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Abstract In this work we aim at generating association rules starting from meteoro-

logical measurements from a set of heterogeneous sensors displaced in a region. To

create rules starting from the statistical distribution of the data we adaptively extract

dictionaries of values. We use these dictionaries to reduce the data dimensionality

and represent the values in a symbolic form. This representation is driven by the set

of values in the training set and is suitable for the extraction of rules with traditional

methods. Furthermore we adopt the boosting technique to build strong classifiers out

of simpler association rules: their use shows promising results with respect to their

accuracy a sensible increase in performance.

1 Introduction

Exploiting sensor networks for environmental monitoring enables the study of a wide

variety of geophysical phenomena based on time-delayed measurements that can be

furtherly processed to seek new, previously unknown connection among events. On

the other hand, the development of knowledge discovery in databases has required

scientists and engineers to focus more and more on data-driven discovery while

modeling their domains of interest. More recently, the Big Data paradigm has been

adopted to deal with huge quantities of data differing in range and representation,

with a variable trustworthiness that the availability of powerful hardware commodi-

ties have made operable. Discretized time series are useful to reduce the cardinality

of the set of symbols without a significant loss of information. A statistical approach,

such as [1], may detect current anomalies in those data measuring entropy by means

of mutual information or other suitable representations; discretized data may also be
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used to extract rules based on frequent items. A first, straightforward, choice is to

divide the range of all the values in a limited set of intervals and associate to each

interval a different symbol. In this case the data levels are fixed and the thresholds

for all the levels are generated by the previous knowledge about the experimental

domain. A different choice is to create a set of symbols according the distribution

of the data on a given set. The symbols are chosen according to the distribution of

the data in the vector space. A reasonable choice is to use a clusterization process

and extract the centroids from a given set of values (e.g. the training set). Each value

of the set can therefore be replaced with a symbol that corresponds to the centroid

associated to it. k-means is a well known algorithm for the clusterization of data.The

values obtained with this method are compared with a set of centroids obtained

with Vector Quantization algorithm evaluating advantages and shortcomings. In this

work, we use a parallelized Parallel FP-Growth (PFP) [2], based on the seminal FP-

Growth algorithm described in [3]. We used the Apache Mahout™ implementation

of PFP to generate rules as it leverages the open source Hadoop environment that

has become the de facto standard for storing, processing and analyzing Big Data.

The whole set of rules found is the input to the AdaBoost algorithm, first proposed

by [4]. Our main contribution to the topic lies in the use of pattern mining tech-

niques to find co-occurrence relationships leading to risk situations, enhancing his-

toric datasets gathered by sensor networks with emergency notifications commonly

found online newspapers and weblogs; acknowledging that association rules can be

heavily dependent on the training set, we strive to provide stronger classifiers built

using boosting. We tested the proposed technique on a dataset of Tuscanian meteo-

rological data ranging from 2000 to 2010, and we have compared these values with

the emergency detection in the same region along the same years, with promising

results.

2 Frequent Pattern Mining

Frequent pattern mining deals with finding relationships among the items in a data-

base. This problem was originally proposed by Agrawal in [5]: given a database D
with transactions T1 …TN , determine all patterns P that are present in at least a frac-

tion of the transactions. The set Ti of identifiers related to attributes having a boolean

TRUE value is called transaction.

An example domain of interest is composed of market baskets: each attribute

corresponds to an item available in a superstore, and the binary value represents

whether or not it is present in the transaction: an interesting pattern is thus present if

two or more items are frequently bought together. The aforementioned approach has

successfully been applied to several other applications in the context of data mining

since then.
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2.1 Association Rule Mining

Agrawal et al. [5] presented association rule mining as a way to identify strong rules

using different measures of interestingness, such as high frequency and strong cor-

relation.

Let D =
{
T1,T2,… ,Tn

}
be a transaction database. A set P ⊆ Ti is called an l-

sized itemset if the number of items it contains is l, and has a support supp
(
Pi
)
=

|Pi(t)|
|D|

that is the ratio of transactions in D containing X. X will be deemed frequent if

its support is equal to, or greater than, a given threshold minimal support. An asso-

ciation rule R is the implication X ⟹ Y , where itemsets X and Y do not intersect.

An evaluation on the validity of each rule can be performed using several quality

measurements:

∙ the support of R is the support of X ∪ Y , and states the frequencies of occurring

patterns;

∙ the confidence of R conf (X ⟹ Y), defined as the ratio
supp(X∪Y)
supp(X)

, states the

strength of implication.

Given a minimal support sMIN and minimal confidence cMIN by users or experts,

X ⟹ Y is considered a valid rule if both supp (X ⟹ Y) ≥ sMIN and conf
(X ⟹ Y) ≥ cMIN .

2.2 PFP: The FP-Growth Algorithm in a Parallelized
Environment

In 2008, Dean and Ghemawat [6] presented MapReduce, a framework for processing

parallelizable problems across datasets using a large number of inter-connected com-

puter systems, called worker nodes, taking advantage of locality of data in order to

reduce transmission distances. The FP-Growth Algorithm, a divide et impera algo-

rithm that extracts frequent patterns by pattern fragment growth proposed by Han in

[3], has been ported to the MapReduce framework by Li et al. [2].

Given a transaction database D, the three MapReduce phases used to parallelize

FP-Growth can be outlined as follows:

1. Sharding: D is divided into several parts, called shards, stored on P different

computers.

2. Parallel Counting: The support values of all items that appear in D is counted,

one shard per mapper. This step implicitly discovers the items vocabulary I, which

is usually unknown for a huge D. The result is stored in a frequency list.

3. Grouping Items: Dividing all the |I| items on the frequency list into Q groups.

The list of groups is called group list (G-list), where each group is given a unique

group identifier (gid).
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4. Parallel FP-Growth: During the map stage, transactions are rearranged group-

wise: when all mapper instances have finished their work, for each group-id, the

MapReduce infrastructure automatically gathers every group-dependent transac-

tion into a shard. Each reducer builds a local FP-tree and recursively grows its

conditional FP-trees, returning discovered patterns.

5. Aggregating: The results generated in Step 4 are coalesced into the final FP-Tree.

3 Construction of a Robust Classifier Through Boosting

The word boosting refers to a general method of rule production that combines less

accurate rules to form more accurate ones. A so-called “weak learning algorithm”,

given labeled training examples, produces several basic classifiers: the goal of boost-

ing is to improve their global performance combining their calls, assuming that they

fare better than a classifier whose every prediction is a random guess.

We have chosen to improve the performance of our association rules using the

AdaBoost meta-algorithm, first proposed by Freund and Schapire in [4]. AdaBoost

takes as input a set of training examples (x1, y1),… , (xm, ym) where each xi is an

instance from X and each yi is the associated label or class: in this work yi = 0 for

negative examples, yi = 1 otherwise. We repeat the weak classifier training process

exactly T times.

At each iteration t = 1,… ,T a base classifier ht ∶ X ∈ 0.1 having low weighted

error 𝜖t =
∑

i wi
|||hj(xi) − yi

||| is chosen. A parameter 𝛼t, with 𝛼t > 0 ⟺ 𝜖t < 1, is

chosen, so that the more accurate the base classifier ht is, the more importance we

assign to it. To give prominence to hard-to-classify items, weights for the next iter-

ation are defined as wt+1, i = wt𝛽
1−ei
t , where ei = 0 if example xi has been correctly

classified, ei = 1 otherwise, and 𝛽t =
𝜖t

1−𝜖t
. The final strong classifier is:

H(x) =
{

1 if
∑T

t=1 𝛼tht(x) ≥
1
2
∑T

t=1 𝛼t;
0 otherwise.

(1)

where at = log 1
𝛽t

.

Association rule extraction algorithms produce, on average, many more rules than

classification algorithms, because they do not repeatedly partition record space in

smaller subsets—on the other hand, this means that association rules are much more

granular, and their extraction algorithms are generally slower. Anyway, a balance

between granularity and performance may be found imposing support and confi-

dence thresholds on itemsets. It turns out that association rules can be used as clas-

sifiers if a discretization (as shown in Sect. 4) of the attribute space is performed, so

that the established bins can serve as feature sets. Association rule mining can be
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thus applied to find patterns of the form < featuresets > ⟹ ClassLabels, ranking

rules first by confidence, and then by support, as shown in Yoon and Lee’s [7]. While

we follow a similar approach, we diverge in several aspects:

∙ we perform boosting on the whole set of generated rules;

∙ a correct weak classification occurs if both or neither of antecedent and consequent

are present;

∙ we penalize the weight only if the error rate of a given weak classifier is lower

than 50%.

4 Information Representation

The datasets used in this work has been made available by Servizio Idrogeologico

Regionale della Toscana (SIR).
1

Their sensors and surveillance network, span-

ning the entire surface of Tuscany, can provide both real-time and historic samples

from hydrometric, pluviometric, thermometric, hygrometric, freatimetric and mare-

ographic sensors, allowing a general characterization of hydroclimatic phenomena.

Generally, stations in a sensor network are placed in a way that ensures optimum

coverage of a given region: different restrictions due to the domain of interest and

regulations already in force when considering the placement need to be taken into

account, so any two given networks may have very different topologies. Given a

station, relevant neighbors belonging to the other networks must be found. In this

work, we group values using concentric circles having radiuses r1 = 25 km, r2 =
50 km, r3 = 75 km centered on basin stations, as they constitute the sparsest network

among those managed by SIR.

An outline of the data transformation steps we perform follows:

1. Per-network grouping: As every station stores a small subset of data, each station

is polled by a central facility at regular intervals. SIR provides a single file for

each station in a given network. For our convenience, a single table is created for

gathering data coming from all the stations in the same network;

2. Discretizations: Each sensor measure is replaced with a discretized value. This

quantized representation is needed since the rule extraction algorithms extract

connections among recurring symbols.

3. Basket arrangement and emergency binding: The output of the discretization

process must be converted to a transactional format for use with the association

rules extraction algorithm. There will be a transaction row vector r per day per

station. In each of them the column (Bk) will have a TRUE value if the discretized

value is k, FALSE otherwise. An emergency flag is set if for a given date the basin

station was near enough to dangerous phenomena.

1
http://www.sir.toscana.it/.

http://www.sir.toscana.it/
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4. Inverse mapping: Apache Mahout™ requires transactions items to be expressed

using integer keys, so we map the column names in the basket arrangement made

in the previous step, keeping trace of the mappings to the original items to prop-

erly present results in the output study phase.

4.1 Discretization

The continuous nature of meteorological measurements is not suitable for association

rules extraction: a reduced set of values is thus considered using a discretization

process. We used both the k-means and Linde-Buzo-Gray algorithms to extract the

discretization interval bounds.

k-means, first proposed by Lloyd in [8], takes as input the number k of clusters

to generate and a set of observation vectors to cluster, returning exactly k centroids,

initially chosen at random and converging to a stable position that minimizes the

sum of the quadratic distance between the observations and the centroids.

A vector v belongs to cluster i if it is closer to centroid i than any other centroid;

ci is said to be the dominating centroid of v. Since vector quantization is a natural

application for k-means, information theory terminology is often used: the centroid

index or cluster index is also referred to as a code and the table mapping codes

to centroids is often referred as a codebook, so k-means can be used to quantize

vectors. Quantization aims at finding an encoding of vectors that minimizes the sum

of the squared distances (SS) between each observation vector xji and its dominating

centroid cj, called distortion:

J =
k∑

j=1

n∑

i=1

‖‖‖x
(j)
i − cj

‖‖‖
2

(2)

k-means terminates either when the change in distortion is lower than a given thresh-

old or a maximum number of iterations is reached.

Linde, Buzo and Gray algorithm, first proposed in [9], is another iterative algo-

rithm which assures both proximity to centroids and distorsion minimization. The

initial codebook is obtained by splitting into two vectors the average of the entire

training sequence. At the end of the first iteration, the two codevectors are splitted

into four and so on. The process is repeated until the desired number of codevectors

is obtained.

A simple test, probably first proposed by R. Thorndike in 1953 and called elbow
method, can be used to choose the right k with respect to the percentage of variance:

if you plot the SS against the value of k, you will see that the error decreases as k
gets larger; this is because when the number of clusters increases, they should be

smaller, so distortion is also smaller. The idea of the elbow method is to choose the

k at which the SSE decreases abruptly. This produces an “elbow effect” in the graph.
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4.2 Emergency Information

While sensor networks provide quantitative figures with a certain degree of relia-

bility, they do not convey any information about emergencies: we need this infor-

mation in order to train a classifier that can identify potential unforeseen climaxes.

We assume that if an emergency situation has been reported in the past, traces can be

found in the World Wide Web by means of online newspaper articles or even posts on

a personal blog: relevant content may hopefully contain a word in the set A of words

describing the phenomenon, and another one in the geocoded set B of Tuscanian

cities. The set A is formed by Italian keywords about hydrogeological emergencies

such as: esondazione, violento temporale, diluvio, allagamento, inondazione, rovi-
nosa tempesta, violento acquazzone. The set B is formed by the names of the cities in

the Tuscany region such as: Firenze, Pisa, Livorno, Grosseto, Lucca, Siena, Massa,

Carrara, Pistoia. As WWW pages cannot be easily dated, we used the subset of

search results having day, month and year information in their URLs, usually found

in weblogs and digital magazines, as they require specific expertise to get altered

after publication. This subset has been filtered by visual check to remove spurious

and incomplete data, but we are unable to exclude that some of the remaining infor-

mation has not been altered by the content authors, either willingly or because of

an error. The emergency flag is then set to TRUE for every basin station placed at a

distance less than 75 Km from each interesting location that has been found.

5 Experimental Setup and Results

A subset of SIR basin levels, rain measures and phreatic zone data for the years

2000–2010 has been used. The Elbow test has been performed after having repeat-

edly run the k-means algorithm on each set of measures. We chose to use 3 bins for

rain data, 4 bins for basin level data, and 6 bins for phreatic data. In the latter case,

we actually have two elbow conditions, and the second one happens just before a

slight increase in the sum of squares: we arbitrarily chose the number of bins that

gives the absolute minimum sum of squares (see Fig. 1).

A similar profiling has been performed using Linde-Buzo-Gray quantization on

our discrete data; the minimum value of distorsion is achieved using 8 codevectors

(see Fig. 2).

A number of software tools have been developed specifically to extract and aggre-

gate data provided by SIR, and parse Apache Mahout™ output. After the creation

of the basket connecting all the basin level station with the nearest rain of phreatic

values, the data have been divided in two subsets: a training subset, containing a

60% of the items in the original set, to be used as PFP input for association rules

extraction and a test subset, containing the remaining 40%, over which the extracted

rules have been tested. Candidates for both sets are chosen using a random sampling,
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Fig. 1 Average distortion for k-means algorithm. a Phreatic levels. b Rain levels. c Basin levels

Fig. 2 Average distortion for LBG algorithm a Phreatic levels. b Rain levels. c Basin levels
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Fig. 3 Accuracy of boosted classifiers (in blue) versus accuracy values of association rules for the

same consequent (in red). a LBG quantization. b k-means quantization (Color figure online)

having discarded a small subset of rules having either a confidence ratio inferior to

25% or a missing value as consequent.

The extracted rules have been evaluated considering their performance over the

test set. ATrue Positive (TP) classification takes place when both the antecedent and

the consequent of the rule are satisfied, while in a True Negative (TN) one neither

of them is. A False Positive (FP) classification satisfies the antecedent, but not the

consequent: for False Negatives(FN), the reverse applies.

The accuracy Acc is defined as
TP+TN

TP+TN+FP+FN
and presented in Fig. 3.

Precision prec = TP
TP+FP

and Recall rec = TP
TP+FN

are shown in Figs. 4 and 5,

respectively.

The harmonic mean of Precision and Recall, called F1-score, is F1 = 2 × prec×rec
prec+rec

.

It is shown in Fig. 6.
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Fig. 4 Precision of boosted classifiers (in blue) versus average of precision values of association

rules for the same consequent (in red). a LBG quantization. b k-means quantization (Color figure

online)

Finally, we compared the Precision of those boosted classifiers yielded after using

both techinques for vector quantizations on our source data with the Precision of

similarly boosted classifiers generated from the SIR-inspired 7-bin discretization we

presented in our previous work [10].

While the use of different quantization techniques has nearly halved the number

of produced classifiers, those ones remaining are much more accurate. As you can

see in Fig. 7, while LBG and k-means performance is nearly on par, with LBG being

marginally better, they both outperform our old classifiers with fixed symbols. This

is also true for the classifier for the emergency symbol E, whose Precision has grown

by 68%.
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Fig. 5 Recall of boosted classifiers (in blue) versus average of Recall values of association rules

for the same consequent (in red). a LBG quantization. b k-means quantization (Color figure online)

6 Conclusions

In this paper, a method to detect relationships between different measure types in a

sensor network has been devised for analysis and emergency detection purposes. A

set of association rules has been extracted using a subset of 10 years of Tuscanian

Open Data by SIR containing geophysical measures. Emergency information have

been extracted through queries to the Bing™ Search Engine. Stronger classifiers have

been generated using the AdaBoost meta-algorithm on association rules extracted by

the PFP algorithm. Having generated a strong classifier per symbol, we have grouped

each weak classifier and took their average performance as reference values to evalu-

ate possible improvements. The use of vector quantization has significantly improved

the accuracy of our boosted classifiers over the same dataset, especially that of our

classifier for emergency situations.
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Fig. 6 F1-score of boosted classifiers (in blue) versus average of F1-score values of association

rules for the same consequent (in red). a LBG quantization. b k-means quantization (Color figure

online)

Fig. 7 Comparison of precision for k-means, LBG, 7-bin quantization
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