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Abstract. We construct examples of regular foliations of holomorphic surfaces
which are generically transverse to a compact curve and have a projective
transverse structure.

Mathematics Subject Classification (2000). Primary 37; Secondary 37F75.

Keywords. Holomorphic foliations, transverse structures, conormal bundles.

1. Introduction

Let us consider a codimension 1 holomorphic foliation F of a complex manifold
M . A (singular) projective transverse structure for F is defined by the following
data:

1. a covering of the complement M∗ of a finite set of embedded leaves by open
sets {Ui}; in each Ui there is a trivialization of the foliation.

2. a collection {fi} of holomorphic functions fi : Ui → C̄ which are first integrals
of F in each Ui and a collection of Moebius transformations {φij} such that
fi = φij ◦ fj whenever Ui ∩ Uj 6= ∅.
In general, the map φij which relates fi to fj is simply a diffeomorphism

between open sets of C̄.
The presence of projective transverse structure leads to the existence of a

multivalued first integral of F in M∗; we start with some open set, say U1, and
extend f1 along paths starting at U1 just by composing it with a convenient choice
of functions φij .

Let us present some examples.

Example 1.1. A classical example comes from projective structures on Riemann
surfaces. Let C be a compact Riemann surface with an atlas of coordinate charts
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such that all changes of coordinates are given by elements of PSL(2, C̄) (Moebius
transformations of C̄). After applying the process mentioned above we get a de-

veloping map D : C̃ → C̄ where C̃ is the universal covering of C (C̃ = D when the

genus of C is greater than 1 and C̃ = C when the genus of C is 1) and a mon-
odromy representation ρ : π1(C) → PSL(2, C̄) which are related by the equality

D(γ(p)) = ρ(γ)D(p), for p ∈ C̃ and γ ∈ π1(C) view as a deck transformation.

Then π1(C) acts on C̃ × C̄: to each γ ∈ π1(C) we associate the map (p, z) 7→
(γ(p), ρ(γ)(z)). The action preserves the horizontal and vertical fibrations of C̃ ×
C̄; therefore, the space of orbits of the action is a compact surface that has a
rational fibration over C (coming from the vertical fibration) and a transversely
projective foliation F (coming from the horizontal fibration). The action preserves

also the graph {(p,D(p)); p ∈ C̃} of D (because (p,D(p)) 7→ (γ(p), ρ(γ)D(p)) =
(γ(p),D(γ(p))), which becames in the quotient a section of the rational fibration,
generically transverse to F . The foliation induces in this section the same projective
structure of C.

We may adapt this construction to some cases where the projective structure
of C has a number of singularities (for example, multivalued maps of the form
z 7→ zα). The local monodromy around the singularity has to be realized as the
monodromy of a foliation of D × C̄ which is transverse to the fibers {z} × C̄ for
z 6= 0 and has {0}×C̄ as a leaf; then we glue this foliation with the one constructed
as before outside the singularities.

Example 1.2. We mentioned in the last example the difficulties that arise in the
presence of singularities of the projective structure. There is a related construction
that avoids this problem by using ”pre-integration” data. We take a line bundle L
over a compact, holomorphic curve C. In some covering U = {Ui} of C we write
{λij} for the transition functions of L and take trivializations (xi, zi) of L with
zi = λijzj . Let now {ωi}, {ηi} and {ξi} be meromorphic 1-forms defined in the
open sets Ui satisfying ωi = λijωj , ηi − ηj = d log λij and ξj = λijξi. We notice

that the equations dzi = ziηi +
z2i
2
ξi +ωi define a foliation G in L. In fact, we may

compactify L as a C̄ over C and extend the foliation to the closure of L. Except by
the fibers over some pole (which are leaves), the other fibers are transverse to the
leaves. This implies the existence of a transverse projective structure for G outside
the vertical leaves. These are called Ricatti foliations (see [6]).

We may think of course that the pre-integration data produce a (singular)
projective structure for the curve C; we explain in Section 2 how this works.

In this paper we combine in Theorem 3.1 features of Examples 1.1 and 1.2.
We start with pre-integration data in a curve and obtain a (singular) projective
structure. Then we embed the curve into a surface which comes with a regular
foliation generically transverse to it, with the aditional property that the structure
of the curve can be extended to the surface along the leaves of the foliation. We
get many more examples, at the price of not having a compact surface and no
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fibration over the curve. It is worth noticing that we also describe the singularities
of the projective structure.

Example 1.3. Let us consider a codimension 1 foliation defined by some integrable
holomorphic 1-form ω. We suppose that this 1-form is completed to a triplet of
holomorphic 1-forms with η and ξ such that dω = η ∧ ω, dη = ω ∧ ξ and dξ =
ξ∧η. According to Darboux (see [5]), we may write locally triplets of holomorphic
functions (f, g, h) such that

ω = −gdf, η =
dg

g
+ hω, ξ = dh+ h η +

h2

2
ω.

Furthermore, if (f̄ , ḡ, h̄) is another triplet of functions satisfying the same relations
then f = φ ◦ f̄ for some Moebius transformation φ. This implies that the foliation
has a projective transverse structure.

In general, we may work with a triplet of meromorphic 1-forms, and the pro-
jective structure is singular. Many authors take the existence of such a triplet as
the definition of a transversely projective foliation (see for example [6]). Of course
a true transverse projective structure appears for the foliation outside the poles of
the 1-forms; but it is not clear if we can produce a triplet out of a transverse pro-
jective structure defined outside a divisor. We treat this question for the examples
constructed in Theorem 1.3, where we know the nature of the singularities. We
give in Section 4 an answer adding a negativity hypothesis for the embedding of
the curve. We do not know if this is true for the other cases.

Example 1.4. This is an example of a different nature, but it shows how foliations
with transverse projective structures appear quite naturally. Let K be a radial
type Kupka component of a codimension 1 foliation in some complex manifold
of dimension n ≥ 3. This means that K is covered by open sets {Ui} such that
in each Ui the foliation is conjugated by a diffeomorphism Θi to the foliation
xi dyi − yid xi = 0 of Dn−2 ×D2 and Θi(K ∩Ui) = Dn−2 × {(0, 0)}. Now we take

the function fi =
yi
xi
◦ Θi defined in Ui \K as a first integral for the foliation in

Ui. If Ui ∩ Uj 6= ∅ and fi = φij ◦ fj , we see that φij is a Moebius transformation
because fi and fj are surjective onto C̄ (see [4]).

There is a lot of important work done the subject of transversely projective
foliations; let us mention [1], [2] and [3] where the structure of these foliations is
discussed.

We follow all the time part of the presentation of [4], which relies upon the
paper [5]. We are grateful to J.V. Pereira for helping to establish the right setting
of our construction. We are also grateful to the referee for valuable comments.

2. Projective Structures for Curves

Let us consider a line bundle L over a compact Riemann surface C; we cover
C by a family U = {Ui} of open sets, and write {λij} ∈ H1(U ,O∗C) for the
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transition functions of L; the notation O∗C stands for the sheaf of non vanishing
germs of holomorphic functions of C. We will also writeMC for the sheaf of germs
of meromorphic functions of C and M1

C for the sheaf of germs of meromorphic
1-forms of C.

We study now (singular) projective structures of C. We take meromorphic
1-forms ω = {ωi} ∈ H0(U ,M1

C ⊗ L) (that is, ωi = λij ωj whenever Ui ∩ Uj 6= ∅)
and meromorphic 1-forms η = {ηi} ∈ C0(U ,M1

C) such that ηi−ηj = d log λij . We
also select meromorphic functions h = {hi} ∈ C0(U ,M). Proceeding formally, we
define f = {fi} as the solution of the system

d log gi = ηi + hiωi (2.1)

ωi = −gi dfi (2.2)

The elements of f will be taken as coordinate charts for C deprived of a finite
set of singularities. We will impose later conditions on ω, η and h in order to assure
the existence of f and be able to describe its singularities. For the moment we will
compare the elements of f assuming that they are difeomorphisms over open sets
of C̄; let fi = φij(fj), the functions φij being difeomorphisms between open sets
of C̄. Let us write ψij(t) = d log φ′ij(t).

Lemma 2.1. ψij dfj = hi ωi − hj ωj in Ui ∩ Uj.

Proof. Since fi = φij(fj), we have dfi = φ′ij(fj) dfj . From equation (2.2) it follows
that ωi/gi = φ′ij(fj)ωj/gj and therefore λijgj/gi = φ′ij(fj). We apply then d log
to both sides and use equation (2.2).

We remark that if h = 0, that is, hi = 0 for every i, then the coordinate
charts give a (singular) affine structure for C.

Now we will make another choice for h; we consider a collection ξ = {ξi} ∈
C0(U ,M1

C) of meromorphic 1-forms and define

dhi + hi ηi +
h2i
2
ωi = ξi. (2.3)

Remind that the Schwarz derivative of a holomorphic function l is given by

S(l)(t) = ψ′(t)− ψ(t)2

2

where ψ(t) = d log l′.

Lemma 2.2.
1

gj
S(φij)(fj)dfj = λijξi − ξj in Ui ∩ Uj.

Proof. We have from Lemma 2.1:

φij(fj) = −gj(hj − λij hi).
It follows that

1

gj
ψ′ij(fj)dfj = −ξj −

h2j
2
ωj + λij(dhi + hiηi) + λijhihjωj
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and
1

gj

ψ(fj)
2

2
dfj = −

h2j
2
ωj − λij

h2i
2
ωi + λijhi hjωj .

Consequently the Lemma follows. �

The case which will be of interest for us is when ξj = λijξi whenever
Ui ∩ Uj 6= ∅, that is, ξ ∈ H0(U ,M1

C ⊗ L∗). Lemma 2.2 implies that all φi are
Moebius transformations of C̄, so that the collection f = {fi} provides a (singu-
lar) projective structure for C.

We proceed now to introduce conditions on ω ∈ H0(U ,M1
C ⊗L), η = {ηi} ∈

C0(U ,M1
C) such that ηi− ηj = d log λij and ξ ∈ H0(U ,M1

C ⊗L∗) which allow us
to analyse more carefully the family f .

We will use Z(·) and P (·) for the set of zeros or poles of a 1-form.

Lemma 2.3. There exist 1-forms as above such that all poles are simple, there are
no common poles for any pair of 1-forms and

• Z(ω) 6= ∅,
• Z(ω) ∩ (P (η) ∪ P (ξ)) = ∅.

Proof. We will use here classical results of Complex Analysis (in the case of curves)
such as Riemann-Roch’s Theorem and the existence of meromorphic 1-forms with
pre-assigned polar parts.
1) Let us start with some ω̄ ∈ H0(U ,M1

C ⊗ L). We denote by q1, . . . , qs the
poles of ω̄, m1, . . . ,ms being their polar orders. We select a disjoint set of points
p1, . . . , pr, pr+1 where ω̄ is regular and non vanishing and look for a meromorphic
function l of C such that

(l) ≥ pr+1 −
∑

pj +
∑

miqi =: −D.

The vector space L(D) of meromorphic functions of C whose divisor is greater
or equal to −D has dimension l(D) ≥ deg(D)− g + 1, where g is the genus of C.
Therefore l(D) ≥ r −

∑
mi − g is positive for large r; we take l ∈ L(D). Then

ω =: lω̄ ∈ H0(U ,M1
C) has certainly a zero at the point pr+1 and all possible poles

are at the points p1, . . . pr (with order at most 1).
2) A 1-form η̄ = {η̄i} with the property η̄i − η̄j = d log λij whenever Ui ∩ Uj 6= ∅

can be obtained as η̄i =
dui
ui

where u = {ui} is a meromorphic section of L. We

can add to η̄ a meromorphic 1-form θ of C, which is interesting if we are willing to
move poles of η̄. Notice firstly that η̄ has simple poles, with residues αi; of course∑
αi = c(L), where c(L) is the Chern class of L. We select θ with simple poles at

the same points but with residues −αi, besides other poles which can be taken as
simple poles with residues µk satisfying −

∑
αi +

∑
µk = 0, or

∑
µk = c(L). We

ask also P (θ) ∩ (Z(ω) ∪ P (ω)) = ∅; finally we take η = η̄ + θ.
3) We apply to some ξ̄ ∈ H0(U ,M1

C ⊗L∗) the same technique as in step 1) of this
proof. �
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We remark that the only restriction to the residues µk in the choice of θ is
that

∑
µk = c(L). We will demand that Imµk 6= 0 for any k.

Lemma 2.4. Equation (2.3) has always meromorphic solutions.

Proof. First of all we remark that if ωi, ηi and ξi are holomorphic then there exists
a (unique) holomorphic solution for a given initial condition hi(0).We have to deal
with the case where some (simple) pole appears.

1. ωi has a pole. Let us write (2.3) as y′ + b(x)y + a(x)y2 = c(x), with a(x) =
A(x)

x
); A(x) is a holomorphic function and A(0) 6= 0. This equation can be

written as the system

dx

dt
= x,

dy

dt
= xc(x)− (xb(x) +A(x)y)y.

Therefore (0, 0) is a saddle-node with a strong separatrix x → (x, y0(x))
transverse to the vertical line x = 0 (which is the weak separatrix). We take
then x→ y0(x) as our solution.

2. ηi has a pole. We write (2.3) as y′ + (
µ

x
+ B(x))y + a(x)y2 = c(x), where

B(x) is a holomorphic function and Im(µ) 6= 0. The corresponding system is

dx

dt
= x,

dy

dt
= xc(x)− (µ+ xB(x))y − xa(x)y2

which has a (unique) non-vertical separatrix x → (x, y1(x)) at (0, 0). We
select x→ y1(x) as the solution for (2.3).

3. ξi has a pole. We write (2.3) as y′ + b(x)y + a(x)y2 =
C(x)

x
; C(x) is a

holomorphic function and C(0) 6= 0. The corresponding system is

dx

dt
= x,

dy

dt
= C(x)− (b(x)x+ xa(x))y.

We look to this system in a neighborhood of (0,∞); using u = y−1 we get

dx

dt
= x,

du

dt
= −uxb(x) + xa(x) + C(x)u2.

This is a saddle-node at (x, u) = (0, 0), with a non-vertical strong separatrix
x→ (x, u0(x)) in the coordinates (x, u). We take then as solution x→ u−10 (x);
it is meromorphic with a simple pole at 0 ∈ C.

This ends the proof of the Lemma. �

Lemma 2.4 allows us to describe the singularities of the functions in f = {fi}.
We have the following cases:

• at a zero of ωi: let us look to the equation (2.1); since ηi+hiωi is holomorphic,

we can say the same for gi(xi) = gi(0)e
∫ xi
0 ηi+hiωi (xi is a coordinate in Ui and

gi(0) 6= 0). From equation (2.2) it follows that fi is a holomorphic function
of the type fi(xi) = a+ xmi v(xi) where v(xi) is a non-vanishing holomorphic
function and m ∈ N is greater or equal to 2.
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• at a pole of ωi: by our construction hiωi is holomorhic, and so is gi(xi) =

gi(0)e
∫ xi
0 ηi+hiωi . Equation (2.2) gives fi(xi) = a log xi+β(xi), for a ∈ C and

β(xi) holomorphic.
• at a pole of ηi: Equation (2.1) gives log gi = µ log xi + γ(xi), so gi(xi) =

Cxµe
∫ xi
0 and f ′i(xi) = x−µi γ̄(xi).

• at a pole of ξi: now hiωi has a simple pole. From (2.2) we have gi(xi) = xri δ̄(xi)
for r ∈ C and δ̄(xi) holomorphic. Consequently f ′i(xi) = x−ri δ(xi), for δ(xi)
holomorphic.

We remark that at the singularities of f we should take convenient sectors
in order to have well defined branches for each fi. Another remark that we shall
use later is: suppose c1(L) ≤ g − 1, where g is the genus of C; then the 1-form
ξ can be chosen as a holomorphic 1-form. This is another simple consequence of
Riemann-Roch’s theorem.

3. Constructing Foliations

We give in Theorem 3.1 below a simple construction of foliations which have a
projective transverse structure.

Before doing this, let us remark the following facts. Consider some ωi in the
collection ω with a zero of order ki, and take the Equation (2.2) ωi = −gi dfi.
The 1-form −ωi

gi
can be written as xkii a(xi)dxi where a(xi) is a nonvanishing

holomorphic function. It can be easily shown that there exists a holomorphic local
diffeomorphism si such that si(0) = 0, ski+1

i = si◦si◦· · ·◦si = Id (the composition
is taken ki+1 times) and fi◦si = fi (or s∗i (dfi) = dfi). The periodic diffeomorphism
si is conjugated to the linear rotation li(xi) = s′i(0)xi via a diffeomorphism φi :
(D, 0)→ (D, 0): φ∗i si = li φ

′
i(0) = 1; furthermore, (φ∗i fi) ◦ li = φ∗fi.

Theorem 3.1. Let C be a smooth, compact, holomorphic curve and n ∈ Z. Let L
be a line bundle over C such that c1(L) = n and ω = {ωi} ∈ H0(C,M1

C ⊗L) with
Z(ω) 6= ∅ and simple poles. There exists a surface S and a embedding of C in S
such that:

1) C has n as its self-intersection number in S;
2) C is generically transverse to a foliation of S which has a (singular) projective

transverse structure;
3) C is tangent to this foliation only at the points of Z(ω).

Proof. The total space of L total space is foliated by the fibers. We will modify
this foliation in order to make it tangent to C at the points of Z(ω). From the
analysis we did in Section 1, we have a (singular) projective structure for C given
by a collection f = {fi}. Let us take one of these elements, say f1, defined in a
neighborhood U1 of a zero p1 of order k1 (x1(p1) = 0). Consider in a neighborhood
of (0, 0) ∈ C2 the foliation I defined by the level curves of (x, t) → t − xk1+1; we
replace near p1 the foliation by fibers of L by I. This can be done as follows:
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• we take an annulus A ⊂ C × {0} with center at (0, 0) and a small neigh-
borhood V of this annulus in C2 saturated by the leaves of I. Let RV (re-
spectively R) be a holomorphic vector field transverse to A (respect. trans-
verse to φ1(A)) and tangent to the leaves of I (respec. tangent to the fibers
of L); we denote by RV (. , .) and R(. , .) their flows. Then V is diffeomor-
phic to a neighborhood W of φ1(A) via a diffeomorphism Φ1 such that
Φ1(RV ((x, 0), T ) = R((φ1(x), 0), T ), where (x, 0) ∈ A and T ∈ C is small;
clearly Φ extends φ.
• W is a subset of some neighborhood P of p1 which is saturated by the fibers of
L and is diffeomorphic to a polydisc (W itself is diffeomorphic to the product
of an annulus by a disc). Similarly, V is a subset of a neighborhood of (0, 0)
which is diffeomorphic to a polydisc Q to which we may restrict I. Finally
we remove all fibers of L which pass through P \W and add Q, using Φ1 as
the gluing map between V and W .

We see that the new surface is foliated with the fibers of L except at some
neighborhood of p1, where now there is a leaf tangent to this point with order
k1. The definition of Φ1 guarantees that C has c1(L) as self-intersection number
in this surface. Furthermore, f1 has the same value at each point (close to p1) of
intersection of a leaf with C, which allows us to extend f1 along the nearby leaves.
We can repeat the same construction for any subset of Z(ω), getting a foliation
F . At the other points of C where no modification is made we simply extend the
elements of f along the fibers of L. �

4. Projective transverse structures and 1-forms

As we have seen in the Introduction, a projective transverse structure for a codi-
mension 1 foliation G of a manifold M may be obtained from the folowing data:

1. a covering Ū = {Ūi} of M ;
2. a line bundle L̄ = {Λij} ∈ H1(Ū ,O∗M );
3. a triplet of meromorphic 1-forms ω̄ = {ω̄i}, η̄ = {η̄i} and ξ̄ = {ξ̄i} defined in

the open sets of Ū such that ω̄i = 0 defines G in each Ūi and satisfy:

dω̄i = η̄i ∧ ω̄i , dη̄i = ω̄i ∧ ξ̄i , dξ̄i = ξ̄i ∧ η̄i
and

ω̄i = Λijω̄j , η̄i − η̄j = d log Λij , ξ̄j = Λij ξ̄i

in each Ūi and Ūi ∩ Ūj , respectively.

A similar procedure as in Section 1 yields a transverse projective structure
for the foliation, at least outside zeroes and poles of the 1-forms. The question
we address now is whether the transverse projective structure of the foliations
constructed in Theorem 1 may be defined from a triplet of 1-forms as above.

Let us use the same construction and notation of Sections 1 and 2, but with
a modification. We will deal here with the case c1(L) ≤ g − 1, so we can choose
ξ ∈ H0(U ,Ω1

C⊗L∗) (that is, a holomorphic 1-form); in particular, all the functions
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of h = {hi} are holomorphic and vanish at the poles of ω and η. We introduce
the following notation: if in the open set Ui there is a point of tangency of the
foliation we put g̃i = gi; otherwise we put g̃i ≡ 1. We replace then each ωi by
ωi
g̃i

; consequently we have to replace ξj by g̃jξj and ηi by ηi − d log g̃i. We remark

that all g̃i are non-vanishing holomorphic functions. The corresponding functions
hi and gi are affected by these changes: they become respectively g̃i hi and gi

g̃i
, but

the functions in the collection f remain the same. The transition functions for the

line bundle L become
g̃j
g̃i
λij . The implication is that in the setting of Theorem 1,

we may assume that all 1-forms ωi and all functions gi and fi can be extended to
a neighborhood Ūi of Ui in S along the leaves of F to ω̄i, Gi and Fi. Our interest
relies in fact in ω̄i, dGi and dFi.

Let us write ω̄i = Λij ω̄j , ω̄i = −Gi dFi and η̃i =
dGi
Gi

; it follows that

η̃i − η̃j = d log
Gi
Gj

= d log Λij − d log
dFi
dFj

. this last quotient makes sense since the

functions Fi are constant along the leaves of F . As Fi = φij(Fj), it follows that
dFi
dFj

= φij
′(Fj) and η̃i − η̃j = d log Λij −

φ′′ij(Fj)

φ′ij(Fj)
dFj , so finally

η̃i − η̃j = d log Λij − ψij(Fj)dFj .

Theorem 4.1. Let g ≥ 1 and suppose that the selfintersection number C.C of C
inside S satisfies C.C < 2− 2g. Then there exists a meromorphic 1-form η̄ = {η̄i}
such that dω̄i = η̄i ∧ ω̄i for all Ūi and η̄i − η̄j = d log Λij whenever Ūi ∩ Ūj 6= ∅.

Proof. We start noticing that c1(L) < g − 1, so that we are in the setting above.
We intend to write {ψijdFj} as a special coboundary. We notice also that the
1-forms hiωi defined in the open sets Ui are all holomorphic.

Let us look at the conormal bundle N∗F of the foliation F and at the short
exact sequence

0→ IC .N∗F → N∗F → N∗F/IC .N∗F → 0

in some neighborhood Ū ⊂ ∪Ūi of C; IC is the ideal sheaf of C. We have the
associated long exact sequence

· · · → H1(Ū , IC .N∗F )→ H1(Ū , N∗F )→ H1(Ū , N∗F/IC .N∗F )→ . . .

By a theorem of Grauert, Ū may be chosen as a Levi strongly pseudoconvex
neighborhood of C (since C.C < 0), and H1(Ū , IC .N∗F ) = 0 (because we have
C.C < 2− 2g; more generally, H1(Ū , IC .A) = 0 for any coherent sheaf A defined
in Ū). Consequently the map

H1(Ū , N∗F )→ H1(Ū , N∗F/IC .N∗F )

is injective. Let us consider some holomorphic extension H̄iω̄i of hiωi to Ūi. Now
the cocycle {ψij(Fj)dFj} restricted to C coincides with {ψij(fj)dfj = hiωi−hjωi};
by injectivity, {ψijdFj} = {H̄iω̄i− H̄jω̄j} in H1(Ū , N∗F ) since they have the same



206 P. Sad

image in H1(Ū , N∗F/IC .N∗F ). Consequently {ψijdFj} is a 1-cobord: {ψijdFj} =
{ω̃i− ω̃j} for a collection {ω̃i} ∈ C0(Ū , N∗F ). We define then η̄i = η̃i− ω̃i. We have
dω̄i = η̄i ∧ ω̄i since both sides vanish. �

Let us make some remarks:

• in the case we have an affine transverse structure, ψij = 0 ∀i, j such that
Ui ∩ Uj 6= ∅. I follows that η̃i − η̃j = d log Λij , and there is no need of the
negativity hypothesis on C.C.
• take now g = 0. Then the same proof applies when C.C < −1. If C.C = −1,

then a neighborhood of C can be blown down to a neighborhood of (0, 0) in
C2. We find directly the 1-forms ω̄ and η̄ such that ω̄ = 0 defines the foliation
and dω̄ = η̄ ∧ ω̄.
• It can be readily seen that the third 1-form of the triplet can be taken as

ξ̄i = dHi +Hiη̄i +
H2
i

2
ω̄i where Hi comes from ω̃i = Hiω̄i ∀i. This illustrates

an interesting property of foliations with a projective transverse structure:
the existence of the two first 1-forms of the triplet implies the existence of
the third 1-form (see [4]).
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