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Abstract SkyCube-tree has been developed to realize efficient range query process-

ing for Skyline Cube (SC). Apart from range queries, this paper demonstrates that

SkyCube-tree can be made use of efficient group-by query processing, though it is

originally designed to realize efficient range query processing. Since a group-by

query for SC includes the entire dataset as its processing range, the query process-

ing time is potentially large. From the experimental evaluation, the followings are

clarified:

∙ The size of SkyCube-trees is sufficiently allowable, since it is at most 2.5 times as

large as that of materialized view.

∙ The time of SkyCube-tree based sequential processing is nearly equal to that of

materialized view based one, regardless of its dedication to range query process-

ing.

∙ The time of SkyCube-tree based parallel processing is comparatively small and

stable. Even though cell-granularity is over 80%, its processing time is around

10% of that of materialized view based one.

Keywords Aggregate function ⋅ Skyline operator ⋅ Skyline cube ⋅Group-by query ⋅
SkyCube-tree ⋅ GPGPU

1 Introduction

In Data WareHouse (DWH) environments, On-Line Analytical Processing (OLAP)

[1] tools have been extensively used for a wide range of decision-support applica-

tions. These tools are built upon Data Cube [2], a collection of data cuboids which
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Fig. 1 Skyline Cube (SC) and group-by query result. a Skyline Cube. b Outstanding players

are implemented with Multi-Dimensional DataBase (MDDB) [3]. In MDDB to rep-

resent a data cuboid, tuples are partitioned into different cells based on the values of

their dimension attributes, where an aggregate function (e.g., SUM) is applied to a

measure attribute (e.g., sales) for the tuples partitioned in each cell and the resulting

value is assigned to the cell.

Skyline Cube (SC) [4, 5] has been proposed as an extension of Data Cube by

using the skyline operator [6] to aggregate tuples in a cell instead of the conventional

aggregate functions. The skyline operator has been received considerable attention

in the database and data mining fields. Given a set S of skyline attributes, a tuple

t is said to dominate another tuple t′, denoted by t ≻S t′, if Eq. (1) is satisfied. It is

assumed that smaller values are preferable over larger ones. Here, t[Ai] is used to

represent the value of the attribute Ai of the tuple t. Given a set D of tuples, Eq. (2)

defines the skyline operator Ψ on D.

(∃Ai ∈ S, t[Ai] < t′[Ai]) ∧ (∀Aj ∈ S, t[Aj] ≤ t′[Aj]) (1)

Ψ(D, S) = {t ∈ D|∄t′ ∈ D, t′ ≻S t} (2)

Figure 1a shows an example to explain the SC concept. Each tuple has attributes

of Baseball batters’ statistics database. Regarding hits, HR(HomeRun), and SB
(StolenBase), higher scores are supposed to be preferable over lower ones. If we

want to find the outstanding players for each combination of team and year, a

group-by query with dimension attributes G = {year, team} and skyline attributes

S = {hits,HR} can be issued toward the table of Fig. 1a. The table of Fig. 1b is the

query result.

In addition to the query type mentioned in the above (See Fig. 2b), range query

as another type (See Fig. 2c) can be available for SC, where the skyline opera-

tor is applied to aggregate tuples satisfying a range condition regarding dimension
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(a) (b) (c)

Fig. 2 Skyline Cube (SC) and SQL statements toward SC. a Schema of Skyline Cube. b Group-by

query. c Range query

attributes.

1

Although a range query for SC provides users with flexible querying

function, it brings much burdens upon a query processing system. To overcome

the difficulty, the work [7] has proposed SkyCube-tree, R-tree [8] like hierarchical

index structure, to implement an efficient range query processing system. Apart from

range queries, this paper demonstrates that SkyCube-tree can be made use of efficient

group-by query processing, though it is originally designed to realize efficient range

query processing.

The rest of this paper is organized as follows. Section 2 presents the SkyCube-

tree. Section 3 discusses group-by query processing methods based on SkyCube-tree.

Section 4 experimentally evaluates group-by query processing methods. Section 5

mentions the related work. Finally, Sect. 6 concludes the paper.

2 SkyCube-Tree

SkyCube-tree is organized in a R-tree like hierarchical structure to realize efficient

range query processing for SC. In SkyCube-tree, a cell of all dimension attributes is

treated as a point in a multi-dimensional space. Skyline operation result over tuples

belonging to a cell is associated to it. In order to process a range query, points

located inside the rectangle specified by a range condition are searched first, then

skyline operation results associated to the found points are used to compute the query

result. For a dimension attribute unreferenced in a query, a range is set between −∞
and +∞.

In order to design SkyCube-tree, it is required to consider that the skyline operator

is holistic in nature. That is to say, Eq. (3) holds on a set D of tuples regarding a set

S of skyline attributes. In other words, the skyline set regarding a subset S ′(⊆ S)
cannot be necessarily derived from the skyline set regarding S. SkyCube-tree makes

use of the extended skyline operator [9] to cope with the problem. The extended
skyline operator is based on strongly dominance relation defined in Eq. (4), which

strengthens dominance relation defined in Eq. (1). According to Eq. (4), a tuple t
cannot dominate another tuple t′ unless all the skyline attribute values of the former

1

It is possible to impose a range condition on a categorical dimension attribute by converting its

domain into a numerical one.
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are preferable over those of the latter. t is said to strongly dominate t′ (denoted by

t ≻+
S t ′

), if t and t′ satisfy Eq. (4). Based on strongly dominance relation, Eq. (5)

defines the extended skyline operator Ψ+
on D regarding S. Equation (6) holds on

D regarding S. By using Ψ+
, the skyline set regarding a subset S ′(⊆ S) is derivable

from the skyline set regarding S.

Ψ(D, S ′) ⊇ Ψ(Ψ(D, S), S ′) for S ′
⊆ S (3)

(∀Ai ∈ S, t [Ai] < t ′[Ai]) (4)

Ψ+(D, S) = {t ∈ D | ∄ t ′ ∈ D, t ′
≻
+
S t } (5)

Ψ(D, S ′) = Ψ(Ψ+(D, S), S ′) for S ′
⊆ S (6)

Figure 3 is the storage structure of SkyCube-tree. An extended skyline set is

variable-length and would occupy a large space region. Therefore, an extended sky-
line set is stored in extended skyline set space, which is separated from the body of

a SkyCube-tree and organized as a sequential file. An extended skyline set is pointed

from SkyCube-tree with its address.

2

A leaf node of a SkyCube-tree stores a list of

point records, each of which consists of point coordinates and extended skyline set
address. It is noted that a leaf node links to its next leaf node via nextLink. An internal

node of SkyCube-tree stores a list of Minimum Bounding Rectangle (MBR) records,

each of which consists of child node address, MBR coordinates, and extended sky-
line set address. MBR is a minimum rectangular region containing a set of points (or

MBRs) which its child node stores and is specified by a pair of its left-bottom point

coordinates and its right-upper point coordinates.

R-tree, whose structure is similar to SkyCube-tree, obtains an efficient retrieval

performance, by balancing its height on insertion/deletion of data. As a result, R-

tree is not necessarily superior in space efficiency because of an increasing number

of nodes. Since a query covering a huge area of SC can be easily expressed, it is

inevitably required to reduce the number of I/O operations for accessing to SkyCube-

tree. Therefore, SkyCube-tree should be made compact to reduce the number of I/O

operations. While a sizable quantity of data are added to DWH at a certain interval,

dynamic insertion/deletion of data is not generally performed until a next interval.

From this point of view, SkyCube-tree is constructed in a bottom-up way as follows.

(1) A set of tuples is arranged in the order following a space-filling curve

3

for a

multi-dimensional space based on all the dimension attributes.

(2) Following the curve, tuples with each combination of dimension attribute val-

ues stand in line and can be put together. For these tuples, extended skyline set

is computed

4

and stored in extended skyline set space. Then, a point record is

2

The size of address data is 8 bytes.

3Z-curve [10] is employed for the work.

4

Block Nested Loop (BNL) algorithm [11] is employed for the work.
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Fig. 3 Storage structure of SkyCube-tree

created and inserted into the current leaf node. If an enough space is not left in

the node for storing the point record, a new leaf one is created and made current.

The new one is referenced from the previous one via nextLink.

(3) Following the list of nodes created, MBR is calculated for all the points (or

MBRs) stored in each node. Also, extended skyline set is computed based on

all the extended skyline sets stored in the node and stored in extended skyline
set space. Then, a MBR record is created and inserted into the current internal

node. If an enough space is not left in the node for storing the MBR record, a

new internal one is created and made current.

(4) If the number of nodes created is one, this unique one is made the root of the

SkyCube-tree and construction process is finished. Otherwise, (3) is repeated.

3 Group-By Query Processing

Regarding a non-empty subset of dimension attributes, a non-empty subset of sky-

line attributes, and an arbitrary granule of cells, the group-by query result can be

computed by accessing to SkyCube-tree. Figure 4 shows the flow chart of group-by

query processing. All the leaf nodes of SkyCube-tree can be traversed rightward via

nextLink from the leftmost one, which can be accessed from the root node. Each

skyline address of a point record stored in a leaf node is put together into a corre-

sponding cell. As soon as all the skyline addresses of a cell are collected, the skyline
set of the cell is computed based on the skyline addresses, each of which points an

extended skyline set in the extended skyline set space.
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Fig. 4 Flow chart of

group-by query processing
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Fig. 5 Threads for parallel

skyline computation
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Like range query processing for SC [7], parallel processing scheme can be applied

to the process “Compute skyline set from extended skyline set for the cell” shown in

Fig. 4. To this end, GPGPU (General-Purpose computing on Graphics Processing

Units) [12] has been used to implement parallel processing, where massive light-

weight threads can be dealt with comparatively easily.

Let U be extended skyline set. For tuple t(∈ U), whether t belongs to a skyline set

or not can be judged by checking if t′(∈ U − {t}) dominates t (See Eq. (2)). Further-

more, dominance relation over t and t′ can be checked independently from other com-

binations. Based on the property, parallel processing can be executed for the process

“Compute skyline set from extended skyline set for the cell”. Figure 5 shows a set

of threads to be executed in parallel with GPU. For each combination of ti, tj(∈ U),
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a thread is dedicated to checking dominance relation over ti and tj. If tj ≻S ti holds,

ti is removed from the final skyline set. Although dominance relation over tk and

tk(k = 1, … , n) is self-evident, a thread is also generated for simplicity.

4 Experiments

In this section, SkyCube-tree and group-by query processing methods are experi-

mentally evaluated. First, the settings of experiments are described. Then, the size

of SkyCube-trees is presented. Finally, the processing time for group-by queries is

presented.

4.1 Experimental Settings

The experiments are conducted on an Intel Core i5-3550 3.3 GHz PC with 8 GB

memory and a NVIDIA Quadro K4000 with 768cores and 3 GB memory. C lan-

guage is used to implement programs. Also, CUDA [12], designed by NVIDIA, is

employed as GPGPU for working with C.

A synthetic dataset is generated to carry out the experiments. It contains 100,000

tuples, with a total of 14 attributes (a1, a2, … , a14): 5 attributes a1, … , a5 are

for dimension, and 9 attributes a6, … , a14 are for skyline. The domain size of

each dimension attribute is 10, where attribute values are generated from the uni-

form distribution. On the other hand, the domain size of each skyline attribute is

1,000. Specifically, a6, a7, a8 are independently generated from Gaussian distribu-

tion, a9, a10, a11 are correlated with a6, and a12, a13, a14 are anti-correlated with a6.

In the experiments, SkyCube-tree and the proposed query processing methods

are compared with the materialized view based one. A materialized view is a cuboid

which is precomputed and stored for answering queries. When a query is issued, it

can be processed by using a materialized view whose attribute set covers dimension

attributes and skyline attributes referenced in the query. For the experimental com-

parison, a materialized view organized in a sequential file is constructed. However,

it is noted that the materialized view is different from that of the work [4, 5], because

the former maintains extended skyline sets.

4.2 Storage Size of Skyline Cube

Figure 6 shows the storage size of the SkyCube-tree and the materialized view, each

of which is constructed for the synthetic dataset. In the experiments, the page size

is set to 4KB and the number of nodes in SkyCube-tree is 253. The storage structure

of SkyCube-tree consists of tree body and extended skyline set space. The size of the
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Fig. 6 Storage size of

SkyCube-tree and

materialized view
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SkyCube-tree is 16.1 MB, whose tree body occupies 1.01MB and whose extended
skyline set space occupies 15.09MB. Meanwhile, the size of the materialized view

is 6.35MB. Given a dimension attribute set G and a skyline attribute set S, the num-

ber of possible cuboids regarding a non-empty subset of G and a non-empty subset

of S is (2|G| − 1) (2|S| − 1). The materialized view is constructed regarding all the

dimension attributes and all the skyline attributes, which corresponds to the largest

cuboid among all the possible ones.

The total size of the SkyCube-tree is 2.5 times as large as that of the materialized

view. Although a unique SkyCube-tree is enough to make answers of all the queries,

the number of materialized views to be potentially needed is (2|G| − 1) (2|S| − 1),
as is mentioned in the above. Therefore, the storage size of SkyCube-trees is suffi-

ciently allowable. The main difference of storage size between the SkyCube-tree and

the materialized view constructed resides in the back portion of extended skyline
set space, where a family of extended skyline set referenced from internal nodes of

the SkyCube-tree are stored. These extended skyline sets are prepared for efficiently

processing a range query whose size is that of MBR corresponding to an internal

node or more. It is noted that the portion is not used for group-by query processing

and extra I/O times are not needed consequently.

4.3 Group-By Query Processing Time

Regarding group-by query processing time, SkyCube based sequential processing

(SG-) method, SkyCube based parallel processing (PG-) method, and materialized

view based sequential processing (MG-) method are compared. Given the number of

dimension attributes (dimension#), the number of skyline attributes (skyline#), and

cell-granularity, 100 queries are generated and query processing times are averaged.

For each query, a subset of dimension attributes and a subset of skyline attributes

are randomly chosen. Each dimensional size of a cell is set to the nth root of cell-
granularity, if dimension# is n.
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Fig. 7 Group-by query processing time for synthetic dataset (seconds). a dimension# = 3,

skyline# = 2. b dimension# = 3, skyline# = 3. c dimension# = 3, skyline# = 4. d dimension# = 3,

skyline# = 5

For MG-method, the materialized view is firstly constructed regarding all the

dimension attributes and all the skyline attributes. To make the experiments fair,

additional materialized views are constructed regarding 3 or more dimension

attributes and 2 or more skyline attributes, until the total size of materialized views

becomes not less than that of the corresponding SkyCube-tree. The number and each

dimension (skyline) attribute are randomly chosen. MG-method processes a query

by using the materialized view whose attributes set minimally covers dimension

attributes and skyline attributes referenced in the query.

Figure 7 shows the experimental results where dimension# is set at 3, skyline# is

varied from 2 to 5, and cell-granularity is varied from 10 to 100% with increments

of 10%. The tendency of each graph is roughly the same as follows:

∙ The processing time with SG-method is nearly equal to that with MG-method,

though SkyCube-tree is originally designed for efficient range query processing.

∙ The graphs rise to the right. The larger cell-granularity becomes, the more process-

ing time is needed.
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∙ The processing time with PG-method

5

is comparatively small and stable. It is

around 10% of that with MG-method, even if cell-granularity is over 80%.

Generally speaking of the skyline operator, if a set of skyline attributes includes

one attribute and another anti-correlated attribute both, the size of the resultant sky-

line set increases rapidly and its computational cost increases as a consequence. In

case of skyline# between 2 and 5 for the synthetic dataset, occurrence probability that

a set of skyline attributes includes one attribute and another anti-correlated attribute

both is 0.30556, 0.64286, 0.84127, and 0.94444 respectively.

Since a group-by query includes the entire dataset as its processing range, each

method is required to access to all the extended skyline sets. While MG-method does

it by sequentially scanning a materialized view, both SG-method and PG-method do

it similarly with a SkyCube-tree, by firstly going down to the leftmost leaf node from

the root and then traversing leaf nodes from left to right via nextLink. This is the

reason why both SG-method and MG-method take almost the same amount of time.

5 Related Work

Skycubes [13] is an efficient evaluation algorithm for the skyline operator. Let a sky-

line attribute set be S. Similarly to materialized views for a data cube, skycubes pre-

computes skyline operation result regarding a non-empty subset of S and organizes

all the operation results of distinct skyline attribute subsets in a lattice structure.

When a skyline operation is requested, the corresponding query result in the lattice

is returned as an answer. However, skycubes is simply dedicated to evaluating the

skyline operator. Meanwhile, queries for SC must take an additional set of dimen-

sion attributes into consideration.

Range-Sum (Range-Max) [14] is an algorithm for processing range queries which

use function SUM (MAX) to aggregate tuples belonging to each cell of a data cube.

To perform query processing efficiently, the algorithms rely on respective auxil-

iary index structures prefix-Sum and b-ary tree. Both index structures partition each

dimension attribute domain by an even interval, which leads to efficient searching

of index regions relating to query processing. However, they might be inferior in

space efficiency, if value distribution of a dimension domain is to some extent uneven

and/or sparse.

Ag+-tree [15, 16] is a hierarchical index structure dedicated to processing range

queries regarding a data cube. Similarly to SkyCube-tree, a unique Ag+-tree is con-

structed for a data cube. Let the number of dimension attributes be n. A node of Ag+-

tree consists of n pages, each of which is dedicated to a corresponding attribute, and

a single page possessing several kinds of aggregation values, where page is a unit of

I/O operations. However, it lacks high space efficiency, while SkyCube-tree is com-

pactly constructed in a bottom-up way.

5

Note that it includes the time to transfer data between main memory of CPU and RAM memory

of GPU.
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As mentioned before, the work [4, 5] proposed SC as an extension of Data Cube.

While materialized views are used to process group-by queries in the work, SkyCube-

trees are used to do that in our work. Additionally, another difference resides in that

range queries can be processed by using the same SkyCube-trees in our work [7].

6 Conclusion

Since a group-by query for SC includes the entire dataset as its processing range,

the query processing time is potentially large. Regardless of the difficulty, this paper

demonstrates that group-by queries for SC are processed efficiently with SkyCube-

tree, though it is originally designed to realize efficient range query processing.

While its storage size is sufficiently allowable, the processing time with SG-method

is nearly equal to that with MG-method and the processing time with PG-method

is comparatively small and stable. Even though cell-granularity is over 80%, the

processing time with PG-method is around 10% of that with MG-method.

A hierarchy consisting of several levels of a dimension attribute is supposed to

implement traditional OLAP tools. For example, {“the first half of the year”, “the

second half of the year”} might be one level, {“the first quarter of the year”, “the

second quarter of the year”, …} might be another level, and the others so on for a

fiscal period attribute. Drill-up (Drill-down) operator ascends (descends) a hierar-

chy, which makes group-by queries executed under cell-granularity corresponding

to some level of a hierarchy. However, it is noted that SkyCube-tree based query

processing methods are more flexible, since they can make group-by queries exe-

cuted under any of cell-granularity.

Our future work is related to reduction of a skyline set which is potentially huge

for a large number of skyline attributes. To this end, two kinds of operators might

be available. One is the k-dominant skyline operator [17] and the other is the top-k
query [18].
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