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Abstract This paper presents an approach for application of time-triggered para-

digm to the domain of autonomous systems. Autonomous systems are intensively

used in areas, or situations, which could be dangerous to humans or which are remote

and hardly accessible. In the case when an autonomous system is safety critical and

should react to the environmental changes running within a very limited time frame,

we deal with the same kind of problems as automotive and avionic systems: timing

properties and their analysis become a crucial part of the system development. To

analyse timing properties and to show the fault-tolerance of the communication, a

predictable timing of the system is needed.

1 Introduction

The trend in the automotive and avionics industry is to shift functionality from

mechanics and electronics to software. Subsystems in automotive and avionics engi-

neering express increasing level of autonomy as described in [12]. The goal of this

changes is to make vehicles and aircrafts more reliable and fault-tolerant, focusing

on the tasks that could be complicated for the human to solve quickly, precisely and

safely. In avionics, fly-by-wire are used since many decades. These systems were

developed to replace the manual (human) flight controls of an aircraft with an elec-

tronic interface. An example of a fly-by-wire system is Unmanned Aerial Vehicle

(UAV) landing [22]. Many automotive manufacturers have presented drive-by-wire

prototypes for premium cars. An example of these prototypes are Parking Assists

Systems [9].
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To analyse timing properties of a distributed system and to show the fault-

tolerance of its behaviour, we require a predictable timing of the system. This can

be solved using the time-triggered paradigm (TTP). In avionics TTP was applied

successfully to distributed systems. This idea has been later propagated to the auto-

motive domain.

In a time-triggered system (TTS), all actions are executed at predefined points in

time. This ensures a deterministic timing behaviour of the system: task execution

times and their order, as well as message transmission times are deterministic. Hav-

ing a deterministic timing behaviour, we can predict and to prove formally the timing

properties of the system with a reasonable effort.

In [36], we introduced a formal framework for modelling and analysis of

autonomous systems (AS) and their compositions, especially focusing on the adap-

tivity modelling aspects and reasoning about adaptive behaviour. In our current work

we extend this framework with the core features of a framework for the verification

of properties for automotive TTS, presented in [20, 21]. In this paper, we suggest

to apply the well-developed ideas of time-triggered systems within the domain of

autonomous robotic systems, as timing properties and their verification are crucial

for safety-critical systems.

Outline: The paper is organised as follows. Section 2 provides a brief overview

of the related work. In Sect. 3, we discuss the application of TTP within automotive

domain, time-triggered operating system OSEKtime as well as our previous research

in this area. Section 4 introduces our TTP Model for AS, which is the core contribu-

tion of the paper. Section 5 introduces our model for OSEKtime. Section 6 present

the core directions of our future work. In Sect. 7 we summarise the paper and propose

directions for future research.

2 Related Work

The adaptation and context-awareness can have many forms: navigation applica-

tions to guide users to a given destination, robot motion [10], keyless entry sys-

tems [15], driver assistance applications [27], adaptive cruise control systems [14],

etc. Next step from driver assistance and similar applications is complete takeover of

the vehicle control. Reliable, real time robot (vehicle) operating system is extremely

important for the safe and comfortable ride. A concise survey of concepts, archi-

tectural frameworks, and design methodologies that are relevant in the context of

self-adapting and self-optimizing systems is presented in [2].

Rushby [26] introduced an approach to derive a time-triggered implementation

from a fault-tolerant algorithm specified as a functional program. Nolte et al. [23]

presented an overview of wireless automotive communication technologies. The

goal of Nolte et al. was to identify the strong candidates for future in-vehicle and

inter-vehicle automotive applications. There are also a number approaches on analy-

sis of worst case execution time (WCET) and the corresponding properties of the

software components. For example, Fredriksson et al. [16] presented a contract-
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based technique to achieve reuse of WCETs in conjunction with reuse of software

components. A number of frameworks and methodologies for the formal analysis of

time-triggered automotive systems were presented in [5–7, 17, 34]. The core fea-

tures of these frameworks and methodologies can be applied within the field of AS,

to increase reliability and to allow formal verification of the functional properties.

Both in the case of automotive and in the case of autonomous systems, we to take

into account cyber-physical nature of these systems. Many approaches on cyber-
physical systems do not include an abstract logical level of the system modelling,

missing the advantages of the abstract representation. In our previous work [33], we

introduced a platform-independent architectural design in the early stages of CPS

development. The results of our ongoing work on simulation, validation and visu-

alization of CPSs in industrial automation [3, 4] provide basis for the analysis and

simulation of autonomous systems, as a special kind of CPSs.

3 TTP: OSEKtime Operating System

An operating system OSEKtime was developed by the European Automotive

Consortium OSEK/VDX in accordance to the time-triggered paradigm. OSEK
1

is a

standards body, founded by German automotive company consortium, in 1993. The

consortium included many industrial partners (such as BMW, Robert Bosch GmbH,

DaimlerChrysler, Opel, Siemens, and Volkswagen Group) as well as the University

of Karlsruhe. The French automotive manufacturers Renault and PSA Peugeot Cit-

roen had a similar consortium, VDX.
2

In 1994, a new consortium OSEK/VDX
3

was

created, based on OSEK and VDX.

Thus, OSEKtime OS is time-triggered and supports static cyclic scheduling based

on the computation of the WCETs of its tasks. The verification of an OSEKtime

OS is being performed in the Verisoft-XT project [38]. WCET of the tasks can be

estimated from a compiled program and the processor the program runs on, using

the corresponding tool, e.g. an aiT analyser [1]. aiT statically compute tight bounds

for WCETs of tasks in real-time systems, directly analyses binary executables, and

is independent of the compiler and source code language.

As per OSEKtime specification [25], the core properties of this operating system

are

∙ predictability,

∙ modular concept as a basis for certification,

∙ dependability,

∙ compatibility to the OSEK/VDX.

1
German: Offene Systeme und deren Schnittstellen fr die Elektronik in Kraftfahrzeugen; English:

Open Systems and their Interfaces for the Electronics in Motor Vehicles.

2
Vehicle Distributed eXecutive.

3
http://www.osek-vdx.org.

http://www.osek-vdx.org
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Thus, the system has a priori known behaviour, even under defined peak load and

fault conditions. The dependability property is insured by a fault-tolerant commu-

nication layer FTCom (Fault-Tolerant Communication, cf. [24]) is This layer was

introduced to insure interprocess communication within the OS and make task dis-

tribution transparent. It allows reliable operation through fault detection and fault

tolerance.

In our previous research [20, 21], we presented a formal framework for the veri-

fication of application properties for time triggered systems, based on FlexRay and

FTCom [19, 28]. FlexRay is a time-triggered communication protocol, developed

by the FlexRay Consortium.
4

Primary application domain of the FlexRay protocol

is distributed real-time systems in vehicles. A comparison of an established protocol

TTP/C and FlexRay was presented by Kopetz in [18]. Kopetz came to the conclusion

that FlexRay and TTP/C were designed against the same set of automotive require-

ments, but that there is a difference in goals: “The inherent conflict between flexibility
and safety is tilted towards flexibility in FlexRay and safety in TTP/C.”.

A distributed automotive system is built from a number of nodes. The difference

between the nodes are the configuration data of each node and the applications run-

ning on them. On each node, there are three layers:

(1) Micro controller and FlexRay controller. The network cable connects the

FlexRay controllers of all nodes.

(2) OSEKtime OS and OSEK FTCom.

(3) A number of applications, implementing the desired behaviour of the automotive

system.

When we adopt these ideas to the domain of autonomous systems, a node becomes a

single autonomous robot, and the connection between the robots has to be wireless.

This implies that the FlexRay communication protocol might be not applicable for

autonomous systems even after a number of modifications: FlexRay provides high-

speed, deterministic and fault-tolerant communication, but it was designed with the

focus on in-vehicle networking, to support x-by-wire applications. Thus, only the

architecture of the layers (2) and (3) can be adapted for AS.

4 TTP Model for Autonomous Systems

The modelling language that we use in our approach is FOCUS
ST

[32], which is an

extension of the FOCUS language used in [20, 21]. It allows us to create concise but

easily understandable specifications and is appropriate for application of the speci-

fication and proof methodology presented in [29, 37]. The FOCUS
ST

language was

inspired by FOCUS [8], a framework for formal specification and development of

interactive systems. In both languages, specifications are based on the notion of

4
Core members of the consortium are Freescale Semiconductor, Robert Bosch GmbH, NXP Semi-

conductors, BMW, Volkswagen, Daimler, and General Motors.
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streams and channels (a channel is in effect a name for a stream). The FOCUS
ST

specification layout also differs from the original one: it is based on human factor

analysis within formal methods [30, 31, 35].

A system in our model consists of N autonomous robots, communicating with

each other. On the software level, a robot Roboti
(1 ≤ i ≤ N) has Mi applications

AppRoboti
1,… ,AppRoboti

Mi that are running under OSEKtime OS, cf. Fig. 1. The

FTComCNI component of each robot consists of two subcomponents: the FTCom
component and a CNIbuffer (buffer of the Communication Network Interface), cf.

Fig. 2. CNIbuffer is used to store messages that have to be sent to other robots

via the communication protocol. The local communication among the applications

AppRoboti
1,… ,AppRoboti

Mi is conducted directly via FTCom.

RobotN

Robot1 

AppRobot1
1 

FTComCNI1 

send1
1 

receive1
1 

ackS1
1 

ackR1
1 

AppRobot1
M1 

send1
M1 

receive1
M1 

ackS1
M1 

ackR1
M1 

OSEKtime1
startR1

AppRobotN
1 

FTComCNIN

sendN
1 

receiveN
1 

ackSN
1 

ackRN
1 

AppRobotN
MN

sendN
MN

receiveN
MN

ackSN
MN

ackRN
MN

OSEKtimeN
startRN

Communication 
Protocol

Fig. 1 TTP model for autonomous systems
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FTComi
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FTComBufferi

sendi
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receivei
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ackSi
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ackRi
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sendi
Mi

receivei
Mi

ackSi
Mi

ackRi
Mi
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RDAi

returni

storei

CNIreturni

CNIstorei

Fig. 2 Model of the FTComCNI component

In our model, the FTCom component consists of three subcomponents: FTCom-
Buffer, Replica and RDA (Replica Determinate Agreement, cf. [24] for more details).

The Replica and RDA components are optional. These components are used to ensure

fault-tolerant communication between the robots: one application message is packed

into several frames using the replication tables, such that every application message

will be sent k times (k > 1). The RDA component of the corresponding receiver-

robot, will unpack the frames the RDA-tables and compute the value of the mes-

sage from the arrived replicas. The Replica and RDA components are called by the

OSEKtime dispatcher every communication round. In our model, this is represented

by sending request messages via the channel startR.

To ensure correctness of the replication and RDA tables, we specify two predi-

cates, which will be used as verification constraints for the tables: For the replication

table we have to check that

∙ the table is nonempty,

∙ every slot identifier occurs in the table at most once,

∙ a new frame can be build only from the messages produced by this robot.

For the RDA table we have to check that

∙ list of message identifiers must be nonempty,

∙ every message identifier occurs in the table at most once and does not belong to

the identifiers of the messages produced by this robot.

∙ a new frame can be build only from the messages produced on this node.
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5 Model of OSEKtime OS

We model OSEKtime as a tuple

OSEKtime = ⟨Tasks, DT , State, SynchrP⟩

where Tasks denotes the set of application tasks with the corresponding sets State of

their internal states, DT is a dispatcher table, and SynchrP is a set of synchronisation

parameters. An OSEKtime task can be in one of three states (running, preempted,

suspensed), cf. also Fig. 3:

State = {running, preempted, suspensed}
SynchrP = {synchr, asynchrH, asynchrS}

OSEKtime allows two start-up techniques, which depend on synchronisation meth-

ods and availability of global system time [25]:

∙ Synchronous start-up (we model it as the parameter synchr). In this case, the tasks

are not executed until a global time is available. For automotive systems based

on the FlexRay protocol, the synchronous start-up has to be preferred, as FlexRay

properties rely on a precise synchronisation. In the case of autonomous systems,

we have to apply one of the options of asynchronous start-up.

∙ Asynchronous start-up: Tasks are executed according to the local time without

waiting for the synchronisation to the global time.

– In the case of a hard synchronisation (we model it as the parameter asynchrH),

the synchronisation of the local time to the global time has to be performed at

the end of a dispatcher round by delaying the start of the next dispatcher round.

– In the case of a smooth synchronisation (we model it as the parameter asynchrS),

the synchronisation of the local time to the global time is done during several

dispatcher rounds by limiting the delay of the start of the next dispatcher round

according to pre-defined configuration.

Suspended Preempted Running 

activate 

terminate 

preempt 

resume 

Fig. 3 Time-triggered model of OSEKtime tasks
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Table 1 Example of an OSEKtime dispatcher table

DTentryID Task start WCET

1 Task1 0 3

2 Task2 3 4

3 Task1 7 3

4 Task3 12 8

5 Task1 20 3

6 Task4 25 7

7 Task1 32 3

The specifications for set of tasks and the dispatcher table have to be introduced for

each particular application. In general, they can be specified as follows:

DT = ⟨N, STasks, start, wtime⟩

where N is the length of the dispatcher table (number of items in it);

STasks is a subset of Tasks, which contains only the tasks to be scheduled, i.e., all

the tasks from Tasks except auxiliary system tasks (such as ttIdleTask, ErrorHook,

etc., cf. below);

start = {1…N}, STasks → ℕ defines the mapping of tasks to their start times

within the dispatcher round;

wcet = {1…N}, STasks → ℕ defines the mapping of tasks to their worst-case

execution times (WCETs).

Each task from STasks can also appear in DT as a number of subtasks. OSEKtime

has a static scheduling, which allows specification based on WCETs of the subtasks.

Example An example of a dispatcher table STasks = {Task1,Task2,Task3,Task4},

N = 7, TCYCLE = 35 is presented in Table 1. It is easy to see that while executing this

dispatcher table, ttIdleTask will start at least twice in the middle of each round:

∙ between the second execution of Task1 (which has to be finished by 10th time

unit) and Task3 (which has to be started at 12th time unit), and

∙ between the third execution of Task1 (which has to be finished by 23rd time unit)

and Task4 (which has to be started at 25th time unit).

OSEKtime has a number of auxiliary system tasks that are not registered in a dis-

patching round (these tasks belong to Tasks, but do not belong to STasks). Examples

of these tasks are

∙ ttStartOS routine starts the operating system,

∙ ttIdleTask acts as the idle task of the OSEKtime OS. It is the first task started by

the OSEKtime dispatcher, and is always running if there is no other task ready.

As this task is not registered in DT , it is not periodically restarted and does not
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InitOSEKtime

ShutdownOSOSEKtimeStep

Initialization 

Call 
ttErrorHook

ErrorHandling

StartOSEKtime

Call 
ttShutdownHook

Call 
ttShutdownHook

Call 
ttStartupHook

NewRound

Synchronisation

Synchronisation
completed 

Dispatcher round 
successfully 
completed 

Start new 
dispatcher round 

Fig. 4 OSEKtime as a state machine

have any deadline. ttIdleTask has the lowest priority and it can be interrupted by

all interrupts handled by OSEKtime.

∙ ErrorHook task is responsible for error handling for deadline violations;

∙ ttShutdown task is responsible for shutdown of the system.

OSEKtime as an abstract state machine is presented in Fig. 4.

FTCom layer has the following core functions: ttSyncTimes, ttSendMessage and

ttReceiveMessage. The ttSyncTimes function specifies the routine to synchronise

the local time with the global time in the system. This function will be called

by OSEKtime OS in the state Synchronisation. The functions ttSendMessage and

ttReceiveMessage are called by tasks. ttSendMessage stores a message in the FT-

CNI buffer, which is used to communication between nodes (in the case of a time-

triggered automotive system, the content of the FT-CNI buffer has to be sent via

FlexRay). ttReceiveMessage checks the FT-CNI buffer for the requested by an appli-

cation message (i.e., the message with the requested id) and stores this message to

the local buffer.
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6 Future Work

The next step in our research is to implement results of the investigation presented

here to our experimental electrical vehicle, RMIT University Autonomous System.

Operating systems view is given in the Fig. 5a. At the highest level, RMIT University

Autonomous Vehicle is controlled by a customised installation of Microsoft Win-

dows Server. Majority of the higher level system processes are run on a dedicated

Laptop PC as a computer hardware base for the whole system. Localisation, map-

ping and motion planning processes are running in MATLAB environment. The only

process running outside of MATLAB is a Rapidly exploring Random Tree path plan-

ning generation, implemented with Python 2.7 as already explained and presented

in [13].

All data acquisition activities are handled by an embedded C controller, running

on an Arduino micro controller. Full proportional-integral-derivative (PID) con-

trol of actuators was implemented for vehicle velocity and steering angle control.

Detailed presentation of the control process is given in [11]. RMIT Autonomous

Vehicle during path following testing, in the real time, is presented in Fig. 5b. All

this real time processing will be improved by aligning system with the TTP Model

for Autonomous Systems, as shown earlier in Fig. 1. We expect that application of

the TTP will increase reliability of the localisation, path planning and path following

features, as it would allow us verify the corresponding timing properties in a formal

way, also using semi-automated theorem provers. This would allow to use the RMIT

University Autonomous System for safety-critical tasks, especially focussing on the

interaction between humans and the AS.

(a) (b)

Fig. 5 RMIT autonomous vehicle. a Model to be aligned with TTP. b Path following testing
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7 Conclusions

This paper presents an approach for application of time-triggered paradigm (TTP)

to the domain of autonomous systems. TTP has been applied successfully to distrib-

uted systems in avionics and automotive domain. In this paper, we apply the well-

developed ideas of time-triggered systems within the domain of autonomous robotic

systems. The core feature of TTP is that all actions within the system have to be exe-

cuted at predefined points in time. This ensures a deterministic timing behaviour of

the system, which makes the system behaviour more predictable and provides many

benefits for the analysis of the system properties.

We introduce a TTP model of an autonomous robotic system as well as the corre-

sponding models of OSEKtime operating system and its Fault-Tolerant Communica-

tion layer. We also briefly discuss our future work on the application of the presented

ideas to the experimental electrical vehicle, RMIT University Autonomous System.
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