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Abstract A wide spectrum of security challenges were arose by Wireless Sensor

Network (WSN) architectures and common security techniques used in traditional

networks are impractical. In particular, being the sensor nodes often deployed in

unattended areas, physical attacks are possible and have to be taken into account

during the architecture design. Whenever an attacker enters in possession of a node,

he/she can jeopardize the network by extracting cryptographic keys used for secure

communication. Moreover, an attacker can also try to brute force the keys, hence

they should be fully random and hard to guess. In this paper, we propose a novel

solution based on generating keys from unique physical characteristics of a node

integrated circuit without requiring additional hardware compared to common WSN

node architectures. To this aim, we exploit the Static Random Access Memory based

Physically Unclonable Functions and we show their applicability to the WSN by

implementing a working prototype based on the STM32F4 microcontroller.
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1 Introduction

Wireless Sensor Networks (WSNs) are commonly devoted to collect environmental

data which need to be transferred to a collection/central node for further process-

ing and analysis. Security has a central role for WSN applications, data have to be

transferred to central nodes is a secure way so as not be altered or crafted by mali-

cious attackers. Due to the inherent wireless nature of WSN nodes, the computational

resources available are scarce and security mechanisms must introduce a negligible

overhead [2, 3, 7]. Integrity, confidentiality and authentication are commonly offered

by means of symmetric cryptography where the data payload is encrypted/decrypted

only by pairs of sensing node—collector. In such context, multiple keys are usually

enforced so as to create a dedicated channel between a sensing node and the col-

lector: each node has a key for encrypting/decrypting messages to/from the central

node. The central node has to know the symmetric key for each sensing node.

This solution is actually not so secure if the node is subject to physical capture

by malicious actors. Whenever the node is captured, the key can be extracted from

its memory, and this allows the attacker to impersonate a legitimate node because

he/she can gather all the information and security mechanisms stored in the node.

To deal with this issue, the technology used for the key storage must be hardened to

make worthless any access attempt. Moreover, involved keys have to characterized

by a great randomness and hard to guess.

A novel approach is based on the generation of security keys from device intrinsic

physical characteristics (like humans fingerprint) rather than storing this information

in a non-volatile memory (NVM). The great advantage of intrinsic physical charac-

teristics is their strict coupling with the device. Basing on this concept the literature

defined the silicon Physically Unclonable Functions (PUFs) primitives, which com-

pute a string of bits based on measurements of a physical parameter of the integrated

circuit (IC). This string is know as response and it is intrinsically random and unique

so as to be used to identify a device.

For these reasons, in this paper, we propose a key generation mechanism based

on exploiting the PUF security properties. In particular, we describe the kind of PUF

that are suitable for the WSN domain, namely the Static Random Access Memory

(SRAM) PUF, we detail the process to generate a secret key from PUF responses

and then we provide a working prototype deployed on a commercial microcontroller

widely used in WSNs. Moreover, we discuss two case study scenarios related to

the secure remote reconfiguration of WSN nodes and the symmetric key renewal

process. Both of them are based on our PUF architecture capable of offering a secure,

anti-tamper and trustworthy perimeter for the user application execution without

requiring additional hardware resources.
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2 Related Work

PUFs have been recently adopted for the physical protection of embedded devices,

since they are able to guarantee attractive security properties in many application

domains. As for WSNs, research efforts have been focusing on the development of

novel authentication mechanisms. A mechanism to prevent nodes cloning is pre-

sented in [23]. Authors devise a mutual authentication scheme which relies on

the PUF challenge/response mechanism and they demonstrate the resiliency of the

approach against clone attack, replay attack, eavesdropping and tampering attempts.

Similarly, in [15] a mutual authentication protocol is tailored for Wireless Body Sen-

sor Networks, by adopting PUFs and one-way hashing functions. Those solutions,

although presenting actual schemes based on PUFs and intended for WSNs, are not

actualized by a concrete realization of a real PUF architecture.

Conversely, Liu et al. in [16] exploit PUFs for a trustworthy key generation. The

technology which the PUF circuit is based on is the SDRAM type 3 (DDR3): indeed,

they use the decay signature of the memory cells with one transistor/one capacitor

structure. Commonly, wireless sensor nodes are resource constrained devices, and for

the energy efficiency they do not employ power-consuming memory technologies,

such as the DDR one.

On the contrary, this paper introduces the adoption of an SRAM-based PUF for

WSNs taking into account that most of micro-controllers used for embedded nodes

are inherently equipped with an SRAM. This allows for a security improvement

requiring neither hardware substitution nor additional hardware resources, thus mak-

ing it widely applicable. Our approach offers the same security guarantees of previ-

ously presented works and further improves their applicability by showing real use

scenarios for node remote reconfiguration and cryptographic key renewal.

The remote reconfiguration is part of the Moving Target Defense (MTD) security

approach [1] and we advance it by ensuring trustworthiness on the execution envi-

ronment of the node. Modern reconfiguration schemes for WSNs, such as SIREN [8],

tend to pre-load several application images into an external NVM. Due to the unat-

tended nature of WSNs, nodes are subject to physical capture and, hence, cloning.

Therefore, solely employing reconfiguration mechanisms is not completely effective.

It is worth to notice that some attempts to ensure a trustworthy software execution

in WSNs have already been presented in [7, 14]. Though, those solutions require

special hardware, such as the TPM-enabled hardware, in order to provide a root-

of-trust and boot the node through a secure procedure. This is obviously costly due

to the technological requirements (for instance, the chip Fritz or tamper resistant

hardware) [11], and thus this limits their employment. With out approach we offer

an analogous secure boot procedure without additional hardware cost.
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3 Background

The opportunity of extracting physical characteristics from fabric induced variabil-

ity for integrated circuits (ICs) has been representing a momentous breakthrough

for the security of electronic devices. Silicon PUFs are circuits able to extract such

physically imprinted characteristics, producing binary strings, namely responses that

can be envisioned to be identifiers of ICs pretty much like the human fingerprints

or the DNA. Being inherently random, manufacturing variations imprint random

and unique physical effects. Moreover, any physical detail or parameter is hid-

den, i.e. cannot be predicted, and generated by uncontrollable process. Thus, PUFs

responses are unique, unclonable and unpredictable. Moreover, PUF circuits are

tamper-evident because any tamper attempt will alter the physical characteristics

exploited by the PUF dramatically changing the PUF response.

PUFs can be categorized by considering their operational mechanism. Actually,

some PUF architectures exploit delay measurements, such as the Arbiter PUF, Ring

Oscillator PUF [21] and the Anderson PUF [4]. Other architectures exploit the pat-

tern generated on the start-up of memory cells, such as the SRAM PUF [13] or the

STT-MRAM PUF [22].

Interestingly, the SRAM PUF can be potentially exploited as secure primitive for

a large amount of devices, as it is a very spread non-volatile memory technology. The

mechanism behind the SRAM PUF is the value assumed by each SRAM cell when it

is being powered-up (cold start). As shown in Fig. 1, the cell is realized through two

symmetric halves, which are two cross-coupled inverters. They generate a feedback

which makes the initial voltage point unstable and, hence, forces each cell to move

towards one of the two stable voltage values (logic-0 or logic-1). Indeed, the feedback

amplifies the differences of voltages between the two symmetrical halves caused by

manufacturing variability.
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Fig. 1 Details on SRAM cell. a Transistor-level schematic of a SRAM cell in CMOS technology.

b Input-output voltage graph of crosscoupled inverting stages
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Ideally, a PUF should always be able to exactly reproduce the same output when

queried. However, variations of electrical characteristics caused by environmental

conditions, such as temperature variations or power supply instability, might change

some response bits [5, 19]. Indeed, as shown in [6], some SRAM cells are less stable

than others and more prone to be affected by external conditions.

In order to use the PUF response for cryptographic operations, it is required to

have stable responses. The literature introduced post-processing techniques able to

produce binary strings, eligible for cryptographic operations, from unstable PUF

responses. Majority voting is a post-processing technique based on multiple mea-

surements over a PUF circuit [17]. The technique can be accomplished by averaging

N sequential measurements on a PUF (Temporal Majority Voting) or N simultaneous

measurements on different PUFs (Spatial Majority Voting). Majority voting requires

a threshold to establish the outcome of voting. Whenever the measurements to vote

accumulates around the threshold, the outcome is not reliable. Conversely, the fuzzy

extractor technique involves only one measurement and exploits an error correction

code (ECC) in order to retrieve stable binary strings from noisy responses. In this

way, PUF responses, as shown in the next Section, can be used as key provider for

cryptographic-schemes.

4 Extracting Keys from Embedded SRAMs

The literature provides a great number of scientific paper, reporting experimental

measurements on different SRAM circuits [6, 10]. PUFs guarantee random, unclon-

able and unpredictable responses these properties fulfill what is required for good

cryptographic keys. Though, in order to exploit these benefits, the PUF mechanism

has to be enriched with a post-processing technique.

Among recovering techniques previously illustrated, we adopt the fuzzy extrac-

tor approach. The fuzzy extractor is a recovery scheme composed of two primitives:

(i) information reconciliation, which removes the error generated by the noise, and

(ii) privacy amplification, which enhances the information bits entropy (random-

ness). Both the primitives rely on Helper Data, which is generated during the enroll-
ment phase, described in Fig. 2a. A reference PUF response R is extracted and a

secret symbol Cs is randomly obtained. Thus, Helper Data W is generated by a xor
function, while the privacy amplification outputs the key K. To ensure the secrecy

of K, this phase must be carried out within a trusted environment, before issuing

the device, while Helper Data can be publicly available because it does not dis-

close secrets exploitable by attackers. Helper Data is used during the reconstruction

phase, detailed in Fig. 2b, where K is reconstructed from the response R′
, which is

the PUF response R of the device in the operating environment, thus may be noisy,

and hence different. The reconstruction phase can be accomplished by the device,

which embeds the PUF, at any time by using the Helper Data W.

Moreover, the fuzzy extractor scheme contains an ECC and a cryptographic hash

function. The ECC is an algorithm developed to obtain a binary string such that a
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(a)

(b)

Fig. 2 The fuzzy extractor scheme. a Steps of the enrollment phase which generate the key and

Helper Data. b Steps of the key reconstruction phase which regenerate the same key exploiting

Helper Data

certain amount of errors caused by the external environment can be detected and cor-

rected. Figure 2 shows the ECC primitives, namely the encode and decode functions,

which are used in both the enrollment and the key reconstruction phases.

The fuzzy extraction design involves the crucial configuration of the ECC scheme.

Indeed, an ECC is able to recover a maximum number of errors in the binary string

that has to be processed. This amount is obviously correlated with the PUF stability.

The maximum number of error t is determined by considering the bit error probabil-

ity pb, which specifies the probability that a transmitted information bit is received

altered. The noise of PUF responses can be modeled as a binary symmetric channel

and the error probability that a block of N bits has more than t error is:

Pblock = 1 −
t∑

i=0

(
N
i

)
pib(1 − pb)N−i (1)

Thus, Pblock represents the failure rate of the decoder correction procedure of an N
bits block.

The keys, extracted from PUF responses, have to be hard to guess, hence char-

acterized by a high value of entropy. The entropy is related to the number of inde-

pendent bits of an information source that can be generated. The entropy can be

estimated by calculating the min-entropy, a lower bound of entropy that represents

the worst-case measure of uncertainty for a random variable [12].

Let pmax be the maximum value between the occurrence probabilities of 0 and

1 bits. The min-entropy can be calculated as Hmin = − log2(pmax). In particular, as

Guajardo et al. assumed in [13], each bit of SRAM is independent, hence the min-

entropy for N bits of SRAM can be calculated as sum of min-entropy for each bit:

(Hmin)total =
N∑

i=1
− log2(pmaxi ) (2)
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The value pmaxi can be derived by sampling SRAM bits from different devices. It is

possible to calculate the average min-entropy as Hmin = (Hmin)total∕B, where B is the

size of the memory block. The average min-entropy allows to determine the amount

of source bits required to derive a significantly random key with a given length.

Indeed, for a key of L bits, at least ⌈L∕((Hmin)total⌉ bits have to be extracted from the

PUF.

For instance, to obtain a key of 128 bits from a SRAM PUF with an entropy of

0.8, the PUF has to provide a response of 160 bits.

5 Case Studies

In order to prove the feasibility for SRAM PUF to be employed in WSNs, this Section

details a real implementation of a node based on a commercial microcontroller,

namely the STM32F4 device, equipped with the previously illustrated PUF scheme.

In particular, we choose the STM32F4 family based on ARM Cortex-M 32-bit micro-

controllers, for its widespread availability and suitability for WSN applications. We

use the STM32F407VGT6 which includes a ARM Cortex-M4F, 1 MB of NVM flash

and 192 KB of SRAM.

First of all, the approach is based on the deployment of a secure bootloader, which

represents the root-of-trust for applications that will run on the device. The boot-

loader has to be stored in the NVM, residing in a secure perimeter: the microcon-

troller has to be configured to deny any external access to memories. Furthermore,

the bootloader is the only handler of the SRAM PUF and the only key manager for

the node. This is required to ensure the correct extraction of the PUF response from

the pristine state of the SRAM start-up pattern.

The STM32F4 microcontroller offers a memory protection mechanism to secure

the perimeter with different memories read/write restrictions [20]. In particular, we

adopt the level 2 read protection, which forbids all external accesses to flash sectors

and also disables every debug interface, while level 2 write protection prevents flash

memory overwrites. A joint use of these two approaches protects the bootloader

ensuring its integrity, i.e. trustability.

The role of the bootloader is to load user application images which reside outside

the secure perimeter and the PUF mechanism is used to extend trustability to them.

Indeed, the bootloader firstly computes the PUF-based key using the fuzzy extraction

procedure described in the previous Section. Then, the key is used to decrypt or

verify the user application image. In case of success, the bootloader prepares to run

the user application: the bootloader cleans the SRAM memory and loads the user

software.

In our implementation, we use 128-bits key and a Reed Muller ECC scheme,
1

which requires a PUF response of 2816 bits. The primitives for decrypting and the

1
The Reed-Muller ECC has a (128,8,63) configuration, which has probability error of 4.321086e-

09.
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privacy amplification are both implemented with Speck [9], a lightweight block

cipher. In particular, in order to provide a hash digest from the Speck encryption

primitive, we employed the Davis-Meyer scheme [18].

The bootloader so far described is perfectly suitable for WSNs nodes thanks to its

significantly small footprint: the complete bootloader requires just 16 KB, equivalent

to the 1.5 % of the total available flash memory of the STM32F407VGT6 device.

Moreover, the time overhead introduced by the PUF extraction is about 104 ms.

5.1 Secure Reconfiguration

Being able to reconfigure a node in a WSN is a desirable feature so as to modify over

time the specific tasks carried out by a node. Previous works, like in [8], have shown

this advantage and the mechanisms to efficiently achieve remote reconfiguration A

secure remote reconfiguration can be easily supported by our PUF based mechanism.

Traditionally, to reconfigure a WSN node, a set of application images are preloaded

once into an external memory at the deployment phase. During the WSN life cycle,

as shown by SIREN, it is possible to implement a set of policies to reconfigure a

node. The reconfiguration is based on the following phases: (i) choosing the next

application to run from the image set; (ii) saving all the information required in the

next application in a NVM; (iii) prepare the bootloader with a reference to the chosen

next application; (iv) reboot the device. Once the bootloader starts, it will retrieve

the pointer to the application to run from NVM and proceed to its loading.

By using the PUF-secured boot process described above, we can ensure that the

application images are protected by means of cryptography. In the deployment phase,

all the application images have to be encrypted with the device’s PUF key extracted

in the enrollment phase (Sect. 4) and the loaded in the external NVM that can be

outside the secure perimeter. When the device boots, it generates the key to decrypt

the application image by applying the reconstruction phase (Sect. 4), decrypts the

application image and loads it in RAM, actually starting its execution.

On STM32F407VGT6 microcontroller, the execution time required by the boot-

loader to extract the key and build the root-of-trust is about 900ms for an image file

of 10 KB.

5.2 Key Renewal

A good security practice is to change the symmetric keys involved in communication

over time. To avoid the transmission of keys on non-secure or potentially non-secure

channel, a set of keys is pre-loaded on each node of the WSN. By applying policies

to trigger the enforcement of another key in the set (e.g. max number of messages

per key, time expiration, explicit key change message), they communication key is

renewed.
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Our PUF based solution, offers a key renewal procedure that generates high-

entropy keys from the SRAM to be used by a trusted application running on the

system. During device power-up, the boot loader can generate one or more keys by

applying reconstruction phase (Sect. 4) on different SRAM areas and storing them

into a specific memory location. At each start-up, the key given to the application can

be renewed by executing the reconstruction phase on a different SRAM area, that can

be configured/selected by using persistent information stored in an external NVM. It

follows that the enrollment phase (Sect. 4) had to be accomplished on same SRAM

areas in order to provide symmetric keys to the central node (offline procedure exe-

cuted once at WSN deployments time). It is guaranteed that the software application

running on the system is trusted (loaded with a secure boot procedure) and is able

to retrieve the generated keys from a memory location conveniently indicated by the

bootloader.

The key renewal procedure requires a device restart because it can only be exe-

cuted on a pristine state of the SRAM start-up pattern. When the application requires

to renew the communication key, the device can cold reboot itself.
2

The only penalty

added is the actual time spent for reboot that can be considered negligible in most of

the WSN sensing applications.

6 Conclusion

The tight constraints and hostile environmental working conditions of WSNs make

the conventional computer security techniques inadequate for embedded sensor

nodes. The main challenge is related to the unattended nature of the network, which

exposes what is installed in the node memories to attacks, including secure proto-

cols and their cryptographic keys. The key management has to guarantee strong keys

and a secure perimeter where use them. In this paper, we moved in that direction,

providing a key management based on the adoption of an SRAM PUF as key stor-

age and provider. By exploiting the start-up pattern of an SRAM, the fuzzy extractor

technique is able to generate bit strings which are eligible to be employed as cryp-

tographic keys. We showed main steps involved in the design of the PUF and two

meaningful case studies, focusing on the node reconfiguration and on the key renewal

mechanism. The main advantages of our approach are listed below:

∙ Generated keys are tight coupled with physical parameters of SRAM cells, cannot

be cloned and are hard to guess;

∙ PUF generated keys inherit the randomness from the fabric manufacturing vari-

ability and do not require an installation phase as they are retrieved on demand

from physical parameters.

∙ The SRAM Based PUF does not require additional hardware resources and

involved software procedures have to be executed once at the start-up.

∙ The approach requires only an SRAM accessible in a pristine state.

2
The device goes into standby mode to power down the SRAM, before rebooting.
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∙ The keys are generated by the SRAM PUF on demand and are not stored in an

NVM; moreover, they are managed in a secure perimeter.

∙ The adoption of a PUF opens the possibility to make the execution environment

trustworthy.
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