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Abstract. The availability of large repositories of semantically anno-
tated data on the web is opening new opportunities for enhancing
Decision-Support Systems. In addition, the advent of initiatives such
as Open Data and Open Government, together with the Linked Open
Data paradigm, are promoting publication and sharing of multidimen-
sional data (MD) on the web. In this paper we address the problem of
representing MD data using Semantic Web (SW) standards. We discuss
how MD data can be represented and queried directly over the SW,
without the need to download data sets into local data warehouses. We
first comment on the RDF Data Cube Vocabulary (QB), the current
W3C recommendation, and show that it is not enough to appropriately
represent and query MD data on the web. In order to be able to sup-
port useful Online Analytical Process (OLAP) analysis, extension to QB,
denoted QB4OLAP, has been proposed. We provide an in-depth com-
parison between these two proposals, and show that extending QB with
QB4OLAP can be done without re-writing the observations, (the largest
part of a QB data set). We provide extensive examples of the QB4OLAP
representation, using a portion of the Eurostat data set and the well-
known Northwind database. Finally, we present a high-level query lan-
guage, called QL, that allows OLAP users not familiar with SW concepts
or languages, to write and execute OLAP operators without any knowl-
edge of RDF or SPARQL, the standard data model and query language,
respectively, for the SW. QL queries are automatically translated into
SPARQL (using the QB4OLAP metadata) and executed over an end-
point.

Keywords: Data warehousing · OLAP · Semantic web · RDF ·
SPARQL · Linked data

1 Introduction

Data Warehouses (DW) integrate data from multiple sources for analysis and
decision support. They represent data according to dimensions and facts. The
former reflect the perspectives from which data are viewed. The latter corre-
spond to (usually) quantitative data (also known as measures) associated with
different dimensions. Facts can be aggregated and disaggregated through opera-
tions called Roll-up and Drill-down, respectively, filtered, by means of Slice and
Dice operations, and so on. This process is called Online Analytical Processing
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(OLAP). As an illustration, the facts related to the sales of a company may be
associated with the dimensions Time and Location, representing the sales at cer-
tain locations, at certain periods of time. Dimensions are modeled as hierarchies
of elements (also called members), such that each element belongs to a category
(or level) in a hierarchy. DWs and OLAP systems are based on the multidimen-
sional (MD) model, which views data in an n-dimensional space, usually called
a data cube, whose axes are the dimensions, and whose cells contain the values
for the measures. In the former example, a point in this space could be (January
2015, Buenos Aires), where the measure in the cell indicates the amount of the
sales in January 2015, at the Buenos Aires branch.

Historically, DW and OLAP had been used as techniques for data analysis,
typically using commercial tools with proprietary formats. However, initiatives
like Open Data1 and Open Government2 are pushing organizations to publish
MD data using standards and non-proprietary formats. In the last decade, sev-
eral open source platforms for Business Intelligence (BI) have emerged, but, at
the time this tutorial paper is being written, an open format to publish and
share cubes among organizations is still needed. Further, Linked Data [1], a
data publication paradigm, promotes sharing and reusing data on the web using
Semantic Web (SW) standards and domain ontologies expressed in RDF (the
basic data representation layer for the SW) [2], or in languages built on top of
RDF (like RDF-Schema [3]). All of the above has widened the spectrum of users,
and nowadays, in addition to the typical OLAP analysts, non-technical people
are willing to analyze MD data.

1.1 Problem Statement

Two main approaches are found concerning OLAP analysis of MD data on the
SW. The first one aims at extracting MD data from the Web, and loading them
into traditional data management systems for OLAP analysis. The second one
proposes to carry out OLAP-like analysis directly over SW data, typically, over
MD data represented in RDF. In this tutorial we focus on the latter approach
although, for completeness, in Sect. 2 we discuss and compare both lines of work.

Publishing and analyzing OLAP data directly over the SW, supports the
concepts of self-service BI, or on-demand BI, aimed at incorporating web data
into the decision-making process with little or no intervention of programmers
or designers [4]. Statistical data sets are usually published using the RDF Data
Cube Vocabulary (also denoted QB) [5], a W3C recommendation since January,
2014. However, as we explain later, among other limitations, the QB vocabulary
does not support the representation of dimension hierarchies and aggregation
functions needed for OLAP analysis. To address this challenge, a new vocabulary,
called QB4OLAP has been proposed [6]. A key feature of QB4OLAP is that
it allows reusing data already published in QB, by means of the addition of
the hierarchical structure of the dimensions (and the corresponding instances

1 http://okfn.org/opendata/.
2 http://opengovdata.org/.

http://okfn.org/opendata/
http://opengovdata.org/
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that populate the dimension levels). Once a data cube becomes published using
QB4OLAP, users can perform OLAP operations over it. Moreover, high-level
languages can be used to seamlessly query these data cubes, as we will show
later.

1.2 Running Example

As our running example, we will use statistical data about asylum applications to
the European Union (EU), provided by Eurostat, the EU’s statistical office3. This
data set contains information about the number of asylum applicants by month,
age, sex, citizenship, application type, and country that receives the applica-
tion, and it is published using QB in the Eurostat - Linked Data dataspace4.
For this tutorial, we extended the original QB data cube with dimension hier-
archies, as shown in Fig. 1, using the MultiDim conceptual model [7]. The Asy-
lum applications fact contains only one measure (#applications) that represents
the number of applications. This measure can be analyzed according to six analy-
sis dimensions: the sex of the applicant, age which organizes applicants according
to their age group, the time of the application (which includes a two-level hier-
archy (with levels month and year), the application type, which tells if the person
is a first time applicant or a repeated applicant, and a geographical dimension
that organizes countries into continents (the Geography hierarchy), or according
to its government type (the Government hierarchy). This geographical dimension
participates in the cube with two different roles: The citizenship of the asylum
seeker, and the destination country of its application. Usually, these kinds of
dimensions are denoted role-playing dimensions.

Fig. 1. Conceptual schema of the asylum applications cube

3 http://epp.eurostat.ec.europa.eu/cache/ITY SDDS/EN/migr asyapp esms.htm.
4 http://eurostat.linked-statistics.org/.

http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/EN/migr_asyapp_esms.htm
http://eurostat.linked-statistics.org/
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1.3 Contributions

Although QB provides basic multidimensional information, this information is
not enough to satisfy OLAP users’ needs. In this way, a great part of the benefit
of having MD data on the web gets lost. Further, since the QB model does not
provide enough information for OLAP analysis, once downloaded, the data must
be extended with the typical MD constructs. QB4OLAP has been proposed to
address these drawbacks, allowing data owners to publish MD data on the SW,
and to enrich existing data sets with structural metadata, and dimensional data.
This enrichment can be done semi-automatically (a problem which is beyond the
scope of the present paper, and is explained in detail in [8,9]). Also, QB4OLAP
data cubes can be created from scratch, for example, integrating on-the-fly, data
on the web. Last, but not least, a cube representation like the one allowed by
QB4OLAP can not only be used to perform OLAP analysis through queries
written in SPARQL [10] (the standard query language for RDF), but to express
these queries using a high-level declarative query language, which can be then
automatically translated into SPARQL (with the help of the QB4OLAP meta-
data), allowing non-technical users to perform OLAP data analysis without the
need to understand how data are represented. In other words, typical OLAP
users could be able to query MD data represented in RDF without the need of
having any knowledge of SPARQL.

Concretely, in this tutorial paper we present:

– A comparison between the QB and QB4OLAP vocabularies;
– A description of how QB cubes can be enriched with OLAP metadata and

data, and how existing DW can be published using the QB4OLAP vocabulary;
– A user-centric high-level query language, called QL, that expresses the most

common OLAP operators independently of the underlying data represen-
tation, and a mechanism to automatically translate a QL expression into
SPARQL, to query QB4OLAP cubes.

The remainder of the paper is organized as follows. Section 2 discusses related
work. In Sect. 3 we introduce the basic concepts used throughout this paper.
Section 4 studies the QB vocabulary, and discusses its limitations for represen-
tation and querying of MD data. Section 5 presents the QB4OLAP vocabulary,
and an in-depth comparison against QB. Section 6 studies the Cube Algebra
language, a high-level language to query cubes, and Sect. 7, the translation of
Cube Algebra into SPARQL, to query cubes whose underlying representation is
based on RDF and the QB4OLAP vocabulary. We conclude in Sect. 8.

This tutorial paper follows the presentation given by the author in the EBISS
2015 Summer School. It is not aimed at presenting original research material, but
to put together, in a tutorial style, the main contributions of the work performed
by the author in collaboration with other colleagues [6,8,9,11,12].

2 Related Work

As mentioned above, two main approaches concerning OLAP analysis of MD
data on the SW can be found in the literature. The first one consists in extracting
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MD data from the SW and loading them into traditional MD data management
systems for OLAP analysis, while the second one promotes performing OLAP-
like analysis directly over SW data.

Along the first line of research, we find the works by Nebot and Llavori [13]
and Kämpgen and Harth [14]. The former proposes a semi-automatic method
for on-demand extraction of semantic data into an MD database, so data could
be analyzed using traditional OLAP techniques. The authors present a method-
ology for discovering facts in SW data (represented as an OWL5 ontology), and
populating an MD model with such facts. In this methodology, an MD schema
is initially designed, indicating the subject of analysis that corresponds to a con-
cept of the ontology, the potential dimensions, and the facts. Then, the dimension
hierarchies are created, based on the knowledge available in the domain ontolo-
gies (i.e., the inferred taxonomic relationships). Finally, the user specifies the
MD queries over the DW. Once queries are executed, a cube is built, and typical
OLAP operations can be applied over this cube.

Kämpgen and Harth [14] study the extraction of statistical data published
using the QB vocabulary into an MD database. The authors propose a mapping
between the concepts in QB, and an MD data model, and implement these map-
pings via SPARQL queries. In this methodology, the user first defines relevant
data sets, which are retrieved from the web, and stored in a local triple store. A
relational representation of the MD data model is then created and populated.
Over this model, OLAP operations can be performed.

These two efforts are based on traditional MD data management systems, and
require the existence of a local DW to store SW data. Also, they do not consider
the possibility of directly querying à la OLAP MD data over the SW. Thus, a
second line of research tries to overcome these drawbacks, exploring data models
and tools that allow publishing and performing OLAP-like analysis directly over
SW MD. The work we discuss in the remainder, follows this approach.

Terms like self-service BI [4], and Situational BI [15], refer to the capability
of incorporating situational data into the decision process with little or no inter-
vention of programmers or designers. In [4], the authors present a framework
to support self-service BI, based on the notion of fusion cubes, i.e., multidimen-
sional cubes that can be dynamically extended both in their schema and their
instances, and in which data and metadata can be associated with quality and
provenance annotations. These frameworks motivate the need for models and
tools that allow to query MD data directly over the SW.

The RDF Data Cube vocabulary [5] is aimed at representing, using RDF, sta-
tistical data according to the SDMX6 information model discussed in Sect. 3.2.
Although similar to traditional MD data models, the SDMX semantics imposes
restrictions on what can be represented using QB. In particular, dimension
hierarchies, a key concept in OLAP operations, are not appropriately sup-
ported in QB. To overcome this limitation, Etcheverry and Vaisman [6] pro-
posed QB4OLAP, an extension to QB that allows representing analytical data

5 http://www.w3.org/TR/owl2-overview/.
6 http://SDMX.org.

http://www.w3.org/TR/owl2-overview/
http://SDMX.org
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according to traditional MD models, also proposing a preliminary implementa-
tion of some OLAP operators, using SPARQL queries over data cubes specified
using QB4OLAP.

In [16] the authors present a framework for performing exploratory OLAP
over Linked Open Data sources, where the multidimensional schema of the
data cube is expressed in QB4OLAP and VoID. Based on this multidimensional
schema the system is able to query data sources, extract and aggregate data, and
build an OLAP cube. The multidimensional information retrieved from external
sources is also stored using QB4OLAP.

The QB and QB4OLAP approaches will be compared in depth in Sect. 4,
and, after this, the paper will be devoted to the study of QB4OLAP and its
applications.

3 Preliminary Concepts

In this section we introduce the concepts that we will use in the rest of the
paper. To set up a common analysis framework, we first need to briefly define
the MD model for OLAP that will be used in our study. We do this in the first
part of the section. In the second part we discuss statistical databases (SDB),
and introduce the SDMX model, on which QB is based. We conclude with a
definition of the basic SW concepts that we will need in the sequel.

3.1 OLAP

A broad number of MD models can be found in the literature [17–19]. We now
describe the MD model for OLAP that we will use in our study.

In OLAP, data are organized as hypercubes whose axes are called dimensions.
Each point in this MD space is mapped into one or more spaces of measures,
representing facts that are analyzed along the cube’s dimensions. Dimensions
are structured in hierarchies that allow analysis at different aggregation levels.
The actual values in a dimension level are called members.

A Dimension Schema is composed of a non-empty finite set of levels, with a
distinguished level denoted All. We denote ‘→’ a partial order on these levels;
the reflexive and transitive closure of ‘→’ (‘→∗’) has a unique bottom level and
a unique top level (the latter denoted All). Levels can have attributes describing
them. A Dimension Instance assigns to each dimension level in the dimension
schema a set of dimension members. For each pair of levels (lj , lk) in the dimen-
sion schema, such that lj → lk, a relation (denoted rollup) is defined, associating
members from level lj with members of level lk. Although in practice, most MD
models assume a function between the instances of parent and child dimension
levels, we support relations between them, meaning that each member in the
child level many have more than one associated member in the parent level, and
vice versa (hierarchies including rollup relations are called non-strict). Cardinal-
ity constraints on these relations are then used to restrict the number of level
members related to each other [7]. A Cube Schema contains a set of dimension
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schemas and a set of measures, where for each measure an aggregate function is
specified. A Cube Instance, corresponding to a cube schema, is a partial function
mapping coordinates from dimension instances into measure values.

A well-known set of operations is defined over cubes. For instance, based on
the algebra sketched in [20], the Roll-Up operation summarizes data in a cube,
along a dimension hierarchy. Analogously, Drill-Down disaggregates previously
summarized data, and can be considered the inverse of Roll-Up. The Slice oper-
ation drops a dimension from a cube. The Dice operation receives a cube C, and
a first order formula φ over levels and measures in C, and returns a new cube
with the same schema, and whose instances are the ones that satisfy φ. There
are more complex operators, but for the sake of simplicity, we will limit ourselves
to the ones mentioned above.

3.2 Statistical Databases and the SDMX Model

Statistical Data Bases (SDB) also organize data as hypercubes whose axes are
dimensions. Each point in this multidimensional space is mapped through obser-
vations into one or more spaces of measures. Dimensions are structured in clas-
sification hierarchies that allow analysis at different levels of aggregation. The
Statistical Data and Metadata eXchange initiative (SDMX) proposes several
standards for the publication, exchange and processing of statistical data, and
defines an information model [21] from which we summarize some concepts next,
since QB is based on SDMX.

In the SDMX model, a Dimension denotes a metadata concept used to clas-
sify a statistical series, e.g., a statistical concept indicating a certain economic
activity. Two particular dimensions are identified: TimeDimension, specifying a
concept used to convey the time period of the observation in a data set; and
MeasureDimension, whose purpose is to specify formally the meaning of the
measures and to enable multiple measures to be defined and reported in a data
set. A Primary Measure denotes a metadata concept that represents the phe-
nomenon to be measured in a data set. Dimensions, measures, and attributes
are called Components.

Codelists enumerate a set of values to be used in the representation of dimen-
sions, attributes, and other structural parts of SDMX. Additional structural
metadata can indicate how codes are organized into hierarchies. Through the
inheritance abstraction mechanism, the codelist comprises one or more codes,
and the code itself can have one or more children codes in the (inherited) hier-
archy association. Note that a child code can have only one parent code in this
association.

A Data Set denotes a set of observations that share the same dimensionality,
which is specified by a set of unique components (e.g., dimensions, measures).
Each data set is associated with structural metadata, called Data Structure Def-
inition (DSD), that includes information about how concepts are associated
with the measures and dimensions of a data cube along descriptive (structural)
metadata.
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The value of the variable being measured for the concept associated to the
PrimaryMeasure in the DSD is called an Observation. Each observation asso-
ciates an observation value with a key value.

Several operators are defined over SDBs, although the SDMX standard does
not define operators over data sets. Instead, it provides a mechanism to restrict
the values within a data set via constraints. For example, the CubeRegions con-
straint, allows specifying a set of component values, defining a subset of the
total range of the content of a data structure. The application of this constraint
results in a slice of the original data set, fixing values for some components (e.g.:
selecting some years in a TimeDimension). Therefore, the name slice may be
misleading for OLAP practitioners, since in OLAP, a slicing operation reduces
the cube’s dimensionality, as explained in Sect. 3.1.

3.3 RDF and the Semantic Web

The Resource Description Framework (RDF) is a data model for expressing
assertions over resources identified by an internationalized resource identifier
(IRI). Assertions are expressed as triples of the form (subject, predicate, object).
A set of RDF triples or RDF data set can be seen as a directed graph where sub-
ject and object are nodes, and predicates are arcs. Data values in RDF are called
literals. Blank nodes are used to represent anonymous resources or resources
without an IRI, typically with a structural function, e.g., to group a set of
statements. Subjects must always be resources or blank nodes, predicates are
always resources, and objects could be resources, blank nodes or literals. A set
of reserved words defined in RDF Schema (called the rdfs-vocabulary)[3] is used
to define classes, properties, and to represent hierarchical relationships between
them. For example, the triple (s, rdf:type, c) explicitly states that s is an instance
of c but it also implicitly states that object c is an instance of rdf:Class since
there exists at least one resource that is an instance of c. Many formats for RDF
serialization exist. In this paper we use Turtle [22].

SPARQL 1.1 [10] is the W3C standard query language for RDF, at the time
this paper is being written. The query evaluation mechanism of SPARQL is
based on subgraph matching: RDF triples are interpreted as nodes and edges of
directed graphs, and the query graph is matched to the data graph, instantiating
the variables in the query graph definition. The selection criteria is expressed as
a graph pattern in the WHERE clause of a SPARQL query. Relevant to OLAP
queries, SPARQL supports aggregate functions and the GROUP BY clause, as
in classic SQL.

Due to space limitations, in the remainder we assume the reader is familiar
with the basic notions of RDF and SPARQL.

4 QB: The RDF Data Cube Vocabulary

We now study in detail the QB vocabulary, and discuss its possibilities and
limitations for representing and analyzing MD data.
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4.1 Vocabulary Description

As mentioned above, QB is the W3C recommendation to publish statistical
data and metadata in RDF, following the Linked Data principles. QB is based
on the SDMX Information Model described in Sect. 3.2, and is the evolution of
two previous attempts to represent statistical data in RDF: the Statistical Core
Vocabulary (SCOVO) [23], and SDMX-RDF [24]. Figure 2 (taken from the W3C
recommendation document [5]) depicts the QB vocabulary. Capitalized terms
represent RDF classes and non-capitalized terms represent RDF properties. An
arrow from class A to class B, labeled rel means that rel is an RDF property with
domain A and range B. White triangles represent sub-classes or sub-properties.
We describe the QB vocabulary next.

Fig. 2. The QB vocabulary (cf. [5])

The schema of a data set is specified by means of the DSD (like in SDMX),
an instance of the class qb:DataStructureDefinition. This specification comprises
a set of Component properties, instances of the class qb:ComponentProperty (in
italics in Fig. 2), representing Dimensions, Measures, and Attributes. This is
shown in Example 1. Note that a DSD can be shared by many data sets by
means of the qb:structure property. Observations (in OLAP terminology, facts),
are instances of the class qb:Observation, and represent points in an MD data
space indexed by dimensions. They are associated with data sets (instances of
the class qb:DataSet), through the qb:dataSet property (see Example 2). Each
observation can be linked to a value in each dimension of the DSD via instances
of qb:DimensionProperty; analogously, values for each observation are associated
with measures via instances of the class qb:MeasureProperty. Instances of the
class qb:AttributeProperty are used to associate attributes with observations.
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Finally, note that QB allows observations in a data set to be expressed at differ-
ent levels of granularity in each dimension. For example, one observation may
refer to a country, and another one may refer to a region.

Component properties are not directly related to the DSD: the class qb:Com-
ponentSpecification is an intermediate class which allows to specify additional
attributes for a component in a DSD. For example, a component may be tagged
as required (i.e., mandatory), using the qb:componentRequired property. Com-
ponents that belong to a specification are linked using specific properties that
depend on the type of the component, that is, qb:dimension for dimensions,
qb:measure for measures, and qb:attribute for attributes. Component specifi-
cations are linked to DSDs via the qb:component property. For instance, in
Example 1 we can see how dimensions are defined in the DSD, through the
qb:dimension and qb:component properties.

In order to allow reusing the concepts defined in the SDMX Content
Oriented Guidelines [25], QB provides the qb:concept property which links
components to the general concepts they represent. The latter are modeled using
the skos:Concept class defined in the SKOS vocabulary.7

Although QB can define the structure of a fact (via the DSD), it does not
provide a mechanism to represent an OLAP dimension structure (i.e., the dimen-
sion levels and the relationships between levels). However, QB allows represent-
ing hierarchical relationships between level members in the dimension instances.
The QB specification describes three possible scenarios with respect to the orga-
nization of dimensions, as we explain next.

– If there is no need to define hierarchical relationships within dimension mem-
bers, QB recommends representing the members using instances of the class
skos:Concept, and the set of admissible values using skos:ConceptScheme. A
SKOS concept scheme allows organizing one or more SKOS concepts, linked
to the concept schemes they belong to, via the skos:inScheme property.

– To represent hierarchical relationships, the recommendation is to use the
semantic relationship skos:narrower, with the following meaning: if two con-
cepts A and B are related using skos:narrower, B represents a finer concept
than A (e.g., animals skos:narrower mammals). In addition, SKOS defines a
skos:hasTopConcept property, which allows linking a concept scheme to the
(possibly many) most general concept it contains. To reuse existing data, QB
provides the class qb:HierarchicalCodeList. An instance of this class defines a
set of root concepts in the hierarchy using qb:hierarchyRoot and a parent-child
relationship via qb:parentChildProperty which links a term in the hierarchy to
its immediate sub-terms.

Finally, Slices represent subsets of observations. They are not defined as oper-
ators over an existing cube, but as new structures and new instances (observa-
tions), where one or more values of dimension members are fixed. The structure
of a slice is defined using a DSD, and an instance of the qb:SliceKey class.

7 http://www.w3.org/TR/2009/REC-skos-reference-20090818/.

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
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Example 1 below presents the triples that represent a portion of the structure
of the QB data set in our running example. Note that components are defined
as RDF blank nodes.

Example 1 (Data Set Structure Definition).
1 @prefix qb: <http://purl.org/linked−data/cube#> .
2 @prefix sdmx−dimension: <http://purl.org/linked−data/sdmx/2009/dimension#> .
3 @prefix sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#> .
4 @prefix dsd: <http://eurostat.linked−statistics.org/dsd/> .
5 @prefix property: <http://eurostat.linked−statistics.org/property#> .
6

7 dsd:migr asyappctzm rdf:type qb:DataStructureDefinition ;
8 qb:component [qb:dimension property:age] ;
9 qb:component [qb:dimension property:geo] ;

10 qb:component [qb:dimension property:sex] ;
11 qb:component [qb:dimension property:citizen] ;
12 qb:component [qb:dimension property:asyl app] ;
13 qb:component [qb:dimension sdmx−dimension:refPeriod] ;
14 qb:component [qb:measure sdmx−measure:obsValue] .
15

16 <http://eurostat.linked−statistics.org/data/migr asyappctzm> qb:structure dsd:migr asyappctzm

Line 7 defines the IRI of the DSD. The lines that follow, indicate the com-
ponents of such structure, and Line 16 tells that the DSD is the structure of the
data set in the subject of the triple. ��

Continuing with the Eurostat running example, Example 2 below shows the
triples that represent an observation (in OLAP jargon, a fact), corresponding to
the schema above.

Example 2 (Observations). The following triples represent an observation corre-
sponding to the number of citizens of Andorra submitting applications to migrate
to Austria in 2014.

1 @prefix data:<http://eurostat.linked−statistics.org>;
2 <http://eurostat.linked−statistics.org/data/migr asyappctzm#M,AD,F,TOTAL,ASY APP,AT,2014M10>
3 a qb:Observation ;
4 qb:dataSet <http://data/migr asyappctzm> ;
5 property:age data:dic/age#TOTAL;
6 property:geo data:dic/geo#AT;
7 property:sex data:dic/sex#F;
8 property:citizen data:dic/citizen#AD;
9 property:asyl app data:dic/asyl app#ASY APP;

10 sdmx−dimension:refPeriod 2014−10−0;
11 sdmx−measure: obsValue 0 .

Line 2 tells that the IRI in the subject is an instance of the class
qb:Observation, and Line 4 indicates the data set to which the observation
belongs. The other triples correspond to the dimension instances and the
observed value (the measure, in Line 11). ��

4.2 Is QB Suitable for OLAP?

Although QB can be used to publish MD observations, it cannot represent the
most typical features of the MD model that are used to navigate data in an
OLAP fashion. We discuss this next.
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1. QB does not provide native support for dimension structures. Typical OLAP
operations, like Roll-up and Drill-down, rely on the organization of dimension
members into hierarchies that define aggregation levels. However, as explained
above, QB cannot represent the structural metadata needed to appropriately
support such operations. The mechanisms described in Sect. 4.1 allows only
to organize dimension members hierarchically, that means, they can only
represent relationships between instances, for example, to say that Argentina
is a finer concept than South America, but not to say that Argentina is a
country, South America is a continent, and that countries aggregate over
continents.

2. QB does not provide native support to represent aggregate functions. Most
OLAP operations aggregate or disaggregate cube data along a dimension
(e.g., a Roll-up operation over the Time dimension can aggregate measure
values from the Month level up to Year level), using an aggregate function
defined for each measure. Normally, it is not possible to assume a single
aggregate function for all measures. The ability to link each measure with an
aggregation function is not present in QB.

3. QB does not provide native support for descriptive attributes. In the MD
model, each dimension level is associated with a set of attributes that describe
the characteristics of the dimension members (e.g. the level Country may
have the attributes countryName, area, etc.), and one or more identifiers [7].
However, in QB, dimension members are represented as coded values, which
in most cases are represented as IRIs (although this is not mandatory). We
will see later, that this limitation can have impact over some operations,
typically, when dicing over a dimension.

5 The QB4OLAP Vocabulary

From the discussion in Sect. 4.2, the need of a more powerful vocabulary was
evident. Thus, the QB4OLAP8 vocabulary has been proposed, extending QB
with a set of RDF terms that allow representing the most common features of
the MD model. The main features of QB4OLAP are:

– QB4OLAP can represent the most common features of the MD model. Given
that there is no standard (or widely accepted) conceptual model for OLAP,
the features considered were based on the MultiDim model [7].

– QB4OLAP includes the metadata needed to automatically implement OLAP
operations as SPARQL queries. Using these metadata (e.g., the aggregation
paths in a dimension), the operations could be written in a high-level language
(or submitted using a graphic navigation tool), and translated into SPARQL.
In this way, OLAP users, with no knowledge of SPARQL at all, would be able
to exploit data on the SW.

– QB4OLAP allows operating over already published observations which con-
form to DSDs defined in QB, without the need of rewriting the existing obser-
vations, and with the minimum possible effort. Note that in a typical MD

8 http://purl.org/qb4olap/cubes.

http://purl.org/qb4olap/cubes
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model, observations are the largest part of the data, while dimensions are
usually orders of magnitude smaller.

Figure 3 depicts the QB4OLAP vocabulary. Original QB terms are prefixed
with “qb:”, and QB4OLAP terms are prefixed with “qb4o:”, displayed in gray
background. Capitalized terms represent RDF classes, non-capitalized terms rep-
resent RDF properties; capitalized terms in italics represent class instances. An
arrow from class A to class B, labeled rel means that rel is an RDF property
with domain A and range B. White triangles represent sub-class or sub-property
relationships. Black diamonds represent rdf:type relationships (instances).
We present QB4OLAP distinctive features next.

Fig. 3. QB4OLAP vocabulary (cf. [12])

5.1 Dimension Structure in QB4OLAP

As already mentioned, dimension hierarchies and levels are crucial features in
an MD model for OLAP. Therefore, QB4OLAP introduced classes and prop-
erties to represent them. A key difference between QB and QB4OLAP is that,
in the latter, facts represent relationships between dimension levels, and fact
instances (observations) map level members to measure values; on the other
hand, in QB, observations map dimension members to measure values. In other
words, QB4OLAP represents the structure of a data set in terms of dimen-
sion levels and measures, instead of dimensions and measures. In QB4OLAP,
dimension levels are represented in the same way in which QB represents dimen-
sions: as classes of properties. The class qb4o:LevelProperty represents dimen-
sion levels. Since it is declared as a sub-class of qb:ComponentProperty, the
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schema of the cube can be specified in terms of dimension levels, using the (QB)
class qb:DataStructureDefinition (allowing reusing existing QB observations, if
needed). To represent aggregate functions the class qb4o:AggregateFunction is
defined. The property qb4o:aggregateFunction associates measures with aggre-
gate functions, and, together with the concept of component sets, allows a given
measure to be associated with different aggregate functions in different cubes,
addressing one of the drawbacks of QB. Finally, when a fact (observation) is
related to more than one dimension level member (this is called a many-to-many
dimension [7]), the property qb4o:cardinality allows representing the cardinality
of this relationship.

Example 3 below, shows how the cube in our Eurostat running example would
look like in QB4OLAP. Figure 4 presents the definition of the prefixes that we
will use in the sequel.

Fig. 4. RDF prefixes to be used in the examples

Example 3 (Eurostat Cube Structure in QB4OLAP). Below, we show the struc-
ture of a data cube for the Eurostat example, represented using QB4OLAP. The
reader is suggested to compare against the DSD in Example 1.

1 schema:migr asyappctzmQB4O rdf:type qb:DataStructureDefinition;
2

3 qb:component [ qb4o:level property:age ; qb4o:cardinality qb4o:ManyToOne ] ;
4 qb:component [ qb4o:level property:geo ; qb4o:cardinality qb4o:ManyToOne ] ;
5 qb:component [ qb4o:level property:sex ; qb4o:cardinality qb4o:ManyToOne ] ;
6 qb:component [ qb4o:level property:citizen qb4o:cardinality qb4o:ManyToOne ] ;
7 qb:component [ qb4o:level property:asyl app ; qb4o:cardinality qb4o:ManyToOne ] ;
8 qb:component [ qb:measure sdmx−measure:obsValue; qb4o:aggregateFunction qb4o:sum ] ;
9

10 <http://eurostat.linked−statistics.org/data/migr asyappctzm> qb:structure
11 schema:migr asyappctzmQB4O.
12 sdmx−measure:obsValue a qb:MeasureProperty;
13 rdfs:label ”Number of applications”@en; rdfs:range xsd:integer .

Note that, opposite to QB, the structure is defined in terms of dimen-
sion levels, which represent the granularity of the observations in the data set.
Each level is associated to a cardinality, using the property qb4o:cardinality.
In this case, all cardinalities are many-to-one, indicating that an observa-
tion is associated to exactly one member in every dimension level. To avoid
rewriting the observations, a QB4OLAP DSD schema:migr asyappctzmQB4O
is created, and associated with the data set <http://eurostat.linked-statistics.
org/data/migr asyappctzm> (recall that in Example 1, the data set structure
was dsd:migr asyappctzm). This allows reusing, as QB4OLAP level properties,
the dimension properties already defined in the QB structure, allowing to use

http://eurostat.linked-statistics.org/data/migr_asyappctzm
http://eurostat.linked-statistics.org/data/migr_asyappctzm
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the existing observations, since the data set will “point” to this new DSD. Thus,
we must declare those properties as instances of qb4o:LevelProperty. For exam-
ple, for the Time dimension, we must define (we explain this dimension in detail
later):

1 schema:timeDim a qb:DimensionProperty ;
2 rdfs:label ”Time dimension”@en ;
3 qb4o:hasHierarchy schema:timeHier .
4

5 sdmx−dimension:refPeriod a qb4o:LevelProperty ;
6 rdfs:label ”Month level”@en .

We can see that sdmx-dimension:refPeriod (the Time dimension) is redefined as
a dimension level using the class qb4o:LevelProperty; a dimension schema:timeDim
is defined using the QB class qb:DimensionProperty. In addition, a dimension
hierarchy schema:timeHier is defined. Since the dimension levels defined in this
way are the lowest ones in the dimension hierarchies, a QB4OLAP cube schema
can then be defined using these properties. We explain this below. ��

Dimension hierarchies are represented using the class qb4o:Hierarchy; further,
the properties qb4o:hasHierarchy and qb4o:inDimension, tell that a dimension
contains a certain hierarchy, and that a certain hierarchy belongs to a dimen-
sion, respectively. Also, hierarchies are composed of levels, and the relationship
between levels in a hierarchy may have different cardinality constraints (e.g.
one-to-many, many-to-many, etc.). We call these relationships hierarchy steps,
which are represented by the class qb4o:HierarchyStep. Each hierarchy step is
linked to its two component levels using the qb4o:childLevel and qb4o:parentLevel
properties, and can be attached to the hierarchy it belongs to, using the prop-
erty qb4o:inHierarchy. The property qb4o:pcCardinality represents the cardinality
constraints of the relationships between level members in this step, associating
a hierarchy with a member of the qb4o:Cardinality class, whose instances are
depicted in Fig. 3. Example 4 shows a part of the definition of the dimension
hierarchies for our running example.

Example 4 (Dimension Structure and Hierarchies in QB4OLAP). In addition to
the definition of the Time dimension structure (schema:timeDim) shown in Exam-
ple 3, we can define one or more hierarchies, and declare which dimension they
belong to, and the levels that they traverse. In this example, we create a hier-
archy denoted schema:timeHier, with two levels, sdmx-dimension:refPeriod, and
schema:year, representing the aggregation levels month (the bottom level) and
year, respectively. Also, the distinguished level All is defined, as schema:timeAll.
Below, we show these definitions.

1 schema:timeHier a qb4o:Hierarchy ;
2 rdfs:label ”Time Hierarchy”@en ;
3 qb4o:inDimension schema:timeDim ;
4 qb4o:hasLevel sdmx−dimension:refPeriod, schema:year , schema:timeAll .
5

6 sdmx−dimension:refPeriod a qb4o:LevelProperty ;
7 rdfs:label ”Month level”@en .
8
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9 schema:year a qb4o:LevelProperty ;
10 rdfs:label ”Year”@en .
11

12 schema:timeAll a qb4o:LevelProperty ;
13 rdfs:label ”All dates”@en .

We remark that the lowest granularity level for the time dimension is defined
as in QB (i.e., sdmx-dimension:refPeriod), but as a dimension level instead of a
dimension.

The parent-child relationships between levels are defined as hierarchy steps,
using the class qb4o:HierarchyStep, as we show below.

1 :ih21 a qb4o:HierarchyStep ;
2 qb4o:inHierarchy schema:timeHier ;
3 qb4o:childLevel sdmx−dimension:refPeriod ;
4 qb4o:parentLevel schema:year; qb4o:pcCardinality qb4o:ManyToOne .
5

6 :ih22 a qb4o:HierarchyStep;
7 qb4o:inHierarchy schema:timeHier ;
8 qb4o:childLevel schema:year ;
9 qb4o:parentLevel schema:timeAll ; qb4o:OneToManyToOne .

Note that we indicated, for each step (represented using a blank node), to which
hierarchy it belongs, which level is the parent (i.e., the level with coarser gran-
ularity), and which level is the child (i.e., the level with finer granularity), and
the cardinality of the relationship. ��

Finally, in order to address the lack of support for level attributes in QB,
QB4OLAP provides the class of properties qb4o:LevelAttribute. This class is
linked to qb4o:LevelProperty, via the qb4o:hasAttribute property. For complete-
ness, QB4OLAP includes the qb4o:inLevel property, with domain in the class
qb4o:LevelAttribute and range in the class qb4o:LevelProperty. The qb4o:inLevel
property is rarely used, but is included for completeness, as kind of an “inverse”
of qb4o:hasAttribute (note that RDF does not allow to represent the inverse of a
property). Level attributes are useful in OLAP to filter cubes according to some
attribute property. Example 5 shows the definition of an attribute for the time
dimension level sdmx-dimension:refPeriod.

Example 5 (Level Attributes). For this example, assume we add attribute
schema: monthNumber to the level sdmx-dimension:refPeriod in the time dimen-
sion.
1 sdmx−dimension:refPeriod qb4o:hasAttribute schema:monthNumber .
2

3 schema:monthNumber a qb4o:LevelAttribute;
4 rdfs:label ”Month number”@en.

Note that the attribute schema:monthNumber is declared indicating that it is an
instance of the class qb4o:LevelAttribute. ��

5.2 Dimension Instances in QB4OLAP

Typically, instances of OLAP dimensions levels are composed of so-called level
members. In QB4OLAP, level members are represented as instances of the class
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qb4o:LevelMember, which is a sub-class of skos:Concept. Members are associ-
ated with the level they belong to, using the property qb4o:memberOf, whose
semantics is similar to skos:member. Rollup relationships between members are
expressed using the property skos:broader. The choice of this property, instead
of skos:narrower, like it is recommended in QB, aims at indicating that the hier-
archies of level members are usually navigated from finer granularity concepts
up to higher granularity concepts. Example 6 below illustrates this.

Example 6 (Dimension Instances in QB4OLAP). We show now some examples
of members of levels in the dimension schema:timeDim.
1 @prefix time:<http://purl.org/qb4olap/dimensions/time#> .
2

3 time:TOTAL
4 qb4o:memberOf schema:timeAll .
5

6 time:200801
7 qb4o:memberOf sdmx−dimension:refPeriod;
8 skos:broader time:2008 .
9 ...

10 time:2008
11 qb4o:memberOf schema:year;
12 skos:broader time:TOTAL .
13 ...
14 time:2009
15 qb4o:memberOf schema:year;
16 skos:broader time:TOTAL .
17 ...
18 time:201401
19 qb4o:memberOf sdmx−dimension:refPeriod;
20 skos:broader time:2014 .
21 ...
22 time:2014
23 qb4o:memberOf schema:year;
24 skos:broader time:TOTAL .
25 ...

In Lines 6 through 8 we indicate that the month January of 2008 belongs
to level sdmx-dimension:refPeriod, and rolls up to the element time:2008, an IRI
representing the year 2008. In turn, time:2008, defined in Lines 10 through 12,
rolls up to the level time:TOTAL, which represents the distinguished member all
(although it is not mandatory to indicate this element).

Analogously to level members, we must define the instances of level
attributes. For this, associate the IRIs corresponding to level members, with
literals corresponding to attribute values (i.e., attribute instances). In our exam-
ple, for the Time dimension we have:
1 time:201401 schema:monthNumber ”201401”ˆˆxsd:integer .

Note that, opposite to level members, which are IRIs, attribute instances are
always literals (since QB4OLAP does not define, for attributes, a class analogous
to qb4o:MemberOf). ��

5.3 How Can We Use QB4OLAP?

There are three basic ways of using QB4OLAP: (a) To enrich an existing data
set published in QB, with structural metadata and dimensional data; (b) To
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publish an existing data cube/data warehouse; (c) To build a new cube, using
QB4OLAP, from scratch. We already discussed option (a). We do not specifically
address option (c) here, since it comprises the tasks of the first two ones. We
briefly address option (b) in this section.

To illustrate how we can publish an existing DW on the SW using QB4OLAP,
we use the well-known Northwind DW (see [7] for a detailed explanation of the
Northwind DW design). Figure 5 shows the conceptual model of the Northwind
DW using the MultiDim model.

Fig. 5. Conceptual schema of the Northwind DW

It has been already shown that most of the widely used features of the Mul-
tiDim conceptual model, and, in general, of the MD model, can be represented
using QB4OLAP [12]. Therefore, we do not extend here on this explanation, but
below, we give some examples using the Northwind DW.

Example 7 (Northwind DW Structure Definition). This example shows a por-
tion of the DSD that exposes the structure of the Nortwhind DW in QB4OLAP.
The DSD is denoted nw:Northwind. It comprises nine dimensions and six
measures.

1 @prefix nw: <http://dwbook.org/cubes/schemas/northwind#> .
2

3 # Cube definition
4

5 nw:Northwind a qb:DataStructureDefinition ;
6

7 # Lowest level for each dimension in the cube
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8 qb:component [ qb4o:level nw:employee ; qb4o:cardinality qb4o:ManyToOne ] ;
9 qb:component [ qb4o:level nw:orderDate ; qb4o:cardinality qb4o:ManyToOne ] ;

10 qb:component [ qb4o:level nw:dueDate ; qb4o:cardinality qb4o:ManyToOne ] ;
11 qb:component [ qb4o:level nw:shippedDate ; qb4o:cardinality qb4o:ManyToOne ] ;
12 qb:component [ qb4o:level nw:product ; qb4o:cardinality qb4o:ManyToOne ] ;
13 qb:component [ qb4o:level nw:order ; qb4o:cardinality qb4o:OneToOne ] ;
14 qb:component [ qb4o:level nw:shipper ; qb4o:cardinality qb4o:ManyToOne ] ;
15 qb:component [ qb4o:level nw:supplier ; qb4o:cardinality qb4o:ManyToOne ] ;
16 qb:component [ qb4o:level nw:customer ; qb4o:cardinality qb4o:ManyToOne ] ;
17

18 # Measures in the cube
19 qb:component [ qb:measure nw:quantity ; qb4o:hasAggregateFunction qb4o:sum ] ;
20 qb:component [ qb:measure nw:unitPrice ; qb4o:hasAggregateFunction qb4o:avg ] ;
21 qb:component [ qb:measure nw:discount ; qb4o:hasAggregateFunction qb4o:avg ] ;
22 qb:component [ qb:measure nw:salesAmount ; qb4o:hasAggregateFunction qb4o:sum ] ;
23 qb:component [ qb:measure nw:freight ; qb4o:hasAggregateFunction qb4o:sum ] ;
24 qb:component [ qb:measure nw:netAmount ; qb4o:hasAggregateFunction qb4o:sum ] .
25

26 # Measures definition
27

28 nw:quantity a rdf:Property , qb:MeasureProperty ;
29 rdfs:label ”Quantity”@en ;
30 rdfs:subPropertyOf sdmx−measure:obsValue ;
31 rdfs:range xsd:positiveInteger .
32

33 nw:unitPrice a rdf:Property , qb:MeasureProperty ;
34 rdfs:label ”Unit Price”@en ;
35 rdfs:subPropertyOf sdmx−measure:obsValue ;
36 rdfs:range xsd:decimal .
37 ...

Next, we show the schema of part of the Employee dimension, illustrating the
representation of the recursive Supervision hierarchy, and the definition of level
attributes.

1 # −− Employee dimension definition
2

3 nw:employeeDim a rdf:Property , qb:DimensionProperty ;
4 rdfs:label ”Employee Dimension”@en ;
5 qb4o:hasHierarchy nw:supervision , nw:territories .
6

7 # −− Supervision hierarchy
8

9 nw:supervision a qb4o:Hierarchy ;
10 rdfs:label ”Supervision Hierarchy”@en ;
11 qb4o:inDimension nw:employeeDim ;
12 qb4o:hasLevel nw:employee .
13

14 :supervision hs1 a qb4o:HierarchyStep ;
15 qb4o:inHierarchy nw:supervision ;
16 qb4o:childLevel nw:employee ;
17 qb4o:parentLevel nw:employee ;
18 qb4o:pcCardinality qb4o:ManyToOne .
19 ...
20

21 # −− Employee level
22

23 nw:employee a qb4o:LevelProperty ;
24 rdfs:label ”Employee Level”@en ;
25 qb4o:hasAttribute nw:employeeID ;
26 qb4o:hasAttribute nw:firstName ;
27 qb4o:hasAttribute nw:lastName ;
28 qb4o:hasAttribute nw:title ;
29 ... .
30

31 nw:employeeID a qb4o:LevelAttribute ;
32 rdfs:label ”Employee ID”@en ;
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33 rdfs:range xsd:positiveInteger .
34 nw:firstName a qb4o:LevelAttribute ;
35 rdfs:label ”First Name”@en ; rdfs:range xsd:string .
36 nw:lastName a qb4o:LevelAttribute ;
37 rdfs:label ”Last Name”@en ;
38 rdfs:range xsd:string .
39 nw:title a qb4o:LevelAttribute ;
40 rdfs:label ”Title”@en ;
41 rdfs:range xsd:string .
42 ...

We can see that, in the recursive hierarchy nw:supervision, there is only one
level, nw:employee, that is also the parent and child level of the hierarchy step
:supervision hs1 (the level All can be omitted). We can also see some of the
dimension level attributes, and their definitions. ��

The translation from an existing data cube (for example, a cube represented
in the relational model), can be done in an automatic way, using the R2RML
standard.9 The study of this mechanism is out of the scope of this paper (see [26]
for an implementation).

In the next section we use the Eurostat data cube to illustrate how we can
query it using a high-level language, and its automatic translation into SPARQL.

6 Querying QB4OLAP Cubes

The machinery described above can be applied to query data cubes on the SW,
following the approach presented in [20], where a clear separation between the
conceptual and the logical levels is made, and a high-level language, called Cube
Algebra, is defined. Cube Algebra is a user-centric language operating at the
conceptual level. This is the reason why the design of QB4OLAP puts empha-
sis on representing most of the features of OLAP conceptual models. To take
advantage of the vocabulary, a subset of Cube Algebra, called QL, was defined,
in a way such that the user can write her queries at the conceptual level, and
these queries will be automatically translated into a SPARQL query over the
QB4OLAP-based RDF representation (at the logical level). There are also a set
of rules to ameliorate and simplify QL queries before obtaining an equivalent
SPARQL query, which we explain succinctly below.

Remark 1. The content of this section, is based on the work in [27,28], adapted
and simplified for the EBISS 2015 tutorial.

6.1 The QL Language

Ciferri et al. [20] have shown that, opposite to the usual belief, most of the
MD data models in the literature operate at the logical level rather than at a
conceptual level, and that the data cube is far from being the focus of these
models. Therefore, the authors proposed a model and an algebra where the data

9 http://www.w3.org/TR/r2rml/.

http://www.w3.org/TR/r2rml/
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cube is a first-class citizen, and OLAP operators are used to manipulate the
only type of this model: again, the data cube. Following these ideas, Gómez
et al. [17] showed that such a model can be used to seamlessly perform OLAP
analysis over discrete and continuous geographic data. That means, the user will
write the queries in Cube Algebra, without caring about which kind of data
lies underneath. The framework takes care of the spatial data management, and
of translating the expressions into the language supported by the underlying
database (PostGIS in the case of [17]). Along these lines, the use of a high-
level query language (as mentioned, called QL), based on the Cube Algebra,
for querying cubes represented in RDF following the QB4OLAP model, has
been proposed. In this way, the user will only see a collection of dimensions,
dimension levels, and measures, and will write the queries in QL, which will
then be translated to SPARQL, and executed on the QB4OLAP underlying
data cube.

In this section we briefly outline the portion of QL that we will use in the
sequel. We remark that we have simplified the language to make the paper easier
to read, keeping the most important features, relevant to our main goal, which
is, to show how a QB4OLAP cube can be queried without the need of knowing
SPARQL programming.

We start the presentation describing the operators, using the Eurostat data
cube as our running example.

Operators. The ROLLUP operation aggregates measures along a dimension
hierarchy to obtain measures at a coarser granularity. The syntax for this oper-
ation is:
ROLLUP(CubeName, Dimension, Level)

where Level is the level in Dimension to which the aggregation is performed.

Example 8 (ROLLUP). To compute the total number of applications by country,
we should write
ROLLUP(Asylum applications, Citizenship, Country)

The names of the dimensions and levels, are based on the conceptual model in
Fig. 1. ��

The DRILLDOWN operation performs the inverse of ROLLUP; that is, it
goes from a more general level to a more detailed level down in a hierarchy. The
syntax of this operation is as follows:
DRILLDOWN(CubeName, Dimension, Level)

where Level is the level in Dimension to which the operation is performed.

Example 9 (DRILLDOWN). After rolling-up to the year level, we may want to
drill-down to the month level. For that, we write:
DRILLDOWN(YearCube, Time, Month)

Note that we assume that we created the cube YearCube after rolling-up to year. ��
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The SLICE operation removes a dimension from a cube (i.e., a cube of n− 1
dimensions is obtained from a cube with n dimensions) by selecting one instance
in a dimension level. The syntax of this operation is:
SLICE(CubeName, Dimension)

where the Dimension will be dropped by fixing a single value in the Level instance.
The other dimensions remain unchanged.

The DICE operation returns a cube with the same dimensionality of the
original one, but only containing the cells that satisfy a Boolean condition.
The syntax for this operation is
DICE(CubeName, Condition)

where Condition is a Boolean condition over dimension levels, attributes, and
measures. The DICE operation is analogous to a selection in the relational
algebra.

Usually, slicing and dicing operations are applied together.

Example 10 (SLICE and DICE). If in our running example we want to remove
the Time dimension, we would write:
SLICE(Asylum applications, Time)

If we want to keep only applications made by Egyptian citizens, we write:
DICE(Asylum applications,Citizenship.Country.CountryName = 'Egypt')

Note that the dicing condition is applied on the value of a level attribute. This
is easier than applying a condition over an IRI, illustrating one of the advantages
of supporting level attributes in QB4OLAP. ��

We remark that in this paper we limit ourselves to show only the four oper-
ations above, since they are enough to illustrate the main idea behind this pro-
posal. A more detailed explanation, and further operations, can be found in [7].

A QL query (or program), is a sequence of OLAP operators, which can store
intermediate results in variables bound to cubes, which can be used as arguments
in subsequent operations. For example, the following query performs a slicing
operation over the Destination dimension, an aggregation to the year level in
the Time dimension, and finally filters the result to obtain only the number of
asylum applications submitted by citizens from African countries.

1 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
2 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
3 QUERY
4 $C1 := SLICE(data:migr asyappctzm, schema:destinationDim);
5 $C2 := ROLLUP($C1,schema:timeDim,schema:year);
6 $C3 := DICE ($C2, (schema:citizenshipDim|schema:continent|schema:continentName = ”Africa”));

Note that we have included in the language the Turtle prefixes, which, of
course do not belong to the conceptual level, but we think this helps, from a
pedagogical point of view, to better convey the idea. In a user-oriented imple-
mentation these names can be easily hidden, that is, it would be trivial to write
year instead of schema:year.
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Finally, to make the presentation simpler, in what follows we assume that
QL queries have the following pattern: (ROLLUP | SLICE | DRILLDOWN)*
(DICE)*. That means, DICE operators are the last ones in a query, i.e., no
ROLLUP, DRILLDOWN or SLICE operations can follow a DICE one.

6.2 Query Simplification

Automatic query simplification and amelioration is important for two reasons:
(a) Users will not always write “good” QL queries: although syntactically cor-
rect, redundant and/or unnecessary operations could be included; (b) The order
in which the operations are written in a query is not always the best one. Thus,
a set of rules simplify and ameliorate the queries proposed by users. The simpli-
fication process deals with the elimination of redundancy in the queries. The
amelioration process typically aims at producing a query, equivalent to the
original one, but which performs better than it. We briefly explain the simplifi-
cation process next. To organize the discussion we consider two cases:

– Queries that do not contain DICE operators;
– Queries that contain DICE operators.

Queries Not Including a DICE Operation. In this case, we apply the
following rules:

– Rule 1: Group all the ROLLUP and DRILLDOWN operations over the same
dimension, and replace each group of such operations with a single ROLLUP
from the bottom level of the dimension to the lowest lever indicated in the
drill-down operation(s).

– Rule 2: If the query contains a SLICE and a sequence of ROLLUP and
DRILLDOWN operations over the same dimension, remove the sequence of
ROLLUPs and DRILLDOWNs and keep only the SLICE.

– Rule 3: Reduce intermediate results by performing SLICE operations as soon
as possible.

The rationale of the rules is clear. Rule 1 eliminates the ROLLUPs that will
be traversed later down in the hierarchy, when performing the DRILLDOWN.
Rule 2 addresses the case in which a SLICE removes a dimension that is traversed
using ROLLUPs and DRILLDOWNs. In this case, none of the two latter oper-
ations will contribute to the result. Rule 3 reduces the size of the intermediate
results as early as possible.

Queries Including a DICE Operation. Taking advantage of the assumption
that DICE operators are the last ones in a query, we can split the query in two
subsets of statements: one that does not contain DICE operators, and another
one that is composed only of DICE operators. We can then apply the rules
presented above, to the first portion of the query, keeping the statements that
involve DICE operators as in the original query.
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6.3 QL by Example

In this section we present some examples of QL queries, and their simplification
process.

We start the presentation with a query not containing a DICE operation:
Asylum applications by year and continent where the applicant lives. This is
a typical OLAP query, involving two ROLLUP operations, to the Year and
Continent levels in dimensions Time and Citizenship.

Query 1: Asylum applications by year and continent.

1 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
2 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
3 QUERY
4 $C1 := ROLLUP (data:migr asyappctzm, schema:citizenshipDim,schema:continent);
5 $C2 := ROLLUP ($C1, schema:citizenshipDim,schema:citAll);
6 $C3 := ROLLUP ($C2, schema:timeDim, schema:year);
7 $C4 := SLICE ($C3, schema:destinationDim);
8 $C5 := SLICE ($C4, schema:asylappDim);
9 $C6 := SLICE ($C5, schema:sexDim);

10 $C7 := SLICE ($C6, schema:ageDim);
11 $C8 := DRILLDOWN ($C7, schema:citizenshipDim,schema:continent);

Note that this is not the best way of writing this query, since the ROLLUP
to All is clearly not needed (recall that we want to promote the analysis within
non-expert OLAP users). Thus, applying Rule 1, the sequence of ROLLUPs and
DRILLDOWNs over schema:citizenshipDim dimension is replaced by a single
ROLLUP from the bottom level up to the level reached by the last operation
in the sequence (in this case schema:continent). The simplified query looks as
follows.

1 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
2 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
3 QUERY
4 $C1 := SLICE ($data:migr asyappctzm, schema:destinationDim);
5 $C2 := SLICE ($C1, schema:assylappDim);
6 $C3 := SLICE ($C2, schema:sexDim);
7 $C4 := SLICE ($C3, schema:ageDim)
8 $C5 := ROLLUP ($C4, schema:citizenshipDim,schema:continent);
9 $C6 := ROLLUP ($C5, schema:timeDim, schema:year);

Let us now show a query including dicing operations. We want to obtain Asy-
lum applications by year submitted by Asian citizens, where applications count
>5000 whose destination is France or Germany.

Query 2: Asylum applications by year submitted by Asian citizens, where the number of applications is larger
than 5000, and whose destination is France or Germany.

1 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
2 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
3 PREFIX property: <http://eurostat.linked−statistics.org/property#>;
4 PREFIX sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#>;
5 QUERY
6 $C1 := ROLLUP (data:migr asyappctzm, schema:citizenshipDim,schema:citAll);
7 $C2 := ROLLUP ($C1, schema:timeDim, schema:year);
8 $C3 := DRILLDOWN ($C2, schema:citizenshipDim,schema:continent);
9 $C4 := SLICE ($C3, schema:asylappDim);

10 $C5 := SLICE ($C4, schema:sexDim);
11 $C6 := SLICE ($C5, schema:ageDim);
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12 $C7 := DICE ($C6, (schema:citizenshipDim|schema:continent|schema:continentName = ”Asia”));
13 $C8 := DICE ($C7, ( sdmx−measure:obsValue > 5000 AND
14 (schema:destinationDim|property:geo|schema:countryName = ”France”) OR
15 (schema:destinationDim|property:geo|schema:countryName = ”Germany”)));

Below, we show the “simplified” query. Again, the sequence of roll-ups and
drill-downs is replaced by a roll-up from the bottom level of the hierarchy.

1 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
2 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
3 PREFIX property: <http://eurostat.linked−statistics.org/property#>;
4 PREFIX sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#>;
5 QUERY
6 $C1 := SLICE (data:migr asyappctzm, schema:asylappDim);
7 $C2 := SLICE ($C1, schema:sexDim);
8 $C3 := SLICE ($C2, schema:ageDim);
9 $C4 := ROLLUP($C3,schema:timeDim,schema:year);

10 $C5 := ROLLUP($C4,schema:citizenshipDim,schema:continent);
11 $C6 := DICE ($C5(schema:citizenshipDim|schema:continent|schema:continentName = ”Asia”));
12 $C7 := DICE ($C6, ( sdmx−measure:obsValue > 5000 AND
13 (schema:destinationDim|property:geo|schema:countryName = ”France”) OR
14 (schema:destinationDim|property:geo|schema:countryName = ”Germany”)));

7 Translating QL Queries into SPARQL

We expressed above that QB4OLAP provides the metadata needed to automat-
ically translate a high-level language into SPARQL. This is a key feature to
promote the use of the semantic web: users would not need to learn a new and
complex language like SPARQL. In our case, OLAP users will only need to write
relatively simple QL programs, and they will have the flexibility to analyze data
cubes on-the-fly.

We now describe a mechanism for translating a QL program into a single
SPARQL query. Again, we consider two cases: (1) Queries that do not contain
DICE operations, and (2) Queries that contain DICE operations. In Sect. 7.1 we
describe the generation of SPARQL queries in the first group, while in Sect. 7.2
we present the rules for the second group of queries.

7.1 Queries Not Including a DICE Operation

After applying the rules presented in the previous section to the original query,
we reduce all the possible queries to some kind of “normal form”, where, for each
dimension D in the data cube only one of the following conditions is satisfied:

– No operation is performed over D
– A ROLLUP operation is performed over D
– A SLICE operation is performed over D

ROLLUPs are implemented navigating the rollup relationships between
members, guided by the dimension hierarchy, and aggregations are performed
using GROUP BY clauses. The former are performed through SPARQL joins,
as we show in the example below. The reader can now better understand why we
cannot do this for QB-annotated data sets: they lack the necessary metadata.
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SLICEs over dimensions correspond to “slicing out” dimensions. This opera-
tion requires measure values to be aggregated up to the ALL level of the dimen-
sion being sliced out. The mechanism for this is the same one that is used to
compute a ROLLUP.

Therefore, after simplifying and ameliorating the query, we can automatically
translate it into a single SPARQL expression.

Example 11. We next show the SPARQL query produced for Query 1.

1 PREFIX qb: <http://purl.org/linked−data/cube#>
2 PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
4 SELECT ?plm1 ?plm2 (SUM(<http://www.w3.org/2001/XMLSchema#integer>(?m1)) as ?ag1)
5 FROM <http://www.fing.edu.uy/inco/cubes/instances/migr asyapp clean>
6 FROM <http://www.fing.edu.uy/inco/cubes/schemas/migr asyappctzmQB4O>
7 WHERE {
8 ?o a qb:Observation .
9 ?o qb:dataSet <http://eurostat.linked−statistics.org/data/migr asyappctzm> .

10 ?o <http://purl.org/linked−data/sdmx/2009/measure#obsValue> ?m1 .
11 ?o <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> ?lm1 .
12 ?lm1 qb4o:memberOf <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> .
13 ?lm1 <http://www.w3.org/2004/02/skos/core#broader> ?plm1 .
14 ?plm1 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#year> .
15 ?o <http://eurostat.linked−statistics.org/property#citizen> ?lm2 .
16 ?lm2 qb4o:memberOf <http://eurostat.linked−statistics.org/property#citizen> .
17 ?lm2 <http://www.w3.org/2004/02/skos/core#broader> ?plm2 .
18 ?plm2 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#continent> .
19 }
20 GROUP BY ?plm1 ?plm2

Note that the SLICE operations are implemented omitting, in the SELECT
clause, the variables corresponding to the dropped dimensions. Navigation is
performed through joins. Lines 8 through 10 (within the WHERE clause), iden-
tify the observations, and Line 11 takes the bottom level of the time dimension,
which is used to navigate, through the skos:broader predicate, up to the year
level. We proceed analogously with the Citizenship dimension: variable ?lm2 is
used to navigate the hierarchy up to the continent level, bound to variable ?plm2.
Finally, the GROUP BY clause is applied, and an aggregation using function
SUM is performed. ��

7.2 Queries Including DICE Operations

In this case, we know that the rules have been applied to the first part of the
query, which reduces this part of the query to the cases already described above.
The second part of the query contains only DICE operations. Each DICE oper-
ation is associated with a condition over measures and/or attribute values, and
its result filters out of cells that do not satisfy the condition. We implement
the DICE conditions using SPARQL FILTER clauses, also making use of the
expressions presented in Sect. 7.1 as subqueries.

The SPARQL query is produced applying the following steps:

1. Obtain a SPARQL query that implements the part of the QL query that does
not contain DICE operators, applying the method presented in Sect. 7.1. We
will refer to this query as the inner query.
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2. Produce an outer SPARQL query such that:
(a) Its SELECT clause has the same variables as the SELECT clause of the

inner query
(b) Its WHERE clause contains:

i. The inner query
ii. A set of graph patterns to obtain the values of the attributes involved

in DICE conditions
iii. A FILTER clause with the conjunction of the conditions of all the

DICE operations

DICE conditions are thus translated into SPARQL expressions. For exam-
ple, conditions over attributes with range xsd:string are implemented using the
REGEX function.

Example 12. This example shows the translation of Query 2, which contains a
DICE clause. Here, we use the REGEX clause (which handles regular expres-
sions) within the FILTER condition, to obtain the citizens from Asia, and the
destination countries.

1 PREFIX qb: <http://purl.org/linked−data/cube#>
2 PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
4 SELECT ?ag1 ?plm1 ?lm4 ?plm2
5 WHERE {
6 { ?plm2 <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#continentName> ?plm21 .
7 ?lm4 <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#countryName> ?lm41 .
8 }.
9 { SELECT ?plm1 ?lm4 ?plm2

(SUM(<http://www.w3.org/2001/XMLSchema#integer>(?m1)) as ?ag1)
10 FROM <http://www.fing.edu.uy/inco/cubes/instances/migr asyapp clean>
11 FROM <http://www.fing.edu.uy/inco/cubes/schemas/migr asyappctzmQB4O>
12 WHERE {
13 ?o a qb:Observation .
14 ?o qb:dataSet <http://eurostat.linked−statistics.org/data/migr asyappctzm> .
15 ?o <http://purl.org/linked−data/sdmx/2009/measure#obsValue> ?m1 .
16 ?o <http://eurostat.linked−statistics.org/property#age> ?lm1 .
17 ?o <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> ?lm2 .
18 ?lm2 qb4o:memberOf <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> .
19 ?lm2 <http://www.w3.org/2004/02/skos/core#broader> ?plm1 .
20 ?plm1 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#year> .
21 ?o <http://eurostat.linked−statistics.org/property#sex> ?lm3 .
22 ?o <http://eurostat.linked−statistics.org/property#geo> ?lm4 .
23 ?o <http://eurostat.linked−statistics.org/property#citizen> ?lm5 .
24 ?lm5 qb4o:memberOf <http://eurostat.linked−statistics.org/property#citizen> .
25 ?lm5 <http://www.w3.org/2004/02/skos/core#broader> ?plm2 .
26 ?plm2 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#continent> .
27 ?o <http://eurostat.linked−statistics.org/property#asyl app> ?lm6 .
28 }
29 GROUP BY ?plm1 ?lm4 ?plm2
30 }
31 FILTER (((REGEX (?plm21,”Asia” , ”i”)))&&(((?ag1 > 5000) && ((REGEX (?lm41,”France” , ”i”)) ||
32 (REGEX (?lm41,”Germany” , ”i”))))))
33 }

Note that the inner and outer queries have the same variables. Also, the outer
query contains the FILTER clause, that makes use of the REGEX function. The
inner query is solved in the same way as in Example 11. ��
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8 Conclusion

In this tutorial paper we have explained how MD data can be represented and
queried directly over the SW, without the need of downloading data sets into
local DWs. We have shown that, to this end, the RDF Data Cube Vocabu-
lary (QB), the current W3C recommendation must be extended with structural
metadata, and dimensional data, in order to be able to support useful OLAP-
like analysis. We provided an in-depth comparison between these proposals, and
we showed that extending QB with QB4OLAP can be done without re-writing
the observations (the largest part of the data). We also presented a high-level
query language that allows OLAP users that are not familiar with SW concepts
or languages, to write and execute OLAP operators without any knowledge of
SPARQL. Queries are automatically translated into SPARQL and executed over
an endpoint.

The asylum applications data cube that we have used as running example in
this tutorial, as well as an RDF representation of the Northwind DW, and other
example cubes, are available at a public SPARQL endpoint.10 As an exercise, the
interested reader can execute the queries presented in this paper, and compare
them against the actual Eurostat data, where data are provided in many different
ways (reports, graphics, etc.). The analysis allowed by publishing data directly
over the SW, using QB4OLAP to represent and enrich data, provides a flexibility
that cannot be achieved by traditional publication methods. Moreover, based on
the existing observations, expressed in QB, the cost of enriching the original data
set is relatively low.

Current work is being carried out along two main lines: (a) Developing fur-
ther optimization techniques, and providing a benchmark to run queries and
study query performance [27,28]; (b) Enhancing usability, by developing semi-
automatic techniques to enrich and build existing QB data sets with QB4OLAP
metadata [8,9].
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