. There
are also other ways to generate flat bands or approximate flat bands. Historically the
flat bands first appeared as Landau levels of charged particles in a magnetic field [9].
Here we discuss the flat bands that have purely topological origin. They may exist
without a magnetic field, and they are not very sensitive to disorder. The flat band may
emerge as the surface or interface state in topological semimetals [10–12], which we
discuss in this section. The flat band may also appear at the strained interfaces with
misfit dislocations, which play the role of effective magnetic field. Such flat bands
are discussed in Sect. 6.4.

In this section we characterize semimetals that have an internal spin-like structure.
All the examples discussed here can be characterized via the topological invariant of
the form [13]

N1 = tr
∮

C

dl
4π i

· [ΓH−1(p)∂lH(p)], (6.17)

where H is the Hamiltonian in the momentum space; Γ is a matrix which commutes
or anti-commutes with the Hamiltonian, such as the third Pauli matrix σ3 acting on
the spin-like degree of freedom; and C is a contour in momentum space, specified
separately for each semimetal.

In semimetals, the flat bands are realized as a particular consequence of the bulk-
boundary correspondence of topological media (see [14–16] or Sect. 22.1 in [17]).
If for example a 3D bulk system contains Weyl points, then an interface with a
topologically trivial material, or with a material having a different value of topological
invariants contains a line of zeroes—the Fermi arc [18]. The termination points of
the Fermi arc are given by projections of the Weyl points to the interface. In the
same manner the Dirac lines in 3D bulk or Dirac points in 2D bulk, characterized by
an invariant of the form (6.17), give rise to the to nodes of higher dimension at the
interface—the flat band [10–12]. The boundaries of the flat band are determined by
the projection of the Dirac line or Dirac points to the interface.

6.3.1 Topological Nodes: Dirac Lines and Dirac Points

Let us consider an example semimetal characterized by an even number of 2-
dimensional Dirac points, such as that found in graphene around the two valleys.
Close to the Dirac point the Hamiltonian can be written as a 2 × 2 matrix in
(pseudo)spin space,

H = vF

(
0 px − ipy

px + ipy 0

)
= vFp · σ , (6.18)
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where p = (px, py) and σ = (σx, σy), where σj are Pauli matrices. The eigenvalues of
H satisfy ε2 = v2

F |p|2 having a node ε(p = 0) in a single point in momentum space.
To illustrate the topological protection of this node, let us add a perturbation of the
formV(p) = v(p) · σ , where v = (vx, vy) does not break the (pseudo)spin symmetry.
As a result, the dispersion becomes ε2 = (vFpx + vx)2 + (vFpy + vy)2, which again
has a single node at (px, py) = −(vx, vy)/vF . The only effect of the potential is thus to
shift the node, but not annihilate it. This property can be expressed via the presence
of the topological charge of the form (6.17), where Γ = σz and the contour C goes
around the Dirac point in the 2D momentum space (see Fig. 6.5). For the Hamiltonian
in (6.18), we get N1 = 1. In graphene, there are two Dirac points: the first one has
the form in (6.18), and the second is otherwise the same but py 
→ −py. In that case
the second Dirac point has N1 = −1. These topological charges stay invariant to
perturbations of the form V(p), as long as we shift the contour of integration along
with the shift of the Dirac point, and as long as the two nodes do not merge due to
such a perturbation.

In 3D materials, the topological charge in (6.17) characterizes lines of nodes—the
Dirac lines. The Dirac lines are readily obtained in superfluids and superconductors,
where the symmetry operator Γ contains the particle-hole symmetry. In particular,
the Dirac line exists in the polar phase of superfluid 3He [19] and may appear in
superconductors without inversion symmetry [12]. The topologically stable Dirac
lines give rise to the topologically protected surface flat band. According to the bulk-
surface correspondence, the boundary of the flat band is determined by the projection
of the nodal line on to surfaces. In nonsuperconducting materials the corresponding
symmetry which enters (6.17) can be only approximate, being violated by spin-
orbit interaction, or by the higher order hopping elements. This leads to formation of
approximately flat surface bands as it happens for example in graphite [20], graphene
networks [21] and possibly in some other materials [22, 23].

We first consider the case of graphene, whose energy spectrum within the valence
and conduction bands is plotted in Fig. 6.6. This spectrum follows for example from
the nearest-neighbour tight-binding model on a honeycomb lattice, see [24, 25].
Around the specific points, marked K and K ′ in the figure, the low-energy Hamil-
tonian is of the form of (6.18). These points are described by the topological charge
N1, such that N1(K) = +1 and N1(K ′) = −1.

Fig. 6.5 2D Dirac point in
momentum space and the
line of integration for the
topological invariant N1
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Fig. 6.6 Energy spectrum in the conduction and valence bands of graphene. Here a is the lattice
constant, and γ1 denotes the nearest-neighbour hopping parameter in the tight-binding lattice. The
underlying contour plot shows the positions of the Dirac points. Only two of these points are
non-equivalent, the others are connected via reciprocal lattice vectors

Figure 6.7 shows the formation of flat bands at the edges of graphene [10]. There,
we show the locations of the K and K ′ points in the 2d momentum plane, and
consider the presence of an edge placed in the x-direction. Now, the edge marks a
boundary between graphene, which is a nodal semimetal, and vacuum, which is a
trivial insulator. By the bulk-boundary correspondence we may hence expect flat band
states at the edge. Since we maintain translational invariance along the x direction,
px remains a good quantum number and it also parametrizes the edge states and their
dispersion εe(px). According to the bulk-boundary correspondence, the projections
of the Dirac points to the boundary determine the end points of the flat band. From
Fig. 6.7 it is clear that the termination points of the flat band must be located at px
values corresponding to the px-component of the K and K ′ points. When px crosses
these points, the normal to the interface runs across either K or K ′ points and the
topological invariant in (6.17) along the normal changes. However, from the figure
alone one cannot say which of the regions between the K and K ′ points contain
flat bands and which not. The solution is to construct the system by repeating a
set of infinite chains, and construct the topological invariant, in this case called the
Zak phase [26] for these chains. As shown for example in [10, 26], the details of
this procedure depend on the microscopic form of the edge, which is either of the
“bearded” or the “zigzag” type. Figure 6.7 illustrates the resulting positions of the
flat band dispersion in momentum space.

If we were to place the interface in the y direction (in which case we would obtain
the “armchair” edge), there would be no flat band due to the fact that the normal to
the interface would run across both K and K ′ points. In this case the change of the
topological charge across this normal line would be N1(K) + N1(K ′) = 0.
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Fig. 6.7 Formation of a flat band in the zigzag (lower part of the figure) or bearded (upper part)
edges of graphene

In the following sections we explain the topological invariants in multilayer
graphene structures and discuss the consequent (approximate) flat band surface
states.

6.3.2 From Graphene to Graphite

In graphite, the coupling between the graphene layers is much weaker than that within
the atoms producing the hexagonal lattice in individual layers. Because of this, we
may assume that the individual layers remain to be described by the two-dimensional
low-energy momentum-space Hamiltonian of the form in (6.18). In the (most stable)
AB stacking, the pair of layers is arranged so that the graphene hexagons are rotated
with respect to each other by 30◦. As a result, one pair of atoms (say, A on the bottom
layer and B on the top layer) reside on top of each other, whereas the other atom of
the unit cell (B on the bottom and A on the top) are on the bottom/top of the other
hexagon. Therefore, the interlayer coupling between the first pair of atoms is much
stronger than the coupling between the second pair. Taking into account only this
strongest coupling then produces the Hamiltonian of the form
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HK =
(
vFp · σ −γ1σ↓
−γ ∗

1 σ↑ vFp · σ

)
(6.19)

around one of the graphene valleys (K-point) for this pair of layers. Here γ1 quan-
tifies the interlayer hopping. Around the other valley (K ′ point) the Hamiltonian
is HK ′(px, py) = HK(px,−py). It is straightforward to show that HK/K ′ have four
branches of eigenvectors, two gapped ones (with ε(|p| = 0) = ±γ1) and two with a
quadratic dispersion around a Fermi node, ε2 = |γ1|2(p/pFB)4, where pFB = |γ1|/vF .
The topological invariant for the Dirac point with quadratic touching demonstrates
summation rule for the topological invariants, N1 = 2 (−2) for HK (HK ′).

Beyond the bilayer, the graphene layers can be stacked in two qualitatively differ-
ent ways by respecting the AB stacking for each pair of layers. In Bernal stacking,
the line of strongest interlayer coupling is straight, i.e., connects the same atoms in
each layer whereas for rhombohedral (ABC) stacking, it follows an armchair-type
pattern, i.e., the strongly coupled atoms differ between neighbouring pairs of layers.
The corresponding elements of the momentum space Hamiltonians coupling layers
n and m for 2D momenta around the K point are

HBernal
mn = vFp · σ δmn − γ1δm,n+1

{
σ↑[(−1)m − 1] + σ↓[(−1)m + 1]} /2 + h.c. (6.20)

Hrhombohedral
mn = vFp · σ δmn − γ1δm,n+1σ↑ + h.c. (6.21)

In HBernal the terms in square brackets take care of indexing the even and odd layers
separately. Note that since the choice of the A/B indices for the graphene sublattice
atoms is arbitrary, we could have also chosen to write the coupling in H rhombohedral in
terms of σ↑ instead of σ↓. These two choices of description give different signs of the
bulk topological invariant in (6.17), but the sign of the invariant becomes important
only in the presence of (Bernal) stacking faults that change the coupling around some
particular interface.

6.3.3 Bulk Dirac Line in Bernal Graphite

We first derive the bulk dispersion of Bernal graphite by including only the strongest
interlayer hopping term γ1. We make the bulk Ansatz

ψT
n = eipzna/�

⎧
⎨

⎩

(
αo βo

)
, n odd

(
αe βe

)
, n even

(6.22)

for the wave function on the nth layer. Here pz is the momentum in the direction
perpendicular to the layers and a is the distance between the layers. This is an
eigenfunction with energy ε provided that the coefficients αe/o, βe/o satisfy
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⎛

⎜⎜⎝

0 vFp− 0 −2γ1 cos(pza/�)

vFp+ 0 0 0
0 0 0 vFp−

−2γ ∗
1 cos(pza/�) 0 vFp+ 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
HB

⎛

⎜⎜⎝

αo

βo

αe

βe

⎞

⎟⎟⎠ = ε

⎛

⎜⎜⎝

αo

βo

αe

βe

⎞

⎟⎟⎠ , (6.23)

where p± = px ± ipy ≡ p⊥eiφ , p⊥ ≥ 0. This has (four) zero-energy solutions at
px = py = 0, regardless of the value of pz. Within this approximation, Bernal graphite
has therefore two Dirac lines, running through theK andK ′ points of the 2D graphene
band structure, or between the H points in the 3D graphite band structure, see Fig. 6.8.
Including higher-order hopping terms in the Hamiltonian expands this line into elec-
tron and hole pockets [27–29]. However, let us first analyze the topology of HB. The
topological charge in this case is of the form of (6.17), where the contour C runs
around the Dirac lines as indicated in Fig. 6.8, and σz should be replaced by (σz ⊗ 1).
This produces N1 = ±2, where the factor 2 takes care of the additional layer degree
of freedom in (6.23).

This is thus nothing but the generalization of the graphene topological charge to
graphite and it yields N1 = ±2 for the momenta along the lines H − K − H/H ′ −
K ′ − H [27], where the H(′) point is shifted from the K (′) point in the pz direction
by �π/(2a). Based on the bulk-boundary correspondence we may therefore expect
to have surface states at the lateral boundaries of Bernal graphite, as extensions of
the flat band states in zigzag graphene, but now the flat band extends throughout the
first Brillouin zone in the pz direction.

Let us now consider the effect of higher-order hopping elements. First they split
the Dirac line with multiple charge N1 = 2 into elementary Dirac lines. The natural
splitting would be into two lines with charges N1 = 1. However, the situation is more
interesting, see Fig. 6.9 and [27, 29, 30]. The N1 = 2 line splits into 4 Dirac lines:
three lines with trigonal arrangement have N1 = 1, while the central line has N1 =
−1. The total topological invariant remains the same, N1 = 1 + 1 + 1 − 1 = 2.
In addition, the higher-order hoppings break the symmetry Γ [20] underlying the
topological protection. Without the topological protection the four Dirac lines are
electron and hole pockets move to a non-zero energy, creating. As a result the surface

Fig. 6.8 Dirac lines in Bernal graphite within the nearest-neighbour interlayer approximation. This
picture expands the 2D momentum space (px/py plane) of graphene to the 3D space where pz runs
between −�π/(2a) to �π/(2a) (a is the interlayer spacing)
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Fig. 6.9 Bernal graphite
Fermi surface from [27]. It
consists of the electron and
hole pockets connected at
four points. Each point is
described by topological
invariant in (6.17): the point
in the center has N1 = −1
and the other three points
have N1 = 1. Such structure
originates from the nodal
line with N1 = 2 in the
Hamiltonian (6.23), when
the higher order hopping
elements are taken into
account

holes

N1 = 2

electrons

electrons

Fig. 6.10 Fermi spirals in
rhombohedral graphite

states of Bernal graphite cease to be flat on the energy scale related to those higher-
order hoppings [31] (Fig. 6.10).

6.3.4 Spiral Dirac Line in Rhombohedral Graphite

To obtain the bulk dispersion of rhombohedral graphite, it is enough to make the
Ansatz

ψn =
(

α

β

)
eipzna/�. (6.24)

This is an eigenfunction of H rhombohedral if α and β satisfy

(
0 vFp− − γ1 exp(ipza/�)

vFp+ − γ ∗
1 exp(−ipza/�) 0

)

︸ ︷︷ ︸
HRHG

(
α

β

)
= ε

(
α

β

)
(6.25)
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for some energy ε. The zero-energy solutions are found along a spiral in the
momentum space,

pza = arctan

(
py
px

)
= φ, vFp⊥ = |γ1|. (6.26)

In this case the topological charge corresponds to the spiral helicity, and can be
defined by (6.17) where the integration contour runs over the 1st Brillouin zone
(−π/a to π/a) in the pz-direction. For pz running close to the line from the H point
via K back to H, N1 = 1 whenever the transverse momentum px ± ipy is inside
the spiral, i.e., p⊥ < |γ1|/vF . For larger momenta away from the H − K − H line,
N1 = 0. On the other hand, for the path H ′ − K ′ − H ′ the spiral is defined by (6.26),
where py ↔ −py, inverting the helicity and the sign of N1 to −1.

As a result of the existence of the non-trivial topological charge, the surface layers
of rhombohedral graphite contain flat bands, i.e., ε(p⊥ < |γ1|/vF) = 0. This can be
understood as follows. For each p⊥ with p⊥ �= |γ1|/vF , the Hamiltonian Hp⊥(pz)
describes a 1D insulator. For p⊥ < |γ1|/vF , this insulator is topological, since it has
the topological chargeN1(p⊥) = 1. According to the bulk-boundary correspondence,
each topological insulator has an edge state with zero energy. These states form a
flat band in the region p⊥ < |γ1|/vF .

The robustness of the topological protection in an anisotropic rhombohedral
graphite is investigated in [32].

The flattening of the surface spectrum was recently experimentally demonstrated
in five-layer rhombohedral graphite [33].

6.4 Flat Band at Strained Interfaces

Recently another possible source of the topological flat band has been discussed
in two materials: highly oriented pyrolytic Bernal graphite (HOPG) [34] and het-
erostructures SnTe/PbTe, PbTe/PbS, PbTe/PbSe, and PbTe/YbS consisting of a topo-
logical crystalline insulator and a trivial insulator [39]. In both cases the flat band
comes from a misfit dislocation array, which is spontaneously formed at the interface
between two crystals due to the lattice mismatch. In [34] the lattice of screw disloca-
tions has been considered, which emerges at the interface between two domains of
HOPG with different orientations of crystal axes. In [39] the misfit dislocation array
is formed at the interface between topological and trivial insulators (Fig. 6.11).

The above two systems exhibit a similar phenomenon. In both cases supercon-
ductivity related with the interfaces has been found [35, 36]. The reported transition
temperature essentially exceeds the typical transition temperature expected for the
bulk materials. A possible origin of this phenomenon is the flat band at the interfaces,
where the transition temperature could be proportional to the coupling constant and
the area of the flat band.
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Fig. 6.11 Misfit dislocation
grid at the interface from N.
Ya. Fogel, Phys. Rev. B 66,
174513 (2002) [35]

The topological origin of the flat bands in these systems can be understood either
in terms of the overlapping of the 1D flat bands formed within the dislocations
or using the following consideration. In case of the heterostructures, on one side
of the interface the insulator is topological, and thus the interface contains Dirac
fermions. The strain at the interface (with its dislocations) acts on Dirac fermions
as the effective magnetic field. Such emergent field is now extensively discussed for
strained graphene, see e.g. the most recent paper [37] and references therein. The
effective magnetic field B produces the required flat band, since the first Landau level
for massless Dirac fermions has zero energy. When the period decreases, the field B
increases, giving rise to enhanced density of states, which is proportional to B. This
is equivalent to an increase of the area of the flat band in the scenario discussed in
Sect. 6.3. Such an increase of the transition temperature is discussed in [38, 39].

In particular, [39] considered the case where the massless Dirac Hamiltonian of
the topological insulator experiences a periodic field. The analogue case for graphene
in the presence of a periodic array of ripples was considered in [40]. They arrived at
the Hamiltonian of the form

HTF = −i∂xσx + [ky − A(x)]σy, (6.27)

written in terms of (scaled) momentum ky along the dislocation, and a scaled strain-

induced gauge field A(x) satisfying A(x + d) = A(x) and
∫ d

0 A(x)dx = 0. In the case
of [39], A(x) = β cos(2πx/d), but the approach works for a more general periodic
vector potential as well. Due to the position dependent vector potential, there is no
translation symmetry in the x direction and the momentum in the x-direction is not a
good quantum number. However, due to the periodicity of the potential we can use
Bloch’s theorem and define the pseudomomentum k̃x. This allows for calculating the
spectrum of (6.27), plotted in Fig. 6.12 and exhibiting (an approximate) flat band for
ky < β/2 and for all values of kx ∈ [−π/d, π/d].

The emergence of the approximate flat band in (6.27) can be understood by first
considering the case ky = 0. In that case the Hamiltonian has two (unnormalized)
zero-energy solutions,
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Fig. 6.12 Spectrum of
(6.27) with β = 30. Inset
shows the (approximate)
linear dispersion with low
values of ky, and with a
speed as in (6.28)

ψ+ =
(

0
1

)
exp

[∫ x

0
A(x′)dx′

]

ψ− =
(

1
0

)
exp

[
−

∫ x

0
A(x′)dx′

]
.

Let us include the term H1 = kyσy as a perturbation. The second order secular equa-
tion produces the 2 × 2 Hamiltonian constructed from the matrix elements of the
Hamiltonian H1:

(
0 H(1)

+−
H(1)

−+ 0

)
= c

(
0 ky
ky 0

)

with the spectrum E = ±cky. The slope c of the spectrum is obtained from the matrix
elements of the normalized eigenfunctions

c =
∫ ∞
−∞ dx1

∫ ∞
−∞ dx exp[2 ∫ x

0 A(x′)dx′] = d
∫ d

0 e2
∫ x

0 A(x′)dx′ . (6.28)

For A(x) = β cos(x) we thus get c = 1/I0(2β), where I0(x) is the zeroth Bessell
function of the first kind. When c � 1, requiring β � 1, the result is an approximate
flat band.

Alternatively, we may consider the case of a periodic line dislocation. There, the
vector potential is proportional to the strain field,A(x) = α1uxx(x) + α2uyy(x), where
α1 and α2 are coupling constants and
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uxx(x) = bz

2π(1 − ν)

3x2 + z2

(x2 + z2)2

uyy(x) = bzν

π(1 − ν)

1

x2 + z2
,

where b is the size of the Burgers vector of the dislocation, z is the distance from the
dislocation plane, and ν is the Poisson ratio. We also assume that such dislocations
repeat after each d. In this case we may estimate the slope c for d � z by

c ≈ exp

[
−2

∫ ∞

0
A(x)

]
= exp

[
−b(α1 + να2)

1 − ν

]
.

The flat band dispersion where c � 1 thus requires either ν ≈ 1 or coupling constants
αi � 1/b. Note that this result show that the estimates done in [39] are overoptimistic,
as there αb ≈ 1.

6.5 Superconductivity in Graphene or Graphite?

As discussed in Sect. 6.3, bulk neutral graphite and graphene are typically considered
to have a very low density of states. This is why the occurrence of superconductivity
in these bulk systems would require a strong doping, shifting the Fermi energy to a
finite value and thereby increasing the density of states. Let us consider the example
case of a 2D Fermi line with the superconducting coupling g, but with a shifted Fermi
level by a value μ. In this case (6.2) yields for μ = 0 [41]

Δ = max [0, (aεuv − 1/a)/2], (6.29)

where a = g/(π�
2v2

F). This is non-zero only for a large coupling strength a > 1/εuv.
For weak coupling |a| < 1/ξc, superconductivity is enhanced by doping, because for
non-zero μ the solution is Δ = 2|μ| exp(− 1/a−ξc

|μ| − 1).
This strategy has been followed by some graphite experimentalists. For example

[42] demonstrates bulk superconductivity of two graphite intercalation compounds
C6Yb and C6Ca with critical temperatures of 6.5 and 11.5 K, respectively. There
one of the effects from the intercalant layers is the charge transfer, i.e., doping the
graphite.

The situation is opposite in flat band systems: doping does not aid superconductiv-
ity, but rather decreases the critical temperature. With a non-zero chemical potential
μ, the gap becomes

Δ =
√

Δ2
FB − μ2, (6.30)

where ΔFB is the gap obtained for μ = 0, as in (6.7).
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There are experimental indications for the presence of superconductivity at
graphite interfaces [36]. In this case, the interfaces form between differently ori-
ented regions of Bernal graphite, so that the graphite c-axis (pz in our work here)
runs perpendicular to these surfaces. These observations hence cannot be explained
by the flat bands at the lateral interfaces (along px or py) as one would expect in Bernal
graphite. There are also no direct indications of the presence of rhombohedral stack-
ing in these systems, but the resolution of the imaging does not allow ruling out
some rhombohedral regions close to the interfaces exhibiting superconducting prop-
erties. Note that rhombohedral stacking has been found in highly oriented pyrolytic
graphite, see for example [43, 44], and recently in graphene multilayers [33]. The
remaining scenarios are based on the formation of an array of dislocations (Sect. 6.4)
at these surfaces as the surface layers try to adapt to the neighbouring graphite planes,
or the interaction-induced flat bands at Van Hove singularities occurring at saddle
points of twisted graphene layers [45].

The discussion in Sect. 6.1 concerns only the relation of the mean field order para-
meter with normal-state electronic spectrum. The details of the flat band supercon-
ducting state, such as the quasiparticle spectrum, supercurrent and collective modes,
depend on the way the flat band is formed. The case of rhombohedral graphite has
been worked out in [46–48] and summarized in [49]. The density of states in the
superconducting state was computed in [50]. In that case the superconducting spec-
trum is not flat, but rather has an inverse parabolic shape and exhibits a minigap
whose value is inversely proportional to the distance between adjacent surfaces. The
supercurrent is characterized by a large critical current that is linearly proportional to
Δ. However, in this model the supercurrent does not only flow along the surfaces, but
also between them. Even a flat superconducting dispersion (and hence a vanishing
group velocity for the quasiparticles) may lead to a nonvanishing supercurrent as
was pointed out in [51].

In this chapter we have concentrated on illustrating the results for mean-field mod-
els of superconductivity on flat bands. As discussed in [49], fluctuation effects are
much more important in flat band superconductors than in ordinary BCS supercon-
ductors. The nature of the fluctuation response depends on the mechanism of the flat
band formation, and the ensuing superconducting spectrum. For example, in the case
of surface flat bands of topological semimetals, the fluctuations may overwhelm the
mean field contribution to the thermodynamic response, indicating that the attractive
interaction leads to a strongly correlated state of electrons [52].

As we have discussed in this chapter, there are many ways of realizing (approxi-
mate) flat bands. Some of these realizations may be relevant in interfaces of graphite,
where indications of superconductivity with a very high critical temperature have
been observed. It remains to be demonstrated whether these properties can be
explained within the flat band scenario of superconductivity.
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Chapter 7
Experimental Evidence for the Existence
of Interfaces in Graphite and Their Relation
to the Observed Metallic
and Superconducting Behavior

Pablo D. Esquinazi and Yury V. Lysogorskiy

Abstract This chapter reviews the experimental evidence obtained for the existence
of embedded interfaces between crystalline regionswithBernal and/or rhombohedral
stacking order in usual graphite samples, and their relationship with the observed
metallic and superconducting behavior.

7.1 Interfaces in Graphite Samples

Within the graphite literature there have been several publications on the lattice
defects found in graphite structures, like point defects (vacancies and interstitials
and their clusters), dislocations, twin boundaries, etc., see e.g. Chap. 3 in [1] and
Refs. therein. For radiation defects the readers should refer to a recently published
work [2]. The interfaces we are interested in this chapter are boundaries between
either: (a) two slightly rotated crystalline regions around the c-axis, both with Bernal
stacking order. It means the c-axes of the two regions are the same but their a-axes
have a twist angle respect to each other, and (b) the boundaries between Bernal and
rhombohedral stacking order regions. Both boundaries have been recognized time
ago [3], but only recently their extraordinary properties have been partially studied,
theoretically and experimentally.
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7.1.1 Experimental Evidence Through Transmission
and Scanning Electron Microscopy

Kish graphite samples are obtained from iron and purified later with halogen gas
at high temperatures. According to literature these kind of graphite samples show
one of the largest resistivity ratio (R(300)/R(4.2)) of nearly 50 [3] indicating a high
degree of crystallinity. In p. 32 of the book of Inagaki [3] one finds an interesting
double photo of the edges of a kish graphite sample, see Fig. 7.1 (left). As pointed
out in that book, in those pictures one can see a regular stacking of layers at the edges
of a Kish graphite sample. The difference in color are related to slightly different
orientation, i.e. very probably rotations along a well aligned c-axis. The interfaces
we are interested are those regions separating the single crystalline regions, each one
characterized by a homogeneous gray color in Fig. 7.1 (left). The electrical transport
“quality” of the Kish graphite samples can be derived from their large resistivity
ratio, a ratio that depends very much on sample [3]. According to recent studies [4]
the metalliclike behavior of graphite is not intrinsic but it comes from the interfaces
properties, as will become clear in the next sections.

Regions with interfaces can be observed in nearly any well ordered graphite
sample. Even in micrometer large graphite grains of ultrapure graphite powder, see

Fig. 7.1 Left pictures are taken for a kish graphite sample from [3]. Right scanning electron
microscope (SEM) picture is taken from [5] (see Supporting information in [5])



7 Experimental Evidence for the Existence of Interfaces in Graphite … 147

Fig. 7.2 a SEM picture taken from a lamella of a HOPG sample after cutting, before leaving it on
a substrate. The scale bar corresponds to 5µm. b Transmission electron microscope (TEM) picture
of a HOPG ZYA sample, taken from [4]. The scale bar corresponds to 0.4µm. c TEM picture of
a similar sample, taken from [6]. The scale bar corresponds to 5 nm. d TEM picture of a HOPG
sample grade B, taken from [7]. The scale bar corresponds to 1µm

Fig. 7.1 (right), those interfaces are evident [5]. If these interfaces have different
electronic properties than the graphene layers of the single crystalline regions, several
experimental methods like transport and magnetization may provide the response of
those interfaces in parallel to the one from the graphene layers. If one does not take
this possibility into account the interpretation of the experimental results can be
misleading.

Amuch clearer picture of some details of the internal structure of graphite samples
can be obtained using transmission electron microscopy (TEM) lamellae. In this
case one takes TEM pictures with the electron beam pointing roughly parallel to the
graphene planes and at relatively low energies (e.g. ∼15 keV). Figure7.2a shows
one SEM picture of a cut lamella (using a dual beam microscope) from a HOPG
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Fig. 7.3 Transmission electron microscopy (TEM) picture of a highly oriented pyrolytic graphite
(HOPG) ZYA sample taken parallel to graphene layers of the HOPG lamella. Red lines indicate the
interfaces between twisted graphene blocks. Green lines shows the tilt grain boundaries. The scale
bar indicates 100nm. Image adapted from [4] (color figure online)

sample and fixed to a manipulator tip. In that picture and in spite of the relatively
low resolution one can roughly observe single crystalline regions of graphite. These
regions are more clearly observed using TEM, see Figs. 7.2b–d. Note the difference
in the sharpness and the length of the interface regions between HOPG samples of
grade A (b, c) and B (d). This difference plays an important role in the behavior of
the magnetotransport and the size of the possible superconducting regions localized
at the interfaces.

7.1.2 Twisted Layers: Moiré Patterns and Dislocation Lines

7.1.2.1 The Concept

One can divide the possible types of boundaries in graphite sample onto several
groups: (a) two dimensional (2D) interfaces between twisted layers of graphene,
which could be characterized by rotation angle θ and lateral translation δ. This
type of interfaces produces the so-called moiré patterns [8, 9]; (b) 2D interfaces
between regions with Bernal (ABA) and rhombohedral (ABCA) stacking and (c)
one dimensional (1D) dislocation lines or topological line defects [10]. The location
of some 2D and 1D boundaries are schematically shown in Fig. 7.3. However, the
possible lattice defects in the graphite structure are much more plentiful. As example
we refer to the exhaustive review of defects in graphite obtained after irradiation
given in [2].

7.1.2.2 Moiré Patterns and Van Hove Singularities in Twisted
Graphene Layers

In the work of Kuwabara and coauthors [8] the superperiodicity in scanning tun-
neling microscopy images of highly oriented pyrolytic graphite (HOPG) sample
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Fig. 7.4 High-resolution scanning tunneling microscope (STM) at constant current images of a
superperiodicity on a graphite (001) surface. Superperiodicity was associated with a moiré pattern,
resulting from the overlap between a misoriented layer of graphite and the underlying graphite
single crystal. The shown images are of size 100nm× 100nm (left) and 22.5nm× 25.0nm (right).
The graphene lattice period itself is 0.246nm and is hardly visible on the given images. Adapted
from [8]

was observed (see Fig. 7.4). This superperiodicity was associated with a moiré pat-
tern (MP), resulting from the overlap between a misoriented layer of graphite and
the underlying graphite single crystal. Moiré patterns on graphite consist of huge
hexagonal lattices made of bright spots on STM images. It was proposed for the
first time that in addition to the periodicity of the graphite lattice, the presence of
a misoriented substrate a number of atomic spacings below the surface might be
expected to introduce spatially periodic perturbations in the surface local density of
states [8, 11].

In [12] the exhaustive analysis of different moiré patterns on graphene was done.
Generally, one can classify the areas inmisoriented graphene bilayer into three types:
(a) normal, Bernal AB-stacking, (b) SlipAB-stacking and (c) AA-stacked graphene.
In AA regions all carbon atoms of one layer are stacked over the carbon atoms of the
other layer, whereas in AB regions only half of the atoms (Bernal stacking). SlipAB-
stacking is obtained after a little shift of one layer in the AB-stacked structure.

DFT calculations of the density of states (DOS) at the Fermi level lead to the
conclusion that only AB-stacked graphite regions are invisible, whereas AA-stacked
graphite regions are the most visible, represented by bright spots. SlipAB-stacked
graphite regions show an intermediate brightness in the STM images [12]. How-
ever, not all misorientation rotation angles between two adjacent layers will lead to
a moiré pattern, but only under relative rotation angles between 0◦ and 15◦, other-
wise the regions with AA-stacking, which give the bright spots on STM images,
disappear [12].

Further moiré patterns induced by rotations of surface and subsurface layers
of graphite bulk samples were reported in [9, 13] (see Fig. 7.5). This evidence
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Fig. 7.5 Scanning tunneling microscopy images of twisted graphene layers (a, b) along with its
schematic of layer orientation (c). Moiré patterns could be formed by a misorientation of several
graphene layers. Adapted from [13]

indicates that by themeasurement of a transport property like the electrical resistivity
or Hall effect one cannot be sure, which region of the sample provides the measured
voltage signal. If the input current mainly flows through the interface regions where
due to the rotation of the graphene blocks, a larger density of electrons than in ideal
Bernal stacking order exists, then we will measure a voltage that can be due to the
contribution of, at least, two resistances in parallel, as example see the discussion
in Sect. 7.2.1. Although the anomalies in the DOS at the surface of usual graphite
samples were reported already in 1990 [8], apparently their influence on the transport
was not taken into account till 2008, where the authors observed that the absolute
resistivity of graphite samples of different thickness, increased the smaller the thick-
ness of the sample (see also a similar experiment in [14]) and that the metalliclike
temperature dependence of bulk graphite turns to a semiconductinglike the thinner
the graphite sample [4]. We note also that the authors in [15] after scanning the
surface of a HOPG sample of high quality using Kelvin force microscopy (KFM)
concluded on the coexistence of regions with “metalliclike” and “insulatinglike”
behaviors showing large potential fluctuations of the order of 0.25V. This microme-
ter large inhomogeneous domain distribution was not observed in disordered HOPG
samples. Taking into account several reports on twisted graphene layers found on the
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Fig. 7.6 Illustration of a moiré pattern arising from the rotation of one graphene sheet relative to
another by the twist angle θ = 9.6◦ (a) and mechanisms of emergence of Van Hove singularities
as a consequence of this rotation (b). Dirac cones of each layer merge into two saddle points at
energies ±EvHs. Adapted from [16]

Fig. 7.7 Scanning tunneling spectroscopy (d I/dV ) of the twisted graphene layers with different
rotation angles θ . Its intensity is proportional to local density of state of the sample, whereas the
sample bias corresponds to shift with respect to the Fermi level. The energy difference between the
Van Hove singularities (which are indicated by arrows) decreases with decreasing angle. Adapted
from [16]

top surface of high quality graphite samples [8, 9, 13], it appears plausible that the
results obtained using KFM [15] are related with the change in the electronic prop-
erties due to a inhomogeneous twist angle distribution of the top graphene planes in
the samples.

In-depth systematic studies of moiré patterns and induced Van Hove singularities
(vHs) in twisted graphene layers (TGL) was reported, for example, in [16] by means
of scanning tunneling spectroscopy (STS) and ab initio simulations. The mechanism
of increasing the local density of states is briefly described in Fig. 7.6. The rotation
of graphene layers results in the equal rotation of its Brillouin zones by the same
angle θ . Thus, the Dirac cones of each layer are now centered in different points of
the reciprocal space K1 and K2. The cones merge into two saddle points at energies
±EvHs from the Dirac point, leading to vHs which generate peaks in the DOS [16].
The experimental evidence of this hypothesis is given in Fig. 7.7.

In addition, TGL under the interlayer bias could demonstrate very intriguing
peculiarities such as the helical networks—the topologically protected electronic
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Fig. 7.8 Enhanced electron
probability density (bright
areas) between the regions
with AA′, AB′ and BA′
typical stacking of twisted
bilayer graphene. In AA′
regions all carbon atoms of
one layer are stacked over
the carbon atoms of the other
layer, whereas in AB′ or BA′
regions—only the half of the
atoms (Bernal stacking). A
fully developed helical
network state is formed.
White arrows show the
direction of the valley
current. Adapted from [17]

states [17]. The emergence of this phenomenon could be explained in following
manner: TGL forms moiré pattern which smoothly alternates between the three
minimal types AA′ (bright region on the STM image, see Fig. 7.4), AB′ and BA′
(dark region on the STM image). In AA′ regions all carbon atoms of one layer are
stacked over the carbon atoms of the other layer, whereas in AB′ or BA′ regions—
only the half of the atoms (Bernal stacking). For any reasonable interlayer bias AA′
bilayer is a good metal, whereas a band gap opens around each valley of TGL of
Bernal-type stacking (AB′ or BA′). Change of the topology of a tuned gap can be
induced with a uniform biasU by smoothly transitioning fromAB′ to BA′ stackings,
which are related by mirror symmetry. Performing such an inversion between two
adjacent regions in space gives rise to two topologically protected helical (TPH)
modes per valley and spin. These modes could flow without resistance along the
interface between the two regions [17]. On Fig. 7.8 a fully developed helical network
state is shown. One can see the enhanced electron probability density between the
regions with AA′, AB′ and BA′ typical stacking. Electrons propagate without any
dissipation along the links of the network. However, special types of defects, that
could produce the valley scattering, can shut off the transmission through these links.
The hydrogen adsorbates or vacancies were proposed as such defects [17].Moreover,
we note that the influence of H+ in between two graphene planes, on the dispersion
relation of the carriers as well as on the DOS, is not thoroughly studied.

Besides the scanning tunneling spectroscopy, DOS of carbon structures could
be also studied by means of resonance Raman spectroscopy. The Raman signal
intensity increases significantly when both the incident and scattered photons are in
resonance with transitions between vHs in the valence and conduction bands. In [18]
the exhaustive study of the intensity of the G band peak in Raman spectra depending
on the twist angle θ in a range between 0◦ and 30◦ was performed (see Fig. 7.9).
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Fig. 7.9 The ratio of Raman G peak intensity of twisted bilayer graphene to the intensity of single
layer graphene (ITBG/ISLG) for different sampleswith different twist angles θTW between0◦ and30◦.
The Raman signal intensity increases significantly when both, the incident and scattered photons are
in resonance with transitions between Van Hove singularities in the valence and conduction bands.
Blue, green, and red dots are data taken at photon wavelengths equal to 488, 532 and 633nm.
Adapted from [18]

Among the TGL samples, only samples with twist angle from 9◦ to 17◦ demonstrate
a strong increasing of theRaman intensity,whereas no enhancementwas observed for
TGL samples with low and high twist angles. So the experimental measurements as
well as results of calculations by tight-binding method indicate that the vHs become
more singular and intense for the case of the quasi-periodic moiré unit cell size of
TGL since there are more k states at the flat region of the energy dispersion [18].
This fact may provide an answer to the observed interface size dependence of the
Josephson critical behaviour [19], see Sect. 7.3.2.

One-dimensional topological defects in graphene embedded in a perfect graphene
sheet are theoretically predicted and experimentally confirmed to have an almost flat
band near Fermi energy and can act as a quasi-one-dimensional metallic wire [10,
20]. The results of STM/STS measurements of typical 1D topological defect on the
surface of HOPG are shown in Fig. 7.10. As one can see, there are Van Hove-like
singularities at Fermi level at the points along the 1D defect, whereas the singularity
disappears far away from this defect [10]. Similar features were reported in [21].
Theoretical calculations by means of density functional theory (DFT) on the model
system with periodic 1D defect line on graphene give similar results, i.e. presence
of flat bands in band structure as well as vHs at the Fermi level (see Fig. 7.11). The
flat band arise from the sp2 dangling bonds of undercoordinated carbon atoms at the
edges of defects [10, 20].

As one can see, the flat bands in multilayer graphene structures could arise from
moiré patterns as well as from 1D topological line defects. A discussion of the
possible influence of vHs on the transport properties is given in Sect. 7.2.
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Fig. 7.10 The 22.6nm × 22.6nm scanning tunneling microscopy image of an area with 1D defect
on a HOPG surface (in the center) as well as the set of d I/dV spectra measured at different
positions (black and cyan dots on the left and right). d I/dV is proportional to the local DOS of the
sample, whereas the sample bias Vbias corresponds to shift with respect to Fermi level. Van Hove
singularities at Fermi level are presented along the 1D defect, whereas the singularity disappears
far away from this defect. Adapted from [10]

Fig. 7.11 a The structure of particular 1D defect lines (black line) on a graphene sheet simulated
by means of density functional theory, b its electronic band structure along the defect line and c the
corresponding DOS. One can see the flat band in the band structure of given system as well as the
Van Hove singularity at the Fermi level. Adapted from [10]

7.1.3 Recent Evidence for the Existence of Rhombohedral
Stacking Order in Graphite

Because rhombohedral graphite (stacking order ABCA...) is expected to show flat
bands at its surface, or at the interfaces with Bernal stacking order [22, 23], it is
of interest to check whether this stacking order has been observed in graphite or
multilayer graphene samples. The existence of this stacking order has been already
pointed out in several publications in the past, see [24] and Refs. therein. Upon
graphite sample, a concentration of up to 30% of this stacking order respect to the
Bernal order appears possible, especially in natural graphite samples. According to
[25], a certain amount of isolated rhombohedral crystallites has been detected in bulk
samples without suffering severe shear deformation. In particular, it is interesting to
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Fig. 7.12 Normalized resistance R/R0 versus temperature for six HOPG samples with thickness,
length (between voltage electrodes), width and R0: a �20µm, 2mm, 1mm, 0.003 �; b �10µm,
1mm, 1mm, 0.013 �; c �50 nm, ∼3µm, ∼3µm, 15 �. d �13 nm, 14µm, 10µm, 490 �; e
�20 nm, 5 µm, 10µm, 32 �; f �37 nm, 27µm, 6µm, 69 �. The (red) lines through the experi-
mental data are obtained from a parallel resistors model, see (7.1) and [30]. For similar experimental
results and fits using both stacking orders, see [29]. Adapted from [30] (color figure online)

note the localization of an isolated rhombohedral graphite grain with thickness ∼80
and 550nm length along the [0001] and [1100] directions. In another experimental
work [26] the authors prepared multilayer graphene samples on freshly cleaved mica
by exfoliation and studied them by scanning tunneling spectroscopy. The authors
observed that multilayer graphene can exhibit a regular pattern of alternating ABA
and ABC stacking with stacking areas as small as (200nm)2.

Evidence for the existence of flat bands near the Fermi level at the surface of
epitaxially grown rhombohedralmultilayer graphene has been recently reported [27].
The rhombohedral multilayers (sequences of about five layers and covering ∼70%
of the sample total surface) were obtained by epitaxial growth on a 12µm thick
3C-SiC(111) film on a 2◦ off-axis 6H-SiC(0001). The existence of a flat band at
the Fermi level has been concluded by scanning tunneling spectroscopy and angle-
resolved photoemission spectroscopy. Further evidence for extended flat bands and
gapped subbands for rhombohedral stacking was obtained by Raman spectroscopy
in multilayers flake [28].

X-rays diffraction (XRD) can be used to check for the existence of the rhom-
bohedral stacking in a graphite sample, if the amount of this phase and the side or
thickness of these regions are large enough. We note, however, that there are sev-
eral Bragg peaks in XRD, which are not suitable for distinguishing both stacking
modifications of graphite. Both the (00l) and (hh0) peaks of the Bernal and rhom-
bohedral stacking are superposed, for example. The easiest way to determine and
approximately quantify the rhombohedral phase in a graphite sample is to restrict
the 2� range between 40◦ and 47◦. In this range one has two Bernal peaks at 42.22◦
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(100) and 44.39◦ (101) and two peaks at 43.45◦ (101) and 46.33◦ (012) due to the
rhombohedral stacking. Direct transport measurements from only the rhombohe-
dral phase were not yet reported. However, recent transport studies in bulk and
mesoscopic graphite samples with both stacking orders, indicate that the rhom-
bohedral phase would behave semiconducting with an energy gap of the order of
100meV and its interfaces with the Bernal phase metalliclike [29].

7.2 Experimental Evidence of the Contributions
of Interfaces to the Transport Properties
of Graphite Samples

7.2.1 On the Intrinsic Temperature Dependence
and Absolute Value of the Resistivity of Graphite

Basically, the observed temperature dependence of the total resistance R(T ) for all
graphite samples shown in Fig. 7.12 and in the literature can be understood assuming
the contribution of the graphene layers Rs(T ) in parallel to that of interfaces Ri (T ):

R(T ) = [Rs(T )−1 + Ri (T )−1]−1. (7.1)

The fit curves in Fig. 7.12 were obtained assuming a semiconductinglike behavior
for Rs(T ) with a gap of the order of 30meV, independently of the thickness of the
sample, and an exponential thermally activated increase with activation energy of
the order of ∼50K [30]. The fits indicate that the graphene layers inside graphite
behave semiconducting and that there is an extra metalliclike contribution which
shows, however, an exponential increase with temperature, similar to that observed
in granular superconductors [31]. The influence of this granular superconductivity
in some internal interfaces of graphite samples is very probable the reason for the
anomalous behavior of early high resolution magnetoresistance results of graphite
flakes in [32]. We note that in case regions with rhombohedral stacking order embed-
ded in the Bernal stacking order matrix would exist, it might be necessary to include
a further resistance in parallel in (7.1), as has been done recently [29]. The paral-
lel contribution of the rhombohedral stacking in the electrical resistance of a given
graphite sample as well as a temperature dependent mobility appear to be necessary
to include especially in samples that show minimum and maximum as a function of
temperature, like in Fig. 7.12c. A systematic study of the temperature and thickness
dependence of the resistance of more than 10 graphite samples with both stacking
orders has been done recently [29]. This rhombohedral contribution, however, will
be sample depend because the amount of this stacking relative to the Bernal stacking
order depends on the graphite sample.

Note that the usual top contact electrodes configuration, or even a mixture of edge
and upper graphene layer electrodes contacts in bulk samples involve always the
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contribution of the c-axis resistivity. A contribution that in the simplest case and for
fields normal to the graphene layers and interfaces, it does not change with applied
field. However, the absolute value of this contribution is unpredictable because it
depends on each sample. At least one of the free parameters used to fit the tempera-
ture dependent of the measured resistance, see Fig. 7.12, may depend on the c-axis
resistance.

Because the contribution of the interfaces, internal as well as the two surfaces
of a given graphite sample, cannot be easily subtracted from the measured total
resistance, the absolute value of the resistivity in the a, b plane of the Bernal graphite
structure remain unknown to some extent. If one plots the resistivity of graphite
samples obtained from samples of the same batch but with different thicknesses, i.e.
with similar density of interfaces as done in [4], this resistivity increases to values
ρa,b(4 K) � 200 µ�cm for samples with the smallest interface contribution [29].

One may argue that the semiconductinglike dependence of the resistance for
graphite samples with small enough thickness, see Fig. 7.12d, does not necessarily
represent the intrinsic dependence because: (a) Either the lattice disorder in the thin
graphite flakes is too large, or (b) ballistic and not diffusive transport may play a role.
The hypothesis (a) can be easily ruled out through systematic Raman spectroscopy
characterisation of the samples, see Sect. 7.2.2 for further references and details.
Regarding the ballistic transport in graphite, indeed, a study of the mean free path
with a parameter-free constriction method on bulk graphite HOPG samples indicates
that themean free path of the carriers in graphite is very large, i.e. severalmicrometers
at low temperatures [33]. To check that the semiconductinglike behavior is intrinsic
and not due to a hidden, non-diffusive carrier transport, we discuss here the results
obtained using a relatively long graphite flake with low contribution of interfaces
[34].

Figure7.13 shows an optical microscope picture of a graphite sample of 20nm
thickness with 14 electrodes at different positions distributed through the whole
30µm sample length. The results of the resistance at different length of the same
sample, see Fig. 7.13c, indicate that the absolute shift in resistance with length does
not follow rigourously the Ohm law prediction due to an extra ballistic contribution.
The data can be used to obtain the carrier mean free path versus temperature using
Sharvin–Knudsen formula and Ohm’s law [34]. Especially the finite resistance one
extrapolates at L → 0 from the experimental data of R(T, L) versus L , where L is the
length between the voltages electrodes, can be used to obtain without free parameters
the mean free path, see Fig. 7.13d. One main conclusion obtained in [34] is that
the contribution of ballistic transport is relatively small for a sample with a length
several times larger than the mean free path. Furthermore, the semiconductinglike
behaviorwith a saturation at low temperatures is observed at all distances between the
voltage electrodes indicating that this dependence is intrinsic and not related to the
sample size.With the same parallel resistancemodel and the exponential temperature
dependence appropriate for semiconductors, see Fig. 7.12, the obtained energy gap
Eg � kB 350K is independent of the distance between electrodes.
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Fig. 7.13 a Optical microscope photo of the measured graphite flake �30µm long, (5 . . . 8.5)
±0.3µmwide and (20 ± 2)nm thick with its 14 electrodes. b The left sketch shows the current and
voltage electrodes configuration for the different channels. The right picture shows a table where
the channels with the corresponding configuration for current and voltage electrodes are defined. c
Temperature dependence of the resistance of the graphite flake at five different channels defined in
(b). The continuous lines represent the expected resistance if it would be just only proportional to
the length between electrodes according to the Ohm law. d Temperature dependence of the carriers
mean free path obtained from an equation assuming that the measured resistance has a ballistic,
sample-length independent contribution and aOhmic contribution, see (1–4) in [34]. The continuous
line follows the equation �(T ) = ((2.93)−1 + ((6.4 × 105)/T 2)−1)−1 (T in K and � in μm). After
[34]

7.2.2 How Large Is the Carrier Density and Carrier Mobility
in Ideal Graphite? Quantum Oscillations in the
Transport Properties Revised

Figure7.14 shows the field dependence of the Hall coefficient for graphite flakes of
different thickness obtained from kish graphite samples [35, 36]. In those results
there are several interesting details we would like to emphasize:

(A) The amplitude of the Shubnikov-de Haas (SdH) oscillations tends to decrease
the smaller the thickness of the sample. This tendency appears more systematic in
Fig. 7.14b. If the crystalline quality between the samples remains similar, this result
points out that these oscillations are not intrinsic. A graphite sample with a thickness
of 18nm (and several tens of square microns area) can certainly be considered as
bulk, if homogeneous.

One may argue that the reason for the decrease of the amplitude of the SdH
oscillations is the decrease in the amount of perfect graphene layers, in other words
the increase in the lattice disorder existing in the sample.Within this hypothesis small
patches of ideal graphene layers coexist with disordered graphene layers and the SdH
occur only in the ideal graphene layers. However, the experimental evidence obtained
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Fig. 7.14 a Hall coefficient as a function of applied field normal to the graphene planes of graphite
flakes of different thickness taken from a kish graphite sample. The red arrow points to the field
region where a clear kink shows in the field dependence of the 18nm thick sample. Adapted from
[35]. b Similar but from other kish sample. Adapted from [36]. The blue horizontal bars shows the
zero coefficient value.With exception of the 23nm thick sample in (a) and the 18nm in (b), all other
samples show a clear change in sign of the Hall coefficient from positive to negative increasing
field. This sign change occurs at a sample-dependent field (color figure online)

by different studies the last years indicates that this hypothesis is not always correct.
For example: (a) There is no evidence from Raman that the thinner the sample the
larger the disorder, see e.g. [4, 29, 37], as example. (b) The amplitude of the SdH
oscillations depends on the region one measures within the same sample, as Fig. 7.15
shows [38]. This result indicates that there is a non-homogeneous distribution of
patches where the density of carriers is large enough to provide SdH oscillations with
a similar period (in 1/B) to that observed for bulk graphite samples. The question
is then whether those regions, where SdH oscillations occur, are perfect graphene
layers or the opposite, regions where the lattice disorder or the interface regions with
their higher DOS (see Sect. 7.1.2), are those with enough carrier density.

A partial answer to this question was given by the authors in [38] after irradiating
with Ga+ ions only a part of the graphite flake, see Fig. 7.15. The irradiated fluence
introduced an average defects (e.g. vacancies) concentration of ∼1012 cm−2. We see
that after irradiation the amplitude of the SdH oscillations, measured only in that part
of the sample, increased drastically and started to be measurable at lower magnetic
fields, see Fig. 7.15a. From the period in 1/B one can estimate a carrier concentration
per graphene layer n ∼ 3 × 1011 cm−2 similar to that found in bulk HOPG samples
in literature [24, 39]. Note that the SdH oscillations in the small graphite flake as
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Fig. 7.15 a First derivative of the magnetoresistance at T = 4K of different graphite samples.
Curves (a) and (b) (0 − 20 �/T range) represents the results obtained from two different parts
(follow blue arrows) of the same graphite flake shown in the picture in (b). The curve (c) (20 −
80�/T range) represents the results obtained from the same part (a) of that flake but after irradiation
with Ga+ ions with a fluence of 5 × 1011 Ga+/cm2. The dashed line (right y-axis) was obtained
for the bulk HOPG sample of size 2 × 1 × 0.2mm3. Adapted from [41]. b Scanning electron
microscope image of a 15nm thick graphite flake (dashed line denotes its borders) with six Au/Pt
electrodes (scale bar denotes 10µm). One recognizes the regionwith 300nm thick negative electron
beam resist used to protect part of the graphite flake from the Ga+ irradiation. Adapted from [38]
(color figure online)

well as after Ga+ irradiation are shifted respect to that obtained for the bulk HOPG
samples, see Fig. 7.15a. From this result we would conclude that the origin for the
SdH oscillations in graphite is not related to perfect, defect-free graphene layers but
the opposite.

It is interesting to note that after a similar second Ga+ irradiation on the same
part of the graphite sample shown in Fig. 7.15, the absolute value of the magne-
toresistance (MR) and the resistance itself changed as expected, i.e. the resistance
increased and the MR decreased [38]. Nevertheless, the SdH oscillations did not
change qualitatively, i.e. these start to be measurable at a similar low field and with
a similar oscillation period (in 1/B). This result indicates that no further increase
in the carrier density has been achieved when the distance between the produced
defects (e.g. vacancies) on each graphene layer is below 2nm. Apparently, this result
is related to the ∼3 nm range where a modification of the electronic structure due to
a single vacancy has been measured [40].

A possible reason for the observation of the SdH oscillations in the virgin thin
sample at high fields only, can be as follows [41]: For the measured sample area that
gives curve (a) in Fig. 7.15 there are no SdH oscillations up to a field B � 1.8T in
clear contrast to the irradiated sample. This fact can be understood assuming that in
most of this sample part n0 � 109cm2. Then, the corresponding Fermi wavelength
λF � 0.8µm is of the order of the sample size and larger than the cyclotron radius
rc = m	vF/eB for B > 0.07T assuming m	 = 0.01m (m is the free electron mass).
In this case we do not expect to observe any SdH oscillations. However, for B � 1.8
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and 2.8T two maxima are observed. From the measured “period” in 1/B as well as
from the first field at which the first maximum appears we estimate the existence
of domains of size <2rc � 100 nm at which λF � 50 nm, i.e. domains with n0 �
1011 cm−2 within a matrix of much lower carrier concentration. This indicates that
the description of the SdH oscillations in real graphite samples can be achieved
only within the framework of inhomogeneous 2D systems [42, 43]. At the end of
this section we discuss experimental studies that provide carrier concentrations n0 �
109 cm−2 for ideal graphene layers inside graphite, supporting the hypothesis that the
usually measured SdH and de Haas-van Alphen (dHvH) oscillations in bulk graphite
samples in literature, from where carrier densities n � 1011 cm−2 are extracted, do
not represent ideal graphite.

(B) From the SdH oscillations period the authors in [35, 36] obtained that the
cross section of the Fermi surface in the thin graphite flakes appears to be half of the
one for bulk graphite samples, implying that the flakes should have a smaller carrier
density by the same amount. Taking into account the large density of interfaces in
kish graphite samples, see Fig. 7.1, one can speculate that the reduction of the SdH
oscillations is related to a smaller amount of interfaces in thinner samples, assuming
that the interfaces have a larger density of carriers than the graphene planes.

(C) Formost of the samples shown in Fig. 7.14 there is a clear change of sign of the
Hall coefficient, from positive to negative, increasing magnetic field. In particular
in the 18nm flake in Fig. 7.14a we see a clear kink in the field dependence. The
field at which there is a crossover from positive to negative, depends on the sample,
suggesting a non-intrinsic nature. A recent study of the Hall coefficient measured
in different graphite samples since 1955 and in graphite flakes without interfaces,
indicates that the negative sign is not intrinsic of the ideal graphite [44], as we discuss
below in Sect. 7.2.3.

Finally, the reported values for the Hall coefficient in Fig. 7.14 [35, 36] are
five orders of magnitude smaller than the one reported in the literature [44] (see
Sect. 7.2.3); this large discrepancy might be due to an error in the units or a missing
factor in the calculation of the Hall coefficient in [35, 36].

7.2.2.1 An Experimental Approach to Obtain the Intrinsic Carrier
Density and Mobility

The measurement of the carrier mean-free path � is not straightforward and, in
general, the value obtained depends on several other not well-known parameters
within the selected transport model, usually based on a Drude–Boltzmann approach.
However, in case of ballistic conduction, there are at least two more transparent
methods to obtain �(T ) without adjustable parameters. One method is to measure
the resistance as a function of the sample length as has been done in [34] and the
results shown in Fig. 7.13c can be used to obtain �(T ), as shown in Fig. 7.13d. The
other method is based on themeasurement of the longitudinal resistance as a function
of the constriction width W , a constriction located between the voltage electrodes,
see Fig. 7.16a, b. The resistance can be quantitatively understood taking into account
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Fig. 7.16 a Graphite flake (sample A of 15nm thickness, the point line denotes the edge of the
sample) with four electrodes and a constriction in themiddle. bBlow out of a constriction of 500nm
size in sample A. cMobility versus carrier density obtained from themeasurements of the resistance
at different constrictions widths and at different temperatures. The points are obtained between 300
and 10K for sample B of 40nm thickness (60K for sample A). The line corresponds to the data of
a suspended graphene sample at 20K from [45]. Taken from [46]

three contributions, the ballistic one given by the Knudsen–Sharvin resistance [33];
a logarithmic term due to the ohmic, spreading resistance in two dimensions, and a
third term due to the ohmic resistance of the constriction itself [46]. The resistance is
expected to show an oscillatory behavior as a function ofW or the Fermi wavelength
λF [47, 48], as observed experimentally in bismuth (Bi) nanowires [49] as well as
in GaAs devices [50, 51]. Although the experiments were done changing only five
times the constriction width of the sample, the behavior obtained appears compatible
with the one observed previously allowing to calculate the mean free path �(T ), the
Fermi wavelength λF (T ) and the mobility μ(T ) = (e/h)�(T )λF (T ). The carrier
density per graphene layer can be calculated from n = 2π/λ2

F .
The results for the mobility versus carrier density per graphene layer of the mea-

sured samples are shown in Fig. 7.16c and indicate that the intrinsic carrier density
(without the contribution of the interfaces) is three orders of magnitude smaller
than the one obtained in literature for bulk graphite samples with interfaces, i.e.
n(T < 10K) � 109 cm−2 per graphene layer [33, 46]. From the results in bulkHOPG
and thin flakes one obtains that the mean free path �(T ) ∝ T−2 reaching values of
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microns at room temperature [33, 34, 46]. Such large mean free path and small
carrier density (large Fermi wavelength) indicate that the carrier mobility should be
large. Indeed the obtained carrier mobility is two orders of magnitude larger than the
one found in literature obtained from graphite samples with interfaces.

There is further experimental evidence that indicates that the carriers mean free
path is extraordinarily large. The reported clear increase of the (basal) magnetore-
sistance (for magnetic fields normal to the graphene planes) with sample size in, for
example, bulk graphite samples (see Fig. 2 in [52]), graphite thin flakes (see Fig. 10 in
[4]) and graphite thin flakes with constrictions (see Fig. 6 in [46]) demonstrates that
the carrier mean free path is several micrometers long. The decrease of the mean free
path with temperature, see e.g. Fig. 7.13d, is the main reason for the increase of the
magnetoresistance with temperature observed in relatively small graphite samples,
see Fig. 6 in [4], or graphite samples with constrictions, see Fig. 11 in [4]. The mag-
netoresistance of small graphite samples can increase or decrease with temperature
upon the relative size of the carriers mean free path to the effective (lateral) sample
size.

We note that several interpretations of the experimental transport data of real
graphite samples relied on the assumption that these were intrinsic properties. As an
example, the carrier (electron plus hole) densities obtained from the SdH oscillations,
see above in this section, are several orders of magnitude larger than the one the
graphene planes have in graphite, see e.g. Fig. 7.16. For example, at low temperatures,
the carrier density per graphene layer in graphite assumed in the literature is n0 >

1010 cm−2, as one can read in the standard book of Kelly [24], or the old publication
from [53], or from recently published work [54] (n0 � 1012 cm−2) or [55] (n0 �
2.4 × 1011 cm−2).

Therefore, it is interesting to reconsider the development of the electronic band
structure of graphite, which came out based on experimental parameters of the last,
say, 80 years. As pointed out in previous publications [41, 56] we would like here to
note the following development:

• Hund and Mrowka from Leipzig published one of the first calculations of the
energy band structure of simple atom lattice structures, in particular of diamond
[57], also published byKimball in the same year [58]. The first attempt to calculate
the dispersion relation of the graphite structure was also published by Hund and
Mrowka from Leipzig in the same year [59]. In this last publication, the authors
analyzed the energy states of the graphene structure and wrote explicitly the dis-
persion relation for this structure assuming s-wave functions, a dispersion relation
that partially resembles the one we use for graphene within the tight binding
approximation.

• Two-dimensional calculations assuming a coupling γ0 between nearest in-plane
neighbors C-atoms on the graphene plane of zero-gap semiconducting graphite
gave a carrier density (free electrons and positive holes per C-atom) n(T ) �
0.3(kBT/γ0)

2 [60]. If one assumes γ0 � 3eV the effective carrier density per
C-atom at 300K would be n(300) � 2 × 10−5. This is equivalent to 7.64 ×
1010 cm−2 total carrier density at 300K using the areal density of carbon atom per
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graphene layer (=3.82 × 1015 cm−2). A similar value for the total carrier density
was obtained for bulk HOPG samples at similar temperatures using the constric-
tion method [33]. Moreover, the obtained temperature dependence carrier density
can be fitted up to ∼200K by n[cm−2] � n0 + 105T 2 + 7.5 × 103T 3 with T in
[K] and n0 � 2 × 108 cm−2. We note, however, that the same data can be also well
explained by a semiconducting-like exponential function exp(−Eg/2T ) with an
energy gap Eg ∼ 50meV.

• Because several experimental values obtained from bulk graphite samples with
interfaces indicated a finite n(T → 0) = n0 > 0 then more free parameters in the
tight-binding electronic band structure calculations were included in order to pro-
vide a finite carrier density at zero temperature. For example, with a new coupling
γ1 betweenC-atoms of typeα in adjacent planes one obtains n(T ) = a(γ1/γ

2
0 )T +

b(T/γ0)
2 + c(T 3/γ 2

0 γ1) + . . . (a, b, c, . . . are numerical constants), where the
“accepted” value for γ1 ∼ 0.3eV. Also in this case n(T → 0) → 0. To fit exper-
imental data and obtain a finite Fermi energy EF—in the simplest case EF ∼ γ2
[24, 61]—up to seven free parameterswere and still are introduced, even for carrier
density as small as n � | − 8 × 109|cm−2(EF � −29meV) [62].

Taking into account the exhaustive experience accumulated in gapless or narrow
gap semiconductors [63] we should actually expect that at least part of the measured
carrier density at low temperatures is not intrinsic of the graphite structure but it
is influenced by interfaces, impurities and/or defects in the graphite/graphene lat-
tice. We note that a carrier density of the order of 108 cm−2 means one carrier in
1µm2 graphene area, which could be produced actually by having a single vacancy
or impurity in the same graphene area, in case one carrier is generated by one of
these defects [41, 64]. Therefore, we should cast doubts on the relevance of related
electronic band structure parameters obtained in the past.

7.2.3 On the Intrinsic Low-Field Hall Coefficient of Graphite

Recently reported study of the low-field Hall coefficient of thin graphite flakes and a
overall comparisonwith literature arrived to the conclusion that its negative sign is not
intrinsic but it is due to the contribution of the internal interfaces. The temperature
dependence of low-field RH shown in Fig. 7.17 for three different graphite flakes
obtained from a HOPG sample and its behavior at higher fields (sample S3 in the
figure) suggests that the change of sign is not intrinsic but it is due to the contribution
of interfaces [44]. From the temperature dependence of the resistance one can roughly
guess how important is the contribution of the interfaces for the transport properties
of given sample. The samples in Fig. 7.17 showed different interface contributions,
being the sample S1 with smaller contribution that in samples S2 and S3 [44].

The available data would indicate also that the reported behavior, specially the
change in sign of the Hall coefficient as a function of field in Fig. 7.14 [35, 36], is
not intrinsic but due the contribution of interfaces. If these interfaces would have
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Fig. 7.17 Temperature dependence of the low-field Hall coefficient for the three studied samples.
For sample S3 (black squares) we show also the Hall coefficient (green squares) obtained at a
field μ0H = 0.2 T applied normal to the interfaces. The data from sample S1 in the main panel
of the figure were multiplied by a constant factor of 6.7. The inset shows the same data but in
a logarithmic temperature scale. The line through the S1 data points follows the function R0

H =
(11−1 + (4 × 10−3 exp(300/(2T )))−1)−1. All other lines are only a guide to the eye. Taken from
[44]

superconducting properties we expect a finite, negative contribution at high enough
temperatures, as can be seen for samples S2 and S3 in Fig. 7.17, similarly at high
enough applied fields [44], see also Fig. 7.14. At low temperatures and at low enough
applied fields, we expect that the contribution of the interfaces, if they exist in a
given sample, to the Hall signal will be minimum. From old and new available Hall
data [44] we can conclude that the intrinsic, low magnetic field Hall coefficient
of graphite appears to be positive with a low-temperature value around 0.1 cm3/C
and a temperature dependence that follows closely that of a semiconductor with an
energy gap of the order of 300 . . . 400K, in agreement with the fits of the longitudinal
resistance of different samples, see Fig. 7.12 [30].

7.2.4 Trying to Get the Response of a Single Interface

It is clear that one cannot obtain the transport behavior of an interface of a graphite
sample directly, because one cannot introduce simply electrical contacts inside the
sample without destroying it. The use of electrical contacts at the edges of the inter-
faces will be described in the next section. Therefore, a simple way to obtain a rough
signal of a single interface is to localize voltage electrodes at two sides of a step of
a graphite flake, see the left picture in Fig. 7.18. The graphite flake measured in [65]
was heterogeneously thick and several micrometers long, allowing to find regions
to locate voltage electrodes that may pick up more clearly the response of a single
interface.
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Fig. 7.18 The left picture shows an electron transmission microscope picture of a 200nm thick
lamella with the c-axis of the graphite structure running normal to the interfaces between the
crystalline graphite structure. The thickness of the single crystalline regions (defined by the homo-
geneous gray color regions) is∼70nm. At the top of the TEM picture the positions of the electrodes
of channel 3 (CH3) and current (I ) electrodes are schematically drawn. In case superconducting
regions exist between the CH3 electrodes we expect to see some evidence in the voltage drop. The
right figure shows the magnetoresistance measured at CH3 versus magnetic field applied parallel to
the graphene planes within ±3◦ at different temperatures. Adapted from [65] (color figure online)

The magnetoresistance of a region of the selected sample with voltage electrodes
at the up and low sides of a 120nm large step height is shown in the right picture of
Fig. 7.18. The magnetoresistance measured at this location of the sample shows an
unique behavior that suggests the existence of inhomogeneous or granular supercon-
ductivity in that sample region. At low T the magnetoresistance increases abruptly
at B � 0.25T and saturates at B � 0.75T, see Fig. 7.18. We note that in order to
decrease substantially the large background of the intrinsic magnetoresistance of
graphite observed for fields parallel to the c-axis, the magnetic field in that experi-
ment [65] was applied nearly parallel to the graphene planes and interfaces, reducing
in this case the field component normal to the graphene layers [66]. The small neg-
ative magnetoresistance obtained at low fields is probably related to the magnetic
order due to defects (DIM, see Chaps. 1–3) that exists in parts of the selected sample,
as shown in more detail in [65].

7.3 Experiments with TEM Lamellae

Adirect measurement of the transport properties of the interfaces is not a simple task.
Even if one would prepare a graphene bilayer with a selected twist angle between the
two graphene planes, locating the contact at the top of the graphene plane does not
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provide the response of an internal interface. The idea used in recent publications [7,
19, 56, 67] was to prepare TEM lamellae from the bulk graphite sample in question
and deposit electric contacts at the edges of the lamella. In this case one gets a better
chance to measure the direct voltage response of several interfaces in parallel when
an electrical current is passing through. If some of those interfaces show supercon-
ducting properties, then it is clear that a negligible voltage should be measured. A
graphite TEM lamella is in general prepared using the in-situ lift out method of a
dual beam microscope (FIB/SEM). The TEM lamellae are cut perpendicular to the
graphene layers and to the embedded interfaces using the Ga+ ion source. Before
cutting it, a thin film is deposited using electron beam induced deposition (EBID) in
order to protect the internal structure of the sample from the Ga+ ions used to cut
the lamella. Nevertheless, a region ∼20 nm thick at each of the edges of the lamellae
is contaminated with Ga. This region remains highly disordered and high electrical
resistance [38]. The usual four contacts method used to measure the voltage response
of the lamella prevents therefore the contribution of this ∼20nm thick disordered
layer in the measurement [68]. The total procedure to obtain a thin TEM lamella
with low Ga contamination and well polished edges (like the several steps milling of
the main surface done at progressively high to low currents) requires however large
experience with several non-simple preparation details and the use of the technical
capabilities of the dual beam microscope [68]. Lamellae with different thickness
100nm � d � 1µm were prepared and contacted, see Fig. 7.19. The electron trans-
mission diffraction pattern obtained with the beam parallel to the graphene layers
provides information on the crystalline regions and their defective parts parallel to
the graphene layers, as shown in Figs. 7.2 and 7.19.

In this introductory section we show experimental results of different graphite
lamellae published recently and discuss several open issues on these results. We
divide the presentation into three parts, namely, (A) the temperature dependence of
the voltage (or resistance) at different constant currents, (B) Voltage-Current (I−V )

characteristics at different temperatures and (C) field dependence. The other two
subsections handle on the size dependence of the critical behavior (Sect. 7.3.2) and
the results obtained from a graphite sample of lower grade (Sect. 7.3.1).

(A) Temperature Dependence at Constant Currents

Figure7.20 shows the results from three different lamellae, two of them (a, b) with
the usual contacts configuration in series (like in Fig. 7.19) and one (c) with a Van der
Pauw configuration, i.e. the contacts were positioned at the edges of the lamella [67,
68]. The measured resistance is in all cases non-ohmic, i.e. its absolute value and
behavior with temperature depends on the input current. We note that the absolute
value of the resistance can be relatively large, up to 106 �, at high enough temper-
ature, where the input current does not influence notably. In case of the lamella in
Fig. 7.20a the obvious transition shifts to lower temperatures or vanishes increasing
the input current. Something similar is observed in the lamella in (b) below 20K for
input currents I ≤ 10 nA. The noise level observed in that measurement (∼300 nV)
is related to the intrinsic properties of the sample and not to the electronic equip-
ment. It was interpreted as due to the contribution of different Josephson coupled
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Fig. 7.19 a Scanning electron microscope picture of a lamella on a Sin/Si substrate with its four in
series contact arrangement. b Transmission electron microscope picture of the internal microstruc-
ture of a lamella from the same batch. The red line is a guide to indicate the possible existence of
an interface between two crystalline regions with a given twisted angle around the c-axis. c The
model behinds the observations is that localized regions exists within certain interfaces in which
superconducting patches exist (grey regions in the sketch) Josephson coupled (red lines connecting
them). The size of the interface in depth, i.e. its width (equivalent to the thickness of the lamella) is
d. Taken from [19] (color figure online)

regions within the current path in the sample [67]. In all samples, where this noise
was observed, it vanishes after applying a magnetic field of ∼1 kOe, a field that
apparently influences the Josephson coupling between the superconducting regions.
One expects interfaces where superconducting regions of different sizes exist at dif-
ferent positions within the interface. They can be Josephson coupled, in particular
if the distance between those regions is small enough. We note further that Cooper
pairs in a graphene layer have a large diffusion length of several hundreds of nm
[69]. Therefore, it does seem possible to have Josephson coupled superconducting
patches within the same interface.

The results of the lamella (c) with the Van der Pauw configuration of the elec-
trodes shows a “negative” resistance at low temperature. This “negative” resistance
is obtained from the negative voltage one measures in this Wheatstone-like bridge
configuration, when one of the resistances tends to zero as described in detail in [67].
It is clear that an increase of the input current of two orders of magnitude changes
qualitatively the temperature dependence of the evaluated resistance, see Fig. 7.20c.
From this last result we may expect to have superconducting regions with critical
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Fig. 7.20 Resistance versus temperature at different input DC currents of three TEM lamellae
with different sizes and different contact configurations. The resistance was calculated dividing
the measured voltage (at the voltage electrodes) by the input current. The lamellae were prepared
from HOPG samples of grade A. a, b Electrodes in linear configuration like the ones shown in
Fig. 7.19; c electrodes in Van der Pauw configuration. The negative values of the resistance are due
to this Van de Pauw configuration that provides negative voltages when one of the resistance in a
Wheatstone-like bridge configuration tends to zero [67]. Adapted from [67, 68]

temperatures above 100K, as the I−V characteristic curves suggest, see section (B)
below.

The last point we would like to stress from the results shown in Fig. 7.20 is that
the resistance does not go to zero at the lowest temperatures and lowest currents used
in those measurements. There can be different reasons for this fact, like sensitivity
of the instrument, noise level (whatever its origin) or a finite, non-superconducting
resistance in the current path of the samples. A constant ohmic resistance in series
would produce a finite slope in a I−V curve and its contribution might be easily sub-
tracted. On the other handwe should note that a finite resistance, even below a critical
Josephson current Ic, can appear due to thermally activated phase processes [70].
This thermally activation has to be taken into account to understand quantitatively
the I−V measured curves.

(B) Current-Voltage Characteristics

Figure7.21 shows the I−V curves obtained at different temperatures for two lamellae
[67] at no applied magnetic field. In the lamella with the Van der Pauw configura-
tion, Fig. 7.21a, the curves show a non simple behavior upon temperature. With the
assumption that the voltage measured can be understood in first approximation with
a Wheatstone-like bridge configuration and that two of the resistors of the bridge
have the influence of Josephson coupled superconducting regions, the curves can be
well understood using the Josephson-coupling model with thermal activation [70].
Each of those resistors have a different effective Josephson critical current Ic(T ), the
only free parameter in the model [67]. For the lamella with the contacts in series con-
figuration, Fig. 7.21b, the curves can be also well fitted assuming only one effective
Josephson critical current. We note that due to the thermally activation and upon the
value of the Josephson critical current, the resistance does not strictly vanish at finite
currents, even at 2K. From the fits to those experimental curves, the temperature
dependence of the Josephson critical current has been obtained for several lamellae
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Fig. 7.21 Current-voltage characteristic curves at different temperatures of two lamellae. aLamella
with a Van der Pauw contact configurations. The lines were calculated taking into account the
Josephson-coupling model with thermal activation presented in [70] with two different Josephson
critical currents Ic(T ) from two resistors within a Wheatstone-like bridge configuration [67]. b
Similar to (a) but in reduced units for a lamella with in series electrode configuration; R is the
resistance at the critical temperature that is taken at high enough temperatures. The lines were
calculated with the same model as in (a), but with only one Josephson critical current as free
parameter; R is the resistance of the junction at the critical temperature, i.e. in the normal state,
which in the case of the lamellae, it is usually taken directly from the measurement at a temperature
where the apparent granular superconductivity behavior vanish. Adapted from [19, 68]

Fig. 7.22 Current-voltage characteristic curves at different applied fields normal to the interfaces
for two lamellae. a Lamella with usual contact configuration at a fixed temperature of 50K and at
different applied fields, adapted from [67]. b Characteristic curves obtained at 25K for a lamella
with Van der Pauw configuration at zero and 0.1T applied fields. Adapted from [56]

[67] and it follows reasonably well the predictions for short junction length where the
normal state barrier between the superconducting regions is a graphene layer [71].

(C) Magnetic Field Dependence

The effect of an applied magnetic field to the transport behavior measured in the
lamellae remains a puzzle and more experimental studies should be done in the near
future. Figure7.22 shows two results obtained in two lamellae of very different sizes
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and with different contacts configurations. Figure7.22a shows the I−V curves at
50K of a rather thick (∼800 nm) lamella. At zero field the I−V curve resembles the
one of a Josephson junction. At a field of 1T applied normal to the interfaces (and
graphene layers) the resistance is finite at all measured currents and at larger field it
starts to show a kind of reentrance at low enough currents. A field applied parallel
to the interfaces does not affect the I−V curves within experimental error [67].
We note that a reentrance to a metallic-like state at low temperatures was observed
in the longitudinal resistance of ordinary graphite bulk samples at high magnetic
fields above that of the metal-insulator transition [72]. This kind of reentrance might
be related to the one we observe in Fig. 7.22a. A kind of reentrance with magnetic
field was also observed recently in an electric field-induced superconducting-like
transition [73]. Its origin remains in all these cases unknown. Figure7.22b shows
the I−V curves of a lamella with contacts in the Van der Pauw configuration at a
fixed temperature of 25K and at zero and 0.1T applied field. The s-like I−V curve
can be quantitatively explained using a Wheatstone-bridge model and assuming that
two resistors of the bridge follow the I−V Josephson characteristic with different
critical Josephson currents, see also Fig. 7.21. A field of 0.1T is enough to strongly
affect the Josephson behavior especially in one of the resistors in the circuit.

An applied magnetic field is expected to be detrimental to the superconducting
state. In the case of the granular superconductivity expected to occur within the
interfaces and due to the Josephson like behavior, themagnetic field should affect also
the Josephson coupling between the superconducting regions. Due to the expected
Josephson array distribution within the interfaces and the unknown characteristics of
the junctions it is not possible to predict a general behavior as a function of magnetic
field. In fact, in some lamellae the applied field did not affect the characteristic curves
within experimental error [67]. These results suggest that the effect of a magnetic
field on the transport response of the interfaces might be size dependent, whereas
the size can refer to the junction or to the superconducting regions.

At this stage we would like to note that superconductivity in single- as well as
multiwall carbon nanotubes (CNT), was reported in more than 12 publications in the
last 14 years [74–84]. The experimental data indicate that even individual double-
wall CNT show superconductivity with critical temperatures from a few Kelvin to
∼20K [82]. Superconductivity in 4Å CNT is observed not in single but aligned and
embedded in specially prepared matrices [80, 83]. Their behavior depends appar-
ently on the coupling between each other along their length and through the matrix.
The origin for the superconductivity in CNT in general is still a matter of discussion.
If superconductivity exists in such a small pure carbon structure, we may speculate
that a similar phenomenon should exist in certain regions of graphite. The observed
field independence of the resistance in certain lamellae [67] resembles a similar field
independence of the superconducting transition observed in CNT [80, 83] and inter-
preted as a sign of quasi 1D superconductivity, with thermally activated phase slips
according to the Langer–Ambegaokar–McCumber–Halperin (LAMH) theory [85,
86]. This similarity suggests that upon the properties of the superconducting regions
at certain interfaces in graphite samples, we may expect quasi 1D superconductivity,
i.e. magnetic field independent broad resistivity transitions.
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On the other hand the effects of a magnetic field on the superconducting state
of 2D superconductors or in case the coupling does not correspond to a singlet
state are not yet completely clarified. For example, superconductivity can be even
enhanced by a parallel magnetic field to the interface where superconductivity is
localized [87]. If the pairing is p-type [88] the influence of a magnetic field is
expected to be qualitatively different from the conventional behavior [89, 90] with
even an enhancement of the superconducting state at intermediate fields, in case the
orbital diamagnetism can be neglected or for parallel field configuration. Further
experimental studies are necessary to clarify the effect of a magnetic field to the state
at the interfaces of lamellae of graphite samples of high grade.

7.3.1 Response of Lower Grade Samples

The response of lamellae obtained from HOPG samples of lower grade (i.e. larger
rocking curve width) has been recently reported [7]. A TEM picture of the inner
structure of this sample is shown in Fig. 7.2d. In that TEM picture it is clearly seen
that the interfaces, i.e. the regions between different grey colors, are not as well
defined as in the case of higher grade sample, i.e. compare it with the TEM picture
of Fig. 7.2b. Therefore, if the interfaces are the reason for the behavior observed in
the others lamella, we expect to measure clear differences in the electric response.
Indeed, clear differences are observed in the temperature, current and field depen-
dence. At high enough input currents (I � 200 nA) the electrical resistance of a
lamella of this lower grade sample (SPI-II), increases decreasing temperature and
tends to saturate at low temperatures [7]. A clear non-ohmic behavior is observed,
namely the resistance decreases the larger the input current. In the low input cur-
rent region (I < 200 nA) the resistance starts to show a maximum at T ∼ 3.5K, see
Fig. 7.23a. With applied magnetic field this maximum vanishes. The curves shown
in Fig. 7.23a follows qualitatively a similar MIT than the ones measure in usual
bulk HOPG and kish graphite samples. A rough but similar scaling can be obtained
from those curves that resembles the one obtained for higher grade HOPG samples
[91]. There is, however, a difference that is worth to mention, namely the “critical”
field Hc, necessary to trigger the transition from a metallic to an insulating state, is,
roughly speaking, ten times larger in the lower grade sample than the Hc obtained in
higher grade samples, i.e.μ0Hc ∼ 1T instead of∼0.1T [72, 92], see Fig. 7.23a. It is
therefore tempting to relate this change to some specific characteristic of the internal
interfaces. Assuming that the internal interfaces in both kind of samples have a simi-
lar range of twist angle and any possible doping within the interfaces is also similar,
the main difference according to the TEM pictures would be related to the effec-
tive smaller size of well-defined 2D interface in the lower grade graphite samples, a
conclusion compatible with the study done in [19] and discussed in Sect. 7.3.2.

The results shown in Fig. 7.23b, c, i.e. the non-linear I − V curves and the dif-
ferential conductance G = dI/dV obtained from those curves, support further the
existence of granular superconductivity in this kind of HOPG sample. Note that in



7 Experimental Evidence for the Existence of Interfaces in Graphite … 173

(c) (b) 

2 3 4 5 6 7 8 9 10

0.6

0.8

1.0

1.2

1.4

8T

Ω

Temperature T (K)

 0T
 0.1T
 0.25T
 0.5T
 0.75T
 1T
 1.25T
 1.5T
 2T
 3T
 4T
 5T
 6T
 7T
 8T

I = 5 nA

0T

-0.02 -0.01 0.00 0.01 0.02

10

15

20

25

10
−6

 Ω

Voltage V (V)

 0T
 0.1T
 0.25T
 0.5T
 0.75T
 1T

T = 2 K

-0.02 -0.01 0.00 0.01 0.02
-0.2

-0.1

0.0

0.1

0.2

Voltage V (V)

 0T
 0.1T
 0.25T
 0.5T
 0.75T
 1T
 1.25T
 1.5T
 2T
 3T

T = 2 K

0T
3T0 5 10 15 20

0.0

0.1

0.2

 V (mV)

(a) 

Fig. 7.23 Results obtained of a lamella cut from aHOPGbulk sample gradeB (SPI-II). aResistance
measured at a current of 5nA versus temperature at different applied magnetic fields. b I−V curves
at 2K at different applied magnetic fields. The inset shows the result at zero field with the fit curve
following [70] with a critical current of 82nA. c Differential conductance calculated from the I−V
curves at 2K and at different applied fields. Adapted from [7]

the measured temperature range the resistance of the lamella does not reach a zero
value at the used currents. The temperature dependence of the conductivity peak at
zero voltage, (the curves are similar to those in Fig. 7.23c but at zero field at different
fixed temperatures) follows an exponential temperature dependence [7], as observed
in granular superconductors [31]. Extrapolating the conductance to zero temperature
one concludes that most of the finite value at 2K is due to thermal fluctuations [7].
In this case the I−V curves should follow a similar Josephson like dependence as
observed in the other lamellae, see Fig. 7.21. The inset in Fig. 7.23b shows the I−V
curve at 2K at zero applied field and the fit following the equation derived in [70],
calculated with an effective critical Josephson current of 82nA [7].

7.3.2 Size Dependence

Most if not all the experimental facts indicate that the internal interfaces are the
reason for the decrease of the resistance of graphite samples decreasing temperature.
Several facts speak for the existence of granular superconductivity embedded in some
of the interfaces. The questions arises regarding the dependence of the temperature at
which the Josephson coupling between the expected superconducting regions starts to
influence themeasured voltage (or resistance). Comparing different graphite samples
with interfaces, it appears that this “critical” temperature Tc depends much on the
sample, whether it is a lamella or a bulk graphite or a graphite flake. However and
in general, we observe that bulk samples of high order and with interfaces start to
show this decrease in resistance at higher temperatures. This difference in Tc might
be related to the size of the interface area, i.e. the smaller the area the lower is the
temperature where the Josephson coupling starts to be effectively active. Certainly,
this hypothesis is highly speculative because one does not know anything about the
differences between intrinsic characteristics of the interfaces of different samples,
like doping, twist angles, etc. Fig. 7.24 shows the temperature at which a maximum
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is measured in the voltage-temperature curve of lamellae of different thickness d,
this last defined in Fig. 7.19 [19]. The upper point represents the temperature of the
maximum in the resistance for the bulk HOPG sample, fromwhere the other lamellae
were cut. The arrow indicates the expected range (1µm � d � 10µm) for the size
of the interfaces in the bulk sample, taking into account TEM [67] as well as EBSD
[52] measurements.

The results in Fig. 7.24 suggest an apparent size dependence of this kind of “criti-
cal” temperature. That the real critical temperature Tc for superconductivity depends
on the size of a sample, it is not completely unusual, although its origin is still
under discussion and may depend on each case [93–95]. Taking into account that
the observed behavior can be related to the existence of superconducting and nor-
mal conducting regions, one is allowed to compare those results with the the linear
decrease of the superconducting critical temperature decreasing the whole thickness
of an ensemble of superconducting/metal multilayers (leaving constant the thickness
of each of the layers), see [93] and Refs. therein. The dashed-dotted straight line in
Fig. 7.24 is the experimental line obtained for Nb/Al multilayers [93] multiplying
by 10 both axes. We note that the obtained Tc(d) dependence of the lamellae has a
nearly identical slope as that obtained for Nb/Al multilayers.

The origin for the change of Tc in conventional superconducting multilayers and
thin wires has been tentatively given in [93, 94] based on weak localization (WL)
corrections to Tc for 2D superconductors [95]. In both, the presence of disorder affects
the screening of the Coulomb interaction resulting into an exponential suppression of
Tc. As pointed out in [19], the parameter dependence of this exponential is different in
the theory of [94] than the one used to fit the experimental results ofNb/Almultilayers
in [93]. The continuous (green) line in Fig. 7.24 follows
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Tc(d) = T∞e−�th(Tc)/d , (7.2)

where T∞ is the critical temperature for infinitely large samples, �th(T ) =
(�D/kBT )1/2 is the thermal length at temperature T , D = vF�/2 the 2D diffusion
constant, with vF ≈ 106 m/s the Fermi velocity and � the mean free path. Indepen-
dent measurements done in graphite flakes without (or with much less influence
of) interfaces provide � ∼ 3µm at T < 100K [34] and therefore D ∼ 1.5 × 104

cm2/s, a value four orders of magnitude larger than the one used in [93], mean-
ing that the effect is relevant in far thicker samples or at much higher tempera-
tures than in Nb/Al multilayers with Tc � 10 K. With this diffusion constant and
T∞ = 150K the obtained numerical solution of (7.2) is the continuous green line
in Fig. 7.24. The semiquantitative agreement is remarkable as well as the estimated
cut-off dmin = �th(Tc)/2.7 ≈ 0.38µm, below which (7.2) has no solution.

Following [19], the important aspect of the disorder correction in [94] is screening
and the parameter controlling the correction is t = (e2/(2π2

�))R�, where R� is the
sheet resistance [94]. In the limit t � γ 2, where γ is the dimensionless bare BCS
coupling parameter, the effective critical temperature is

Tc(d) = T∞ exp−t (d)/(6γ 3) = T∞ exp−α/d , (7.3)

whereα = t (d)/(6γ 3). The dashed line inFig. 7.24 shows afit of this type of behavior
to the data of [19]. A discussion of the validity range of the approach in [94] and of
the parameters obtained from the fits can be read in [19].

7.4 Conclusion

There are clear experimental and theoretical evidence on the existence of specific
electronic properties, such as the enhanced density of states in multilayer graphene,
twisted graphene as well as at the grain boundaries of graphene or graphite. These
electronic peculiarities coming from these defects or interfaces will undoubtedly
affect the electronic transport properties measured in graphite and determine the
metallic and/or superconducting behavior of whole samples. The existence of rhom-
bohedral stacking order regions embedded in an overall Bernal stacking order matrix
and/or twisted Bernal ordered regions may provide a key contribution to understand
several details of the transport properties of graphite samples. Taking these peculiar-
ities into account, it is not necessary to speculate too much to arrive to the conclusion
that transport and magnetization measurements may change upon microstructure of
the graphite sample in question. These differences between samples or changes after
certain treatment of a given sample remain difficult to predict and understand if we
do not know the internal interface structure and further characteristics. For example,
in [96] evidence has been obtained for the change in the structure of AB and BA
domains in bilayer graphene after annealing at 1,000 to 1,200 ◦C.
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The interfaces observed in bulk graphite exist also in graphite powders before as
well as after certain treatments and may well be the reason for the superconducting-
like response measured in magnetization and transport measurements [5, 7, 67, 97].
It should be also clear that if the interfaces play amain role in themeasured properties,
then time dependence, instabilities or even the apparent irreproducibility of some of
the obtained results can be expected, unless one is able to fix the properties and
density of the interfaces in a given sample. The existence of high-temperature super-
conductivity in (non-intercalated) graphite, even with critical temperatures above
room-temperature, has been claimed in different publications of the last 40 years
[98–104]. These independent reports show some striking peculiarities: The super-
conducting signal shows low reproducibility, some signals are not stable in time,
the amount of superconducting mass (if at all) is small and there is no clear idea on
the superconducting phase(s). These peculiarities and the general (over)skepticism
in the community on the reported evidence are the reasons, why there was so little
interest in this kind of phenomenon. If we assume that interfaces are the reason for all
these signals, the interest of the community on these tantalizing phenomena should
improve in the future.

We gratefully acknowledge Tero Heikkilä and Grigori Volovik for the fruitful dis-
cussions. Y.V.L. aknowledges the support given by the RussianGovernment Program
of Competitive Growth of Kazan Federal University.
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