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Abstract A mobile object is a spatial object that changes the form and the location

permanently over the time. Each displacement creates a trajectory that reflects the

evolution of its position in space during a given time interval. It generates, then, a

huge amount of trajectory data that are stored into trajectory data warehouse because

it is the only tool that can analysis the historical trajectory data. In this work, we

focus on the design of trajectory data warehouse schema and we propose automating

this task to reduce human intervention since it is done manually and requires good

knowledge of the domain. To achieve this goal, firstly, we automate the extraction of

trajectory data mart schemas from a moving data base. Then, we merge them to get

the trajectory data warehouse schema using a new schema integration methodology

that is composed by schema matching and schema mapping.

Keywords Trajectory data warehouse schema ⋅ Trajectory data mart schema ⋅
Schema integration ⋅ Animal movement

1 Introduction

Thanks to the emergence of location-aware devices, mobile communication systems,

GPS, etc., a huge amount of TrD is generated once following the moving object. The

latter is defined as a spatial object that changes the form and the location permanently

over the time. It is distinguished by spatial components that evolve over time. The

movement of such object creates a trajectory that corresponds to “the evolution of

the position (perceived as point) of an object that is moving in space during a given

time interval in order to achieve a given goal” [1]. Trajectory Data (TrD) is stored
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into Trajectory Data Warehouse (TrDW). The traditional data warehouse [2] and the

spatial data warehouse [3] are not created to deal with this kind of data because of

its continuous evolution over the time and space.

To ensure a good TrDW, it is important to start by generating its corresponding

schema. Many software tools exist, but they describe the schemas manually making

this task tedious, error-prone and time-consuming [4].

In this work, we focus on the generation of TrDW schemas, and we opt then for

the bottom up approach. It starts by generating automatically the Trajectory data

mart schemas (TrDM) from the moving data bases. Then, it automates the genera-

tions of the TrDW by merging the TrDW schemas using the new schema integration

methodology. The latter generates the mapping rules taking into account the seman-

tic similarities of the elements of the schemas and the existing conflicts. Then, it

transforms the generated rules into queries and executes them.

In order to well understand the proposed approach, we take a herd of animals as

a moving object. It moves continuously to satisfy its nutritional needs. By this way,

it can develop a grazing habit reflecting a form of adaptation and complex dynamic

interactions with its environment especially the vegetation. The intensive exploita-

tion of natural resources provokes the rarefaction of species of high value pastoral

which influences badly the ecological balance and aggravates the fragility of the

environment until a large part of those areas risk irreversible desertification. The

different data collected from this movement should be stored into TrDW. This can

help later to understand the habits and then to intervene, for example, by changing

its future trajectory to protect the vegetation into specific place.

The outline of this work is as following. In Sect. 2, we focus on the state of the art

where we present some work related to the TrDW. In Sect. 3, we define the model of

the trajectory of a herd. Then, we move to the generation of TrDM from a moving

data base. Next, we define the followed steps to build the final schema of TrDW. We

finish this work with conclusion and future work.

2 Related Works

In the literature, many works have been proposed to deal with TD and/or TrDW. In

the following, we present some of them.

Indeed, the authors in [5], introduce the notion of TrD and proposes the TrDW to

storage such data to transform the trajectory raws into useful information.

Braz et al. in [6], introduce its model and its corresponding issues.

The authors, in [7], discuss the loading phase of the DW that has to deal with

overwhelming streams of trajectory observations.

In [8], a framework is proposed to transform the traditional data cube model into

a trajectory warehouse.

The authors, in [9], present a framework for improving the design and the imple-

mentation of TrDWs for analyzing traffic data.
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In [10], the authors develop an application to receive the stream data set, to store

and compute the pre-aggregation values and to present final results in order to reveal

the knowledge about the trajectories.

Also, there are different works that propose a real application of TrDW. For exam-

ple, we can mention, [11] who study the human movements’ behavior, [12] who

followed the displacement of the seal, [13] who model the trajectory of a mobile

hospital, etc.

3 Trajectory Data Modeling

In this section, we focus on modeling TrD. We use, then, the Entity-Relationship

(ER) model to present the different components that can influence any trajectory as

well as their relationships (Fig. 1). Indeed, a herd is a set of animals belonging to

Fig. 1 A moving data base schema
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the same type. It can be supervised by a shepherd in the case of domestic animals or

not in the case of wild animals. The herd follows one specific trajectory. In this case,

a trajectory is considered as a set of paths having different directions, lengths, and

duration. So the duration of the trajectory is the sum of the duration of its composed

paths. Each path is defined by “start” and “end” and the same thing concerning the

trajectory which has a start that represents the start of the first path and an end that

represents the end of the last path. Talking about the start, it gives information about

the start position thanks to “PX” and “PY” and start time thanks to “PT”. Concerning

the end, it gives information about the final position thanks to “PX” and “PY” and

the final time that is presented by an interval. The end corresponds to a stop where

the animals can have different activities such as eating, drinking, or resting. So that,

we have TStart(N) = TEnd(N-1) + duration of stop(N-1).

Between a “start” and an “end”, the herd moves. This movement is in function of

the food so it happens generally close to the water especially during the dry seasons

and in grazing to allow the animal eating. The animal can find during their displace-

ment some hazards which may be natural (sea, river, lake, mountain or desert) or

artificial (road, complex, or railway).

4 Generating Trajectory Data Mart Schemas

In order to generate the schema of the Trajectory Data Mart (TrDM), we start with

the definition of the multidimensional elements. Then, we extract them from the ER

model, and we build the schema of the TrDM. The different steps are detailed in the

following.

4.1 Potential Multidimensional Elements

∙ Potential Fact Table: it corresponds to a table with numerical attributes and/or

table with n-ary relationship.

∙ Potentials Measures: they correspond to the numeric attributes. Concerning the

aggregation functions, they are specified by the user.

∙ Potential Dimension Tables: they correspond to the tables that are directly linked

to the potential facts extracted in the previous step.

∙ Potential Attributes: they correspond to the existing elements into the table includ-

ing the primary key that becomes the primary key of the dimension table and the

foreign keys that are used to determine the hierarchies.

4.2 Steps for Generating Trajectory Data Mart Schemas

To generate the multidimensional schema, we construct trees that are used as inter-

mediate models. They contain the extracted multidimensional elements. Next, each

tree is transformed to multidimensional schema.
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Fig. 2 First example of TrDM schema

Step 1: Build the trees from ER model
From the ER model, we extract the entities (Ef) having n-ary relationships with other

entities and/or those having numerical attributes. They represent the potential facts.

Every “Ef” becomes the root of the tree. The number of trees corresponds to the

number of “Ef” entities.

From the ER, we extract the entities (E) that are directly linked to “Ef” corre-

sponding to the potential dimensions. They form the first level of the tree.

For every “E”, we extract the set of entities that are bonded via “-to-one” rela-

tionship.

Step 2: Transform the trees to multidimensional model

∙ The fact is created having as name “Trajectory”.

∙ The existing numeric attributes become the potential measures.

∙ The root becomes a dimension keeping its attributes.

∙ The identifier of the root becomes a foreign key in the new fact table.

∙ The measures are defined by an aggregation functions that are specified by the

user.

∙ The nodes that are directly linked to the roots are transformed to dimensions keep-

ing their attributes and their identifiers.

Figure 2 presents an example of TrDM schema generated from Fig. 1.

5 Building Trajectory Data Warehouse Schema

The construction of TrDW schema is about merging the set of TrDM schemas. This

task is achieved by using the new schema integration methodology that deals mainly

with star schemas. It is composed by schema matching and schema mapping. The

schema matching is used to extract the semantically closest elements as well as the

conflicts, and presents them as mapping rules. The schema mapping transforms the
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generated rules to queries and executes them to merge the schemas regardless their

heterogeneity source.

In order to use the schema integration three problems must be solved which are:

data model heterogeneity, structural heterogeneity, and semantic heterogeneity.

To overcome the first and the second problems, we propose using the star schema

as a common model. Concerning the semantic heterogeneity, it will be solved using

the schema matching and mapping.

There are two strategies behind the creation of a global schema using the schema

integration, which are “bottom-up” [14] and “top- down” [15]. In order to merge the

schema, we opt for the bottom-up and more precisely the binary ladder strategy [16].

It is about merging two schemas each time until having one single schema at the end.

5.1 Schema Matching

The schema matching is used to find semantic correspondence between the elements

of the two schemas and presents them as mapping rules. The latter will be used to

facilitate the merging of schemas. This phase takes as input two or many schemas to

get as output set of mapping rules facilitating the merge of the schemas.

The schema matching is composed by the following steps:

∙ Categorization: It specifies the category of each element. This reduces the risk of

error which provides a gain of time.

– Schema 1 (Fig. 2):

Fact: {Trajectory}; FactKeys {HerdID (integer), PositionID (integer),

MoveID (integer)}.

Measure: {MaxSpeed (real), MinSpeed (real)}.

Dimension, DimensionKey and Attribute: {Move {MoveID (integer), Speed

(real)}, Position{PositionID (integer), PX (real), PY (real), PT (real)}, Herd

{HerdID (integer), AnimalType (long varchar)}}.

Fig. 3 Second example of TrDM schema
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– Schema 2 (Fig. 3):

Fact: {Trajectory}; FactKeys {HerdID (integer), PositionID (integer), PathID

(integer)}.

Measure: {Duration (real), LengthTrajectory (real)}.

Dimension, DimensionKey and Attribute: {Path {PathID (integer), Length-

Path (real)}, Position{PositionID (integer), PX (real), PY (real), PT (real)},

Herd {HerdID (integer), AnimalType (long varchar)}}.

∙ Comparison and construction of the matrix of similarity: It is to assign a coeffi-

cient to the elements belonging to the same category. To compare the names of

schemas elements, we should take into consideration their linguistic matching.

For this reason, we suggest the following formula (1) that calculates the degree

of similarity of two elements belonging to the same category. It returns “1” if the

two elements are similar, and “0” if they are not.

DeSim(e1, e2) = DeId(e1, e2) + DeSy(e1, e2) + SeTy(e1, e2) +
DePost(e1, e2) + DePre(e1, e2) + DeAbb (e1, e2) (1)

With:

– DeId (e1, e2) = 1 if e1 and e2 are identical and 0 else.

– DeSy (e1, e2) = 1 if e1 and e2 are synonymous, and 0 else.

– DeTy (e1, e2) = 1 if e1 and e2 are the same with the existence of typing error,

and 0 else.

– DePost (e1, e2) = 1 if one of the two elements is the postfix of the other, and 0

else.

– DePre (e1, e2) = 1 if one of the elements is the prefix of the other, and 0 else.

– DeAbb (e1, e2) = 1 if one of the elements is the abbreviation of the other, 0

else.

At this level, we take, also, into consideration the comparison of the types of the

elements. If they are different we need human intervention to specify what should

be kept.

In the following, we apply this step to measures, dimensions and attributes because

the two schemas have the same fact name “Trajectory” that will be the same in the

final schema.

Table 1 presents the similarity matrix used to compare the measures. According to

the values of “Max”, there is no similar measures. In such case, the final schema

contains all of them.

Table 1 Measure comparison

Measure MaxSpeed (real) MinSpeed (real) Max

Duration (real) 0 0 0

LengthTrajectory

(real)

0 0 0



380 N. Arfaoui and J. Akaichi

Table 2 Dimension tables comparison

Dimension Position Move Herd Max

Position 1 0 0 1

Path 0 0 0 0

Herd 0 0 1 1

Table 3 Attributes comparison

Attributes HerdID (integer) AnimalType (long

varchar)

Max

HerdID (integer) 1 1 1

AnimalType (long

varchar)

1 1 1

Table 2 presents the similarity matrix used to compare the dimension tables.

“Move” and “herd” have two similar dimension tables. The rest are different.

Table 3 presents the similarity matrix used to compare the attributes belonging to

the dimension “Herd”. All the attributes are similar and they have the same types.

We keep then for each similar couple, only one. The same thing is done to “herd”.

∙ Generation of the mapping rules: The rules visualize the conditional relationships

between the instances of different categories. They are expressed as: “If Similar

(X, Y) then Keep (X or Y) and Save (X, Y)”, with:

– X and Y: They are the two elements that belong to the same category.

– Similar ( ): It is a function that specifies if the two inputs are similar or not. It

uses the similarity matrix determined in the previous step.

– Keep ( ): It keeps one of the two elements of the input that will be included in

the generated schema.

– Save ( ): It saves the rule.

An example:

∙ If Similar (AnimalType (long varchar), AnimalType (long varchar)) Then Keep

(AnimalType (long varchar) or AnimalType (long varchar)) and Save (Ani-

malType (long varchar), AnimalType (long varchar))

The different rules are stored into rules database. But, before making the com-

parison, it is crucial to start by verifying if there is any rule in the database that

contains the two elements “X” and “Y”. If it is not the case, the similarity measure

is calculated to determine their similarity degree. If they are similar, the database

is updated, else, the next elements is treated.
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5.2 Schema Mapping

Once the mapping rules are extracted; we move to the next where they are trans-

formed into queries. In the following, we present some of them.

Concerning the fact tables, the two schemas have the same name so the resulting

schema contains also the same fact table name.

∙ Query = “Insert into Schema (idSchema) values (“+schemaId+”)”;

∙ Query1 = “Insert into Fact (FactName, idSchema) values (‘Trajectory’, “+

schemaId +”)”;

Since the fact tables are similar, we move to compare their measures. If the mea-

sures are similar we choose one of them, if not, we add both of them.

∙ Query2 = “Insert into Measure (MeasureName, MeasureType, idFact) values

(‘MaxSpeed’, “+” ‘real’ “+ factId +”)”;

For the dimensions, we compare their names, if they are similar, we move to their

attributes. We keep then the similar ones and we add the different. If the dimensions

are different we keep them with their attributes without modification.

∙ Query3 = “Insert into Dimension (DimensionName, DimensionPKName,

DimensionPK-Type, idSchema) values (‘Move’, ‘MoveID’, ‘integer’, “+schemaId

+”)”;

Figure 4 presents the star schema related to the trajectory of the herd. It is the

result of the application of the previous rules.

Fig. 4 The TrDW schema
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6 Conclusion

In this work, we focus on the displacement of the herd that we took as example to

study the trajectory of a moving object. The last one is defined as a spatial object

that changes the form and the location permanently over the time. During its move-

ment, the herd generates huge amount of TrD. We use the TrDW as a powerful tool

to storage this kind of data to transform it later to useful knowledge. The problem at

this level concerns the generation of its schema. For this reason, we proposed, in this

work, an approach that serves to automatically generate the TrDW schema. Indeed,

from the mobile data base, the multidimensional schemas are generated. They corre-

spond to TrDM schemas. The latter are merged to build the final schema of the TrDW

using the schema integration methodology that is composed by two steps. The first

step extracts the similar elements from two schemas to generate the mapping rules.

The second step transforms the rules into queries and executes them to merge the

schemas.

As future work, we propose using some data mining techniques to predict the

future movement of animals so we will be able to intervene for example by changing

the direction of the movement in case where there is a threat to the existing vegeta-

tion.
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