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    Chapter 1   
 Nanoagriculture and Water Quality 
Management                     

     Nandita     Dasgupta     ,     Shivendu     Ranjan     ,     Arkadyuti     Roy     Chakraborty     , 
    Chidambaram     Ramalingam     ,     Rishi     Shanker     , and     Ashutosh     Kumar    

    Abstract     Nanomaterials have rapidly gained importance in many fi elds of science 
and technology due to their unique properties. Nanomaterials are used in the agri- 
food sector notably for preservation and packaging, for agriculture and for water 
quality management. Future applications will improve shelf life, food quality, 
safety, and fortifi cation. Nanosensors will be used to analyse contaminated food and 
water. Here we review the application of nanotechnology in agriculture and subdis-
ciplines. The major points are the following. We explain the classifi cation and syn-
thesis of nanomaterials used for agriculture and water management. Then we 
present major applications such as nanoscale carriers, fabricated xylem vessels, 
nanolignocellulosic materials, clay nanotubes, photocatalysis, bioremediation of 
resistant pesticides, disinfectants, agricultural wastewater treatment, nanobarcode 
technology, quantum dots for staining bacteria, and nano-biosensors. Applications 
to water quality management include nanolignodynamic metallic particles, photo-
catalysis, desalination, removal of heavy metals, and wireless nanosensors.  
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1.1       Introduction 

 The term ‘nano’ is coined from the Greek word for dwarf. A nanometre (nm) is 
1-billionth of a metre, or approximately 100,000th of the width of a human hair. 
Nanotechnology has many applications in biotechnology and its allied fi eld e.g. tis-
sue engineering, drug delivery, biomedical engineering, food science and technol-
ogy among others (Danie et al.  2013 ; Ranjan et al.  2014 ; Dasgupta et al.  2014 ). 
The applied nanotechnology has been shown in Fig.  1.1  using solar system model. 
A wide range of applications of nanotechnology is also emerged into the “agri-food 
sector” which includes the nanosensors, tracking devices, targeted delivery of 
required components, food safety, new product developments, precision processing, 
smart packaging and others, shown in Fig.  1.2  (Huang et al.  2010 ; McClements 
et al.  2009 ; Ranjan et al.  2014 ; Dasgupta et al.  2014 ). Nanotechnology can also 
improve the water solubility, thermal stability and bioavailability of the functional 
compounds of food (McClements et al.  2007 ,  2009 ; Miguel et al.  2014 ). Figures  1.3  
and  1.4  represent the major applications of nanotechnology in food processing and 
packaging, the same has already been discussed in many review articles earlier, by 
Ranjan et al. ( 2014 ) and Dasgupta et al. ( 2014 ).

  Fig. 1.1    Solar system model showing applications of nanotechnology in different allied sectors 
including industrial, electronics, environment, renewable energy, textiles, biomedical, healthcare, 
foods, agriculture and agro-foods. The  red-circled  part has been covered in this chapter (Courtesy: 
  www.lurasia.com/nano     and   www.xpertarena.com    )       
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  Fig. 1.2    A mind-map showing the linkage of nano-foods with agriculture, nutritional, process 
development and product development. Pictorial representation for some of the major applications 
of nanotechnology in different sectors of food and agriculture (Courtesy: Ranjan et al.  2014 )       
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  Fig. 1.3    Major types of nano-structures or processes which are being used to develop nano-foods 
to be launched in market       
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      Agricultural products infl uence most aspects of life, including everyday materials, 
such as fuels, textiles, furniture, feedstock for bio-based products including food 
and feed. Technology advancement is needed to achieve the future global needs 
from agriculture. Nanoscience and nanotechnology has shown great potential in 
improving food safety, quality, product traceability, nutrient delivery, enhancing 
packaging performance, and improving agricultural and food processing. In the 
present review an attempt has been made to summarize the classifi cation and the 
synthesis method for the nanomaterials used in agricultural practices and water 
quality management. Also, the application of nanomaterials in the agriculture such 
as nanoscale carriers, fabricated xylem vessels, nanolignocellulosic materials, clay 
nanotubes, photo-catalysis, bioremediation of resistant pesticides, disinfectants, 
agricultural wastewater treatment, nanobarcode technology, quantum dots for stain-
ing bacteria, different types of nano-biosensors along with the current research 
trends, future directions, opportunities and research gaps in this fi eld has been dis-
cussed in detail. The goal of this article is to provide the perspectives of researchers 
working with nanotechnology to address agricultural and water quality manage-
ment problems.  
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  Fig. 1.4    Pictorial representation to sumamrize the different types and sub-types of nano-food- 
packaging being used along with their different applications (Courtesy: Ranjan et al.  2014 )       
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1.2     Classifi cation of Nanomaterials 

 Nanomaterials can be classifi ed as (i) nanoparticles (ii) nanoclays and (iii) nano-
emulsions, which can be synthesized by a number of methods and have many 
applications in agri-food sector. 

1.2.1     Nanoparticles 

 Nanoparticles can be categorized into different types based on their ability to carry 
different reactions with different ingredients and environmental conditions. 
Depending on the chemical characteristics, Nanoparticles can also be divided into 
two broad categories- organic and inorganic. 

 Organic Nanoparticle-sometimes referred to as nanocapsules, when used to 
enhance the bioavailability of nutrient and their delivery. However, seen from a 
general level, they can be defi ned as nano-vesicular systems that exhibit a typical 
core-shell structure in which the drug is confi ned to a reservoir or within a cavity 
surrounded by a polymer membrane or coating (Anton et al.  2008 ). There are six 
classical methods for the preparation of nanocapsules: nanoprecipitation, emulsion- 
diffusion, double emulsifi cation, emulsion-coacervation, polymer-coating and layer 
by-layer (Mora-Huertas et al.  2010 ) as mentioned in Table  1.1 . Recently a new class 
of water-soluble red fl uorescent organic nanoparticles have been prepared for an 
application in cell imaging which further can be used in the development of nano- 
sensors (Xiqi et al.  2014 ). Also, a fl uorescent organic nanoparticle has been devel-
oped by Zhang et al. ( 2014 ) with dye removal (remediation) from soil as well as and 
water. This facilely incorporated polymeric nanoparticle showed high water 
dispersibility, uniform size, strong red fl uorescence and excellent biocompatibility, 
which makes them promising in water purifi cation, nano-sensor development for 
water as well as agricultural products (Zhang et al.  2014 ).

1.2.1.1       Inorganic Nanoparticles 

 Inorganic ingredients manufactured at the nanoscale with variations of compounds 
and approved for use in food, e.g. titanium dioxide, a food colorant, can be used as 
a UV protection barrier in food packaging when used as a nanoparticle. New storage 
containers/utensils (food contact materials) based on embedded inorganic nanopar-
ticle have been designed for preservation of prepared agricultural products. Grain 
storage bins are being produced with silver nanoparticle embedded in the plastic for 
killing bacteria from any food that was previously stored in the bins and minimizing 
health risks (Food Safety Authority of Ireland  2008 ). A cellulose-based bactericidal 
nanocomposites containing silver nanoparticle have been developed, which 
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exhibited an improved bactericidal and nanocomposite properties. Further it has 
been concluded that these properties may have the future applications in active 
packaging of food and agricultural products (Márcia et al.  2012 ). Also, silver 
nanoparticle incorporated into carboxymethylcellulose fi lms have been studied for 
its antimicrobial studies for food and agricultural products packaging and found 
suitable for the same (Siqueira et al.  2014 ). The detailed view on packaging of agri-
cultural and food product is provided by Ranjan et al. ( 2014 ) and Dasgupta et al. 
( 2014 ). 

 Similar to organic, inorganic nanoparticles are also having several methods of 
production e.g. gas and liquid phase synthesis method, which are further classifi ed 
into different methods. Gas phase synthesis methods have mainly three types for 
synthesis (a) fl amed spray synthesis (b) laser induced gas evaporation method 
synthesis (c) plasma based synthesis. However, liquid phase inorganic nanoparticles 

   Table 1.1    Upstream and downstream procedures for the preparation of nanocapsules 
(Mora- Huertas et al.  2010 )       

S. No. Upstream process for nanocapsule formation Downstream process for 
nanocapsule concentration, 
purification and stabilization

1 Nanoprecipitation Method
Organic phase is slowly injected (dropwise and 
moderate stirring) to the aqueous phase

Solvent Elimination
Moderate magnetic 
agitation
Evaporation by vacuum
Tangential ultrafiltration 

Purification
Water washing
Diafiltration
Filtration through 
0.45µm
Gel filtration

Recuperation
Ultrasonication

Stabilization
Spray drying
Lyophilization/freeze 
drying

2 Emulsification-diffusion Method
Organic and aqueous phase are emulsified (high 
shear mixture) 
Diffused (moderate stirring) to dilution phase

3 Emulsification-coacervation Method
Organic and aqueous phase are emulsified 
(mechanical stirring or sonication)
Coacervation (moderate stirring) in the presence 
of crosslinking agents or dehydratant agent

4 Double emulsification Method (Water-Oil-Water)
Organic phase and first Aqueous phase are 
emulsified in water-oil system (sonication)
Second aqueous phase and previous solution are 
emulsified in oil water system (high shear 
mixture)

5 Polymer coating Method (Water-Oil-Water)
Organic and aqueous phase are emulsified in 
water-oil system (sonication)
Second phase i.e. coating agent and previous 
solution are emulsified in oil water system 
(sonication or high shear mixture)

6 Layer by layer
Template will be encapsulated with several 
layers of mixture of anionic/cationic polymers 
and coat charged polymer

N. Dasgupta et al.
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synthesis methods may further categorized into (a) co-precipitation method and 
(b) sol-gel approach (Food Safety Authority of Ireland  2008 ). The properties of 
nanoparticles have shown to be dependent on the size and other surface properties, 
which ultimately depend on the synthesis procedure. Hence, it is necessary to 
understand the synthesis procedures of nanoparticles for their specifi c application. 
The detailed overview of inorganic nanoparticles synthesis has been given in the 
book of Jesus et al. ( 2012 ), which has been summarized below for better 
understanding.  

1.2.1.2     Flame Spray Synthesis 

 Three large scale commodities have been around for half a century which are pig-
mentary titania (white pigment), aerosol-made silica and carbon black (tire soot) are 
made by fl ame processes at several megatons per year (Layman  1995 ; Ulrich  1984 ). 
Production of these materials started in the 1940s. In principle, it would appear 
attractive to extend this apparently useful fl ame processes to other materials (Stark 
et al.  2002 ). Flame-made oxides have been explored for applications as sensors 
which further can be used in agricultural fi eld (Athanassiou et al.  2006 ). As a result, 
a number of products have become available in the form of nanoparticles, such as 
nano-gypsum (Osterwalder et al.  2007 ), nano-salt (Grass and Stark  2005 ) and nano- 
tricalcium phosphate (Maciejewski et al.  2008 ). Further adaptations within the 
fl ame spray synthesis technology gives access to the production of metal nanopar-
ticles (Athanassiou et al.  2006 ; Grass and Stark  2006 ). This is achieved by a modi-
fi cation of the fl ame reactor operating under reducing (oxygen starved) conditions 
(Grass and Stark  2006 ). Very recently, one further step was taken and the controlled 
deposition of carbon on the metal surface of nanoparticle also became accessible 
(Athanassiou et al.  2006 ,  2007 ). For example, the suitability of carbon coated cop-
per nanoparticles in water based dispersions or inks of such have been shown to 
offer a simple production method to highly sensitive humidity sensor coatings 
(Luechinger et al.  2007 ). In summary, fl ame spray synthesis allows the scalable 
fabrication of most accurate mixed oxide compositions, salt, metal and carbon-
coated metal or silica-coated metal oxide nanoparticle (Teleki et al.  2008 ) based on 
metal loaded liquid precursors.  

1.2.1.3     Laser Induced Gas Evaporation Method 

 Instead of combustion of a liquid precursor giving access to oxidic nanoparticles, 
Kato ( 1976 ) produce a range of different ultrafi ne refractory oxides (SiO 2 , MgO, 
Al 2 O 3 , Fe 3 O 4 , Mg 2 SiO 4 , CaTiO 3  and MgAl 2 O 4 ) by the use of a CO 2  laser. The laser 
was used to vaporize starting material in form of powder or sintered or fused blocks. 
The vaporized material condensed in an environment of inactive gases and resulted in 
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nanoparticles of around 10 nm particle diameter at a production rate of 10 mg/min 
(0.6 g/h). Ullmann et al. ( 2002 ) studied the systematic infl uence of the operating 
parameters on laser ablation for the aerosol generation and concluded that laser 
ablation is a convenient method for laboratory scale nanoparticles generation.  

1.2.1.4     Plasma Based Nanoparticles Production 

 A similar method to laser induced gas evaporation are plasma reactors. In this case 
plasma delivers the energy necessary to evaporate the starting materials of various 
types including gases, liquids and solids. At temperatures of around 10,000 °C the 
plasma generates reactive ions and radicals. During the pull-out from the plasma 
region the temperature of the gas drops and nanoparticles are formed (Young and 
Pfender  1985 ). Plasma based methods have been used to synthesize nanoparticles in 
form of metal oxides (Suzuki et al.  2001 ), metals (Jiang and Yatsui  1998 ) or metal 
nitrides (Kinemuchi et al.  2003 ).  

1.2.1.5     Co-precipitation Method 

 In a fi rst step of a typical co-precipitation reaction, the conditions are adjusted to 
maximize the simultaneous generation of sparingly soluble particles. The key prop-
erties of the fi nal product (above all particle size and morphology) are subsequently 
determined in secondary processes such as aggregation or Ostwald ripening. In the 
fi nal step, the as-formed particles are usually thermally decomposed to oxides. An 
advantage of the co-precipitation method is that particle sizes can be well controlled 
for the fabrication of monodisperse inorganic nanoparticles possible. A major dis-
advantage though is the involvement of vast amounts of solvents and surfactants 
(Cushing et al.  2004 ).  

1.2.1.6     Sol-Gel Method for Inorganic Nanoparticles Synthesis 

 Another inorganic nanoparticles synthesis method based on liquid precursors is the 
processing of materials by the  sol - gel  method. This process dates back to the mid 
1800s where scientists found that they were able to synthesize ceramic or glassy 
material from a viscous gel. Typically, metal alkoxides or metal chlorides are used 
as starting materials forming the solvated metal precursor (the  sol ). This precursor 
undergoes hydrolysis and polycondensation reactions to form a gelated colloid (the 
 gel ). The reactions of this oxide- or alcohol-bridged network continue until the gel 
transforms into a solid mass under expulsion of the solvent from the pores. 
Subsequently, the monolith is calcined at temperatures up to 800 °C. In the fi ring 
step when the temperature rises above 800 °C densifi cation and decomposition of 
the gel occurs under collapse of the gel network. The sol-gel process is ideally 
suited for the fabrication of synthetic zeolites, where a porous “open” structure is 
desired for the accommodation of a wide variety of cations (Hench and West  1990 ).   

N. Dasgupta et al.
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1.2.2     Nanoclays 

 They are naturally occurring aluminium silicate, primarily composed of fi ne-grained 
minerals having sheet-like geometry. The sheet-structured hydrous silicates are gen-
erally referred to as phyllosilicates. They are inexpensive and eco-friendly materials 
and have been found for multifarious application. These clay minerals have been 
widely studied in practical applications such as in geology, agriculture, construc-
tion, engineering, process industries, and environmental applications. They provide 
an attractive alternative for the decontamination of soils, underground waters, sedi-
ments and industrial effl uents i.e. in the fi eld of water purifi cation and recently 
nanoclays have been found to have application in sensor development (Garrido- 
Ramirez et al.  2010 ; Grasielli et al.  2012 ). The most studied nanoclayis montmoril-
lonite (MMT), whose chemical general formula is Mx(Al 4 -xMgx) Si 8 O 20 (OH) 4 . 
montmorillonite is a representative of 2:1 layered  phyllosilicates , whose platelets 
have two layers of tetrahedral silica sheets fi lled with a central octahedral alumina 
sheet (Weiss et al.  2006 ). This kind of clay has a moderate negative surface charge 
that is important to defi ne the interlayer spacing (Xin-Juan et al.  2015 ). The imbalance 
of the surface negative charges is compensated by exchangeable cations (typically 
Na +  and Ca 2+ ). The parallel layers are linked together by weak electrostatic forces 
(Tan et al.  2008 ). Montmorillonite is excellent reinforcing fi ller, due to its high sur-
face area and large aspect ratio, which ranges from 50 to 1000 (Uyama et al.  2003 ). 
The improved barrier properties of polymer-clay nanocomposites seem to be due to 
an increased tortuosity of the diffusive path for permeants, forcing them to travel a 
longer path to diffuse through the fi lm. The increase in path length is a function of 
the aspect ratio of the clay and the volume fraction of the fi ller in the composite. 
This theory was developed by (Nielsen  1967 ) and was further corroborated by other 
authors (Mirzadeh and Kokabi  2007 ; Adame and Beall  2009 ). Clays have also been 
reported to improve the mechanical strength of biopolymers (Cyras et al.  2008 ), 
although they may decrease polymerelongation (Petersson and Oksman  2006 ). 

 Recently many applications have been found using montmorillonite and/or 
incorporating/modifying montmorillonite using several techniques. Gholam et al. 
( 2013 ) have been found the increased adsorption rate and more nanocomposite 
strength when modifi ed montmorillonite based nanoclay – further the application of 
which was found for water purifi cation by removal of crystal violet dye. Hydrogel 
nanocomposites were synthesized from grafting of acrylamide onto hydroxypropyl 
methylcellulose using methylenebisacrylamide cross linker and sodium montmoril-
lonite (Na-MMT) nanoclay. The investigation of the dye adsorption capacity and 
rate of nanocomposite hydrogels as a function of Na-MMT content revealed that the 
both adsorption capacity and rate is enhanced as the nanoclay content is increased 
in nanocomposite composition (Gholam et al.  2013 ). Soy protein hydrogels with 
intercalated montmorillonite nanoclay bound with transglutaminase cross-linking 
shows enhanced elastic properties. This intercalated soy proteins with montmorillonite 
can be used to manufacture biodegradable nanocomposite materials with improved 
functional performances further application of which is food and agricultural 
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products packaging (Jin and Zhong  2013 ). A nanofi lm have been developed by 
novel dispersion method using gum exudates from Brea tree and nanoclayparticles 
(montmorillonite) and characterized – the main properties of this biofi lm are 
improved water barrier capacity, reduced fi lm permeability and reduced permselec-
tivity for gases. These properties of this (montmorillonite nanoclay based biofi lm) 
gives ample scope for its application for packaging as well as preservation of agri-
cultural products (Aníbal et al.  2014 ). Montmorillonite nanoclay has been found 
application in biosensor development as well. Grasielli et al. ( 2012 ) have developed 
a novel atemoya biosensor for glyphosate determination which was based on the 
inhibitor effect of the pesticide on enzymatic activity. The peroxidase enzyme was 
immobilised on nanoclay based on montmorillonite modifi ed (Grasielli et al.  2012 ). 
Other than montmorillonite a novel polyvinylidene fl uoride (PVDF)/NC hollow 
fi bre membranes were fabricated by non-solvent induced phase separation (NIPS) 
to study the improvement of membrane physical endurance. PVDF membranes con-
taining commercial nanoparticles are therefore promising for improved abrasion 
resistance in water treatment applications (Yan et al.  2014 ).  

1.2.3     Nanoemulsions 

 Nanoemulsion consists of a lipid phase dispersed in an aqueous continuous phase, 
with each oil droplet being surrounded by a thin interfacial layer consisting of 
emulsifi er molecules (Acosta  2009 ; McClements et al.  2007 ; Nicolas et al.  2014 ). 
Usually, nanoemulsions are highly stable to gravitational separation because the 
relatively small particle size means that Brownian motion effects dominate gravita-
tional forces. They also have good stability against droplet aggregation because the 
range of attractive forces acting between the droplets decreases with decreasing 
particle size, while the range of steric repulsion is less dependent on particle size 
(Tadros et al.  2004 ; Siti et al.  2013 ). 

 Other than increasing bioavailability (Hira et al.  2014 ) and antioxidant (Dasgupta 
et al.  2015 ) the bactericidal (Vijayalakshmi et al.  2013 ), antimicrobial (Karthikeyan 
et al.  2012 ; Dasgupta et al.  2015 ), antihelminthc (Karthikeyan et al.  2011 ), insecti-
cidal (Megha et al.  2014 ) properties of nanoemulsion gave it importance to be used 
in agriculture – mainly to increase the shelf life of agricultural products and water 
quality management (Ranjan et al.  2014 ; Dasgupta et al.  2014 ). Chaw et al. ( 2013 ) 
have formulated a nanoemulsion with the insecticidal and pesticidal activity. 
The green nanoemulsion – laden glyphosate isopropylamine – formulated were able 
to suppress creeping foxglove ( A. gangetica ), slender button weed ( D. ocimifolia ) 
and buffalo grass ( P. conjugatum ). This initial discovery could be the platform for 
developing better penetration of agrochemical formulations in the future (Chaw 
et al.  2013 ). Similarly they have again used the same nanoemulsion with slight 
modifi cation as a herbicide and have concluded that it is having controlling ability 
for  Eleusine indica  (Chaw et al.  2012 ). Recently many authors have given hypoth-
esis that the microbial products can be used as natural emulsifi er to have safer 
nanoemulsion to be used in the fi eld of agro-food products (Shivendu et al.  2014 ; 
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Vanaja et al.  2014 ). Also many have hypothesized that the plant extracts or natural 
products could be more effi cient for its activity when the same can be used in the 
form of nanoemulsions (Nandita et al.  2014 ,  2015b ,  c ). To understand the activity of 
nanoemulsion, it is mandatory to understand the synthesis procedures. Also, to get 
better bioactivity, the understanding of the bioactive components retention with 
nanoemulsion should also be understood. 

1.2.3.1     Production of Nanoemulsion 

 Nanoemulsion can be produced using a variety of methods, which are classifi ed as 
either high-energy or low energy approaches (Acosta  2009 ; Leong et al.  2009 ; 
Tadros et al.  2004 ; Koroleva and Evgenii  2012 ; Silva et al.  2012 ). 

 High-energy approaches revolve around the use of mechanical force to generate 
intense disruptive forces that breakup the oil and water phases thereby forming oil 
droplets. For example, high-pressure valve homogenisers, micro-fl uidizers, and 
sonication methods (Leong et al.  2009 ; Wooster et al.  2008 ). The production of 
nanoemulsions via this method is primarily governed by composition i.e. mainly 
surfactants, functional compounds and secondarily by the quantity of energy 
applied. Hence these emulsions depict a tendency towards preserving their forma-
tion against formulation modifi cation like addition of monomer, surfactant, co- 
surfactant etc. (Anton et al.  2008 ). High energy approach for production of 
nanoemulsionis further classifi ed into high pressure homogenization, Ultrasound 
approach (Quintanilla-Carvajal et al.  2010 ) and high speed devices approach (Anton 
et al.  2008 ).  

1.2.3.2     High-Pressure Homogenization 

 The mixture is exposed to very high pressures and is pumped through a restrictive 
valve. The very high shear stress causes the formation of very fi ne emulsion droplets 
(Quintanilla-Carvajal et al.  2010 ). Further the impact of homogenization on design 
and structure of nanoemulsion have been described by Finke et al. ( 2014 ). 
Nanoemulsions with antimicrobial/microbial inactivation property have been 
developed by high-pressure homogenization method. This formulation can be further 
applied for increasing shelf life of agricultural products and also can be used in 
water quality management by decreasing microbial load of the water (Francesco 
et al.  2013 ).  

1.2.3.3     Ultrasound 

 When two immiscible liquids are submitted to high-frequency sound waves in the 
presence of a surfactant, emulsion droplets are formed by cavitation. This causes 
intense shock waves in the surrounding liquid and the formation of liquid jets at 
high speed is responsible for the formation of emulsion droplets. However, this 
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technology has not yet been effi ciently used for industrial-scale applications (Maa 
and Hsu  1999 ; Quintanilla-Carvajal et al.  2010 ; Sanguansri and Augustin  2006 ). 
The scaled up process fornanoemulsion formulation at industrial level by ultrasound 
method have been described by using continuous-fl ow production method – which 
can be further applied for formulating nanoemulsion for agricultural applications 
(Alexey and Simon  2014 ). Shams and Ahi ( 2013 ) have developed 5A zeolite nano-
crystals using kaolin via nanoemulsion by ultrasonic technique with a increased 
sorption properties which can further be used in water quality management for 
remediating the sludge (Shams and Ahi  2013 ).  

1.2.3.4     High-Speed Devices 

 Rotor/stator devices (such as Ultra-Turrax) when compared with the other high 
energy approaches do not provide a good dispersion in terms of droplet sizes. With 
the energy provided mostly being dissipated as generating heat. Stable nanoemul-
sions are diffi cult to obtain (Anton et al.  2008 ; Walstra  1993 ). Francesco et al. 
( 2012 ) have increased the antimicrobial delivery system of nanoemulsion when 
designed by high-speed devices (Ultra-Turrax) and proper emulsifi er. Same method 
can be used to develop nanoemulsions with improved activities which can be applied 
in the fi eld of agriculture and water quality management. 

 Low energy approaches rest upon the impromptu formation of oil droplets within 
mixed oil-water-emulsifi er systems as and when solution conditions are altered, 
e.g., phase inversion and solvent demixing methods (Anton et al.  2008 ; Yin et al. 
 2009 ). Nanoemulsions are obtained in response to phase transitions during emulsi-
fi cation at constant temperature and altered composition (Usón et al.  2004 ) or vice 
versa (Morales et al.  2003 ). Low energy approaches are further classifi ed into mem-
brane emulsifi cation (Sanguansri and Augustin  2006 ), spontaneous emulsifi cation 
(Anton et al.  2008 ), solvent displacement (Yin et al.  2009 ), emulsion inversion point 
(Sadtler et al.  2010 ) and phase inversion point (Sadurní et al.  2005 ).  

1.2.3.5     Membrane Emulsifi cation 

 It is a low-energy process that requires less surfactant (when compared with high 
energy methods) and produces emulsions with a narrow size distribution range. This 
method involves formation of a dispersed phase (droplets) through a membrane into 
a continuous phase. Nevertheless, this method has as limitation the ‘low fl ux’ of the 
dispersed phase through the membrane, this being an issue during scale-up 
(Sanguansri and Augustin  2006 ). Membrane emulsifi cation mainly used to increase 
the bioavailability of the nutrients e.g. vitamine E (Abdallah et al.  2012 ; Dasgupta 
et al.  2015 ). Many nanoemulsions have been formulated (by membrane emulsifi ca-
tion) to increase the shelf life of post harvested products (Ghosh et al.  2014 ). Some 
nanoemulsions have been formulated by this method with improved bioactivity 
(Joseph and Heike  2014 ) and also which acts as a carrier to deliver some bioactive 
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compound and/or compounds (Keun et al.  2012 ). In the same way some nanoemul-
sion should be discovered/identifi ed which can be used as a carrier either in plant 
tissues or at soil/water/plant interface; also some nanoemulsion conjugated with the 
compounds needed for plant growth and can increase the bioavailability of it should 
be researched.  

1.2.3.6     Spontaneous Emulsifi cation 

 This mechanism occurs when an organic phase and an aqueous phase are mixed, 
with the organic phase being a homogeneous solution of oil, lipophilic surfactant 
and water-miscible solvent, and the aqueous phase consisting of water and hydro-
philic surfactant (Bouchemal et al.  2004 ). Spontaneous emulsifi cation is produced 
by different mechanisms (e.g. diffusion of solutes between two phases, interfacial 
turbulence, surface tension gradient, dispersion mechanism, condensation mecha-
nism) which seem to be affected by the systems’ compositions and their physico-
chemical characteristics like the physical properties of the oily phase and nature of 
the surfactants (Bouchemal et al.  2004 ). This process itself increases entropy and 
thus decreases the Gibbs free energy of the system (Anton et al.  2008 ).  

1.2.3.7     Solvent Displacement 

 This method consists of mixing a water-miscible organic solvent containing lipo-
philic functional compounds in an aqueous phase containing an emulsifi er. The 
rapid diffusion of the organic solvent in the aqueous phase promotes the formation 
of nanoemulsions enabling their preparation in one step at low-energy input with 
high yield of encapsulation. Finally, the organic solvent is removed from the nano- 
dispersion under reduced pressure. Nevertheless the use of this technique is limited 
to water-miscible solvents (Yin et al.  2009 ). The non soluble compounds can be 
made available by using this method of nanoemulsion fabrication (Regina et al. 
 2007 ; Kyle et al.  2014 ; Gabriel and David  2015 ) – thus solvent displacement method 
can be used in those agricultural soils in which some of the compounds are unavail-
able because of its poor solubility.  

1.2.3.8     Emulsion Inversion and Phase Inversion Point 

 It involves variation of system composition at a constant temperature. The structures 
are formed through a progressive dilution with water or oil in order to create kineti-
cally stable nanoemulsions (Anton et al.  2008 ; Sadtler et al.  2010 ). Phase inversion 
point method uses the specifi c ability of surfactants (non-ionic) to alter their affi ni-
ties to water and oil in function of temperature at a fi xed composition. It consists in 
suddenly breaking-up the micro-emulsions maintained at the phase inversion point 
by a rapid cooling (Izquierdo et al.  2004 ; Sadurní et al.  2005 ) or by a dilution in 
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water or oil (Anton et al.  2008 ). Nanoemulsions immediately formed are kinetically 
stable and can be considered as irreversible. This process is relatively simple, pre-
vents the encapsulated drug being degraded during processing, consumes low 
amounts of energy and allows an easy industrial scale-up (Anton et al.  2008 ). 
Emulsion inversion and phase inversion methods are used to control the droplet size 
and stability of nanoemulsion (Felix et al.  2012 ). For nanoemulsion research for 
agricultural applications these two methods should also be analyzed.    

1.3     Nanotechnology and Research Trends in Agriculture 

 Currently, the major challenges faced by world agriculture include changing cli-
mate, urbanization, sustainable use of natural resources and environmental issues 
like runoff and accumulation of pesticides and fertilizers. These problems are fur-
ther intensifi ed by an alarming increase in food demand that will be needed to feed 
an estimated population of six to nine billion by 2050 (Chen and Yada  2011 ). This 
above-mentioned scenario of a rapidly developing and complex agricultural system 
exists and greater challenges will be posed to the developing countries as, in the 
developing countries, agriculture is the backbone of the national economy. 

 Nanotechnology, this vast fi eld of the twenty-fi rst century, is making a very 
signifi cant impact on the world’s economy, industry and people’s lives (Gruere et al. 
 2011 ; Scott and Chen  2003 ). Applications of nanotechnology in materials science 
and biomass conversion technologies applied in agriculture are the basis of provid-
ing food, feed, fi bre, fi re and fuels. Through advancement in nanotechnology, a 
number of state-of-the-art techniques are available for the improvement of precision 
farming practices that will allow precise control at nanometer scale (Fig.  1.5 ). 
Nanotechnology can also be an alternative source of fertilizer. In an experiment, it 
was observed that SiO 2  Nanoparticles enhanced germination in tomato ( Lycopersicum 
esculentum ) seeds (Manzer and Mohamed  2014 ).

1.3.1       Nanoscale Carriers 

 Nanoscale carriers can be utilized for the effi cient delivery of fertilizers, pesticides, 
herbicides, plant growth regulators etc. The mechanisms involved in the effi cient 
delivery, better storage and controlled release include: encapsulation and entrap-
ment, polymers and dendrimers, surface ionic and weak bond attachments among 
others. These mechanisms help improve stability against degradation in the environ-
ment and ultimately reduce the mass/amount to be applied, which reduces chemical 
runoff and alleviates environmental problems. These carriers can be designed in 
such a way that they can anchor the plant roots to the surrounding soil structure and 
organic matter. This can only be possible through the molecular and conformational 
mechanisms between the delivery nanoscale structure and targeted structures and 
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matter in soil (Johnston  2010 ). These advances will help in increasing the bioavail-
ability of active ingredients, thereby reducing the amount of inputs to be used and 
also the waste produced. Cai et al. ( 2014 ) developed nanoclays which can be added 
to traditional fertilizer to improve the retention capacity of nitrogen. Thus, nitrogen 
loss is reduced and suffi cient nutrition is provided to crops. Many nanoemulsions 
have also been formulated to increase the bioavailability of herbicide and pesticide 
(Chaw et al.  2012 ,  2013 ; Megha et al.  2014 ).  

1.3.2     Fabricated Xylem Vessels 

 Recent advancement in nanofabrication and characterization tools has enabled the 
study of physico-chemical and biological interactions of plant cell bodies and vari-
ous disease-causing organisms. These tools are useful in understanding the mecha-
nisms of pathogenesis and ultimately improved the strategies for the treatment of 
these diseases (Cursino et al.  2009 ; Chen and Yada  2011 ). To study xylem- inhabiting 

  Fig. 1.5    Schematic representation for the application of nanotechnology in modern agriculture 
(Courtesy: Dasgupta et al.  2014 )       

 

1 Nanoagriculture and Water Quality Management



16

bacteria, changes in bacterial populations were monitored through destructive 
sampling techniques at different distances from inoculation sites but this does not 
provide information about colonization, fi lm development, and subsequent move-
ment and re-colonization at new areas because the same sample site cannot be fol-
lowed temporarily. It has only been through the discovery of micro-fabricated xylem 
vessels with nano-sized features that we are able to study the above mechanisms 
which otherwise was not possible through traditional methods (Zaini et al.  2009 ; 
Allah  2012 ). A probe is used which can be inserted into the xylem vessel at the root 
base which can monitor xylem pressure, the radial electrical gradients in the root 
and activity of particular ions (Wegner  2012 ). A detailed description of nanotech-
nology in fabricated xylem vessels have been described by Bandyopadhyay et al. 
( 2013 ) and fabricated xylem system in the form of nanoliter/picoliter scale fl uidic 
systems have been summarized (Morgan et al.  2013 ). Biomimicking of micro/nano-
fabricated xylem vessels system by using microbes e.g. researchers have looked at 
the attachment behaviour of  Xylella fastidiosa  (Leonardo et al.  2007 ) and  Escherichia 
coli  (Bunpot et al.  2011 ) in microfl uidic fl ow chambers mimicking plant xylem. 
Biomimicking of capillary action has been developed by using micro/nanofabrica-
tion – which may have future application in fabricated xylem vessel development 
(Qian et al.  2014 ; Bharat  2011 ). To control the photoluminescent emission Carlos 
et al. ( 2013 ) have used ZnO and Al 2 O 3  nanoparticles in  Calamus rotang  plant  in 
natura  xylem samples.  

1.3.3     Nanolignocellulosic Materials 

 Recently, nanosized lignocellulosic materials have been obtained from crops and 
trees which had opened a new market for innovative and value-added nano-sized 
materials and products, e.g. nano-sized cellulosic crystals have been used as light-
weight reinforcement in polymeric matrix (Laborie  2009 ). These can be applied in 
food and other packaging, construction, and transportation vehicle body structures. 
Cellulosic nano-whisker production technology from wheat straw has been devel-
oped by Michigan Biotechnology Incorporate (MBI) International, and is expected 
to make biocomposites that could substitute for fi bre glass and plastics in many 
applications, including automotive parts. North Dakota State University (NDSU) is 
currently engaged in a project for the commercialization of this technology (Leistritz 
et al.  2007 ). With the applications of food and other packaging, construction, and 
transportation vehicle body structures production of nanolignocellulosic materials 
is the best way for agricultural waste management – since we can derive nanoligno-
cellulosic materials from lignin and cellulose based agricultural waste (Brinchia 
et al.  2013 ; Ming-xiong et al.  2014 ).  
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1.3.4     Clay Nanotubes 

 Clay nanotubes (Halloysite) have been developed as carriers of pesticides for low 
cost, extended release and better contact with plants, and they will reduce the 
amount of pesticides by 70–80 %, hence reducing the cost of pesticide and also the 
impact on water streams (Murphy  2008 ). The sorptive and electrical behaviour of 
nanocomposites (polylactide and carbon nanotubes/smectite-clay nanocomposites) 
was studied and found that polylactide nanocomposites are endowed with increased 
sorption and outstandingly enhanced conductivity (up to six or even nine orders of 
magnitude) with respect to the pristine polymer (Conductivity = 1 * 10 −10  S/m) 
(Saveria et al.  2011 ). This increased sorptive and increased conductivity properties 
of nanocomposites may have the future application as selective purifi cation of water 
and also this property can be applicable in plant-soil-water interface to increase the 
ion transport and sorption of nutrients. Hsu and Jheng ( 2009 ) have synthesized and 
characterized carbon nanotubes on clay minerals with the application of biosensor 
for glucose and hydrogen peroxide detection (Hsu and Jheng  2009 ) – which may 
has major applications in pre as well as post harvested agricultural products and 
their quality control. Suprakas ( 2013 ) has highlighted the tensile strength of clay/
carbon nanotubes which may further be used in agricultural fi elds to provide 
strength to the crops and protect them from strong wind.  

1.3.5     Photocatalysis 

 One of the processes using nanoparticles is photocatalysis. It involves the reaction 
of catalyst with chemical compounds in the presence of light. The mechanism of 
this reaction is that when nanoparticles of specifi c compounds are subjected to UV 
light, the electrons in the outermost shell (valence electrons) are excited resulting in 
the formation of electron hole pairs, i.e. negative electrons and positive holes 
(Zhaoxia et al.  2011 ). These are excellent oxidizing agents and include metal oxides 
like TiO 2  (Bhatkande et al.  2001 ; Khataee et al.  2013 ), Silver (Zhaoxia et al.  2011 ), 
gold (Vongani et al.  2011 ) ZnO (Li and Haneda  2003 ; Mohammad et al.  2011 ), 
SnO 2  (Ko et al.  2009 ), platinum (Zhi and Wenfeng  2014 ), Ag-α-Fe 2 O 3  nanocompos-
ites (Shaofeng et al.  2014 ), lanthanum ferrite Nanoparticles (Abazari et al.  2014 ), 
etc., as well as sulfi des like ZnS (Feigl et al.  2010 ) and CdS (Xingyuan et al.  2014 ). 
As the size of particles decrease, surface atoms are increased, which results in tre-
mendous increase in chemical reactivity and other physico-chemical properties 
related to some specifi c conditions such as photocatalysis, photoluminescence, etc. 
So this process can be used for the decomposition of many toxic compounds such 
as pesticides, which take a long time to degrade under normal conditions (Malato 
et al.  2002 ), e.g. pathogens. Ankita and Vidya ( 2014 ) have remediated reactive blue 
220 dye with solar light induced photocatalytic degradation by using Ag core–TiO 2  
shell (Ag@TiO 2 ) nanoparticles. They found higher rate of photocatalysis under 
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solar light as compared to UV light and also Ag@TiO 2  is a better photocatalyst 
than Degussa-P25, TiO 2 NP and Ag doped TiO 2  nanoparticle. It can be noted that 
Degussa-P25 is a existing product with these properties manufactured by Evonik 
Degussa India Pvt. Ltd. Their basic research may turn up with a development of 
WQM instruments and/or other agricultural engineering devices (Ankita and Vidya 
 2014 ). Using nano-titania Pigeot-Rémy et al. ( 2011 ) have used TiO 2  nanoparticle 
for photocatalysis and disinfection of water and also to decrease target bacterial 
load and a rectangular photoreactor has been designed and optimized (Fathinia and 
Khataee  2013 ). Recent research trend is shifting towards fi nding doped- nanoparticles 
with better effi ciency for photocatalysis (Saraschandra et al.  2015 ; Tahir and Amin 
 2015 ; Sankar and Vijayanand  2015 ; Khataee et al.  2015 ).  

1.3.6     Nanobioremediation 

 Nanoparticles can be used for the bioremediation of resistant or slowly degradable 
compounds like pesticides. These harmful compounds tend to join the positive 
holes, are degraded and converted into non-toxic compounds. Otherwise these 
harmful compounds enter the food chain and result in serious problems for the 
body, hence nanoparticles can be used for environmental safety (Lhomme et al. 
 2008 ). The main applications of nanotechnology in bioremediation (nanobioreme-
diation) are as uranium remediation, hydrocarbon remediation, groundwater and 
wastewater remediation, solid waste remediation, heavy metal remediation. Some 
main nanomaterials involved in nanobioremediation are as: nanoiron and its deriva-
tives, nano-sized dendrimers, carbon nanotubes, single enzyme nanoparticles, 
engineered nanoparticles etc. (Rizwan et al.  2014 ; Avinash et al.  2014 ). Engineered 
polymeric nanoparticles have been used in bioremediation of hydrophobic contami-
nants (Tungittiplakorn et al.  2005 ) and soil remediation (Tungittiplakorn et al. 
 2004 ). Biogenic uranite nanoparticles have been used for uranium bioremediation 
(Bargar et al.  2008 ). Biologically synthesized nanomaterials from organisms 
 Gundelia tournefortii ,  Centaurea virgata , Reseda lutea ,  Scariola orientalis , 
 Eleagnum angustifolia ,  Bacillus  sp. and Noaea Mucronata  accumulated heavy 
metals – mainly Cu, Zn, Pb, and Ni (Arvind et al.  2011 ; Avinash et al.  2014 ; Rizwan 
et al.  2014 ).  

1.3.7     Disinfectants 

 The electron hole pair, especially the negative electrons resulting from the excitation 
of nanoparticles, can also be used as a disinfectant of bacteria, as when bacteria make 
contact with nanoparticles, the excited electrons are injected into their bodies, which 
results in the bacterial removal from the object concerned, as in fruit packaging and 
food engineering (Melemeni et al.  2009 ). Comparatively nanoparticles are better 
disinfectants than chemical disinfectants e.g. sodium hypochlorite (NaClO) and 
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phenol (C 6 H 5 OH) etc. (Karthik et al.  2011 ).Wei et al. ( 2012 ) have concluded that 
the porous Ca-Si based nanospheres may be developed into a new intra-canal disin-
fectant-carrier for infected canal treatment. Nano-disinfectant in the form of biofi lm 
has shown improved antimicrobial activity for  salmonella  and  staphylococcus  Sp. 
(Carla et al.  2012 ; Hans et al.  2012 ; Kumar and Ting  2013 ; Nithila et al.  2014 ).  

1.3.8     Wastewater Treatment 

 In modern environmental science, the removal of wastewater is an emerging issue 
due to its effects on living organisms (Babula et al.  2008 ; Mulligan et al.  2001 ). 
Many strategies have been applied for wastewater treatment including nanotechnol-
ogy. Photocatalysis can be used for purifi cation, decontamination and deodorization 
of air. It has been found that semiconductor sensitized photosynthetic and 
photocatalytic processes can be used for the removal of organics, destruction of 
cancer cells, bacteria and viruses. Application of photocatalytic degradation has 
gained popularity in the area of wastewater treatment (Melemeni et al.  2009 ). 
The detailed mechanism of action (Fig.  1.6 ) for bactericidal/antimicrobial activity 
of nanomaterials has been described (Fahim et al.  2014 ). There will be differences 

  Fig. 1.6    Mechanism of bacteria cell damage by the induction of reactive oxygen species       
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between the mechanism of action for bactericidal activity of metal and metal oxide 
Nanoparticles (Solmaz et al.  2014 ). Understanding the differences in inactivation 
mechanisms helps to identify rate-limiting steps involved in the inactivation process 
as well as to develop more effective disinfection strategies. Detailed discussion on 
wastewater treatment is given in later section of this article.

1.3.9        Nanobarcode Technology 

 In our daily life, identifi cation tags have been applied in wholesale agriculture and 
livestock products. Due to their small size, nanoparticles have been applied in many 
fi elds ranging from advanced biotechnology to agricultural encoding. Nanobarcodes 
(>1 million) have been applied in multiplexed bioassays and general encoding 
because of their possibility of formation of a large number of combinations that 
make them attractive for this purpose. The UV lamp and optical microscope are 
used for the identifi cation of micrometer-sized glass barcodes which are formed by 
doping with rare earth containing a specifi c type of pattern of different fl uorescent 
materials. The particles to be utilized in nanobarcodes should be easily encodeable, 
machine-readable, durable, sub-micronsized taggant particles. For the manufacture 
of these nanobarcode particles, the process is semi-automated and highly scalable, 
involving the electroplating of inert metals (gold, silver) into templates defi ning 
particle diameter, and then the resulting striped nanorods from the templates are 
released. These nanobarcodes have the biological as well as non-biological applica-
tions (Mathew et al.  2009 ). Cost effective nanobarcode technology development is 
a major challenge for the researchers – this can be concluded based on the fact that 
total of 18 documents found on Scopus indexed article database (SIAD). Out of 18 
articles notes (1 in number), conference paper (6 in number) review article (2 in 
number) and only 9 research articles were available in last 10 years by the keyword 
of “nanobarcode” (SIAD  2014 ). Similarly, only 32 articles are present in SciFinder® 
database with the same keyword. After refi ning it with year wise none of the article 
were found for 2014; only one article in duplicate were found of Han et al. ( 2013 ) 
which have been discussed earlier; similarly, only three articles have been found for 
the year 2012 but none of them have described the application of nanobarcode in 
agricultural fi eld (SciFinder  2014 ). This shows that development of nanobarcode 
technology for agricultural application is one of the thrust areas. 

1.3.9.1     Biological Applications of Nanobarcodes 

 Nanobarcodes have been used as ID tags for multiplexed analysis of gene expres-
sion and intracellular histopathology. Improvement in the plant resistance against 
various environmental stresses such as drought, salinity, diseases and others have 
only been possible through advancement in the fi eld of biotechnology at the 
nanoscale. In the near future, more effective identifi cation and utilization of plant 
gene trait resources is expected to introduce rapid and cost effective capability 
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through advances in nanotechnology-based gene sequencing (Branton et al.  2008 ). 
Nanobarcodes can also be used for cost- effective detection of pathogens from food 
products (Han et al.  2013 ).  

1.3.9.2     Non-Biological Applications of Nanobarcodes 

 Nanobarcodes serve as uniquely identifi able nanoscale tags and have been applied 
for non-biological applications such as for authentication or tracking in agricultural 
food and husbandry products. This nanobarcode technology will enable us to 
develop new auto-ID technologies for the tagging of items previously not practical 
to tag with conventional barcodes (Branton et al.  2008 ).  

1.3.9.3     Quantum Dots for Staining Bacteria 

 There are numerous bacteria which are responsible for many diseases in humans 
like tetanus, typhoid fever, diphtheria, syphilis, cholera, food-borne illness, leprosy 
and tuberculosis caused by different species. As a remedial process, we need to 
detect bacteria and for this, dye staining method is used. To stain bacteria, the most 
commonly used biolabels are organic dyes, but these are expensive and their 
fl uorescence degrades with time. So the need of the hour is to fi nd durable and 
economical alternatives. Fluorescent labelling by quantum dots with bio-recognition 
molecules has been discovered through the recent developments in the fi eld of 
luminescent nanocrystals. Quantum dots are better than conventional organic 
fl uorophores (dyes) due to their more effi cient luminescence compared to the organic 
dyes, narrow emission spectra, excellent photostability, symmetry and tunability 
according to the particle sizes and material composition. By a single excitation light 
source, they can be excited to all colors of the Quantum dots due to their broad 
absorption spectra (Warad et al.  2004 ). Bio-labeled bacillus bacteria with 
Nanoparticles consisting of ZnS and Mn 2+  capped with bio compatible ‘chitosan’ 
gave an orange glow when viewed under a fl uorescence microscope. For the detec-
tion of  E. coli  O157:H7, Quantum dots were used as a fl uorescence marker coupled 
with immune magnetic separation (Su and Li  2004 ). For this purpose, magnetic 
beads were coated with anti- E. Coli  O157 antibodies to selectively attach target 
bacteria, and biotin-conjugated anti –  E. coli  antibodies to form sandwich immune 
complexes. Quantum dots were labelled with the immune complexes via biotin 
streptavidin conjugation after magnetic separation.   

1.3.10     Biosensors 

 A variety of characteristic volatile compounds are produced by microorganisms 
that are useful as well as harmful to human beings, e.g. fermentation makes use of 
yeasts while alcohol is produced as a by-product when bacteria eat sugar. The most 
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common causal organisms of food rotting are bacteria. Foul odour is a clear indication 
of food degradation which may be detected by visual and nasal sensation, but some-
times it may be impractical and a further cause for poisoning. Therefore, it is more 
sensible to use an instrument like rapid detection biosensors for the detection of 
these odours (Compagnone et al.  1995 ). The future application of nano-biosensors 
recently developed by Xiqi et al. ( 2014 ) and Zhang et al. ( 2014 ). Nanobiosensors 
are hot area of interest in the fi elds other than food and agriculture but recently 
many sensors have been developed after considering its importance. A detailed 
review on this has been done by Teresa ( 2013 ). ZigBee™ is a wireless mesh net-
working standard with low-cost and utilizes low-power. It has given the concept of 
‘Smart Fields’ and ‘SoilNet’. It consists of one or more sensors for environmental 
data (temperature, humidity, etc.), a signal conditioning block, a microprocessor/
microcontroller with an external memory chip and a radio module for wireless 
communication between the sensor nodes and/or a base station. It can be used for 
the identifi cation and monitoring of pests, drought or increased moisture levels in 
order to counterbalance their adverse effects on crop production (Kalra et al.  2010 ). 
Through this wireless sensor technology with nanoscale sensitivity, we can control 
plant viruses and level of soil nutrients, as the plant surfaces can be changed at 
nanoscale with specifi c proteins. This technology is important in realizing the vision 
of smart fi elds in particular. Wireless network sensor technology can also be used 
for monitoring the optimal conditions for mobile plants biotechnology. 

1.3.10.1     Rapid Detection Biosensors 

 These instruments are able to reduce the time required for lengthy microbial testing 
and immunoassays. Applications of these instruments include detection of contami-
nants in different bodies such as water supplies, raw food materials and food prod-
ucts (Compagnone et al.  1995 ). Recently, nano biosensors are developed for rapid 
detection of IgG and metabolites (Labroo and Cui  2014 ; Türkoğlu et al.  2013 ).  

1.3.10.2     Enzymatic Biosensors 

 Enzymes can act as a sensing element as these are very specifi c in attachment to 
certain biomolecules. According to Patel ( 2002 ), enzymatic biosensors on the basis 
of immobilization surface are classifi ed into four groups (i) controlled-pore glass 
beads with optical transducer element, (ii) polyurethane foam with photo-thermal 
transducer element, (iii) ion-selective membrane with either potentiometric or 
amperometric transducer element and (iv) screen-printed electrode with ampero-
metric transducer element. Considering microbial contamination a device 
(Electrogenerated chemiluminescence immunosensor) has been found by using 
Fe3O4@Au to detect  Bacillus thuringiensis  (Jianping et al.  2013 ). By keeping food 
and agricultural safety into consideration a biosensor using chemiluminescence and 
electro-chemiluminescence immunoassay have been found to detect botulinum 
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neurotoxin serotypes A and B (Cheng and Stanker  2013 ). While considering 
aquaculture – to measure volatile amines levels in fi shan optical fi ber-based micro- 
analyzer was designed – this has future aspect as to develop such nano-biosensor 
instead of micro (Silva et al.  2010 ).   

1.3.11     Electronic Nose 

 It is a device based on the operation of the human nose and is used to identify 
different types of odours; it uses a pattern of response across an array of gas sensors. 
It can identify the odorant, estimate the concentration of the odorant and fi nd 
characteristic properties of the odour in the same way as might be perceived by the 
human nose. It mainly consists of gas sensors which are composed of nanoparticles 
e.g. ZnO nanowires (Hossain et al.  2005 ; Sugunan et al.  2005 ). ZnO nanorods are 
used to develop electronic nose which can detect impurities from vapour mixture 
(Ko et al.  2013 ). Their resistance changes with the passage of a certain gas and 
generates a change in electrical signal that forms the fi ngerprint pattern for gas 
detection. This pattern is used to determine the type, quality and quantity of the 
odour being detected. There is also an improved surface area which helps in better 
absorption of the gas.  

1.3.12     Gold Nanoparticles 

 Gold nanoparticles, commercially used as rapid testing arrays for pregnancy tests 
and biomolecule detectors, are based on the fact that the colour of these colloids 
depends on the particle size, shape, refractive index of the surrounding media and 
separation between the nanoparticles. A quantifi able shift in the surface plasmon 
response (SPR) absorption peak results due to a small change in any of these param-
eters. We can make these nanoparticles attach to specifi c molecules by carefully 
choosing the capping agent for stabilizing gold nanoparticles. These specifi c mole-
cules get adsorbed on the surface of these nanoparticles and change the effective 
refractive index of the immediate surroundings of the nanoparticles (Nath and 
Chilkoti  2004 ; Yuanyuang et al.  2010 ). A few nanoparticles will be adsorbed if the 
detecting molecules (bio-macromolecules) are larger than the gold nanoparticles 
and result in the formation of lumps after agglomeration. Ultimately, colour of gold 
nanoparticles is changed due to shift in SPR that result from the reduction of parti-
cle spacing. These properties provide a great opportunity to use gold nanoparticles 
for biosensor development. In the fi eld of pharmaceutical science and other 
biomedical fi elds many Gold-nanoparticles-based biosensors have been already 
developed for detection of enzyme activity – the same should be researched in the 
fi eld of food, agriculture and water quality management (Eliza and Dusica  2013 ).   
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1.4     Nanotechnology and Research Trends in Water Quality 
Management 

 Currently, provision of clean and abundant fresh water is one of the most important 
challenges faced by the world for human use and industrial applications such as 
agriculture (Vörösmarty et al.  2010 ; Allah  2012 ). According to a survey, more than 
one billion people in the world are deprived of clean water and the situation is get-
ting worse. In the near future, it has been estimated that average water supply per 
person will drop by a factor of one third, which will result in the avoidable prema-
ture death of millions of people. Meanwhile non contaminated water is also not 
available for proper agricultural practices (Cross et al.  2009 ). A large amount of 
fresh water is required in agriculture, but in turn, it contributes to groundwater pol-
lution through the use of pesticides, fertilizers and other agricultural chemicals. To 
combat this problem, novel, sustainable and cost effective technologies will be 
required for the treatment of this large amount of waste water produced. During the 
treatment of wastewater, critical issues like water quality and quantity, treatment 
and reuse, safety due to chemical and biological hazards, monitoring and sensors 
should be considered (Schoumans et al.  2014 ; Thorburn et al.  2013 ). Research and 
development in nanotechnology has enabled us to fi nd novel and economically fea-
sible solutions for remediation and purifi cation of this wastewater. Accessible water 
resources are mostly contaminated with water-borne pathogenic microorganisms 
like cryptosporidium, coliform bacteria, virus, etc., various salts and metals (Cu, Pb, 
As), runoff agricultural chemicals, tens of thousands of compounds considered as 
pharmaceuticals and personal care products (PPCP), and endocrine disrupting com-
pounds (EDC) and radioactive contaminants, either naturally occurring or as the 
result of oil and gas production as well as mining activities due to natural leaching 
and anthropogenic activities (Speed et al.  1987 ; Jasra et al.  1999 ). Nano-scale zero- 
valent iron can be used for the treatment of distillery wastewater (Homhoul et al. 
 2011 ). For improving water quality, nanotechnology has provided novel solutions 
(Fig.  1.7 ).

1.4.1       Nano-oligodynamic Metallic Particles 

 Physico-chemical microbial disinfection systems like chlorine dioxide, ozone and 
ultraviolet are being commonly used in developed countries, but most of the devel-
oping countries are lacking these systems due to the requirement of large infra-
structure which make them costly. The need of the hour is to search and develop 
alternative cost-effective technologies. Nanotechnology based oligodynamic 
metallic particles have the ability to serve this function. Among these nanomaterials, 
silver is the most promising one as it is both bactericidal and viricidal due to the 
production of reactive oxygen species that cleaves DNA and can be utilized for a wide 
range of applications. Other properties include low toxicity, ease of use, its charge 
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capacity, high surface-to-volume ratios, crystallographic structure and adaptability 
to various substrates (Nangmenyi and Economy  2009 ; Chen and Yada  2011 ; Faunce 
et al.  2014 ; Jain et al.  2016 ). Recently researches have been done to vary the size of 
silver and gold nanoparticles with simple approaches i.e. changing the concentra-
tion of reactants. The improved activity of antimicrobial and anticancerous activity 
was observed for them (Nandita et al.  2015a ; Maddineni et al.  2015 ; Shivendu et al. 
 2016 ; Janardan et al.  2016 ). It also can be noted that, recently trends are changing 
toward in silico and computational approach towards toxicity evaluation of inor-
ganic nanoparticles (Ranjan et al.  2015 ,  2016 ).  

1.4.2     Photocatalysis 

 Visible light photocatalysis of transition metal oxides, another nanoscale techno-
logical development, produces nanoparticles, nanoporous fi bers and nanoporous 
foams that can be used for microbial disinfection (Li et al.  2009 ) and for the removal 
of organic contaminants like personal care products (PPCP) and endocrine disrupt-
ing compounds (EDC). Moreover, tubular nanostructures, embedded into microbial 
cell wall, can disrupt its cell structure resulting in the leakage of intracellular com-
pounds, and ultimately cell death. A detailed research trends in the fi eld of photoca-
talysis has been discussed above in detail. As discussed above – the recent research 
trends for photocatalysis using nanomaterials has been shifted from single 

  Fig. 1.7    Diagrammatic representation of nanotechnological aspects in water quality management 
which includes heavy metal removal, desalination, photocatalysis, nnao-oligodynamic metals and 
nano-sensors       
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nanoparticles to hybrid nanocomposite e.g. Ag/AgVO 3  one-dimensional hybrid 
nanoribbons with enhanced performance of plasmonic visible-light photocatalysis 
(Zhao et al.  2015 ); fabrication of plasmonic Pt nanoparticles on Ga-doped ZnO 
nanopagodas array with enhanced photocatalytic activity (Hsien-Ming et al.  2015 ); 
PbS quantum dots in ZnO@PbS/graphene oxide has been synthesized for enhanced 
photocatalytic activity (Xi-Feng et al.  2015 ); Zirconium and silver co-doped TiO 2  
nanoparticles for degradation of methyl orange and methylene blue (Saraschandra 
et al.  2015 ).  

1.4.3     Desalination 

 Due to limited resources of fresh water, it is likely that in the near future, desalina-
tion of sea water will become a major source of fresh water. Conventional desalina-
tion technologies like reverse osmosis (RO) membranes are being used but these are 
costly due to the large amount of energy required. Nanotechnology has played a 
very important role in developing a number of low-energy alternatives, among 
which three are most promising. (i) protein-polymer biomimetic membranes, (ii) 
aligned-carbon nanotube membranes and (iii) thin fi lm nanocomposite membranes 
(Hoek and Ghosh  2009 ; Victor et al.  2014 ). These technologies have shown up to 
1000 times better desalination effi ciencies than RO, as these have high water perme-
ability due to the presence of carbon nanotube membranes in their structure. Some 
of these membranes are involved in the integration of other processes like disinfec-
tion, deodorizing, de-fouling and self-cleaning. In another approach, zeolite nano- 
membrane can be used for seawater desalination (Liu and Chen  2013 ). Some of 
these technologies may be introduced in the market place in the near future but 
scale-up fabrication, practical desalination effectiveness and long-term stability are 
the most critical challenges to be considered before their successful commercial-
ization (Yan et al.  2003 ). Desalination using nanotechnology with the aspects of 
carbon nanotubes (Rasel et al.  2014 ), reverse osmosis (Peng et al.  2011 ), forward 
osmosis for seawater and wastewater (Linares et al.  2014 ) have been reviewed ear-
lier. Recently many devices with improved effi ciency and performance have been 
developed- self-sustained webs of polyvinylidene fl uoride electrospun nano-fi bers 
(Essalhi and Khayet  2014 ); PVA/PVDF hollow fi ber composite membrane modifi ed 
with TiO 2  nanoparticles (Xipeng et al.  2014 ); novel integrated system coupled 
with nanofl uid-based solar collector (Kabeel and Emad  2014 ); zinc oxide micro/
nanostructures grafted on activated carbon cloth electrodes (Myint et al.  2014 ); 
tubular MFI zeolite membranes (Martin et al.  2012 ); titanium oxide nanotubes/
polyethersulfone blend membrane (Abdallah et al.  2014 ); Graphene wrapped 
MnO2- nanostructures (Ahmed et al.  2014a ); thin fi lm nanocomposite membranes 
(Arun et al.  2014 ); Graphene/SnO2 nanocomposite (El-Deen et al.  2014 ; Ahmed 
et al.  2014b ); carbon nanotubes (Goh et al.  2013 ).  
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1.4.4     Removal of Heavy Metals 

 Ligand based nanocoating can be utilized for effective removal of heavy metals as 
these have high absorption tendency. It becomes cost effective as it can be regener-
ated in situ by treatment with bifunctional self-assembling ligand of the previously 
used nanocoating media. Farmen ( 2009 ) used crystal clear technology for water 
purifi cation in which multiple layers of metal can be bonded to the same substrate 
using crystal clear technologies (Farmen  2009 ). According to, another strategy for 
the removal of heavy metals is the use of dendrimer enhanced fi ltration and it can 
bind cations and anions according to acidity (Diallo  2009 ). Nowadays nanomaterials 
have been widely used to remove heavy metals from water/wastewater due to their 
large surface area and high reactivity. Metal oxide nanoparticles, including nano-
sized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magne-
sium oxides and cerium oxides, provide high surface area and specifi c affi nity for 
heavy metal adsorption from aqueous systems. To date, it has become a hot topic to 
develop new technologies to synthesize metal oxide nanoparticles, to evaluate their 
removal of heavy metals under varying experimental conditions, to reveal the under-
lying mechanism responsible for metal removal based on modern analytical tech-
niques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop 
metal oxide-based nanomaterials of better applicability for practical use i.e. granu-
lar oxides or composite materials (Ming et al.  2012 ). Additionally, humic acid and 
fulvic acid exist ubiquitously in aquatic environments and have a variety of func-
tional groups which allow them to complex with metal ions and interact with nano-
materials. These interactions can not only alter the environmental behaviour of 
nanomaterials, but also infl uence the removal and transportation of heavy metals by 
nanomaterials. Thus, the interactions and the underlying mechanisms involved war-
rant specifi c investigations. Wang-Wang et al. ( 2014 ) have given a detailed review 
on the effects of humic acid and fulvic acid on the removal of heavy metals from 
aqueous solutions by various nanomaterials, mainly including carbon-based nano-
materials, iron-based nanomaterials and photocatalytic nanomaterials. Mainly they 
have discussed the mechanisms involved in the interactions and evaluated the poten-
tial environmental implications of humic acid and fulvic acid to nanomaterials and 
heavy metals.  

1.4.5     Wireless Nanosensors 

 Crop growth and fi eld conditions like moisture level, soil fertility, temperature, crop 
nutrient status, insects, plant diseases, weeds, etc. can be monitored through 
advancement in nanotechnology. This real-time monitoring is done by employing 
networks of wireless nanosensors across cultivated fi elds, providing essential data 
for agronomic intelligence processes like optimal time of planting and harvesting 
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the crops. It is also helpful for monitoring the time and level of water, fertilizers, 
pesticides, herbicides and other treatments. These processes are needed to be admin-
istered given specifi c plant physiology, pathology and environmental conditions and 
ultimately reduce the resource inputs and maximize yield (Scott and Chen  2003 ). 
Scientists and engineers are working to develop the strategies which can increase 
the water use effi ciency in agricultural productions, e.g. drip irrigation. This has 
moved precision agriculture to a much higher level of control in water usage, ulti-
mately towards the conservation of water. More precise water delivery systems are 
likely to be developed in the near future. These factors critical for their development 
include water storage, in situ water holding capacity, water distribution near roots, 
water absorption effi ciency of plants, encapsulated water released on demand, and 
interaction with fi eld intelligence through distributed nano-sensor systems (Cross 
et al.  2009 ). Sensing and detection of various contaminants in water at nanoscale 
under laboratory and fi eld conditions has remained a hot issue over the last decade. 
In the near future, state-of-the-art nanotechnology-based techniques will help in 
developing many new technologies that will have better detection and sensing abil-
ity (Chen and Yada  2011 ). Similar to nanobarcode development – wireless nanosen-
sor development for WQM is one of the vital fi elds of the research. Sensor networks 
are a key technological and economic driver for global industries in the near future, 
with applications in health care, environmental monitoring, infrastructure monitor-
ing, national security, and more. Developing technologies for self-powered nano-
sensors is vitally important. Zhong ( 2012 ) has given a brief summary about recent 
progress in the area, describing nanogenerators that are capable of providing 
sustainable self-suffi cient micro/nanopower sources for future sensor networks. 
Negligible research work has been done in the fi eld of wireless nanosensor develop-
ment (SIAD  2014 ; SciFinder  2014 ) out of which mostly are conceptual notes and/
or book chapters and reviews. Mannoor et al. ( 2013 ) have done an outstanding work 
after developing wireless raphene-based nanosensor for detection of bacteria. In 
particular, they have demonstrated integration onto a tooth for remote monitoring of 
respiration and bacteria detection in saliva. Since they have developed a wireless 
nanosensor to detect bacterial load in saliva which is an aqueous phase – by keeping 
this concept in mind one can think about developing such device for bacterial load 
detection. 

 It can be noted that other than food and agriculture, nanotechnology has grown 
interest in many fi elds. Figure  1.1  represents the allied fi elds and Fig.  1.8  represents 
the patents (Edgar et al.  2011 ). The benefi cial properties – increased surface area, 
apparent solubility, good retention time, direct uptake of nanomaterials, and 
enhanced nutritional quality – open the ample scope for the nanotechnology with 
different applications and have best future to cover the market has been summarized 
in Fig.  1.9 . On contrary, one should not ignore the toxicological aspect of 
 nanomaterials on humans, animals and its impact on ecosystem, the same has been 
discussed in other chapters of this book (Fig.  1.10 ).
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1.5           Conclusion 

 Nanotechnology has not only improved the quality of modern agricultural practices 
by making them technical, susceptible, safer and improved quality in agricultural 
products nutritious but have also helped a lot in generating new agricultural prod-
ucts, better packaging and storage techniques and improved the quality of the its 
allied fi eld such as water quality management. Conversion of materials to its nano 
form helps in enhancement of their physiochemical properties and applications e.g. 
silver nanoparticles shows antibacterial property and they are being incorporated 
into bandages for their benefi ciary effect in ailing wound; however the bulk particles 
are less effective. Titanium dioxide, used as an intense white pigment is opaque in 
nature. However, nanoparticles of titanium dioxide are transparent and due to its 
physical nature, they are being used in transparent sunscreens, food packaging or 
plastic food containers. 

 Application of nanotechnology has enhanced the delivery of fertilizers, pesti-
cides, herbicides and plant growth regulators with the help of nanoscale carriers; 
also its application in agricultural sector as fabricated xylem vessel, clay nanotubes, 

  Fig. 1.8    A diagrammatic representation of patents in different applied nanotechnology sector in 
previous decade. It represents the sharp increase in use of nantechnology in different sectors 
including agriculture and foods (Courtesy: Edger et al.  2011 )       
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  Fig. 1.9    The benefi cial properties – increased surface area, apparent solubility, good retention 
time, direct uptake of nanomaterials, and enhanced nutritional quality – open the ample scope for 
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photocatalysis, wastewater treatment, nanobarcode technique, different types of 
biosensors, Quantum dots for bacterial staining etc. In addition, nanomaterials are 
further researched to keep the product fresher with increased shelf life. Nanoscience 
and nanotechnologies have vast applications in water quality managementas heavy 
metal removal, nano-bioremediation through nanolignodynamic metals, desalina-
tion, disinfecting process and the sensors to check the quality. Nevertheless, many 
of their applications are currently at a beginning stage and most of them require a 
high quality of research and development for their safe application. The safety of 
nanoparticles in agri-food industry also offers challenge to government and industry 
both. The food processing industry must ensure the consumer confi dence and accep-
tance of nanofoods safety. When it comes to the application of nanotechnology in 
industrial scale, it is important to evaluate the release of nanoparticles into the envi-
ronment and to estimate the subsequent levels of exposure to these materials. As the 
nanoparticles can easily penetrate into the human organ and organelles, exposure 
time, exposure concentrations, sites of penetration, immune response and accumu-
lation and retention of nanoparticles in body and their subsequent effects should be 
assessed carefully. 

 Even though the research regarding the application of nanotechnology is grow-
ing every day, still insuffi cient scientifi c examination of naturally occurring nano-
systems is available. The compulsory testing of nano-modifi ed agricultural products 
and/or treated water should be performed before they allowed to be introduced into 
the market. Standardized test procedures are required to study the impact of 
nanoparticles on living cells for evaluation of the risk assessment on human  exposure 
to nanoparticles. Toxicology of nanoparticles is poorly understood because of the 
lack of validated test methods and the inconsistency in the reported data. The incon-
sistency in the published data is due to the improper characterization of nanoparti-
cles and the interferences induced by the nanoparticles in the available test system. 
Hence, the regulatory bodies and the policy makers should provide the guidance 
document for the validated protocols, safe uses and the disposal of the nanoparti-
cles. The understanding of the safe application of nanoscience and nanotechnology 
in agri-food and water quality management will help in the sustainable growth of 
“nanoagri-technology”.     
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