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Autonomous Air Vehicle Operations

Ameer A. Khan, Kaye E. Marion, Cees Bil and Milan Simic

Abstract A ship operating in an open sea environment undergoes stochastic
motions which make deployment and landing of UAVs and other vehicles on a ship
difficult and potentially dangerous. There is always a delay between the decision to
commit and the moment of actual launch or recovery. This paper presents an
artificial neural network trained using singular value decomposition, genetic algo-
rithm and conjugate gradient method for the real time prediction of ship motions.
These predictions assist in determining the best moment of commitment to launch
or to recover. Predictions generated using these algorithms allow improvements in
safety as well reducing the number of missed or aborted attempts. It is shown that
the artificial neural network produces excellent predictions and is able to predict the
ship motion satisfactorily for up to 7 s ahead.

Keywords Ship motion « Prediction « ANN - Sea state - Artificial neural
network

1 Introduction

This paper presents the results of an investigation into the development of an
algorithm capable of predicting ship motion in various sea states to support
deployment and recovery of UAVs and other vehicles operated off their decks.
After the command is given, the algorithm provides important future ship motion
information automatically to the UAV to determine the best moment for launch or
recovery. This information will also facilitate the computation of the correct UAV
flight path and help identify dangerous or problematic situations that could
potentially cause damage to the ship or UAV.
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Ship motion in an open water environment is the result of complex hydrody-
namic forces acting between the ship, the water and other random processes. This
leads to the use of statistical prediction methods rather than a deterministic analysis,
which would result in a ship-specific model that involves highly complex calcu-
lations and many assumptions and approximations [1].

Past research in ship motion prediction [2-5] has shown that traditional statis-
tical prediction techniques such as autoregressive moving average models and
Kalman filters are unable to maintain a high degree of accuracy when the prediction
interval exceeds 3—4 s in sea states of 5 and above. Traditional statistical tech-
niques used for time series prediction have difficulty dealing with noisy data, do not
have much parallelism and fail to adapt to changing circumstances.

This paper explores the use of Artificial Neural Networks (ANN) which is a form
of artificial intelligence used to develop algorithms capable of predicting ship
motion. Artificial neural networks, in contrast to traditional statistical techniques,
promise to produce predictions with high accuracy, as well as high efficiency, due
to their ability to learn and adapt to prevailing conditions.

The ability to predict ship motion reliably, in any sea state, will enable more
intelligent automated air vehicles operations off ship platforms. Landing and
take-off of helicopters and aircraft, manned or unmanned, from ship decks, in rough
sea conditions, can be difficult and dangerous. If ship motion can be predicted
ahead with reasonable accuracy and communicated to the vehicle, touchdown
dispersion can be improved on landing, and a smoother aircraft trajectory can be
achieved on take-off. The benefits of reducing the touchdown dispersions is that, the
time to failure of the aircraft frames and the number of aborted landing attempts can
be increased.

Prediction of ship motion is important for the safe deployment for any vehicle,
such as missiles, UAVs and decoys from ship platforms, such as shown in Fig. 1,
for correct timing and initializing trajectory calculations [5].

In some cases, there is a launch “lock-out” condition where the missile, or
remote piloted vehicle, cannot be launched safely if, for example, the ship’s roll

Fig. 1 Ship-launch of decoys and UAVs
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angle exceeds a predefined operational limit, as there is a delay between launch
commit and actual launch. The algorithm developed in this investigation can
determine if the air vehicle is in the launch “lock-out” condition by predicting ship
motion by at least 7 s ahead. In this investigation the operational limit is when the
ship’s roll angle exceeds a certain magnitude. It is important that the predicted
angles are of a high accuracy as the batteries for the system are “one shot” batteries,
which means that the process of deployment, once activated, cannot be reversed.

2 Artificial Neural Networks

Artificial Neural Networks (ANN) form a class of systems that are inspired by
biological neural networks [6]. An ANN is simply a series of neurons that are
interconnected to create a network. They are a class of non-linear systems and there
are a wide variety of different approaches that can be used. The use of ANN is
particularly appealing due to its ability to learn and adapt. This is important for our
investigation as one of the underlying goals is to create an algorithm that is able to
work in all conditions and environments. The ANN architecture that was used to
create network for time series prediction was a multi-layer feed-forward ANN.

To validate the ANN, a data set of measured data was divided into two. One part
of the data set was designated for training purposes and the second part was
designated as the validation data set. Once trained, the validation data set was put in
the ANN and the resulting predictions based on the validation set were used to
measure the effectiveness of the ANN. The basic model for time series prediction is
shown in Fig. 2.

In Fig. 2 it can be seen that there are seven points. Lag O represents the current
sample while the past six values are represented by lags 1—6. In this investigation
lags of up to 30 were used as inputs into the ANN. The output of the ANN is the
prediction. It can be noticed that there is only one output shown. For every lead
prediction interval, it is advisable to use a single ANN. If multiple predictions are
required, then for every prediction interval a separate ANN should be used as the
weights for an optimal prediction will vary according to the prediction interval
desired. By having the ANN create multiple predictions, the overall optimal
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Fig. 2 Basic model for time series prediction using ANN
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prediction cannot be made. When separate ANNs create separate predictions, the
optimal weight configuration can be obtained for each prediction and therefore,
higher accuracy can be expected.

2.1 Training the Artificial Neural Network

Training of the ANN can be viewed as a minimization process where the weights in
the ANN are systematically adjusted in a manner that reduces the error between the
output of the ANN and the desired output. Therefore, the process of ANN training
becomes an optimization problem. Performance of the ANN will be dependent
upon the quality of the solution found after the training process has been completed.
The advantage of using ANN for ship motion prediction is that it is neither ship
specific nor condition specific. In addition, training the ANN can be done on a
conditions and autonomous basis as new ship motion data is measured and input to
the ANN for training. This way the ANN can adapt to changing conditions. In the
following sections three techniques are discussed that were used to determine ANN
weights.

2.2 Genetic Algorithm (GA)

The genetic algorithm (GA) is a part of a rapidly growing area of artificial intel-
ligence called evolutionary computing. The term ‘evolutionary computing’ is based
on Darwin’s theory of evolution, which states that problems are solved by an
evolutionary process resulting in a best solution. It is basically survival of the fittest
where the ‘fittest’ (best) ‘survivor’ (solution) evolves to create the next population.
Solution to a problem solved by the GA uses an evolutionary process based on the
principles of genetics and natural selection [7].

The algorithm begins with a population of solutions. Solutions from one pop-
ulation are taken and used to form a new generation of solutions or the next
population of solutions. The expectation is that the new population will be better
than the old one. Solutions or individuals are then selected to form new solutions or
‘offspring” according to their fitness. The fitness is a positive value that is used to
reflect the degree of ‘goodness’ of the solution and is directly related to the
objective value, which is minimization of the mean square error of the difference
between the output of the ANN and the target value in this investigation [8].

There are a number of advantages in using a genetic algorithm. Firstly, it does
not require any derivative information, as required by the back-propagation method
commonly used for training ANN. It simultaneously searches from a wide sampling
of the cost surface which is helpful for finding the general location of the global
minimum quickly. The GA can be implemented on parallel computers which will
allow the solution to be found more rapidly than if it were implemented on a single
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processor which is an important consideration for real time prediction as required
for this project. Also, as it provides a list of optimum variables and not just a single
solution, if the global minimum is difficult to locate a good alternative solution can
be returned.

2.3 Singular Value Decomposition (SVD)

The aim of this investigation is to develop a methodology to predict ship motion in
real time. Singular Value Decomposition (SVD) is a linear regression technique that
can quickly obtain an approximate set of optimum weights which is far superior to
randomly generated weights [9]. The values returned from SVD can be used as the
initial starting points for a selection of the population for the GA algorithm, dis-
cussed previously. They can, sometimes, be of such a high standard that this
method can be used alone. A detailed description of the SVD technique is beyond
the scope of this paper but essentially it can be expressed by matrix X which sat-
isfies the function:

AX=B (1)

When A and B are known and can be calculated efficiently using SVD. When
applying it to the ANN process the weights between the input layer and the hidden
layer are initially randomly generated. The training samples are then inserted into
the ANN and the hidden layer activation functions are calculated creating a matrix
equivalent to A. Also, the values for the inverse transfer function of the output are
also calculated creating a matrix equivalent to B. Applying SVD and solving Eq. 1,
the approximate optimal weights X are found.

2.4 Conjugate Gradient Method (CG)

The conjugate gradient (CG) algorithm created for ANN used in this investigation
was based on the Polak-Ribiere algorithm. The mathematical justifications for the
algorithm and a detailed description can be found in [10]. In a general sense, the
algorithm generates a sequence of vectors and search directions. The exact mini-
mum will be attained if the multi-dimensional function can be expressed as a
quadratic. The ANN error function is quadratic close to the minimum so conver-
gence to the local minimum will be very rapidly [11].

In this investigation the CG method was used as a means of improving the
solutions returned by the singular value decomposition methods. The CG method
can be used independently of the other techniques however there are distinct
advantages in using the CG method jointly with the other training techniques.
The CG method was used in conjunction with the SVD method because the SVD
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returns only linear optimal weights. The results of the SVD method are inserted into
the CG algorithm as the initial starting point for its search which can potentially
yield values for the weights that are far superior to the solutions developed by the
CG method when a randomly generated initial starting point is used.

3 Experimental Design

In this section an investigation is presented into the application of ANN for the
prediction of actual ship motion and to assess the levels of accuracy that can be
attained when using the ANN to predict a ship’s roll motion up to 7 s. The ANN
algorithms developed were applied to measure ship roll angle data taken from a
cruiser size vessel operating in sea states 5—6 based upon the Pierson-Moskowitz
Sea Spectrum. The term sea state is a description of the properties of sea surface
waves at a given time and place [12]. Greater the sea state indicate rougher con-
ditions. There were four databases of roll angle data, each 562 s in length, sampled
at 2 Hz. The training data was set to two thirds of the data sets and the validation set
was designated as the final third of the data sets. All results shown are the pre-
dictions made using the validation set only.

In order to increase the likelihood of obtaining predictions of higher accuracy the
data was preprocessed using two separate preprocessing schemes. The first pre-
processing scheme, which will be referred to as PP1, was chosen to remove the
trends and seasonality by taking the difference between consecutive points and
subtracting the mean. Due to the nature of the ANN being sensitive to subtle
variations, it may overemphasize the trends and seasonality at the expense of
focusing on more important characteristics in the data. The ANN may focus too
much on the obvious trends at the expense of extracting the more subtle variations.
Therefore, all trends that can be eliminated and easily brought back after the pre-
dictions are made should be purged before being entered into the ANN.

The difference performed by PP1 eradicates constant trends and any seasonal
trends with a large period if present. The drawback when taking a difference of the
data is that low frequency information that may be important to the network may be
lost as the differencing is a potent high-pass filter. The ANN is actually capable of
dealing with the trends and seasonality but it may be better for the ANN to focus on
its main objective which is to predict the future values and not be hampered by
being made to find trends and seasonality. The second preprocessing scheme is to
simply subtract the mean from the data before it is entered into the ANN and will be
referred as PP2. The results of the investigation are shown in Table 1. All results
were generated on a Pentium 4, 2.8 GHz processor. To assess the performance of
the ANN three performance criteria were defined:

e Criterion 1 is the percentage of predictions accurate within the 95 % confidence
interval. The success criterion for this investigation was to develop an algorithm
that can predict when a predefined angle is exceeded.
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Table 1 Results of ANN simulation

Preprocessing Database Training Criterion (%) CPU
technique method 1 2 3 time (s)
PP1 1 SVD 40.64 |70.59 |28.48 |0.03

SVD/GA 4475 | 55.00 |26.64 194.92
SVD/CG 4940 [66.67 [2292 |60.13
2 SVD 41.67 |67.86 |22.32 |0.02
SVD/GA 45.03 |50.00 19.68 191.08
SVD/CG 4570 | 71.43 17.86 | 62.19
3 SVD 46.15 |71.15 |30.56 |0.02
SVD/GA 57.28 |53.49 18.55 186.58
SVD/CG 68.05 [90.20 17.58 |59.09
4 SVD 29.17 | 69.77 |41.42 |0.02
SVD/GA 39.80 |59.52 [26.67 186.98
SVD/CG 38.05 |67.44 [25.88 |60.72

Average for all SVD 3941 [69.84 |30.70 |0.02
databases SVD/GA  [46.72 |54.50 [22.89 |189.89
SVD/CG  [50.30 |73.94 [21.06 |60.53
PP2 1 SVD 53.80 5294 [11.64 |0.02

SVD/GA 5260 |17.65 |[2.12 184.20
SVD/CG 5936 |17.65 [2.90 |59.05
2 SVD 63.14 [1429 497 |0.02
SVD/GA 56.55 2143 [1.43 192.38
SVD/CG 6550 |53.57 [12.66 |61.11
3 SVD 68.93 5000 [10.54 |0.02
SVD/GA 7000 |41.46 |9.38 187.73
SVD/CG 7500 |78.72 |7.40 |61.08
4 SVD 4251 [19.05 (392 [0.02
SVD/GA 5526 |35.14 |8.44 188.81
SVD/CG 5497 4054 [9.81 59.39
Average for all SVD 5710 [34.07 |7.77 0.02
databases SVD/GA  [58.60 |28.92 |[5.34 188.28
SVD/CG  [63.71 |47.62 (819 |60.16

e Criterion 2 is the percentage forecasts that correctly predicted that the roll angle
would exceed 7°.

e Criterion 3 is the percentage of forecasts that incorrectly predicted the lock-out
conditions.

The number of neurons in the input layer (NNIL) was varied from 5 to 30 and
the number of neurons in the hidden layer (NNHL) was varied from 2 to 5. The
output layer consisted of only 1 neuron in all cases. Results shown in Table 1 are
the best predictions of 7 s in advanced generated from these ANN architectures
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for each of the four databases labeled 1 to 4 in Table 1. First, the singular value
decomposition method was used to generate 30 solutions for the weights. The
remainder of the population was randomly generated. The genetic algorithm was
then used to find a solution. Also, the best weights returned from the SVD training
algorithm were also inserted into the CG algorithm as the initial starting point for
the CG search.

4 Discussion of Results

Based on our findings, ANN is capable of predicting ship motion in real time.
Against performance criteria 1, 2 and 3 the ANN was able to predict ship motion to
an approximate accuracy level of 64 %, 74 % and 5.34 % respectively.

Figures 3 and 4 show that the predictions basically mirror the actual recorded
motion of the validation set which is separate and distinct from the data set of data
used to train the ANN. The highest accuracy was obtained using the SVD/CG
trained ANN which took on average 60 s to train. Considering that the validation
set is approximately 170 s in length, at least 110 s of the validation set was gen-
uinely predicted in real time. Therefore, there is reasonable evidence that the ANN
is capable of producing predictions in the real time. There are two noticeable ANN
characteristics that can be observed in Table 1. The first important characteristic is
that for all four databases the ANN performed better based upon performance

Prediction with 7 sec ahead
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Fig. 4 NNIL = 25 and HHIL = 5 (ANN used PP1 and was trained using SVD/CG)

criteria 1 and 3 when PP2 was used rather than PP1. This implies that a higher
percentage of predictions were within the 95 % confidence interval and there was a
lower percentage inaccurate lock-out predictions. The other evident characteristic is
that the ANN which accepted the data preprocessed using PP1 outperformed the
ANN using PP2 based on performance criterion 2.

Figures 3 and 4 show the 7 s predictions made by an ANN using PP2 and PP1
respectively and give an understanding for these two characteristics highlighted in
the above discussion. Figure 3 shows that the ANN trained using PP2 is able to
produce very high quality predictions. Motion is represented well despite rapid
influxes in the amplitudes of the roll motion. The only problem with the predictions,
however, is that they are conservative in nature and tend to understate the true
amplitude of the motion. This explains why the resulting performance levels were
high with regards to criteria 1 and 3 but not against criteria 2.

Figure 4 shows the prediction of the ANN using PP1 and shows that the ANN
tends to overstate the roll motion amplitudes. This explains why the ANN using
PP1 is able to outperform the ANN using PP2 based on performance criteria 2. The
problem associated with the predictions generated by the ANN using PP1 is that,
because the predictions are overstated, they will be predisposed to yield more false
lock-outs. This is confirmed in Table 1 which shows that the predictions generated
by the ANN using PP1 had a higher percentage of lock-out conditions accurately
predicted and also a higher percentage of lock-out conditions incorrectly predicted.

Table 1 also shows that the combination of the SVD and CG (SVD/CG) training
methods is superior to that of the SVD method alone and the combined SVD and
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GA algorithms (SVD/GA) based upon nearly all three performance criteria. This
seems to be counterintuitive as the GA algorithm is designed for global mini-
mization searches whereas the SVD/CG method usually only finds local minimums.
The explanation of this phenomenon lies in the nature of the GA algorithm. The GA
algorithm is good at finding the general location of the global minimum but is slow
to find an exact solution. The number of generations used by the GA algorithm was
cropped to reduce computational time. This means that the solution may only have
been close to optimal. The CG method however is designed to rapidly progress to
the nearest minimum and only terminates when no further improvements could be
generated. As shows, the average CPU time used by the SVD/GA solution was
approximately 190 s whereas the validation set was only 170 s in length which
means that the predictions generated would not be useful. If more processor power
was available, one of two approaches could be used to further improve the results
shown in this paper. The first approach would be to increase the number of gen-
erations used by the GA algorithm until an optimal solution is achieved or a more
efficient approach would be to use the GA algorithm to find the approximate
location of the global minimum and then use the CG method to rapidly progress this
minimum.

Due to the small size of the data samples used to test the ANN algorithms it is
yet to be determined how long the ANN will remain valid without requiring a new
set of weights to be generated. As stated in Sect. 2.2, the GA algorithm can be
processed on parallel computers which would reduce CPU time. It may be feasible
to train the ANN with the SVD/GA method but as the SVD/GA method can take up
to three times longer to arrive at a set of weights that result in inferior predictions to
those generated by the ANN trained using the SVD/CG method it would be prudent
to train the ANN using the SVD/CG method.

The most efficient method for generating the necessary weights was the SVD
method. The CPU time required was only a fraction of a second on average and it is
this efficiency that meant that the SVD method could be used with the other two
training methods. Indeed, if one chooses to predict future ship motion with the
ANN that uses PP2, it is well worth considering using the SVD method alone due to
the computational efficiency of the SVD algorithm.

Table 1 shows that the ANN trained using SVD method produced predictions
that, on average, performed only 6 % worse than the ANN that was trained using
the SVD/CG methods based on performance criteria 1 when PP2 was used and
based on criteria 3, the ANN trained solely with the SVD algorithm performed
better producing less false lock-out predictions. Furthermore, the SVD/CG method
takes on average more than 60 s longer to arrive at a solution. If the ANN is trained
using the SVD algorithm alone then the computer processor would not need to be as
powerful and the weights could be updated more regularly. This is especially useful
when the ship performs maneuvers or when there are sudden dramatic changes in
the behavior of the roll motion which would require a new set of weights to be
generated.
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5 Conclusion

An Artificial Neural Network (ANN) was developed and trained using the singular
value decomposition method, the conjugate gradient method and the genetic
algorithm was presented and applied to the prediction of ship roll motion. It was
shown that the artificial neural network was capable of predicting ship motion up to
7 s in advance. The artificial neural network trained using the combination of the
singular value decomposition and conjugate gradient method produced the most
accurate prediction when the data was pre-processed by subtracting the mean. The
artificial neural network trained using the singular value decomposition method
proved to be able to predict ship motion reliably, accurately and quickly which
makes it a suitable candidate for predicting ship motion when conditions are
expected to change rapidly requiring the retraining of the network. Overall the use
of the artificial neural network is an effective technique for the prediction of ship
roll motion.
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