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Abstract The paper puts forward a new data set comprising 357 histopathological

image samples obtained from colon tissues and distinguished into four cancer grades.

At the same time, it proposes an automatic methodology for extracting knowledge

from these images and discriminating between the disease stages on its base. The

approach identifies the glands and nuclei and uses morphological and topological

features related to these components to generate 76 attributes that are further used

for classification via support vector machines. The values of one parameter used for

the identification of the nuclei are tuned and surprisingly good results are reached

when overlapping nuclei are identified as singular objects.
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1 Introduction

Histopathological images are obtained by staining body tissues that are subsequently

examined under a microscope [1]. The current protocol for cancer diagnosis in gen-

eral, and for the colorectal type, in particular, involves the human expert (pathol-

ogist) analysis of the histopathological image while the best treatment for cancer

consists in its early diagnosis [2, 3]. Although the judgement of the pathologist is

educated and based on a vast experience, it is subjective and may lead to serious vari-

ability [1, 4, 5]. Furthermore, the physicians are confronted with a vast amount of

histopathological images, due to the important investments in developing advanced

microscopy hardware and the persuasion of individuals to have medical examina-

tions more often. A potential aid could come from quantitative image-based evalu-

ation of digital pathology slides, as these could at least eliminate the most obvious

cases and leave the pathologists to concentrate on the most difficult records.

There is an acknowledged lack of benchmark data sets in histopathology imaging

for validating techniques and for their comparison. In this respect, a data set of 357

histopathological images is made available [6] and a diagnosis support methodology

is proposed, which achieves an overall prediction accuracy of almost 80 % on dis-

tinguishing between cancer stages from information automatically extracted from

the collection. Next section briefly describes the image data set and the proposed

methodology to extract the features and set a diagnosis, Sect. 3 outputs the results

and Sect. 4 contains concluding remarks.

2 Feature Extraction and Classification

The data set [6] contains histopathological images of normal tissue and for cancer

grades G1, G2, and G3. For ease of reference, we will refer to them in the current

paper as G0, G1, G2 and G3. The next subsection contains a detailed description

of the collection. Subsequently, the feature extraction stage is concentrated on the

identification of glands and nuclei and several measures derived from this informa-

tion are further used to construct a numerical data set that is fed to a support vector

machine (SVM) in order to accurately grade the tissues.

2.1 Histopathological Image Data Set

The images are obtained from colon tissue slides stained using hematoxylin and

eosin (H&E) and obtained from an electron microscope at the ×10 magnification

level at the Emergency County Hospital of Craiova, Romania. We depart from 30

histopathological images that represent cancer grades G1, G2 and G3 from 30 dif-

ferent patients. Most of them contain border regions between normal tissues and
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Fig. 1 Samples of the initial histopathological images. The borders are delineated between normal

condition and grades 1, 2 and 3, respectively (from left to right)

malignant ones (see Fig. 1), so as in [7] representative parts could be extracted for

G0, G1, G2 and G3. The obtained samples have a similar resolution of 800× 600

pixels and they are 357 in total, distributed as follows: 62 cases as normal, 96 as G1,

99 as G2 and 100 as G3, respectively.

The images have various intensities, but they are all included in normal cases,

as these are obtained from images contained in the representatives from the grades

G1–G3.

2.2 Feature Extraction and Proposed Diagnosis Support
Methodology

Usually, after the histopathological images are produced, computer-based grading

follows several stages, i.e. image preprocessing, feature extraction, reduction of the

number of feature and finally classification [1, 3–5, 8].

Although the images possess very different particularities, especially when the

comparison is between distinct grades, the glands and the nuclei appear in most of

them (there are exceptions with glands that are missing in some images denoting

cancer grade 3). There are not many works that take into account both the glands

and nuclei at the same time. Most of them concentrate on the nuclei and additionally

tackle other textural features [3, 4, 7]. As opposed to the other studies, the focus

of the current work thus becomes to detect and use these two common presences

alike. For each found component, besides its counting, several characteristics were

measured: the area and perimeter were computed, the enclosing circle was found

and its radius was also taken into consideration. For every image and for the three

measures the average, median, standard deviation and the ratio between the minimum

and the maximum value were subsequently calculated.

Efforts for accurately identifying the gland interiors have been previously made

([9] and [10]) and the procedures that proved successful were employed in the cur-

rent study. Gaussian smoothing is used as a preprocessing step as it showed to be

more efficient as opposed to box, normalized box, median or bilateral filtering. It

is then followed by a watershed algorithm [11] for boundary-based segmentation



148 C. Stoean et al.

of the glands interiors. The watershed algorithm uses a set of marked pixels on the

grayscale version of the image for avoiding the creation of too many contours. For

that, a thresholding operator is used to transform the image into a binary one. Then,

noise elimination has to take place on the black and white image, i.e. the discarding

of very small white spots on the black background (erosion), as well as the oppo-

site (dilation). In [9] and [10] an evolutionary algorithm is used to search for good

input parameter values for the described methodology and among them the thresh-

old, number of erosions and dilations were included. In the current work, values for

these parameters were chosen as the ones that previously proved to be well-suited

overall.

Besides the statistical measures referring to the area, perimeter and radius of the

glands, the layout of the components is also considered via two graph-based tech-

niques. Consequently, the interior points of the enclosing circles for the detected

glands (seeds) are used to draw the Delaunay triangles and Voronoi diagrams. The

Delaunay triangles have the property that no point in the initial set lies inside the cir-

cles that enclose the formed triangles. The Voronoi diagrams conduct a separation

of the plane into regions where all included points are closer to the specific seed of

their regions as opposed to the other ones. Euclidean distance is used in the current

implementation. An example of the application of the two techniques for four images

containing grades G0–G4 is illustrated in Fig. 2. For the obtained triangles and poly-

gons once again the area, perimeter and radius of the circumcircle are calculated and

the same average, median, standard deviation, and minimum to maximum ratio are

considered for each one of them.

In the current work, various methods had been tested for identifying the nuclei

[3, 4, 7], like color quantization, k-means, fitting ellipses to the found contours via

Hough Transform, the watershed algorithm and different preprocessing techniques

had been tried (various filtering options, the Laplacian to sharpen the image). How-

ever, experiments showed that all these in multiple combinations conducted to sub-

Fig. 2 Delaunay triangles (first line) and Voronoi diagrams (second line) found for the detected

glands in images corresponding to a normal sample, grades 1, 2 and 3 (from left to right). The

points that serve as inputs for the Delaunay triangles and Voronoi diagrams are found as central

points for the circles that enclose the contours of the detected glands
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optimal results as far as the visual appreciation of the physicians is concerned. Con-

tours were obtained with higher precision when the distance transform algorithm

[12] was applied for this purpose, as the method deals relatively well with overlap-

ping nuclei [13–15].

The procedure flows as follows:

∙ The image is transformed into the grayscale variant.

∙ In a preprocessing step, the image is blurred using a normalized box filter.

∙ A threshold is applied to the obtained picture in order to obtain a binary one. As

noticed in the experimental phase, the accuracy of the methodology depends at a

high degree on the choice of this threshold parameter.

∙ The distance transform is applied on the resulting binary picture. The procedure

calculates for every pixel the distance to the closest black one and thus produces a

new image with the same size as the initial input. In our experiments an Euclidean

distance is employed.

∙ The new image is then normalized.

∙ The image is later transformed into a binary one. On the resulting image, the con-

tours of the detected objects represented the found nuclei.

Analogously to the case of gland detection, the area, perimeter, radius of the cir-

cumcircle of each detected object are computed and the associated statistical infor-

mation associated to these are also calculated. The distribution of the found contours

is also measured via the Delaunay triangulation and Voronoi diagrams with all the

associated measurements as in the case of the glands. An example of the applica-

tion of the two graph-based techniques for the detected nuclei can be seen for all the

different grades in Fig. 3.

Table 1 recapitulates the features that are extracted from each image. As the num-

ber of attributes is relatively high, a SVM was employed to deal with the problem,

as the methodology is acknowledged to be independent of the data dimensionality in

Fig. 3 Delaunay triangles (first line) and Voronoi diagrams (second line) found for the detected

nuclei in another set of images corresponding to a normal sample, grades 1, 2 and 3 (from left to

right). The points that serve as inputs for the Delaunay triangles and Voronoi diagrams are found

as central points for the circles that enclose the contours of the detected nuclei
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Table 1 The 76 features that are extracted from each histopathological image that enter into the

subsequent classification process

Feature Measures Statistics Total

Morphological Area, perimeter, radius for glands and

the same three for nuclei

Average, median, standard

deviation, min/max

24

Number of glands and of nuclei – 2

Topological Area, perimeter, radius for the

Delaunay triangles and the same three

for the Voronoi polygons for glands

and repeated for nuclei

Average, median, standard

deviation, min/max

48

Number of Delaunay triangles for

glands and for nuclei

– 2

The statistics are calculated for each measure on the line, for both glands and nuclei

a decision problem [16]. However, Principal Component Analysis (PCA) for reduc-

ing the number of features was also applied and SVM is afterwards utilized on the

resulting data.

3 Experimental Results

The considered classification problem contains four classes to distinguish between,

is characterized by 76 numerical attributes and contains 357 samples. Each sample

is obtained from one histopathological image and the numerical values depend very

much on the parameter values set for the procedures that derived them. In the cur-

rent experiments, the interest lies in achieving a good overall accuracy, finding the

accuracy between each pair of grades taken in turn, but also in observing how much

does one parameter count (i.e. the threshold applied prior to the distance transform)

in the overall diagnosis process.

3.1 Task

Observe the effect of the threshold parameter used to identify the nuclei over the

overall accuracy of the classifier.

3.2 Setup

In the pre-experimental tests, it was observed that the SVM with a linear kernel

conducted to significantly better results than when using a radial one. The threshold
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was set to 160, as the physicians visually appreciated the results on several images

as reasonable. The PCA reduced the number of attributes from 76 to only 13, as this

was the number of components required to explain at least 95 % of the variance. For

the PCA-transformed data, the SVM with a radial kernel reached an accuracy that

was around 4 percent better than when using a linear kernel.

The threshold that transforms the image into a binary one prior to the application

of the distance transform value is tuned from 130 to 200, considering only multiples

of 5. Therefore, there are 15 different numerical data sets for the histopathological

images and each one is subject to classification by SVM.

The numerical data set is randomly split into 2/3 training samples that are used to

instruct the SVM classifier and 1/3 test data that is used for computing the accuracy.

The process is repeated 30 times in order to verify the significance of the results.

The overall accuracy is computed as the percent of samples in the test set that are

correctly labeled. For a deeper investigation of the results, each grade is considered

in turn as opposed to the other ones and several insights are made available through

accuracy, sensitivity, specificity, precision, false negative rate and false discovery

rate.

3.3 Results

Figure 4 contains an input image (left) and the number of nuclei discovered when

the threshold parameter is varied from 130 to 200 (center). For the same input image

as in Fig. 4 (left), Fig. 5 illustrates the output of the distance transform method for

different threshold values. The plot in the right from Fig. 4 illustrates a comparison
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Fig. 4 The detected nuclei depend on the input threshold parameter before the distance transform

method. The input (left) is a section of a histopathological image of G3 cancer, while the plot in the

middle contains the number of nuclei there are detected when the input threshold parameter prior to

the distance transform step is varied from 130 to 200. The plot on the right illustrates a comparison

between the SVM applied to the complete data and the same classifier on the PCA-reduced data
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Fig. 5 The distance transform images when the threshold value is 130, 150, 170 and 190, respec-

tively. The input image is the same from Fig. 4 (left)
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Fig. 6 Comparison between grades taken two by two: sensitivity, specificity, precision (first line),

accuracy, false negative rate, false discovery rate (second line) after SVM classification

between the SVM applied on the entire numerical data, on the one hand, and on the

principal components, on the other hand. As the results are generally superior in the

case when the data is kept unaltered, the PCA is next left aside and Fig. 6 contains

the detailed comparisons for each grade in turn in the direct SVM application only.
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3.4 Observations and Discussion

Through its nature, the distance transform achieves a relatively good separation of

nuclei that intersect or even marginally overlap. However, if two or more nuclei

overlap at a great extent, they will be labeled as one object. As Fig. 4 (right) and

Fig. 5 suggests, the higher the threshold value is (over 170), the less objects are

detected. Although Fig. 5 indicates that more nuclei are detected as the threshold

value increases, they overlap in the last image, conducting thus to a smaller number

of found objects. Despite the general and natural opinion that the overlapping nuclei

should be identified as separate entities in order to provide accurate data to the clas-

sifier, the best overall accuracy result (79.89 %) is obtained when the threshold is

185. In contrast to other studies, herein the focus does not lie into clinically assess-

ing the automated identification capabilities, but instead a more objective measure is

followed, that of choosing this proper threshold parameter for the detection of nuclei

in correspondence to the prediction accuracy only.

The plots in Fig. 6 place the normal tissues (G0) very well as compared to the rest

of the grades, especially when the threshold value is higher than 155. The distinc-

tion between G0 and the other grades represented a major concern for the current

data set because the histopathological images for the normal tissue were all obtained

by cutting pieces from larger images that belonged to G1 and mostly G2 and G3.

This means that the same light conditions, the same amount of H&E and the exact

same settings of the microscope were used when producing them. These results are

very encouraging as regards the practical use of the proposed technique because, by

removing even solely computer diagnosed G0 images, the pathologist can focus on

the most difficult cases.

The weakest results are when comparing G1 versus G2 and G2 versus G3, as all

the plots indicate. The specificity, precision and false discovery rate show that the

hardest cases to be distinguished are between G1 and G2, as it actually occurs for

the pathologists, as well [17].

A similar methodology where both nuclei and glands are taken into account for

prostate cancer diagnosis, also with four grades to discriminate between, is presented

in [17]. Although the measures used in the study are clearly described, the authors do

not provide details about the manner of identifying the two types of components. The

same SVM classifier is employed. The accuracies achieved between grades in [17]

are between 76.9 and 92.8 %, while in the current study they are between 90.55 %

(G1 vs. G2) and 98.98 % (G0 vs. G2) for threshold 185, in Fig. 6 (first image, second
line). Naturally, the problem is not the same, hence the current image data set is made

available [6] for future studies and direct comparison.
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4 Conclusions and Future Work

A data set of 357 histopathological images is put forward, each having a resolution

of 800× 600 pixels, separated in 4, well balanced grades. Also, a diagnosis support

methodology that uses morphological and topological features is proposed, which

conducts to an overall accuracy of 79.89 %. The glands are discovered by applying

a Gaussian filtering followed by a watershed algorithm, while the nuclei are found

after a normalized box filter and distance transform are used.

The influence of a threshold parameter used for identifying the nuclei over the

results indicates a surprising information: although in some pictures the discovered

overlapping nuclei are merged in larger components, it is not only that the accuracy

is not decreased, but some improvement is reached.

As the normal tissues are extracted from larger images that contained marginal

separations between different grades of cancer and normal tissue, it is intended to

add intensity-based features in a future work to see if this can boost the automatic

diagnosis or, on the contrary, misleads the identification of the normal tissue from

the other ones. Also, other topological information, like co-adjacency matrices could

conduct to better results. Probably a gain in prediction could be obtained by fine

tuning the parameter values of the methods involved in the identification of the main

components.
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