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Preface

The workshop “Singularities in geometry, topology, foliations and dynamics” took
place in Mérida, Mexico, from December 8 to 19, 2014. It was a celebration of José
Seade’s 60th birthday. This meeting was preceded by a two week long school, held
at the Institute of Mathematics of Universidad Nacional Auténoma de México
(UNAM), in Cuernavaca, Mexico.

The workshop was held in a historical building of the Universidad Auténoma
de Yucatédn, located in downtown in Mérida. It was supported and financed by
various entities of UNAM (Instituto de Mateméticas, Posgrado de Matemadticas,
Direccién General de Asuntos del Personal Académico), as well as by the Consejo
Nacional de Ciencia y Tecnologia (CONACyT) and the Abdus Salam International
Centre for Theoretical Physics (ICTP). The main organizing institution was the
Institute of Mathematics of UNAM.

During the two weeks of the workshop, a total of forty-four plenary talks were
presented, as well as ten poster presentations. There were a total of 121 participants
coming from 14 different countries, a list of which appears below. The themes in
singularity theory discussed at this meeting include the topology of singularities
and characteristic classes, resolutions of spaces and of foliations, contact structures,
Milnor fibrations, metric and bi-Lipschitz behaviour, equisingularity, moduli of
spaces and foliations, among others.

José Seade, also known to his colleagues as Pepe Seade, was originally trained
as an algebraic topologist at the University of Oxford, where he wrote his Ph.D.
thesis under the direction of Brian Steer and Nigel Hitchin. Since his very first
publications he showed his interest into singularities. Over a period of 35 years
of productive research, Pepe’s work in singularity theory has explored a variety
of subthemes: vector fields, characteristic classes, mappings and foliations, Milnor
fibrations, contact structures, and the topology of local singularities. Even then, his
strong dedication to the field of singularities has not prevented him from working
in other fields, such as Kleinian groups and dynamical systems, where his research
has also had an unmistakable impact. Since 1981, Pepe has published 63 research
papers as well as 4 books. Two of his books have been awarded the Ferran Sunyer
i Balaguer prize: one a book on the topology of singularities and the other a book
on complex Kleinian groups.

Pepe has also played an important role in integrating the Mexican mathemat-
ical community into a variety of important international mathematical networks.
This is due in large part to his abilities in organizing international meetings and
facilitating the formation of research groups, as well as his readiness to help young
people obtain financial support or make scientific contacts abroad. These activities
— in Mexico, America, and worldwide — have helped make Mexico an international
center for singularity theory.

These are just some of the reasons explaining why so many mathematicians
from all over the world attended the workshop.
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viii Preface

This volume consists of 13 original research articles — submitted by some of
the participants of the workshop — covering various aspects of singularity theory.
At least one co-author of each paper was present at the conference or took part in
its preparation.

The scientific committee of the workshop consisted of Roberto Callejas-
Bedregal (Universidade Federal da Paraiba, Brazil), José Luis Cisneros-Molina
(UNAM, Cuernavaca, Mexico), Javier Ferndndez de Bobadilla (Instituto de Cien-
cias Mateméticas, Spain; Institute for Advanced Study, Princeton, USA), Xavier
Gomez-Mont (CIMAT, Mexico), Renato Iturriaga (CIMAT, Mexico), Anatoly Lib-
gober (University of Illinois at Chicago, USA), David Massey (Northeastern Uni-
versity, USA), Mutsuo Oka (Tokyo University of Science, Japan), Anne Pichon
(Institut de Mathématiques de Luminy, France), Marcelo Saia (ICMC, USP, Sao
Carlos, Brazil), Jawad Snoussi (UNAM, Cuernavaca, Mexico), Mark Spivakovsky
(Institut de Mathématiques de Toulouse, France), Alberto Verjovsky (UNAM,
Cuernavaca, Mexico).

The organizing committee in Mexico consisted of Vanessa Alderete (UNAM,
Cuernavaca), Waldemar Barrera (UADY, Mérida), Omegar Calvo (CIMAT, Gua-
najuato), José Luis Cisneros-Molina (UNAM, Cuernavaca), Jestis Mucifio (UNAM,
Morelia), Juan Pablo Navarrete (UADY, Mérida), Ramén Peniche Mena (UADY,
Mérida), Jawad Snoussi (UNAM, Cuernavaca), Manuel Alejandro Ucan Puc
(UNAM, Cuernavaca).

The editorial committee of this volume comprises José Luis Cisneros-Molina
(Instituto de Matemdticas UNAM, Unidad Cuernavaca, Mexico), Mutsuo Oka
(Tokyo University of Science, Japan), Ding Tréang Lé (Université Aix-Marseille,
France) and Jawad Snoussi (Instituto de Matemdticas UNAM, Unidad Cuer-
navaca, Mexico)

The members of the editorial committee are grateful to all the referees who
did a fantastic job in reviewing all the submitted papers, sometimes proposing
interesting and useful modifications. We would like also to thank the entire team
of the Trends in Mathematics series for their wonderful work.

Acknowledgments. We are grateful to the Consejo Nacional de Ciencia y Tec-
nologia (CONACyT) for his financial support to the meeting through the grant
CONACyT 224652. We also acknowledge the support of CONACyT-CNRS-
LAISLA. The first editor was supported by the grants UNAM-DGAPA-PAPIIT
IN106614 and CONACyT 253506. The fourth editor was supported by the grant
UNAM-DGAPA-PAPIIT 107614.
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Extending the Action of Schottky Groups on
the Complex Anti-de Sitter Space to the
Projective Space

Vanessa Alderete, Carlos Cabrera, Angel Cano and Mayra Méndez

This paper is dedicated to Pepe Seade in celebration of his 60th Birthday Anniversary.

Abstract. In this article we show that if a complex Schottky group, acting on
the complex anti-de Sitter space, acts on the corresponding projective space
as a Schottky group, then the space has signature (k, k). As a consequence,
we are able to show the existence of complex Schottky groups, acting on P¢,
such that the complement of whose Kulkarni’s limit set is not the largest open
set on which the group acts properly and discontinuously. This is the starting
point towards the understanding of the notion of the role of limit sets in the
higher-dimensional setting.

Mathematics Subject Classification (2000). Primary 37F30, 32M05, 32M15;
Secondary 30F40, 20H10, 57M60.

Keywords. Schottky groups in higher dimensions, limit sets, complex hyper-
bolic spaces.

Introduction

Classical Schottky groups in PSL(2,C) play a key role in both complex geometry
and holomorphic dynamics. On one hand, Koebe’s Retrosection Theorem says that
every compact Riemann surface can be obtained as the quotient of an open set
in the Riemann sphere which is invariant under the action of a Schottky group.
On the other hand, the limit sets of Schottky groups have a rich and fascinating
geometry and dynamics, which has inspired much of the current knowledge we
have about fractal sets and 1-dimensional holomorphic dynamics. In this article

Supported by grants of the PAPIIT’s projects IN106814, IN108214 and IN102515 and CONA-
CYT’s project 164447.

© Springer International Publishing Switzerland 2017 1
J.L. Cisneros-Molina et al. (eds.), Singularities in Geometry, Topology, Foliations and Dynamics,
Trends in Mathematics, DOI 10.1007/978-3-319-39339-1 1



2 V. Alderete, C. Cabrera, A. Cano and M. Méndez

we study the behavior of complex Schottky groups in PU(k,[) acting on ]P’fé“fl.
More precisely we show:

Theorem 0.1. If a purely loxodromic free discrete subgroup of PU(k,l) acts as a
complex Schottky group on IP’éH*l, then k = 1. Moreover in this case,
1. the group T' acts as a complex Schottky group on the compler anti-de Sitter
space;
2. the limit set Apa(T) is contained in the complex anti-de Sitter space and
homeomorphic to the product C x ]P’(]é*l, where C is the triadic Cantor set.

The limit set Ap4(I") will be defined in Theorem 1.9. As a partial reciprocal
of the previous theorem we have:

Theorem 0.2. Let T' C PU(k, k) be a group acting as a complex Schottky group
on the complex anti-de Sitter space. If T is generated by v1,...,7Vn, then there is
N € N such that Ty = (v, ..., 42N} acts as a complex Schottky group on P%k_l.

The paper is organized as follows: in Section 1, we review some general facts
and introduce the notation used along the text. In Section 2, we answer a question
by J. Parker showing that no complex Schottky group is hyperbolic. In Section
3, we provide a lemma that helps us to describe the dynamics of compact sets.
Finally, in Section 4, we provide a proof of the main results of this article.

1. Preliminaries

1.1. Projective Geometry

The complex projective space P is defined as:
PE = (C"*1\ {o})/C",

where C* acts by the usual scalar multiplication. This is a compact connected
complex n-dimensional manifold equipped with the Fubini-Study metric d,,.

If []: C"*1\ {0} — P2 is the quotient map, then a non-empty set H C P
is said to be a projective subspace of dimension k if there is a C-linear subspace
H of dimension k + 1 such that [H \ {0}] = H. In this article, ey, ..., ep4q1 will
denote the standard basis for C**1.

Given a set of points S in P&, we define:

Span(S) = ﬂ{P C P | P is a projective subspace containing S}.
Clearly, Span(S) is a projective subspace of P¢.

1.2. Projective and Pseudo-projective Transformations

Every linear isomorphism of C"*! defines a holomorphic automorphism of Pg.
Also, it is well known that every holomorphic automorphism of P¢ arises in this
way. The group of projective automorphisms of P is defined by:

PSL(n+1,C) := SL(n + 1,C)/C*,
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where C* acts by the usual scalar multiplication. Then PSL(n + 1,C) is a Lie
group whose elements are called projective transformations. We denote by [[ ]] :
SL(n+1,C) — PSL(n+ 1, C) the quotient map. Given v € PSL(n + 1,C), we say
that 7 € SL(n + 1,C) is a lift of v if [[7]] = 7.

1.3. Complex Anti-de Sitter Space and its Isometries

Let us start by constructing the complex anti-de Sitter space. To do that consider
the following Hermitian matrix:

H= Id;—x

1

where Id;_; denotes the identity matrix of size (I—k) x (I—k), and the off-diagonal
blocks in the upper right and the lower left are of size k x k. We set

U(k,l)={g e GL(k+!,C) : gHg* = H}

and denote by (,) : C"*! — C the Hermitian form induced by H. Clearly, (,) has
signature (k,1), and U(k,l) is the group preserving (, ), see [11]. The respective
projectivization PU(k, 1) preserves the set

Hy' = {[w] € PE | (w,w) < 0},

which is the pseudo-unitary complex ball. We call the boundary, denoted by 6Hé€:’l,
the complex anti-de Sitter space. In the rest of the article we will be interested in
studying those subgroups of PSL(n + 1, C) preserving the pseudo-unitary complex
ball.

Given a projective subspace P C P¢ we define
Pt =[{we C" | (w,v) =0 for all [v] € P} \ {0}].
An important tool in this work is the following result, see [6,11].
Theorem 1.1 (Cartan Decomposition). For every v € PU(k,l) there are elements

k1, ks € PU(n+1)NPU(k,1) and a unique p(y) € PU(k,1), such that v = kyp(y)ke
and pu(7y) have a lift in SL(n + 1,C) given by
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eM ()

e ()

e~ (V)

e—)\l(’Y)

where A1 () > A2(y) = ... > A(y) > 0.

1.4. Pseudo-projective Transformations

The space of linear transformations from C™*! to C"*1, denoted by M(n + 1,C),
is a linear complex space of dimension (n + 1)2. Note that GL(n + 1,C) is an
open dense set of M(n + 1,C). Hence PSL(n + 1,C) is an open dense set in
QP(n+1,C) = (M(n+ 1,C) \ {0})/C*; the latter is called the space of pseudo-
projective maps. Let M : C**! — C*L be a non-zero linear transformation and

Ker(M) be its kernel. We denote by Ker([[M]]) the respective projectivization.
Then M induces a well defined map [[M]] : P \ Ker([[M]]) — P{ given by

[M])([v]) = [M(v)] .

The following fact shows that we can find sequences in QP(n + 1,C) such that
the convergence as a sequence of points in a projective space coincides with the
convergence as a sequence of functions.

Proposition 1.2 (See [4]). Let () C PSL(n + 1,C) be a sequence of distinct
elements, then

1. there are a subsequence (Tm,) C (Vm) and 7o € M(n +1,C) \ {0} such that
Tm == To as points in QP(n +1,C);
2. if (1) is the sequence given by the previous part of this lemma, then
Tm 7= To, as functions, uniformly on compact sets of P¢ \ Ker(7o).
We need the following lemmas. Further details and the proof of the next one
can be found in [3].

Lemma 1.3. Let (), (Tm) C PSL(n +1,C) be sequences such that v, ——= 7o
and T, ——== 7. If Im(7) N Ker(y) # 0, then

m—r oo

TmTm 5 YoT0-

For the proof and details of the next lemma, see [4].
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Lemma 1.4. Let v € PU(1,n) be a lozodromic element with attracting fized point
a € OH¢ and repelling fized point r € OHE, then v ————= a uniformly on com-

m— o0
pact sets of PR\ rt.

1.5. The Grassmanians

Let 0 < k < n, we define the Grassmanian Gr(k,n) as the space of all k-
dimensional projective subspaces of P¢ endowed with the Hausdorff topology. One
has that Gr(k,n) is a compact, connected complex manifold of dimension k(n—k).
A method to realize the Grassmanian Gr(k,n) as a subvariety of the projective
space of the (k + 1)-th exterior power of C"*1, in symbols P(A"™ C"*1), is done
by the so called Pliicker embedding which is given by
k+1
t: Gr(k,n) — P( /\ crth
(V)= [vr Ao Avgya],

where Span({vy, -+ ,vk41}) = V. We can induce an action of PSL(n + 1,C) on
Gr(k,n) and P(A*' C"1) as follows:

Let [[T]] € PSL(n+1,C), take W = Span({ws, ..., wg+1}) € Gr(k+1,n+1)
and a point w = [wy A - -+ A wpgq] € P(AFT C"1). Now set

T(W) = Span([[TT}(w1), - . ., [[T]](wi-+1))

and
k+1

/\ T(w) = [T(wi) A+ AT (wr41)],

then we have the following commutative diagram:

Gr(k,n) - r . Gr(k,n)

lL l (1.2)

k+1
P(/\k+1 Cn+1) A T}P)(/\k-i-l Cn—‘—l).

1.6. The Kulkarni Limit Set

When we look at the action of a group on a general topological space, there is no
natural notion of a limit set. A nice starting point is the so-called Kulkarni limit
set (see [7]).

Definition 1.5. Let I' € PSL(n + 1, C) be a subgroup. We define

1. the set A(T") as the closure of the set of cluster points of I'z, where z runs
over P¢;

2. the set Lo(T") as the closure of cluster points of 'K, where K runs over all
the compact sets in PE \ A(T);

3. the Kulkarni limit set of ' as:

A (T) = A(I') U Lo (T);
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4. the Kulkarni region of discontinuity of I as:
Qgu(l) =P \ Akw(D).

For a more detailed discussion on this topic in the 2-dimensional setting
see [3]. The Kulkarni limit set has the following properties (see [3,4,7]).

Proposition 1.6. Let I' be a complex Kleinian group. Then:
1. The sets Axu(T), A(T), La(T') are T-invariant and closed.
2. The group T acts properly discontinuously on Qg (T).
3. Let C CP¢ be a closed I'-invariant set such that for every compact set
K C PE\C, the set of cluster points of T K is contained in A(I') N C, then
AKul(F) ccC.
4. The equicontinuity set of T is contained in Qg (T).

1.7. Complex Schottky Groups
Recall the classification of projective transformations (see [2]):

Definition 1.7. Let v € PSL(n + 1,C), then ~ is said to be
1. lozodromic if v has a lift ¥ € SL(n + 1,C) such that ¥ has at least one
eigenvalue outside the unit circle;
2. elliptic if v has a lift 4 € SL(n + 1,C) such that 7 is diagonalizable and all
of its eigenvalues are in the unit circle;
3. parabolic if v has a lift ¥ € SL(n + 1,C) such that ¥ is non-diagonalizable
and all of its eigenvalues are in the unit circle.

Complex Schottky groups are defined as follows, compare with definitions
in [5,8,9,12,13].

Definition 1.8 (See [1]). Let I' € PSL(n+1,C); we say that I is a complez Schottky
group acting on P¢ with g generators if
1. there are 2g, for g > 2, open sets Ry, ..., Ry, S1,...,Sy satisfying the follow-
ing properties:
(a) each of these open sets is the interior of its closure,
(b) the closures of the 2g open sets are pairwise disjoint;
2. the group has a generating set {71, . ..,7,} with the property v;(R;) = PZ\S;
for each j.

Examples of complex Schottky groups were constructed by A. Guillot, C.

Frances, M. Mendez, M. W. Nori, J. Seade and A. Verjovsky, see [5,8,9,12-16]. A
standard result is the following.

Theorem 1.9 (See [1]). Let I' € PSL(n + 1,C) be a complex Schottky group with
g generators, then I' is a purely loxodromic free group with g generators. If D =

?:1 PR\ (R;US;), then Qr =T'D is a I'-invariant open set where I' acts properly
discontinuously. Moreover, Qr has compact quotient and the limit set Apa(T) =
PE\ Qr is disconnected.

In Section 4 we give an example of a group I' for which Ak (T') # Apa(T).
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2. Complex Schottky Groups Cannot be Hyperbolic Ones

Now we address the following question by J. Parker: If ' is a purely loxodromic
free discrete subgroup of PU(1,n), is it true that I" is a complex Schottky group?
The answer is no, and this is the content of the following.

Theorem 2.1. Let I' C PSL(n + 1,C) be a complex Schottky group acting on Pg,
then T' can not be conjugate to a subgroup of PU(1,n).

Proof. On the contrary, let us assume that there is a complex Schottky group
I' ¢ PSL(n + 1,C) acting on P¢ which is conjugate to a subgroup of PU(1,n).
Let v be a generator of I'; by Theorem 1.9, we know that ~ is loxodromic. Let
7 € SL(n+1,C) be alift of v. It is a well-known fact, see [11], that after conjugating
by a projective transformation, we have:

7,.627ri¢
627Ti¢1

=)
I

e2midn—1

7“_16_2m¢

where H?;lle%i‘ﬁj = 1. If R and S are the sets associated to -, as in the definition
of complex Schottky group, then:

Claim 1. We have {[e1], [en+1]} € RUS. Let us assume that [e;] ¢ RUS. In this
case [e1] € PR\ S = R, then [e1] = v ?([e1]) € vR C R, which is a contradiction.
Similarly, one can show that [e,4+1] € RUS.

In the following we will assume that [e;] € R and [e,+1] € S.

Claim 2. It is verified that P = (([e2],...,[en])) C Ar. It is clear that given
any point x in P, there is a sequence n,, € Z of distinct numbers such that

Y'mr ———= =z, thus z cannot belong to any region where the group I" acts properly

discontinuously. In particular x € Ap.

Observe that since [e1] and [e,,41] have infinite isotropy group, we can deduce that
{le1], [en+1]} C Ap. The following is a reminiscent of the Lambda Lemma due to
J.P. Navarrete, see [10].

Claim 3. Either ¢; = (([e1], [e2])) C Ap or ¢3 = ({[e2], [en+1])) C Ar. Let us assume
that » < 1 and ¢o ¢ Ar, then there is ¢ € Qr N {s. Define ¢ = ({g,r)), where

r € l1\ {[e1],[e2]}, then v ———= ;. Thus given any z € {; there is a sequence

(2m) C € such that z,, ———= 20 € £ and vz, ——= 2, in virtue of Lemma 1.4,

it is clear that zy = ¢, therefore z € Ar, which completes this claim.
Through similar arguments one can show:

Claim 4. There is 7 : P — P conjugate to an element in SU(n — 1), such that
given z € P either ((z,[e1])) C Ar or {{rz,[e,+1])) C Ar.
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After all these claims we conclude the proof of the Theorem. Since [e1] and [e;,41]
lie in different connected components of Ar we deduce that either [el]L C Ar
or [ent1]t € Ar. But T is a free group thus I' can not be elementary. Then
[e1]* C Ar U [ens1]t C Ar, which is a contradiction. Hence I' is not a complex
Schottky group. O

3. The M-lemma

In [5], C. Frances studied Lorentzian Kleinian groups in several dimensions. On
her Ph.D thesis (see [9]), M. Mendez developed Frances ideas and techniques. In
particular, she proved Lemma 3.1 and applied it to the study of complex orthogonal
Kleinian groups in dimension three. The techniques in [9] allow us to compute, in
a very precise way, the accumulation points of orbits of compact sets of divergent
sequences of PU(k,[). In this section we present these techniques which will be
very useful in the study of complex Schottky groups in higher dimensions.

Recall that a divergent sequence (g,,) in a topological space X is a sequence
leaving every compact set in X. If (g,,,) C T' C PU(k, ) is a divergent sequence and
x is a point in Pg”l_l, we define Dy, y(x) as the set of all the accumulation points
of sequences of the form (g, (2,,)), where (z,,,) C PET"! is a sequence converging
to x.

The following key lemmas, proved by M. Méndez (see [Menl5]), will help to
determine the sets D(gy,)(z).

Lemma 3.1. Let (up), (Um), (gm) C PU(k 1) be sequences and U C PEM™1 a non-

empty open set. If u = hm 1 U, and U = w}gnooum, then

D(umgmam)(U) = u(D(gm)ﬂ(U)) (31)

Lemma 3.2. Let us consider the closed polydisc Be(z) = I.(z1) X -+ X Ic(2k41),
where I.(y) denotes the closed disc of C of center y and radius €. If (gm) C U(k,1)
is a divergent sequence and [gm(Bc(z))] ——== B([z]) in the Hausdorff topology,

m—r 00
then

Dgp ([2]) = (B (] (3.2)
e>0

Now we specify the ways on which a sequence diverges using Cartan Decom-
position given in Theorem 1.1.
Definition 3.3. Let (v,,) C U(k,[) be a divergent sequence. We will say that (Y, )
tends simply to infinity if

1. the compact factors in the Cartan Decomposition of v, converge in
Uk+1)NU(k,I1);



2.

Extending Schottky Groups 9

there are s natural numbers nq,...,ns € N such that Z;Zl n; = k, and

corresponding sequences (a1,), (@2m), ..., (@sm) C R, and block matrices

(D1m) € GL(n1,R),...,(Dsm) C GL(ns, R) with det(D;,,) = 1 satisfying
6alrnDlrn

Xsm
€**™ Dy

1

e~ @sm p—1

sm

—aq —1
e mDi

where the differences o, — ajm == o0, for i > j, and the blocks Dj,

converge to some D; € GL(n;,R) as m — oo. Moreover, we will say that
(ym) tends strongly to infinity if agym =2 0.

In order to generalize Theorem 2.1 to higher dimensions, the following propo-

sition is essential.

Proposition 3.4. Let (4,,) C U(k,l) be a sequence tending strongly to infinity,
then there are:

e s natural numbers ny,...,ng € N,

e (25 + 1) pairs of projective subspaces P;", ..., PQJ;H, P, Py,

e a pseudo-projective transformation Il € QP(n,C), and

e a set of projective equivalences F = {~; : P, — P;T12H1,
satisfying:

L. Im(I1;) = Pt

2s+1 p—

2. Ker(Il}) = Span(Uj:Jg Pr).

3. dim(Span(U;1! PF)) =25 + 1+ 370 dim(PF) = k+1 - 1.

4. It holds [[Am]] == 1Ly, in consequence

D(pa,. (@) = Ty (2),
for each x € PEH=1\ Ker(IL, ).
Given j €{2,...,2s},y € P, and x €span ({y} v Ut P )\Span (UZF], P ),
we have

D(((a,1) () = Span <{w(y)} U U Pﬁ) _

For each x € Py | we have

2s
D(a, () = Span | {y(x)}u | P}

j=1
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Remember that we defined Dyj4,,);(2) as the set of all the accumulation points
of all images g, (z,,) of sequences x,, converging to x for divergent g,, sequences
in PU(k,1). The previous proposition describes the set D4, 17(K), where K is a
compacts set, and gives bounds on the dimensions of this accumulation set.

Proof. In virtue of Lemma 3.1, we will restrict to the case where (7,,,) is a sequence
of diagonal matrices. Take s natural numbers nq,...,ng, real valued sequences
(01m), (2m), ..., (asm), and block matrices (D1,,) C GL(n1,R),...,(Dsm) C
GL(ns,R), and let Dy,..., Dy € GL(ns,R) be as in Definition 3.3. To make nota-
tion simpler, define

Djm ifl<j<s, D; ifl<j<s,
Ajm = 1d if j=s4+1, Aj = Id ifj=s4+1,
DQs_jJ'_Q,m ifs+1< 7 Dgs_j+2 ifs+1< 7
and
exim ifl<j<s,
Bim = 1 if j=s4+1,
e¥s—itzm if g 41 < 3.
We have

51mA1m
Ay =
B2s+1,mA23+1,m

Since we are in the case where the sequence (7,,) consists of diagonal matrices,
the spaces Pj+ and P;” coincide and are given by

Span({[e;] : l € {1,..».,111}}) » if j =1,
Span({[es] : 1 € {1 +]z_: Ny, ini}}), if2<j<s
P =P ={ Span({[es] : L € {1 hoan ifj=s+1,
Span({[e;] : L € {1+l,..‘._,l§j-ns}}) - if j=s+42,
Span({[el]:l€{1+l+.7l23n5_i ..... l+JZ ns—i}}y) ifs+2<j<2s+41;
i=0 i=0

the pseudo-projective transformation is
Ay
H+ - |: O :| )

v = [[4;]]-
When the maps 7, are not diagonal, the left and right actions given by the
Cartan Decomposition of the elements ~,, induce different projective spaces PjJr

and P,
We have that Im(IL, ) = P;t, Ker(Il,) = Span(U?S:J;1 Pr)and k+1-1=
dim(Span(U?fl1 Pji)) =2s+1+ Zj:{l dim(Pji).

and
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Let us show 4. Since 7, ———= Il as pseudo-projective transformations,

we conclude vy, |k ——== I, |k uniformly. In consequence D, \(x) = I, (x) for

every x € PETI1\ Ker(I14).
Part 5. Given j € {2,...,2s}, y € P; and x € Span ({y} UU 1 _) \

Span (U2_J+1 ) Then there is Y € C" \ {0} and w € C" where i1 = ngﬁrl n;

and such that x = [0,Y, w].
Let B.(Z) be the polydisc centered a & = (0, Y, w) with radius e then

A (B.(2))] = [Hﬂ tBim . B()xAj,mBe<Y>xnﬁiﬁlﬁ“mmm&(w)],

i=1 im
Bjm Bi.m
thus we have the following limit in the Hausdorff topology:
An(BU®)] 7=z BE () = |IEL[C™ x 4;(B.(Y)) x {0},

m—ro0

see [9] for a detailed discussion on this limit. By Lemma 3.2, we conclude

D(j(a,.])(x) = Span <{vj(y)} U U Pf) ,

which completes this part of the proof. The last part of this lemma can be proved
analogously to part 2. O

Now, after this technical step, we give some applications in the following
section.

4. Complex Schottky Groups in PU(k,!)

From the works of A. Guillot-M. Mendez (see [9]) and C. Frances (see [5]), it is
known that we can construct complex Schottky groups acting in ]P’% that admit
representations on PU(2,2). Hence a natural question is:

Under which conditions is a discrete group T' in PU(k,1) a complex Schottky
group?

The following are auxiliary lemmas to answer this question:

Lemma 4.1. Let v € PSL(n,C) be a non-elliptic element. If there is a sequence
(nm) C Z of distinct elements such that there is a point p and a hyperplane H
satisfying "™ ——2 p uniformly on compact sets of Pg_l \ H, then p is a fized
point of .

The proof is contained in [2]. Now we show:

Lemma 4.2. Let ([[T)n]]) be a sequence of different elements of PSL(k + [,C)
such that there is a point p = [wy A -+ A wg] and a hyperplane H satisfying
[AFTm]] === p uniformly on compact sets of P(AF(CFY)) \ H. Then for all

m—roo

U € Gr(k,k+1)\ c7'H we have that T,,(U) converges to W = Span(w, ..., wy)
n IP’(IEH in the Hausdorff topology.
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Proof. To prove this lemma observe that the Pliicker Embedding restricted to
Gr(k,k + 1) is an isomorphism. Then by the Commutative Diagram 1.2, we have
that for every U = Span({uy,...,ux}) € Gr(k,k+1)\ ¢~ 1H the sequence (T}, (U))
converges to W = Span({w, ..., wg}) as points in Gr(k — 1,k +1). Thus (7,,,(U))
converges to W as closed sets of ]P’(IEH, in the Hausdorff topology. ]

The following theorem answers the question posed at the beginning of this
section. It gives a necessary condition under which a discrete group I' in PU(k, )
is a complex Schottky group.

Theorem 4.3. If a purely lozodromic free discrete subgroup of PU(k,1) is a complex
Schottky group, then k = 1.

Proof. Let us proceed by contradiction. Suppose that k& < [ and let T' C PU(k, 1)
as in the hypothesis. Take a generator v € T" and let 4 € U(k,l) be a lift of ~.
Consider the Cartan Decomposition of 4™, then we obtain sequences (¢,,) and
(€m) in K and (A4,,) in U(k + 1) satisfying 3™ = ¢, AmCrn.

Since (¢,) and (&) lie in a compact set, there is a subsequence (ms) C (m)
and elements C' and C in K such that c,,, converges to C' and ¢,,, converges to
C. Clearly, we can assume that (7™) tends simply to infinity and in the following
we will assume that (7™:) tends strongly to infinity. The proof of the other case
is similar. We claim that there exist projective subspaces P and @), satisfying the
following properties:

1. The dimensions satisfy dim P =dim@Q =k — 1.

2. The spaces P, Q are invariant under the action of . Moreover, P is attracting
and @ is repelling.

3. If R,, S, are the disjoint open sets associated to vy given in the definition of

a complex Schottky group, then either P C R, and @ C S, or Q C R, and

P C S,. In particular, it follows that P and () are also disjoint and lie in

distinct connected components of A4p(T).

4. We have P+ ¢ Ayp(T) and Q+ € Asp(D).

Set P and @ the projectivizations of the spaces P’ = C'(Span({e1,...,er}))
and Q' = C~!(Span({ej+1,...,exs1})). The first part of the claim follows by
construction. Let us show part (2), consider the action of AFA,, ~on AFCF*! then
a straightforward calculation shows the matrix of AFA,, ~with respect the standard
ordered basis 3 of AFCF*+! is given by:

61

)
where 6; is the product of k elements taken from the set {e*»(7"™)} and ordered

in the lexicographical order in (i,m). In fact 81 > 6y > --- > H(k) Hence [[4]]

converges to & = [e1 A~ - - Aey] uniformly on compact sets of P(A*(CF+))\ Span(8)\



Extending Schottky Groups 13

{x}). Therefore by Lemma 1.3, we conclude that [[A¥5™]] converges to the point
[[A*C]]le1 A - - Aey] uniformly on compact sets of P(A*(CF))\ [AFC~1] Span(3\
{x}). Finally, from Lemma 4.1 we conclude that z is a fixed point of [[A*§™:]], in
consequence P = [C]Span({[e1],...,[ex]}) is attracting and invariant under . In
a similar way, we can prove that @ is repelling and invariant.

Part 3. On the contrary, assume that there is z € PNPEM 1\ (R, US,) # 0,
then there exists an open set U such that x € U C IP’(](‘C:JFF1 \Apa(T). By Proposition
3.4, we conclude that

QF CDiyumy(x) C [ 4™Sy C S,y
meN
Let 4, € I be a generator of I' distinct from ~. Define Q; = 7', Q* and observe
that 1 C R,. As the dimensions of (); and Q* are | — k, we have that Q; N Q+
is not empty, which leads to a contradiction, because R, N S, = 0.

Part 4. Assume that P+ C Ap. By the previous part, we can assume that
P C S,.Let y1 € I' be a generator of I distinct from . By Lemma 4.2 we conclude
that =™ (v, (P)) converges to @, therefore ;™ (v(P1)) converges to Q. Hence
Q+F CAr. As P C P+, Q c QF and P NQ* # 0 and all of these spaces are path
connected, which lead us to a contradiction.

To conclude the proof, let p € P N Qr and ¢ € Q+ N Qr. Clearly, we can
assume that p € P\ P and ¢ € P\ Q. By Lemma 3.4 there exist a,b € P-NQ+
such that Span(a, P)USpan(b, Q) C Ar. But Span(a, P), Span(b, Q) and P-NQ*
are path connected. Then we can construct a path in Ar, passing along a and b
through W and connecting P with @), which leads to a contradiction. O

With the previous results in mind let us show the main results:

Proof of Theorem 0.1. From Theorem 4.3 we know that every complex Schott-
ky group of PU(k,1) acting on PE™ "' must satisfy that k = I. From the ar-
guments used in the proof of Theorem 4.3 we deduce that there are elements
Y1,---,vn € T, disjoints open sets Ry,...,R,,S1,...,5, and projective spaces
P,....P,, Q1,...,Q, such that

the group I is generated by v1,...,vn;

we have (J/_, R; U S; # P21

the set U;-L:l P; U Qj is contained in the complex anti-de Sitter space;

the generating set satisfies that v;(R;) = ]P’(%k_l \ Sj;

for each j € {1,...,n} we have P; C R; and Q; C Sj;

the collection of projective spaces satisfy dim(P;) = dim(Q;) =k — 1;

the set P2F"1\ T (U?:1(Pj u Qj)) is the largest open set on which T' acts
2k—1
o -

N ooE W

properly discontinuously on P

On one hand this means that I acts as a complex Schottky group in the com-
plex anti-de Sitter space, and on the other hand, it is well known that a maximal

open set on which I' acts properly discontinuously is T' (IE”?Ck*l \U;l:1 R; U Sj>7
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see [3]. Finally, by well-known arguments of complex Schottky groups, see [16],
we can ensure that Ap4(T") is homeomorphic to the product of a Cantor set with
P(’é_l, which concludes the proof. O

We continue with the proof of Theorem 0.2.

Proof of Theorem 0.2. Using similar arguments as in the proof of Theorem 4.3, we
can deduce that there are elements ~v1,...,7y, € I', disjoint open sets Ry, ..., R,,
S1,...,8,in aHé’k and (k—1)-dimensional projective spaces P, ..., Py, Q1,...,Qx
in BHé’k such that:

1. the group T is generated by v1,...,7n;

2. we have Jj_, R;j U S; # OHE";
3. the generating set satisfies that v;(R;) = 8]1-]1(]5’]“ \ Sj;
4. for each j € {1,...,n} we have P; C R; and @Q); C Sj;
5. the projective space @, (resp. P;) is an attracting (resp. repelling) fixed point
for /\k V-
Thus, there are disjoints open sets Uy, ...,U,, Wy,...,W,, C P(Qck_l and n natural
numbers my, ..., m, such that:

1. we have (J;_, U; UW; # P2t -
2. the generating set satisfies that ’y;n'j (U;) = P21\ W;
3. for each j € {1,...,n} we have P; C U; and Q; C W;.
Taking N as the lowest common multiple of (m;) we have that TV, the group

generated by {71V,... 7Y}, is a complex Schottky group acting on P%kil, which
concludes the proof. O

4.1. An example

From the arguments in the proof of the previous Theorem we are able to answer
a question by J. Seade and A. Verjovsky of whether the Kulkarni limit set always
coincides with the limit set of J. Seade and A. Verjovsky.

Proposition 4.4. There exists a complex Schottky group I such that the Kulkarni
limit set Ak (D) is different to Apa.

Proof. Let us consider two complex Schottky groups G = (v1,72) and G = (31, 42)
in U(1,1) such that the corresponding lifts in SL(2,C) of the maps 1,41, 72 and
4o are diagonalizable and have all pairwise different eigenvalues.

Now construct a new complex Schottky group I' = (01, 02), where o; is the

map in U(2,2) given by
g; = < Vi ~ ) .
Vi

By construction, I" is purely loxodromic. The product of the defining curves of
G and G give corresponding curves for the elements of I'. Thus I" is a complex
Schottky group with signature (2, 2).
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Moreover, for each v in T" there is a lift 4 in SL(4, C) such that 7 is diagonal-
izable with all the eigenvalues pairwise distinct.

By Theorem 0.1, part 2, Apa is homeomorphic to C x P¢.

On the other hand, since I is generated by two elements with different eigen-
values, an application of Perron-Frobenius Theorem shows that A(I") consists of
the union of all eigenvectors of elements in I'. Indeed, for every element v of I' we
have four eigenvectors:

e two repelling eigenvectors, the most repelling eigenvector p; and the least
repelling py contained in the space P;

e two attracting eigenvectors, the most attracting ¢; and the least attracting
g2 contained in the space Q;

where P and @ are the spaces associated to 7y constructed in Theorem 4.3. Let L
be the line passing through p; and py. Now take a point « € L\ {p1,p2}. Hence
x does not belong to A(T"). By construction, L is one of the projective subspaces
constructed in Proposition 3.4. By Proposition 3.4, if (z,,) is a sequence in the
complement of L converging to x then the accumulation set D,m(z) contains a
space of dimension 3. But D, (z) is contained in Ly (I"). Then we have that Agu(I")
contains subspaces of dimension 3. Hence Agyi(T") # Apa. O

In the general case, with signature (k, k), we have that Ak, is a union of
spaces of dimension 2k — 1 whereas Ar is a union of spaces of dimension k.
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Puiseux Parametric Equations via the Amoeba
of the Discriminant
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Dedicated to José Seade on his 60" birthday

Abstract. Given an algebraic variety we get Puiseux-type parametrizations
on suitable Reinhardt domains. These domains are defined using the amoeba
of hypersurfaces containing the discriminant locus of a finite projection of the
variety.
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Keywords. Algebraic variety, parametrization, Puiseux series.

1. Introduction

The theory of complex algebraic or analytic singularities is the study of systems
of a finite number of equations in the neighborhood of a point where the rank of
the Jacobian matrix is not maximal. These points are called singular points.

Isaac Newton in a letter to Henry Oldenburg [14], described an algorithm to
compute term by term local parameterizations at singular points of plane curves.
The existence of such parameterizations (i.e., the fact that the algorithm really
works) was proved by Puiseux [12] two centuries later. This is known as the
Newton-Puiseux theorem and asserts that we can find local parametric equations
of the form z; = t*, 2o = o(t) where ¢ is a convergent power series.

Singularities of dimension greater than 1 are not necessarily parameterizable.
An important class of parameterizable singularities are called quasi-ordinary. S.S.
Abhyankar proved in [1] that quasi-ordinary hypersurface singularities are param-
eterizable by Puiseux series.
For algebraic hypersurfaces J. McDonald showed in [11] the existence of Puiseux
series solutions with support in strongly convex cones. P.D. Gonzélez Pérez [8]
describes these cones in terms of the Newton polytope of the discriminant. In [2]
F. Aroca extends this result to arbitrary codimension.

© Springer International Publishing Switzerland 2017 17
J.L. Cisneros-Molina et al. (eds.), Singularities in Geometry, Topology, Foliations and Dynamics,
Trends in Mathematics, DOI 10.1007/978-3-319-39339-1 2
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In this paper we prove that, for every connected component of the com-
plement of the amoeba of the discriminant locus of a projection of an algebraic
variety, there exist local Puiseux parametric equations of the variety. The series
appearing in those parametric equations have support contained in cones which
can be described in terms of the connected components of the complement of the
amoeba. These cones are not necessarily strongly convex.

The results of Abhyankar [1], McDonald [11], Gonzélez Pérez [8] and Aroca
[2] come as corollaries of the main result.

2. Polyhedral convex cones

A set 0 € RY is said to be a convex rational polyhedral cone when it can be
expressed in the form

o= {Alu(l) + /\QU(Q) + -+ /\MU(M) | /\j € Rzo},

where uM, ... u™) e ZN. The vectors uV,..., u™) are a system of generators
of o and we write

o=, .. u®),

A cone is said to be strongly convex if it contains no linear subspaces of
positive dimension.

As usual, here z -y denotes the standard scalar product in RY. Let ¢ ¢ RY
be a cone. Its dual cone ¢V is the cone given by

oV i={z eRY |z -u>0, Vuco}.
Let A C R™ be a non-empty convex set. The recession cone of A is the cone
Rec(A):={yeR" |z + Ay € A, Vz € A, VA > 0}.
From now on, by a cone we will mean a convex rational polyhedral cone.
Remark 2.1. Given p € R and a cone ¢ C RY, one has,
prto={zcRY |[z-v>p-v,Vwea’}).

A cone o C RY is called a regular cone if it has a system of generators that
is a subset of a basis of Z/.

Remark 2.2. Any rational polyhedral cone ¢ C R” is a union of regular cones
(see, for example, [6, section 2.6]).

For a matrix M, we denote by M7 the transpose matrix of M.

Remark 2.3. Take u® ..., u®) € RN and let M be the matrix that has as columns
u® § = 1,...,N. Suppose that the determinant of M is different from zero. If
o=@, .. u™) then ¢¥ = (oM ... M) where v, i = 1,..., N are the

columns of (M™1)T" (see, for example, [4, Example 2.13.2.0.3]).
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Lemma 2.4. Let o = (u™ ..., u®)) C RN be an s-dimensional regular cone and
let (V) .. uMN)) be a Z-basis of o+ N ZN. Let M be the matriz that has
u® . u™) as columns and let vV, ... o) be the columns of (M~—HT. Then

oV = <v(1), TG e .,:I:'U(N)>.

Proof. Clearly (v, ... v +oC+tD 40y C oV, Let o' :=(u®, ... uM).
Since (VM. oMy C (M 0+t (V)Y by Remark 2.3,

WO, o) 2ty (Y € o

Now let 2 = Zf\il Aiu® be an element of (v, ... v o+t 4 (V)Y
Since )\iu(i) -0® >0 and )\iu(i) O 0, we have that,

Ai=0fori=s+1,...,N.
Then, z = Y5, Ajul®. O

3. Amoebas

Consider the map

T cN — RZZVO (3.1)
(z1,.-,2n) +— (=), |2n])-
A set Q C C¥ is called a Reinhardt set if 7 1(7(2)) = €.
Let log be the map defined by
log : RY, — RV (3.2)
(1,...,zn) +— (logzy,...,logzN). ’

We will denote p := log oT.

A Reinhardt set Q C (C*)¥ is said to be logarithmically convex if the set 1(Q) is
convex.

A Laurent polynomial is a finite sum of the form Z(al,...,aN)eZN ca X where
ca € C. A generalization of Laurent polynomials are the Laurent series (for a
further discussion of Laurent series, see, for example, [13]).

For a Laurent polynomial f we denote by V(f) its zero locus in (C*)". Given
a Laurent polynomial f, the amoeba of f is the image under p of the zero locus
of f, that is,

Ap = n(V(f)).

The notion of amoeba was introduced by Gelfand, Kapranov and Zelevinsky
in [7, Definition 1.4 ]. The amoeba is a closed set with non-empty complement and
each connected component F of the complement of the amoeba Ay is a convex
subset [7, Corollary 1.6]. From now on, by complement component we will mean
connected component of the complement of the amoeba. For each complement
component F of Ay, we have that u=!(F) is a logarithmically convex Reinhardt
domain. An example of the amoeba of a polynomial is shown in Figure 1.
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FIGURE 1. Amoeba of f(z,y) := 50> 4+ 83z2y + 24xy” + > + 39227 +
414y + 50y? — 28z + 59y — 100. (Taken from wikimedia commons, file:
Amoebad 400.png; Oleg Alexandrov).

Proposition 3.1. Let F be a complement component of Ay. The fundamental group
of u=(F) is isomorphic to ZN.

Proof. Let © := (z1,...,2,) be a point of the complement component F. By
definition,
p @) = {2 = (21, 2n) € CV : Log(z) = z}
={z: (loglz1l,... ,loglzn|) = (21,...,an)} ={z : [z:] = €™}

That is, = !(z) is the product of N circles of radius e*:. The result follows from
the fact that F is contractible. O

4. The Newton polytope and the order map

Let f =) cz~ caz® be a Laurent series. The set of exponents of f is the set

e(f) ={a e Z" | ca #0}.

The set e(f) is also called the support of f. When f is a Laurent polynomial, the
convex hull of e(f) is called the Newton polytope of f. We will denote the Newton
polytope by NP(f). For p € NP(f), the cone given by

ap(NP(f)) :={Ag—p) : A€ Ry, q € NP(f)} = R (NP(f) —p),

will be called the cone associated to p. This cone is obtained by drawing half-lines
from p through all points of A" and then translating the result by (—p) (see Figure
2).

Forsberg, Passare and Tsikh gave in [5] a natural correspondence between
complement components of the amoeba Ay and integer points in NP(f) using the
“order map”:

ord :RV \ Ay — NP(f)NZN

2i0; f(2) dzy---dzn (4.1)

1
v = (o Juiw) T e

)19‘31\7'
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FIGURE 2. The cone associated to a vertex of the polygon on the right.

Under the order map, points in the same complement component F of the
amoeba Ay have the same value. This constant value is called the order of F and
it is denoted by ord(F). The order map is illustrated in Figure 3.

Proposition 4.1. The order map induces an injective map from the set of comple-
ment components of the amoeba Ay to NP(f) N ZN. The vertices of NP(f) are
always in the image of this injection.

Proof. See [5, Proposition 2.8]. O

Proposition 4.2. The vertices of the Newton polytope NP(f) are in bijection with
those connected components of the complement of the amoeba which contain an
affine convex cone (cone with vertex) with non-empty interior.

Proof. See [7, Corollary 1.8]. |

Forsberg, Passare and Tsikh also gave in [5] a relation between the order of a
complement component of the amoeba and the recession cone of the component.
They show that the recession cone of a complement component of order p is the
opposite of the dual of the cone of the Newton polytope at the point p.

Proposition 4.3. If F is a complement component of Ay, then
op(NP(f)) = —Rec(F)",
where p = ord(F).

Proof. The proposition is just a restatement of [5, Proposition 2.6]. |

5. Toric morphisms

Let {u®, ..., u™M} C ZN be a N-tuple of vectors which is a basis of ZV. Let M
be the matrix that has «™, ..., 4 as columns. Consider the map
Pyp  (CHHN — (CHN
ICORWE) ) (5.1)
z e CA-L LA B
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FIGURE 3. The order map between the complement components of
Ay and NP(f) for f as in Figure 1. (Here F; ; denotes the complement
component with order (i, 7)).

The map Py is an isomorphism with inverse ®y-1.

Lemma 5.1. Let o C RY be a cone andp € RN If p € (R%)N is such that (o) = p,
then

Wt o) = {z e (C)V 2] > 0%, e oV}
Proof. We have that
— Remark 2.1 %
pHp+o) TTETT {2 e ()Y () v > plo) v, Yo e o)
= {Z c ((C*)N | eZﬁil v; log || > eZi\Ll Vi loggi}

N N

= {z c ((C*)N ‘ Hevi log |2 | > Hev,- loggi}
z;l i=1

= {Z S ((C*)N ‘ H|Zz
=1

Proposition 5.2. Let M be as in (5.1) and let o C RN be a cone. Given p € RY,
one has

N
Vi > Hgf", Yo = (v1,...,UN) EUV}. O
i=1

w(@m(p~ (p+0)) = g+ Mo,
where {q} = p(@ni(p~" (p)))-
Proof. We have that
Py (p+0))
P {2 e @)V ] P ()] 2 B (p)", Yo € 0¥ @a(p) = o}
= {z € (CHV | |Z|M71” >pMY e UV}

={ze (C)N||z]" > p”, Yw € M~ 'oV}
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and
w(@m(pHp+0)) = {u(z) € RN | w- pu(z) >log(p®), Yw e M~ 1oV}
={ye RN |w-y > log(p¥), Yw € MoV}
Rcmgk?.l q+ (M_IJV)V =g+ MTO'. O

Corollary 5.3. Let Q C (C*)N be a Reinhardt domain and let ¢ C RN be a cone.
If o C Rec(u(R2)), then MTo C Rec(u(®m(9))).

Proposition 5.4. Let 0 C RY be a cone. Let ¢ be a Laurent series and suppose
that e(¢) C p+ o where p € RN, Then £(p o ®y) C Mp + Mo.

Proof. 1t is enough to make the substitution. O

6. Series development on Reinhardt domains

It is well known that the Taylor development of a holomorphic function on a disc
centered at the origin is a series with support in the non-negative orthant. In this
section we will get a similar result for holomorphic functions on &, *(€2) where Q
is a Reinhardt domain.

Proposition 6.1. If f(x) is a holomorphic function on a logarithmically convex
Reinhardt domain, then there exists a (unique) Laurent series converging to f(x)
in this domain.

Proof. See, for example, [13, Theorem 1.5.26]. |
Lemma 6.2. Let Q C (C*)V be a Reinhardt domain. Let (e™),...,eM)) be the
canonical basis of RN. If (—e), ... —e(®)) € Rec(u(Q)), then for every w € Q,

the s-dimensional polyannulus

s = {7 € ( (C*)N||zl|<|w,|1<z<sandzl—wl,s—|—l<z<N}

7(w),

is contained in ).

Proof. Consider the cone o := (—e) ... —e()) and take w € Q. By Lemma
2.4, the dual cone of o is 0¥ = (—e), ... —el) estl —est1 N _eN). Since
the cone o C Rec(u(2)), we have that u(w) + o C u(Q). Since 2 is a Reinhardt
domain, then

Q2 7 (uw) + o) “TE {2 € (C)N | |2 > [w], Yo e 0V}
= {2 (C)Y||z| < |wi], fori=1,...,s;

and |z;| = |w;|, fori =s+1,.. N}Z)]D)T(w)S O
Given a natural number d, set
: CcN — CN
ba J (6.1)

(#1,.-.,2N) +— (zl,...,zﬁl\,)
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Lemma 6.3. Let  be a Reinhardt domain and suppose that
(=Rx0)* x {0}V C Rec(u(92)).

Let f be a bounded holomorphic function on §d_1(Q). Then the set of exponents of
the Laurent series expansion of f is contained in (R>¢)® x RN—s.

Proof. Let ¢ = > cyn arz’ be the Laurent series expansion of f on 5(;1(9). Take
w € ). By Lemma 6.2 we have that D* C Q. Therefore, ¢ is convergent and

T(w),s
bounded on D: o Let 7 be the map defined by,

(€7 (r(w))

7  (CHN  — (CH)N—s
(21,1 2N) > (Zst1s Zst2y -5 ZN)-

The series in s variables, @, := > cz: Ya(m(w))2z* where
Galrw) = 3 anwiEwy,
(yis41,e-sin ) EE(P)
is convergent and bounded on the polyannulus
D* :={z € (C")? | || < V/|wi|;1 < i < s}

By the Riemann removable singularity theorem (see, for example, [13, Theorem
4.2.1]), there exists a (unique) holomorphic map that extends ¢,, on D and ¢,, is
its Taylor development on that disc. Then ¢,, cannot have negative exponents. [J

Proposition 6.4. Let Q be a Reinhardt domain. Let ¢ C RN be a cone. Suppose
that o C Rec(u(Q)). Let f be a bounded holomorphic map on &, (). The set of
exponents of the Laurent series expansion @ of f on §d_1(Q) is contained in —o".

Proof. By Remark 2.2, we can assume that o is a regular cone. Let {v(), ... ,v(s)}
be the generator set of 0. Let (vt ... v(N)) be a basis of ¢+ NZN. Let A be
the matrix that has as columns v® for i = 1,...,N. Set M := —(A~1)T. Since
o C Rec(p(€2)), by Corollary 5.3, we have that

—A7lo = (W, ... —e®) C Rec(u(®n(N))).
The series h := p o &y, is convergent in ®y(€;'(2)) then, by Lemma 6.3,
e(h) C <6(1), e e(s)7 j:e(s+1), RV :te(N)>.
Therefore, by Proposition 5.4 and Lemma 2.4,

e(p) C M(e(l), s e et :i:e(N)> =—cg". O
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7. Parameterizations compatible with a projection

In what follows X C CN*M will denote an irreducible algebraic variety of dimen-
sion N such that the canonical projection

II: X — N

7.1
(Zl,...,ZN+M) — (Zl,...,ZN), ( )

is finite (that is, proper with finite fibers). In this case, there exists an algebraic
set A C CV such that, the restriction

O:X\O YA — II(X)\A

is locally biholomorphic (see, for example, [3, Proposition 3.7] or [9, §9]). The
intersection of all sets A with this property is called the discriminant locus of II.
We denote the discriminant locus of IT by A.

Theorem 7.1. Let X, IT and A be as above and let V(8) be an algebraic hypersurface
of CN containing A. Given a complement component F of As, set  := u~*(F).
For every connected component C of II71(Q) N X, there exists a natural number d
and a holomorphic morphism WU : fd_l(Q) — CM such that

€ ={(€a(2),9(2)) | = € 5 (D)}

Proof. Note that I : XN II~}(Q) — € is locally biholomorphic. Let C be a
connected component of XNII~1(2) and let d be the cardinal of the generic fiber
of IT|¢. Since both I|¢ and §d\£;1(9) are locally biholomorphic, the pairs (C,II) and
(f;l(Q), £4) are a d-sheeted and a d-sheeted covering of ) respectively. Choose a
point zg € 2, a point z; € Ed_l(zo) and a point 2o € I17%(29) N C. Take the induced
monomorphisms on the fundamental groups:

Wl(gd_l(g)wzl) 71—1(63’2’/2)
-
Edu
Wl(Qa ZO)

Note that:

i) An element v € (£, z9) is in the subgroup &g, m (£, (), 21) if and only if
v = ad for some a € (1, 29)-

ii) The index of IL.(m1(C, z2)) in 71(£2, 2zo) is equal to d (see, for example, [10,
V§T7]).

By Proposition 3.1, 71 (£, zo) is abelian, then the cosets of I, (71 (C, 22)) in
7m1(Q, z0) form a group of order d. By i) and ii), we have that for any a in 1 (€2, 20),
the element a? belongs to IL. (7 (C, z2)). Then,

€a. (m1(€51(), 21)) C ML (m1(C, 22)).
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Applying the lifting lemma (see [10, Theorem 5.1]) we obtain a unique holomorphic
morphism ¢, such that ¢(z1) = z2 and the following diagram commutes:

&) L—c

o

Q

The result follows from the fact that ¢ is a holomorphic morphism. |

Remark 7.2. For every P € II71(29) NC there exists a unique ¢ as in the proof of
Theorem 7.1 such that ¢(z1) = P. It follows that there exist d different morphisms

p’s.

8. The series development of the parameterizations

Let C be a connected component of II71(Q) N X where II, Q and X are as in
Theorem 7.1. By the same theorem, there exists ¢ : £, (Q) — CN+M of the form

p: &) —X

8.1
(#1,...,2N) + (zf,...,zj‘(,,gol,...,goM), (8.1)

where ¢; : £;1(€2) — C is a holomorphic function for i = 1,..., M. Since £; ()
is a Reinhardt domain, by Proposition 6.1 we have:

Proposition 8.1. For every connected component of 11 (Q)NX there exist a natural
number d and Laurent series ¢; converging to y; in fd_l(Q) fori=1,..., M, such
that (2§, ..., 2%, ¢1(2),...,6m(2)) €X, for all z € fd_l(Q).

In fact, if k£ is the degree of the projection II, by Remark 7.2, there are k
M-tuples (¢1,...,¢ar) of convergent Laurent series such that

(=, 2K d1(2), - b (2) € X, V2 € 657(9).
Now we describe the support set of the above Laurent series ¢;.

Proposition 8.2. Let F be a complement component of As where § is a polynomial
as in Theorem 7.1. Let ¢; for i = 1,..., M be the Laurent series that converges
to @; as in Proposition 8.1. Then e(¢;) C 0,(NP(3)) for alli =1,..., M, where
p = ord(F).

Proof. By Proposition 4.3, we have that —o,(NP(4))¥ = Rec(F). Since every
¢; is a bounded holomorphic function on &;'(u~!(F)), the result follows from
Proposition 6.4. O

Theorem 8.3. Let X be an algebraic set in CNTM with 0 € X and dim(X) = N.
Let V() be an algebraic hypersurface containing the discriminant locus of the
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projection ™ : X — CN. Then, given a complement component F of As, there
exist local parametric equations of X of the form

Zzzt;i izl,...,N, ZN+j:¢j(t17~-~7tN) j:L...,M,

where d is a natural number, the ¢; are convergent Laurent series in £ (u=*(F))

and their support is contained in the cone —Rec(F)V.

Proof. Tt is just a restatement of the Theorem 7.1 and Proposition 8.2. ]

Corollary 8.4 (Aroca, [2]). Let X be an algebraic variety of CNTM 0 € X, dim(X) =
N. Let U be a neighborhood of 0, and let w be the restriction to XN U of the pro-
jection (z1,...,2n+M) = (21, .., 2N). Assume 7 is a finite morphism. Let 0 be a
polynomial vanishing on the discriminant locus of w. For each cone o of NP(0) as-
soctated to a vertex, there exist k € N and M convergent Laurent series S1,...,Sn,
such that

e(s))Co, i=1,....M, and f(=F, ..., 25 s1(2),...,50(2)) =0

for any f vanishing on X, and any z in the domain of convergence of the s;.

Proof. By Proposition 4.1, for every vertex V of NP(d) there exists a complement
component of As with order V. Then, by Theorem 8.3 there exist convergent
Laurent series with support in the cone associated to the complement component
of order V. ]

Corollary 8.5 (McDonald, [11]). Let F(z1,...,zN,y) = 0 be an algebraic equation
with complex coefficients. There exists a fractional power series expansion (Puiseuz
series) ¢(x1,...,xN) such that

F(zy,...,zn,0) =0

and the support of ¢ is contained in some strongly convex polyhedral cone.

Proof. The result follows by applying a similar argument as in the proof of Corol-
lary 8.4. ]

Remark 8.6. P.D. Gonzalez Pérez showed in [8], with an additional hypothesis,
that the supporting cone in Corollary 8.5 can be chosen to be a cone of the Newton
polytope of the discriminant of the polynomial defining the hypersurface with
respect to y. Thus, in this sense, by the proof of Corollary 8.5 we also get this
result.

Corollary 8.7 (Abhyankar-Jung [1]). Let 0 be a quasi-ordinary singularity of a
complez algebraic set X C CN*M dim(X) = N. Then, there exists a natural
number d and M convergent power series ¢1,...,op such that

Zi:t;-i, ’izl,...,N, ZN+j:¢j(t1,...,tN), j:].,...,M,

are parametric equations of X about 0.
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Proof. By definition of quasi-ordinary singularity, the discriminant locus of the
projection 7 is contained in the coordinate hyperplanes, then it is contained in
the algebraic hypersurface defined by §(z) := 21 - - - zy. Note that NP(3) has just
one cone contained in the non-negative orthant. The result follows from Theorem
8.3. O

Example. Consider the hypersurface defined by f := 22 — 2 —y+1 in C3. The dis-
criminant of the projection to the (x,y)-plane is A := x+y— 1. By the generalized
binomial theorem, we have a series expansion of A!/2

prim 3 (V)L S ()3 () it

k=0 k=0 j=0

We know by Theorem 8.3 that ¢ converges in u~!(F) for some complement com-
ponent F of the amoeba. Since ¢ converges in the region |z| > 1, |y| < |z| —1 and
this region is mapped under p to the complement component A of the amoeba
(see figure 4), we have that ¢; converges in p~'(A). Since o(1,9) is the unique
cone of NP(A) such that a translation of 702/170) is contained in the complement
component A, by Proposition 4.2 this complement component is associated to the
vector (1,0). According to the Theorem 8.3 we must have that

(1) € ((=1,0),(-1,1))
which is true, because
e(p1) ={(1/2—k—j,k) | j,k e NU{0}}
and
(1/2 =k —j, k) = j — 1/2(—1,0) + k(—1,1).
Reasoning analogously as before, we get another series expansion of A'/2,

prim 3 () A = 3 (V)30 () (et

k=0 k=0 j=0

which converges in the region |y| > 1, |x/y — 1| < 1. Therefore, @5 converges in
p~1(B). As before, by Proposition 4.2 we can see that this complement component
is associated to the vector (0, 1). Therefore, by Theorem 8.3 we must have that

e(p2) € {(0,-1),(1,-1)).
This is true because
e(p2) ={(k,1/2—k—j) | j,k e NU{0}}
and
(k,1/2—k—34)=7—1/2(0,—1) + k(1,-1).
Analogously, for

o0

2(1/2) 1/2 k(x+y)k

k=0
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we have that ¢3 converges in ~*(C). The complement component C is associated
to the vector (0,0) and the support of o3 is contained in the non-negative orthant.

6

64

FIGURE 4. The amoeba of z+y —1 (taken from wikimedia commons;
Oleg Alexandrov).
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Some Open Questions on Arithmetic Zariski Pairs

Enrique Artal Bartolo and José Ignacio Cogolludo-Agustin

Dedicado con carino a Pepe, singular matemdtico y amigo

Abstract. In this paper, complement-equivalent arithmetic Zariski pairs will
be exhibited answering in the negative a question by Eyral-Oka [14] on these
curves and their groups. A complement-equivalent arithmetic Zariski pair is
a pair of complex projective plane curves having Galois-conjugate equations
in some number field whose complements are homeomorphic, but whose em-
beddings in P? are not.

Most of the known invariants used to detect Zariski pairs depend on the
étale fundamental group. In the case of Galois-conjugate curves, their étale
fundamental groups coincide. Braid monodromy factorization appears to be
sensitive to the difference between étale fundamental groups and homeomor-
phism class of embeddings.

Mathematics Subject Classification (2000). Primary 14N20, 32522, 14F35;
Secondary 14H50, 14F45, 14G32.

Keywords. Zariski pairs, number fields, fundamental group.

Introduction

In this work some open questions regarding Galois-conjugated curves and arith-
metic Zariski pairs will be answered and some new questions will be posed. The
techniques used here combine braid monodromy calculations, group theory, repre-
sentation theory, and the special real structure of Galois-conjugated curves.

A Zariski pair [2]| is a pair of plane algebraic curves C;,Co € P? = CP?
whose embeddings in their regular neighborhoods are homeomorphic (7'(Cy),Cy) &
(T(C3),C2) but their embeddings in P? are not (P?,C1) % (P2,Cs). The first condi-
tion is given by a discrete set of invariants which we refer to as purely combinatorial
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in the following sense. The combinatorics of a curve C with irreducible components
C',...,C" is defined by the following data:

(C1) the degrees di,...,d, of Ct,... ,C";

(C2) the topological types Ti,...,Ts of the singular points P, ..., Py € Sing(C);

(C3) each T; is determined by the topological types T;',...,T;"* of its local irre-
ducible branches 4}, ..., 8" and by the local intersection numbers (67, 6%)p,
of each pair of irreducible branches. The final data for the definition of the
combinatorics is the assignment of its global irreducible component for each

local branch 67.

The first Zariski pair was found by O. Zariski in [28, 30] and it can be described
as a pair of irreducible sextics with six ordinary cusps. This example has two
main features. On the one hand, the embeddings of the curves in P? are not
homeomorphic because their complements are not. On the other hand, one of the
curves of the pair satisfies a nice global algebraic property (which is not part of its
combinatorics): its six singular points lie on a conic. The first fact can be proved
directly by showing that the fundamental groups of their complements are not
isomorphic. Also, using [29] it is possible to prove this by means of a weaker, but
more tractable, invariant which was later called the Alexander polynomial of the
curve by Libgober [20] which is sensitive to global aspects such as the position of
the singularities. The second feature is the fact that one of the sextics is a curve
of torus type, i.e., a curve whose equation is of the form f3 + f7 = 0, where f; is
a homogeneous polynomial of degree j.

Since then, many examples of Zariski pairs (and tuples) have been found by
many authors, including J. Carmona, A. Degtyarev, M. Marco, M. Oka, G. Ryb-
nikov, I. Shimada, H. Tokunaga, and the authors, (see [7] for precise references).

By the work of Degtyarev [9] and Namba [22], Zariski pairs can appear only
in degree at least 6, and this is why the literature of Zariski pairs of sextics is
quite extensive. Given a pair of curves, it is usually easy to check that they have
the same combinatorics. What is usually harder to prove is whether or not they
are homeomorphic. Note that two curves which admit an equisingular deformation
are topologically equivalent and this is why the first step to check whether a given
combinatorics may admit Zariski pairs is to find the connected components of the
space of realizations of the combinatorics. Namely, given a pair of curves with the
same combinatorics, a necessary condition for them to be a Zariski pair is that they
are not connected by an equisingular deformation, in the language of Degtyarev,
they are not rigidly isotopic.

Most of the effective topological invariants used in the literature to prove that
a pair of curves is a Zariski pair can be reinterpreted in algebraic terms, in other
words, they only depend on the algebraic (or étale) fundamental group, defined
as the inverse limit of the system of subgroups of finite index of a fundamental
group. This is why, in some sense when it comes to Zariski pairs, the most diffi-
cult candidates to deal with are those of an arithmetic nature, i.e., curves Cy,Csy
whose equations have coefficients in some number field Q(§) and they are Galois
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conjugate. Note that Galois-conjugate curves have the same étale fundamental
group.

There are many examples of pairs of Galois-conjugate sextic curves which
are not rigidly isotopic. The first example of an arithmetic Zariski pair was found
in [4] in degree 12 and it was built up from a pair of Galois-conjugate sextics (see
also [1, 19, 23] for similar examples on compact surfaces).

In another direction, the equivalence class of embeddings, i.e., the homeo-
morphism class of pairs (P2,C), can be refined by allowing only homeomorphisms
that are holomorphic at neighborhoods of the singular points of the curve (called
regular by Degtyarev [11]). Also, one can allow only homeomorphisms that can be
extended to the exceptional divisors on a resolution of singularities. Curves that
have the same combinatorics and belong in different classes are called almost-
Zariski pairs in the first case and NC-Zariski pairs in the second case.

Interesting results concern these other Zariski pairs, for instance Degtyarev
proved in [11] that sextics with simple singular points and not rigidly isotopic are
almost Zariski pairs, and among them there are plenty of arithmetic pairs.

Shimada developed in [24, 25] an invariant denoted N¢ which is a topolog-
ical invariant of the embedding, but not of the complements. He found the first
examples of arithmetic Zariski pairs for sextics. None of these examples is of torus
type.

In [14], Eyral and Oka study a pair of Galois-conjugated curves of torus type.
They were able to find presentations of the fundamental groups of their comple-
ments and was conjectured that these groups are not isomorphic, in particular this
would produce an arithmetic Zariski pair. The invariant used by Shimada to find
arithmetic Zariski pairs of sextics does not distinguish Eyral-Oka curves. Also,
Degtyarev [10] proposed alternative methods to attack the problem, but it is still
open as originally posed by Eyral-Oka.

This paper answers some questions on the Eyral-Oka example. The first part
of the conjecture is solved in the negative by proving that the fundamental groups
of both curve complements are in fact isomorphic. The question about them being
an arithmetic Zariski pair remains open but, using the techniques in [7], several
arithmetic Zariski pairs can be exhibited by adding lines to the original curves. It
is right hence to conjecture that they form an arithmetic Zariski pair themselves.
Moreover, some of these Zariski pairs are complement-equivalent Zariski pairs,
(cf. [7]) that is, their complements are homeomorphic (actually analytically and
algebraically isomorphic in this case) but no homeomorphism of the complements
extends to the curves.

Also, a very relevant fact about these curves that makes computations of braid
monodromies, and hence fundamental groups, very effective from a theoretical
point of view is that they are not only real curves, but strongly real curves, that
is, their singular points are also real plus the real picture and the combinatorics
are enough to describe the embedding. Some of the special techniques used for
strongly real curves were outlined in [6]. In this work we will describe them in
more detail.
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The paper is organized as follows. In Section 1 the projective Eyral-Oka
curves will be constructed. Their main properties are described and one of the
main results of this paper is proved: after adding a line to the projective Eyral-Oka
curve we obtain the affine Eyral-Oka curve and we show that their complements
are homeomorphic in Theorem 1.10. Section 2 is devoted to giving a description of
the braid monodromy factorization of the affine Eyral-Oka curves as well as a theo-
retical description of the fundamental groups of their complements in Theorem 2.9
which allow us to show that the fundamental groups of the projective Eyral-Oka
curve complements are isomorphic in Corollary 2.10. Finally, in Section 3 we define
a new invariant of the embedding of fibered curves and use it to produce examples
of complement-equivalent arithmetic Zariski pairs in Theorem 3.7.

1. Construction of Eyral-Oka curves

In [14] M. Oka and C. Eyral proposed a candidate for an arithmetic Zariski pair of
sextics. This candidate is the first one formed by curves of torus type, i.e., which
can be written as f3 + f7 = 0, for f; a homogeneous polynomial in Clz,y, z] of
degree j.

Eyral-Oka curves are irreducible, they have degree 6, and their singularities
are given by: two points of type Eg, one Ay, and one Ay. The equisingular stratum
of such curves is described in [14], however for the sake of completeness, an explicit
construction of this space will be provided here. In particular, this realization space
has two connected components of dimension 0 up to projective transformation.

To begin with proving the basic properties of these curves, let us fix a sextic
curve C : f(z,y,2) = 0 with the above set of singularities.

Lemma 1.1. The curve C is rational and irreducible.

Proof. Recall that Eg singularities have a local equation of the form 3 + y* for
a choice of generators of the local ring O¢z ¢. In particular it is an irreducible
singularity whose §-invariant is 3 and thus it can only be present in an irreducible
curve of degree at least 4. Since the total degree of C is 6, this implies that both
Eg singularities have to be on the same irreducible component. Again, by a genus
argument, the irreducible component containing both Eg singularities needs to
have degree at least 5, but then the existence of the irreducible singularity Ao
implies that C cannot be a quintic and a line (note also that no quintic with
two Eg singularities exists, because of Bézout’s Theorem). Hence, if it exists, it
has to be irreducible. Also note that the total d-invariant of the singular locus
2Eg + As + Ay is 10, which implies that the sextic has to be rational. O

We are going to prove now that C is of torus type. Using an extension of the
de Franchis method [15] to rational pencils (see [8, 27]), it follows that C is of torus
type if and only if the cyclotomic polynomial of order 6, g(t) = t2 —t + 1, divides
the Alexander polynomial Ac(t) of the curve C. Moreover, a torus decomposition
is unique (up to scalar multiplication) if, in addition, the multiplicity of ¢g(t) in
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Ac(t) is exactly 1. The Alexander polynomial of a curve V(F) = {F(x,y,2) = 0}
was introduced by Libgober in [20]. It can be interpreted as the characteristic
polynomial of the monodromy action on the first homology group of the cyclic
covering of P2 \ V(F) defined as the affine surface t¢ — F(z,y,2) = 0 in C3.
Following the notation in [2] (see also [20, 13, 21]) and ideas coming back from
Zariski [29], the Alexander polynomial can be computed as follows.

Proposition 1.2 (|2, Proposition 2.10]). Let V(F) be a reduced curve of degree d.
All the roots of the Alexander polynomial Ap(t) of V(F') are d-th roots of unity.
Let ¢k = exp(%), Then the multiplicity of C% as a root of Ap(t) equals the
number dy + dq_i, where di is the dimension of the cokernel of the natural map

OPQ,P

- HO(P?; Op2(k — 3)) — ,
Pk ( p2 ( ) @ m

PeSing(V(F))

where Jpar C Op2 p is an ideal which depends on the germ of V(F) at P €
Sing(V(F)) and %.

Remark 1.3. Note that dj can also be described as

O k-1

d, = E dim —=F — < > + dim ker py. (1.1)
Pes IP.d.k 2

eSing V(F)

In fact, ker p, = HO(P?; Jux(k—3)) the global sections of an ideal sheaf supported
on Sing V(F') whose stalk at P is Jp q. Curves in this ideal sheaf will be said to
pass through the ideal Jp 41 for all P € Sing(V (F')) or simply pass through Jg k.

We can be more precise in the description of the ideal Jp 4, by means of
an embedded resolution o : X — P? of the point P as a singular point of V(F).
Assume for simplicity that P =[0:0: 1] and let Ef,...  EP be the exceptional
divisors over P. Let N; be the multiplicity of o*(F(z,y, 1)) along Ef and let v; — 1
be the multiplicity of o*(dz A dy) along EF. Then,

Ipdk = {h € Op2.p

kN;
the multiplicity of ¢*h along F; is > {dJ -y } )

It is an easy exercise to compute these ideals for the singular points of C.

Lemma 1.4. Let mp be the mazimal ideal of Op= p and let £p be the local equation
of the tangent line of C at P. Then, the ideal Jps5 C Op2 p equals

(1) mp if P is an Ag-point,
(2) {({p) +m% if P is either an As-point or an Eg-point,

whereas Jpe,1 = Op2 p at any singular point P.

Proposition 1.5. The multiplicity m of pg(t) as a factor of Ac(t) equals 1. In
particular C admits exactly one torus decomposition.
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Proof. By Proposition 1.2, m = dy; + d5 = ds since the target of morphism p;
is trivial. On the other hand, using equation (1.1) and Lemma 1.4 one obtains
ds = 1 + dimker p5. Finally, note that ker p5 = 0, since otherwise a conic curve
would pass through the ideal Js 5, contradicting Bézout’s Theorem. O

Therefore the result below follows.

Proposition 1.6. The curve C is of torus type and it has a unique toric decompo-
sition. g

In a torus curve V(F), where F = f3 + f2 = 0, the intersection points of
the conic fo = 0 and the cubic f3 = 0 are singular points of V(F'). It is an easy
exercise to check that singularities of type Ao, A, and Eg can be obtained locally
as u® 4+ v? where u = 0 is the germ of a conic and v = 0 is the germ of a cubic
only as follows:

(T1) For A, the curves fo = 0 and f3 = 0 are smooth and transversal at the
point.

(T2) For Ajs, the curve f3 = 0 is smooth at the point and its intersection number
with fa = 0 is 2, for instance (v + u2)? + v = 0.

(T3) For Eg, the curve fo = 0 is smooth at the point, the curve f3 = 0 is singular
and their intersection number is 2, for instance u? + (u? 4+ v?)? = 0.

If SingV(F) = V(f2) NV (f3), then V(F) is called a tame torus curve, otherwise
V(F) is non-tame.

Lemma 1.7. The curve C is a non-tame torus curve C =V (f3 — f3).

Moreover V(f2) is a smooth conic and V(f3), fs = £ - q is a reducible cubic
where V(q) is a smooth conic tangent to V (f2) only at one point and the line V()
passes through the remaining two points of intersection of the conics.

In particular, the only non-tame singularity is the As-point.

Proof. Tt follows from the explanation above (and Bézout’s Theorem) that the
only possible combination of singularities at the intersection points of V(f3) and
V(f3) is A5 + 2Eg; they are the singularities of any generic element of the pencil
F. 3 = af3+ Bf3. Note in particular, that the genus of a generic element of the
pencil is 1, and its resolution provides an elliptic fibration.

Since V(f3) has two double points (at the points of type Eg), it must be
reducible and the line V' ({) joining these two points is one of the components. Let
q:= %. Recall that C is tangent to V(f3) at the point of type As; in fact, it must
be tangent to V' (g). Using again Bézout’s Theorem V'(g) must be smooth.

Let us resolve the pencil. It is easily seen that it is enough to perform the
minimal embedded resolution of the base points of the pencil. We obtain a map
® : X — P! where x(X) = 14 and the generic fiber is elliptic. The curve V/(f3)
produces a singular fiber, see Figure 1, with four irreducible components: the strict
transforms of the line and the conic, and the first exceptional components A;, By
of blow-ups of the Eg-points. We can blow-down the —1-rational curves (the strict
transforms of the line and the conic) in order to obtain a relatively minimal map
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® : X — P'. The above fiber becomes a Kodaira singular fiber of type I», while C
becomes a singular fiber of type I1.

For the fiber coming from V(fs), its type changes depending on whether
V (fa) is smooth or reducible: it is of type Eg (smooth) or E7 (reducible), as it can
be seen from Figure 1. An Euler characteristic argument on this elliptic fibration
shows that V(f2) has to be smooth. |

After a projective change of coordinates, we can assume that P =[0:1: 0]
(the As-point), @1 = [1: 0 : 0], @2 = [0 : 0 : 1] (the Eg-points), £ = y and
q = xz —y?, where V({) NV (f2) = {Q1,Q2} and V(f2) NV (f3) = {P,Q1,Q2}.
Note moreover that only the projective automorphism [z : y : z] — [z : y : 2] and
the identity globally fix the above points and curves. The equation of fo must be:

(x—y)(z —y) —uy(r — 2y + 2),
for some v € C*.

Proposition 1.8. Any Eyral-Oka curve C is projectively equivalent to
Co Yy (xz — y*)? — 48(26a + 45) fo(w,y, 2)*> = 0. (1.2)

where fao(z,y,2) = (x —y)(z —y) + 4(a + 2)y(z — 2y + 2) and a® = 3.
Moreover, the curves Cy :=C sz and C_ :=C_ sz are not projectively equiva-
lent (in particular, they are not rigidly isotopic).

Proof. For a generic value of u, the meromorphic function Zf—gz has two critical
values outside 0, 00. Computing a discriminant we find the values of w for which
only one double critical value arises, obtaining the required equation fs.

The computation of the critical value gives the equations in the statement.
The result follows from the fact that C1 are invariant by [z :y: 2] — [z:y:2]. O

Remark 1.9. If L denotes the tangent line to V(f2) (and V(g)) at P, then note
that (C-L)p = 4. This can be computed using the equations but it is also a direct
consequence of the construction of C. Since C at P has an Aj singularity and L is
smooth, then using Noether’s formula of intersection (C - L)p can be either 4 or
6. The latter case would imply that (V(f3)-L)p = (V(q) - L)p = 3, contradicting
Bézout’s Theorem.

This construction was already given in [14]. Let us end this section with
another particular feature of these curves.

Let us perform a change of coordinates such that L = V(z) is the tangent
line to C at P and the normalized affine equation of C in z,y is symmetric by the
transformation x — —z. One obtains:

2 ? a a 3
0= ha(z,y) =y° (y—w> +;(23y—2213(x2—1)) . (13)
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A direct computation shows that h(z, —y + xifl) = h_q(z,y), i.e., these affine
curves are equal. After this change of variables the singularities have the following

coordinates:

P=[24:—-v26a+45:0],Q: =1[1:0:1],Q2=[-1:0:1],R=[0:a+1:-8],
(1.4)
where P, 1, and @2 are defined as above and R is the As singularity.

Let us interpret it in a computation-free way. Recall from Remark 1.9 that
(C-L)p = 4. As in the proof of Lemma 1.7, we blow up the indeterminacy of the
pencil map P? --» P! defined as [z : y : z] = [f5 : f3], whose fibers are denoted by
V(Fap), for Fo g = afs+Bf3. A picture of these fibration is depicted in Figure 1.
Most of the exceptional components of this blow-up are part of fibers. The last
components Ay, By over the Eg-points are sections while the last component E3
over the As-point is a 2-section, that is, the elliptic fibration restricted to this
divisor is a double cover of PL. It is ramified at the intersections with Fs (in the
fiber of V(Fy0)) and the strict transform of V(g) (in the fiber of V(Fp1)); they
have both multiplicity 2.

In Figure 1, we show also the strict transform of L, the tangent line at the As-
point. One check that this strict transform becomes a 2-section; one ramification
point is the intersection with E (in the fiber of V(Fi)) and the other one is
the intersection with the strict transform of V(¢) (in the fiber of V(Fp1)). In
particular, there is no more ramification and hence L intersects all other fibers
V(F.,p) at two distinct points.

It is clear in Figure 1 that the combinatorics of E3 and L coincide. In other
words, interchanging the roles of E3 and L and blowing down accordingly, then
one obtains a birational transformation of P? recovering a sextic curve C_ with the
same combinatorics as C and a line L_ (the transformation of F3) which is tangent
at the Az-point. Note that this birational transformation exchanges the line V'(¢)
(resp. the conic V(¢)) and the corresponding conic V(¢_) (resp. line V(¢_)). In
particular, this implies that the transformation cannot be projective. Thus, this
transformation exchanges the curves C;(:= C), C_ and the lines Ly (:= L), L_
resulting in the following.

Theorem 1.10. The complements P2\ (L+ UCx) are analytically isomorphic. [0

2. Fundamental group of Eyral-Oka curves

The main tool to compute the fundamental group of the complement of a plane
curve is the Zariski-van Kampen method. In fact, in this method the computation
of the fundamental group of C2\ C* for a suitable affine part of the projective
curve C is obtained first. Namely, a line L is chosen (the line at infinity) so that
C? = P?\ L is defined and thus C2\ C* = P? \ (LUC). Once 7(C? \ C*f) is
obtained, the fundamental group of P2 \ C can be recovered after factoring out by
(the conjugacy class of) a meridian of L [16]. This is particularly simple if L rh C,
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(E27_2)
m =2
4 /ﬁ (Fs=L_,—1)
(V 771)
o \ l (L=Ly,—1) E1-2)
(A17_4) (V(f2)a_2)
(Ag,—Z) m=3
(A47_1)
(A27_2)
m =2
(V(6),-1)
m =2
(827_2)
m =2
(B47_1)
(C.0) (F,0)
g:1 (B3,—2)

(Blv _4)
Ficure 1. Elliptic fibration

but the argument also follows for arbitrary lines. Applying Theorem 1.10, one only
needs to compute the fundamental group for one of the affine curves, since they
are isomorphic. Finally, factoring out by (the conjugacy class of) a meridian of L
or F3 will make the difference between the groups of the respective curves C.

The Zariski-van Kampen method uses a projection C?> — C, say the vertical
one. In Figure 4, we have drawn a real picture of the affine curves Ciﬂ inP2\ L,.
For each vertical line, we have also drawn the real part of the complex-conjugate
part as dotted lines.

First, we study the situation at infinity.

2.1. The topology at infinity

In order to understand the topology at infinity, let us simplify the construction of
the elliptic fibration, carried out at the end of the previous section by minimizing
the amount of blowing ups and blowing downs as follows.

Let us consider a sequence of blow-ups as in Figure 2 which yields a birational
morphism ot := agr o a; o af : X3 — P2

(B1) The first picture represents a neighborhood of L in P2.
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(E17 _1)

N e e N,
T S LI

02,+
(. 1) (Es.—2)
(En, —2) (E1,—2)
—= M R
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TAET j j Yo

FIGURE 2. Sequence of blowups

(B2) The second picture is a neighborhood of the total transform of L by the
blowing-up of P. Let us denote by F; the exceptional divisor (this notation
will also be used for its strict transforms). Note that Fq N L is a point of type
Az in C which is transversal to both divisors.

(B3) The third part is a neighborhood of the total transform of the divisor E;+L by
the blow-up of E1NL. In this case Fy denotes the new exceptional component,
which intersects C at a nodal point not lying on L U Ej.

(B4) The fourth picture is obtained by blowing up that nodal point. For conve-
nience, F3 = L_ will denote the new exceptional component. Note that the
divisors L_ and L = L, are combinatorially indistinguishable.

As a consequence there is an analogous sequence of blow-ups o_ := g3 _ o
09,001, : X3 = P2 where (0;,—) are the blow-ups whose exceptional components
are (the strict transforms of) E3 = L_ (i = 3), E2 (i = 2) and F; (i = 1). We
obtain a birational map

d:=0c ooy :P?--s P2 (2.1)

Consider the birational transformation o2 1 o 01 4 from the sequence of the
first two blow-ups shown in Figure 2 (first at the As-point P, second at the Ag-point
E; N L). We compose it with the blowing-down of L C X, 1, which corresponds
to a blowing-up 71 : X2 4 — X, where 3y is the ruled surface with fiber and
base P! and one section F; with self-intersection —2. This process yields birational
transformation o := 0y 4 00y 4y o7 ! : X9 --» P? which is depicted in Figure 3,
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with special attention to the neighborhood at the Es divisor (which is a fiber in
Y2). An analogous blow-up 7_ : X5 _ — 33 of the other node can be done.

Lemma 2.1. The birational transformation o converts the projection from P into
the projection m : Yo — P! such that the strict transform of C is disjoint with the
section F1.

The exceptional components of the blowing-ups of the nodal points of the strict
transform of C on Ey (see Figure 3) are the strict transforms of the lines L.

(E27 71)

(Ey,—2) (E1,-2)

| (B20)

l-\ ,-\
1 ] 1
S L | ! -
N\ 1 1 1 1Y /’
S ' ' z
1 ]
Ee | ' Eq
' ]
\ ]
A Y K4
~ ’
~ g
. ’
\ 1
N ’
A L4
A ,
e
Ay
—_ L —

FIGURE 4. Real affine picture of Eyral-Oka’s curve

Let us explain how we have constructed Figure 4. Recall (1.3) and (1.4) for
the definition of the equation of the curve and description of the singular points
respectively.
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(F1) We compute the discriminant of h,(x,y) of (1.3) with respect to y. This
allows to check that the A, point is on the line z = 0 and the Eg point )¢
(resp. Q2) is on the line z = 1 (resp. z = —1).

(F2) We factorize the polynomials h,(xg,y) for xg = 0,41 and we obtain which
intersection points are up and down.

(F3) For zy = 0,+1, let yo be the y-coordinate of the singular point. For the Ay
point, yg = —‘ITH we check that the cusp is tangent to the vertical line, and
the Puiseux parametrization is of the form y = yo + y1$% + .... We obtain
that y; < 0 and it implies that the real part of the complex solutions is bigger
than the real solution, near z = 0.

(F4) We proceed in a similar way for the point of type Eg; in this case, a Puiseux
parametrization is of the form y = yo + y12 + ygx% +...,and yo < 0.

(F5) With this data, we draw Figure 4. Note that between the vertical fibers
x = 0,1, we have an odd number of crossings. We show later that the actual
number is irrelevant for the computations.

(F6) If we look the situation at oo in Yo (Figure 3), we check that the imaginary
branches are still up. Hence, from x = 1 to oo there is an even number of
crossings with the real parts and, as before, the actual number is irrelevant.

Remark 2.2. The two real branches that go to infinity are the real part of the
branches of C_ at P_, while the two conjugate complex branches belong to the
branches of C; at P;.

2.2. Strongly real curves and braid monodromy factorization

The curve in Figure 4 is said to be strongly real since it is real, all its affine
singularities are real, and thus Figure 4 contains all the information to compute
the braid monodromy of C* and, as a consequence, the fundamental group of its
complement.

Let f(z,y) € Clz,y] be a monic polynomial in y. The braid monodromy
of f with respect to its vertical projection is a group homomorphism V : F, —
B4, where d := deg, f and r is the number of distinct roots {z1,...,2.} of the
discriminant of f with respect to y (i.e., the number of non-transversal vertical
lines to f = 0). In our case, r = 3 and d = 4. In order to calculate V, one starts
by considering z = zy a transversal vertical line and {y1,...,yq} the roots of
f(zo,y) = 0. By the continuity of roots, any closed loop v in C based at zy and
avoiding the discriminant defines a braid based at {y1,...,ys} and denoted by
V(7). Since the vertical projection produces a locally trivial fibration outside the
discriminant, the construction of the braid only depends on the homotopy class of
the loop y. This produces the well-defined morphism V.

Moreover, the morphism V can be used to define an even finer invariant of
the curve called the braid monodromy factorization, via the choice of a special
geometrically-based basis of the free group F,. Note that the group F, can be
identified with 71 (C\ {z1,...,2.}; o) and a basis can be chosen by meridians ;
around z; such that (v, ... 1)~ ! is a meridian around the point at infinity (this
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is known as a pseudo-geometric basis). A braid monodromy factorization of f is
then given by the r-tuple of braids (V(y1),..., V(¥)).

The morphism V is enough to determine the fundamental group of the com-
plement to the curve, however a braid monodromy factorization is in fact a topo-
logical invariant of the embedding of the fibered curve resulting from the union of
the original curve with the preimage of the discriminant (see Theorem 3.2).

In order to compute a braid monodromy factorization, two important choices
are required. First a pseudo-geometric basis in 71 (C\ {1,...,2,};29) = F, and
second, an identification between the braid group based at {y1,...,yq4} and the
standard Artin braid group By. This is done with the following choices, see [4].

55 5 5
Ly 3 T3 2 T 1 T
57‘ \@+ . To
(678 Qg Qa3 (65 (651
83 o5 o7

FIGURE 5. Pseudo-geometric basis

(C1) For a strongly real curve, a pseudo-geometric basis is chosen as in Figure 5,
where the points are arranged on the base line so that x, < --- < 21 < xg.
Let

1—1
8 =01 -6;, Bi=]]e; 0
1<i<r j=1
1<i<r
The basis is:
Y1 = (11'(5?'517'04171, Yi ‘= (ﬁlaz)éféf(ﬂlal)fl, 1<i§7’. (22)

Applied to our case, paths 71,72,y3 are required around the points —1,0,1

respectively.
L_ |

0 1
F1GURE 6. Complex line

(C2) The identification of the braid group on {yi,...,yq} is made using a lexico-
graphic order of the roots on their real parts (fy) and imaginary parts (Sy)
such that Ry; > --- > Ryy and Sy < Sy’ whenever Ry = Ry'. A very useful
fact about this canonical construction is that it allows one to identify the
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braids over any path in Figure 5 (whether open or closed) with braids in B,.
These conventions can be understood from Figure 6. Namely, projecting the
braids onto the real line R, and for complex conjugate numbers we slightly
deform the projection such that the positive imaginary part number goes to
the right and the negative one to the left. In a crossing, the upward strand
is the one with a smaller imaginary part.

In our case, note that the braid group is B; generated by the Artin
system o;, i = 1,...,3, the positive half-twist interchanging the i-th and
(i 4+ 1)-th strands.

( r =T

F1GURE 7. Crossing of a real branch with a couple of complex
conjugate branches

(C3) Given a strongly real curve one can draw its real picture. This real picture
might be missing complex conjugate branches. For those, one can draw their
real parts as shown in Figure 4 with dashed curves. This picture should pass
the vertical line test, that is, each vertical line should intersect the picture in
d points counted appropriately, that is, solid line intersections count as one
whereas dashed line intersections count as two.

At this point, the braids can be easily recovered as long as the dashed
lines have no intersections as follows:
e At intersections of solid lines one has a singular point. The local braid
over 6 and 6~ can be obtained via the Puiseux pairs of the singularity.
e At an intersection of a solid and a dashed line as in Figure 7, the local
braid on three strands oy 1. o5 is obtained as a lifting of the open path
a crossing the intersection, where the generators o; are chosen locally
and according the identification given in (C2). In the reversed situation
(that is, when the solid and dashed lines are exchanged), the inverse
braid is obtained. This justifies the assertions in (F5) and (F6).
In our case the following braids in B4 are obtained:

-1 -1
o =1, a0y -01, Q30 02
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In order to finish the computation of the braid monodromy factorization of
C* we need to compute the braids associated to 6?, i =1,2, and d3. Next lemma
provides the key tools.

Lemma 2.3. Let f(z,y) = y> — x; following the above conventions, the braid in B3
obtained from the path a : t — x = exp(2v/—1nt), t € [0,1], equals o2 - 01. For
g(z,y) = y3 + x, the braid associated with o equals oy - o2.

Proof. Note that for x = 1, the values of the roots of the y-polynomial f(1,y)
are 1,¢, ¢, for ¢ := exp (@), and thus the associated braid is nothing but the

rotation of angle %71

@
I

_|_

=

FIGURE 8. Braid for 3 = z.

The result follows from the identification described in (C2) and Figure 8. O

Applying this in our situation one obtains (see Figure 4):

6?'—)(0’1'02)2 :>51,53I—>(O'1'0'2)4 5;*—)0'2‘0'3 :>(52P—>(O'2'(73)2.

(2.3)

Combining all the braids obtained above, one can give the monodromy fac-
torization.

Proposition 2.4. The braid monodromy factorization of C*% is (11,7, 73) where:

1 :=(01 - 09)4,
7 i =(01-02-07) - (02 - 093)* - (01 - 09 - 07) 7, (2.4)
731=(02- 0% 05 03) (02 01)* (02 0% 05 - 03) .

Remark 2.5. Note that the closure of C* in the ruled surface ¥ is disjoint from
the negative section Fj. As stated in [18, Lemma 2.1|, the product of all braids
(associated to paths whose product in the complement of the discriminant in P!
is trivial) equals (A2%)2. Hence A*- (73 - 75 - 71)7! is the braid associated to two
disjoint nodes, see Figure 3. The following equality is a straightforward exercise:

(o2 -og) (13-T2-T1) = AL
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2.3. A presentation of the fundamental group

Our next step will be to compute G := 7;(C? \ C*¥). The main tool towards this,
as mentioned before, entails considering a braid monodromy factorization and its
action on a free group. Before stating Zariski-van Kampen’s Theorem precisely, let
us recall this natural right action of B; on Fy with basis g1, ..., gs which will be
denoted by g for a braid o € By and an element g € Fy. It is enough to describe
it for g; a system of generators in Fy and o; an Artin system of By:

gi+1 le:]7
97 =%gi-gi1-g; " fi=j+1, (2.5)
gi otherwise.

The following is the celebrated Zariski-van Kampen Theorem, which allows
for a presentation of the fundamental group of an affine curve complement from a
given braid monodromy factorization.

Theorem 2.6 (Zariski-van Kampen Theorem). If (71,...,7,) € B} is a braid mon-
odromy factorization of an affine curve C, then:

m(CI\CT) = {g1,...,94l i =g, 1<j<r, 1<i<d).
If , = a;l - Bi -y, and B; is a (usually positive) braid involving strands k; +
1,...,k; +m;, then:
7r1((C2\C“ﬁ): <gl,...,gd|giaj :(g;@j)ai, 1<j<r, Kk <i<kj+mj>.
(2.6)

Remark 2.7. Inourcase,r =3, d=4, k1 =ks=0,m; =m3z =2, ks =1, my =1,
and

o] = 1 Bl; = (o’l . 02)47
Qg = (0’1 - 09 - 0'%)_1, B2 = (02 : 03)27 (27)
ag = (0307 02+ 03)7", By = (09 - o1)™.

The previous sections where a braid monodromy factorization allow us to
give a presentation of the fundamental group of an affine curve complement.

Corollary 2.8. Let C* be the affine Eyral-Oka curve as described at the beginning
of Section 2, consider a braid monodromy factorization as described in Proposition
2.4 and (2.7). Then the group G = 71 (C%\ C¥) admits a presentation as

<917---,g4 igfl :91,951 =92,95° =

05 = G707 = )05 = a)).

Presentation (2.8) contains 6 relations for a total length of 40. For the sake
of clarity, instead of showing an explicit presentation, we will describe the group
G in a more theoretical way that would allow to understand its structure. The
following description characterizes the group G completely.

(g5%)°

)

(2.8)
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Theorem 2.9. The fundamental group G can be described as follows:

(1) Its derived subgroup G' C G can be decomposed as a semidirect product K XV,
where:
(a) The subgroup V is the Klein group {a,b|a* =b*=a-b-a"1-b71 =1).
(b) The subgroup K is the direct product of a rank-2 free group and a cyclic
group of order 2 with presentation

1

(zyw|w =z w2z w=y-w-yt-w=1).

(c) The action of V on K is given by:
=z yY=yw w=w 2=z-w Y=y, w =uw.
In particular, w is central in G'.
(2) There exists a meridian g of C** such that G = G' x Z, where Z is identified
as (g | =) and the action is defined by:

1

grg =y gyg!

1

=yab, gwgl=w, gag'=b gbg!

=a-b.

(3) There is a central element z such that z - ¢° = [y,z]. The center of G is
generated by z,w.

(4) There is an automorphism of G sending z to z - w.

Proof. A presentation of this sort can be obtained using Sagemath [26] (which
contains GAP4 [17] as main engine for group theory). We indicate the steps of the
proof:

(G1) The original presentation (2.8) (with four generators and six relations) can
be simplified to have only two generators and four relations, both generators
being meridians of C*f. Any of such meridians can play the role of g in (2).

(G2) From the simplified presentation above, one can find a central element z € G
whose image by the standard abelianization morphism is —6. Recall the
abelianization of G is Z. Moreover, the abelianization can be fixed by set-
ting the image of any meridian to be 1, this is what we call the standard
abelianization.

Since z is central, note that G’ = (G/(z))’, see e.g. [12]. Since the latter
derived group is of index 6 in G/(z), we can apply Reidemeister-Schereier
method to find a finite presentation of G’ with 5 generators z,y,a,b,w € G’.

(G3) From the previous steps it is a tedious computation to verify the structure
of G’ indicated in the statement as well to check the conjugation action of g.
In particular, that w is central in G’ and z = g=% - [y, 2].

(G4) Note that the center of G is the group generated by z and w and that z, z-w are
the only central elements which are sent to —6 by the standard abelianization.
Moreover, it is straightforward to prove that

g—g, Ty ltoa yesy-z-w, a—b bea-b wew

defines an automorphism of G such that z — z - w. |
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Going back to the discussion about the topology at infinity, one can detect
the meridians of the tangent line L = L, and the meridian corresponding to
the exceptional divisor E3 = L_. These are required to recuperate the original
fundamental groups of the complement to the projective Eyral-Oka sextics.

Corollary 2.10. The central element z is a meridian of Ly while z-w is a meridian
of L_. In particular, the groups mi(P%2\ C+) are isomorphic.

Proof. Starting from the Zariski-van Kampen presentation (2.8), and using the
blow-up blow-down process described in Figure 2, it is straightforward that a
meridian of L, (resp. L_) is given by e - (g2 - g1) (resp. €2 - (g4 - g3)), where
e=(gs-...-g1)"*. The result follows from tracing these meridians along the steps
described in Theorem 2.9. O

Corollary 2.10 answers negatively a question in [14]. In the following section
this curve will be used to construct arithmetic Zariski pairs that are complement
equivalent.

3. Zariski pairs and braid monodromy factorizations

In Corollary 2.10, we have proved that the fundamental groups of the Eyral-Oka
curve complements are isomorphic, and hence this invariant cannot be used to de-
cide whether these two curves, which are not rigidly equivalent, form an arithmetic
Zariski pair.

Degtyarev [11] proved that any two non-rigidly equivalent equisingular sextic
curves with simple singularities cannot have regularly homeomorphic embeddings,
where a regular homeomorphism is a homeomophism that is holomorphic at the
singular points.

In particular, by Degtyarev’s result, Eyral-Oka curves are close to being
an arithmetic Zariski pair. Shimada was able to refine Degtyarev’s arguments
in [24, 25] and developed an N¢-invariant that was able to exhibit that some of
these candidates to Zariski pairs were in fact so. Unfortunately, the No-invariant
coincides for the Galois-conjugate projective Eyral-Oka curves.

As we showed in §1, the curves C+ U L1 have homeomorphic complements
(even more, analytically isomorphic) via the birational morphism shown in Fig-
ure 2. The Cremona transformation that connects both complements is not a
homeomorphism of the pairs (P2,C+ U L), so these curves are candidates to be
complement equivalent Zariski pairs.

We are not able to decide on that problem, but we are more successful when
adding more lines to the original curves C+ U L1. Let us consider the two lines
L3 joining the points Py (of type As) and the As-points in Cx. Analogously,
we denote by L?t’j, j = 1,2, the four lines joining the points Py and Q;+ (the
Eg-points in C+). Note that these extra lines correspond to the preimage of the
discriminants in C C P! of the projections of C+ from Py (see Figure 4).



Some Open Questions on Arithmetic Zariski Pairs 49

Proposition 3.1. There is an analytic isomorphism
P2\ (Cy UL, ULZ ULS' ULS?) P2\ (C_UL_uL? ULS uLs?).

Proof. Let us consider the birational transformation ® : P2 --» P? of (2.1), graphi-
cally described in Figure 2. This transformation defines an analytic isomorphism @,
from P2\ (Cy ULy ) onto P2\ (C_ UL_).

Let us consider the line Li; its strict transform is a fiber of the ruled surface
X1,4+ passing through the preimage by o1 4 of the As-point of C,; this strict
transform intersects E; outside Fq N L. In particular, it is not affected by the
blowups and blowdowns o3, 4,03+, 03 L oy ! Hence, the blowdown oy, ! sends it
to the line L? , since it passes through P_ and the Ay-point of C_. Hence

(L% \ (L UCH)) = (L2 \ (L-UC_).

A similar argument yields
P ((Lil U L$2) \ (Ly U c+)) - (LG;1 U L(fQ) \ (L_uC_).

The restriction of ®| yields the desired isomorphism. (|

Our goal is to prove that C+ UL UL% ULS' ULS? is a complement-equivalent
arithmetic Zariski pair.

3.1. Fibered curves and braid monodromy factorization

These curves are called fibered (see [4]) since their complements induce a locally
trivial fibration on a finitely punctured P! (the complement of the discriminant).
A fibered curve has a horizontal part (the curve that intersects the generic fibers
in a finite number of points) and a vertical part (the preimage of the discriminant).
As mentioned above, the braid monodromy of its horizontal part is a topological
invariant of a fibered curve.

Let us recall this result. Consider C C P? a projective curve, L C P2 be a line
and P € L. Let us assume that, if P € C, then L is the tangent cone of C. Consider

Ly,..., L, the lines in the pencil through P (besides L) which are non-transversal
to C. The curve C¥ := CULUUJj_, L; is the fibered curve associated with (C, L, P).
Consider now the braid monodromy factorization (71,...,7.) € B} of the

affine curve C* := C\ L, with respect to the projection based at P, where d is the
difference between degC and the multiplicity of C at P. We are ready to state the
result.

Theorem 3.2 ([3, Theorem 1]). Let us suppose the existence of a homeomorphism
® : (P2,CY) — (P%,C5) such that:

(1) The homeomorphism is orientation preserving on P? and on the curves.
(2) ®(P) = Py, ®(L1) = Lo.

Then, the braid monodromies of the two triples (Ci, L1, P1) and (Co, Lo, P2) are
equivalent.
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To understand the statement, let us recall the notion of equivalence of braid
monodromies. Let (71,...,7,) € B}, be a braid monodromy factorization; for its
construction we have identified the Artin braid group By with the braid group
based at some specific d points of C; two such identifications differ by conjugation,
ie.,

(T1yeeey ) ~ (11, .y 7)), V7T € By
There is a second choice, the choice of a pseudo-geometric basis in F,.. Two such
bases differ by what is called a Hurwitz move. The Hurwitz action of B, on G”
(where G is an arbitrary group) is defined as follows. Let us denote by s1,...,$y—1
the Artin generators of B,. (we replace o by s to avoid confusion when G is a braid
group). Then:

(91 90)% = (G1s- o, Gim1s Git 1, Git 1~ Gi " Gip1s -+ Git2s -1 Gr)-

Definition 3.3. Two braid monodromies in B]; are equivalent if they belong to the
same orbit by the action of B, x B, described above.

Note that it is hopeless to apply directly Theorem 3.2 to our case: the braid
monodromies are equal! In [5], we refined Theorem 3.2 to work with ordered line
arrangements: the classical braid groups were replaced everywhere by pure braid
groups. We are going to state now an intermediate refinement of Theorem 3.2.

Let us think about our case. If we color in a different way the two first strands
and the two last strands, we take into account, that the first ones are the branches
of the node in s which provides L, while the last ones provide L_. Let us set
that (71,72, 73) is the braid monodromy factorization for C; with this coloring. To
compare both curves, the braid monodromy factorization of C_ would have the
strands associated to L_ in the first place; this is accomplished, considering:

-2 N T T T _ 2
(T1,T2,73) := (71 , T3 s T3 )s 7= (09 -03-01)
since the braid 7 exchanges the two pairs of strands.

Definition 3.4. Let A be a partition of the set {1,...,n}. The braid group B(A)
relative to A is the subgroup of B,, consisting of the braids that respect the given
partition.

Remark 3.5. For instance, note that both the total and the discrete partition pro-
vide recognizable groups: B, = B({{1,...,n}}) whereas B({{1},...,{n}}) pro-
vides the pure braid group.

The proof of the following result follows along the same lines as that of [3,
Theorem 1].

Theorem 3.6. Let Ay, A, be partitions of {1,...,d} and {1,...,r}, respectively,
such that Ay induces partitions on L; NC;. Assume that there exists a homeomor-
phism @ : (P2,CY) — (P2,CY) satisfying the hypotheses in Theorem 3.2, and also
satisfying:

(1) The blocks of lines through Py, Py associated to the partition are respected.
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(2) The partitions on L; N C; are respected.

Then, the triples (C1, L1, P1) and (Cq, Lo, P2) have braid monodromy factorizations
(r{,...,72) € B}, j = 1,2 (respecting the above partitions) which are equivalent
by the action of B(Aq) x B(A4,).

Theorem 3.7. There is no homeomorphism
(P2,c, UL, U2 UL uLy?) —» (P2, c_UL_UL2 UL uLS?).

Proof. Let us assume that such a homeomorphism & exists. From the topological
properties of P2, it must respect the orientation of P2. The intersection form in P?
implies that ® either respects or reverses all the orientations on the irreducible
components of the curves. Since the equations are real, in the latter case one can
compose ¢ with the complex conjugation. This composition respects the orienta-
tions of the irreducible components. Therefore, one may assume that ® respects
the orientation of the curves.

By the topology of the curve at the singularities, it is easy to see that ®(C1) =
C_, ®(Ly) = L_ and ®(L3) = L%. In particular, ®(P;) = P_. Also note that
oL ULy =% UL

Moreover, the homeomorphism must respect the two branches of the Az point
and, hence, the two other points in C+ N L1 (globally).

Let us consider the partition A = {{1,2},{3,4}} for the strands of the
braids. In the base, we consider the partition A5 = {{1,3},{2}}. Then, from
Theorem 3.6, the braid monodromies T := (71,72, 73) and T = (71,72, 73) are
equivalent under the action of B(A4) x B(A3).

We are going to show that this does not happen and, in particular, the ex-
pected homeomorphism does not exist.

There is no algorithm ensuring that two braid monodromy factorizations are
equivalent. In order to look for necessary conditions, we consider a finite represen-
tation ¢ : By — F, where F' is a finite group. We need to check if o(T") and go(T)
are equivalent under the action of ¢(B(A$)) x B(A%). Since the orbits are finite,
this approach should lead to an answer.

Let us denote Fy := @(B(A?)); let F':= F3/F,, i.e., the quotient of the carte-
sian product F*® under the diagonal conjugation action of F4. The group B(A5)
acts by Hurwitz moves on it. We want to check if the classes [T}, [T] € F' are in the
same orbit under this action. Note that in general, this can be computationally
expensive.

There is a natural way to obtain representations of the braid group. Consider
the reduced Burau representation ¢ : By — GL(3, Z[t*!]). Let R be either Z/m,
for some m € N, or F, ¢ some prime power. Let s be a unit in R; then we define

p:By = F:=¢(By) C GL(3, R)

by considering the natural map Z — R and specializing t to s. Let us do it for
R=7/4 and s = —1 mod 4. We have:
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B, —— F C GL(3,Z/4)
o] — (i

2
0'2}—><(1)

—NO oow oo

1
s

and the orbit of [T7] is

032 303 101 303 012 101 032 101 230
023),(130]),l021])|,|{(130]),(132),(021])]|,/(023]),({021),(132])],
122 322 011 322 211 011 122 011 033
012 032 101 101 121 230 012 101 121
i32),(023),(021)[,{(o21),(130]),(132)|,|{132),(021]),(130])].
211 122 011 011 100 033 211 011 100

It is easily checked that T is not conjugate to any element of the orbit of T'.
The group B(A}) is generated by 572, 352, 51-59-57 '; they induce the following
permutations in the orbit of T

[(1,2,4)(3,5,6),(1,3,5)(2,4,6),(1,3,4)(2,5,6)],

showing that it is actually an orbit. Since we have shown that the braid mon-
odromies are not conjugate, we deduce that no homeomorphism exists. The com-
putations have been done with Sagemath [26] and GAP4 [17]. O

3.2. Final comments

Eyral-Oka curves give rise to other arithmetic Zariski pairs, namely using the
projections from the singular points of type Eg and As. When projecting from a
point of type Eg it does not matter which one because of the symmetry of the
curves which exchanges both points.

One can compute the braid monodromy factorizations using again the fact
that they are strongly real curves. In these cases, it is more involved to prove
that the braid monodromy factorizations are not equivalent. In a future work we
will use the computed representations to distinguish the braid monodromies using
diagonal representations.
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Logarithmic Vector Fields and the Severi Strata
in the Discriminant

Paul Cadman, David Mond and Duco van Straten

Abstract. The discriminant, D, in the base of a miniversal deformation of an
irreducible plane curve singularity, is partitioned according to the genus of
the (singular) fibre, or, equivalently, by the sum of the delta invariants of the
singular points of the fibre. The members of the partition are known as the
Severi strata. The smallest is the d-constant stratum, D(d), where the genus
of the fibre is 0. It is well known, by work of Givental’ and Varchenko, to be
Lagrangian with respect to the symplectic form 2 obtained by pulling back
the intersection form on the cohomology of the fibre via the period mapping.
We show that the remaining Severi strata are also co-isotropic with respect
to €2, and moreover that the coefficients of the expression of 2 with respect to
a basis of Q?(log D) are equations for D(§). Similarly, the coefficients of Q"
with respect to a basis for Q2*(log D) are equations for D(§ — k + 1). These
equations allow us to show that for Eg and Eg, D(9) is Cohen-Macaulay (this
was already shown by Givental’ for Asx), and that, as far as we can calculate,
for Aoy all of the Severi strata are Cohen-Macaulay.

Mathematics Subject Classification (2000). 32530 14B07 14H50 (53D17).

Keywords. Explicit equations, Delta-constant, intersection form.

1. Introduction: the discriminant and its Severi strata

Two of the most basic invariants of a plane curve singularity (C,0) are its Milnor
number u and its delta invariant §. If f : (C%,0) — (C,0) is a holomorphic map
defining (C,0) = f~1(0), then u(C) is the dimension of the Jacobian algebra
Oc2,0 /Js and equals the dimension of the vanishing cohomology. If n : C—C
denotes the normalisation of (C,0), then 6(C) is the dimension n. Og /O¢ and
equals the number of double points appearing in a generic perturbation of the map
n. These invariants are related by the relation

nw=2+r—1

© Springer International Publishing Switzerland 2017 55
J.L. Cisneros-Molina et al. (eds.), Singularities in Geometry, Topology, Foliations and Dynamics,
Trends in Mathematics, DOI 10.1007/978-3-319-39339-1 4
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where r denotes the number of branches of (C,0). See [10, pp. 206-211]. The num-
ber 1 also appears as the number of parameters of an %, miniversal deformation
F:(C? x C*,0) — (C,0) of the function f : (C2,0) — (C,0) defining (C,0). The
restriction 7 : X := F~1(0) = S = (C*,0) is a versal deformation of the plane
curve singularity (C,0). The fibre C,, over u € S is the curve defined by zero
level of the deformed function f, := F( ,u) and discriminant D C S is the set of
parameter values u for which the fibre C,, is singular. This set is stratified by the
types of singularities that appear in the fibres. In this paper we will focus on the
so-called Severi strata, where the sum of the delta-invariants add up to a value
> k:
D) ={ueS:6(Cy) >k}

where §(Cy) = Y, cc, 0(Cu, ). Clearly D(0) = S and D(1) = D, and as D(i) is
contained in D(i — 1) we obtain a chain

D) cD@6—-1)c...cD(1)c D) =S5

The smallest non-empty Severi stratum, D(4), is the classical §-constant stratum.
The term “stratum” here is a bit of a misnomer, since the Severi strata are not in
general smooth.

It is a classical fact, going back at least to Cayley [5], that any curve singu-
larity with 6 = k can be deformed into a curve with precisely k Ay points, a fact
which explains the name virtual number of double points for the d-invariant. For a
very nice proof see the paper by C. Scott [20]. Thus the set D(kA;) of parameter
values u for which C,, has precisely k A; singularities is dense in D(k). Moreover,
D(k) is smooth at such points, for there, by openness of versality, D(k) is a normal
crossing of k local smooth components of the discriminant D. A curve singularity
with d-invariant k£ > 1 is also adjacent to a curve with one A, singularity and k —1
A, singularities. Hence D(k)yeg = D(kA1). We refer to [23] for more background
on this.

In the famous Anhang F to his Vorlesungen tber Algebraische Geometrie [21],
Severi considered the variety of plane curves of degree d with a given number of
nodes which he used to argue for the irreducibility of the space of all curves of
a given genus. A complete argument along these lines with given much later by
J. Harris, [12], and by Harris and Diaz in [6], which started the interest in the
local case. This seems to justify the name Severi-strata for the D(k)’s, which was
introduced in [22] . Recently, these strata have been the subject of several papers
and their geometry appears to hide some great mysteries. In [7] the multiplicity
of D(J) was shown to be equal to the Euler number of the compactified Jacobian
of (C,0). This was further explored in [22], where multiplicities of the other D(k)
were related to the puntual Hilbert-schemes Hilb"(C, 0). Most surprisingly, these
invariants turn out to be related to the HOMFLY-polynomial of the knot in the
3-sphere defined by (C,0), [17].

If the curve (C,0) is irreducible, its Milnor fibre C,, has just one boundary
component, and it follows that the intersection form I, on H!(C,;C) is non-
degenerate. In [9], Givental’ and Varchenko used the period map associated to a
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non-degenerate 1-form 7 on the total space of the Milnor fibration of F', together
with the Gauss-Manin connection, to pull back the intersection form from the
cohomology bundle JZ* over S to get a symplectic form  on S ~\ D, and proved

Theorem 1.1. (a) Q extends to a symplectic form on S, and
(b) the d-constant stratum D(J) in the discriminant is Lagrangian with respect
to Q.

Below we complement their results and show the following theorems.
Theorem 1.2. All of the Severi strata are coisotropic with respect to Q.

The form €2 can also be used to obtain equations defining the Severi-strata.
Let AFQ be the k-fold wedge product of Q. Although it is a regular form, it can
be considered as an element of QQS’“ (log D). Let Ij be the ideal generated by its
coefficients with respect to a basis of Q% (log D).

Theorem 1.3. For k = 1,...,0, the Severi stratum D(k) is defined by the ideal

Is gy
D(k) = V(Is—k+1)-

Equivalently, if x1,...,x, form a basis for the free module of logarithmic
vector fields Og(—log D), then D(k) is defined by the ideal generated by the
Pfaffians of size 20 — 2k + 2 of the skew matrix (Q(Xi; X;))1<; j.<,.-

We do not know whether in general the ideals I are radical. Our calculations
suggest that they are, but we have not been able to show this. In [10, II. Proposition
2.57] it was shown that the strata are analytic.

Givental’ proved in [8] that for curve singularities of type Asgy1, D(9) is
Cohen-Macaulay and it can be conjectured that this is always the case,[24]. In the
first author’s PhD thesis, [4], Theorem 1.3 was used to show that D(d) is Cohen
Macaulay also for Fg and Fg. Calculations using Theorem 1.3 suggest that the
remaining Severi strata are Cohen-Macaulay in the case of Ay, but show that for
Es the stratum D(2) is not Cohen-Macaulay.

In the process of proving these theorems we noticed that ) determines a
natural rank 2 maximal Cohen-Macaulay module over the discriminant D, which
seems to be of independent interest.

2. Preliminaries
Let f: (C""1 0) — (C,0) define an isolated singularity (C,0) and let
g1,92,. .. 7gy, =1 S OC"’+1,O

be functions giving a basis for the Jacobian algebra O /Jy. We consider a good
representative of a miniversal deformation of f of the form

m
F:BxS—C, F(z,u)=f(x) +Zuigi(x) )
i=1
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where B is a Milnor ball for C and S is a sufficiently small ball in C#,[16]. The
set X := F~1(0) comes with a map 7 : X — S, with C,, as fibre over u € S.

2.1. The critical space X
The relative critical set ¥ of F' is defined to be

Z:{(x,u)EBxS:gF(x,u)zo, i:O,...,n}.

L
It is smooth and the projection 7 : ¥ — S is a u-fold branched cover: its fibre over
u € S consists of the critical points of F/(—,u). As the partial derivatives form a
regular sequence,
Oz = OBXS /(8F/3:L‘0, ceey 8F/8xn)
is a free Og-module of rank u. Miniversality of F' is equivalent to the statement
that the Kodaira-Spencer map

dF :0g5 = Ox, Y= HF)=dF(¥)

is an isomorphism. The set X N X is the union over u € S of the set of singular
points of C,,, and its image under 7 is the discriminant, D. For brevity we denote
X NY by D. It is indeed the normalisation of D.

2.2. D as a free divisor

Let F': (B x S,(0,0)) — (C xS, (0,0)) be the unfolding of f corresponding to the
deformation F. Then ¥ C B x CH is the (absolute) critical locus of F. We write
A = F(X) C Cx S for the set of critical values of F. It is well known that ¥ is the
normalisation of A: it is smooth, and the map F|: ¥ — A is generically one-to-
one. Then D = AN{0} x S. As usual, O¢cxs(—log A) denotes the O¢xs-module
of vector fields on C x S which are tangent to A, and ©g(—log D) denotes the
Og-module of vector fields on S which are tangent to D.

Proposition 2.1. (i) ©Ocxs(—1logA) is the Ocxs-module of vector fields on Cx S
which are F-liftable to B x S.
(ii) ©s(—log D) is the Og-module of vector fields on S which are w-liftable to
V(F).

Proof. ([16]) (i) Let ¥ € O¢xs(—log A). Since F| : & — A is the normalisation of
A, there is a vector field 9y on & lifting ). For any extension Y1 of 9y to B x S,
wF(ﬁ) tF(19;) vanishes on %, and since the Jacobian ideal (OF/dxq, . .., 0F/dxy,)
is radical, there exists a second vector field & on B x S such that wF(9,)—tF(9;) =
tF(€). Then 9, + £ is an F-lift of 0.

Conversely, suppose ¥ is a F-lift of 9. Then 9 must be tangent to X, for the
integral flows ®, and ®; of ¥ and ¥ satisfy ®;0F = Fo®,, showing that ®, defines
an isomorphism F~!(u) — F~1(®;(u)), and must therefore map singular points
of F~1(u) to singular points of F'~1(®;(u)). It follows that ¥ is tangent to A.

(ii) Let 49 : S — C x S be the inclusion u + (0,u). Then D = ig'(A).
Now iy is logarithmically transverse to A, i.e., transverse to the distribution
Ocxs(—logA). If F is the standard deformation f(x) + Y, uig;, with g, = 1,
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then this transversality is obvious: the vector field 9/9t + 9/0u,, on C x S has F-
lift 9/0u,,, and therefore lies in Ocxs(—1log A). Any other miniversal deformation
is parametrised Z-equivalent to the standard deformation, so the transversality
holds there too.
Identifying C* with {0} x CH, from the logarithmic transversality of iy to
A it follows that ©g(—log D) is equal to Ocxs(—log A) () Ocxs(—log({0} x 5))
restricted to C*, and that every vector field in ©g(—log D) extends to a vec-
tor field in Ocxs(—logA). Clearly, any lift to C"*! x S of a vector field in
Ocxs(—log A) [ Ocxs(—log({0} x S)) must be tangent to V(F'), and any vector
field whose F-lift is tangent to V (F) must lie in fcxs(—log A) () fcxs(—log({0} x
U

S)).

Therefore we have a diagram

0 05 @S 795(— IOgD) (2.1)
)
F
0 05 Os, Ox 0

where the vertical maps are isomorphisms. This diagram can be used to find a
basis for ©g(—log D). The germs FdF(9/du;) generate (F') Oy, therefore if

dF(y;) = FdF (ai) : (2.2)

then the x; generate ©g(—log D). This shows that ©g(—log D) is a locally free
module, so that D is a free divisor.

2.3. Stratification of D

The discriminant D is stratified in various ways. Of special relevance to us are the
local #Z and % strata.

Suppose as before that F' : B x .S — C is a good representative of a versal
deformation of f, where B is open in C"*! and S is open in C*. Write f, = F(_,u),
and suppose that py, ..., px are the critical points of f, lying on f;1(0). For each
point p;, the germ

F:(BxS,(pi,u)) — (C,0)
is an Z.-versal deformation of the germ of f, at p;, by openness of versality.
Hence there is a germ of submersion h; from (S, ) to the base of an Z.-miniversal
deformation
G;: (B xC" (p;,0)) — (C,0)
of this germ, such that the germ of deformation F : (B x S, (p;,u)) — (C,0) is
isomorphic to h}(G;). We set

Z;(u) = h71(0).

This is independent of the choice of miniversal deformation G; and submersion
h;, since any two choices can be related by a commutative diagram of spaces and
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maps. Again by openness of versality, the %;(u), i = 1, ..., k are in general position
with respect to one another, and we set

k
R(u) = ﬂ Zi(u).

This is the Z stratum through u. It is smooth of dimension p — Y. f( fu,pi)-

If in the above definition we replace F' : B x S — C by the projection
V(F) — S, and replace each G; by a JZ.-miniversal deformation H; of the hyper-
surface singularity (Cy,p;), then we obtain the J#-strata J#;(u) and their inter-
section J# (u), the & -stratum through w, which is once again smooth, by openness
of versality, and has dimension p — . 7(Cy, p;). Since Z C # ', Z(u) C K (u).

If, for example, the fibre C, has k A; singularities and no other singular
points, then %Z(u) = J# (u) and its germ at u coincides with the germ at u of the
set of points u’ such that C, has k A; points and no other singularities.

Definition 2.2. The logarithmic tangent space T.°¢PS is the vector subspace of
T, S spanned at u by the logarithmic vector fields.
Proposition 2.3. One has the equality of vector spaces
TePS = T, (u).
Proof. We have the exact sequence
0 — Os(~logD) = 5 = m.(0p) = 0

which gives
Os
75~ (0=
65(—logD) ~ 19D
and so
T,CH N Og N
TIILOgDS B @s(— log D) + ms’ues’u o

This means that to show

i

Tlos DS = T\, (u)
we need show only one inclusion. If ¥ € Og(—log D),,, then it has a lift J tangent
to V(F). The integral flows of ¥ and 9, ¢; on (S,u) and @; on V(F), satisfy
mopy = piom. It follows that ¢; maps C, to Cy, (4), and therefore for each singular
point p; in Cy, the curve germ {p:(u) : t € (C,0)} lies in the set J#;(u) defined
above. Hence {p:(u) : t € (C,0)} C ), Zi(u) = # (u), and ¥(0) € T, % (u). O

2.4. Isomorphism Oy — Qp
A choice of a nowhere-vanishing relative (n + 1)-form w € Q’;;IS /s determines an
isomorphism
Oy ~ Q’Iffl, g gw
where

Q= Q%JQIS/S/CZF ANQpys)s-
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Such an isomorphism leads to many additional structures. First of all, there
is a canonical perfect pairing, the residue pairing,

Res : Q’}H X Q’}H — Og,
from which one obtains a perfect pairing on Osy.
<,,,> : 02 XOE — Os.

Furthermore, because Qf and Q2 (log D) are Og-dual to ©5 and ©5(— log D), such
a choice of w also determines isomorphisms

a:Qf = Oy  and B:Q4(logD) — Oy

via the formulas
(F(9),0()) = €09), and (%2 (9), B(&)) =€)

As a result ©g,05(—log D), Q% and Qf(log D) are all identified with Ox,
and hence with one another. For example we have the isomorphism

k™' op:QL(log D) — O,

where k : g — Oy is the Kodaira-Spencer map dF'.
Note that for any a, b, c € Oy, the pairing satisfies

(a,bc) = (ab,c),
and so multiplication by F' on Oy is self-adjoint:
(9, Fh) = (Fg,h).

As a result, if g;, i« = 1,...,u denotes the Og basis of Oy dual to the basis
gi = OF/0u;, i = 1,...,p, then replacing FdF(0/0u;) in (2.2) by §;, we get
generators X1, ..., x, for Og(—log D) whose matrix of coefficients with respect to
the 0/0u; is the symmetric matrix with 4, j entry x;; = (g:, F'g;)-

In our calculations in section 7 we always use such a basis. We note that if
Wi, .. .,w, is the basis for Q' (log D) dual to x1, ..., x, then

E71B(w;) = and k™ 'a(du;) = xi. (2.3)

0
8ui ’

3. The Gauf3-Manin connection

The study of the Gau-Manin connection for hypersurface singularities was initi-
ated by BRIESKORN in [3] and has since then developed into a very detailed theory.
We can only outline the parts of the theory that are relevant to our application.
For a more detailed accounts we refer to [11], [16], [2], [15], [13] and the original
papers quoted there.
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3.1. The cohomology bundle and its extensions
The spaces H"(X,,) = H"(X,;C) fit together into the cohomology bundle

H = ) H"(X.)

ueS\D

over S~ D. It is a flat vector bundle and the associated sheaf of holomorphic
sections

H* = H" @c Osp
is equipped with a natural flat connection, the Gauss Manin connection,

Vi = A Q05 Ug\p- (3.1)
As usual, we write
Vo : " — "

for the action of a vector field ¥ € ©g._p. The sheaf 77* over S ~. D has various

extensions to S. Most relevant to us is the parameterised version of Brieskorn’s
module H':

H' =7, ( }/S)/dw*(Q;}?é) (3.2)
A section of .7 over U C S is represented by a (relative) holomorphic n-form 7
on Y (U)C X.If U C S\ D and u € U, the restriction of 1 to the smooth fibre
X, is a closed form n-form and thus determines a cohomology class

lx.] € H"(Xu).
In this way one obtains an isomorphism 5¢/(U) — #*(U) and thus % can be
considered as an extension of %, that is, there is a map of Og-modules

H — §. A,
which is an isomorphism over S~ D, where j : S~ DS is the inclusion. The sheaf
A" is a locally free sheaf of rank pu, but for a general ¥ € ©g the Gaul-Manin

connection maps 7’ into a bigger extension " O #'. This second Brieskorn
module 7" can be defined as

H" = Tawx g/ dm, (dQ}?é),

where wy /g denotes the relative dualising module, [16, page 158]. Elements from
wx/g are most conviently described as residues of n + 1-forms, that is, as Gelfand-
Leray forms. There is an exact sequence

0 — " — H" — QY5 — 0. (3.3)

When we restrict to logarithmic vector fields, the connection maps #’ and
" to themselves, so we have logarithmic connections

V' — A 20, Us(log D),
VA" — H" 20, Q(log D)

extending the Gauss-Manin connection (3.1). (As there is no possibility of confu-
sion, we denote all these maps by the same symbol V.)
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The action of y € ©g(—log D) on a local section [n] represented by a relative
n-form 7 is given by the Lie derivative with respect to a lift X of x:

Vn = [Lieg(n)]
([16, p. 148)).

3.2. #' and the cohomology of singular fibres

We have seen that for u € S\ D, the restriction of a global relative n-form 7 to a
smooth fibre X,, determines a cohomology class

[nlx.] € H"(Xu).

If w € D, then the fiber X, is singular, but the form 7 still can be integrated over
n-cycles in X,, and gives rise to a well defined cohomology class in H"(X,). We
sketch the argument. Suppose v; and 7, are n-cycles in Cy, and I' is a n + 1-chain
in X,, with ' = v; — 75. After subdivision, we can write I' = IV + T where I" is
a n + 1-chain in the smooth part of C,, and I'" =T' N Y, B-(p;), where the p; are
the singular points of C,. Then

L= L= [ [
" V2 or or

The first integral on the right-hand side vanishes by Stokes’s Theorem. The contri-
bution |, or M tends to 0 as € — 0, as the integrand is regular and one is integrating
over ever smaller sets.

In general, if Z is any analytic space with singularities we can look at the
de Rham complex (Q%,d) of Kéahler forms, and integration over p-cycles is well-
defined and determines a de Rham evaluation map

DR : HY(I(Z,Q3)) — HP(Z,C).

If Z is a Stein space, then this map is even surjective. The reason is the following:
because Z is Stein, the group at the left hand side is equal to the p-th hyper-
cohomology group HP of the de Rham complex (0%,d). The map of complexes
Cz — (9%,d) (induced by the inclusion map Cz — Oz) induces a map
a: HY(Z;C) = HP(Cz) — HP((Q%,d)) = H?(T(Z,Q%)),

and it is shown in [16], p. 141, that DR is a section of the map «, i.e., DRoa = Id.
In particular, DR is surjective.

Proposition (8.5) of [16] provides a relative version of this argument, that
we specialise to our situation of 7 : X — S. For this we look at the (truncated)
relative de Rham complex

0— Ox — Qg — ... — Qg — Vyq

The cohomology sheaves are 7= Og in degree 0 and

N = Q}/s/dQ’;&;,
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a sheaf supported on ﬁ7 in degree n. The direct image (7, /8" d) also has two

non-vanishing cohomologies, namely 7,7~ ! Og in degree 0 and %" in degree n.

The two hypercohomology spectral sequences now produces a short exact sequence
0 — R"m.(Cx) ® 05 % #' 5 2,1 — 0

([16, Proposition 8.5]). Restriction to a (geometrical) fibre over u gives an exact
sequence

0 — H"(X,) — ', — mHE — 0.
In the middle we have a vector space of dimension p, at the right-hand side a
direct sum of vector spaces of dimension ;, the Milnor numbers of the singularities
appearing in the fibre over u. So indeed

dim H"(X,) = p — Z,ui.
The composition
R"1,.(Cx) — R"m.(Cx)® 05 — '
is for any u € S a section to the deRham-evaluation map
DR, : #] — H"(X,,C).
Corollary 3.1. For all u € S, the deRham evaluation map
Ay — H'(Xu)in = [n]x,]
18 surjective.

3.3. The period map

The theory of the period map was developed independently by VARCHENKO and
K. SAITO around the same time and has numerous applications. The basic idea
is quite simple. Let us first fix a relative n-form 7 and a point v € S~ D and a
horizontal basis v1(s),72(s), ..., 7.(s) € Hp(Xs) for points s in a neighbourhood
U of u. The period map

P,:U — CH, s»—)(/ n,/ 77,...,/ n)
71(8) Y2(s) Yu(s)

sends a point s to the tuple of periods of the form 7. By further parallel transport
one extends P, to a (multi-valued) map

P,:S\D—C*
between spaces of the same dimension p. The form 7 is called non-degenerate if
it is non-degenerate at all points w € S ~ D, which means that P, is a local

isomorphism near u. Of course, this can be tested by looking at the derivative of
this map, which can be identified with the map

VPu:TuS — HY(X,), 9+ [Vyn|X,] € H"(X,)
which is the geometrical fibre at u of the sheaf map

GS\D — %*, Y — Vﬂ’r].
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This map extends to a sheaf map
Og — ", VY Vyn
which is an #somorphism in case 7 is non-degenerate.

Proposition 3.2. A non-degenerate relative n-form n gives rise to a commutative
diagram

0 JT C;T' %S 0
OH@S(—IOgD) @s 05 0

with exact rows and where the vertical maps are the isomorphisms described in the
last paragraph and where the map at the right-hand side is induced by multiplication
by w =dn.

This diagram can be found in [19, p. 1248].
From this we get immediately the following

Theorem 3.3. If n is non-degenerate, then for each point u € S one obtains an
isomorphism
VP,.:TePs — 7).
The composition with the de Rham evaluation map gives a surjection
DRoVP,, :TPS — H"(X,).

In fact the restriction of DR o VP, , to T,%(u) is an isomorphism. This
statement was shown by Varchenko to hold in special cases and conjectured to
hold in general, [25]. A proof basically along these lines was sketched to us in a
letter by HERTLING, [14].

4. The case of curves

We specialise to the case n =1, so C := Xy is a plane curve singularity. If C has
r branches then by the formula of MILNOR

w=20—r+1,
and for u € S\ D the fibre C, := X, is a smooth Riemann surface of genus
0 —r+ 1 with r boundary circles. In the case where C'is irreducible, then p = 29
and for u ¢ D, C,, is a smooth Riemann surface of genus ¢. For u € D the curve C,,
is a singular, say with singularities (Cy,p;), ¢ = 1,2,..., N, then its normalisation
C,, has genus
6(C) = 6(Cu)
where §(C,) = X1, 8(Cl, i)
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4.1. Intersection form

Now assume that C' is irreducible. For fixed u € S let C} = C,,/IC,, be the closed
Riemann surface obtained by shrinking dC,, to a point, and let C,, and C’;j be the
normalisations of C, and Cj.

The diagram

C.——=C: gives rise to the diagram  H'(C,) <—— H'(C?)

c, e HY(C,) <=— H'(C3)

in which the vertical arrows are surjections. Write I,, and fu for the intersection
forms on C,, and 5’u These are pulled back from the intersection forms on the
closed curves C; and 5’;‘ by means of the isomorphisms in the preceding diagram.
Because n, : Ho (éu, 8C~'u) ~ Hy(C,0C), it follows by functoriality that

L,(n*a,n*b) = L,(a,b). (4.1)
Note that the form I, is non-degenerate.

4.2. de Rham version of [,

The pairing I, has the following DE RHAM description. We choose a a pair of
collars U ¢ V C C, around the boundary 0C,, and a C'*® bump-function p, equal
to 1 on U and 0 outside V. If 7 is a holomorphic (Kéhler) 1-form on C,, it follows
from Stokes theorem that
/ n=0.
ac

By integration we can therefore find a holomorphic function o on V' with da =7
on V. The form 7 is cohomologous to 7 := 1 — dpa and as p = 1 on U and there
da =), it follows that 77 is a form with compact support, contained in C'\ U. It is
holomorphic and equal to 7 outside V', but only C* on the annulus V' \ U. One
then has, using Stokes theorem

LM%M®=LM%M®=—/ arf

oC
More details are given in Section 7.

4.3. Extension to J#* and 57’
The pairings I,, on H'(C,) combine to give a perfect duality
I1:0"x#* — Og

over S\ D. Because of its topological origin, the intersection form is horizontal
with respect to the Gauss-Manin connection: for any two sections s1, so of J7%,

d(I(s1,82)) = 1(Vs1,s2) + I(s1, Vsa).
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Using a relative version of the above DE RHAM-description of the intersection
pairing one obtains an extension of I, still called I, to s#:
I:" x# — Og.
For two sections 17,12 of 7’ one has

11, m2)(w) = Lu([m|Cul, [n2] Cul)- (4.2)

4.4. Pulling back the intersection form
Using the period map one can pull-back the intersection form on H*(C,,) to obtain
a 2-form on S. Let us first start with an arbitrary section s € J#* over S\ D.
From it we obtain a 2-form
on S~ D by the formula

Q(91,392) :=1(Vy, s, V,s).
Proposition 4.1. The form € is closed.

Proof. This is ‘clear’ as we are pulling back the ‘constant form I’; but here is a
nice direct calculation: if a,b and ¢ are germs of commuting vector fields on S,
then

d(s" D(a.b,) = d(1(a,))(0) — d(I(a,e)) () + d((I,9) (@)
=I1(VVas,Vps) + I(Vys,VeVys)
—I(VpV4s,Ves) — I(Vys, Vi Ves)
+ I(VaVs,Ves) + 1(Vys, Vo Ves). (4.3)

Because a and b commute and V is flat, V,V, = V,V,, and similarly for V,V.
and V, V.. This means that all terms on the right hand side in (4.3) cancel, except
the first and last. These cancel because of the anti-symmetry of I. O

Theorem 4.2. ([9]) If s = 1 is a non-degenerate section of ', then Q is itself non-
degenerate and hence symplectic, and moreover extends to all of S as a symplectic
form.

5. Results

In [9] one find the formulation of a principle that the types of degeneration that
occur in the fibres C,, are reflected in the lagrangian properties of the corresponding
strata. Our results can be seen as a vindication of this principle in some special
cases.

As before, we will consider the versal deformation 7w : X — S of an irre-
ducible curve singularity, a non-degenerate section 7 of the Brieskorn-module .77’
and the resulting symplectic form €2 on S, obtained by pulling back the intersection
form on the fibres H(C,,).
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5.1. The rank of 2 on the logarithmic tangent space

Recall that for a point u € S, the logarithmic tangent space T.°9P S C T, S is the
sub-space spanned by the logarithmic vector fields at w.

Theorem 5.1. The rank of Q restricted to T°¢PS is equal to the rank of I, on

HY(C,), which is equal to dim H*(C,) = 2(6(C) — 6(Cy)).

Proof. Let %Z(u) and ¢ (u) denote, respectively, the right-equivalence stratum and
the J# -equivalence stratum containing u. Recall that by 3.3 the period map maps
the space T,.%# (u) surjectively to H'(C,); its restriction to T, Z(u) C T, (u)
maps isomorphically to H'(C,,). From (4.2) it follows that the rank of  on T°¢ D
at u is equal to the rank of the intersection form I, on H'(C,,), which is equal to

the rank of H(C,,), and therefore is equal to u(C)—25§(C,,) = 25(C)—25(C,). O

5.2. Coisotropicity of the Severi strata

Recall that a subspace V' of a symplectic vector space (W, (_,_)) is coisotropic if
V+ CcV, where V1 = {w € W : (v,w) = 0 for allv € V}. A submanifold X
of a symplectic manifold M is coisotropic if for all x € X, T, X is a coisotropic
subspace of T, M. A singular subset X of the symplectic manifold M is coisotropic
if X,cg is coisotropic.

Theorem 5.2. All the Severi strata
D@)cD6—-1)c---CcD()=D
are coisotropic with respect to €.

Proof. Suppose that u is a regular point of D(k), so C, has exactly k ordinary
double points as singularities. As Z(u) = # (u) = D(k) near u, the tangent space
T.D(k) is the same as T'°9PS. From theorem 5.1 the rank of Q1, D(k) is equal to
p — 2k, hence dim ker 7, px)y = k. But from the non-degeneracy of € it follows
that T, D(k)* has dimension equal to the codimension of D(k), namely k. Thus
both sides in the relation

T.D(k)* D ker(Qlr, px))

have dimension k, and are therefore equal. It follows that T, D(k)* C T,D(k).
That is, D(k) is coisotropic. O

The principle mentioned above explains this result by simply saying the near
a regular point u € D(k) there are k mutually non-intersecting cycles vanishing
at u, which make up an isotropic subspace of H;. However, making this into an
honest proof is another matter and leads to the considerations outlined above. The
form €2 is not unique, and moreover is determined globally rather than locally. One
cannot prove anything by using a local normal form N(¢) := {uy---uy = 0} for
D at a generic point ug of a Severi stratum D(¢), since the symplectic form one
picks there will not in general coincide with the pullback of the form Q by an
isomorphism identifying (D, ug) with (N (¢),0).
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5.3. Equations for the D(k)

Let x1, ..., Xu be a basis for for Og(—1log D), and let wy,...,w, be the dual basis
for 2} (log D). Considering € as an element of Q%(log D), it can be expressed as
the sum
Q= ZQ(Xqu)%’ N wj.
i<j

We denote the skew matrix with ¢, j’th entry Q(x;, x;) by x*x. Then

AFQ = S PO, iok))wiy A Ay, (5.1)

1<iy < <igp <p

where x*Qx(i1,...,72;) is the submatrix of x*Qyx consisting of rows and columns
i1, ..., 19, and Pf denotes its Pfaffian. The ideal generated by the coefficients of
A*Q with respect to the basis w;, A---Aw,,, of Q% (log D) is the same as the ideal
Pfar(xQx) of 2k x 2k Pfaffians of x'Qx.

Theorem 5.3. D(k) =V (Pf2(§7k+1)(xtﬂx)). In particular, the §-constant stra-
tum D(8) is defined by the entries of x'Qx.

Proof. Consider an arbitrary u € S. The rank of the matrix x*Qy at u is the rank
of Q restricted to the space of evaluations at u of the vector fields in ©g(—log D),,
which is precisely the logarithmic tangent space T'°6 P S. Theorem 5.1 states that
the rank of Q on T°2D at u is equal to 25(C) — 25(C,,). As the rank of a skew-
symmetric matrix is always even and equal to the size of the largest non-vanishing
Pfaffian, it follows that D(k) is precisely cut out by the Pfaffians of size 2(§ —k+1)
of the matrix x'Qy, i.e., D(k) =V (P fas—r+1) (X' QX))- O

A symplectic form 2 on a manifold S gives rise to a Poisson bracket {_, _}
on the sheaf of functions on 3, as follows:  determines an isomorphism Qf — Og
sending a 1-form a to a vector field a”. Then for functions f, g,

{f.9} = Q(df)", (dg)").

The vector field xr := (df)° is called the Hamiltonian vector field associated to f.
If V. C S is a sub-variety and I(V) C Og the ideal of functions vanishing on V,
then it is easy to show that for a regular point « € V' one has

LV*E = {xs(x): f € I(V):}. (5.2)
The following is well known:

Proposition 5.4. V C S is coisotropic if and only if the ideal I(V) is Poisson-
closed:

{I(V), I(V)} C I(V).

For the convenience of the reader we include a proof.
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Proof. Let x € V be a regular point, v,w € T,V*, and f,g € I(V) two functions
with x¢(z) = v, x4(z) = w (using (5.2)). Then

Qv,w) = Qxs(x), xg(2)) = {f, 9} ().

From this we see that {f, g} vanishes at z if and only if (v, w) = 0, which means
that T,V+ C (T, V)t = T,V, that is, V is coisotropic. |

Thus, for each of the Severi strata D(k), the ideal I(D(k)) is involutive. But
note that an ideal defining a coisotropic subvariety is not necessarily involutive;
the proof only shows that this holds if the ideal is radical.

Conjecture 5.5. For allk=1,2,...,9,

(a) Pfy,(x'Qx) is involutive;
(b) Pl (x*Qx) is radical.

By the theorem 1.2, (b) = (a), as vanishing ideals of coisotropic varieties
are involutive. Nevertheless, involutivity of the ideals Pfax(x*Qx) may hold even
without their being radical.

Problem: How to write the Poisson bracket of two Pfaffians of x*Qx as a linear
combination of Pfaffians? Is there a universal formula?

6. The symplectic form as Extension

The matrix x'dy can be considered as an endormorphism of O and its cokernel
Ngq defines a rank 2 Cohen-Macaulay module on Op. If the basis x of ©g(—log D)
is chosen to be symmetric, as described in Subsection 2.4, then Ng sits in an exact
sequence

0 05 Ng o) 0. (6.1)

In fact, we show that the extension (6.1) has a coordinate-independent meaning,
depending only on the choice of w used in the definition of the period map. As
such it represents an element in the {2 5-module

1
Ext(0p,0p)

and therefore an infinitesimal deformation of O 5 as Op-module. We refer to Ng
as the intersection module. For a vector field 19, let 9# denote the contraction of
Q by 9. Begin with the exact sequence

Qy(logD) , Q(logD)  Os
QL Og(—logD)# = ©g(—log D)

0+ «0. (6.2)

This exists for every divisor D and non-degenerate 2-form 2. Here the first ar-
row is induced by contraction with €, which maps O to 2 and ©5(—log D) to
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O5(—log D)#. Then the exact sequence we consider is obtained from (6.2) by com-
posing the last arrow with the isomorphism £~ o 3 : Q4 (log D) — Og described
in Subsection 2.4, inducing an isomorphism

@S Qg(log D)
— .
Os(—log D) Qg

Since we have a canonical isomorphism ©g/©g(—log D) — Op defined by dF,
we obtain the exact sequence (6.1). Thus provided the pairing on Oy is chosen
canonically, the extension class of (6.1) depends only on F' and on the symplectic
form.

Remark 6.1. If we apply k=1 o B also to the middle term of the sequence (6.2) as
well as the third, we obtain (6.1) in the slightly different form

Og Og Os

e Os(—log D) © k=1o B(©s(—log D)#) < Os(—log D)

« 0. (6.3)

Note that k= o B(©5(—log D)#) is generated over Og by vector fields whose com-
ponents with respect to the usual basis 0/0us,...,0/0u, are given by the columns
of the matriz xQx. It is interesting that in all of the examples where we have
made the calculations, k~' o 3(0g(—1log D)#) C Og is a Lie sub-algebra, evidently
contained in Og(—log D). We cannot at present prove this or explain it.

6.1. Calculation of Ext groups

We state without proof the results of some relatively straightforward calculation of
Ext groups. Let € denote the conductor ideal of the projection n = x| : D — D.

Lemma 6.2. (i) Both Exty(0p,05) and Ext},(0p,05) are Op /€ -modules.

oy gk {05 -syzygies of g1,...,9u}
ii) Ext(Ox,0x) ~ D - s
(i) OD( 5 95) O5 {Op -syzygies of g1, ..., 9u}

2
(iii) %ﬁt(oﬁ’oﬁ) ~ Of) /€.

Proposition 6.3. Ext}j(OE,OE) is a mazimal Cohen-Macaulay module over
Op /€ presented by the matriz X obtained from the symmetric matriz x of the
basis for Og(—log D) by deleting its last row and column.

In [1] it is shown that if n : D — D has corank 1, then CokerX ~ 7, Op2(p),
where, by D?(n), we mean the double-point scheme of the map n:

D?(n) = closure{(z1,22) € D x D : &1 # 9, n(x1) = n(x2)}.

The isomorphism holds only if n has corank 1. The map n : D — D, normalising
the discriminant in the base of a versal deformation, has corank 1 exactly for the
A,, singularities. Thus, for the A, and only for these, ExtlD(Of), Op) =~ Op2(p)-
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7. Computations and Examples

It was described in [8] how the symplectic form € can be computed in the case of
irreducible quasi-homogeneous curve singularities. The projective closure of such
a curve has a unique point at infinity oco.

Proposition 7.1. Let C be a curve, oo € C' a smooth point and w, n two meromor-
phic differential form, holomorphic on C'\ {oo}. Then the intersection form of the
cohomology classes [w], [n] € HY(C) is

I([w]; [n]) = 2mi Resoo (an)
where « is a meromorphic function in a neighbourhood of oo with da = w.

Proof. Choose two small open discs U C V C C around oo, and a C'*° bump
function p on C, equal to 1 on U and 0 outside V. Choose a function o mero-
morphic on V' with do = w. Then w — d(pa) is a C*° compactly supported form,
cohomologous to [w]. Using w A n = 0, we find

1], I]) = —/Cd<pa>m= —/Ud<pa-n>

and by Stokes theorem
*/d(pwn):*/ an
U U

which, noticing the reverse of orientation in the boundary, gives the above formula.
O

This proposition can be used to calculate intersections using Laurent-series
exapansions. If the curve C' is given by an affine equation f(z,y) = 0 and has a
single point at infinity, we can find a Laurent parametrisation of C' around oo

z(t), y(t) € C[[t]][1/1]

If w= A(x,y)dx and n = B(x,y)dx are the differential forms on C, then by
substitution we obtain expansions

w = a(t)dt,n = b(t)dt
where a(t),b(t) € C[[t]][1/t] are Laurent series. Integrating up one we find
a(t) = /a(t)dt e Cli)[L/1]
and we can compute the cohomological intersection as:
I([w], [n]) = Resoa(t)b(t)dt.

Proposition 7.2. ([9]) Suppose that f is quasihomogeneous. Then for w = dx A dy,
the period map P,, is non-degenerate.
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Case Ay
We consider the versal deformation of A4 given by

F(z,a,b,¢,d) = 9> 4+ 2° + az® + bx® + cx + d.
We take the symmetric basis for ©g(— log D) with Saito matrix

10a 15b 20¢ 25d
| 15b  —6a* +20c —4ab+ 25d —2ac
X7 120 —dab+25d —6b% +10ac  —3be + 15ad | (7.1)
25d —2ac —3bc + 15ad —4c? + 10bd

The symplectic form pulled back by the period mapping induced by the 1-form
ydz is
Q =ada Ndb+daAdd+ 3db A de. (7.2)

Therefore the ideal of entries of the matrix x{2y, defining the §-constant stratum
D(2), is generated by
2 2 . 2
at + {abz —9a%c +20c¢% — gad, a®b+ Z7b3 — 9abc — 10a®d + 50cd,  (7.3)

and
ade+ gb2c — 4ac® — 20abd + ﬁdQ.
4 4
Case Ag
A versal deformation of Ag is given by
F(x,a,b,c,de, f) = 2" + ax® + ba* + ca® + da? + ex.

We take the basis of ©g(—log D) with Saito matrix

2a 3b 4c 5d 6e 7f
3b —1042 4 4c —?ab-&—Sd —gac+6e —%ad+7f —%ae
4c —Zab+5d —12p% L 2ac+6e —2bc+3ad+T7f —gbd+4ae —%be+5af
5d —zac+6e —=zbc+3ad+T7f —12¢2 4 2bd + 4ae —%cd+3be+5af —%ce+4bf
6e —7ad+7f —S8bd + 4ae —7cd+3be+5af —%d2+20e+4bf —%de-&-l}cf
7f —2ae —32be + baf —2ce+ 4bf —5Sde + 3cf —Se? + 2df
and symplectic form
0 ~3a2—~c —6b 9a 0 -3
3a%2 +c¢ 0 ~5a 0 -5 0
O 6b 5a 0 —15 0 0
o —9a 0 15 0 0 0
0 5 0 0 0 0
3 0 0 0 0 0

Each of the ideals Pfyy is Poisson-closed, and defines a Cohen-Macaulay variety of
codimension 3 — ¢ + 1.
Case Ag

For Ag, each of the ideals Pfy, is Poisson-closed, and defines a Cohen-Macaulay
variety of codimension 4 — ¢ + 1.
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Case Fg and Eg

A versal deformation of Fg is given by
F(z,y,a,b,c,de, f) = 2° +y* + axy® + bay + cy” + dz + ey + f.
We take the basis of ©g(—log D) with symmetric Saito matrix x equal to

2a 5b 6¢ 8d
a4 2 3 .
5b 2 — 4ac+ 8d b 4 9e —a'b _ Sbetae
9 2 2 2 2
6¢ aTb+96 _5b+2a730+10ad +7al27 _4a3d+12f
3 E 2 2 2
8d _Zmb _ ch;—ae 7:1L12> _ 4a.3d +12f _aml;) + ded — 71276 1 6af
%e ab?—a3c + a2d—9c2 4+ 12f Tabe _ 13bd+4aZe 565 —a2bc  7abd _ 3ce
6 3 3 6 2 3 212 2 6 2 2 2
abd a“e 3ce 8d Tabe 2 10b“d—a“be 4ad 9e
12f %% - %7 - 5 =S5t 200 g — 5 — 55 +6ef
9e 12f
2 3 2 2 3
ab“—a”c a“d—9c abd ae 3ce
6 + 3 + 1§f 56 12 T
Tabe 13bd da 8d Tabe 2
, 6 s 5 , o, s Pt —200f 7.4
563 —a?bc _ 7abd _ 3ce M_M_ﬁ+6cf : :
2 2 .2 12 2 o g 24 2 2 3 4
a2c _ a2c 8acd—8d% —5abe—Ga’ f bed | 5b2e—a2ce | 5ade _
3 5 3 3+ 12 + =% 3abf

2 2 2 2,2
bed | 5be—a®ce | 5ade 4cd 1lbde _ aZ?e 2
bed 4 - + 2ade _ 3gbf —2ed- 4 llbde _ acet _ p2f _ oqdf

The symplectic form € has matrix

0 —%ab %c 1—25a2 0 %

1—15be 0 0 0 % 0

—zc 0 0 1 0 0

—%SaQ 0 -1 0 0 0 (7.5)
0 —% 0 0 0 0

—% 0 0 0 0

The ideal of 2 x 2 Pfaffians (i.e., the ideal of entries) of xQx, defining the o-
constant stratum, is Cohen-Macaulay of codimension 3, and Poisson-closed. Below
we comment on the computations involved in proving Cohen-Macaulayness. The
ideal J of 4 x4 Pfaffians is also Poisson closed, and has codimension 2 but projective
dimension 3.

For both Fg and Eg we check the Cohen Macaulay property for the ideal
generated by the entries in the matrix x€2x using the Depth package of Macaulay
2. To show that this ideal is radical, we use the result of [7], that the geometric
degree of D(0) is equal to the Euler characteristic of the compactified Jacobian.
This Euler characteristic is calculated in [18]: for Es it is 5 and for Eg 7. Using
Singular we computed the algebraic degree of Op(s), as defined by the ideal of
entries of yQx, and found that it took these values, showing, in view of Cohen-
Macaulayness, that this is the reduced structure.

Betti numbers of the Severi strata for A,y

The following table shows the non-zero betti numbers of minimal free resolutions
of the ideals of Pfaffians, Pfys, of the matrix xQx for singularities of type Ay for
1<k< A4
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As Ay Ag Ag
14 Bo | Bo Bi Bo P1 B Bo B B2 B
1 1 2 6 &8 3 10 20 15 4 (7 6)
2o |l - | 1 - 5 4 — | 15 24 10 — '
3 - - - | 1 76 - -
4] - | = - 1 - - =

Since depth + projective dimension = dimension S and codim D(j) = j, it follows
from the data in the table that for A, with k& < 4, each of the rings Og /Pfyy, and
therefore each of the Severi strata D(k—/£+1) = V(Pfy,) C S, is Cohen-Macaulay.

Conjecture 7.3. For all £ and k with £ < k, each of the Severi strata D({) in the
base of a miniversal deformation of Asy is Cohen Macaulay.
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Classification of Isolated
Polar Weighted Homogeneous Singularities

José Luis Cisneros-Molina and Agustin Romano-Veldzquez

To Pepe Seade for his 60th birthday

Abstract. Polar weighted homogeneous polynomials are real analytic maps
which generalize complex weighted homogeneous polynomials. In this arti-
cle we give classes of mixed polynomials in three variables which generalize
Orlik and Wagreich classes of complex weighted homogeneous polynomials.
We give explicit conditions for this classes to be polar weighted homogeneous
polynomials with isolated critical point. We prove that under small pertur-
bation of their coefficients they remain with isolated critical point and the
diffeomorphism type of their link does not change.

Mathematics Subject Classification (2000). Primary 32C18, 32S50; Secondary
14B05, 57R45.

Keywords. Polar weighted homogeneous polynomials, Orlik and Wagreich
classes.

1. Introduction

Let f: C3 — C be a complex weighted homogeneous polynomial with isolated
critical point. Let V = f~1(0) be its zero-set and consider its link given by K =
V' NS, It is now a classical result by Orlik and Wagreich [9, §3.1] that the link of
such polynomial is equivariantly diffeomorphic to the link of a polynomial in one
of six classes given explicitly in the aforementioned paper.

In this article we generalize Orlik and Wagreich classes for polar weighted ho-
mogeneous polynomials with isolated critical point. These are real analytic maps
which generalize complex weighted homogeneous polynomials, they are polyno-
mials in complex variables and their conjugates (mixed functions) and they are
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weighted homogeneous with respect to an RT-action and also with respect to a
St-action. The first examples of polar weighted homogeneous polynomials were
twisted Brieskorn-Pham polynomials given in [10] by Ruas, Seade and Verjovsky
to give explicit examples of real analytic maps f with isolated critical point which
Milnor fibration is given by f/|| f || as for holomorphic maps. Inspired by these
examples polar weighted homogeneous polynomials were introduced by Cisneros-
Molina in [4] and later they were studied by Oka in [6, 7, 8].

The organization of the article is as follows. In Section 2 we recall some basic
facts about mixed functions, in particular, when a mixed polynomial is full and
the definition of polar weighted homogeneous polynomials. We also generalize a
lemma by Arnold about the existence of certain monomials in mixed polynomials
with isolated critical point. In Section 3 we prove that polar weighted homogeneous
polynomials with isolated critical point at the origin under small perturbation of
their coefficients remain with isolated critical point (Corollary 3.6). In Section 4 we
give the classes of mixed polinomials which generalize Orlik and Wagreich classes.
In contrast with the complex case, these classes of mixed polynomials are not
automatically polar weighted homogeneous, so we compute the explicit conditions
for these families to be polar weighted homogeneous with isolated singularity at the
origin (Theorem 4.5 and Theorem 4.10). As a result of these computations we list
the classes which are full polar weighted homogeneous polynomials (Corollary 4.7).
In Section 5 we prove that the diffeomorphism type of the link of a polar weighted
homogeneous polynomial with isolated singularity at the origen does not change
under small perturbation of the coefficients of the polynomial (Theorem 5.3).

2. Mixed functions

Consider C™ with coordinates 21, ..., z,. Let Z; be the complex conjugate of z;.
We will write z; = x; 4 iy; with x;,y; € R. To simplify notation we shall write
z=1(21,--,2n), 2= (Z1,---,2n), X = (1,...,2,) and y = (y1,...,Yn). We also

denote by 0 the origin in C", by C* the non-zero complex numbers and by RT the
positive real numbers.

Let pp = (p1,...,tpn) and v = (v1,...,v,) with p;,v; € NU {0}, set z#* =
2 zk and 27 = Z' ... zZ4». Consider a complex valued function f: C"* — C
expanded in a convergent power series of variables z and z,

f(z) = Zcu,yz“i” .
v
We call f a mized analytic function (or a mized polynomial, if f is a polynomial).
We consider f as a function f: R?" — R? in the 2n real variables (x,y)
writing f(z) = g(x,y) + ih(x,y), taking z; = x; + iy; where g, h: C" ¥ R?*" - R
are real analytic functions. Recall that for any real analytic function k: R?® — R

we have
Ok _1(0k ok\ ok _1(0k ok
8zj N 2 &rj 8yj ’ 82‘] N 2 81']‘ Byj '
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So we have
of _0g on o _0g 0y
aZj 82]' aZj ’ Béj 82j 82]' ’
As usual, we define the real gradients of g and h by
drg(x,y) = (69 99 99 69)
’ 8xl ’ ’ axn7 52/1 ' , ayn ’

Oh oh 0Oh oh
dRh(X,y)— (6:“,...76'%L78y1,...’(9yn) .

Following Oka [6] set

o= (400 (YA

The following proposition is an useful criterium to determine whether a point
z € C" is a critical point of a mixed function f.

Proposition 2.1 (Oka’s Criterium [6, Proposition 1)). Let z € C™. The following
two conditions are equivalent,

1. The vectors drg(z) and dgrh(z) are linearly dependent over R.

2. There exists a compler number a € S' such that df(z) = adf(z).

We need the following condition which will be automatically satisfied by the
family of polar weighted homogeneous polynomials that we will consider later.

Condition 2.2. If the monomial z; appears in f, then the monomial Z; does not
appear in f.

The following lemma is a generalization of [1, Proposition 11.1] by Arnold.

Lemma 2.3. Fizi € {1,...,n}. If f is a mized polynomial with isolated singularity
at the origin of C™ satisfying Condition 2.2, then there exist a,b € NU {0} with
a+b # 0, such that the monomial z,?ifx appears in f, with x € {z1,21,..., Zn, Zn }-

Proof. Assume that for all @ > 0, b > 0 there are no monomial zf,?fx. By Condi-
tion 2.2, f does not have a linear term, if so, f = 0 has no singularity at the origin.
Consider df and df on the axis z; = --- = z;_1 = 2,41 = - - - = 2, = 0. This axis is
a subset of f71(0) and we have that both gradient vectors vanish simultaneously.
This means that the axis is included in the singular locus, which contradicts the
fact that f has an isolated singularity at the origin. O

Following Oka [6, §2.3] we have the following definition.

Definition 2.4. Let p; = (g1, .-, f4jn) and v; = (v1,...,V;,) be multi-indices
and let f: C" — C be a mixed polynomial written as

m
flz2) =) ¢z,
j=1
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where ¢, ..., ¢y, are non-zero. Consider the following matrices
praitria . piatvia H1,1—V1,1 - Hin—Vin
P= ( : : : ) , Q= ( : : : ) )
#m,ljrl/m,l #m,nle/m,n Nm‘l;vm,l ltm,n;l/m,n
We say that f is radial full (respectivelly angular full) if n = m and P (respectively,

Q) has rank n. If f is radial and angular full, then we say that f is full. We call
the matrix P the radial matriz and Q the angular matriz of f.

Define the associated Laurent polynomial f: C*" — C by
Flw) =3 cjwhi .
j=1

Theorem 2.5 ([6, Theorem 10)). Let f(z) be a full mized polynomial and let f(w)
be its associated Laurent polynomial. Then there exists a diffeomorphism ¢: C*" —

C*" such that fo¢ = f|cen.

Corollary 2.6. The associated Laurant polynomial f: C*™ — C has no critical
points.

Proof. Let @ be the angular matrix. As in [5, page 68] define the map ¢¢g: C*™ —
C*n by

Yo(w) = (Wi I e T g T gl =),

and define h: C*"™ — C by h(w) = ¢iwy + - - - + €Wy, Then we have that f(w) =
h(1g(w)). By [5, Assertion (1.3.2), page 109] ¢¢ is a det(Q)-fold covering and
clearly h has no critical points. |

An useful property of a radial full or angular full polynomial is that we can
have more control on the coefficients c;.

Lemma 2.7. Let f be a mized polynomial and suppose that k rows of the radial
matriz P are linearly independent. Then under a change of coordinates we can
assume that k coefficients are on S*.

Lemma 2.8. Let f be a mized polynomial and suppose that k rows of the angular
matriz Q are linearly independent. Then under a change of coordinates we can
assume that k coefficients are on RT.

Corollary 2.9 ([8, Lemma 8)). If f is full, then under a change of coordinates we
can assume that all the coefficients are 1.

We are just going to prove Lemma 2.7 (actually it is just an adaptation of
the proof of [8, Lemma 8]).
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Proof of Lemma 2.7. We have f(z) = >."" ¢;z"z". We can apply a change of

j=1
coordinates z; — z,(;) With o a permutation of {1,...,n} so that the matrix
MH11+vi1 .. M1k T Vi
P/ — . . .
PE1+ Vel .- Mk T Vik

is invertible.

We are going to construct a change of coordinates of the form z; — e'iz;
where t; € R with j = 1,..., k. Write ¢; = e%0; and notice that we want some
numbers e’ € RT such that

(Hja + vt + -+ (ke + Vit = —a;
then we have the system
P(ty,....t))" = (=ay,...,—ap)" .
Since P’ is invertible we can solve this system. O

2.1. Polar weighted homogeneous polynomials

Let p1,...,pn and q1,...,¢, be non-zero integers such that ged(py,...,pn) = 1
and ged(q1, .. .,q,) = 1. Let w € C* written in its polar form w = ¢7, with ¢ € RT
and 7 € S*. A polar C*-action on C" with radial weights (p1,...,pn) and angular
weights (q1,-..,qn) is given by:

trez = (tP' 7Tz, ..., tPn72,) . (2.1)

Definition 2.10. A mixed function f: C" — C is polar weighted homogeneous if
there exists p1,...,pn positive integers, q1, ..., g, non-zero integers, a, c positive
integers, and a polar C*-action given by (2.1) such that f satisfies the following
functional equation:
ftrez) =t*7°f(z) . (2.2)

We say that the polar weighted homogeneous function f has radial weight type
(p1,-..,0n;a) and angular weight type (q1,. .., qn;c).

Sometimes it is more convenient to consider the normalized radial weights
(P, ..,py,) given by p; = 2 and the normalized angular weights (qi,...,qn)
given by ¢; = 4.

We will say that f is generalized polar weighted homogeneous if it satisfies
(2.2) with pq,...,p, and qi,...,¢q, integers, i.e. some p; or ¢; can be zero or
negative.

Remark 2.11. The definition of polar weighted homogeneous functions follows the
original definition given in [4] but allowing the ¢;’s to be negative. Other authors
(for instance [6, 3]) call polar weighted homogeneous functions to more general
notions allowing the p;’s or ¢;’s to be zero; we call this more general definition
generalized polar weighted homogeneous functions to emphazise the difference.
Originally, the angular weights were called polar weights and this has caused some
confusion in the literature because some authors (for instance [7, 3]) call polar
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weighted homogeneous to mixed functions which are weighted homogeneous with
respect to the angular weights and not to both radial and angular weights. To
avoid this ambiguity in [2] the authors propose to use the term mixed weighted
homogeneous instead of what we call polar weighted homogeneous. We think it
is better to keep the term polar weighted homogeneous for the original definition
given in [4] and use the term angular weights instead of polar weights and re-
spectively angular weighted homogeneous; the reason is that the polar coordinate
system on the plane consists of two coordinates: the radial coordinate and the
angular coordinate, and polar C*-actions are defined writing the acting element
w € C* in its polar form.

Remark 2.12. Notice that a complex weighted homogeneous polynomial is a par-
ticular case of a polar weighted homogeneous polynomial with p; = g;.

Notice that given a polar C*-action on C", we get a radial RT-action on C"
given by
txz:= (P z,...,tP"z,).
Sometimes we will be interested in the general case of real analytic maps

f:R™ = RF, so we also consider the following definition.

Definition 2.13. Let p1,...,p, be integers with ged(p1,...,pn) = 1. Let f: R" —
R™ be an analytic map and consider an RT-action on R” given by

txx:= (tPay,...,tP"x,) .
Let a be a positive integer. We call f a radial weighted homogeneous map of type
(p1y- -, Dn;a) if
fltxx) =t"f(x),
where p; is a positive integer for j = 1,...,n. We say that f is a generalized radial
weighted homogeneous if p1,...,p, are arbitrary integers.

Proposition 2.14 ([4, §3],[6, §2]). Let f(z) be a generalized polar weighted homo-
geneous function with radial weight type (p1,...,pn;a) and angular weight type
(q1,...,qn;c). Then it satisfies the following properties:

1. FEuler identities:

:ijzj—azv(z)+ijzj—32_(z)
j=1 J j=1 J
n a n
:ZqJZja Z 95 Jaz
'=1 =
af

2. The maps 5% and 2 3, are also generalized weighted homogeneous.

@«

The only critical value of f is 0.
4. The fiber F,, := f~(«) is a manifold of real dimension 2(n — 1) and it is
canonical diffeomorphic to Fy = f=1(1).
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5. If the weights p1,...,pn are positive, then:
(a) The function f is indeed a polynomial.

(b) The zero-set V.= f=1(0) is contractible to the origin.
(¢) The restriction f: (C*\ V) — C* is a locally trivial fibration.
(d) The map
¢—|§| ST\ Ke = Sy (2.3)

is a fiber bundle, for any e > 0.

(e) The fibration fg := flf—l(gl)l f7L(SY) — St is equivalent to the fibra-
tion (2.3).

Furthermore, if the origin is an isolated singularity of V'

(f) V' \ {0} is smooth.

(g) The sphere St of radius € around 0 is transverse to V for any e > 0.

(h) Let K. := V. N S?"'. Then for any €',¢ > 0, Ko and K. are S'-
equivariantly diffeomorphic (compare with |9, Proposition 3.1.3]).

Remark 2.15. If f: R® — R™ is a radial weighted homogeneous map analogous to

item 2.14 of Proposition 2.14 we have that % is also radial weighted homogeneous.

In this article we restrict to the case when the radial weights are positive
and non-zero angular weights, that is, we are only interested in polar weighted
homogeneous polynomials.

Lemma 2.16. If f: C™* — C is polar weighted homogeneous and z is a critical point
of f, then t\ ez is a critical point for all th € C*.
The analogous statement is true for a radial weighted map.

Proof. We will prove it for polar weighted homogeneous polynomials, the other
case is analogous. Suppose f has radial weight type (p1,...,pn;a) and angular
weight type (g1, ..., qn;c).

Since z is a critical point of f, by Lemma 2.1 there exists a € S! such that

0f(z) _ 0f(2)

= j 1,... .
0z “ 0z; ' jedlont
Since 2 9% and are also polar weighted homogeneous, for any t € Rt and \ € S*
af(t)‘ ° Z) — ta—pj )\—C+qj Gf(z) _ ta V21 )\(,—‘rq] « af( ) _ a af(t)‘ i Z)
sz 8Zj A2e 82’] A2 3Zj ’
therefore t\ @ z is a critical point of f. O

3. Isolated critical point under perturbation of coefficients

The aim of this section is to prove that given a polar weighted homogeneous
polynomial with isolated critical point, with a small perturbation of its coefficients
it still has isolated critical point.
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Definition 3.1. Let f = (f1,..., fm): (R",0) — (R™,0) be a map where f;: R" —
R is a polynomial for j € {1,...,m}. Suppose that

kj
Fi(x) =Y cjuPia(x)
=1

where ¢;; € R* and P;; are monomials with coefficient 1.

We can identify the set of coefficients ¢;; of f (up to a permutation) with a
point in R¥1++km Let ¢ > 0 and B(0, €) be the open ball in R¥1++km centered at
the origin with radius € and let p € B(0, €) with coordinates p = (p;;),j =1,...,m
andl=1,... k;.

We can consider the polynomials

k;
Fip(®) = (eju+pi)Pia(x)
1=1
and the map
fo=fipsoos fop): RT = R™. (3.1)

Suppose that f has an isolated critical point at the origin. We say that f
is stable under a small perturbation of its coefficients, if there exist € > 0 small
enough such that f,, has an isolated critical point at the origin for all p € B(0, ¢).

Remark 3.2. Suppose that f has an isolated critical point at the origin, let x € R"”
be a regular point of f and let My, ..., M} be all the minors of size m x m.
Each minor M; is a polynomial on the variables z1,...,z, and if we fix the
variables and allow to change the coefficients of f, we have that M; is also a
polynomial on the coefficients ¢i 1,...,cm k,,-
Therefore we think M; as a polynomial

M;: R™ x RF+Fhm R (3.2)

That f is stable under a small perturbation of its coefficient is equivalent to
say that there exist € > 0 such that for any x € R™\ {0} we have M;(x,p) # 0 for
some j € {1,...,k} and every p € B(0,¢) C RF1++km,

The following lemma is a direct consequence of Lemma 2.16.

Lemma 3.3. Let f be a polar weighted homogeneous polynomial and zg € C a re-
gular point of f. Let M(z) be a 2 x 2 minor of the Jacobian matrix of f, seen as
a real analytic map, such that M(zg) # 0. Then M(t @ zy) # 0 for all t € RT.

The analogous statement is true for a radial weighted homogeneous map.

Proof. Suppose that

_ 99(z) Oh(z) _ 9g(2) Oh(z)
M(z) = dx; Oy Oz Oy;




Classification of Isolated Polar Weighted Homogeneous Singularities 85

Since the partials derivatives are polar weighted homogeneous (in particular
radial weighted homogeneous) then

_ 2a-p;—p (09(2) Oh(z) _ Og(2) Oh(2)
M(tez)=t ( dx; Oy dx Oy > ’

therefore M (t @ zg) = t247Pi=Pk M (zg) # 0 for all t € RT. O

Proposition 3.4. Let f: R™ — R™ be a radial weighted homogeneous map. If f has
an isolated critical point at the origin, then f is stable under a small perturbation
of its coefficients.

Proof. Let x € S?il. By Lemma 2.16 the origin is the only critical point of f,
therefore x is a regular p