
Communication Simulator with Network
Behavior Logging Function for Supporting
Network Construction Exercise for Beginners

Yuichiro Tateiwa and Naohisa Takahashi

Abstract Interconnecting virtual machines realizes computer networks on ordinary

personal computers. Such a technique enables each student instead of a group to con-

struct networks in network exercises for beginners. In the exercises, students may ask

teachers to judge the correctness/incorrectness of their networks and to support the

debugging for their networks. The waiting time of students can be long because the

number of teachers is less than the number of students. An effective solution to this

problem is to develop a system that can judge whether students’ networks are cor-

rect and visualize the behavior of students’ networks as hints. Detail logs of network

behavior are necessary for realizing such a system. Here, we propose a communica-

tion simulator to record network behavior in detail during request/response commu-

nications, which are the transmissions of request data (e.g., icmp echo request) and

the corresponding response data (e.g., icmp echo reply).

Keywords Communication simulator ⋅ Network construction exercise ⋅ Network

behavior log

1 Introduction

It is important to increase the number of network engineers who administer com-

puter networks as an infrastructure to a ubiquitous society and provide new services

to the society. The experience of basic network construction is useful for not only

network administrators but also network application programmers and network sys-

tem designers.

Y. Tateiwa (✉) ⋅ N. Takahashi

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan

e-mail: tateiwa@nitech.ac.jp

URL: http://tk-www.elcom.nitech.ac.jp/

N. Takahashi

e-mail: naohisa@nitech.ac.jp

© Springer International Publishing Switzerland 2016

G. De Pietro et al. (eds.), Intelligent Interactive Multimedia Systems
and Services 2016, Smart Innovation, Systems and Technologies 55,

DOI 10.1007/978-3-319-39345-2_22

253



254 Y. Tateiwa and N. Takahashi

Network engineers define network specifications based on the network usage

specified by their clients, and then, these engineers construct networks that sat-

isfy these specifications. Therefore, there are network exercises where problems

are based on frequent usage examples and students must construct networks for the

available examples. We call these examples communication examples; they include

“Client A can browse web sites on server B” and “Communications from client C to

server A are intercepted by firewall D.”

In traditional exercises for beginners, students are first divided into several groups;

then, they construct networks with physical network devices. In recent years, how-

ever, it has become possible to realize networks by an interconnection of virtual

machines running on an ordinary personal computer because of the performance

improvement of personal computers and the evolution of virtual machine technol-

ogy. We call such networks of virtual machines VMN. VMNs realize an e-learning

environment where each student can construct his/her own network without consid-

ering time and placement (e.g., [1–5]).

In traditional exercises, each group attempts to construct networks based on exer-

cise problems. When they want to confirm the correctness of their networks or can-

not solve certain problems related to these networks, they approach their teachers for

help. In e-learning, however, their waiting time is increased because students con-

struct networks individually and the number of teachers is less than the number of

students. An effective solution to this problem is to develop a system that can judge

whether students’ networks (we call them answers) are correct and visualize the

behavior of these networks as hints.

Detail logs of network behavior are necessary for realizing such a system. For

example, the logs needed for the judgment system are passing points of communica-

tion data (e.g., network interface Y on node X) and a terminated operation (e.g., dis-

carding communication data because of a mismatch of the destination MAC address

in the communication data to the MAC address assigned to the network interface

that received the communication data). By comparing such data between the answers

and the correct answers, the system judges whether the answers are correct. The logs

needed for the hint generation system are operations for communication data in each

node, one of which is packet forwarding caused by a mismatch of the destination IP

address in the communication data to the IP addresses in its received node. It is not

possible to gather such data by using packet capturing of tcpdump [6] or by using

the trace data of network simulator ns-3 [7].

Therefore, here, we propose a communication simulator to record network behav-

ior in detail during request/response communications, which are transmissions of

request data (e.g., icmp echo request) and the corresponding response data (e.g., icmp

echo reply). Fourteen proposed operations realize request/response communication

in the simulator. The simulator receives network configurations and communication

attributes (e.g., source node and destination IP address) as its input and then, com-

putes the transmission of request data and response data. During such computation,

the simulator writes the executed operations into a file (called log file) one by one.

The simulator has the following features:



Communication Simulator with Network Behavior Logging Function . . . 255

∙ The target of simulation is limited to the transmissions of requests and responses

because it is used for judging whether the communication examples are successful

in the networks.

∙ Each operation uses a few configurations as its input in order to obtain detailed

relations between configurations and the success/failure of the communication

examples.

2 Preparation

This section describes the operators to operate data structures.

∙ operator []: It returns a sequence whose elements are its arguments. The argu-

ments are of variable length and are separated by commas. For example, “[1, 2,

3]” returns a sequence whose first element is “1,” whose second element is “2,”

and whose last element is “3.”

∙ operator <>: It returns a structure whose elements are its arguments. The argu-

ments are of variable length and are separated by commas.

∙ operator {}: It returns a set whose elements are its arguments. The arguments are

of variable length and are separated by commas.

∙ operator +: It returns a merged sequence between its arguments. For example, “[1]

+ [2] + [3]” returns a sequence whose first element is 1, whose second element is

2, and whose last element is 3.

∙ operator .: It accesses the value of a member valuable in a structure. For example,

when a structure s has a member variable e and there is a variable y and whose

data type is s, “y.e” accesses the value of valuable e.

3 Network Construction Exercise

3.1 Exercise Purpose

The target students have studied TCP/IP but have never constructed networks. The

exercise target involves the students getting accustomed to designing networks that

satisfy the following requirements and construct networks based on these designs.

1. IP address and subnet mask

2. IP network in a segment

3. Default route

4. Static routing

5. Server services (web page publishing on WWW)



256 Y. Tateiwa and N. Takahashi

Table 1 Data structure used by network devices

Name Meaning Data structure

nd Node identifier String

work State of working Boolean (if it is working, the value is true; otherwise, the

value is false)

proc A set of running

processes

A set consisting of structures (process name name,

listening protocol name prot, listening port number port,
listening IP address ip)

ni A set of network

interface configurations

A set consisting of structures (network interface name

name, assigned IP address ip, assigned subnet mask

mask, assigned MAC address mac)

rtable Routing table A set consisting of structures (destination IP address ip,

destination network address nwaddr, next hop IP address

nh, subnet mask of nwaddr mask, sender network

interface name ni_name)

atable ARP table A set consisting of structure (IP address ip, MAC address

mac)

ni_num Number of network

interfaces

Integer

Table 2 Data structure of network

Name Data structure

Network A structure (a host set hs, a router set rt, a switching hub set sw, a repeater hub

set rp, a cable set cb)

Host A structure (nd, work, proc, ni, rtable, atable)

Router A structure (nd, work, ni, rtable, atable)

Switching hub A structure (nd, work, ni_num)

Repeater hub A structure (nd, work, ni_num)

Cable A structure (node identifier nd1, network interface name of nd1 ni1_name,

node identifier nd2, network interface name of nd2 ni2_name)

Table 3 Actions of network devices

Name Actions

Host It receives a destination IP address and a destination port number as its input,

and gets web pages with HTTP. It receives a destination IP address as its

input, and checks a network continuity by using icmp echo messages

Router It relays IP packets. It replies to ICMP echo requests

Switching hub It relays Ethernet frames

Repeater hub It relays Ethernet frames

Cable It transmits data only between a network interface (host or router) and another

network interface (switching hub or repeater hub)



Communication Simulator with Network Behavior Logging Function . . . 257

3.2 Network

Tables 1, 2, and 3 list the specifications of networks in the exercise.

3.3 Structure of Exercise Problem

Exercise problems consist of communication examples and configuration require-
ments. The former is an example of communication available in students’ networks.

The latter consists of nodes that must be installed into networks, and setting values

that must be set in nodes, and cables that must connect the assigned nodes.

Communication examples consist of items in Table 4. Configuration requirements

have the same data structure as the network, as given in Table 2. Node identifiers

(e.g., the node identifier of host hs0 is hs0.nd) and network interface names (e.g.,

the network interface name of router rt0 is ni0.name(ni0 ∈ rt0.ni)) must be concrete

values, and the other items can be either ‘∗’ (denoting arbitrary values) or concrete

values.

3.4 Example of Exercise Problem

Communication examples are expressed using natural language in actual exercise

problems. For example, when a communication example consists of the following

values, it is expressed by sentences given at the top of Fig. 1.

Table 4 Data of communication example

Name Data structure

kind A string where “web-get” represents a communication getting web pages

from WWW servers and “icmp-echo” denotes the communication checking

network continuity

source A string that denotes a node identifier

destination A structure (destination node identifier nd, process name running on node nd

proc, listening IP address of proc ip, listening port number of proc port,
listening protocol name of process proc prot)

communication

route

A labeled rooted tree whose vertices are nodes that send or receive data,

labels are identifiers of the nodes, edges are data transmissions between

nodes, and root is the source node. Note that multiple children exist when the

data are broadcast by repeater hubs and switching hubs

process

reception

information

A set consisting of structures (proc, t), where proc denotes a process reading

requests or responses, t represents a communication timepoint, i.e., a time

point when the communication data remain at a node of communication).

Values of communication timepoints are vertices in communication routes



258 Y. Tateiwa and N. Takahashi

Fig. 1 Exercise problem

∙ kind k =“icmp − echo”

∙ source s =“svr1”

∙ destination d = < “”, “”, “192.168.0.2”, “icmp”, “”>

∙ communication route R =< v0,V ,E,L,F >,V = [v0, v1, v2, v3, v4, v5, v6, v7, v8,
v9, v10],E = {{v0, v5}, {v5, v2}, {v5, v3}, {v5, v4}, {v6, v10}, {v10, v7}, {v10, v8},
{v10, v9}, {v1, v7}},L = [“svr1”, “svr2”, “svr3”, “svr4”, “rpt1”, “svr1”, “svr2”,

“svr3”, “svr4”, “rpt1”],F(Vi)returnsLi
∙ process reception information P = {<v1,“kernel”>,<v6, “client”>}

Configuration requirements are expressed using natural language and figures

in actual exercise problems. For example, when configuration requirements cr =<
hs, rt, sw, rp, cb > consist of the following values, they are expressed by a figure

given at the bottom of Fig. 1, where letters at the top of the squares denote node type

and letters at the bottom represent the node identifier.

∙ hs = {n1, n2, n3, n4}, rt = {}, sw = {}, rp = {n5}, cb = {l1, l2, l3, l4}
∙ n1 = <“svr1”, ∗, ∗, ∗, ∗, ∗>, n2 = <“svr2”, ∗, ∗, ∗, ∗, ∗>, n3 = <“svr3”, ∗, ∗, ∗, ∗
, ∗>, n4 = <“svr4”, ∗, ∗, ∗, ∗, ∗>, n5 = <“rpt1”, ∗, 5>

∙ l1 = <“svr1”, ∗,“rpt1”, ∗ >, l2 = <“rpt1”, ∗,“svr2”, ∗ >, l3 = <“rpt1”, ∗,“svr3”,

∗ >, l4 = <“rpt1”, ∗,“svr4”, ∗ >

3.5 Exercise Process

Each student constructs networks with physical devices and virtual devices on the

basis of exercise problems. Then, they write reports on the executed steps and config-

urations in the constructions. After solving all problems, they submit their reports to

their teachers. In the case they cannot comprehend certain sections of the exercises,

they approach their teachers or teaching assistants for help.



Communication Simulator with Network Behavior Logging Function . . . 259

4 Communication Simulator

4.1 Function Definition

The deta structure of communication data pkt used in the following functions is

a structure (protocol name prot, destination IP address dip, source IP address sip,

destination port number dp, source port number sp, payload pl, destination MAC

address dmac, source MAC address smac).

4.1.1 Functions to Get Data from Configurations

∙ RT(nd): It returns a routing table from the node whose identifier is nd.

∙ AT(nd): It returns an ARP table from the node whose identifier is nd.

∙ MAC(nd): It returns a set consisting of structures (ni, mac), where ni is a network

interface name in the node whose identifier is nd, and mac is its MAC address.

∙ IP(nd): It returns a set consisting of structures (ni, ip), where ni is a network inter-

face name in the node whose identifier is nd, and ip is its IP address.

∙ NI(nd): It returns a set consisting of all network interfaces in the node whose iden-

tifier is nd.

∙ PROC(nd): It returns a set consisting of listening processes in the node whose

identifier is nd.

∙ WORK(nd): It returns the working state of the node whose identifier is nd.

∙ ARP(nd, ni, ip): If the node whose identifier is nd gets a MAC address correspond-

ing to an IP address ip by an ARP communication at the network interface whose

name is ni, it returns the MAC address; otherwise, it returns “”.

∙ KIND(nd): If the node of nd is a host, it returns “hs”; else, if the node of nd is a

router, it returns “rt”. Further, if the node of nd is a switching hub, it returns “sw”;

else, if the node of nd is a repeater hub, it returns “rp”.

∙ PairNI(nd, ni_name): Here, nd denotes a node identifier, and ni_name repre-

sentes a network interface name. It returns a tupple (ndpair, ni_namepair) whose

ni_namepair is the name of the network interface connected to a network interface

whose name is ni_name in the node whose identifier is nd, and whose ndpair is an

identifier of the node that has the network interface ni_namepair.

4.1.2 Functions Consisting Operations in Node

Every function writes its name, its inputs, and its outputs at the end of a log file
during its execution.

∙ ReqPkt(prot, pl, dip, dp): Here, prot denotes the protocol name; pl, the payload;

dip, the destination IP address; and dp, the destination port number. If prot =“tcp”

is true, it inputs at random an ephemeral port number into source port sp; other-

wise, it sets sp =“”. Then, it returns <prot, dip, “”, dp, sp, pl, “”, “”> as the com-

munication data.



260 Y. Tateiwa and N. Takahashi

∙ RepPkt(proc, pkt): Here, proc denotes a process name and pkt represents the com-

munication data. If proc =“apache” ∧pkt.pl = “HTTP GET REQUEST” is true,

it sets pl = “HTTP GET RESPONSE”; else, if proc =“kernel”∧ pkt.pl = “ICMP

ECHO REQUEST” is true, it sets pl = “ICMP ECHO REPLAY”. Then it returns

<pkt.prot, pkt.sip, pkt.dip, pkt.sp, pkt.dp, pl,“”, “”> as the communication data.

∙ ChkDIP(dip, nd): Here, dip denotes the destination IP address and nd represents

the node identifier. If there is i whose i.ip = dip(i ∈ IP(nd)) is true, it returns true;

otherwise, it returns false.

∙ ChkDMac(dmac, nd, ni): Here, dmac denotes the destination MAC address; nd,

the node identifier; and ni, the network interface name. If there is m whose m.ni =
ni ∧ m.mac = dmac(m ∈ MAC(nd)) is true, it returns true; otherwise, it returns

false.

∙ Proc(prot, dp, dip, nd): Here, proc denotes the process name; dp, the destina-

tion port number; dip, the destination IP address; and nd, the node identifier. If

there is proc whose proc.prot = prot ∧ proc.port = dp ∧ proc.ip = dip in proc ∈
PROC(nd) is true, it returns proc.name; otherwise, it returns “”.

∙ L1Rtng(nd, ni): Here, nd denotes the node identifier and ni represents the network

interface name. It returns a queue whose elements are ni and whose ni ≠ nis ∧
WORK(ndadj) = true ∧ ndadj ≠ “” is true in (ndadj, niadj) = PairNI(nd, nis)(nis ∈
NI(nd)). The elements are sorted in an ascending order by ndadj as the first key

and niadj as the second key.

∙ L2Rtng(dmac, ni, nd): Here, dmac denotes the destination MAC address; ni,

the network interface name; and nd, the node identifier. If there is nis whose

m.ni = niadj ∧ m.mac = dmac ∧ ni ≠ nis ∧WORK(ndadj) = true ∧ ndadj ≠ “” in

m = MAC(ndadj), (ndadj, niadj) = PairNI(nd, nis), nis ∈ NI(nd) is true, it returns a

queue whose elements are nis sorted in the ascending order by ndadj as the first

key and niadj as the second key; otherwise, it returns L1Rtng(nd, ni).
∙ L3Rtng(dip, nd): Here, dip denotes the destination IP address, and nd represents

the node identifier. If it finds rtable ∈ RT(nd) whose rtable.ip matches dip by the

longest prefix match or whose rtable.nw and rtable.mask match dip by the longest

prefix match, it returns a tupple (rtable.nh, rtable.ni); otherwise, it returns a tupple

(“”, “”).

∙ Rcv(proc, pkt): Here, proc denotes a process name and pkt represents commu-

nication data. If (proc =“apache” ∧ pkt.pl =“HTTP GET REQUEST”) ∨ (proc =
“kernel”∧pkt.pl =“ICMP ECHO REQUEST”) is true, it returns false; otherwise,

it returns true.

∙ SIP(nd, ni): Here, nd denotes the node identifier and ni represents the network

interface name. If there is i whose i.ni = ni(i ∈ IP(nd)) is true, it returns i.ip; oth-

erwise, it returns “”.

∙ DMac(ni, dip, nd): Here, ni denotes the network interface name; dip, the destina-

tion IP address, and nd, the node identifier. If record.mac ≠ “” (record ∈ AT(nd))
is true, it returns record.mac; otherwise, it returns ARP(nd, ni, dip).

∙ SMac(nd, ni): Here, nd denotes the node identifier and ni represents the network

interface name. If there is m whose m.ni = ni(m ∈ MAC(nd)) is true, it returns

m.mac; otherwise, it returns “”.



Communication Simulator with Network Behavior Logging Function . . . 261

∙ Transmit(nd, ni): Here, nd denotes the node identifier and ni represents the network

interface name. It returns PairNI(nd, ni).
∙ Dsc(pkt): Here, pkt denotes the communication data. It discards pkt. It returns

nothing.

4.2 Pesudo Code

Procedures 1–4 show the pesudo code of the simulator. When you execute simula-

tion by this simulator on the basis of communication exampleE, you execute function

Communicate(d.prot, pl, dip, d.port, s), where d denotes the destination of E; pl is

set as “HTTP GET REQUEST” (type of E is “web-get”); pl is set as “ICMP ECHO

REQUEST” (type of E is “icmp-echo”); dip is set as “d.ip” (d.nd=“”); dip is set as

ni.ip(ni ∈ IP(d.nd)) (d.nd ≠ “”); and s is source of E.

Procedure 1 Communicate

Input: protocol name prot, payload pl, destination IP address dip, destination port number dp,

source node identifier nd
1: if WORK(nd) then
2: pkt = ReqPkt(prot, pl, dip, dp)
3: HsRtOut(pkt, nd)
4: else
5: Dsc(pkt)
6: end if

5 Prototype System

5.1 Communication Simulator

Let us consider an incorrect network for the exercise problem described in Sect. 3.4.

Its incorrect configurations are the IP addresses of svr4 (192.168.0.2) and svr2

(192.168.0.254). Figure 2 shows a part of the log file generated by our simulator

by using the network. Each line consists of a function name, input values, and output

values. The symbol “\\” on the right side denotes hyphenation.

Fig. 2 Log file



262 Y. Tateiwa and N. Takahashi

Procedure 2 HsRtOut

Input: sent communication data pkt, identifier of sender node nd
7: (ip, ni) = L3Rtng(pkt.dip, nd)
8: if ni ≠ “” then
9: if pkt.sip = “” then

10: pkt.sip = SIP(nd, ni)
11: end if
12: pkt.smac = SMac(nd, ni)
13: pkt.dmac = DMac(ni, ip, nd)
14: if pkt.dmac ≠ “” then
15: (ndr , nir) = Transmit(nd, ni)
16: if KIND(nd) =“rp”∨KIND(nd) = “sw” then
17: SwRp(pkt, ndr , nir)
18: else
19: Dsc(pkt)
20: end if
21: else
22: Dsc(pkt)
23: end if
24: else
25: Dsc(pkt)
26: end if

Procedure 3 SwRp

Input: received data pkt, identifier of receiver node nd, name of receiver network interface ni
27: if WORK(nd) then
28: if KIND(nd) =“rp” then
29: NIs = L1Rtng(nd, ni)
30: else if KIND(nd) =“sw” then
31: NIs = L2Rtng(pkt.dmac, ni, nd)
32: end if
33: if NIs ≠ {} then
34: repeat
35: pickupanelementfromtheheadofNIsandsetittonis
36: (ndr , nir) = Transmit(nd, nis)
37: if KIND(ndr) =“hs”∨KIND(ndr) =“rt” then
38: HsRtIn(pkt, ndr , nir)
39: else
40: Dsc(pkt)
41: end if
42: until NIs ≠ {}
43: else
44: Dsc(pkt)
45: end if
46: else
47: Dsc(pkt)
48: end if



Communication Simulator with Network Behavior Logging Function . . . 263

Procedure 4 HsRtIn

Input: received data pkt, identifier of receiver node nd, name of receiver network interface ni
49: if WORK(nd) then
50: if ChkDMac(pkt.dmac, nd, ni) = true then
51: if ChkDIP(pkt.dip, nd) = true then
52: proc = Proc(pkt.prot, pkt.dp, pkt.dip, nd)
53: if proc ≠ “” then
54: if Rcv(proc, pkt) = false then
55: pkts = RepPkt(proc, pkt)
56: HsRtOut(pkts, nd)
57: end if
58: else
59: Dsc(pkt)
60: end if
61: else
62: HsRtOut(pkt, nd)
63: end if
64: else
65: Dsc(pkt)
66: end if
67: else
68: Dsc(pkt)
69: end if

The first log implies that the execution of function ReqPkt with prot = “icmp,”

pl = “icmp-echo,” dip = “192.168.0.2,” and dp = “” as its input arguments returned

communication data (prot = “icmp,” dip = “192.168.0.2,” sip = “”, dp = “”, sp

= “”, pl = “icmp-echo,” smac = “”, and dmac = “”). The second log implies the

execution of function L3Rtng, and in particular, the log stores the node information

of its argument nd.

5.2 Application Example of Log

The visualization of communication is helpful for students to debug their networks.

We visualized the executed operations during communication by getting several data

from the log file. Figure 3 expresses the executed operations, their orders, and their

nodes by a directed graph. The vertices consist of “an operation name,” “@,” and

“identifier of its execution node.” The direction of the edges denotes the execu-

tion order of the operations on the vertices. This network is incorrect because svr4

receives communication data while the exercise problem requires that svr2 receives

the data according to the graph.



264 Y. Tateiwa and N. Takahashi

Fig. 3 Graph of execution operations

6 Evaluation Experience

This experience aims at clarifying the basic performance of our simulator. We imple-

mented our simulator in C++, and executed it with ping executions of several net-

works on a computer with an Intel core i7-3770K 3.50-GHz CPU and 4-GB main

memory. Table 5 shows the result. “Transmissions” denotes all counts at which the

nodes transmitted communication data. “Routing entries” representes the counts of

the routing table entries in all nodes. According to the result, we conclude that our

simulator is available for beginners’ exercises because the number of routers in the

exercises is less than 10, and the consumption of the computer resources in the case

is enough small to current computers.



Communication Simulator with Network Behavior Logging Function . . . 265

Ta
bl
e
5

M
e
a
s
u
r
e
m

e
n
t

re
s
u
lt

N
e
tw

o
rk

C
o

m
m

u
n

ic
a
ti

o
n

A
v
e
r
a
g
e

C
P

U

u
s
a
g
e

(
%

)

E
x
e
c
.

ti
m

e
(
s
)

M
a
x
.

R
S

S

(
K

B
)

T
ra

n
s
m

is
s
io

n
s

R
o
u
ti

n
g

e
n

tr
ie

s

L
o

g
fi

le
s
iz

e

(
B

y
te

s
)

L
o
g

c
o
u
n
ts

A
c
o
r
r
e
c
t

n
e
tw

o
rk

(
F

ig
.
4
)

E
x
e
c
u
te

p
in

g
to

s
v
r
R

a
t

s
v
r
L

6
4

0
.0

0
6

2
,9

8
0

8
4

5
,5

9
4

3
6

F
ig

.
4

(
N
=

1
0
)

E
x
e
c
u
te

p
in

g
to

s
v
r
R

a
t

s
v
r
L

8
1

0
.0

2
3
,4

8
8

4
4

1
1
2

9
1
,0

6
1

1
8
4

F
ig

.
4

(
N
=

1
0
0
)

E
x
e
c
u
te

p
in

g
to

s
v
r
R

9
6

1
.2

2
8

3
7
,0

7
6

4
0
4

1
0
,1

0
2

6
,7

1
8
,8

4
6

1
,6

2
4

F
ig

.
4

(
N
=

2
5
4
)

E
x
e
c
u
te

p
in

g
to

s
v
r
R

9
6

7
.2

2
2
1
3
,2

0
4

1
,0

2
0

6
4
,7

7
2

4
3
,3

5
4
,8

3
0

4
.0

8
8



266 Y. Tateiwa and N. Takahashi

Fig. 4 Network for the experiment. It is possible to transmit data between svrL and svrR

7 Conclusion

In this paper, we proposed a simulator that stores network behavior for request/

response communications. We consider that the stored data are useful for the cor-

rect/incorrect judgment and hint generation. We showed a graph to express network

behavior as an example of hints. We carried out an evaluation experiment where we

measured the basic features of the simulator. According to its result, we concluded

that the simulator can sufficiently work on computers with ordinary performance

in computing small networks that beginners construct in the exercises. Our future

works include an expansion of the simulation target, e.g., firewalls and NAT.

Acknowledgments This study was partially funded by the Grants-in-Aid for Scientific Research

Foundation (25750082) and public interest TATEMATSU foundation.

References

1. Tateiwa, Y. et al.: LiNeS: virtual network environment for network administrator education. In:

Proceedings of Information and Control (ICICIC-2008) (2008)

2. Iguchi, N. et al.: Development of hands-on IP network practice system with automatic scoring

function. In: Proceedings of 2013 Seventh International Conference on Complex, Intelligent,

and Software Intensive Systems, pp.704–709 (2013)

3. Le, Xu, Huang, Dijiang, Tsai, Wei-Tek: Cloud-based virtual laboratory for network security

education. IEEE Trans. Educ. 57(3), 145–150 (2014)

4. Wannous, Muhammad, Nakano, Hiroshi: NVLab, a networking virtual web-based laboratory

that implements virtualization and virtual network computing technologies. IEEE Trans. Learn.

Technol. 3(2), 129–138 (2010)

5. Ruiz-Martínez, Antonio, Pereñíguez-García, Fernando, Marín-López, Rafael, Ruiz-Martínez,

Pedro M., Skarmeta-Gómez, Antonio F.: Teaching advanced concepts in computer networks:

VNUML-UM virtualization tool. IEEE Trans. Learn. Technol. 6(1), 85–96 (2013)

6. TCPDUMP_LIBPCAP public repository. http://www.tcpdump.org/ (2016). Accessed 28 Jan

2016

7. ns-3. https://www.nsnam.org/ (2016). Accessed 28 Jan 2016

http://www.tcpdump.org/
https://www.nsnam.org/

	Communication Simulator with Network Behavior Logging Function for Supporting Network Construction Exercise for Beginners
	1 Introduction
	2 Preparation
	3 Network Construction Exercise
	3.1 Exercise Purpose
	3.2 Network
	3.3 Structure of Exercise Problem
	3.4 Example of Exercise Problem
	3.5 Exercise Process

	4 Communication Simulator
	4.1 Function Definition
	4.2 Pesudo Code

	5 Prototype System
	5.1 Communication Simulator
	5.2 Application Example of Log

	6 Evaluation Experience
	7 Conclusion
	References


