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Preface

The 5th European Business Intelligence Summer School (eBISS 2015) took place in
Barcelona, Spain, in July 2015. Tutorials were given by renowned experts and covered
several recent topics in business intelligence. This volume contains the lecture notes
of the summer school.

The first paper reports on the state of the art (including research and tools) in
relational database schema evolution (with special emphasis on data warehouse evo-
lution) and how this impacts the surrounding applications. It includes a discussion on
query-rewriting techniques to adapt database client software to the changes.

The second paper compares RDF Data Cube Vocabulary (QB) with QB4OLAP, an
extension to support OLAP analysis. The former is an initiative of W3C to publish
multi-dimensional data on the Web in such a way that it can be linked to related data
sets and concepts. The later extends it to explicit aggregation functions, hierarchies, and
descriptive attributes. Such extension facilitates the definition of a user-friendly query
language (QL) that allows OLAP users not familiar with SW concepts or languages to
retrieve data without any knowledge of RDF or SPARQL (QL is automatically
translated into SPARQL queries). Examples of usage of QB4OLAP on Eurostat data
sets are provided.

Next, the third paper presents a concrete application domain for linked open data
analysis, which is social information. It presents a proposal for modeling social (mainly
textual) data, so that it can be analyzed with OLAP tools. The complexity of the
problem justifies the proposal of a software architecture and methodology for the
management of this kind of project. The feasibility of the proposed approach is ana-
lyzed in the context of two specific projects: one in the subject area of Italian politics,
and another in the subject area of a large consumer goods company.

The fourth paper explores the possibility of including linked open data in analytical
tasks. Traditional data warehousing has relied on internal data to enable decision
making. Nevertheless, more recent big data trends have moved the focus to external
data. Success stories based on the use of data coming from social networks are well
known, but we can also benefit from publicly available semantically annotated data,
which is growing fast mainly but not exclusively with governmental support. In any
case, the integration of external data presents new challenges in terms of lack of
structure, high heterogeneity, and poor quality.

The last paper discusses the feasibility and importance of deriving key performance
indicator (KPI) calculations (i.e., aggregate queries) from their informal specifications.
Since the majority of KPIs are process-oriented, process models (i.e., Petri nets) are
used. Thus, seven different patterns are identified, which relate query elements to
process models tasks.



In addition to the lectures corresponding to the papers described here, eBISS 2015
had two other lectures directly related to industry:

– Toni Cebrián from Enerbyte, Spain: “Time Series DBs and Streaming Algorithms”
– Wilinton Tenorio and Eduard Gil from ClearPeaks, Spain: “Life at ClearPeaks, An

Overview of the Most Relevant Projects”

These lectures are not included in this volume.
In this edition, eBISS joined forces with the Erasmus Mundus IT4BI-DC consor-

tium and hosted its doctoral colloquium aiming at community building and promoting a
corporate spirit among PhD candidates, advisors, and researchers of different organi-
zations. The corresponding session, organized in two parallel tracks, included eight
presentations, as follows:

– Waqas Ahmed, Pakistan: “Modeling Data Warehouses with Multiversion and
Temporal Functionality”

– Nurefsan Gur, Turkey: “Business Intelligence over Linked Open Spatio-Temporal
Data”

– Dilshod Ibragimov, Uzbekistan: “OLAP over Distributed RDF Sources”
– Azadeh Nasiri, Iran: “Requirements Engineering for Big Data Predictive Analytics”
– Bijay Neupane, Nepal: “Intelligence Detection and Prediction of Energy at the

Device Level”
– Kasun Parera, Sri Lanka: “Model-Based Database Systems”
– Vasileios Theodorou, Greece: “Automating User-Centered Design of Data-

Intensive Processes”
– Jovan Varga, Serbia: “Discovering Analytical Concepts from User Profiles”

We would like to thank the attendees of the summer school for their active par-
ticipation, as well as the speakers and their co-authors for the high quality of their
contribution in a constantly evolving and highly competitive domain. Finally, the
lectures in this volume benefited greatly from the comments of the external reviewers.

March 2016 Esteban Zimányi
Alberto Abelló
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Schema Evolution for Databases and Data
Warehouses

Petros Manousis1, Panos Vassiliadis1(B), Apostolos Zarras1,
and George Papastefanatos2

1 Department of Computer Science,
University of Ioannina (Ioannina, Hellas), Ioannina, Greece

{pmanousi,pvassil,zarras}@cs.uoi.gr
2 Athena Research Center (Athens, Hellas), Athens, Greece

gpapas@imis.athena-innovation.gr

Abstract. Like all software systems, databases are subject to evolu-
tion as time passes. The impact of this evolution is tremendous as every
change to the schema of a database affects the syntactic correctness and
the semantic validity of all the surrounding applications and de facto
necessitates their maintenance in order to remove errors from their source
code. This survey provides a walk-through on different approaches to the
problem of handling database and data warehouse schema evolution. The
areas covered include (a) published case studies with statistical informa-
tion on database evolution, (b) techniques for managing schema and view
evolution, (c) techniques pertaining to the area of data warehouses, and,
(d) prospects for future research.

1 Introduction

Evolution of software and data is a fundamental aspect of their lifecycle. In the
case of data management, evolution concerns changes in the contents of a data-
base and, most importantly, in its schema. Database evolution can concern (a)
changes in the operational environment of the database, (b) changes in the con-
tent of the databases as time passes by, and (c) changes in the internal structure,
or schema, of the database. Schema evolution, itself, can be addressed at (a) the
conceptual level, where the understanding of the problem domain and its rep-
resentation via an ER schema evolves, (b) the logical level, where the main
constructs of the database structure evolve (for example, relations and views in
the relational area, classes in the object-oriented database area, or (XML) ele-
ments in the XML/semi-structured area), and, (c) the physical level, involving
data placement and partitioning, indexing, compression, archiving etc.

In this survey, we will focus on the evolution of the logical schema of relational
data and also extend our survey to the special case of data warehouse evolution.
For the rest, we refer the interested reader to the following very interesting sur-
veys. First, it is worth visiting a survey by Roddick [1], which appeared 20 years
ago and summarizes the state of the art of the time in the areas of schema ver-
sioning and evolution, with emphasis to the modeling, architectural and query
c© Springer International Publishing Switzerland 2016
E. Zimányi and A. Abelló (Eds.): eBISS 2015, LNBIP 253, pp. 1–31, 2016.
DOI: 10.1007/978-3-319-39243-1 1



2 P. Manousis et al.

language issues related to the support of evolving schemata in database sys-
tems. Second, 16 years later, a comprehensive survey by Hartung, Terwilliger and
Rahm [2] appeared, in which the authors classify the related tools and research
efforts in the following subareas: (a) the management of the evolution of rela-
tional database schemata, (b) the evolution of collections of XML documents,
and (c) the evolution of ontologies. In the web site http://dbs.uni-leipzig.de/en/
publications one may also find a comprehensive list of publications in the broader
area of schema and data evolution. From our part, the material that we survey
is collected by exploiting three sources of information: (a) our own monitoring
of the field over the years, (b) by building on top of the aforementioned surveys,
and, (c) by inspecting the main database and business intelligence venues in the
last years, to identify the new works that have taken place since the last survey.

We organize the presentation of the material as follows. In Sect. 2, we discuss
empirical studies in the area of database evolution. In Sect. 3, we present the
sate of practice. In Sect. 4, we cover issues related to the identification of the
impact that database evolution has to external applications and queries, as well
as to views. In Sect. 5, we cover the specific area of data warehouses from the
viewpoint of evolution. We conclude with thoughts around open issues in the
research agenda in the area of evolution in Sect. 6.

2 Empirical Studies on Database Evolution

In this section, we survey empirical studies in the area of database evolution.
These studies monitor the history of changes and report on statistical properties
and recurring phenomena. In our coverage we will follow a chronological order,
which also allows us to put the studies in the context of their time.

2.1 Statistical Profiling of Database Evolution via Real-World
Studies

Studies During the 1990’s. The first account of a sizable empirical study,
by Sjoberg [3], discusses the evolution of the database schema of a health man-
agement system over a period of 18 months, monitored by a tool specifically
constructed for this purpose. A single database schema was examined, and, inter-
estingly, the monitored system was accompanied by a metadata dictionary that
allowed to trace how the queries of the applications surrounding the database
relate to the tables and attributes of the evolving database. Specific numbers for
the evolution of the system, during this period of 18 months, include:

– There was a 139% increase of the number of tables and a 274% increase of the
number of attributes (including affected attributes due to table evolution),
too.

– All (100%) the tables were affected by the evolution process.
– Additions were more than deletions, by an 28% tables and a 42% for

attributes.

http://dbs.uni-leipzig.de/en/publications
http://dbs.uni-leipzig.de/en/publications
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– An insignificant percentage of alterations involved renaming of relations or
merge/split of tables.

– Changes in the type of fields (i.e., data type, not null, unique constraints)
proved to be equal to additions (31 both) and somehow less than deletions
(48) for a period of 12 months, during which this kind of changes were studied.

– On average, each relation addition resulted in 19 changes in the code of the
application software. At the same time, a relation deletion produced 59.5
changes in the application code. The respective numbers for attributes were
2 changes for attribute additions and 3.25 changes for attribute deletions,
respectively.

– The evolution process was characterized by an inflating period (during con-
struction) where almost all changes were additions, and a subsequent period
where additions and deletions where balanced.

Revival in Late 2000’s. In terms of empirical studies, and to the best of our
knowledge, no developments took place for the next 15 years. This can be easily
attributed to the fact that the research community would find it very hard to
obtain access to monitor database schemata for an in-depth and long study. The
proliferation of free and open-source software changed this situation. So, in the
last few years, there are more empirical studies in the area that report on how
schemata of databases related to open source software have evolved.

The first of these studies came fifteen years later after the study of Sjoberg.
The authors of [4] made an analysis on the database back-end of MediaWiki, the
software that powers Wikipedia. The study conducted over the versions of four
years, and came with several important findings. The study reports an increase
of 100 % in the number of tables and a 142 % in the number of attributes. Fur-
thermore, 41.5 % of the attributes of the original database were removed from the
database schema, and 25.1 % of the attributes were renamed respectively. The
major reasons for these alterations were (a) the improvement of performance,
which in many cases induces partitioning of existing tables, creation of materi-
alized views, etc., (b) the addition of new features which induces the enrichment
of the data model with new entities, and (c) the growing need for preservation of
database content history. A very interesting observation is that around 45% of
changes do not affect the information capacity of the schema, but they are rather
index adjustments, documentation, etc. A statistical study of change breakdown
revealed that attribute addition is the most common alteration, with 39 % of
changes, attribute deletion follows with 26 %, attribute rename was up to the
16 % and table creation involved a 9 % of the entire set of recorded changes. The
rest of the percentages were insignificant.

Special mention should be made to this line of research [5], as the people
involved in this line of research should be credited for providing a large collection
of links1 for open source projects that include database support. Also, it is
worth mentioning here that the effort is related to PRISM (later re-engineered to
PRISM++ [6]), a change management tool, that provides a language of Schema
1 http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Benchmark Extension.

http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Benchmark_Extension
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Modification Operations (SMO) (that model the creation, renaming and deletion
of tables and attributes, and their merging and partitioning) to express schema
changes (see Sect. 4.1 for details).

Shortly after, two studies from the Univ. of Riverside appear. In [7], Lin and
Neamtiu study two aspects of database evolution and their effect to surrounding
applications. The first part of the study concerns the impact that schema evo-
lution has on the surrounding applications. The authors work with two cases,
specifically the evolution of Mozilla, between 2005 and 2009 and the evolution
of the Monotone version control system between 2003 and 2009, both of which
use a database to store necessary information for their correct operation. The
authors document and exemplify how the developers of the two systems address
the issue of schema evolution between different versions of their products. The
authors also discuss the impact of erroneous database evolution, even though
there exists software that is responsible for the migration of the system’s mod-
ules to the new database schema. One very interesting finding is that although
the applications can include a check on whether the database schema is syn-
chronized to the appropriate version of the application code, this check is not
omnipresent; thus, there exist cases where the application can operate on a
different schema than the one of the underlying database, resulting in crashes
or data loss. At the same time, the authors have measured the breakdown of
changes during the period that they have studied. The second part of the study
concerns DBMS evolution (attention: DBMS, not database) from the viewpoint
of file storage. The authors study SQLite, MySQL and Postgres on how differ-
ent releases come with different file formats and how usable old formats can be
under a new release of the DBMS. Also, the authors discuss how the migration
of stored databases should be performed whenever the DBMS is upgraded, due
to the non-compatibility of the file formats of the different releases.

In a similar vein, in [8], Wu and Neamtiu considered 4 case studies of embed-
ded databases (i.e., databases tightly coupled with corresponding applications
that rely on them) and studied the different kinds of changes that occurred in
these cases. Specifically, the authors study the evolution of Firefox between 2004
and 2008, Monotone (a version management system) between 2003 and 2010,
BiblioteQ (a catalog management suite) between 2008 and 2010 and Vienna (an
RSS newsreader) between 2005 and 2010. Comparing their results to previous
works, the authors see the same percentages concerning the expansion of the
database, but a larger number of table and column deletions. This is attributed
to the nature of the databases, as the databases that are studied by Wu and
Neamtiu are embedded within applications, rather than largely used databases
as in the case of the previous studies. Moreover, the authors performed a respec-
tive frequency and timing analysis, which showed that the database schemata
tend to stabilize over time, as the evolution activity calms down over time.
There is more change activity for the schemata at the beginning of their history,
whereas the schemata seem to converge to a relatively fixed structure at later
versions.
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A Large-Scale Study in 2013. In [9], Qiu, Li and Su report on their study of
the evolution of 10 databases, supporting open source projects. The authors col-
lected the source files of the applications via their SVN repositories and isolated
the changes to the logical schema of each database (i.e., they ignored changes
involving comments, syntax correction, DBMS-related changes, and several oth-
ers). The remaining changes are characterized by the authors as valid DB revi-
sions. The authors report that they have avoided the automatic extraction of
changes, as the automatic extraction misses changes like table split or merge,
or renaming and have performed manual checks for all the valid DB revisions
for all the datasets. The study covers 24 types of change including the additions
and deletions of tables, attributes, views, keys, foreign keys, triggers, indexes,
stored procedures, default value and not null constraints, as well as the renam-
ing of tables, attributes and the change of data types and default values. We
summarize the main findings of the study in four categories.

Temporal and Locality Focus. Change is focused both (a) with respect to time
and (b) with respect to the tables that change. Concerning timing, a very impor-
tant finding is that 7 out of 10 databases reached 60% of their schema size within
20% of their early lifetime. Change is frequent in the early stages of the data-
bases, with inflationary characteristics; then, the schema evolution process calms
down. Schema changes are also focused with respect to the tables that change:
40% of tables do not undergo any change at all, and 60%-90% of changes per-
tain to 20% of the tables (in other words, 80% of the tables live quiet lives). The
most frequently modified tables attract 80% of the changes.

Change breakdown. The breakdown of changes revealed the following catholic
patterns: (a) insertions are more than updates which are more than deletions
and (b) table additions, column additions and data type changes are the most
frequent types of change.

Schema and Application Co-evolution. To assess how applications and data-
bases co-evolve, the authors have randomly sampled 10% of the valid database
revisions and manually analyzed co-evolution. The most important findings of
the study are as follows:

– First, the authors characterized the co-change of applications in four categories
and assessed the breakdown of changes per category. In 16.22% of occasions,
the code change was in a previous/subsequent version than the one where the
database schema change occurred; 50.67% of application adaptation changes
took place in the same revision with the database change, 21.62% of database
changes were not followed by code adaptation and 11.49% of code changes
were unrelated to the database evolution.

– A second result says that each atomic change at the schema level is estimated
to result in 10 – 100 lines of application code been updated. At the same time,
a valid database revision results in 100 – 1000 lines of application code being
updated.

A final note: Early in the analysis of results, the authors claim that change
is frequent in schema evolution of the studied datasets. Although we do not
dispute the numbers of the study, we disagree with this interpretation: change
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caries a lot between different cases (e.g., coppermine comes with 8.3 changes
and 14.2 atomic changes per year contrasted to 65.5 changes and 299.3 atomic
changes per year at Prestashop). We would argue that change can be arbitrary
depending on the case; in fact, each database seems to present its own change
profile.

2.2 Recent Advances in Uncovering Patterns in the Evolution
of Databases

A recent line of research that includes [10–12], reveals patterns and regularities
in the evolution of database schemata. At a glance, all these efforts analyze the
evolution of the database schemata of 8 open source case studies. For each case
study, the authors identified the changes that have been performed in subsequent
schema versions and re-constructed the overall evolution history of the schema,
based on Hecate, an automated change tracking tool developed by the authors
for this purpose. The number of versions that have been considered for the dif-
ferent schemata ranged from 84 to 528, giving a quite rich data set for further
analysis. Then, in [10] the authors perform a macroscopic study on the evolution
of database schemata. Specifically, in this study the authors detect patterns and
regularities that concern the way that the database schema grows over time,
the complexity of the schema, the maintenance actions that take place and so
on. To detect these patterns they resort to the properties that are described in
Lehnman’s laws of software evolution [13]. In [11], extend their baseline work in
[10] with further results and findings revealed by the study, as long as detailed
discussions concerning the relevance of the Lehman’s laws in the case of data-
bases, and the metrics that have been employed. On the other hand, in [12] the
authors perform a microscopic study that delves into the details of the life of
tables, including the tables’ birth, death, and the updates that occur in between.
This study reveals patterns, regularities and relations concerning the aforemen-
tioned aspects.

The Life of a Database Schema. In the early 70’s, Lehman and his colleagues
initiated their study on the evolution of software systems [14] and continued to
refine and extend it for more than 40 years [13]. Lehman’s laws introduce the
properties that govern the evolution of E-type systems, i.e., software systems that
solve a problem, or address an application in the real world [13]. For a detailed
historical survey of the evolution of Lehman’s laws the interested reader can refer
to [15]. The essence of Lehman’s laws is that the evolution of an E-type system
is a controlled process that follows the behavior of a feedback-based mechanism.
In particular, the evolution is driven by positive feedback that reflects the need
to adapt to the changing environment, by adding functionalities to the evolving
system. The growth of the system is constrained by negative feedback that reflects
the need to perform maintenance activities, so as to prevent the deterioration of
the system’s quality.

In more detail, as discussed in [10,11] the laws can be organized in three
groups that concern different aspects of the overall software evolution process.
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The first group of laws discusses the existence of the feedback mechanism that
constrains the uncontrolled evolution of software. The second group focuses on
the properties of the growth part of the system, i.e., the part of the evolu-
tion mechanism that accounts for positive feedback. Finally, the third group
of laws discusses the properties of perfective maintenance that constrains the
uncontrolled growth, i.e., the part of the evolution mechanism that accounts for
negative feedback. The major patterns and regularities revealed in [10,11] from
the investigation of each group of laws are summarized below:

– Feedback mechanism for schema evolution: Overall, the authors found that
schema evolution demonstrates the behavior of a stable, feedback-regulated
system, as the need for expanding its information capacity to address user
needs is controlled via perfective maintenance that retains quality; this antag-
onism restrains unordered expansion and brings stability. Positive feedback
is manifested as expansion of the number of relations and attributes over
time. At the same time, there is negative feedback too, manifested as house-
cleaning of the schema for redundant attributes or restructuring to enhance
schema quality. In [10,11] the authors further observed that the inverse square
models [16] for the prediction of size expansion hold for all the schemata that
have been studied.

– Growth of schema size due to positive feedback : The size of the schema expands
over time, albeit with versions of perfective maintenance due to the negative
feedback. The expansion is mainly characterized by three patterns/phases, (i)
abrupt change (positive and negative), (ii) smooth growth, and, (iii) calmness
(meaning large periods of no change, or very small changes). The schema’s
growth mainly occurs with spikes oscillating between zero and non-zero val-
ues. Also, the changes are typically small, following a Zipfian distribution
of occurrences, with high frequencies in deltas that involved small values of
change, close to zero.

– Schema maintenance due to negative feedback : As stated in [11] the overall
view of the authors is that due to the criticality of the database layer in the
overall information system, maintenance is done with care. This is mainly
reflected by the decrease of the schema size as well as the decrease in the
activity rate and growth with age. Moreover, the authors observed that age
results in a reduction of the complexity to the database schema. The interpre-
tation of this observation is that perfective maintenance seems to do a really
good job and complexity drops with age. Also, they authors point out that in
the case of schema evolution, activity is typically less frequent with age.

The Life of a Table - Microscopic Viewpoint. In [12], the authors inves-
tigated in detail the relations between table schema size, duration and updates.
The main findings of this study are summarized below:

– From a general perspective, early stages of the database life are more “active”
in terms of births, deaths and updates, whereas, later, growth is still there,
but deletions and updates become more concentrated and focused.
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– The life and death of tables is governed by the Gamma pattern, which says
that large-schema tables typically survive. Moreover, short-sized tables (with
less than 10 attributes) are characterized by short durations. The deletions of
these “narrow” tables typically take place early in the lifetime of the project
either due to deletion or due to renaming (which is equivalent from the point
of view of the applications: they crash in both cases).

– Concerning the amount of updates, most tables live quiet lives with few
updates. The main reason is the dependency magnet phenomenon, i.e., table
updates induce large impact on the surrounding dependent software.

– The relation between table duration and amount of updates is governed by
the inverse Gamma pattern, which states that updates are not proportional
to longevity, but rather, few top-changer tables attract most of the updates.
– Top-changer tables live long, frequently they are created in the first version

of the database and they can have large number of updates (both in
absolute terms and as a normalized measure over their duration).

– Interestingly top-changer tables, they are not necessarily the larger ones,
but typically medium sized.

3 State of Practice

In this section, we discuss how the commercial database management systems
handle schema changes. The systems that we survey are: (a) Oracle, (b) DB2
of IBM, and, (c) SQL Server and Visual Studio of Microsoft. Another part of
this research is dedicated to the open sourced or academic tools that are dealing
with the schema changes. Some of those tools are: (a) Django, (b) South, and,
(c) Hecate.

3.1 Commercial Tools

Oracle - Change Management Pack (CMP). Oracle Change Management
Pack ([17]) is part of Oracle Enterprise Manager. CMP enables the management
and deployment of schema changes from development to production environ-
ments, as well as the identification of unplanned schema changes that potentially
cause application errors.

CMP features the following concepts:

– Change plans: A change plan is an object that serves as a container for change
requests.

– Baselines: A baseline is a group of database object definitions captured by the
Create Baseline application at a particular point in time.

– Comparisons: A comparison identifies the differences found by the Oracle
Change Management Pack in two sets of database object definitions that you
have specified in the Compare Database Objects application.
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The Create Baseline application enables users in creating database schema
descriptions in a CMP format or plain SQL DDL files. These descriptions are
used to compare, or make changes to other schemata.

The Compare Database Objects application allows DBA users to compare
different “database” versions. This way, in case of an application error produced
by a non-tested schema change applied in the database, the DBA can produce
all changes a-posterior and find the cause of the application failure.

The Synchronization Wizard of CMP supports the user in modifying an item
target to match another item source. The Synchronization Wizard needs a com-
parison of the target and source items, so it works after the Compare Database
Objects application. The Synchronization Wizard orders the “transformation”
steps, in order to produce the target item. This is, for example, to make sure
that the foreign keys will be applied after the primary keys. Besides that, the
Synchronization Wizard can delete items. This happens, when there is no source
item. Moreover, if there is no target item, the Synchronization Wizard initially
creates and then synchronizes a new target item with the source one. Finally,
using the Synchronization Wizard, the user may keep or undo the changes made
to a target item.

Another module that works similar to the Synchronization Wizard is the
DB Propagate application of CMP, which allows the user to select one or more
object definitions and reproduce them in one or more target schemata.

Two other applications of CMP are: DB Quick Change, and, DB Alter. The
DB Quick Change application helps the user in making one change to a single
database item. The DB Alter application helps the user in making one or more
changes to one, or more database items (in comparison to the Synchronization
Wizard, here there is no need of any preceding comparison).

Finally, the Plan Editor of CMP lets the user perform a single change plan on
one or more databases, that he may keep or undo. The Plan Editor can perform
a wider variety of changes, compared to those that Synchronization Wizard, DB
Alter, DB Quick Change, and DB Propagate can perform. The Plan Editor
allows the creation of a change plan that serves as a container for change requests
(directives, scoped directives, exemplars, and modified exemplars), generates
scripts for those change requests and executes them on one or more databases.

IBM - DB2. IBM DB2 provides a mechanism that checks the type of the
schema changes [18] that the users want to perform in system-period temporal
tables. A system-period temporal table is a table that maintains historical ver-
sions of its rows. A system-period temporal table uses columns that capture the
begin and end times when the data in a row is valid and preserve historical ver-
sions of each table row whenever updates or deletes occur. In this way, queries
have access to both current data, i.e., data with a valid current time, as well data
from the past. Finally, DB2 offers the DB2 Object Comparison Tool [19]. It is
used for identifying structural differences between two or more DB2 catalogs,
DDL, or version files (even between objects with different names). Moreover, it
is able to generate a list of changes in order to transform the target comparator
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into a new schema, described by the source comparator. Finally, it is capable
to undo changes that were performed and committed in a version file, so as to
restore it to a given previous version.

Temporal tables prohibit changes that result in loss of data. These changes
can be produced by commands like DROP COLUMN, ADD COLUMN, and,
ALTER COLUMN. All the changes, applicable to temporal tables, can be prop-
agated back to the history of the schema, with only two exceptions, the renaming
of a table and the renaming of an index.

Microsoft - SQL Server and Visual Studio. Change management support
for Microsoft SQL Server comes with the SQL Server Management Studio [20]
(SSMS). SSMS allows the user to browse, select, and manage any of the data-
base objects (e.g., create a new database, alter an existing database schema,
etc.) as well as visually examine and analyze query plans and optimize the data-
base performance. SSMS provides data import export capabilities, as well as
data generation features, so that users can perform validation tests on queries.
Regarding the evolution point of view, it is capable of comparing two different
database instances and returning their structural differences. The tool may also
provide information on DDL operations that occurred, through the reports of
schema changes. An example of such a report from [21] is displayed in Table 1.

Table 1. SSMS report

database start time login user application ddl object type desc
name name name name operation

msdb 2015-08-27

14:08:40.460

sa sa SSMS -

Query

CREATE dbo.DDL History USER TABLE

TestDB 2015-08-26

11:32:19.703

sa sa SSMS ALTER dbo.SampleData USER TABLE

Another set of tools that Microsoft offers for the validation of SQL code is the
SQL Server Data Tools [22] (SSDT). SSDT follows a project-based approach for
the database schema and SQL source code that is embedded in the applications.
A developer can use SSDT to locally check and debug SQL code (by using
breakpoints in his SQL code).

Another tool that comes from Microsoft as an extension to Visual Studio
is MoDEF [23]. MoDEF uses the model-view-controller idea for the database
schema manipulation. In MoDEF, the user defines classes that represent the
columns of a table in a relational database. The classes are mapped to relational
tables that are created in the database via select-project queries. In MoDEF, the
changes of the client model are translated to incremental changes as an upgrade
script for the database. Moreover, MoDEF annotates the upgrade script with
comments, to inform the DBA for the changes that are going to happen in the
database schema.
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3.2 Open Source or Academic Tools

Django. Likewise to MoDEF, Django [24] also uses the model-view-controller
idea for the database schema manipulation. Regarding evolution, Django uses an
automatic way to identify which columns were added or deleted from the tables
between two versions of code and migrate these changes to the database schema.
Django identifies the changes in the attributes of a class and then produces the
appropriate SQL code that performs the changes to the underlying database
schema.

South. South [25] is a tool operating on top of Django, identifying the changes in
the Django’s models and providing automatic migrations to match the changes.
South supports five database backends (PostgreSQL, MySQL, SQLite, Microsoft
SQL Server, and, Oracle), while Django officially supports four (PostgreSQL,
MySQL, SQLite, and, Oracle). South also supports another five backends(SAP
SQL Anywhere, IBM DB2, Microsoft SQL Server, Firebird, and, ODBC) through
unofficial third party database connectors.

In South, one can express dependencies of table versions so as to have the
correct execution order of migration steps and void inconsistencies. For example,
in a case where a foreign key references a column that is not yet a key, this kind
of problem can be identified and avoided.

The Autodetector part of South can extend the migrations that Django offers.
Specifically, South can automatically identify the following schema modifications:
model creation and deletion (create/drop a table), field changes (type change of
columns) and unique changes, while Django can only identify the addition or
deletion of columns.

Hecate. Hecate [26] is a tool that parses the DDL files of a project and com-
pares the database schemata between versions. Hecate also exports the transi-
tions between two versions, describing the additions and deletions that occurred
between the versions (renames are treated as deletions followed by additions).
Hecate also provides measures such as size and growth of the schema versions.

Hecataeus. Hecataeus [27] is a what-if analysis tool that facilitates the visu-
alization and impact analysis of data-intensive software ecosystems. As these
ecosystems include software modules that encompass queries accessing an under-
lying database, the tool represents the database schema along with its dependent
views and queries as a uniform directed graph. The tool visualizes the entire
ecosystem in a single representation and allows zooming in and out its parts.
Most related to the topic of this survey, the tool enables the user to create
hypothetical evolution events and examine their impact over the overall graph.
Hecataeus does not simply flood the event over the underlying graph; it also
allows users as to define “veto” rules that block the further propagation of an
evolutionary event (e.g., because a developer is adamant in keeping the exact
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structure of a table employed by one of her applications). Hecataeus also rewrites
the graph, after the application of the event so that both the syntactical and the
semantic correctness of the affected queries and views are retained.

4 Techniques for Managing Database and View Evolution

In this section, we discuss the impact of changes in a database schema to the
applications that are related to that schema. Given a set of scripts, the meth-
ods proposed in this part of the literature identify how database and software
modules are affected by changes that occur at the database level. Techniques
for query rewriting are also discussed. Closely to this topic is the topic of view
adaptation: how must the definition (and the extent, in case of materialization)
of a view adapt whenever the schema of its underlying relations changes?

4.1 Impact Assessment of Database Evolution

The problem of impact assessment for evolving databases has two facets: (a) the
identification of the parts of applications that are affected by a change, and, (b)
the automation of the rewritting of the affected queries, once they have been
identified. In this subsection, we organize the discussion of related efforts in a
way that reflects both the chronological and the thematic dimension of how
research has unfolded. A summary of the different methods is given at the end
of the subsection.

Early Attempts Towards Facilitating Impact Assessment. Maule,
Emmerich and Rosenblum [28] propose a technique for the identification of
the impact of relational database schema changes upon object-oriented appli-
cations. In order to avoid a high computational cost, the proposed technique
uses slicing, so as to reduce the size of the program that is needed to be ana-
lyzed. At a first step, the authors use a prototype slicing implementation that
helps them identify the database queries of the program. Then, with a data-
flow analysis algorithm, the authors estimate the possible runtime values for the
parameters of the query. Finally, the authors use an impact assessment tool,
Crocopat, coming with a reasoning language (RML) to describe the impacts of
a potential change to the stored data of the previous step. Depending on the
type of change, a different RML program is run, and this eventually isolates the
lines of code of the program that are related to the queries affected by the change.
The authors evaluated their approach on a C# CMS project of 127000 lines of
code, and a primary database schema of up to 101 tables, with 615 columns and
568 stored procedures. The experiments showed that the method needed about
2 min for each execution, where they found that there were no false negatives.
On the other hand, there were false positives in the results, meaning that the
tool was able to find all the lines of code that were affected, leaving none out,
but also falsely reported that some lines of code would be affected, whilst this
was not really happening.
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Architecture Graphs. Papastefanatos et al. [29–31] introduced the idea of
dealing with both the database and the application code in uniform way. The
results of this line of research are grouped in the areas of (a) modeling, (b) change
impact analysis, and (c) metrics for data intensive ecosystems (data intensive
ecosystems are conglomerations of data repositories and the applications that
depend on them for their operations). This line of work has been facilitated by
the Hecataeus tool (see [29,32]).

Concerning the modeling and the impact analysis parts, in [29], the authors
proposed the use of the Architecture Graph for the modeling of data intensive
ecosystems. The Architecture Graph is a directed graph where the nodes rep-
resent the entities of the ecosystem (relations, attributes, conditions, queries,
views, group by clauses, etc.), while the edges represent the relationships of
these entities (schema relationships, operand relationships, map-select relation-
ships, from relationships, where relationships, group by relationships, etc.). In
the same paper, the authors proposed an algorithm for the propagation of the
changes of one entity to other related entities, using a status indicator of whether
the imminent change is accepted, blocked or if the user of the tool should be
asked.

In [30], the authors proposed an extension for the SQL query language,
that introduced policies for the changes in the database schema. The users
could define in the declaration of their database schema whether a change
should be accepted, blocked or if the user should be prompted. In this work,
the policies were defined over: (a) the database schema universally, (b) the
high level modules (relations, views and queries) of the database schema, and,
(c) the remaining entities of the database, such as attributes, constraints and
conditions.

Regarding the metrics part, a first attempt to the problem was made by
Papastefanatos et al., on ways to predict the maintenance effort and the assess-
ment of the design of ETL flows of data warehouses under the prism of evolution
in [31]. In [33], the same authors used a real world evolution scenario, which used
the evolution of the Greek public sector’s data warehouse maintaining informa-
tion for farming and agricultural statistics. The experimental analysis of the
authors is based in a six-month monitoring of seven real-world ETL scenar-
ios that process the data of the statistical surveys. The Architecture Graph of
the system was used as a provider of graph metrics. The findings of the study
indicate that schema size and module complexity are important factors for the
vulnerability of an ETL flow to changes.

In a later work [34], Manousis et al., redefine the model of the Architecture
Graph. The paper extends the previous model by requiring the high level modules
of the graph to include input and output schemata, in order to obtain an isolation
layer that leads to the simplification of the policy language. The method is based
on the annotation of modules with policies that regulate the propagation of
events in the Architecture Graph; thus, a module can either block a change or
adapt to it, depending on its policy. The method for impact assessment includes
three steps that: (a) assess the impact of a change, (b) identify policy conflicts
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from different modules on the same change event, and (c) rewrite the modules
to adapt to the change. It is noteworthy that simply flooding the evolution
event over the Architecture Graph in order to assess the impact and perform
rewrittings, is simply not enough, as different nodes can react with controversial
policies to the same event. Thus, the three stages are necessary, with the middle
one determining conflicts and a “cloning” method, for affect paths on the graph,
in order to service conflicting requirements, whenever possible.

Fig. 1. A example of a rewrite process when the policies of Q1 and Q2 queries are
conflicting [35].

In Fig. 1, we depict a situation that exemplifies the above. In the Architecture
Graph that is displayed in the left part of Fig. 1, a change happens in view V0

and affects the view V1, which, in turn, affects the two queries Q1 and Q2 of the
example. The first query (Q1) accepts the change, whereas the second one (Q2)
blocks it. This means that Q2 wants to retain its semantics and be defined over
the old versions of the views of the Architecture Graph. Therefore, the query
that accepted the change will get a new path, composed of “cloned”, modified
versions of the involved views that abide by the change (depicted in light color
in the left part of the figure and annotated with a superscript c), whereas the
original views and their path towards Q2 retain their previous definition (i.e.,
they decline the change).

Schema Modification Operators. In this section, we review a work that
produces –when it is possible– valid query rewritings of old queries over a new
database schema, as if the evolution step of the database schema never happened.
This way, the results that the user receives, after the execution of the rewritten
query, are semantically correct.

An approach that supports the ecosystem idea, to a certain extent, is [36]. In
this approach, the authors propose a method that rewrites queries whenever one
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of their underlying relations changes with the goal of retaining the same query
result as if the evolution event never happened, using Schema Modification Oper-
ators (SMOs). The Schema Modification Operators that PRISM/PRISM++
tool uses are:

– CREATE TABLE R(a, b, c)
– DROP TABLE R
– RENAME TABLE R INTO T
– COPY TABLE R INTO T
– MERGE TABLE R, S INTO T
– PARTITION TABLE R INTO S WITH condition, T
– DECOMPOSE TABLE R INTO S(a, b) T (a, c)
– JOIN TABLE R, S INTO T WHERE condition
– ADD COLUMN d [AS constant | function(a, b, c)] INTO R
– DROP COLUMN r FROM R
– RENAME COLUMN b IN R TO d

The R, S, and T variables represent relations. The a, b, c, d, and r variables
represent attributes. The constant variable stands for a fixed value, while
the function is used in ADD COLUMN in order to express simple tasks as data
type and semantic conversions are. Besides the schema modification operators,
PRISM/PRISM++ uses the integrity constraints modification operators ICMO
and policies (which will be described later on) for this kind of rewrites. The
ICMOs are:

– ALTER TABLE R ADD PRIMARY KEY pk1(a, b) <policy>
– ALTER TABLE R ADD FOREIGN KEY fk1(c, d) REFERENCES T (a, b) <policy>
– ALTER TABLE R ADD VALUE CONSTRAINT vc1(c, d) AS R.e=“0” <policy>
– ALTER TABLE R DROP PRIMARY KEY pk1
– ALTER TABLE R DROP FOREIGN KEY fk1
– ALTER TABLE R DROP VALUE CONSTRAINT vc1

The R and T variables represent relations. The a, b, c, d, and e variables repre-
sents attributes. The pk1 represents the primary key of the preceding relation.
The fk1 represents the foreign key of a relation. Finally, the vc1 represents a
value constraint. The ICMOs have, also, a <policy> placeholder, where the
policy can be one of the following:

1. CHECK, where the PRISM/PRISM++ tool verifies that the current database
satisfies the constraint, otherwise the ICMO is rolled back,

2. ENFORCE, where the tool removes all the data that violate the constraint, and,
3. IGNORE, where the tool ignores if there exist tuples that violate the constraint

or not, but informs the user about this.

When the ENFORCE policy is used and tuples have to be removed, the tool
creates a new database schema and inserts all the violating tuples in order to
help the DBA carry out inconsistency resolution actions.
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Regarding the rewrite process of queries through SMOs, the Chase
&Backchase algorithm uses as input the SMOs and a query that is to be rewrit-
ten. The algorithm rewrites the query through an inversion step of the SMO’s
(for example, the inversion of a JOIN is the DECOMPOSITION), in order to
retain the query’s results unchanged, independently of the underlying schema.
This way, the resulting tuples of the query will be the same as if the database
schema never changed. The rewrite process of queries through ICMOs is done
with the help of policies.

So, the steps that describe the algorithm of the rewriting that the authors
proposed, are:

1. Get the SMOs from the DBA
2. Inverse the SMOs, in order to guarantee –if it is possible– the semantic cor-

rectness of the new query
3. Rewrite the query and validate its output.

The authors also describe a rewrite process of updates statement queries
(“UPDATE table SET. . . ”) through SMOs and ICMOs, based in the ideas
described in the previous paragraph. If the rewrite is through SMOs, the
UpdateRewrite algorithm tries to invert the evolution step, while if the rewrite
is through ICMOs, the policies ask the tool to check the tuples of the database
and either guarantee or inform the user about the contents of the database.

To improve their rewrite time the authors try to minimize the input of the
Chase &Backchase algorithm, by removing from the input all the mappings and
constraints that are not related with the evolution step. Moreover, the proposed
method uses only the version of the relation in which the query was written,
leaving all the previous modifications out, as they are unrelated to the query.
This is the backchase optimizer technique that the authors proposed, which
produced bigger execution times in the chase and backchase phase of higher
connected schemata because of the foreign keys that lead to higher input in
chase phase, in the experiments that were conducted. In order to achieve even
better execution time, the authors propose the use of a caching technique, since
from the observations they made on their datasets, they noticed that there is a
number of common query/update templates, which is parametrized and reused
multiple times. These patterns are:

Join pattern type 1. In this pattern, a new table is created to host joined data
from the desired column of two or more tables and migrates the data from
the old tables to the new one.

Join pattern type 2. In this pattern, the data of a column are moved from the
source table to the destination table.

Decompose pattern. In this pattern, a table is decomposed to two new tables. In
order to be correct, both tables should have the key of the table.

Partition pattern. In this pattern, a part of the data of a table is moved into a
new table and deleted from the original one.
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Merge pattern. In this pattern, all the tuples of a table are moved into another
table.

Copy pattern. In this pattern, an existing table is cloned.

The authors validated the PRISM/PRISM++ tool using the Ensembl
project, including 412 schema versions, and the Mediawiki project, which is
part of the Wikipedia project and had 323 schema versions. The authors used
120 SQL statements (queries and updates) from those two projects, tested them
against SMO and ICMO operators and their tool found a correct rewriting,
whenever one existed.

In a later work [6], the authors provide an extended description of the tool
that performs the rewrites of the queries (PRISM/PRISM++) and its capa-
bilities. Moreover, the authors introduce two other tools of which the first one
collects and provides statistics on database schema changes and the other derives
equivalent sequences of (SMOs) from the migration scripts that were used for
the schema changes.

Summary. In Table 2 we summarize the problems and the solutions of the
works that were presented earlier. The first two works are dealing with the
impact analysis problem, which is to identify which parts of the code is affected
by a change, and the other two works are dealing with the rewriting of the code
in order to obtain or hide the schema changes.

4.2 Views: Rewriting Views in the Context of Evolution

A view is a query expression, stored in the database dictionary, which can be
queried again, just as if it was a regular relation of the database. A view, thus,
retains a dual nature: on the one hand, it is inherently a query expression;
yet, on the other hand, it can also be treated as a relation. A virtual view
operates as a macro: whenever used in a query expression, the query processor
incorporates its definition in the query expression and the query is executed
afterwards. Materialized views are a special category of views, that persistently
store the results of the query in a persistent table of the DBMS. In this section,
we survey research efforts that handle two problems. First, we start with the
effect that a materialized view redefinition has on the maintenance of the view
contents: the expression defining the view is altered and the stored contents of
the view have to be adjusted to fit the new definition (ideally, without having to
fully recompute the contents of the view from scratch). Second, we survey efforts
pertaining to how views should be adapted when the schema of their defining
tables evolves (also known as the “view adaptation” problem). A summary table
concludes this subsection.

In [37], Mohania deals with the problem of maintaining the extent of a mate-
rialized view that is under redefinition, by proposing methods that try to avoid
the full re-computation of the view. The author uses expression trees, which are
binary trees, the leaf nodes represent base relations that are used for defining
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Table 2. Summary table for Sect. 4.1

Works Problem Input Output Method

[28] Impact analysis of

an imminent

schema change

in OO apps

DB schema and

source code; an

imminent change

The lines of code

that are affected

by the DB

schema change

Slicing technique to

identify the DB

related lines of

C# code, and

estimation of

values so as to

further slice the

C# code.

[29,30] Impact analysis of

an imminent

schema change

DB schema and

application’s

queries

abstracted as

Architecture

Graph; policies

for of the nodes;

an imminent

change

Annotation of

affected nodes

with a status

indication.

Language for node

annotation.

Propagation of a

change, based on

the node’s policy

for the change.

[34] Restructuring of DB

schema and app

queries due to a

schema change

DB schema and

application’s

queries

abstracted as

Architecture

Graph; policies

for of the nodes;

an imminent

change

Rewritten

Architecture

Graph acording

to the policies

Rewrite via cloning

the queries that

want to acquire

the change and

leave intact the

ones that block

the change.

[6,36] Rewritting of app

queries due to

schema change

SMOs and ICMOs

of the

modification,

and queries that

use the modified

table/view

Rewritten queries

returning the

same result as if

the change has

never happened.

The 1 hop away

queries are

rewritten as if

the schema

change never

happened, using

the Chase

&Backchase

algorithm

the view, while the rest of the nodes contain binary relational algebraic opera-
tors. Unary operators such as selection and projection are associated with the
edges of the tree. In a nutshell, the author proposes that making use of these
expression trees, it is easy to find common subexpressions between the new and
old view statements and thus, if applicable, make use of the old view to get the
desired results of the redefined view, without recomputing the new definition.
Due to its structure, the tree allows to avoid interfering with the result of the
view computation: (a) the height of the trees is no more than two levels, and,
(b) a change is either a change to a unary operator associated with the edge of
the tree, or a change to a binary node. This way, when the change is made at the
root node, then the expression corresponding to the right hand child in the tree
has to be evaluated only, while when the change is made at level d=1, the view
re-computation becomes a view maintenance problem. Finally, when the change
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is made at any other node, it is only the intermediate results of the nodes that
have to be maintained.

Gupta, Mumick, Rao and Ross [38] provide a technique that redefines a
materialized view and adapts its extent, as a sequence of primitive local changes
in the view definition, in order to avoid a full re-computation. Moreover, on more
complex adaptations –when multiple simultaneous changes occur on a view– the
local changes are pipelined in order to avoid intermediate creations of results of
the materialized view. The following changes are supported as primitive local
changes to view definitions:

1. Addition or deletion of an attribute in the SELECT clause.
2. Addition, deletion, or modification of a predicate in the WHERE clause (with

and without aggregation).
3. Addition or deletion of a join operand (in the FROM clause), with associated

equijoin predicates and attributes in the SELECT clause.
4. Addition or deletion of an attribute from the GROUP BY list.
5. Addition or deletion of an aggregate function to a GROUP BY view.
6. Addition, deletion or modification of a predicate in the HAVING clause. Addi-

tion of the first predicate of deletion of the last predicate corresponds to
addition and deletion of the HAVING clause itself.

7. Addition of deletion of an operand to the UNION and EXCEPT operators.
8. Addition or deletion of the DISTINCT operator.

Concerning the problem of adapting a view definition to changes in the rela-
tions that define it, Nica, Lee and Rundensteiner [39] propose a method that
makes legal rewritings of views affected by changes. The authors primarily deal
with the case of relation deletion which (under their point of view) is the most
difficult change of a database schema, since the addition of a relation, the addi-
tion of an attribute, the rename of a relation and the rename of an attribute can
be handled in a straightforward way (the attribute deletion, according to the
authors, is a simplified version of the relation deletion). To attain this goal one
should find valid replacements for the affected components of the existing view,
so, in order to achieve that, the authors of [39] keep a Meta-Knowledge Base on
the join constraints of the database schema. This Meta-Knowledge Base (MKB)
is modeled as a hyper-graph that keeps meta-information about attributes and
their join equivalence attributes on other tables. The proposed algorithm, has as
input the following: (a) a change in a relation, (b) MKB entities, and, (c) new
MKB entities. Assuming that valid replacements exist, the system can auto-
matically rewrite the view via a number of joins and provide the same output
as if there was no deletion. The main steps of the algorithm are: (a) find all
entities that are affected for Old MKB to became New MKB, (b) mark these
entities and for each one of them find a replacement from Old MKB, using join
equivalences, and, (c) rewrite the view over these replacements. Interestingly,
the authors accompany their method with a language called E-SQL that anno-
tates parts of a view (exported attributes, underlying relations and filters) with
respect to two characteristics: (a) their dispensability (i.e., if the part can be
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Table 3. Summary table for Sect. 4.2

Work Problem Input Output Method

[37] Maintenance of

redefined

materialized

views

Definition and

redefinition

of a

materialized

view

Recomputed content

of the redefined

view

Use of expression trees

that identify common

subexpressions between

the input and output of

their method, thus

helping to avoid the full

re-computation of a

materialized view

[38] Maintenance of

redefined

materialized

views

Definition and

redefinition

of a

materialized

view

Recomputed content

of the redefined

view

The redefinition takes

place as a sequence of

primitive local changes

(in complex

adaptations this

sequence is pipelined to

avoid temporal results).

[39] View adaptation

on column

deletion

Hypergraph that

contains the

join

constraints of

the DB

schema

Valid replacement of

column that is

to be deleted

Search in the hypergraph

(named MKB) for a

replacement of the

column that is to be

deleted, and replace

that column in the view

with the replacement

removed from the view definition completely) and (b) their replaceability with
an another equivalent part.

Summary. In Table 3 we summarize the problems and the solutions of the
works that were presented earlier. The first two works refer to the problem of
the recomputation of the contents of a materialized view, after a redefinition of
the view. The other work refers to the problem of view adaptation on a column
deletion in the source tables, via a replacement.

5 Techniques for Managing Data Warehouse Evolution

A research area where the problem of evolution has been investigated for many
years is the area of data warehouses. In this section, we concentrate on works
related on evolution of both schema and data modifications in the context of
data warehouses, and we review methods and tools that help on the adaptation
of those changes. We also refer the reader to two excellent surveys on the issue,
specifically, [40,41].

5.1 Data Warehouses and Views

At the beginning of data warehousing, people tended to believe that data ware-
houses were collections of materialized views, defined over sources. In this case,
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evolution is mostly an issue of adapting the views definitions whenever sources
change.

Bellahsene, in two articles, [42,43], proposed a language extension to annotate
views with a HIDE clause that works oppositely to SELECT (i.e., the idea is to
project all attributes except for the hidden ones and an ADD ATTRIBUTE clause
to equip views with attributes not present in the sources (e.g., timestamps or
calculations). Then, in the presence of an event that changes the schema of a data
warehouse source (specifically, the events covered are attribute/relation addition
and deletion), the methods proposed by the author for the adaptation of the
warehouse handle the view rematerialization problems i.e., how to recompute
the materialized extent via SQL commands. The author also proposes a cost
model to estimate the cost of alternative options.

In [44], the author proposes an approach on data warehouse evolution based
on a meta-model, that provides complementary metadata that track the his-
tory of changes (in detail, changes that are related to data warehouse views)
and provide a set of consistency rules to enforce when a quality factor (actual
measurement of a quality value) has to be re-evaluated.

5.2 Evolution of Multidimensional Models

Multidimensional models are tailored to treat the data warehouse as a collection
of cubes and dimensions. Cubes represent clean, undisputed facts that are to be
loaded from the sources, cleaned and transformed, and eventually queried by the
client application, Cubes are defined over unambiguous, consolidated dimensions
that uniquely and commonly define the context of the facts. Dimensions com-
prise levels, which form a hierarchy of degrees of detail according to which we
can perform the grouping of facts. For example, the Time dimension can include
the levels (1) Day, that can be rolled up to either (2a) Week or (2b) Month, both
of which can be rolled up to level (3) Year. Each level comes with a domain of
values that belong to it. The values of different levels are interrelated via rollup
functions (e.g., 1/1/2015 can be rolled up to value 1/2015 at the Month level). As
levels construct a hierarchy that typically takes the form of a lattice, evolution is
mainly concerned with changing (i) the nodes of the lattice, or (ii) their relation-
ship, or (iii) the values of the levels and their interrelationship. The problem that
arises, then, is: how do we adapt our cubes (in their multidimensional form and
possibly their relational representation) when the structure of their dimensions
changes? The works surveyed in this subsection address this problem. A table at
the end of the subsection summarizes the problems addressed and the solutions
that are given.

The authors of [45] present a formal framework, based on a formal conceptual
description of an evolution algebra, to describe evolutions of multi-dimensional
schemata and their effects on the schema and on the instances. In [45], the
authors propose a methodology that supports an automatic adaptation of the
multi-dimensional schema and instances, independently of a given implementa-
tion. The main objectives of the proposed framework are: (i) the automatic adap-
tation of instances, (ii) the support for atomic and complex operations, (iii) the
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definition of semantics of evolution operations, (iv) the notification mechanism
for upcoming changes, (v) the concurrent operation and atomicity of evolution
operations, (vi) the set of strategies for the scheduling of effects and (vii) the
support of the design and maintenance cycle.

The authors provide a minimal set of atomic evolution operations, which
they use in order to present more complex operations. These operations are:
(i) insert level, (ii) delete level, (iii) insert attribute, (iv) delete attribute, (v)
connect attribute to dimension level, (vi) disconnect attribute from dimension
level, (vii) connect attribute to fact, (viii) disconnect attribute from fact, (ix)
insert classification relationship, (x) delete classification relationship, (xi) insert
fact, (xii) delete fact, (xiii) insert dimension into fact, and, finally, (xiv) delete
dimension.

In [46], the authors suggest a set of primitive dimension update operators
that address the problems of: (i) adding a dimension level, above (generalize) or
below (specialize) an existing level, (ii) deleting a level, (iii) adding or deleting
a value from a level (add/delete instance), or (iv) adding (relate) or removing
edges between parallel levels (unrelate). In [46], the authors also suggest another
set of complex operators, that intend to capture common sequences of changes
in instances of a dimension and encapsulate them in a single operation. The set
of those operators consists of: (i) reclassify (used, for example, when new regions
are assigned to salespersons as a result of marketing decisions of a company), (ii)
split (used, for example, when a region is divided into more regions and more
salespersons must be assigned to those regions due to the population density),
(iii) merge (the opposite of split), and, (iv) update (used, for example, when a
brand name for a set of items changes but the corporation as well as the set of
products related to the brand remain unchanged).

The mappings that the authors propose, for the transitions from the multi-
dimensional to the relational model, support both the de-normalized and nor-
malized relational representations. In the de-normalized approach, the idea is
to build a single table containing all the roll-ups in the dimension while in the
normalized approach, the idea is to build a table for each direct roll-up in the
dimension.

Finally, in the experiments that the authors conducted, they found that the
structural update operators in the de-normalized representation are more expen-
sive. The instance update operators in the normalized representation are more
expensive because of the joins that have to be performed, whilst both repre-
sentations are equally good for the operators that compute the net effect of
updates.

In a later work, the authors of [47] suggest a set of operators which encapsu-
late common sequences of primitive dimension updates and define two mappings
from the multidimensional to the relational model, suggesting a solution on the
problem of multidimensional database adaptation.

The effects of evolution to alternative relational logical designs is explored
in [48]. Specifically, the authors explore the impact of changes to both star and
snowflake schemata. The changes covered include (i) the addition of deletion
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of attributes to levels, (ii) the addition/deletion of dimension levels, (iii) the
addition/deletion of measures, and (iv) the addition/deletion of dimensions into
fact tables. A notable, albeit expected, result is that comparison of the effect
of changes to the two alternative structures, reveals that the simplest one, star
schema, is more immune to change than the more complicated one.

Summary. In Table 4 we summarize the problems and the solutions of the
research efforts that were presented earlier. The first two lines of work refer to
the evolution of multidimensional database schemata and the adaptation of its
contents, and the final effort refers to a comparison of the logical design between
star and snowflake alternatives.

5.3 Multiversion Querying over Data Warehouses

Once the research community had obtained a basic understanding of how mul-
tidimensional schemata can be restructured, the next question that followed
was: “what if we keep track of the history of all the versions of a data ware-
house schema as it evolves?” Then, we can ask queries that span several versions

Table 4. Summary table for Sect. 5.2

Works Problem Input Output Method

[45] Multidimensional
database
adaptation

MD schema;
Changes of
schemata

New schema and
instances

Automatic
adaptation of
multi-
dimensional
schema and
instances through
simple and
complex
operators of an
evolution algebra

[46,47] Multidimensional
database
adaptation

MD schema;
Changes of
schemata

Normalized or
de-normalized
new (RDBMS)
schema

Use of primitive
dimension update
operators and
complex
operators that
map the
multidimensional
schemata to
RDBMS
schemata

[48] Evolution of
alternative
relational
logical designs

Changes of
schemata

Comparison of
logical designs
to changes

Perform the changes
to both star and
snowflake designs
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having different structure, also known as multiversion queries. The essence of
multi-version queries involves transforming the data of previous versions (that
obey a previous structure) to the current version of the structure of the data
warehouse, in order to allow their uniform querying with the current data.

In this section, we discuss the adaptation of multiversion data warehouses
[49], the use of data mining techniques in order to detect structural changes in
data warehouses [50–52], and, the use of graph representations (directed graphs)
[53], in order to achieve correct cross version queries. We summarize problems
and solutions in a table at the end of the subsection.

Eder and Koncilia [52] propose a multidimensional data model that allows
the registration of temporal versions of dimension data in data warehouses.
Mappings are provided to translate data between different temporal versions
of instances of dimensions. This way, the system can answer correctly queries
that span in periods where dimension data have changed. The paper makes no
assumption on dimension levels, so when referring to a dimension, the paper
implies a flat structure with a single domain. The mappings are described as
transformation matrices. Each matrix is a mapping of data from version Vi
to version Vi+1 for a dimension D. Assume, for example a 2-dimensional cube,
including dimensions A and B with domains {a1, a2} and {b1, b2} respectively.
Assume that in a subsequent version: (i) a1 is split to a1

1 and a2
1 and (ii) b1

and b2 are merged into a single value b. Then, there is a transformation matrix
for dimension A, with one row for each old value {a1, a2} and one column for
each new value {a1

1, a
2
1, a2} expressing how the previous values relate to the new

ones. For example, one might say that a1
1 takes 30 % of a1 and a2

1 takes the other
70 %. The respective matrix is there for dimension B. Then, by multiplying any
cube with A and B as dimensions with the respective transformation matrices,
we can transform an old cube defined over {a1, a2} × {b1, b2} to a new cube
defined over {a1

1, a
2
1, a2} × {b}.

So at the end, the resulting factual cube maps the data of the previous version
to the dimension values of the current version; this way, both the current and
the previous version can be presented uniformly to the user.

Eder, Koncilia and Mitsche [50] propose the use of data mining techniques
for the detection of structural changes in data warehouses, in order to achieve
correct results in multi-period data analysis OLAP queries. Making use of three
basic operations (INSERT, UPDATE and DELETE), the authors are able to rep-
resent more complex operations such as: SPLIT, MERGE, CHANGE, MOVE,
NEW-MEMBER, and DELETE-MEMBER. The authors propose several data
mining techniques that detect which is the schema attribute that changed. In
the experiments that were conducted, the authors observed that the quality of
the results of the different methods depends on the quality and the volatility of
the original data.

The same authors continue their previous work on data mining techniques for
detection of changes in OLAP queries in [51]. Since their previous approach was
incapable of detecting some variety of changes, the authors propose data mining
techniques in form of multidimensional outlier detection to discover unexpected
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deviations in the fact data, which suggests that changes occurred in dimension
data. By fixing a dimension member they get a simple two-dimensional matrix
where the one axis is the excluded dimension member. From that matrix, a simple
deviation matrix with relative differences is computed. In this deviation matrix,
the results are normalized to get the probability of a structural change that might
have occurred. The authors propose the 10 % as a probability threshold for the
change to have occurred. From the conducted experiments, the authors found
that this method analyzes the data in more detail and gives a better quality of
the detected structural changes.

Some years later, Golfarelli et al. [53] propose a representation of data ware-
house schemata as graphs. The proposed graph represents a data warehouse
schema, in which the nodes are: (i) the fact tables of the data warehouse, and
(ii) the attributes of fact tables (including properties and measures), while the
edges represent simple functional dependencies defined over the nodes of the
schema. The authors also define an algebra of schema graph modifications that
are used to create new schema versions and discuss of how cross-version queries
can be answered with the help of augmented data warehouse schemata. The
authors finally show how a history of versions for data warehouse schemata is
managed.

Since the authors’ approach is based on a graph, the schema modification
algebra uses four simple schema modification operations (M): (i) AddF that adds
an arc involving existing attributes, (ii) DelF that deletes an existing arc, (iii)
AddA that adds a new attribute –directly connected by an arc to its fact node–
and (iv) DelA that deletes an existing attribute. Besides those simple operators,
the authors define the New(S,M) operator that describes the creation of a new
schema, based on the existing schema S when a simple schema modification M
is applied.

The authors introduce augmented schemata to serve multiversion queries.
Each previous version of the data warehouse schema is accompanied by an aug-
mented schema whose purpose is to translate the old data under the old schema
to the current version of the schema. To this end, the augmented schema keeps
track of every new attribute (say A), or new functional dependency (say f). In
order to translate the old data to the new version of the schema, the system
might have to: (i) estimate values for A, (ii) disaggregate or aggregate measure
values depending on the change of granularity, (iii) compute values for A, (iv)
add values for A, or, (v) check if f holds.

The set of versions of the schemata is described by a triple (S, SAUG, t),
where S is a version, SAUG is the related augmented schema and t is the start
of the validity interval of S. This way, the history of the versions of the data
warehouse can be described as a sequence of changes over changes, starting from
the initial schema of the history: H = S0, S

AUG
0 , t0. Since every previous version

is accompanied by an augmented schema that transforms it to the current one,
it is possible to pose a query that spans different versions and translate the
data of the previous versions to a representation obeying the current schema, as
explained above.
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Practically around the same time, Wrembel and Bebel [49] deal both with
cross-version querying and with the problems that appear when changes take
place at the external data sources (EDS) of a data warehouse. Those problems
can be related to a multi-version data warehouse which is composed of a sequence
of persistent versions that describe the schema and data for a given period of
time. The authors approach has a meta-data model with structures that support:
(i) the monitoring of the external data sources on content and structural changes,
(ii) the automated generation of processes monitoring external data sources,
(iii) the adaptation of a data warehouse version to a set of discovered external
changes, (iv) the description of the structure of every data warehouse version and
(v) the querying of multiple data warehouse versions (cross version querying),
and (vi) the presentation of the output as an integrated result.

The schema change operations that the authors support are: (i) the addition
of a new attribute to a dimension level table, (ii) the removal of an attribute from
a dimension level table, (iii) the creation of a new fact table, (iv) the association
of a fact table with a dimension table, (v) the renaming of a table, and three
more operations that are applicable to snowflake schemata, (vi) the creation of a
new dimension level table with a given structure, (vii) the inclusion of a parent
dimension level table into its child dimension level table, and, (viii) the creation
of a parent dimension level table based on its child level table.

The instance change operations that the authors have worked on, are: (i) the
insertion of a new level instance into a given level, (ii) the deletion of a level
instance, (iii) the change of the association of a child level instance to another
parent level instance, (iv) the merge of several instances of a given level into
one instance of the same level, and (v) the split of a given level instance into
multiple instances of the same level.

In order to query multiple versions, the authors’ method is based on a simple
and elegant idea: the original query is split to a set of single version queries.
Then, for each single version query, the system does a best-effort approach: if,
for example, attributes are missing from the previous version, the system omits
them from the single version query; the system exploits the available metadata
for renames; it can even, ignore a version, if the query is a group by query and the
grouping is impossible. If possible, the collected results are integrated under the
intersection of attributes common to all versions (if this is the case of the query);
otherwise, they are presented as a set of results, each with its own metadata.

Regarding the detection of changes in external data sources, the authors
propose a method that uses wrappers (software modules responsible for data
model transformations). Each wrapper is connected to a monitor (software that
detects predefined events at external data sources). When an event is detected, a
set of actions is generated and stored in data warehouse update register in order
to be applied to the next data warehouse version when the data warehouse
administrator calls the warehouse refresher. The events are divided into two
categories: (i) structure events (which describe a modification in the schema of
the data warehouse) and (ii) data events (which describe a modification in the
contents of a data warehouse). For each event, an administrator defines a set of
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actions to be performed in a particular data warehouse version. The actions are
divided in two categories: (i) messages (which represent actions that cannot be
automatically applied to a data warehouse version) and (ii) operations (for events
whose outcomes can be automatically applied to a data warehouse version). Both
categories of actions do not create a new data warehouse version automatically
but require either the administrator to apply them all in an action definition of
an explicitly selected version, or the actions are logged in a special structure for
manual application of the ones the administrator wants to apply.

Summary. In Table 5 we summarize the problems and the solutions of the
research efforts that were presented earlier. The first two lines of work refer to
data translation between the versions of the data warehouse, while the other two
efforts refer to cross-version queries.

Table 5. Summary table for Sect. 5.3

Works Problem Input Output Method

[52] Data translation
between
versions of DW

History of DW
data

A derivation of
the data of
previous
version

Transformation matrices
that are mappings
between the different
versions of the DW

[50,51] Data translation
between
versions of DW

History of DW
data;
Multi-period
query

A derivation of
the data
answering
the
multi-period
query

Data mining techniques
that identify DW
schema changes and
dimension changes,
using a normalized
matrix

[53] Data translation
between
versions of DW;
Cross-version
queries

History of DW
schema

Mapping of
previous
schemata
and data to
current
schema

Graphs with a simple
algebra that describes
schema changes and
augmented schemata
to translate the data
from old schemata to
current

[49] Cross version
queries &
changes of
external data
sources

History of DW
schema;
Data
providers;
Cross
version
query

Answer to the
cross version
query

Decompose a query to
queries that are
correct at each
schema version. For
the evolution of
sources, wrappers
notify monitors that
activate rules that
respond to the change
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6 Prospects for Future Research

Handling data and software evolution seems to be a meta-problem that generates
problems in specific subareas of computer science and data management. As
such, we forecast that research problems around the evolution of data and their
structure will never cease to exist.

We have covered the area of logical schema evolution in relational settings,
and data warehouses in particular. The evolution of data at the instance level
and at the evolution of the schema at the physical level has not been covered in
this paper, although both are of great importance.

We also believe that as particular areas of data management have provided
ground for research on the problem of evolution in the past (e.g., Concep-
tual Modeling, XML, Object-Oriented databases, etc.), the future will include
research efforts in the hot topics of the day, at any given time period. For exam-
ple, nowadays, we anticipate that schema-less data, or data with very flexible
structures (graphs, texts, JSON objects, etc.) will offer ground for research on
the management of their evolution.

Concerning the area of the impact of evolution to ecosystems, the two main
areas that seem to require further investigation are: (a) the identification of the
constructs that are most sensitive to evolution – ideally via metrics that assess
their sensitivity to evolution, and (b) the full automation of the reaction to
changes by mechanisms like self-monitoring and self-repairing.

We close with the remark that due to the huge importance and impact of
evolution in the lifecycle of both data and software, the potential benefits out-
weight the (quite significant) risk of pursuing research of both pure scientific
nature, in order to find laws and patterns of evolution, and of practical nature,
via tools and methods that reduce the pain of evolution’s impact.
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Abstract. The availability of large repositories of semantically anno-
tated data on the web is opening new opportunities for enhancing
Decision-Support Systems. In addition, the advent of initiatives such
as Open Data and Open Government, together with the Linked Open
Data paradigm, are promoting publication and sharing of multidimen-
sional data (MD) on the web. In this paper we address the problem of
representing MD data using Semantic Web (SW) standards. We discuss
how MD data can be represented and queried directly over the SW,
without the need to download data sets into local data warehouses. We
first comment on the RDF Data Cube Vocabulary (QB), the current
W3C recommendation, and show that it is not enough to appropriately
represent and query MD data on the web. In order to be able to sup-
port useful Online Analytical Process (OLAP) analysis, extension to QB,
denoted QB4OLAP, has been proposed. We provide an in-depth com-
parison between these two proposals, and show that extending QB with
QB4OLAP can be done without re-writing the observations, (the largest
part of a QB data set). We provide extensive examples of the QB4OLAP
representation, using a portion of the Eurostat data set and the well-
known Northwind database. Finally, we present a high-level query lan-
guage, called QL, that allows OLAP users not familiar with SW concepts
or languages, to write and execute OLAP operators without any knowl-
edge of RDF or SPARQL, the standard data model and query language,
respectively, for the SW. QL queries are automatically translated into
SPARQL (using the QB4OLAP metadata) and executed over an end-
point.

Keywords: Data warehousing · OLAP · Semantic web · RDF ·
SPARQL · Linked data

1 Introduction

Data Warehouses (DW) integrate data from multiple sources for analysis and
decision support. They represent data according to dimensions and facts. The
former reflect the perspectives from which data are viewed. The latter corre-
spond to (usually) quantitative data (also known as measures) associated with
different dimensions. Facts can be aggregated and disaggregated through opera-
tions called Roll-up and Drill-down, respectively, filtered, by means of Slice and
Dice operations, and so on. This process is called Online Analytical Processing
c© Springer International Publishing Switzerland 2016
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(OLAP). As an illustration, the facts related to the sales of a company may be
associated with the dimensions Time and Location, representing the sales at cer-
tain locations, at certain periods of time. Dimensions are modeled as hierarchies
of elements (also called members), such that each element belongs to a category
(or level) in a hierarchy. DWs and OLAP systems are based on the multidimen-
sional (MD) model, which views data in an n-dimensional space, usually called
a data cube, whose axes are the dimensions, and whose cells contain the values
for the measures. In the former example, a point in this space could be (January
2015, Buenos Aires), where the measure in the cell indicates the amount of the
sales in January 2015, at the Buenos Aires branch.

Historically, DW and OLAP had been used as techniques for data analysis,
typically using commercial tools with proprietary formats. However, initiatives
like Open Data1 and Open Government2 are pushing organizations to publish
MD data using standards and non-proprietary formats. In the last decade, sev-
eral open source platforms for Business Intelligence (BI) have emerged, but, at
the time this tutorial paper is being written, an open format to publish and
share cubes among organizations is still needed. Further, Linked Data [1], a
data publication paradigm, promotes sharing and reusing data on the web using
Semantic Web (SW) standards and domain ontologies expressed in RDF (the
basic data representation layer for the SW) [2], or in languages built on top of
RDF (like RDF-Schema [3]). All of the above has widened the spectrum of users,
and nowadays, in addition to the typical OLAP analysts, non-technical people
are willing to analyze MD data.

1.1 Problem Statement

Two main approaches are found concerning OLAP analysis of MD data on the
SW. The first one aims at extracting MD data from the Web, and loading them
into traditional data management systems for OLAP analysis. The second one
proposes to carry out OLAP-like analysis directly over SW data, typically, over
MD data represented in RDF. In this tutorial we focus on the latter approach
although, for completeness, in Sect. 2 we discuss and compare both lines of work.

Publishing and analyzing OLAP data directly over the SW, supports the
concepts of self-service BI, or on-demand BI, aimed at incorporating web data
into the decision-making process with little or no intervention of programmers
or designers [4]. Statistical data sets are usually published using the RDF Data
Cube Vocabulary (also denoted QB) [5], a W3C recommendation since January,
2014. However, as we explain later, among other limitations, the QB vocabulary
does not support the representation of dimension hierarchies and aggregation
functions needed for OLAP analysis. To address this challenge, a new vocabulary,
called QB4OLAP has been proposed [6]. A key feature of QB4OLAP is that
it allows reusing data already published in QB, by means of the addition of
the hierarchical structure of the dimensions (and the corresponding instances

1 http://okfn.org/opendata/.
2 http://opengovdata.org/.

http://okfn.org/opendata/
http://opengovdata.org/
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that populate the dimension levels). Once a data cube becomes published using
QB4OLAP, users can perform OLAP operations over it. Moreover, high-level
languages can be used to seamlessly query these data cubes, as we will show
later.

1.2 Running Example

As our running example, we will use statistical data about asylum applications to
the European Union (EU), provided by Eurostat, the EU’s statistical office3. This
data set contains information about the number of asylum applicants by month,
age, sex, citizenship, application type, and country that receives the applica-
tion, and it is published using QB in the Eurostat - Linked Data dataspace4.
For this tutorial, we extended the original QB data cube with dimension hier-
archies, as shown in Fig. 1, using the MultiDim conceptual model [7]. The Asy-
lum applications fact contains only one measure (#applications) that represents
the number of applications. This measure can be analyzed according to six analy-
sis dimensions: the sex of the applicant, age which organizes applicants according
to their age group, the time of the application (which includes a two-level hier-
archy (with levels month and year), the application type, which tells if the person
is a first time applicant or a repeated applicant, and a geographical dimension
that organizes countries into continents (the Geography hierarchy), or according
to its government type (the Government hierarchy). This geographical dimension
participates in the cube with two different roles: The citizenship of the asylum
seeker, and the destination country of its application. Usually, these kinds of
dimensions are denoted role-playing dimensions.

Fig. 1. Conceptual schema of the asylum applications cube

3 http://epp.eurostat.ec.europa.eu/cache/ITY SDDS/EN/migr asyapp esms.htm.
4 http://eurostat.linked-statistics.org/.

http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/EN/migr_asyapp_esms.htm
http://eurostat.linked-statistics.org/
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1.3 Contributions

Although QB provides basic multidimensional information, this information is
not enough to satisfy OLAP users’ needs. In this way, a great part of the benefit
of having MD data on the web gets lost. Further, since the QB model does not
provide enough information for OLAP analysis, once downloaded, the data must
be extended with the typical MD constructs. QB4OLAP has been proposed to
address these drawbacks, allowing data owners to publish MD data on the SW,
and to enrich existing data sets with structural metadata, and dimensional data.
This enrichment can be done semi-automatically (a problem which is beyond the
scope of the present paper, and is explained in detail in [8,9]). Also, QB4OLAP
data cubes can be created from scratch, for example, integrating on-the-fly, data
on the web. Last, but not least, a cube representation like the one allowed by
QB4OLAP can not only be used to perform OLAP analysis through queries
written in SPARQL [10] (the standard query language for RDF), but to express
these queries using a high-level declarative query language, which can be then
automatically translated into SPARQL (with the help of the QB4OLAP meta-
data), allowing non-technical users to perform OLAP data analysis without the
need to understand how data are represented. In other words, typical OLAP
users could be able to query MD data represented in RDF without the need of
having any knowledge of SPARQL.

Concretely, in this tutorial paper we present:

– A comparison between the QB and QB4OLAP vocabularies;
– A description of how QB cubes can be enriched with OLAP metadata and

data, and how existing DW can be published using the QB4OLAP vocabulary;
– A user-centric high-level query language, called QL, that expresses the most

common OLAP operators independently of the underlying data represen-
tation, and a mechanism to automatically translate a QL expression into
SPARQL, to query QB4OLAP cubes.

The remainder of the paper is organized as follows. Section 2 discusses related
work. In Sect. 3 we introduce the basic concepts used throughout this paper.
Section 4 studies the QB vocabulary, and discusses its limitations for represen-
tation and querying of MD data. Section 5 presents the QB4OLAP vocabulary,
and an in-depth comparison against QB. Section 6 studies the Cube Algebra
language, a high-level language to query cubes, and Sect. 7, the translation of
Cube Algebra into SPARQL, to query cubes whose underlying representation is
based on RDF and the QB4OLAP vocabulary. We conclude in Sect. 8.

This tutorial paper follows the presentation given by the author in the EBISS
2015 Summer School. It is not aimed at presenting original research material, but
to put together, in a tutorial style, the main contributions of the work performed
by the author in collaboration with other colleagues [6,8,9,11,12].

2 Related Work

As mentioned above, two main approaches concerning OLAP analysis of MD
data on the SW can be found in the literature. The first one consists in extracting
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MD data from the SW and loading them into traditional MD data management
systems for OLAP analysis, while the second one promotes performing OLAP-
like analysis directly over SW data.

Along the first line of research, we find the works by Nebot and Llavori [13]
and Kämpgen and Harth [14]. The former proposes a semi-automatic method
for on-demand extraction of semantic data into an MD database, so data could
be analyzed using traditional OLAP techniques. The authors present a method-
ology for discovering facts in SW data (represented as an OWL5 ontology), and
populating an MD model with such facts. In this methodology, an MD schema
is initially designed, indicating the subject of analysis that corresponds to a con-
cept of the ontology, the potential dimensions, and the facts. Then, the dimension
hierarchies are created, based on the knowledge available in the domain ontolo-
gies (i.e., the inferred taxonomic relationships). Finally, the user specifies the
MD queries over the DW. Once queries are executed, a cube is built, and typical
OLAP operations can be applied over this cube.

Kämpgen and Harth [14] study the extraction of statistical data published
using the QB vocabulary into an MD database. The authors propose a mapping
between the concepts in QB, and an MD data model, and implement these map-
pings via SPARQL queries. In this methodology, the user first defines relevant
data sets, which are retrieved from the web, and stored in a local triple store. A
relational representation of the MD data model is then created and populated.
Over this model, OLAP operations can be performed.

These two efforts are based on traditional MD data management systems, and
require the existence of a local DW to store SW data. Also, they do not consider
the possibility of directly querying à la OLAP MD data over the SW. Thus, a
second line of research tries to overcome these drawbacks, exploring data models
and tools that allow publishing and performing OLAP-like analysis directly over
SW MD. The work we discuss in the remainder, follows this approach.

Terms like self-service BI [4], and Situational BI [15], refer to the capability
of incorporating situational data into the decision process with little or no inter-
vention of programmers or designers. In [4], the authors present a framework
to support self-service BI, based on the notion of fusion cubes, i.e., multidimen-
sional cubes that can be dynamically extended both in their schema and their
instances, and in which data and metadata can be associated with quality and
provenance annotations. These frameworks motivate the need for models and
tools that allow to query MD data directly over the SW.

The RDF Data Cube vocabulary [5] is aimed at representing, using RDF, sta-
tistical data according to the SDMX6 information model discussed in Sect. 3.2.
Although similar to traditional MD data models, the SDMX semantics imposes
restrictions on what can be represented using QB. In particular, dimension
hierarchies, a key concept in OLAP operations, are not appropriately sup-
ported in QB. To overcome this limitation, Etcheverry and Vaisman [6] pro-
posed QB4OLAP, an extension to QB that allows representing analytical data

5 http://www.w3.org/TR/owl2-overview/.
6 http://SDMX.org.

http://www.w3.org/TR/owl2-overview/
http://SDMX.org
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according to traditional MD models, also proposing a preliminary implementa-
tion of some OLAP operators, using SPARQL queries over data cubes specified
using QB4OLAP.

In [16] the authors present a framework for performing exploratory OLAP
over Linked Open Data sources, where the multidimensional schema of the
data cube is expressed in QB4OLAP and VoID. Based on this multidimensional
schema the system is able to query data sources, extract and aggregate data, and
build an OLAP cube. The multidimensional information retrieved from external
sources is also stored using QB4OLAP.

The QB and QB4OLAP approaches will be compared in depth in Sect. 4,
and, after this, the paper will be devoted to the study of QB4OLAP and its
applications.

3 Preliminary Concepts

In this section we introduce the concepts that we will use in the rest of the
paper. To set up a common analysis framework, we first need to briefly define
the MD model for OLAP that will be used in our study. We do this in the first
part of the section. In the second part we discuss statistical databases (SDB),
and introduce the SDMX model, on which QB is based. We conclude with a
definition of the basic SW concepts that we will need in the sequel.

3.1 OLAP

A broad number of MD models can be found in the literature [17–19]. We now
describe the MD model for OLAP that we will use in our study.

In OLAP, data are organized as hypercubes whose axes are called dimensions.
Each point in this MD space is mapped into one or more spaces of measures,
representing facts that are analyzed along the cube’s dimensions. Dimensions
are structured in hierarchies that allow analysis at different aggregation levels.
The actual values in a dimension level are called members.

A Dimension Schema is composed of a non-empty finite set of levels, with a
distinguished level denoted All. We denote ‘→’ a partial order on these levels;
the reflexive and transitive closure of ‘→’ (‘→∗’) has a unique bottom level and
a unique top level (the latter denoted All). Levels can have attributes describing
them. A Dimension Instance assigns to each dimension level in the dimension
schema a set of dimension members. For each pair of levels (lj , lk) in the dimen-
sion schema, such that lj → lk, a relation (denoted rollup) is defined, associating
members from level lj with members of level lk. Although in practice, most MD
models assume a function between the instances of parent and child dimension
levels, we support relations between them, meaning that each member in the
child level many have more than one associated member in the parent level, and
vice versa (hierarchies including rollup relations are called non-strict). Cardinal-
ity constraints on these relations are then used to restrict the number of level
members related to each other [7]. A Cube Schema contains a set of dimension
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schemas and a set of measures, where for each measure an aggregate function is
specified. A Cube Instance, corresponding to a cube schema, is a partial function
mapping coordinates from dimension instances into measure values.

A well-known set of operations is defined over cubes. For instance, based on
the algebra sketched in [20], the Roll-Up operation summarizes data in a cube,
along a dimension hierarchy. Analogously, Drill-Down disaggregates previously
summarized data, and can be considered the inverse of Roll-Up. The Slice oper-
ation drops a dimension from a cube. The Dice operation receives a cube C, and
a first order formula φ over levels and measures in C, and returns a new cube
with the same schema, and whose instances are the ones that satisfy φ. There
are more complex operators, but for the sake of simplicity, we will limit ourselves
to the ones mentioned above.

3.2 Statistical Databases and the SDMX Model

Statistical Data Bases (SDB) also organize data as hypercubes whose axes are
dimensions. Each point in this multidimensional space is mapped through obser-
vations into one or more spaces of measures. Dimensions are structured in clas-
sification hierarchies that allow analysis at different levels of aggregation. The
Statistical Data and Metadata eXchange initiative (SDMX) proposes several
standards for the publication, exchange and processing of statistical data, and
defines an information model [21] from which we summarize some concepts next,
since QB is based on SDMX.

In the SDMX model, a Dimension denotes a metadata concept used to clas-
sify a statistical series, e.g., a statistical concept indicating a certain economic
activity. Two particular dimensions are identified: TimeDimension, specifying a
concept used to convey the time period of the observation in a data set; and
MeasureDimension, whose purpose is to specify formally the meaning of the
measures and to enable multiple measures to be defined and reported in a data
set. A Primary Measure denotes a metadata concept that represents the phe-
nomenon to be measured in a data set. Dimensions, measures, and attributes
are called Components.

Codelists enumerate a set of values to be used in the representation of dimen-
sions, attributes, and other structural parts of SDMX. Additional structural
metadata can indicate how codes are organized into hierarchies. Through the
inheritance abstraction mechanism, the codelist comprises one or more codes,
and the code itself can have one or more children codes in the (inherited) hier-
archy association. Note that a child code can have only one parent code in this
association.

A Data Set denotes a set of observations that share the same dimensionality,
which is specified by a set of unique components (e.g., dimensions, measures).
Each data set is associated with structural metadata, called Data Structure Def-
inition (DSD), that includes information about how concepts are associated
with the measures and dimensions of a data cube along descriptive (structural)
metadata.
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The value of the variable being measured for the concept associated to the
PrimaryMeasure in the DSD is called an Observation. Each observation asso-
ciates an observation value with a key value.

Several operators are defined over SDBs, although the SDMX standard does
not define operators over data sets. Instead, it provides a mechanism to restrict
the values within a data set via constraints. For example, the CubeRegions con-
straint, allows specifying a set of component values, defining a subset of the
total range of the content of a data structure. The application of this constraint
results in a slice of the original data set, fixing values for some components (e.g.:
selecting some years in a TimeDimension). Therefore, the name slice may be
misleading for OLAP practitioners, since in OLAP, a slicing operation reduces
the cube’s dimensionality, as explained in Sect. 3.1.

3.3 RDF and the Semantic Web

The Resource Description Framework (RDF) is a data model for expressing
assertions over resources identified by an internationalized resource identifier
(IRI). Assertions are expressed as triples of the form (subject, predicate, object).
A set of RDF triples or RDF data set can be seen as a directed graph where sub-
ject and object are nodes, and predicates are arcs. Data values in RDF are called
literals. Blank nodes are used to represent anonymous resources or resources
without an IRI, typically with a structural function, e.g., to group a set of
statements. Subjects must always be resources or blank nodes, predicates are
always resources, and objects could be resources, blank nodes or literals. A set
of reserved words defined in RDF Schema (called the rdfs-vocabulary)[3] is used
to define classes, properties, and to represent hierarchical relationships between
them. For example, the triple (s, rdf:type, c) explicitly states that s is an instance
of c but it also implicitly states that object c is an instance of rdf:Class since
there exists at least one resource that is an instance of c. Many formats for RDF
serialization exist. In this paper we use Turtle [22].

SPARQL 1.1 [10] is the W3C standard query language for RDF, at the time
this paper is being written. The query evaluation mechanism of SPARQL is
based on subgraph matching: RDF triples are interpreted as nodes and edges of
directed graphs, and the query graph is matched to the data graph, instantiating
the variables in the query graph definition. The selection criteria is expressed as
a graph pattern in the WHERE clause of a SPARQL query. Relevant to OLAP
queries, SPARQL supports aggregate functions and the GROUP BY clause, as
in classic SQL.

Due to space limitations, in the remainder we assume the reader is familiar
with the basic notions of RDF and SPARQL.

4 QB: The RDF Data Cube Vocabulary

We now study in detail the QB vocabulary, and discuss its possibilities and
limitations for representing and analyzing MD data.
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4.1 Vocabulary Description

As mentioned above, QB is the W3C recommendation to publish statistical
data and metadata in RDF, following the Linked Data principles. QB is based
on the SDMX Information Model described in Sect. 3.2, and is the evolution of
two previous attempts to represent statistical data in RDF: the Statistical Core
Vocabulary (SCOVO) [23], and SDMX-RDF [24]. Figure 2 (taken from the W3C
recommendation document [5]) depicts the QB vocabulary. Capitalized terms
represent RDF classes and non-capitalized terms represent RDF properties. An
arrow from class A to class B, labeled rel means that rel is an RDF property with
domain A and range B. White triangles represent sub-classes or sub-properties.
We describe the QB vocabulary next.

Fig. 2. The QB vocabulary (cf. [5])

The schema of a data set is specified by means of the DSD (like in SDMX),
an instance of the class qb:DataStructureDefinition. This specification comprises
a set of Component properties, instances of the class qb:ComponentProperty (in
italics in Fig. 2), representing Dimensions, Measures, and Attributes. This is
shown in Example 1. Note that a DSD can be shared by many data sets by
means of the qb:structure property. Observations (in OLAP terminology, facts),
are instances of the class qb:Observation, and represent points in an MD data
space indexed by dimensions. They are associated with data sets (instances of
the class qb:DataSet), through the qb:dataSet property (see Example 2). Each
observation can be linked to a value in each dimension of the DSD via instances
of qb:DimensionProperty; analogously, values for each observation are associated
with measures via instances of the class qb:MeasureProperty. Instances of the
class qb:AttributeProperty are used to associate attributes with observations.
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Finally, note that QB allows observations in a data set to be expressed at differ-
ent levels of granularity in each dimension. For example, one observation may
refer to a country, and another one may refer to a region.

Component properties are not directly related to the DSD: the class qb:Com-
ponentSpecification is an intermediate class which allows to specify additional
attributes for a component in a DSD. For example, a component may be tagged
as required (i.e., mandatory), using the qb:componentRequired property. Com-
ponents that belong to a specification are linked using specific properties that
depend on the type of the component, that is, qb:dimension for dimensions,
qb:measure for measures, and qb:attribute for attributes. Component specifi-
cations are linked to DSDs via the qb:component property. For instance, in
Example 1 we can see how dimensions are defined in the DSD, through the
qb:dimension and qb:component properties.

In order to allow reusing the concepts defined in the SDMX Content
Oriented Guidelines [25], QB provides the qb:concept property which links
components to the general concepts they represent. The latter are modeled using
the skos:Concept class defined in the SKOS vocabulary.7

Although QB can define the structure of a fact (via the DSD), it does not
provide a mechanism to represent an OLAP dimension structure (i.e., the dimen-
sion levels and the relationships between levels). However, QB allows represent-
ing hierarchical relationships between level members in the dimension instances.
The QB specification describes three possible scenarios with respect to the orga-
nization of dimensions, as we explain next.

– If there is no need to define hierarchical relationships within dimension mem-
bers, QB recommends representing the members using instances of the class
skos:Concept, and the set of admissible values using skos:ConceptScheme. A
SKOS concept scheme allows organizing one or more SKOS concepts, linked
to the concept schemes they belong to, via the skos:inScheme property.

– To represent hierarchical relationships, the recommendation is to use the
semantic relationship skos:narrower, with the following meaning: if two con-
cepts A and B are related using skos:narrower, B represents a finer concept
than A (e.g., animals skos:narrower mammals). In addition, SKOS defines a
skos:hasTopConcept property, which allows linking a concept scheme to the
(possibly many) most general concept it contains. To reuse existing data, QB
provides the class qb:HierarchicalCodeList. An instance of this class defines a
set of root concepts in the hierarchy using qb:hierarchyRoot and a parent-child
relationship via qb:parentChildProperty which links a term in the hierarchy to
its immediate sub-terms.

Finally, Slices represent subsets of observations. They are not defined as oper-
ators over an existing cube, but as new structures and new instances (observa-
tions), where one or more values of dimension members are fixed. The structure
of a slice is defined using a DSD, and an instance of the qb:SliceKey class.

7 http://www.w3.org/TR/2009/REC-skos-reference-20090818/.

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
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Example 1 below presents the triples that represent a portion of the structure
of the QB data set in our running example. Note that components are defined
as RDF blank nodes.

Example 1 (Data Set Structure Definition).
1 @prefix qb: <http://purl.org/linked−data/cube#> .
2 @prefix sdmx−dimension: <http://purl.org/linked−data/sdmx/2009/dimension#> .
3 @prefix sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#> .
4 @prefix dsd: <http://eurostat.linked−statistics.org/dsd/> .
5 @prefix property: <http://eurostat.linked−statistics.org/property#> .
6

7 dsd:migr asyappctzm rdf:type qb:DataStructureDefinition ;
8 qb:component [qb:dimension property:age] ;
9 qb:component [qb:dimension property:geo] ;

10 qb:component [qb:dimension property:sex] ;
11 qb:component [qb:dimension property:citizen] ;
12 qb:component [qb:dimension property:asyl app] ;
13 qb:component [qb:dimension sdmx−dimension:refPeriod] ;
14 qb:component [qb:measure sdmx−measure:obsValue] .
15

16 <http://eurostat.linked−statistics.org/data/migr asyappctzm> qb:structure dsd:migr asyappctzm

Line 7 defines the IRI of the DSD. The lines that follow, indicate the com-
ponents of such structure, and Line 16 tells that the DSD is the structure of the
data set in the subject of the triple. ��

Continuing with the Eurostat running example, Example 2 below shows the
triples that represent an observation (in OLAP jargon, a fact), corresponding to
the schema above.

Example 2 (Observations). The following triples represent an observation corre-
sponding to the number of citizens of Andorra submitting applications to migrate
to Austria in 2014.

1 @prefix data:<http://eurostat.linked−statistics.org>;
2 <http://eurostat.linked−statistics.org/data/migr asyappctzm#M,AD,F,TOTAL,ASY APP,AT,2014M10>
3 a qb:Observation ;
4 qb:dataSet <http://data/migr asyappctzm> ;
5 property:age data:dic/age#TOTAL;
6 property:geo data:dic/geo#AT;
7 property:sex data:dic/sex#F;
8 property:citizen data:dic/citizen#AD;
9 property:asyl app data:dic/asyl app#ASY APP;

10 sdmx−dimension:refPeriod 2014−10−0;
11 sdmx−measure: obsValue 0 .

Line 2 tells that the IRI in the subject is an instance of the class
qb:Observation, and Line 4 indicates the data set to which the observation
belongs. The other triples correspond to the dimension instances and the
observed value (the measure, in Line 11). ��

4.2 Is QB Suitable for OLAP?

Although QB can be used to publish MD observations, it cannot represent the
most typical features of the MD model that are used to navigate data in an
OLAP fashion. We discuss this next.
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1. QB does not provide native support for dimension structures. Typical OLAP
operations, like Roll-up and Drill-down, rely on the organization of dimension
members into hierarchies that define aggregation levels. However, as explained
above, QB cannot represent the structural metadata needed to appropriately
support such operations. The mechanisms described in Sect. 4.1 allows only
to organize dimension members hierarchically, that means, they can only
represent relationships between instances, for example, to say that Argentina
is a finer concept than South America, but not to say that Argentina is a
country, South America is a continent, and that countries aggregate over
continents.

2. QB does not provide native support to represent aggregate functions. Most
OLAP operations aggregate or disaggregate cube data along a dimension
(e.g., a Roll-up operation over the Time dimension can aggregate measure
values from the Month level up to Year level), using an aggregate function
defined for each measure. Normally, it is not possible to assume a single
aggregate function for all measures. The ability to link each measure with an
aggregation function is not present in QB.

3. QB does not provide native support for descriptive attributes. In the MD
model, each dimension level is associated with a set of attributes that describe
the characteristics of the dimension members (e.g. the level Country may
have the attributes countryName, area, etc.), and one or more identifiers [7].
However, in QB, dimension members are represented as coded values, which
in most cases are represented as IRIs (although this is not mandatory). We
will see later, that this limitation can have impact over some operations,
typically, when dicing over a dimension.

5 The QB4OLAP Vocabulary

From the discussion in Sect. 4.2, the need of a more powerful vocabulary was
evident. Thus, the QB4OLAP8 vocabulary has been proposed, extending QB
with a set of RDF terms that allow representing the most common features of
the MD model. The main features of QB4OLAP are:

– QB4OLAP can represent the most common features of the MD model. Given
that there is no standard (or widely accepted) conceptual model for OLAP,
the features considered were based on the MultiDim model [7].

– QB4OLAP includes the metadata needed to automatically implement OLAP
operations as SPARQL queries. Using these metadata (e.g., the aggregation
paths in a dimension), the operations could be written in a high-level language
(or submitted using a graphic navigation tool), and translated into SPARQL.
In this way, OLAP users, with no knowledge of SPARQL at all, would be able
to exploit data on the SW.

– QB4OLAP allows operating over already published observations which con-
form to DSDs defined in QB, without the need of rewriting the existing obser-
vations, and with the minimum possible effort. Note that in a typical MD

8 http://purl.org/qb4olap/cubes.

http://purl.org/qb4olap/cubes
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model, observations are the largest part of the data, while dimensions are
usually orders of magnitude smaller.

Figure 3 depicts the QB4OLAP vocabulary. Original QB terms are prefixed
with “qb:”, and QB4OLAP terms are prefixed with “qb4o:”, displayed in gray
background. Capitalized terms represent RDF classes, non-capitalized terms rep-
resent RDF properties; capitalized terms in italics represent class instances. An
arrow from class A to class B, labeled rel means that rel is an RDF property
with domain A and range B. White triangles represent sub-class or sub-property
relationships. Black diamonds represent rdf:type relationships (instances).
We present QB4OLAP distinctive features next.

Fig. 3. QB4OLAP vocabulary (cf. [12])

5.1 Dimension Structure in QB4OLAP

As already mentioned, dimension hierarchies and levels are crucial features in
an MD model for OLAP. Therefore, QB4OLAP introduced classes and prop-
erties to represent them. A key difference between QB and QB4OLAP is that,
in the latter, facts represent relationships between dimension levels, and fact
instances (observations) map level members to measure values; on the other
hand, in QB, observations map dimension members to measure values. In other
words, QB4OLAP represents the structure of a data set in terms of dimen-
sion levels and measures, instead of dimensions and measures. In QB4OLAP,
dimension levels are represented in the same way in which QB represents dimen-
sions: as classes of properties. The class qb4o:LevelProperty represents dimen-
sion levels. Since it is declared as a sub-class of qb:ComponentProperty, the
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schema of the cube can be specified in terms of dimension levels, using the (QB)
class qb:DataStructureDefinition (allowing reusing existing QB observations, if
needed). To represent aggregate functions the class qb4o:AggregateFunction is
defined. The property qb4o:aggregateFunction associates measures with aggre-
gate functions, and, together with the concept of component sets, allows a given
measure to be associated with different aggregate functions in different cubes,
addressing one of the drawbacks of QB. Finally, when a fact (observation) is
related to more than one dimension level member (this is called a many-to-many
dimension [7]), the property qb4o:cardinality allows representing the cardinality
of this relationship.

Example 3 below, shows how the cube in our Eurostat running example would
look like in QB4OLAP. Figure 4 presents the definition of the prefixes that we
will use in the sequel.

Fig. 4. RDF prefixes to be used in the examples

Example 3 (Eurostat Cube Structure in QB4OLAP). Below, we show the struc-
ture of a data cube for the Eurostat example, represented using QB4OLAP. The
reader is suggested to compare against the DSD in Example 1.

1 schema:migr asyappctzmQB4O rdf:type qb:DataStructureDefinition;
2

3 qb:component [ qb4o:level property:age ; qb4o:cardinality qb4o:ManyToOne ] ;
4 qb:component [ qb4o:level property:geo ; qb4o:cardinality qb4o:ManyToOne ] ;
5 qb:component [ qb4o:level property:sex ; qb4o:cardinality qb4o:ManyToOne ] ;
6 qb:component [ qb4o:level property:citizen qb4o:cardinality qb4o:ManyToOne ] ;
7 qb:component [ qb4o:level property:asyl app ; qb4o:cardinality qb4o:ManyToOne ] ;
8 qb:component [ qb:measure sdmx−measure:obsValue; qb4o:aggregateFunction qb4o:sum ] ;
9

10 <http://eurostat.linked−statistics.org/data/migr asyappctzm> qb:structure
11 schema:migr asyappctzmQB4O.
12 sdmx−measure:obsValue a qb:MeasureProperty;
13 rdfs:label ”Number of applications”@en; rdfs:range xsd:integer .

Note that, opposite to QB, the structure is defined in terms of dimen-
sion levels, which represent the granularity of the observations in the data set.
Each level is associated to a cardinality, using the property qb4o:cardinality.
In this case, all cardinalities are many-to-one, indicating that an observa-
tion is associated to exactly one member in every dimension level. To avoid
rewriting the observations, a QB4OLAP DSD schema:migr asyappctzmQB4O
is created, and associated with the data set <http://eurostat.linked-statistics.
org/data/migr asyappctzm> (recall that in Example 1, the data set structure
was dsd:migr asyappctzm). This allows reusing, as QB4OLAP level properties,
the dimension properties already defined in the QB structure, allowing to use

http://eurostat.linked-statistics.org/data/migr_asyappctzm
http://eurostat.linked-statistics.org/data/migr_asyappctzm
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the existing observations, since the data set will “point” to this new DSD. Thus,
we must declare those properties as instances of qb4o:LevelProperty. For exam-
ple, for the Time dimension, we must define (we explain this dimension in detail
later):

1 schema:timeDim a qb:DimensionProperty ;
2 rdfs:label ”Time dimension”@en ;
3 qb4o:hasHierarchy schema:timeHier .
4

5 sdmx−dimension:refPeriod a qb4o:LevelProperty ;
6 rdfs:label ”Month level”@en .

We can see that sdmx-dimension:refPeriod (the Time dimension) is redefined as
a dimension level using the class qb4o:LevelProperty; a dimension schema:timeDim
is defined using the QB class qb:DimensionProperty. In addition, a dimension
hierarchy schema:timeHier is defined. Since the dimension levels defined in this
way are the lowest ones in the dimension hierarchies, a QB4OLAP cube schema
can then be defined using these properties. We explain this below. ��

Dimension hierarchies are represented using the class qb4o:Hierarchy; further,
the properties qb4o:hasHierarchy and qb4o:inDimension, tell that a dimension
contains a certain hierarchy, and that a certain hierarchy belongs to a dimen-
sion, respectively. Also, hierarchies are composed of levels, and the relationship
between levels in a hierarchy may have different cardinality constraints (e.g.
one-to-many, many-to-many, etc.). We call these relationships hierarchy steps,
which are represented by the class qb4o:HierarchyStep. Each hierarchy step is
linked to its two component levels using the qb4o:childLevel and qb4o:parentLevel
properties, and can be attached to the hierarchy it belongs to, using the prop-
erty qb4o:inHierarchy. The property qb4o:pcCardinality represents the cardinality
constraints of the relationships between level members in this step, associating
a hierarchy with a member of the qb4o:Cardinality class, whose instances are
depicted in Fig. 3. Example 4 shows a part of the definition of the dimension
hierarchies for our running example.

Example 4 (Dimension Structure and Hierarchies in QB4OLAP). In addition to
the definition of the Time dimension structure (schema:timeDim) shown in Exam-
ple 3, we can define one or more hierarchies, and declare which dimension they
belong to, and the levels that they traverse. In this example, we create a hier-
archy denoted schema:timeHier, with two levels, sdmx-dimension:refPeriod, and
schema:year, representing the aggregation levels month (the bottom level) and
year, respectively. Also, the distinguished level All is defined, as schema:timeAll.
Below, we show these definitions.

1 schema:timeHier a qb4o:Hierarchy ;
2 rdfs:label ”Time Hierarchy”@en ;
3 qb4o:inDimension schema:timeDim ;
4 qb4o:hasLevel sdmx−dimension:refPeriod, schema:year , schema:timeAll .
5

6 sdmx−dimension:refPeriod a qb4o:LevelProperty ;
7 rdfs:label ”Month level”@en .
8
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9 schema:year a qb4o:LevelProperty ;
10 rdfs:label ”Year”@en .
11

12 schema:timeAll a qb4o:LevelProperty ;
13 rdfs:label ”All dates”@en .

We remark that the lowest granularity level for the time dimension is defined
as in QB (i.e., sdmx-dimension:refPeriod), but as a dimension level instead of a
dimension.

The parent-child relationships between levels are defined as hierarchy steps,
using the class qb4o:HierarchyStep, as we show below.

1 :ih21 a qb4o:HierarchyStep ;
2 qb4o:inHierarchy schema:timeHier ;
3 qb4o:childLevel sdmx−dimension:refPeriod ;
4 qb4o:parentLevel schema:year; qb4o:pcCardinality qb4o:ManyToOne .
5

6 :ih22 a qb4o:HierarchyStep;
7 qb4o:inHierarchy schema:timeHier ;
8 qb4o:childLevel schema:year ;
9 qb4o:parentLevel schema:timeAll ; qb4o:OneToManyToOne .

Note that we indicated, for each step (represented using a blank node), to which
hierarchy it belongs, which level is the parent (i.e., the level with coarser gran-
ularity), and which level is the child (i.e., the level with finer granularity), and
the cardinality of the relationship. ��

Finally, in order to address the lack of support for level attributes in QB,
QB4OLAP provides the class of properties qb4o:LevelAttribute. This class is
linked to qb4o:LevelProperty, via the qb4o:hasAttribute property. For complete-
ness, QB4OLAP includes the qb4o:inLevel property, with domain in the class
qb4o:LevelAttribute and range in the class qb4o:LevelProperty. The qb4o:inLevel
property is rarely used, but is included for completeness, as kind of an “inverse”
of qb4o:hasAttribute (note that RDF does not allow to represent the inverse of a
property). Level attributes are useful in OLAP to filter cubes according to some
attribute property. Example 5 shows the definition of an attribute for the time
dimension level sdmx-dimension:refPeriod.

Example 5 (Level Attributes). For this example, assume we add attribute
schema: monthNumber to the level sdmx-dimension:refPeriod in the time dimen-
sion.
1 sdmx−dimension:refPeriod qb4o:hasAttribute schema:monthNumber .
2

3 schema:monthNumber a qb4o:LevelAttribute;
4 rdfs:label ”Month number”@en.

Note that the attribute schema:monthNumber is declared indicating that it is an
instance of the class qb4o:LevelAttribute. ��

5.2 Dimension Instances in QB4OLAP

Typically, instances of OLAP dimensions levels are composed of so-called level
members. In QB4OLAP, level members are represented as instances of the class
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qb4o:LevelMember, which is a sub-class of skos:Concept. Members are associ-
ated with the level they belong to, using the property qb4o:memberOf, whose
semantics is similar to skos:member. Rollup relationships between members are
expressed using the property skos:broader. The choice of this property, instead
of skos:narrower, like it is recommended in QB, aims at indicating that the hier-
archies of level members are usually navigated from finer granularity concepts
up to higher granularity concepts. Example 6 below illustrates this.

Example 6 (Dimension Instances in QB4OLAP). We show now some examples
of members of levels in the dimension schema:timeDim.
1 @prefix time:<http://purl.org/qb4olap/dimensions/time#> .
2

3 time:TOTAL
4 qb4o:memberOf schema:timeAll .
5

6 time:200801
7 qb4o:memberOf sdmx−dimension:refPeriod;
8 skos:broader time:2008 .
9 ...

10 time:2008
11 qb4o:memberOf schema:year;
12 skos:broader time:TOTAL .
13 ...
14 time:2009
15 qb4o:memberOf schema:year;
16 skos:broader time:TOTAL .
17 ...
18 time:201401
19 qb4o:memberOf sdmx−dimension:refPeriod;
20 skos:broader time:2014 .
21 ...
22 time:2014
23 qb4o:memberOf schema:year;
24 skos:broader time:TOTAL .
25 ...

In Lines 6 through 8 we indicate that the month January of 2008 belongs
to level sdmx-dimension:refPeriod, and rolls up to the element time:2008, an IRI
representing the year 2008. In turn, time:2008, defined in Lines 10 through 12,
rolls up to the level time:TOTAL, which represents the distinguished member all
(although it is not mandatory to indicate this element).

Analogously to level members, we must define the instances of level
attributes. For this, associate the IRIs corresponding to level members, with
literals corresponding to attribute values (i.e., attribute instances). In our exam-
ple, for the Time dimension we have:
1 time:201401 schema:monthNumber ”201401”ˆˆxsd:integer .

Note that, opposite to level members, which are IRIs, attribute instances are
always literals (since QB4OLAP does not define, for attributes, a class analogous
to qb4o:MemberOf). ��

5.3 How Can We Use QB4OLAP?

There are three basic ways of using QB4OLAP: (a) To enrich an existing data
set published in QB, with structural metadata and dimensional data; (b) To
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publish an existing data cube/data warehouse; (c) To build a new cube, using
QB4OLAP, from scratch. We already discussed option (a). We do not specifically
address option (c) here, since it comprises the tasks of the first two ones. We
briefly address option (b) in this section.

To illustrate how we can publish an existing DW on the SW using QB4OLAP,
we use the well-known Northwind DW (see [7] for a detailed explanation of the
Northwind DW design). Figure 5 shows the conceptual model of the Northwind
DW using the MultiDim model.

Fig. 5. Conceptual schema of the Northwind DW

It has been already shown that most of the widely used features of the Mul-
tiDim conceptual model, and, in general, of the MD model, can be represented
using QB4OLAP [12]. Therefore, we do not extend here on this explanation, but
below, we give some examples using the Northwind DW.

Example 7 (Northwind DW Structure Definition). This example shows a por-
tion of the DSD that exposes the structure of the Nortwhind DW in QB4OLAP.
The DSD is denoted nw:Northwind. It comprises nine dimensions and six
measures.

1 @prefix nw: <http://dwbook.org/cubes/schemas/northwind#> .
2

3 # Cube definition
4

5 nw:Northwind a qb:DataStructureDefinition ;
6

7 # Lowest level for each dimension in the cube
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8 qb:component [ qb4o:level nw:employee ; qb4o:cardinality qb4o:ManyToOne ] ;
9 qb:component [ qb4o:level nw:orderDate ; qb4o:cardinality qb4o:ManyToOne ] ;

10 qb:component [ qb4o:level nw:dueDate ; qb4o:cardinality qb4o:ManyToOne ] ;
11 qb:component [ qb4o:level nw:shippedDate ; qb4o:cardinality qb4o:ManyToOne ] ;
12 qb:component [ qb4o:level nw:product ; qb4o:cardinality qb4o:ManyToOne ] ;
13 qb:component [ qb4o:level nw:order ; qb4o:cardinality qb4o:OneToOne ] ;
14 qb:component [ qb4o:level nw:shipper ; qb4o:cardinality qb4o:ManyToOne ] ;
15 qb:component [ qb4o:level nw:supplier ; qb4o:cardinality qb4o:ManyToOne ] ;
16 qb:component [ qb4o:level nw:customer ; qb4o:cardinality qb4o:ManyToOne ] ;
17

18 # Measures in the cube
19 qb:component [ qb:measure nw:quantity ; qb4o:hasAggregateFunction qb4o:sum ] ;
20 qb:component [ qb:measure nw:unitPrice ; qb4o:hasAggregateFunction qb4o:avg ] ;
21 qb:component [ qb:measure nw:discount ; qb4o:hasAggregateFunction qb4o:avg ] ;
22 qb:component [ qb:measure nw:salesAmount ; qb4o:hasAggregateFunction qb4o:sum ] ;
23 qb:component [ qb:measure nw:freight ; qb4o:hasAggregateFunction qb4o:sum ] ;
24 qb:component [ qb:measure nw:netAmount ; qb4o:hasAggregateFunction qb4o:sum ] .
25

26 # Measures definition
27

28 nw:quantity a rdf:Property , qb:MeasureProperty ;
29 rdfs:label ”Quantity”@en ;
30 rdfs:subPropertyOf sdmx−measure:obsValue ;
31 rdfs:range xsd:positiveInteger .
32

33 nw:unitPrice a rdf:Property , qb:MeasureProperty ;
34 rdfs:label ”Unit Price”@en ;
35 rdfs:subPropertyOf sdmx−measure:obsValue ;
36 rdfs:range xsd:decimal .
37 ...

Next, we show the schema of part of the Employee dimension, illustrating the
representation of the recursive Supervision hierarchy, and the definition of level
attributes.

1 # −− Employee dimension definition
2

3 nw:employeeDim a rdf:Property , qb:DimensionProperty ;
4 rdfs:label ”Employee Dimension”@en ;
5 qb4o:hasHierarchy nw:supervision , nw:territories .
6

7 # −− Supervision hierarchy
8

9 nw:supervision a qb4o:Hierarchy ;
10 rdfs:label ”Supervision Hierarchy”@en ;
11 qb4o:inDimension nw:employeeDim ;
12 qb4o:hasLevel nw:employee .
13

14 :supervision hs1 a qb4o:HierarchyStep ;
15 qb4o:inHierarchy nw:supervision ;
16 qb4o:childLevel nw:employee ;
17 qb4o:parentLevel nw:employee ;
18 qb4o:pcCardinality qb4o:ManyToOne .
19 ...
20

21 # −− Employee level
22

23 nw:employee a qb4o:LevelProperty ;
24 rdfs:label ”Employee Level”@en ;
25 qb4o:hasAttribute nw:employeeID ;
26 qb4o:hasAttribute nw:firstName ;
27 qb4o:hasAttribute nw:lastName ;
28 qb4o:hasAttribute nw:title ;
29 ... .
30

31 nw:employeeID a qb4o:LevelAttribute ;
32 rdfs:label ”Employee ID”@en ;
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33 rdfs:range xsd:positiveInteger .
34 nw:firstName a qb4o:LevelAttribute ;
35 rdfs:label ”First Name”@en ; rdfs:range xsd:string .
36 nw:lastName a qb4o:LevelAttribute ;
37 rdfs:label ”Last Name”@en ;
38 rdfs:range xsd:string .
39 nw:title a qb4o:LevelAttribute ;
40 rdfs:label ”Title”@en ;
41 rdfs:range xsd:string .
42 ...

We can see that, in the recursive hierarchy nw:supervision, there is only one
level, nw:employee, that is also the parent and child level of the hierarchy step
:supervision hs1 (the level All can be omitted). We can also see some of the
dimension level attributes, and their definitions. ��

The translation from an existing data cube (for example, a cube represented
in the relational model), can be done in an automatic way, using the R2RML
standard.9 The study of this mechanism is out of the scope of this paper (see [26]
for an implementation).

In the next section we use the Eurostat data cube to illustrate how we can
query it using a high-level language, and its automatic translation into SPARQL.

6 Querying QB4OLAP Cubes

The machinery described above can be applied to query data cubes on the SW,
following the approach presented in [20], where a clear separation between the
conceptual and the logical levels is made, and a high-level language, called Cube
Algebra, is defined. Cube Algebra is a user-centric language operating at the
conceptual level. This is the reason why the design of QB4OLAP puts empha-
sis on representing most of the features of OLAP conceptual models. To take
advantage of the vocabulary, a subset of Cube Algebra, called QL, was defined,
in a way such that the user can write her queries at the conceptual level, and
these queries will be automatically translated into a SPARQL query over the
QB4OLAP-based RDF representation (at the logical level). There are also a set
of rules to ameliorate and simplify QL queries before obtaining an equivalent
SPARQL query, which we explain succinctly below.

Remark 1. The content of this section, is based on the work in [27,28], adapted
and simplified for the EBISS 2015 tutorial.

6.1 The QL Language

Ciferri et al. [20] have shown that, opposite to the usual belief, most of the
MD data models in the literature operate at the logical level rather than at a
conceptual level, and that the data cube is far from being the focus of these
models. Therefore, the authors proposed a model and an algebra where the data

9 http://www.w3.org/TR/r2rml/.

http://www.w3.org/TR/r2rml/
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cube is a first-class citizen, and OLAP operators are used to manipulate the
only type of this model: again, the data cube. Following these ideas, Gómez
et al. [17] showed that such a model can be used to seamlessly perform OLAP
analysis over discrete and continuous geographic data. That means, the user will
write the queries in Cube Algebra, without caring about which kind of data
lies underneath. The framework takes care of the spatial data management, and
of translating the expressions into the language supported by the underlying
database (PostGIS in the case of [17]). Along these lines, the use of a high-
level query language (as mentioned, called QL), based on the Cube Algebra,
for querying cubes represented in RDF following the QB4OLAP model, has
been proposed. In this way, the user will only see a collection of dimensions,
dimension levels, and measures, and will write the queries in QL, which will
then be translated to SPARQL, and executed on the QB4OLAP underlying
data cube.

In this section we briefly outline the portion of QL that we will use in the
sequel. We remark that we have simplified the language to make the paper easier
to read, keeping the most important features, relevant to our main goal, which
is, to show how a QB4OLAP cube can be queried without the need of knowing
SPARQL programming.

We start the presentation describing the operators, using the Eurostat data
cube as our running example.

Operators. The ROLLUP operation aggregates measures along a dimension
hierarchy to obtain measures at a coarser granularity. The syntax for this oper-
ation is:
ROLLUP(CubeName, Dimension, Level)

where Level is the level in Dimension to which the aggregation is performed.

Example 8 (ROLLUP). To compute the total number of applications by country,
we should write
ROLLUP(Asylum applications, Citizenship, Country)

The names of the dimensions and levels, are based on the conceptual model in
Fig. 1. ��

The DRILLDOWN operation performs the inverse of ROLLUP; that is, it
goes from a more general level to a more detailed level down in a hierarchy. The
syntax of this operation is as follows:
DRILLDOWN(CubeName, Dimension, Level)

where Level is the level in Dimension to which the operation is performed.

Example 9 (DRILLDOWN). After rolling-up to the year level, we may want to
drill-down to the month level. For that, we write:
DRILLDOWN(YearCube, Time, Month)

Note that we assume that we created the cube YearCube after rolling-up to year. ��
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The SLICE operation removes a dimension from a cube (i.e., a cube of n− 1
dimensions is obtained from a cube with n dimensions) by selecting one instance
in a dimension level. The syntax of this operation is:
SLICE(CubeName, Dimension)

where the Dimension will be dropped by fixing a single value in the Level instance.
The other dimensions remain unchanged.

The DICE operation returns a cube with the same dimensionality of the
original one, but only containing the cells that satisfy a Boolean condition.
The syntax for this operation is
DICE(CubeName, Condition)

where Condition is a Boolean condition over dimension levels, attributes, and
measures. The DICE operation is analogous to a selection in the relational
algebra.

Usually, slicing and dicing operations are applied together.

Example 10 (SLICE and DICE). If in our running example we want to remove
the Time dimension, we would write:
SLICE(Asylum applications, Time)

If we want to keep only applications made by Egyptian citizens, we write:
DICE(Asylum applications,Citizenship.Country.CountryName = 'Egypt')

Note that the dicing condition is applied on the value of a level attribute. This
is easier than applying a condition over an IRI, illustrating one of the advantages
of supporting level attributes in QB4OLAP. ��

We remark that in this paper we limit ourselves to show only the four oper-
ations above, since they are enough to illustrate the main idea behind this pro-
posal. A more detailed explanation, and further operations, can be found in [7].

A QL query (or program), is a sequence of OLAP operators, which can store
intermediate results in variables bound to cubes, which can be used as arguments
in subsequent operations. For example, the following query performs a slicing
operation over the Destination dimension, an aggregation to the year level in
the Time dimension, and finally filters the result to obtain only the number of
asylum applications submitted by citizens from African countries.

1 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
2 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
3 QUERY
4 $C1 := SLICE(data:migr asyappctzm, schema:destinationDim);
5 $C2 := ROLLUP($C1,schema:timeDim,schema:year);
6 $C3 := DICE ($C2, (schema:citizenshipDim|schema:continent|schema:continentName = ”Africa”));

Note that we have included in the language the Turtle prefixes, which, of
course do not belong to the conceptual level, but we think this helps, from a
pedagogical point of view, to better convey the idea. In a user-oriented imple-
mentation these names can be easily hidden, that is, it would be trivial to write
year instead of schema:year.
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Finally, to make the presentation simpler, in what follows we assume that
QL queries have the following pattern: (ROLLUP | SLICE | DRILLDOWN)*
(DICE)*. That means, DICE operators are the last ones in a query, i.e., no
ROLLUP, DRILLDOWN or SLICE operations can follow a DICE one.

6.2 Query Simplification

Automatic query simplification and amelioration is important for two reasons:
(a) Users will not always write “good” QL queries: although syntactically cor-
rect, redundant and/or unnecessary operations could be included; (b) The order
in which the operations are written in a query is not always the best one. Thus,
a set of rules simplify and ameliorate the queries proposed by users. The simpli-
fication process deals with the elimination of redundancy in the queries. The
amelioration process typically aims at producing a query, equivalent to the
original one, but which performs better than it. We briefly explain the simplifi-
cation process next. To organize the discussion we consider two cases:

– Queries that do not contain DICE operators;
– Queries that contain DICE operators.

Queries Not Including a DICE Operation. In this case, we apply the
following rules:

– Rule 1: Group all the ROLLUP and DRILLDOWN operations over the same
dimension, and replace each group of such operations with a single ROLLUP
from the bottom level of the dimension to the lowest lever indicated in the
drill-down operation(s).

– Rule 2: If the query contains a SLICE and a sequence of ROLLUP and
DRILLDOWN operations over the same dimension, remove the sequence of
ROLLUPs and DRILLDOWNs and keep only the SLICE.

– Rule 3: Reduce intermediate results by performing SLICE operations as soon
as possible.

The rationale of the rules is clear. Rule 1 eliminates the ROLLUPs that will
be traversed later down in the hierarchy, when performing the DRILLDOWN.
Rule 2 addresses the case in which a SLICE removes a dimension that is traversed
using ROLLUPs and DRILLDOWNs. In this case, none of the two latter oper-
ations will contribute to the result. Rule 3 reduces the size of the intermediate
results as early as possible.

Queries Including a DICE Operation. Taking advantage of the assumption
that DICE operators are the last ones in a query, we can split the query in two
subsets of statements: one that does not contain DICE operators, and another
one that is composed only of DICE operators. We can then apply the rules
presented above, to the first portion of the query, keeping the statements that
involve DICE operators as in the original query.
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6.3 QL by Example

In this section we present some examples of QL queries, and their simplification
process.

We start the presentation with a query not containing a DICE operation:
Asylum applications by year and continent where the applicant lives. This is
a typical OLAP query, involving two ROLLUP operations, to the Year and
Continent levels in dimensions Time and Citizenship.

Query 1: Asylum applications by year and continent.

1 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
2 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
3 QUERY
4 $C1 := ROLLUP (data:migr asyappctzm, schema:citizenshipDim,schema:continent);
5 $C2 := ROLLUP ($C1, schema:citizenshipDim,schema:citAll);
6 $C3 := ROLLUP ($C2, schema:timeDim, schema:year);
7 $C4 := SLICE ($C3, schema:destinationDim);
8 $C5 := SLICE ($C4, schema:asylappDim);
9 $C6 := SLICE ($C5, schema:sexDim);

10 $C7 := SLICE ($C6, schema:ageDim);
11 $C8 := DRILLDOWN ($C7, schema:citizenshipDim,schema:continent);

Note that this is not the best way of writing this query, since the ROLLUP
to All is clearly not needed (recall that we want to promote the analysis within
non-expert OLAP users). Thus, applying Rule 1, the sequence of ROLLUPs and
DRILLDOWNs over schema:citizenshipDim dimension is replaced by a single
ROLLUP from the bottom level up to the level reached by the last operation
in the sequence (in this case schema:continent). The simplified query looks as
follows.

1 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
2 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
3 QUERY
4 $C1 := SLICE ($data:migr asyappctzm, schema:destinationDim);
5 $C2 := SLICE ($C1, schema:assylappDim);
6 $C3 := SLICE ($C2, schema:sexDim);
7 $C4 := SLICE ($C3, schema:ageDim)
8 $C5 := ROLLUP ($C4, schema:citizenshipDim,schema:continent);
9 $C6 := ROLLUP ($C5, schema:timeDim, schema:year);

Let us now show a query including dicing operations. We want to obtain Asy-
lum applications by year submitted by Asian citizens, where applications count
>5000 whose destination is France or Germany.

Query 2: Asylum applications by year submitted by Asian citizens, where the number of applications is larger
than 5000, and whose destination is France or Germany.

1 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
2 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
3 PREFIX property: <http://eurostat.linked−statistics.org/property#>;
4 PREFIX sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#>;
5 QUERY
6 $C1 := ROLLUP (data:migr asyappctzm, schema:citizenshipDim,schema:citAll);
7 $C2 := ROLLUP ($C1, schema:timeDim, schema:year);
8 $C3 := DRILLDOWN ($C2, schema:citizenshipDim,schema:continent);
9 $C4 := SLICE ($C3, schema:asylappDim);

10 $C5 := SLICE ($C4, schema:sexDim);
11 $C6 := SLICE ($C5, schema:ageDim);
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12 $C7 := DICE ($C6, (schema:citizenshipDim|schema:continent|schema:continentName = ”Asia”));
13 $C8 := DICE ($C7, ( sdmx−measure:obsValue > 5000 AND
14 (schema:destinationDim|property:geo|schema:countryName = ”France”) OR
15 (schema:destinationDim|property:geo|schema:countryName = ”Germany”)));

Below, we show the “simplified” query. Again, the sequence of roll-ups and
drill-downs is replaced by a roll-up from the bottom level of the hierarchy.

1 PREFIX schema: <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#>;
2 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
3 PREFIX property: <http://eurostat.linked−statistics.org/property#>;
4 PREFIX sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#>;
5 QUERY
6 $C1 := SLICE (data:migr asyappctzm, schema:asylappDim);
7 $C2 := SLICE ($C1, schema:sexDim);
8 $C3 := SLICE ($C2, schema:ageDim);
9 $C4 := ROLLUP($C3,schema:timeDim,schema:year);

10 $C5 := ROLLUP($C4,schema:citizenshipDim,schema:continent);
11 $C6 := DICE ($C5(schema:citizenshipDim|schema:continent|schema:continentName = ”Asia”));
12 $C7 := DICE ($C6, ( sdmx−measure:obsValue > 5000 AND
13 (schema:destinationDim|property:geo|schema:countryName = ”France”) OR
14 (schema:destinationDim|property:geo|schema:countryName = ”Germany”)));

7 Translating QL Queries into SPARQL

We expressed above that QB4OLAP provides the metadata needed to automat-
ically translate a high-level language into SPARQL. This is a key feature to
promote the use of the semantic web: users would not need to learn a new and
complex language like SPARQL. In our case, OLAP users will only need to write
relatively simple QL programs, and they will have the flexibility to analyze data
cubes on-the-fly.

We now describe a mechanism for translating a QL program into a single
SPARQL query. Again, we consider two cases: (1) Queries that do not contain
DICE operations, and (2) Queries that contain DICE operations. In Sect. 7.1 we
describe the generation of SPARQL queries in the first group, while in Sect. 7.2
we present the rules for the second group of queries.

7.1 Queries Not Including a DICE Operation

After applying the rules presented in the previous section to the original query,
we reduce all the possible queries to some kind of “normal form”, where, for each
dimension D in the data cube only one of the following conditions is satisfied:

– No operation is performed over D
– A ROLLUP operation is performed over D
– A SLICE operation is performed over D

ROLLUPs are implemented navigating the rollup relationships between
members, guided by the dimension hierarchy, and aggregations are performed
using GROUP BY clauses. The former are performed through SPARQL joins,
as we show in the example below. The reader can now better understand why we
cannot do this for QB-annotated data sets: they lack the necessary metadata.
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SLICEs over dimensions correspond to “slicing out” dimensions. This opera-
tion requires measure values to be aggregated up to the ALL level of the dimen-
sion being sliced out. The mechanism for this is the same one that is used to
compute a ROLLUP.

Therefore, after simplifying and ameliorating the query, we can automatically
translate it into a single SPARQL expression.

Example 11. We next show the SPARQL query produced for Query 1.

1 PREFIX qb: <http://purl.org/linked−data/cube#>
2 PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
4 SELECT ?plm1 ?plm2 (SUM(<http://www.w3.org/2001/XMLSchema#integer>(?m1)) as ?ag1)
5 FROM <http://www.fing.edu.uy/inco/cubes/instances/migr asyapp clean>
6 FROM <http://www.fing.edu.uy/inco/cubes/schemas/migr asyappctzmQB4O>
7 WHERE {
8 ?o a qb:Observation .
9 ?o qb:dataSet <http://eurostat.linked−statistics.org/data/migr asyappctzm> .

10 ?o <http://purl.org/linked−data/sdmx/2009/measure#obsValue> ?m1 .
11 ?o <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> ?lm1 .
12 ?lm1 qb4o:memberOf <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> .
13 ?lm1 <http://www.w3.org/2004/02/skos/core#broader> ?plm1 .
14 ?plm1 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#year> .
15 ?o <http://eurostat.linked−statistics.org/property#citizen> ?lm2 .
16 ?lm2 qb4o:memberOf <http://eurostat.linked−statistics.org/property#citizen> .
17 ?lm2 <http://www.w3.org/2004/02/skos/core#broader> ?plm2 .
18 ?plm2 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#continent> .
19 }
20 GROUP BY ?plm1 ?plm2

Note that the SLICE operations are implemented omitting, in the SELECT
clause, the variables corresponding to the dropped dimensions. Navigation is
performed through joins. Lines 8 through 10 (within the WHERE clause), iden-
tify the observations, and Line 11 takes the bottom level of the time dimension,
which is used to navigate, through the skos:broader predicate, up to the year
level. We proceed analogously with the Citizenship dimension: variable ?lm2 is
used to navigate the hierarchy up to the continent level, bound to variable ?plm2.
Finally, the GROUP BY clause is applied, and an aggregation using function
SUM is performed. ��

7.2 Queries Including DICE Operations

In this case, we know that the rules have been applied to the first part of the
query, which reduces this part of the query to the cases already described above.
The second part of the query contains only DICE operations. Each DICE oper-
ation is associated with a condition over measures and/or attribute values, and
its result filters out of cells that do not satisfy the condition. We implement
the DICE conditions using SPARQL FILTER clauses, also making use of the
expressions presented in Sect. 7.1 as subqueries.

The SPARQL query is produced applying the following steps:

1. Obtain a SPARQL query that implements the part of the QL query that does
not contain DICE operators, applying the method presented in Sect. 7.1. We
will refer to this query as the inner query.
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2. Produce an outer SPARQL query such that:
(a) Its SELECT clause has the same variables as the SELECT clause of the

inner query
(b) Its WHERE clause contains:

i. The inner query
ii. A set of graph patterns to obtain the values of the attributes involved

in DICE conditions
iii. A FILTER clause with the conjunction of the conditions of all the

DICE operations

DICE conditions are thus translated into SPARQL expressions. For exam-
ple, conditions over attributes with range xsd:string are implemented using the
REGEX function.

Example 12. This example shows the translation of Query 2, which contains a
DICE clause. Here, we use the REGEX clause (which handles regular expres-
sions) within the FILTER condition, to obtain the citizens from Asia, and the
destination countries.

1 PREFIX qb: <http://purl.org/linked−data/cube#>
2 PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
4 SELECT ?ag1 ?plm1 ?lm4 ?plm2
5 WHERE {
6 { ?plm2 <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#continentName> ?plm21 .
7 ?lm4 <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#countryName> ?lm41 .
8 }.
9 { SELECT ?plm1 ?lm4 ?plm2

(SUM(<http://www.w3.org/2001/XMLSchema#integer>(?m1)) as ?ag1)
10 FROM <http://www.fing.edu.uy/inco/cubes/instances/migr asyapp clean>
11 FROM <http://www.fing.edu.uy/inco/cubes/schemas/migr asyappctzmQB4O>
12 WHERE {
13 ?o a qb:Observation .
14 ?o qb:dataSet <http://eurostat.linked−statistics.org/data/migr asyappctzm> .
15 ?o <http://purl.org/linked−data/sdmx/2009/measure#obsValue> ?m1 .
16 ?o <http://eurostat.linked−statistics.org/property#age> ?lm1 .
17 ?o <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> ?lm2 .
18 ?lm2 qb4o:memberOf <http://purl.org/linked−data/sdmx/2009/dimension#refPeriod> .
19 ?lm2 <http://www.w3.org/2004/02/skos/core#broader> ?plm1 .
20 ?plm1 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#year> .
21 ?o <http://eurostat.linked−statistics.org/property#sex> ?lm3 .
22 ?o <http://eurostat.linked−statistics.org/property#geo> ?lm4 .
23 ?o <http://eurostat.linked−statistics.org/property#citizen> ?lm5 .
24 ?lm5 qb4o:memberOf <http://eurostat.linked−statistics.org/property#citizen> .
25 ?lm5 <http://www.w3.org/2004/02/skos/core#broader> ?plm2 .
26 ?plm2 qb4o:memberOf <http://www.fing.edu.uy/inco/cubes/schemas/migr asyapp#continent> .
27 ?o <http://eurostat.linked−statistics.org/property#asyl app> ?lm6 .
28 }
29 GROUP BY ?plm1 ?lm4 ?plm2
30 }
31 FILTER (((REGEX (?plm21,”Asia” , ”i”)))&&(((?ag1 > 5000) && ((REGEX (?lm41,”France” , ”i”)) ||
32 (REGEX (?lm41,”Germany” , ”i”))))))
33 }

Note that the inner and outer queries have the same variables. Also, the outer
query contains the FILTER clause, that makes use of the REGEX function. The
inner query is solved in the same way as in Example 11. ��
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8 Conclusion

In this tutorial paper we have explained how MD data can be represented and
queried directly over the SW, without the need of downloading data sets into
local DWs. We have shown that, to this end, the RDF Data Cube Vocabu-
lary (QB), the current W3C recommendation must be extended with structural
metadata, and dimensional data, in order to be able to support useful OLAP-
like analysis. We provided an in-depth comparison between these proposals, and
we showed that extending QB with QB4OLAP can be done without re-writing
the observations (the largest part of the data). We also presented a high-level
query language that allows OLAP users that are not familiar with SW concepts
or languages, to write and execute OLAP operators without any knowledge of
SPARQL. Queries are automatically translated into SPARQL and executed over
an endpoint.

The asylum applications data cube that we have used as running example in
this tutorial, as well as an RDF representation of the Northwind DW, and other
example cubes, are available at a public SPARQL endpoint.10 As an exercise, the
interested reader can execute the queries presented in this paper, and compare
them against the actual Eurostat data, where data are provided in many different
ways (reports, graphics, etc.). The analysis allowed by publishing data directly
over the SW, using QB4OLAP to represent and enrich data, provides a flexibility
that cannot be achieved by traditional publication methods. Moreover, based on
the existing observations, expressed in QB, the cost of enriching the original data
set is relatively low.

Current work is being carried out along two main lines: (a) Developing fur-
ther optimization techniques, and providing a benchmark to run queries and
study query performance [27,28]; (b) Enhancing usability, by developing semi-
automatic techniques to enrich and build existing QB data sets with QB4OLAP
metadata [8,9].
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Abstract. With the term Social Business Intelligence we refer to a
branch of Business Intelligence specialized in applying On-Line Ana-
lytical Processing analysis to User-Generated Contents collected from
the Web and other sources of social information. The high dynamics
of the domain as well as the nature of the source data, that are textual
rather than numerical, require specific techniques both for modeling data
and managing a project. Despite the increasing diffusion of Social Busi-
ness Intelligence applications, only few works in the academic literature
addressed such distinguishing features. In this paper we propose both
a modeling technique and a methodology that enable the possibility of
carrying out a more dynamic and expressive design in Social Business
Intelligence projects. We also propose a set of experimental results on
real data and real projects proving the effectiveness of our solutions.

1 Introduction

The planetary success of social networks and the widespread diffusion of portable
devices has enabled simplified and ubiquitous forms of communication. This in
turn has contributed, during the last decade, to a significant shift in human com-
munication patterns towards the voluntary sharing of personal information. Most
of us are able to connect to the Internet anywhere, anytime, and continuously
send messages to a virtual community centered around blogs, forums, social net-
works, and the like. This has resulted in the accumulation of enormous amounts
of user-generated content (UGC), that include geolocation, preferences, opinions,
news, etc. This huge wealth of information about people’s tastes, thoughts, and
actions is obviously raising an increasing interest from decision makers because
it can give them a fresh and timely perception of the market mood. Besides,
the diffusion of UGC is so widespread to directly influence in a decisive way the
phenomena of business and society [1–3].

Some commercial tools are available for analyzing the UGC from a few pre-
defined points of view (e.g., topic discovery, brand reputation, and topics corre-
lation) and using some ad hoc Key Performance Indicators - KPIs (e.g., topic
presence counting and topic sentiment). These tools do not rely on any standard
data schema; often they do not even lean on a relational DBMS but rather on
in-memory or non-SQL ones. Currently, they are perceived by companies as self-
standing applications, so UGC-related analyses are run separately from those
c© Springer International Publishing Switzerland 2016
E. Zimányi and A. Abelló (Eds.): eBISS 2015, LNBIP 253, pp. 62–86, 2016.
DOI: 10.1007/978-3-319-39243-1 3
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strictly related to business, that are carried out based on corporate data using
traditional business intelligence platforms. To give decision makers an unprece-
dentedly comprehensive picture of the ongoing events and of their motivation,
this gap must be bridged [4].

Social Business Intelligence1 (SBI) is the emerging discipline that aims at
effectively and efficiently combining corporate data with UGC to let decision-
makers analyze and improve their business based on the trends and moods per-
ceived from the environment [5]. As in traditional business intelligence, the goal
of SBI is to enable powerful and flexible analyses for decision makers with a lim-
ited expertise in databases and programming. In other terms we want to apply
On-Line Analytical Processing - OLAP analysis on top of a data warehouse
storing a semantically enriched version of the UGC related to a specific matter.

In the context of SBI, the most widely used category of UGC is the one
coming in the form of textual clips. Clips can either be messages posted on social
media (such as Twitter, Facebook, blogs, and forums) or articles taken from on-
line newspapers and magazines. Digging information useful for decision makers
out of textual UGC requires to set up an extended Extraction-Trasformation-
Loading - ETL process that includes (1) crawling the Web to extract the clips
related to a subject area; (2) enriching them in order to let as much information
as possible emerge from the raw text; (3) transforming and modeling the data
in order to store them in a multidimensional fashion. The subject area defines
the project scope and extent, and can be for instance related to a brand or a
specific market. Enrichment activities may simply identify the structured parts
of a clip, such as its author, or even use sentiment analysis techniques [6–8] to
interpret each sentence and if possible assign a sentiment (also called polarity,
i.e., positive, negative, or neutral) to it. We call SBI process the one that crawl,
enrich and transform raw clips in order to let decision makers to carry out
in-depth analyses on their content. The SBI process shows several differences
with respect to the traditional BI one carried out on structured enterprise data
(i.e. owned data). Such differences, that are discussed in the following sections,
impact both on the techniques and methodological steps necessary to transform
a raw textual clip in a valuable information.

SBI has emerged as an application and research field in the last few years.
Although a wide literature is available on the two initial steps of the extended
ETL process sketched so far, namely data crawling, text mining, semantic enrich-
ment and Natural Language Processing, only few papers have focused on the
strictly OLAP-related issues. OLAP is based on multidimensional modeling: a
cube stores a set of measures providing a quantitative evaluation of an event that
is defined by a set of dimension of analyses further described at differen level
of details by a set of attributes. In [9] the authors propose a cube for analyzing
terms occcurrences in documents belonging to a corpus. Due to a the very simple
terms categorization approach analysis at different levels of abstraction cannot

1 In the literature the term Social BI is also used to define the collaborative devel-
opment of post user-generated analytics among business analysts and data mining
professionals.



64 M. Golfarelli

be carried out. In [10] the authors propose textual measures as a solution to
summarize textual information within a cube. Complete architectures for SBI
have been proposed by [2] and by [11] identifying its basic blocks but still with
a limited expressiveness. An important step in increasing the expressiveness of
SBI queries has been done in [12] where, a first advanced solution for modeling –
the so-called topic hierarchy – has been proposed. In this paper we discuss three
issues that, in our experience, represent major changes with respect to tradition
BI projects:

– SBI Architecture (see Sect. 2): with reference to standard BI projects, SBI
requires additional modules necessary, for example, for semantic enrichment of
unstructured data. It also requires new technologies such as document DBMS
necessary for storing and querying the large amount textual UGC.

– Modeling of SBI data (see Sects. 3 and 4): the semi-structured nature of SBI
data together with the dynamism of UGCs make traditional multidimensional
models not expressive enough to support SBI queries.

– Methodology for SBI projects (See Sect. 5.a) distinctive feature of SBI projects
is related to the huge dynamism of the UGC and of the pressing need of
immediately perceiving and timely reacting to changes in the environment.

2 An SBI Architecture

The architecture we propose to support our approach to SBI is depicted in
Fig. 1. Its main highlight is the integration between sentiment and business data,
which is achieved in a non-invasive way by extracting some business flows from
the enterprise data warehouse and integrating them with those carrying textual
UGC, in order to provide decision makers with 360◦ decisional capabilities. In
the following we briefly comment each component.

The Crawling component carries out a set of keyword-based queries aimed
at retrieving the clips (and the available meta-data) that are in the scope of the
subject area. The target of the crawler search could be either the whole Web or

Fig. 1. An architecture for SBI
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a set of user-defined web sources (e.g., blogs, forums, web sites, social networks).
The semi-structured output of the crawler is turned into a structured form and
loaded onto the Operational Data Store (ODS), that stores all the relevant data
about clips, their authors, and their source channels. To this end, a relational
ODS can be coupled with a document-oriented database that can efficiently store
and search the text of the clips. The ODS also represents all the topics within
the subject area and their relationships. The Semantic Enrichment component
works on the ODS to extract the semantic information hidden in the clip texts.
Depending on the technology adopted (e.g., supervised machine-learning [13] or
lexicon-based techniques [14] such information can include the single sentences
in the clip, its topic(s), the syntactic and semantic relationships between words,
or the sentiment related to a whole sentence or to each single topic it contains.
The ETL component periodically extracts data about clips and topics from the
ODS, integrates them with the business data extracted from the Enterprise Data
Warehouse (EDW), and loads them onto the Data Mart (DM). The DM stores
integrated data in the form of a set of multidimensional cubes that, as shown
in Sect. 3, require ad hoc modeling solutions; these cubes support the decision
making process in three complemental ways:

1. OLAP & Dashboard: decision makers can explore the UGC from different
perspectives and effectively control the overall social feeling. Using OLAP
tools for analyzing UGC in a multidimensional fashion pushes the flexibility
of our architecture much further than the standard architectures adopted in
this context.

2. Data Mining: decision makers evaluate the actual relationship between the
rumors/opinion circulating on the Web and the business events (e.g., to what
extent positive opinions circulating about a product will have a positive
impact on sales?).

3. Simulation: the correlation patterns that connect the UGC with the business
events, extracted from past data, are used to forecast business events in the
near future given the current UGC.

In our prototypical implementation of this architecture, publicly available
at http://semantic.csr.unibo.it, topics and roll-up relationships are manually
defined; we use Brandwatch for keyword-based crawling, Talend for ETL, SyN
Semantic Center by SyNTHEMA for semantic enrichment (specifically, for label-
ing each clip with its sentiment), Oracle for storing the ODS and the DM, and
MongoDB for storing the document database. We developed an ad hoc OLAP
& dashboard interface using JavaScript, while simulation and data mining com-
ponents are not currently implemented.

The architectural components mentioned above are normally present, though
with different levels of sophistication, in most current commercial solutions for
SBI. However the roles in charge of designing, tuning, and maintaining each
component may vary from project to project. In regards to this, SBI projects
can be classified as follows:

http://semantic.csr.unibo.it
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– Level 1: Best-of-Breed. In this type of projects, a best-of-breed policy is fol-
lowed to acquire tools specialized in one of the steps necessary to transform
raw clips in semantically-rich information. This approach is often followed by
those who run a medium to long-term project to get full control of the SBI
process by finely tuning all its critical parameters, typically aimed at imple-
menting ad hoc reports and dashboards to enable sophisticated analyses of
the UGC.

– Level 2: End-to-End. Here, an end-to-end software/service is acquired and
tuned. Customers only need to carry out a limited set of tuning activities that
are typically related to the subject area, while a service provider or a system
integrator ensures the effectiveness of the technical (and domain-independent)
phases of the SBI process.

– Level 3: Off-the-Shelf. This type of projects consists in adopting, typically in
a as-a-service manner, an off-the-shelf solution supporting a set of reports
and dashboards that can satisfy the most frequent decision makers needs in
the SBI area (e.g., average sentiment, top topics, trending topics, and their
breakdown by source/author/sex). With this approach the customer has a
very limited view of the single activities that constitute the SBI process, so
she has little or no chance of positively impacting on activities that are not
directly related to the analysis of the final results.

Moving from level 1 to 3, projects require less technical capabilities from cus-
tomers and ensure a shorter set-up time, but they also allow less control of the
overall effectiveness and less flexibility in analyzing the results.

3 Modeling SBI Data

The main goal of SBI is to allow OLAP paradigm to be applied to social/textual
data. As shown in the previous section some proposals for a multidimensional
modeling of SBI data have been provided but all of them lack in providing the
required expressiveness. A key role in the analysis of textual UGC is played by
topics, meant as specific concepts of interest within the subject area. Decision
makers are interested in knowing how much people talk about a topic, which
words are related to it, if it has a good or bad reputation, etc. Thus, topics
are obvious candidates to become a dimension of the cubes for SBI. A simple
example of an SBI cube is reported in Fig. 2. Apart from the Topic hierarchy,
the meta-data retrieved by the crawling module has been modeled thus, for
example, the average sentiment about a specific group of topics can be analyzed
for different Media Types (e.g. Forum, News). Like for any other dimension,
decision makers are very interested in grouping topics together in different ways
to carry out more general and effective analyses—which requires the definition
of a topic hierarchy that specifies inter-topic roll-up (i.e., grouping) relationships
that, in turns, enable aggregations of topics at different levels.

Example 1. A marketing analyst wants to analyze people’s feelings about mobile
devices and relate them to the selling trends. A basic cube she would use to this
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Fig. 2. A Dimensional Fact Model - DFM representation of an SBI cube reporting
information about the occurrence of a specific topic in a specific text.

purpose is the one counting, within the textual UGC, the number of occur-
rences of each topic related to subject area “mobile technologies”, distinguishing
between those expressing positive/negative sentiment as labeled by an opinion
mining algorithm (see Fig. 2). Figure 3-right shows a set of topics for mobile tech-
nologies and their roll-up relationships: when computing the brand reputation
for the topic “Samsung”, decision makers may wish to also include occurrences
of topics “Galaxy III” and “Galaxy Tab”, while when analyzing decision makers’
concerns about “Galaxy III” she wants to consider comments about its parts.

However, topic hierarchies are different from traditional hierarchies (like the
temporal and the geographical one) in several ways:

1. Non-leaf topics can be related to facts too(e.g., clips may talk of smartphones
as well as of the Galaxy III) [12]. This means that grouping topics at a
given level may not determine a total partitioning of facts [15]. Besides, topic
hierarchies are unbalanced, i.e., hierarchy instances can have different lengths.

2. Trendy topics are heterogeneous (e.g., they could include names of famous
people, products, places, brands, etc.) and change quickly over time (e.g., if at
some time it is announced that using smartphones can cause finger patholo-
gies, a brand new set of hot unpredicted topics could emerge during the
following days), so a comprehensive schema for topics cannot be anticipated
at design time and must be dynamically defined.

3. Roll-up relationships between topics can have different semantics: for
instance, the relationship semantics in “Galaxy III has brand Samsung” and
“Galaxy III has type smartphone” is quite different. In traditional hierarchies
this is indirectly modeled by leaning on the semantics of aggregation levels
(“Smartphone” is a member of level Type, “Samsung” is a member of level
Brand).

In light of the above, topic hierarchies in Relational OLAP (ROLAP) contexts
must clearly be modeled with more sophisticated solutions than traditional star
schemata. In [16] we proposed meta-star; its basic idea is to use meta-modeling
coupled with navigation tables and with traditional dimension tables. On the one
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hand, navigation tables easily support hierarchy instances with different lengths
and with non-leaf facts (requirement �1), and allow different roll-up semantics to
be explicitly annotated (requirement �3); on the other, meta-modeling enables
hierarchy heterogeneity and dynamics to be accommodated (requirement �2). An
obvious consequence of the adoption of navigation tables is that the total size
of the solution increases exponentially with the size of the topic hierarchy. This
clearly limits the applicability of the meta-star approach to topic hierarchies of
small-medium size; however, we argue that this limitation is not really penaliz-
ing because topic hierarchies are normally created and maintained manually by
domain experts, which suggests that their size can hardly become too large.

In the remainder of this section we provide a formal definition of the topic
hierarchy related concepts.

Definition 1. A hierarchy schema S is a couple of a set L of levels and a roll-
up partial order � of L. We write lk�̇lj to emphasize that lk is an immediate
predecessor of lj in �.

Example 2. In Example 1 it is L = {Product, Type, Category, Brand, Component}
and Component�̇Product �̇Type�̇Category, Product�̇Brand (see Fig. 3-left).

The connection between hierarchy schemata (intension) and topic hierarchies
(extension) is captured by Definition 2, that also annotates roll-up relationships
with their semantics.

Definition 2. A topic hierarchy conformed to hierarchy schema S = (L,�S)
is a triple of (i) an acyclic directed graph H = (T,R), where T is a set of
topics and R is a set of inter-topic roll-up relationships; (ii) a partial function
Lev : T → L that associates some topics to levels of S; and (iii) a partial function
Sem : R → ρ that associates some roll-up relationships to their semantics (with
ρ being a list of user-defined roll-up semantics). Graph H must be such that, for
each ordered pair of topics (t1, t2) ∈ R such that Lev(t1) = l1 and Lev(t2) = l2,
it is l1�̇l2 and ∀(t1, t3) ∈ R,Lev(t3) �= l2.

Example 3. In Fig. 3 the topic hierarchy on the right-hand side is
annotated with levels and roll-up semantics; T includes for instance
{8MP Camera,Galaxy III,Samsung}; R includes for instance, {(8MP Camera,
Galaxy III), (Galaxy III,Samsung)}; Lev includes for instance {(8MP Camera,
Component), (Galaxy III,Product), (Samsung,Brand)}; finally, Sem includes for
instance ((8MP Camera,Galaxy III), isPartOf);

The intuition behind the constraints on H in Definition 2 is that inter-topic
relationships must not contradict the roll-up partial order and must have many-
to-one multiplicity. For instance in Fig. 3, arc from “Galaxy III” to “Smartphone”
is correct because Product�̇Type, but there could be no other arc from “Galaxy
III” to a topic of level Type. In the same way, no arc from a product to a category
is allowed; the arc from “Galaxy III” to “Touchscreen” is allowed because the
latter does not belong to any level.

Finally, Definition 3 provides a compact representation for the semantics
involved in any path of a topic hierarchy.
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Fig. 3. The annotated topic hierarchy for the mobile technology subject area.

Definition 3. Given topic t1 such that Lev(t1) = l1 and given level l2 such that
l1 � l2, we denote with Ancl2(t1) the topic t2 such that Lev(t2) = l2 and t2 is
reached from t1 through a directed path P in H. The roll-up signature of couple
(t1, t2) is a binary string of |ρ| bits, where each bit corresponds to one roll-up
semantics and is set to 1 if at least one roll-up relationship with that semantics
is part of P , is set to 0 otherwise. Conventionally, the roll-up signature of (t, t)
is a string of 0’s for each t.

Example 4. With reference to Fig. 3 it is for instance AncBrand(8MP Camera) =
Samsung, AncType(8MP Camera) = Smartphone. Note that topics “Touch-
screen” and “Finger Pathologies” do not belong to any level. If ρ = (isPartOf,
hasType, hasBrand, hasCategory, has, causedBy), then the roll-up signature of
(8MP Camera, Samsung) is 101000 (because the path from “8MP Camera”
to “Samsung” includes roll-up relationships with semantics isPartOf and has-
Brand), that of (8MP Camera, Smartphone) is 110000.

Topic hierarchies can be implemented on a ROLAP platform combining clas-
sical dimension tables with recursive navigation tables and extends the result
by meta-modeling. Remarkably, the designer can tune the solution by deciding
which levels Lstat ⊆ L are to be modeled also in a static way, i.e., like in a
classical dimension table. Two different tables are used:

1. A topic table storing one row for each distinct topic t ∈ T . The schema of this
table includes a primary surrogate key IdT, a Topic column, a Level column,
and an additional column for each static level l ∈ Lstat. The row associated to
topic t has Topic= t and Level= Lev(t). Then, if Lev(t) ∈ Lstat, that row has
value t in column Lev(t), value Ancl(t) in each column l such that l ∈ Lstat

and Lev(t) � l, and NULL elsewhere.
2. A roll-up table storing one row for each topic in T and one for each arc in

the transitive closure of H. The row corresponding to topic t has two foreign
keys, ChildId and ParentId, that reference the topic table and both store the
surrogate of topic t, and a column RollUpSignature that stores the roll-up
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signature of (t, t), i.e., a string of 0’s. The row corresponding to arc (t1, t2)
stores in ChildId and ParentId the two surrogates of topics t1 and t2, while
column RollUpSignature stores the roll-up signature of (t1, t2).

Example 5. The topic and the roll-up tables for the topic hierarchy in Fig. 3
when Lstat = {Product,Type,Category} and ρ = (isPartOf, hasType, hasBrand,
hasCategory, has, causedBy) are reported in Fig. 4. The eleventh row of the roll-
up table states that the roll-up signature of couple (8MP Camera, Smartphone) is
110000, i.e., that the path from one topic to the other includes semantics isPartOf
and hasType. To achieve a better understanding of the differences between meta-
star and star schema modeling, Fig. 5 reports the two complete logical schemata.

Meta-stars also better support topic hierarchy dynamics, through the com-
bined use of meta-modeling and of the roll-up table. A whole new set of
emerging topics, possibly structured in a hierarchy with different levels, can
be accommodated—without changing the schema of meta-stars—by adding new
values to the domain of the Level column, adding rows to the topic and the roll-
up tables to represent the new topics and their relationships, and extending the

Fig. 4. Meta-star modeling for the mobile technology subject area depicted in Fig. 3,
using ρ = (isPartOf, hasType, hasBrand, hasCategory, has, causedBy).
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Fig. 5. Meta-star logical model (top) and standard star schema model (botton) for the
running example.

roll-up signatures with new bits for the new roll-up semantics. The newly-added
levels will immediately become available for querying and aggregation.

3.1 Slowly-Changing Topics and Levels

Historicization of hierarchies is a relevant issue in data warehouse design since it
allows decision makers to better focus their analyses and enables the execution
of queries that use different hierarchy versions. Hierarchies subject to changes
in their data are normally referred to as slowly-changing dimensions [17], and
different techniques can be adopted to cope with them. In particular, in a star
schema implementation of a cube, a Type-2 solution is one where data versions
are tracked by creating multiple tuples in the dimension table for the same
natural key (e.g., several tuples in the product dimension table corresponding to
different classifications into types of the same product at different times); each
fact in the fact table is then referred to the specific tuple that was valid when
the fact took place, so that the historical truth can easily be reconstructed by a
simple star join. A more powerful solution is so-called full logging [18], that adds
a couple of time stamps to dimension tables to explicitly model the temporal
validity of each version so as to enable more expressive queries. While handling
different data versions is essentially a technical problem, dealing with changes
in the schema of hierarchies is still a research issue, with only a few proposed
solutions in the literature (e.g., [19]).

Although meta-stars natively support data and schema changes, keeping
track of the different versions requires some further expedient. First of all we
observe that, thanks to meta-modeling and differently from traditional star
schemata, meta-stars can track also schema changes using the same solutions
devised for slowly-changing dimensions. This means that not only data changes
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Fig. 6. Full-logging solution for the mobile technology subject area

(i.e., creation of a new member, deletion of a member, and inter-member rela-
tionship update), but even schema changes (i.e., creation of a new level, deletion
of a level)2 can be tracked in a meta-star without affecting the schema of topic
and roll-up tables.

Both Type-2 and full-logging solutions can be applied to meta-stars. As in
star schemata, a Type-2 solution does not impact on the meta-star schema and is
implemented by properly setting the ETL process only. Conversely, full logging
impacts on the meta-star schema; more precisely, tracking changes in the roll-up
partial order requires timestamps in the roll-up table only, while all the other
operations also involve the topic table since a change in a topic/level must be
reflected in all the related arcs of H+.

Example 6. A full-logging solution for our motivating example is shown in Fig. 6.
On Jan. 31, 2014 a change in the hierarchy schema occurred: level SubCategory
was introduced and topic “Smartphone” was moved from Type to SubCategory.
A new tuple with IdT 10 was added to TOPIC T, while the previous version
(the tuple with IdT 4) run out of validity; the related arcs in ROLLUP T were
updated accordingly.

2 Though the roll-up partial order between levels is part of the hierarchy schema, its
historicization is handled at the instance level in both stars and meta-stars; while
from the extensional point of view inter-level relationships can be reconstructed from
the relationships between level members, from the intensional point of view they are
explicitly stored only in meta-data repositories, not in dimension table schemata.
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Though Type-2 and full-logging solutions are more powerful when applied to
meta-stars, they should be used carefully because their impact on cardinality of
roll-up tables is very strong. Indeed, a roll-up table explicitly stores the transitive
closure of inter-topic relationships, so any change in a topic, a level, or an arc
may affect several tuples.

4 Querying Meta-Stars

A classical OLAP query includes a group-by clause and a selection clause. In this
section we show how meta-stars support OLAP queries with increasing expres-
siveness and complexity, starting from queries using only static levels to end-up
with semantics-aware queries. We preliminarily recall that, in this context, facts
can also be associated to non-leaf topics. As a consequence, multiple semantics
of aggregation are made available to decision makers. For instance, computing
the number of occurrences of “Smartphone” may either mean considering only
the UGC mentioning the word “Smartphone”, or also considering the UGC men-
tioning products of type smartphones (such as Galaxy III), or also considering
the UGC mentioning a component of a product of type smartphone (such as
8MP Camera).

The queries discussed below are based on the relational implementation of
the OCCURRENCE cube (see Fig. 2). The relational schema includes, besides the
tables discussed so far (i.e. TOPIC T, ROLLUP T), tables DTCLIP and FT. The
first one is a separate dimension table storing clips; the second one is the fact
table including the occurrence metrics (e.g. totalOcc, avgSentiment).

4.1 Queries without Topic Aggregation

In this family of queries the topic hierarchy is not navigated, i.e., only occurrences
of the very topics of interest are counted. These queries can be always formulated
on the topic table by relying on the Level column; for instance, the number of
total occurrences for each brand on a given date are obtained as follows:

SELECT TOPIC T.Topic, SUM(FT.TotalOcc)
FROM TOPIC T, DTCLIP, FT
WHERE FT.IdT = TOPIC T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC T.Level =”Brand” AND DTCLIP.Date = ”06/22/2013”
GROUP BY TOPIC T.Topic;

Clearly, if the required topic level has been modeled as static, like Type, the
query can also be equivalently formulated by directly including that level in the
group-by clause:

SELECT TOPIC T.Type, SUM(FT.TotalOcc)
FROM TOPIC T, DTCLIP, FT
WHERE FT.IdT = TOPIC T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC T.Level = ”Type” AND DTCLIP.Date = ”06/22/2013”
GROUP BY TOPIC T.Type;
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4.2 Queries with Topic Aggregation

In this family of queries the topic hierarchy is extensively navigated, i.e., each
topic of interest is considered together with its descendants when computing the
number of occurrences. The portion of topic hierarchy that has been modeled as
static is easily navigated using the topic table as if it were a classical dimension
table; for instance,
SELECT SUM(FT.TotalOcc)
FROM TOPIC T, DTCLIP, FT
WHERE FT.IdT = TOPIC T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC T.Category = ”Mobile Tech” AND
DTCLIP.Date = ”06/22/2013”;

returns the occurrences of “Mobile Tech” counting its types and products (but
not its components, because Component �∈ Lstat.

On the other hand, if aggregation is to involve levels that have not been
modeled as static, the roll-up table must be used. For instance, this is the case
for the talking volume analysis of Example 1, that returns the total number of
occurrences for “Mobile Tech” and all its descendants also including components:
SELECT SUM(FT.totalOcc)
FROM TOPIC T, ROLLUP T, DTCLIP, FT
WHERE FT.IdT = ROLLUP T.ChildId AND

ROLLUP T.ParentId = TOPIC T.IdT AND
FT.IdC = DTCLIP.IdC AND
TOPIC T.Topic =”Mobile Tech” AND
DTCLIP.Date = ”06/22/2013”;

In case the desired aggregation includes two or more levels of the topic hier-
archy, aliases must be introduced to use different “versions” of the topic and
roll-up tables. For instance, the query below computes the average sentiment for
each combination of brand and type:
SELECT T1.Topic AS Brand, T2.Topic AS Type, AVG(FT.avgSentiment)
FROM TOPIC T T1, ROLLUP T R1,

TOPIC T T2, ROLLUP T R2, FT
WHERE FT.IdT = R1.ChildId AND R1.ParentId = T1.IdT AND

FT.IdT = R2.ChildId AND R2.ParentId = T2.IdT AND
T1.Level =”Brand” AND T2.Level = ”Type”

GROUP BY T1.Topic, T2.Topic;

4.3 Queries with Semantics-Aware Topic Aggregation

While the two previous types of queries can also be formulated on a classical star
schema extended with a navigation table to model recursion, this type of query
uses the user-defined roll-up semantics to filter the way the topic hierarchy is
navigated so as to produce custom aggregations. For instance, this is the case
with the brand reputation analysis of Example 1, that returns the number of
positive and negative occurrences of each brand and of its products:
SELECT TOPIC T.Topic, SUM(FT.positiveOcc), SUM(FT.negativeOcc)
FROM TOPIC T, ROLLUP T, FT
WHERE FT.IdT = ROLLUP T.ChildId AND

ROLLUP T.ParentId = TOPIC T.IdT AND
TOPIC T.Level = ”Brand” AND
ROLLUP T.RollUpSignature = 001000

GROUP BY TOPIC T.Topic;
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Another query of this family is the one for health rumors analysis, that
returns the negative occurrences for touchscreens and the related pathologies:

SELECT TOPIC T.Topic, SUM(FT.negativeOcc)
FROM TOPIC T, ROLLUP T, FT
WHERE FT.IdT = ROLLUP T.ChildId AND

ROLLUP T.ParentId = TOPIC T.IdT AND
TOPIC T.Topic = ”Touchscreen” AND
ROLLUP T.RollUpSignature = 000001;

4.4 Evaluation

In this section we evaluate the performance of meta-stars by comparing the
efficiency of query execution against star schemata. All tests were conducted
using the Oracle 11g RDBMS on a 64-bits AMD Opteron quad-core 2.09 GHz
virtual machine, with 4 GB RAM, running Windows Server 2008 R2 Standard
SP1.

To conduct the tests we generated a benchmark of sample cubes with dif-
ferent characteristics but all conformed to the conceptual schema of Fig. 2. We
created three perfectly height-balanced topic hierarchies with Lstat ≡ L, in order
to create equivalent structures for both the meta-star and the star schema. The
parameters used to create the topic hierarchies are the number of levels and
the fan-out of each node (i.e., the number of children connected to each father).
Table 1 summarizes the characteristics of the topic hierarchies; clearly, the num-
ber of topics and the size of the roll-up table increase exponentially with the tree
height. In addition, we generated two fact tables, FT1 and FT2, with 1M and
10M facts respectively, and linked each of them to the previously defined topic
tables. For a realistic and fair evaluation, we created B+-indexes on all foreign
keys, on the Level column, and on all columns corresponding to static levels; no
materialized views were created.

To define the workload for evaluation we considered the query family
described in Sect. 4.2 (i.e., the ones based on topic aggregation), that are equally
executable on both meta-stars and star schemata and represent the worst case
for meta-stars efficiency since they require access to the roll-up table. In par-
ticular, we created queries with an increasing number of levels (from 0 to 2) in
the group-by clause, in order to evaluate the cost of using one or more roll-up
table aliases. The query execution results are shown in Table 2; each execution
time displayed is the average time required to run three different queries with
the same number of levels in their group-by’s and different selection predicates.

Table 1. Characteristics of meta-stars

Topic hier. TOPIC T ROLLUP T fan-out tree height

H1 106 626 4 4

H2 658 4,514 8 4

H3 27,306 334,962 4 8
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Table 2. Execution time of queries (in seconds)

Table Group-by FT1 FT2

Meta-star Star s. Meta-star Star s.

H1 0 13.8 12.7 140.0 137.2

1 16.0 5.8 174.6 64.3

2 16.6 14.6 162.4 162.1

H2 0 13.6 13.0 136.0 133.6

1 16.7 5.6 179.5 179.4

2 17.0 16.2 175.8 162.2

H3 0 12.2 9.0 139.1 126.6

1 15.9 14.1 147.3 172.1

2 35.1 16.9 187.1 144.2

It could be expected that the toll to be paid for increasing querying expres-
siveness and schema dynamicity, is in terms of performances. Though, as
expected, in most cases star schemata outperform meta-stars, the time execution
gap is quite limited and perfectly acceptable in terms of on-line querying. The
gap is significantly smaller, in relative terms, for FT2 since the execution time is
mostly spent to access the fact table rather than the topic hierarchy. Noticeably,
execution times for meta-stars increase smoothly for group-by’s with increasing
number of levels. The execution time behaves similarly when the cardinality of
the topic and roll-up tables increases. In particular, an in-depth analysis of the
Oracle execution plans has shown that, although the roll-up table cardinality
increases exponentially with the depth of the topic hierarchy (see Table 1), the
execution time increases smoothly because indexes allow only the relevant part
of that table to be accessed when querying.

The experimental evidences (see [5,16] for more tests) clearly show that meta-
star are a valuable technique for increasing the OLAP cube expressiveness while
enabling at the same time a more dynamic and agile design. Although, meta-
star has been specifically designed for the SBI context, it is a general-purpose
solution suitable for many other contexts. In particular, they can be useful to
reduce the maintenance costs in all the projects were it is not possible to know
at design time the set of dimensional levels.

5 A Methodology for SBI Projects

The availability of more expressive and dynamic modeling techniques is useless
without the adoption of a proper design methodology that makes it possible to
properly and timely collect new requirements. SBI has emerged as an application
and research field in the last few years and there is no agreement yet on how to
organize the different design activities. Indeed, in real SBI projects, practitioners
typically carry out a wide set of task but they lack an organic and structured
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view of the design process. The specificities that distinguish a BI project from
an SBI one are listed below:

– SBI projects call for an effective and efficient support to maintenance itera-
tions, because of the huge dynamism of the UGC and of the pressing need of
immediately perceiving and timely reacting to changes in the environment.

– The schema of the data and the ETL flows are independent of the project
domain and the changes are mainly related to the meta-data made available
by the crawling and the semantic enrichment engines.

– The complexity of different tasks and the subjects who are in charge of them
are strongly related to the type of project implemented.

The iterative methodology we have proposed in [20] (see Fig. 7) is aimed at
letting harmoniously coexist all the activities involved in an SBI project. These
activities are to be carried out in tight connection one to each other, always
keeping in mind that each of them heavily affects the overall system performance
and that a single problem can easily neutralize all other optimization efforts.

Besides speeding up the initial design of an SBI process, the methodology
is aimed at maximizing the effectiveness of the decision maker analyses by con-
tinuously optimizing and refining all its phases. These maintenance activities
are necessary in SBI projects because of the continuous environment variability
which asks for high responsiveness. This variability impacts every single activ-
ity, from crawling design to semantic enrichment design, and leads to constantly
having to cope with changes in requirements.

In the following we briefly describe the main feature of each activity, for a
more detailed description refer to [20].

1. Macro-Analysis: during this activity, decision makers are interviewed to define
the project scope and the set of inquiries the system will answer to. An inquiry
captures an informative need of a decision maker; from a conceptual point
of view it is specified by three components: what, i.e., one or more topics
on which the inquiry is focused (e.g., the Galaxi III); how, i.e., the type of
analysis the decision maker is interested in (e.g., top related topics); where,
i.e., the data sources to be searched (e.g., the Technology-related web forums).

Inquiries drive the definition of subject area, themes, and topics. As said
before, the subject area of a project is the domain of interest for the decision
maker (e.g., Mobile Technology), meant as the set of themes about which
information is to be collected. A theme (e.g., Tablet reputation) includes a set
of specific topics (e.g., Touchscreen). Laying down themes and topics at this
early stage is useful as a foundation for designing a core taxonomy of topics
during the first iteration of ontology design; themes can also be used to enforce
an incremental decomposition of the project. In practice, this activity should
also produce a first assessment of which sources cannot be excluded from
the source selection activity since they are considered as extremely relevant
(e.g., the corporate website and Facebook pages).
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Fig. 7. Functional view of our methodology for SBI design

2. Ontology Design: during this activity, customers work on themes and topics to
build and refine the domain ontology that models the subject area. Noticeably,
the domain ontology is not just a list of keywords; indeed, it can also model
relationships (e.g., hasKind, isMemberOf) between topics. Once designed,
this ontology becomes a key input for almost all process phases: semantic
enrichment relies on the domain ontology to better understand UGC meaning;
crawling design benefits from topics in the ontology to develop better crawling
queries and establish the content relevance; ETL and OLAP design heavily
uses the ontology to develop more expressive, comprehensive, and intuitive
dashboards.

3. Source Selection: is aimed at identifying as many web domains as possible for
crawling. The set of potentially relevant sources can be split in two families:
primary sources and minor sources. The first set includes all the sources
mentioned during the first macro-analysis iteration, namely: (1) the corporate
communication channels (e.g. the corporate website, Facebook page, Twitter
account); (2) the generalist sources, such as the online version of the major
publications. The user-base of minor sources is smaller but not less relevant
to the project scope. Minor sources include lots of small platforms which
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produce valuable information with high informative value because of their
major focus on themes related to the subject area. The two main subsequent
tasks involved in this activity are:
– Template design consists in an analysis of the code structure of the source

website to enable the crawler to detect and extract only the informative
UGC (e.g., by excluding external links, advertising, multimedia, and so on).

– Based on the templates designed, query design develops a set of crawling
queries to extract the relevant clips. Normally, these are complex keyword-
based queries that explicitly mention both relevant keywords to extract
on-topic clips and irrelevant keywords to exclude off-topic clips.
Note that filtering off-topic clips at crawling time could be difficult due to

the limitations of the crawling language, and also risky because the in-topic
perimeter could change during the analysis process. For these reasons, the
team can choose to release some constraints aimed at letting a wider set of
clips “slip through the net”, and only filter them at a later stage using the
search features of the underlying document DBMS (e.g., MongoDB).

4. Semantic Enrichment Design: involves several tasks whose purpose is to
increase the accuracy of text analytics so as to maximize the process effec-
tiveness in terms of extracted entities and sentiment assigned to clips; entities
are concepts that emerge from semantic enrichment but are not part of the
domain ontology yet (for instance, they could be emerging topics). The spe-
cific tasks to be performed depend on the semantic engine adopted and on
how semantic enrichment is carried out.

In general, two main tasks that enrich and improve its linguistic resources
can be distinguished:
– Dictionary enrichment, that requires including new entities missing from

the dictionary and changing the sentiment of entities (polarization) accord-
ing to the specific subject area (e.g., in “I always eat fried cutlet”, the word
“fried” has a positive sentiment, but in the food market area a sentence
like “These cutlets taste like fried” should be tagged with a negative sen-
timent because fried food is not considered to be healthy).

– Inter-word relation definition, that establishes or modifies the existing
semantic, and sometimes also syntactic, relations between words. Relations
are linguistically relevant because they can deeply modify the meaning of
a word or even the sentiment of an entire sentence determining the dif-
ference between right and wrong interpretation (e.g., “a Pyrrhic victory”
has negative sentiment though “victory” is positive).
Modifications in the linguistic resources may produce undesired side

effects; so, after completing these tasks, a correctness analysis should be
executed aimed at measuring the actual improvements introduced and the
overall ability of the process in understanding a text and assigning the right
sentiment to it. This is normally done, using regressive test techniques, by
manually tagging an incrementally-built sample set of clips with a sentiment.

5. ETL & OLAP Design: the main tasks in this activity are:
– ETL design and implementation, that strongly depends on features of the

semantic engine, on the richness of the meta-data retrieved by the crawler
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(e.g., URLs, author, source type), and on the possible presence of specific
data acquisition channels such as CRM.

– KPI design; different kinds of KPIs can be designed and calculated
depending on which kinds of meta-data the crawler fetches.

– Dashboard design, during which a set of reports is built that captures the
decision maker needs expressed by inquiries during macro-analysis.

6. Execution and Test : have a basic role in the methodology, as it triggers a new
iteration in the design process. Crawling queries are executed, the resulting
clips are processed, and the reports are launched over the enriched clips. The
specific tests related to each single activity, described in the preceding subsec-
tions, can be executed separately though they are obviously inter-related. The
first test executed is normally the one of crawling; even after a first round,
the semantic enrichment tests can be run on the resulting clips. Similarly,
when the first enriched clips are available, the test of ETL and OLAP can be
triggered.

The analysis of the outcomes of a set of case studies [20] has shown that
the adoption of a proper methodology strongly impacts on the capability of
keeping under control execution time, required resources and effectiveness of the
results. In particular the key points of the proposed methodology are: (1) a clear
organization of goals and tasks for each activity, (2) the adoption of a protocol
and a set of templates to record and share information between activities, and
(3) the implementation of a set of tests to be applied during the methodology
phases.

5.1 Case Studies

In this section we describe our experience with two real SBI projects, which
helped us in tailoring our methodology and demonstrating that an engineered
approach positively impacts on the project success, meant in terms of both
correctness and productivity. In particular we analyze two projects: a level-1
project in the subject area of Italian politics (PR-Pol) and a level-2 project in
the subject area of a large consumer goods company (PR-CG). Both projects
adopted an iterative approach and the tasks carried out are approximately the
same, but while in PR-Pol our methodology was enforced, in PR-CG the team
was mainly guided by its previous experience. As shown later, this leads to some
inefficiencies in PR-CG.

The PR-CG working group was led by a system integrator with significant
skills in SBI, featuring one project manager, one chief of consulting services, and
six developers. The team was completed by an external scientific supervisor and
by the innovation chief of the customer company. Though PR-CG was a level-2
project, we had a chance to monitor the activities of both the customer and the
system integrator. The PR-Pol working group was quite smaller: it only included
one project manager, one scientific supervisor, two developers, and the customer
(the mayor of a large Italian city in this case). Overall, though the two projects
are not fully comparable in terms of size and working group composition, they
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cover most of the critical issues related to SBI projects so they provide a good
support for discussing the features of our methodology.

According to the classification proposed by [21], our case studies can be
described as explanatory/exploratory (they aim at confirming the effectiveness
of our methodology in real contexts, but also at finding new insights and at
better tuning the approach), positivist (they use effort and correctness measure-
ments), quantitative and qualitative (they quantitatively assess the validity of the
approach, but they also collect qualitative judgments by the team), and flexible
(due to the inherent dynamics of an SBI project, the requirements continuously
change during the case studies). A more complete description can be given by
answering the basic questions proposed by [22]:

– Objective—What to achieve?: the case studies aim at proving that the adoption
of our methodology has a positive impact on the productivity and correctness
of SBI projects.

– The case—What is studied?: we study two real projects with different charac-
teristics and in different areas; both projects were carried out by skilled teams
but with different compositions and size.

– Theory—Frame of reference: the theoretical framework we adopted is the one
defined by the activities and tasks our methodology builds upon.

– Research questions—What to know?: we study how the two projects differ in
terms of required effort and delivered utility.

– Methods—How to collect data?: for PR-CG, the effort for the different activ-
ities and tasks was derived a posteriori from an analysis of the time-sheets
recorded by the system integrator. For PR-Pol it has been measured at project
time. As to correctness, it has been estimated by asking some domain experts
to manually tag a set of clips and comparing the resulting tags with those
automatically obtained by semantic enrichment.

– Selection strategy—Where to seek data?: we selected two projects of different
levels to achieve a wide coverage of the aspects involved in SBI design. PR-
Pol was a level-1 project on a very wide and dynamic domain, led by a small
team; PR-CG was a level-2 project on a more narrow domain, led by a system
integrator.

In Table 3 we show the time spent on each task distinguishing the first iter-
ations from the maintenance ones; missing items in the maintenance column
denote activities made on demand, i.e., only at some iterations. Some comments
on the values reported are necessary:

– Even if macro-analysis poses no particular problems, it usually requires a large
amount of time because it is carried out during non-technical meetings that
involve several different corporate departments.

– Maintaining the domain ontology requires more time in PR-Pol than in
PR-CG. The reason is that the Italian politics subject area is quite wider
than the consumer goods one, which implies a larger amount of dynamic con-
tents to be analyzed in order to verify which new topics are to be added to
the ontology.
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Table 3. Time spent on tasks, expressed in man-days for first iterations and in man-
days per week in maintenance iterations (n.a. stands for not available because the task
has been outsourced)

Activity/Task PR-CG PR-Pol

1st Iter. Maint. Iter. 1st Iter. Maint. Iter.

Macro-Analysis 10 — 9 —

Ontology Design 4 0.6 7 1.5

Topics Definition 2 0.5 2 1

Inter-Topic Relation Def. 2 0.1 5 0.5

Source Selection 3 1 5 1

Semantic Enrichment Design 7 0.75 5 1

Crawling Design 10 1 29 1.5

Template Design n.a. n.a. 15 —

Query Design & Cont. Rel. Analysis 10 1 14 1.5

ETL & OLAP Design 15 — 24 —

ETL Design & Implem. 5 — 10 —

KPI Design 5 — 7 —

Dashboard design 5 — 7 —

Execution & Test 3 — 5 —

Total 52 3.35 84 5

In charge to the customer 15 0.85 84 5

– The time saving in semantic enrichment design for PR-Pol is mainly due to the
adoption of a structured set of tests that has led the team to easily obtain the
desired level of performances. This time saving is not apparent in maintenance
iterations due to the higher complexity of the politics subject area.

– In query design and content relevance analysis, the amount of time needed
to test how the developed queries work largely depends on the project level.
In a level-2 project, the customer usually delegates crawling to an external
service provider, who normally is capable of estimating the volume of clips
retrieved by each specified query. Conversely, in a level-1 project, crawling has
to be managed in every aspect, so that the effectiveness of a query can only
be assessed after a whole clip acquisition session, that usually lasts 24 h; as a
result, the execution of this activity can be significantly longer.

– The customer’s effort is clearly reduced in a level-2 project. In particular, if no
external provider is used for crawling, template design may end up for being
very time consuming, which results in the largest time overhead.

As to semantic enrichment design, we focus on sentiment analysis, one of the
more complex and important phases of the SBI process, that consists in deter-
mining the sentiment associated to a specific clip. Though the correctness of
this analysis is obviously related to the capabilities of the semantic enrichment
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Table 4. Correctness of sentiment analysis

PR-CG PR-Pol

Non-tuned Tuned Improvement Non-tuned Tuned Improvement

Total 54.0 % 57.4 % 3.4 % 51.8 % 60.3 % 8.5 %

Social 52.5 % 55.9 % 3.4 % 46.1 % 58.1 % 12.0 %

Qualified 55.0 % 58.3 % 3.3 % 54.6 % 61.4 % 6.8 %

Hard 34.3 % 37.2 % 2.9 % 35.0 % 47.0 % 12.0 %

Standard 67.3 % 71.1 % 3.8 % 61.4 % 68.1 % 6.7 %

Negative 46.6 % 46.6 % 0.0 % 50.5 % 59.7 % 9.2 %

Neutral 45.6 % 49.1 % 3.5 % 62.0 % 71.3 % 9.3 %

Positive 69.5 % 76.3 % 6.8 % 47.8 % 52.4 % 4.6 %

engine3, a fine tuning can lead to dramatic improvements. Both our projects
share the same engine: SyN Semantic Center, a well-known commercial suite
that enables a linguistic and semantic analysis of any piece of textual infor-
mation based on its morphology, syntax, and semantics using logical-functional
rules. So we investigated how the correctness of sentiment analysis was affected
by the adoption of our methodology by asking five domain experts to manually
tag a large set of clips (about 1, 500) with their sentiment and then submit-
ting them to the tuned/non-tuned engine. Tuning had a similar duration in the
two projects (about two months) and led to a similar number of changes in the
engine (about 330). Table 4 shows the results: clips are classified according to
three criteria (media type, difficulty of a human expert in defining the senti-
ment, sentiment); the correct sentiment is assumed to be the one chosen by the
majority of the domain experts. The semantic engine initially performed worse
for Pr-Pol than for Pr-CG because the politics subject area uses a wider termi-
nology and is probably more complex than the consumer goods one. However,
the improvements obtained for Pr-Pol are clearly larger than those for Pr-CG.
An in-depth analysis of the approach adopted by the Pr-CG team evidenced a
lack of attention to the side effects of word polarization, that often introduced
as many errors as those that were solved (see the extreme case of negatively
polarized clips where no improvement is achieved.). Conversely, a more struc-
tured approach (see Semantic Enrichment design phase) and a continuous and
iterative check of the side effects made the PR-Pol team’s effort more effective.

Our case studies confirmed that ontology design and crawling design are
the two most strictly-coupled activities and that their synchronization is a key
factor to increase the overall performance. On the one hand, within crawling

3 Evaluating sentiment analysis results is a difficult task since they may change a lot
depending on the clip domain, the type of sources considered, etc. [23]. Nonetheless
a reference value for sentiment analysis accuracy on simple domains is around 60 %−
70%. Please consider, that a group of human experts typically find an agreement on
the sentiment in the 80 % of cases.
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design, the query design and content relevance analysis tasks are based on the
topics determined by ontology design; on the other, the coverage achieved for the
domain ontology mostly depends on how effectively crawling is able to exclude
off-topic clips. In PR-Pol, at each iteration of ontology design, coverage analysis
of the available clips is always made twice: once before adding new topics and
once afterwords. The clips that remain uncovered are then handed on, together
with the updated ontology, to crawling design and signaled as off-topic clips
(i.e., crawling queries must be updated to discard these clips). This simple but
effective protocol is applied every two days; in about 8 solar weeks the topics in
the ontology increased from 139 to 225, and its coverage from 93% to 98%.

5.2 Case Studies Outcomes and Discussion

Responsiveness in an SBI project is not a choice but rather a necessity, since the
frequency of changes requires a tight involvement of domain experts to detect
these changes and rapid iterations to keep the process well-tuned. Such a fran-
tic setting imposes a radical change in the project management approach with
reference to traditional BI projects and a huge effort to both decision makers
and developers (about one full-time person in both our projects). To reduce such
effort, customers often try to outsource the activities yielding the worst trade-off
between effort and added value for the SBI process. Besides the different tech-
nical skills required, this is the main motivation for conducting a level-2 project
rather than a level-1 one.

During a project review session we analyzed, together with some members
of the PR-CG team, the main problems they perceived, that turned out to be a
lack of synchronization between the activities, that reduced their effectiveness,
and an insufficient control on the effects of changes. With our methodology we
tried to solve such problems through:

– A clear organization of goals and tasks for each activity.
– A protocol and a set of templates (not discussed in this paper for brevity) to

record and share information between activities.
– A set of tests to be applied. The definition of each test includes the testing

method and the indicators that measure the test results, for instance in terms
of correctness of a process phase, as well as how these results have improved
over the previous iteration.

6 Conclusions

In this paper we have discussed some of the key issues related to SBI. It is appar-
ent that such original features requires specific techniques and methodologies to
properly carry out a project in this area. In particular, the main feature that
require to be addressed is the domain dynamicity. Both the meta-star modeling
technique presented in Sect. 3 and the methodology presented in Sect. 5 address
this issue.
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Currently most of the implementations belong to the level 3 architecture and
are carried out by third-party consultants such as web agency and digital mar-
keting experts. This emphasizes that SBI systems are not considered an integral
part of the information system yet. Keeping social data out of the information
system does not allow the achievement of one of the SBI’ main goal: the integra-
tion between Corporate (internal) Information and Social (external) ones. We
finally remark that SBI is at the crossroad between different disciplines, this
makes researches more challenging but it potentially opens to more interesting
results.
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Abstract. Modern business intelligence (BI) is currently shifting the
focus from the corporate internal data to external fresh data, which can
provide relevant contextual information for decision-making processes.
Nowadays, most external data sources are available in the Web presented
under different media such as blogs, news feeds, social networks, linked
open data, data services, and so on. Selecting and transforming these data
into actionable insights that can be integrated with corporate data ware-
houses are challenging issues that have concerned the BI community dur-
ing the last decade. Big size, high dynamicity, high heterogeneity, text
richness and low quality are some of the properties of these data that
make their integration much harder than internal (mostly relational) data
sources. In this lecture, we review the major opportunities, challenges, and
enabling technologies to accomplish the integration of external and inter-
nal data. We also introduce some interesting use case to show how context-
aware data can be integrated into corporate decision-making.

Keywords: Business Intelligence · Context-awareness · External data ·
Linked open data

1 Introduction

In the context of highly dynamic and global business scenarios, companies are
engaged in the pursuit of new indicators that can provide them competitive
advantages. Currently, the Business Intelligence (BI) community is paying spe-
cial attention to exploiting the new massive data sources that are irrupting in
the Web (e.g., social networks, sensors, data services, etc.) in order to define
new breakthrough indicators and predictors for business. So far, this great effort
is being carried out without taking into account the existing business models
with which companies define their strategic goals and actions (e.g., [1]). On
the other hand, BI analytics has been traditionally confined to corporate data,
mainly gathered from internal IT processes, paying little attention to the busi-
ness contextual information. Web-derived massive data sources open now new
opportunities to automate the gathering of relevant contextual data and to inte-
grate them with the BI analysis models.

Despite the great variety of commercial tools aimed at exploiting user gen-
erated data (e.g., trends in opinions about products or services), there is little
work concerning the integration of relevant external data to corporate analysis so
c© Springer International Publishing Switzerland 2016
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that new context-sensitive indicators and predictors can be defined. For example,
companies consider very valuable all published information implying some threat
or opportunity to their business (e.g., some commerce legislation change or con-
flicts occurring at the providers’ countries, changes in market trends, etc.) [2].
In this context, finding out correlations between detected external events and
specific company’s goals and indicators is a crucial task so that context takes
part in the analysis. Nowadays, this is one of the most challenging issues for
modern BI technology.

In this paper, we introduce the main concepts underlying a context-aware BI
system. Then we review the main approaches in the literature aimed at context-
aware BI, emphasizing their main strengths and limitations. We also discuss
current trends and future research lines in this field. Finally, we introduce a use
case to show the main aspects of a data infrastructure especially designed for
context-aware BI.

2 Context-Aware Business Intelligence

BI is the process of collecting business data and turning it into information that is
meaningful and actionable towards a strategic goal. Hence, BI technology is aimed
at gathering, transforming and summarizing available business data from available
sources to generate analytic information suitable for decision-making tasks. So far
BI systems have been confined to corporate internal data, paying little attention
to context information. The context of a BI system comprises all relevant exter-
nal events and facts that could affect somehow the strategic goals of a company
[1,3]. Therefore, a context-aware BI system should be able to properly monitor
and produce actionable data from the business context, as well as to find relevant
correlations to the company strategic goals. For example, insurance companies are
mainly concerned with events that potentially affect their key indicators such as
weather events, fraudulent incidences, etc. Moreover, companies are very inter-
ested in finding good indicator predictors when these events occur.

Although the BI definition implicitly implies both internal and external data,
current BI technology mainly focuses on internal corporate data (i.e., Data Ware-
house and OLAP technologies). Unfortunately, internal and external data are
radically different in their nature, which makes them quite difficult to integrate
under the same technological platform.

In this section, we discuss the layered structure of the business context, and
the current technology concerning the extraction and publication of context-
derived data.

2.1 Context Layers

In order to categorize the external data that is relevant for a BI system, we
propose a layered organization based on the proximity and potential impact to
the company business. Figure 1 shows these context layers, which are described
in turn.
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Fig. 1. Context Layers for BI

The most inner layer covers all events and facts that are internally produced
in the company (e.g., sales, contracts, offers, etc.) This is the context where tra-
ditional data warehousing (DW) and OLAP take place. The second layer is the
Voice of the Customer (VoC), which comprises all the events and facts directly
produced by the clients or customers. Facts in this context usually refer to satis-
faction indicators as well as opinions about the company’s products or services.
The third layer is the Voice of the Market (VoM), which mainly comprises rel-
evant events and facts generated by competitors and potential customers. Facts
and events in this layer are more heterogeneous than in the VoC context. Here,
companies can identify market trends, global opinions in the same sector, impact
of product promotions, etc. Finally, the global environment layer covers the rest
of events that can indirectly affect the business indicators (e.g., situations in a
business model [1]). Global trends in economy as well as any kind of news related
to the company business can potentially affect its figures. Clearly, this context
layer is the most noisy and difficult to manage within BI systems due to its high
heterogeneity.

Currently, context data can be easily accessed through different web media.
Blogs, social networks, news feeds and the web of data (i.e., data services) are the
most outstanding examples of contextual data sources. In its whole, managing
all these data sources is indeed a true Big Data problem, which involves its
well-known four V’s: velocity, volume, variety and veracity.
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2.2 Context Objects

In order to manage context data in a BI system, first we have to identify their
nature and structure. A context object is an external event or fact that we want
to link to the corporate indicators. Regarding the data sources from which we
gather context objects and their aims, we can identify the following properties:

– Context objects are multidimensional, that is, they can be naturally described
by means of dimensions and measures. Moreover, there are two compulsory
dimensions for all context objects: space and time.

– Context objects are mainly extracted from text-rich web data, such as doc-
uments, reports, blogs, opinion posts, and so on. Despite the fact that they
are published under semi-structured formats (e.g., XML, RDF, etc.), relevant
elements defining facts and events are usually expressed in natural language
within text-free fields. This issue is partially alleviated by the presence of
metadata (e.g., publication date, geolocalization data, etc.), from which basic
contextual data are easily extracted.

– Context objects are usually expressed at different detail levels (multi-
granularity). That is, events can imply different temporal or spatial exten-
sions. For example, some events can affect a whole country while others a
specific city.

– Context objects are usually incomplete and imprecise. That is, some relevant
dimensions could be missing from extracted context data because either they
are not reported or they are implicitly expressed.

– Context objects are usually typified (e.g., topics). For example, events could
be classified into “natural disasters”, “crisis events”, etc., depending on the
situations that analysts want to capture in their business models. In this way,
classification is a way to abstract heterogeneous events into useful categories
from the company point of view.

Some examples of context objects extracted from textual data sources are
shown in Table 1.

Table 1. Example of context objects extracted from different sources

“Last floods in Spain caused losses of 1 million euros to the food company X”. @News

(location:“Spain”, time:“1/10/1998”, company:“X”, damage:“1 million euros”)

“Y because is a great car!” @Twitter

(location:“CS”, time:“1/10/2015”, product:“Y”, opinion:“+1”)

“I didn’t like movie Y :-(”@Twitter

(location:“BCN”, time:“1/10/2015”, product:“Y”, opinion:“-1”)

Notice that some properties of context objects are well supported by tradi-
tional DW data models, like multidimensionality and multi-granularity. However,
data quality is usually much poorer than in internal corporate data due to incom-
pleteness and vagueness of event descriptions. Consequently, context objects are
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difficult to be allocated under the same data structures as corporate data. This
is why most BI-aware systems aim instead at correlating context objects with
DW objects, so that BI analysis can be properly contextualized. Moreover, the
distinction between dimensions and measures for context objects (if possible)
should be defined when performing the DW correlation for a particular analysis
task.

In Table 2 we emphasize the main differences of internal and external data
sources, which makes their correlation a difficult task.

Table 2. Main differences between internal and (web-based) external sources

Internal sources External sources

Slow changes Highly dynamic

Relational data Un-/Semi- structured

High quality data Low quality data

Complete information Incomplete information

Historical data Fresh data (real time)

2.3 Extracting Context Objects

Once relevant web-based data sources are located, context objects need to be
extracted from web documents in order to correlate them with internal data.

For text-rich data sources the extraction must rely on natural language
processing (NLP) techniques. More specifically, information extraction (IE) is
the sub-field of NLP concerned with the extraction of structured records from
texts written in natural language [4]. IE techniques rely on either manually speci-
fied extraction patterns or statistically inferred extraction models. In both cases,
human intervention is essential and therefore their scalability is quite limited.
In order to achieve web-scale performance, open information extraction (OIE)
has been proposed [5]. Basically, OIE methods are self-supervised and rely on
the availability of massive data. Although their former aim was to extract sim-
ple triple patterns of the form (subject, verb, object), these methods can be
applied to other patterns. The main limitation of OIE is that these methods do
not provide semantic information about the found triples, which is necessary to
correlate context and corporate data.

A promising field for identifying and extracting context objects is the auto-
matic semantic annotation (SA) [6]. In this case, we assume the existence of large
knowledge resources (KRs) that serve as reference for annotating context objects
with the entities they contain. Nowadays there exist several large KRs such as
Wikipedia, BabelNet, BioPortal, etc. with a great coverage of many application
domains. The main idea of SA-based methods consists in detecting occurrences
of KR entities in the target data source so that plausible records can be gener-
ated with the detected annotations. The main advantages of these methods are
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that they do not necessarily need to perform any expensive NLP processing (e.g.,
POS-tagging, dependency analysis, etc.) and, thanks to the KRs, semantic anno-
tations can be normalized through unique entity identifiers. It must be pointed
out that automatic SA can also be applied to semi-structured and structured
records gathered from web data services and micro-data.

2.4 Two-Level Context Correlations

Let us assume that we want to check if an external event E and a corporate fact
F are correlated (i.e., they can be merged or aligned for integration purposes).
For this purpose we need to perform a two-level test:

– The first-level correlation consists in checking whether the context sur-
rounding E is relevant to the context surrounding F .

– The second-level correlation consists in checking the compatibility
between the shared dimension values of both objects E and F .

As an example, let us consider the following corporate fact of a rent-a-car
company

F = (location : “CS”, time : “1/10/2015”, product : “Y ”, sales : “1567”)

Only the second external fact of Table 1 is deemed relevant to the company
topics. Additionally, this external fact can be correlated to the corporate fact
through the values of the shared dimensions (location, time and product).

Regarding the first correlation level several techniques coming from the Infor-
mation Retrieval and Text Mining areas have been applied. Context correlation
can be seen as the measurement of the vocabulary overlap between the external
and internal contexts. Internal contexts can be set up from the data warehouse
schemas and metadata [7]. External contexts are usually built from the docu-
ment from which facts and events are extracted. IR provides numerous methods
to capture the relevance of external contexts for a given internal context, namely:
space vector models, language models, relevance models, topic models, etc. All
of them basically consist in defining a weighting scheme for all vocabulary terms
(indexing), and then comparing the resulting document representations based
on this scheme.

Text Mining (TM) has been also applied to infer the implicit topics that can
be identified in the contexts at hand [8]. Basically, a topic is represented as a
statistical distribution of terms. Given a set of relevant topics to a given con-
text, documents are represented as a mixture of topics according to the terms
they contain. Comparing contexts is then reduced to comparing topic distribu-
tions. Several statistical inference techniques have been proposed to infer topics
from text collections (e.g., Latent Dirichlet Allocation, Hierarchical Dirichlet
Processes, and many variants of them), which can be directly applied to corre-
late internal and external contexts.
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Checking the relevance of contexts can be also seen as a classification prob-
lem, namely: given an external context we classify it as relevant or not with
respect to company goals. Unlike IR and TM methods, classifiers require human
annotated examples of relevant and non-relevant external contexts (i.e., they
are supervised methods). Although classifiers are often more precise than IR
and TM methods, they do not work well in open scenarios like the Web.

Regarding the second correlation level, traditional information integration
techniques are applied. Basically, we want to check whether two data records can
be consistently merged. This task corresponds to the well-known record linkage
problem (also known as entity recognition, data fusion and schema matching)
[9], which concerns with proper similarity metrics that allow determining if two
distinct data values are referring to the same entity. More recently, this prob-
lem has been extended to the integration of ontological resources, giving rise to
the ontology alignment/merging field [10]. Figure 2 summarizes the techniques
employed in the literature to perform the two-level correlation of context and
corporate data.

Fig. 2. Techniques and processes for context correlation. Supervised approaches are
marked with (S).

3 Context-Aware BI Systems

Despite the fact that some work in the DW literature has attempted to define
multi-dimensional models for non-conventional data [11], we cannot consider
them as context-aware BI systems. A context-aware BI system is intended to
identify and correlate relevant external data to the corporate analyses. Therefore,
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they can be seen as an extension of the traditional DW workflow where external
information can be integrated on-demand at any phase. Figure 3 sketches an
on-demand BI architecture, where a new process for extracting, transforming
and querying (ETQ) external data is included [12]. Basically, the idea is that
users are able to fetch information requests in order to enrich their analysis with
relevant external data. These external data can be used in a variety of tasks: to
find explanation of some indicator’s change, to find correlations between external
and internal indicators (e.g., opinions vs. sales), to predict indicators’ evolution,
etc. In this section we are going to review some context-aware BI systems that
somehow follow the architecture shown in Fig. 3.

Fig. 3. BI architecture to account for context external data

EROCS/LIPTUS [13,14]. The goal of this pioneer system is to find out the
corporate data record (e.g., a sale fact) that best correlates to a given document
(e.g., email). In this work, customer e-mails are correlated with corporate facts.
Context objects consist of a data record containing the entities identified in the
document. As customer emails are assumed to talk about the company products,
no context correlation is needed (first level correlation). Context and corporate
objects are compared by using an adaptation of the TF*IDF metric [15] applied
to the matched values. As a result, EROCS outputs a link table that associates
each document to one corporate record. This table allows OLAP operations to
be safely performed over the resulting integrated cube (i.e., IBM Alpha Cubes).

R-Cubes [16]. In this work, corporate data are correlated with news published in
the Web. More specifically, traditional OLAP analysis is extended with context
information by querying an XML document warehouse populated with news.
Once the user fetches a query, relevant documents are retrieved and processed
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to extract the intended context objects. Similar to EROCS, in R-Cubes context
objects are extracted by identifying corporate entities in the news documents.
Unlike EROCS, this approach allows many to many relationships between news
and corporate facts. The main contribution of this work is that both context and
object correlations are calculated through well-grounded IR relevance models
[17], which give a sound statistical foundation to the correlation measurement.
Moreover, the properties of these statistical models allow OLAP operators to be
safely applied to the relevance and context dimensions of the integrated cubes
(i.e., R-Cubes).

SIE-OBI [18]. The goal of SIE-OBI is to find multidimensional correlations
between a stream of contract documents (internal data) and a stream of news
(external data). The first level correlation is performed by a classifier, which
decides whether a news document is relevant or not for a given contract. Con-
text and corporate objects are extracted from documents by applying a trained
information extraction system. Finally, the correlation between these objects
is performed with the distance in a space of Hierarchical Neighborhood Trees
(HTN). In a HTN space, object values expressed at different detail levels (multi-
granularity) can be compared.

Opinion Cubes [7]. In this work, authors propose to build a data warehouse of
opinion facts extracted from streams of product reviews (external data). The
corporate and sentiment data warehouses share some key dimensions (i.e., time,
place and product), which allow corporate cubes to be contextualized with opin-
ion cubes by just joining them. The first-level correlation is achieved through
tailored controlled vocabularies from both corporate metadata and Wikipedia
relevant categories. Opinion facts are then extracted from product reviews by
semantically annotating texts with the previous controlled vocabularies. The
second-level correlation is performed by matching the dimensions shared by the
corporate and sentiment data warehouses.

SLOD-BI [19]. The goal of SLOD-BI is to externalize the generation and pub-
lication of context objects to the Web of Data. Following the standards and
formats of the Web of Data, extracted context objects are represented as linked
open data [20]. As a result, a data infrastructure is provided to the analysts so
that they can contextualize their corporate analyses. Context objects stem from
different sources and they can be generated with different extraction methods.
For example, published opinion facts could be directly extracted from texts by
applying semantic analysis, or be parsed from micro-data embedded in the opin-
ion posts. Whatever the extraction method is applied, all facts follow the same
patterns and are normalized according to the existing controlled vocabularies
provided by the infrastructure.

Comparison of Systems. As previously mentioned, all the previous approaches
follow somehow the ETQ principle. Except for the SLOD-BI approach, the other
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systems only deal with one external data source. Regarding the covered context
layers depicted in Fig. 1, none of the approaches cover all the layers (see Table 3).

Table 3. Coverage of context layers

Approach VoC VoM Envir.

EROCS yes no no

R-Cubes no no yes

SIE-OBI yes no yes

Opinion Cubes no yes no

SLOD-BI yes yes no

According to the techniques for extracting context objects (see Table 4), non-
supervised are preferred to supervised ones mainly due to the open nature of
external data.

Table 4. Two-level correlation methods

Approach Context correlation Object correlation

EROCS - Semantic annotation

R-Cubes IR relevance models Entity recognition

SIE-OBI Classifier Information Extraction

Opinion Cubes Tailored vocabularies Semantic Annotation

SLOD-BI Linked Open Data (LOD) Semantic Annotation

We can also compare these systems according to the classification criteria
proposed in [12], namely: materialization, transformations, freshness, structured-
ness and extensibility. Most of the ETQ approaches are placed near conventional
DW/OLAP technology, that is: full materialization, complex transformations,
periodic refresh (ETLing) and limited extensibility (static data sources). Regard-
ing the reviewed approaches, only the management of semi- and un-structured
data makes the difference with respect to conventional methods. Clearly, the
characteristics of these systems are far from the desired properties of modern
BI, namely: virtual materialization, lightweight transformations, data stream
processing (i.e., fresh data), no structural constraints on data, and dynamic
extensibility with new data sources. The use of open data infrastructures like in
SLOD-BI allows these systems to improve the transformation and extensibility
issues. However, full freshness and extensibility are not yet achieved by current
BI technology.
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4 Context-Aware BI Use Case

The use case selected to demonstrate the feasibility of context-aware BI is the car
rental domain. At the core of each rent-a-car company lies the idea of providing
their customers cost effective and quality services. This vision must be reflected
on each of their business activities, which range from accepting new reservations
for new and existing customers to selecting the best promotional offer plan for
each customer or managing the fleet, among others.

To ensure business success, companies often have a series of strategic goals,
such as optimum utilization of resources, customer satisfaction or controlling
costs, which are materialized by more specific and measurable objectives. The
objectives are set up as the result of a decision making process, which usually
involves complex analytic queries over corporate data. The most established
approach is to use a DW to periodically store information subject to analysis.
In the case of a rent-a-car company, the DW schema to analyze rental agree-
ments includes typical analysis dimensions such as the rented vehicles, locations,
customer features, etc. In order to make decisions, analysts often request the gen-
eration of reports and charts involving analytic queries, e.g., number of rental
agreements per location and time or preferred rented vehicles by location.

Apart from traditional analytic queries involving corporate data, there is
a need to get more insight of the business processes in real time to be able
to react more efficiently (e.g., active data warehouses). In particular, customer
satisfaction has become the greatest asset to success and there is a growing need
of knowing customers’ opinions about the companies’ products and services.
The consolidation of the Web 2.0 and the proliferation of opinion blogs and
social networks has made available massive amounts of sentiment data subject
to analysis.

In order to dynamically integrate corporate data with relevant social data to
analyze the answer of customers to the company’s strategic goals and to predict
the demands of the market we propose the context-aware BI architecture for the
car rental domain shown in Fig. 4.

In this architecture, corporate data are placed in the center and are loosely-
coupled with external data sources by means of a semantic middleware. As exter-
nal sources for our use case, we consider several car blogs, news feeds related
to the car industry and twitter. The key of the architecture is the semantic
middleware. All semi- and un-structured text-rich social data is converted to the
semantic middleware format, so that other services can consume data from there
and integrate it with corporate data.

For the semantic middleware, we propose an open and semantic infrastructure
based on LOD (i.e., SLOD-BI), whose representation language is RDF. To give
shared and well-defined meaning to the entities in the semantic middleware, we
link them to external KRs such Dbpedia, Babelnet, etc. These KRs allow us to
unambiguously identify entities in the texts and also to share and re-use the data.
The process of identifying and linking natural language expressions to entities
in such KRs is performed using automatic SA. For example, given the following
opinion: “The Mazda 5 has a useless backseat for anyone with legs”, the SA tool
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Fig. 4. Proposed architecture for the car rental use case

is able to identify the text chunk Mazda 5 and link it to the Babelnet resource
identifier http://babelnet.org/synset?word=bn:02438084n, which is the concept
referring to the Mazda 5 car.

4.1 SLOD-BI Patterns

Social data is expressed in the semantic middleware in terms of multidimensional
patterns (i.e., context objects), which can later be correlated with the corporate
data model (i.e., corporate objects) for helping decision making. For example,
the reputation of a product, the most outstanding features of some brand, or
the opined aspects of an item can be represented as multidimensional data,
and efficiently computed through OLAP tools [7]. Figure 5 summarizes the main
multidimensional e-commerce patterns to analyze and correlate corporate and
social data. The analysis patterns at the corporate data side of the figure (left
part) correspond to the traditional multidimensional model of a typical DW.
However, the patterns of the social data (right part) need some explanation as
they constitute our proposal of analysis model for sentiment data extracted from
relevant social data.

In the figure, facts (labelled with F) represent spatio-temporal observations of
some measure (e.g., units sold, units offered, number of positive reviews, and so
on), whereas dimensions (labelled with D) represent the contexts of such obser-
vations. In some cases, facts can have a dual nature, behaving as either facts or
dimensions according to the analysis at hand. For example, a post can be either
a fact or a dimension of an opinion fact. Dimensions can further provide different
detail levels (labelled with L). For example, the dimension Item is provided with
the level Sentiment Topic. In the figure, we distinguish two kinds of corporate

http://babelnet.org/synset?word=bn:02438084n


Context-Aware Business Intelligence 99

Fig. 5. SLOD-BI patterns

facts that can be correlated with social data, namely: corporate facts concerning
business transactions (e.g., sales, contracts, etc.), and market facts concerning
promotions and offers of the company.

The main facts concerning social BI are opinion facts, post facts, and social
facts. Opinion facts are observations about sentiments expressed by opinion hold-
ers concerning concrete facets about an item, along with their sentiment indica-
tors. For example, the sentence “I dont like the dashboard of this car” expresses
an opinion fact where the facet is “dashboard”, and the sentiment indicator is
“dont like” (negative polarity). Post facts are observations of published informa-
tion about some target item, which can include a series of opinion facts. Examples
of post facts can be reviews, tweets, and comments published in a social network.
Finally, social facts are observations about the opinion holders that interchange
sentiments about some topic. The latter facts are usually extracted from social
networks by analyzing the structure emerged when the opinion holders discuss
about some topic. Notice that topic-based communities can be very dynamic as
they rise and fall according to time-dependent topics (e.g., news, events, and so
on).

As for the measures associated to these facts, we can make use of typical
measures in the literature for sentiment and social analysis, such as the polarity
for opinion facts, usually expressed as positive, negative or neutral, the stars
rating system or the number of likes for post facts, and measures such as the
popularity or credibility for social facts.

It is important to notice that in Fig. 5 the corporate and social BI patterns
are separated by data bridges, which are patterns that can be used to execute
analysis operations that combine corporate and social data. For example, the
analytic pattern between market facts and post facts can be applied to study



100 R. Berlanga and V. Nebot

the features of marketing campaigns from the point of view of its acceptance by
consumers, and in the other way, to analyze consumer opinions in the context
of each campaign. Different applications and different scenarios can make use of
different data bridges to integrate data.

Data bridges support the communication channels between the internal and
external data sources and it is very important for companies to enable all the
means necessary to implement them. Of special interest are the data bridges
that relate Sentiment Topics to Facets, and Customer to Holder dimensions. In
the first case, the company can specify the most important topics in its items
(products or services) that require some sentiment analysis. These topics are
usually expressed as facets in the opinions of a post. In order to facilitate the
implementation of this data bridge, companies and social media users could apply
the same hashtags to mark up these topics. In the second case, it is important to
note that when the holder of an opinion is a known customer, both entities must
be identified as the same. With respect to these data bridges companies must
ensure that the corporate data and metadata files include key information to
enable the recognition of corporate entities in social data by means of sentiment
analysis tools.

4.2 Examples of SLOD-BI Patterns

Figure 6 shows an excerpt of an opinion about a car that has been extracted from
a textual review and linked to the SLOD-BI infrastructure. The textual review is
converted to a PostFact and has several properties such as the item that is being
reviewed, the reviewer, the body of the review, etc. Notice that all facts concern-
ing the reviewers (e.g., popularity, number of posts, and so on) are expressed
as SocialFact, which are not treated in this demo. An Item is any product or
service subject to review. In our use case items are cars. Items have properties
attached such as the text label, the domain the item belongs to, the brand of
the product, etc. An OpinionFact expresses an association between a facet of
an item and opinion indicators that appear at the post text. Thus, an opinion
fact is always linked to the post object from which it was identified. Opinion
facts have also attached a polarity, which is a numeric property that summarizes
the overall sentiment of the opinion fact. A Facet of an item is any element
subject to evaluation in the user’s opinions, whereas a SentimentIndicator is

Fig. 6. Example of text opinion converted to the SLOD-BI infrastructure
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a set of words that express some opinion about a subject together with their
polarity (positive, negative, neutral). In the example, the opinion fact is relating
the facet interior of a car with the sentiment indicator attractive, and has an
overall polarity of 4.

4.3 Structural View of SLOD-BI

Regarding the organization of the data in the semantic infrastructure devised,
Fig. 7 proposes a structure for the intended social BI data. The involved datasets
are divided into two layers. The inner layer regards the main vocabularies and
datasets of the proposed infrastructure, whereas the outer layer comprises the
external linked open vocabularies (LOV), and the KRs that are directly related
to the infrastructure (e.g., Dbpedia, ProductDB, BabelNet, etc.). Every compo-
nent consists of a series of RDF-triple datasets regarding some of the perspec-
tives we consider relevant for BI over sentiment data. For example, in the Item
component each dataset holds the products associated to a particular domain
(e.g., cars, domestic devices, etc.) These datasets are elaborated and updated
independently of each other, and can be allocated in different servers. All the
datasets of a component share exactly the same schema (i.e., set of properties),
which reflects the BI patterns defined in Fig. 5.

Links between components of the inner layer are considered hard links, in
the sense that they must be semantically coherent, and they are frequently used
when performing analysis tasks. On the other hand, links between infrastructure
components and external datasets are considered soft links, as they just establish
possible connections between entities of the infrastructure and external datasets.
These external datasets are useful when performing exploratory analyses, that is,
when new dimensions of analysis could be identified in external datasets. Links
to external datasets like Dbpedia play a very relevant role in this infrastructure
since they can facilitate the migration of existing review and opinion data. For
example, reviews already containing micro-data referring to some product in
Dbpedia will be automatically assigned to the product URI of the corresponding
SLOD-BI product dataset.

4.4 Functional View of SLOD-BI

Figure 8 summarizes the functional view for the proposed data infrastructure. At
the bottom layer, the external web data sources are selected and continuously
monitored to extract, transform and link (ETLink) their contents according
to the SLOD-BI infrastructure. As earlier stated, social BI facts (i.e., context
objects) are regarded as spatio-temporal observations of user sentiments in social
media. Therefore, both spatial and temporal attributes must be captured and
explicitly reflected in the ETLink processes.

The SLOD-BI infrastructure is exploited by means of the data service layer,
which is in charge of hosting all the services consuming sentiment data to produce
the required data for the analytical tools. These services are implemented on top
of a series of basic services provided by the infrastructure, namely: a SPARQL
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Fig. 7. Structural view of SLOD-BI

endpoint to directly perform queries over sentiment data, a Linking service to
map corporate data to the infrastructure data (e.g., product names, locations,
etc.), an RDF dumper to provide parts of the SLOD-BI to batch-processing
services, an API for performing specific operations over the infrastructure (e.g.,
registering, implementing access restrictions over parts of the infrastructure, etc.)
and visual tools for data exploration.

Notice that in the proposed functional view, sentiment data is integrated with
corporate data using external analytical tools, by making use of some intermedi-
ate data service. In this case, corporate and sentiment data are aggregated sepa-
rately and joined inside the analytical tools through a cross-join. This process is
similar to Pentaho blending processes to integrate external and internal data1.
The predictive models and exploration tools will allow the execution of complex
processes over the sentiment data in the infrastructure.

5 SLOD-BI Demo

In this section, we show some specific examples of the SLOD-BI infrastructure.
First, we show by means of several visual interfaces, some of the tools that enable
the conversion of text data to the SLOD-BI infrastructure and also, some visual
queries to the linked data in the infrastructure. Then, we show an example of
integration of corporate data with SLOD-BI data using an external analysis tool.
1 http://www.pentaho.com/big-data-blend-of-the-week.

http://www.pentaho.com/big-data-blend-of-the-week
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Fig. 8. Functional view of SLOD-BI

5.1 Tools and Visual Queries in SLOD-BI

For demonstration purposes, we have setup a website2 where we show some of
the services and tools used to convert social text data to the semantic middleware
in the SLOD-BI infrastructure. Figures 9 and 10 show a screenshot of our tool
for semantic annotation and the sentiment analysis tool, respectively. In the
website, we also provide a SPARQL endpoint to query all the RDF data in the
infrastructure.

In the same website, we can also access a visual interface of the SLOD-
BI data, where opinion data about cars is queried, aggregated and displayed
visually in the form of charts. For example, Fig. 11 shows in a bar chart the
aggregated polarity of all the aspects belonging to the comfortability category
for each of the cars. As social data is transformed to RDF data and arranged into
multidimensional patterns (see Fig. 6), the SPARQL query to obtain this chart
consists of a grouping of the data by car and by sentiment topic , a selection of
the comfortability sentiment topic, and an aggregation of the polarity using the
average function.

Figure 12 shows in a bar chart the aggregated polarity of all aspects by senti-
ment topic of the Ford Mondeo. The SPARQL query consists in a selection of the
Ford Mondeo car, followed by a grouping by sentiment topic and an aggregation
of the polarity using the average function.

Figure 13 shows a ranking of the highest and lowest scored aspects, along
with their sentiment topic category, that are aggregated in the previous Fig. 12.

2 http://krono.act.uji.es/EBISS/.

http://krono.act.uji.es/EBISS/
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Fig. 9. Screenshot of the semantic annotation tool.

Fig. 10. Screenshot of the sentiment analysis tool.
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Fig. 11. Aggregated polarity of comfortability aspects of each car.

Fig. 12. Aggregated polarity of the aspects by sentiment topic of the Ford Mondeo

Fig. 13. Highest and lowest scored aspects of the Ford Mondeo car.
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Fig. 14. Example of KNIME workflow for corporate and social data integration

5.2 Integration of Corporate and External Data

For the purpose of integrating corporate data with social data in the SLOD-
BI infrastructure, we use the analytic tool KNIME3. KNIME is an open source
data analytics, reporting and integration platform with a graphical user interface
that allows the assembly of nodes for data pre-processing, modeling, analysis and
visualization. We have implemented a node for performing SPARQL queries on
SLOD-BI, and then we have used the workflow nodes of KNIME to integrate
the social and corporate data. The resulting workflow is shown in Fig. 14. The
bottom node queries corporate data to extract the number of rentals by car
during 2013. The result is a table with two columns, the car and the number
of rentals. The RDF QueryAP node executes a SPARQL query over the data
service layer of the SLOD-BI infrastructure to extract sentiment data about the
Design sentiment topic of cars. After some processing, the Joiner node merges
3 http://www.knime.org.

http://www.knime.org
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Fig. 15. KNIME integration results of corporate and social data (Color figure online)

the two tables on the car column and the resulting chart (Fig. 15) displays the
number of car rentals (in blue) vs. the aggregated opinion on Design aspects
(in red) by car. In general, we observe a positive correlation between the two
variables, as the most rented cars (i.e., Renault Megane, Peugeot 208 and 508)
are the ones with highest ratings on design aspects.

6 Challenges and Issues

As shown in previous sections, a context-aware BI system must be able to inte-
grate relevant context data sources with the corporate analyses. We have shown
a use case where several heterogeneous and dynamic data sources are plugged
into a linked data infrastructure where context objects are published and con-
sumed by the corporate analysis tools. Although this approach covers most of
the desirable properties of a context-aware system (see Sect. 3), there are some
challenging issues that should be addressed in the future work.
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Firstly, context data is highly dynamic by nature and they are published in a
streamed way. That is, context data are generated, published and disseminated
across the different media as soon as they occur. However, existing approaches
follow the batch processing approach of traditional data warehousing, which does
not seem appropriate in this scenario. Therefore, the intended data infrastructure
for capturing context objects should behave as linked data streams rather than
static datasets. Streaming linked data is a recent topic addressed by the LOD
community (e.g., [21,22]) and is mainly concerned with query languages and
interchange formats. Additionally, the adoption by the industry of more flexible
formats like JSON-LD can favor the massive generation of streamed linked data
from the original data sources (e.g., social networks, news feeds, etc.)

Methods involved in the automatic extraction, annotation and classification
of context objects (see Sect. 2.3) can be also affected by the streamed nature of
context sources. As these methods rely on machine learning techniques, which
require a training dataset to learn the models, they are subject to the concept
drift problem [23], namely: the learned models can become obsolete as soon
as the new arriving data cannot be explained by them. Clearly, unsupervised
approaches can be better adapted to this situation as they do not need labeled
training examples (and therefore continuous human intervention). Continuous
learning is another challenging issue which is being addressed by the machine
learning community (e.g., [24,25]).

Regarding to the BI concerns, there are several challenges that should be
faced in the near future. Firstly, new business indicators and predictors that
take into account both context and corporate data should be explored. On the
other hand, the definition of new indexing and aggregation capabilities over
graphs and linked data (e.g., [26,27]) should be further investigated since they
are the main formats context objects are being published.
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Abstract. Key performance indicators are widely used to manage
any type of processes including manufacturing, logistics, and business
processes. We present an approach to map informal specifications of key
performance indicators to prototypical data warehouse designs that sup-
port the calculation of the KPIs via aggregate queries. We argue that the
derivation of the key performance indicators shall start from a process
definition that includes scheduling and resource information.

Keywords: Key performance indicator · Data warehouse · Business
process

1 Introduction

Key performance indicators (KPI) evaluate the success of an organization or of a
particular activity in which it engages (source: Wikipedia). They are used to con-
tinuously monitor those activities [1] in order to understand and control them.
Deming [2] pioneered this field by statistically correlating independent process
parameters to dependent performance indicators known as statistical process
control (SPC). In SPC, the process parameters are kept in certain ranges such
that the dependent variables such as KPIs or the product quality also remains
in certain predictable ranges. These ideas were later also applied to software
engineering [3], and to business process management [1]. Typical examples of
KPIs are number of defects of a product, customer satisfaction with a service,
the profit margin of a product, the percentage of deliveries before the promised
delivery time, the machine utilization in a factory, and so forth. All these exam-
ples relate in some respect to an activity or to sets of activities. Moreover, they
involve the interaction of multiple objects or subjects such as customers, employ-
ees, or machines.

In this paper, we investigate the relation of KPIs, data warehouses, and
business process management. Specifically, we propose a guideline for deriving
a prototypical data warehouse design from annotated KPI definitions, which
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themselves are derived from business process model fragments. This yields a
top-down data warehouse design that supports the calculation of the KPIs via
aggregate queries.

A data warehouse consists of multi-dimensional facts representing measur-
able observations about subjects in time and space. The subjects, time, and
space are forming the dimensions, and the measures are representing the obser-
vations about the participating subjects. A data warehouse is essentially a large
collection of measurements covering a certain part of the reality. In most cases,
these measurements are about processes. If it were not, it would only provide a
static account of objects in the reality. The key problem of this paper is how to
design the data warehouse from annotated KPI definitions such that the KPIs
can be calculated by aggregate queries on the data warehouse.

Another angle to KPIs is their summarizing nature. A KPI is not based on
a single arbitrary observation but it aggregates a large number of observations
about the same entities (or activities) to be statistically meaningful. The con-
cept of an observation is the atomic building block of KPIs. Once the common
properties of observations are set, one can start to collect such observations sys-
tematically and create the KPI on top of them. Different types of observations
lead to different KPIs. So, given the definition of a KPI, what is the type of
observations belonging to this KPI? KPIs can also be formed as expressions
over other more simple KPIs. For example, the productivity of a process is the
division of a KPI on the output of the process divided by a KPI on the resources
used for producing the output. Such KPIs are called derived KPIs. Since their
computation is simple once the part KPIs are computed, we shall focus on simple
KPIs that are not defined in terms of other KPIs but that are defined in terms
of sets of atomic observations of the same type.

2 Related Work

Key performance indicators quantify the performance of an organization or of its
processes to achieve business objectives. In this chapter we view KPIs as used
in conceptual modeling, in particular business process modeling, and in data
warehousing.

2.1 Key Performance Indicators in Conceptual Modeling

Wetzstein et al. [1] investigate the definition of KPIs in the context of business
process models, in particular from a service-oriented architecture perspective.
Simple KPIs (called process performance metrics, PPMs) are the basis of more
sophisticated, context-specific KPIs such as determining whether a customer has
received the promised quality of service QoS (e.g. response time) can depend on
the customer class and further parameters that we can view as dimensions of the
KPI measurement. In their view a KPI is based on PPMs, a QoS definition, and
a decision tree that determines whether a PPM measurement fulfills the QoS
definition.



Key Performance Indicators in Data Warehouses 113

Strategic business modeling based on the Business Intelligence Model BIM [4]
extends the goal modeling language i* by metrics linked to i* goals on the one
side and tasks on the other side. The goals are monitored by the metrics and the
tasks are the measures to achieve the goals. The metric interval is decomposed into
performance regions (target, threshold/acceptable, worst value). The approach
reminds of balance scorecards but extends it to the rich goal modeling language i*.

In software engineering, KPIs were introduced to manage the software devel-
opment process [22], in particular in combination with the capability and matu-
rity model CMMI [23]. Measurements such as the defect density in source code
are used to control the software development process. Oivo and Basili’s goal-
question-metric (GQM) approach [24] provides an informal guideline on which
metrics need to be monitored in order to assess that a certain goal (like improv-
ing the software quality) is reached. A quality goal is decomposed in a set of
quality questions, which is itself decomposed into a set of quality metrics. The
metrics are comparable to KPIs. Hence, the GQM approach allows to group
KPIs by the goals of stakeholders. An agreement on goals allows to focus only
on those KPIs that are needed to assess to which extent the goals have been
reached. The GQM approach highlights that metrics (and thus KPIs) should
not be mixed up with goals. Nevertheless, quality goals are often formulated in
terms of KPIs such as the average cycle time of a certain process must be below
a certain threshold.

Statistical process control (SPC) [25] was introduced by Deming [2] and oth-
ers into the manufacturing domain as a tool to monitor the production and
product quality. Specifically, it measures parameters and establishes statistical
correlations between the parameters (called variables in statistics). The correla-
tions between variables are translated into a set of equations for predicting values
for dependent variables from independent variables. The idea is to control the
independent variables (such as the quality of input materials) at early stages of
the production process in order to guarantee that the dependent variables (such
as product quality parameters) are within a desired interval. The variables in
SPC are comparable to KPIs.

2.2 Data Warehouse Design and KPIs

A central issue in data warehousing is to design appropriate multi-dimensional
data models to support querying, exploring, reporting, and analysis as required
by organizational decision making. DW design has received considerable research
attention. However, there are different methodological approaches proposed by
the literature. Some approaches are data-driven in the sense that they aim at
deriving facts and dimensions from the structures of operational sources that are
usually represented as Entity Relationship Diagrams (ERD) or Unified Modeling
Language (UML) diagrams. The outcome of this approach is a set of candidate
facts or even data schemas, among which only relevant ones are selected to
include in DW systems. For instance, Golfarelli et al. [5] proposed the DW
design approach based on E/R scheme. Golfarelli and Rizzi [6] also developed a
data-driven method for DW design based on Dimensional Fact Model.
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Song, Khare, and Dai [7] developed the SAMSTAR method that is a semi-
automated approach to generating star schema from operational source ERD.
Although, the authors mentioned that the SAMSTAR method was both data-
driven and goal-driven, this method is primarily data-driven because it derives
star schema based on the structures and semantic of operational sources. Zepeda,
Celma, and Zatarain [8] proposed a conceptual design approach consisting of
two stages. The first stage is to generate multidimensional data structures from
UML-based enterprise schema. The second stage is to use user requirements
to select relevant schema. Moreover, the algorithm for automatic conceptual
schema development and evaluation based on Multidimensional Entity Rela-
tionship Model (M/ER) was invented by Phipps and Davis [9]. Similarly, Moody
and Kortink [10] proposed a methodology for designing DW schema based on
enterprise models.

On the other hand, a goal-driven approach gives more relevance to user
requirements in designing DW. Prakash and Gosain [11] present a requirement-
driven data warehouse development based on the goal-decision-information
model. In addition, Giorgini, Rizzi, and Garzetti [12] propose a goal-oriented
requirement analysis for DW design in which the organizational goals are made
explicit and decomposed into sub-goals and then the relationships among sub-
goals and actors are identified and analyzed. Their method starts with identifi-
cation of corporate goals (i.e., user requirements) and actors involved. The actor
can be either a responsible persons or resources that are needed to accomplish
the goal.

We focus on the conceptual design phase to provide a blueprint for lower
level logical design that is consistent with the KPI definitions from which we
start. Tryfona, Busborg, and Christiansen [13] developed the starER model for
conceptual design of Data Warehouses and argued that DW design should be
exposed to higher level so that it becomes more understandable, and easier to
identify conceptually what are ingredients are actually needed in the DW. In
addition, it is advisable not to use computer metaphors such as ‘table’ or ‘field’.

Jones and Song [14] developed Dimensional Design Pattern (DDP) that
assists designers to effectively determine commonly used DW dimensions. In
this sense, the DDP framework consist of six classes of dimension domain, from
which DW designer can choose specific dimension and attributes during the
mapping process.

Moreover, an important issue in designing DW schema is additivity of facts. A
fact is additive relative to a dimension if it is summarizable along that dimension.
The importance of summarizability is discussed by Shoshani [15]. Horner, Song,
and Chen [16] present a taxonomy of summary constraints that can be used for
this purpose.

The other issue in designing DW schema is the choice between the various
types of multidimensional data models, among which star schema and snowflake
schema are most common in data warehouses. However, the most data ware-
houses use star schema for two important reasons. First, it is the most efficient
design because less joint operations are required due to denormalized tables.
Second, the star schema is supported by most query optimizers for creating an
access plan that use efficient star join operations [17].
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A study of data warehouse in connection with KPIs can be found in the triple-
driven data modeling methodology presented by Guo et al. [18]. This method-
ology consists of four major stages: (1) goal driven stage, (2) data driven stage,
(3) user driven stage, and (4) combination stage. During the first stage, business
goals and KPIs are identified according to business subject area. The second
stage is to obtain a data schema that supports the KPIs from the operational
data sources. The third stage is to interview users in order to identify impor-
tant business questions. The fourth stage is to check if the business KPIs can
be calculated and questions can be answered by the obtained data schema. As
indicated by its second stage, this methodology is primarily data-driven because
the operational sources impose total constraints on the computation of KPIs.
Moreover, the first stage is where KPIs have to be identified and the attributes
needed to support these KPIs have to be determined. However, this methodology
does not specify how to determine those required attributes as part of the DW
data models. In other words, the practical steps to analyze the KPI structural
definition are not provided. In addition, the generation of star schema is based
on the data-driven method that was developed by Moody and Kortink [10].

Vaisman and Zimányi [21] propose a classification of KPIs along several
dimensions. First, KPIs are classified with respect to the time span of obser-
vations (past, present, future). Second, they distinguish KPIs on inputs needed
for a business results from KPIs about the business result and performance.
Further, there are operational vs. strategic KPIs and qualitative (obtained by
surveys, etc.) vs. quantitative. Multidimensional expressions (MDX) relate a KPI
value to a KPI goal (expressed as thresholds or intervals).

In the sequel, we develop an informal guideline on how to create a data
warehouse schema out of patterns found in business process models. The multi-
dimensional character of the KPIs is excerpted from the products serving as
inputs and outputs of the processes, the resources used in the processes, and time
and location information. We also shall review the role of plans and schedules
(compare to targets in BIM) in formulating KPIs.

3 Data Warehouses for Structuring Observations

A data warehouse manages multi-dimensional facts, where each fact constitutes
an observation about the domain of interest, e.g. an enterprise. The structure of
an observation is a tuple

(d1, d2, . . . , dk,m)

where di are dimension entities represented by their identifier and m is a measure-
ment value, typically a number. The measurement value attribute is functionally
dependent on the combination of dimension entities. For example, assume that
we have the dimensions car, location, and time and the measurement attribute
‘speed’ for representing car speed observations. Then, the observation facts would
look like

(‘Marys car’,‘Skövde’,2013-09-28T10:31:19,385)
(‘Johns car’,‘Barcelona’,2013-03-12T21:07:47,145)
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As functional expressions, these observations can be represented as equations

speed(‘Marys car’,‘Skövde’,2013-09-28T10:31:19)=385
speed(‘Johns car’,‘Barcelona’,2013-03-12T21:07:47)=145

We learn from this example that the dimensions of the observation determine the
circumstances under which the speed observation was made. The car parameter
is representing an entity participating in the observation. Location and time
are dimension entities that frequently occur in observations. Other than the
car, they are not entities/objects of the real world but we can reify them to be
entities. This reification is common in data warehouses by creating dimension
tables where temporal and special dimension values get surrogate identifiers. The
goal of this paper is to derive the dimensions for a simple KPI from a high-level
specification for this KPI.

Fig. 1. Workflow of creating DW schemas from KPI definitions

The general steps for realizing the KPI are

1. Specify the KPI including its measurement context. The measurement context
is defined by a combination of entities (customers, products, time, location,
etc.) that were present when the observation was made.

2. Create the supporting data warehouse schema. We limit ourselves in this
paper mostly on the fact table.

3. Code the queries computing the KPI on top of the created schema.

Natural language KPI definitions found in practice are usually rather ambigu-
ous by nature. Take for example the average speed of cars as a KPI for the traffic
process. What is the context of the underlying observations? It can be the time
of the measurement, the location, and the car involved in the measurement.
However, it could also include the car driver. Some of the relevant context may
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be difficult to determine such as the car driver. This can limit the utility of
the KPI for decision making or for understanding the process underlying the
observations.

3.1 The Process Nature of Observations

An observation is a statement made by agent (the observation) about an object in
the reality, possibly involving other objects. Lenz and Shoshani [19] differentiate
flow and stock observations. A flow observation is about recording a state change
of the object recorded with respect to some time interval, a stock observation
is a record about the object’s state. As a third category, they list value-per-
unit observations, such as the price of a product. Assume we would only record
stock observations. If there are no changes, then the observations of an object
would also not change. This is like listing the specific weights of elementary
substances. If there are changes, then the states of objects vary over time and
shall yield different observations. The reasons for changes are processes taking
place in the reality. These processes can be natural like the radioactive decay or
they are man-made, such as production processes. Consider the example of an
oil refinery that stores oil in large tanks. Each tank has a fill level. There are two
processes that can change the fill level: adding oil to the tank and removing oil.
These processes are embedded in more complex processes taking place at the oil
refinery. Flow observations about the oil tank record how much the state of an
object has changed between two points of time. For example, how many liters of
oil have been added and how many have been removed in the last month. If the
state is known at the start of the time period, then the state at the end of the
time period can be calculated by applying the additions and subtractions of the
flow observations. The third observation type, value-per-unit break down stock
or flow observations to small units, such as the oil price per liter. Assume that
the oil refinery buys quantities of oil on the market at different prices and then
stores the oil in the tank. Then each liter of oil stored in a tank virtually carries
its unit price with it. The total value of the oil in the tank is then the sum of all
oil liter unit prices of oil liters stored in the tank.

The lesson learned from this argumentation is that state changes require
the presence of processes. If the processes are natural, then human influence
on them is limited. For example, the water cycle on earth is driven by the sun
and leads to varying levels of water in the river systems. Still, it makes perfect
sense to record observations about the water cycle in order to predict the water
levels of certain rivers at certain locations, e.g., to prepare for flooding. An
organization with man-made processes has an interest in managing the processes
to achieve its goals, e.g., to increase the profit or to raise customer satisfaction.
The management includes changing the parameters of process steps (e.g., their
scheduling), adapting the resources (e.g. the machines used in production steps),
changing the inputs of process steps (e.g., replacing a part by another part),
or changing the process itself (e.g., reordering the process steps or removing
unnecessary activities).
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A single observation occurs in a context, which is characterized by the par-
ticipating entities. Time and space are regarded here as entities as well. The
presence of time and space indicate that such observations are practically always
related to an underlying process. The process is the reason why the entities are
combined and lead to observations. As an example, consider the usage process
of a customer c1 for a product p1 at a time t1. The observation for the combi-
nation of these three entities could be a defect of product p1. This is an atomic
observation. The measurement attribute ‘defect’ is either 0 or 1.

Now, the customer c1 belongs to the set of customers, e.g., the set of cus-
tomers in Brazil. The product p1 belongs to the set of all products of a given
type, say ACME Phone-One. Then, we can state for example

Defects(‘Brazil’,‘ACME Phone-One’,2014) = 371

The example highlights that it is crucial to identify the context of an observation
as a combination of participating entities. Combined with another simple KPI
on the number of products of a given type sold in a country in a given year, one
can define a derived KPI on the defect density:

DefectDensity(‘Brazil’,‘ACME Phone-One’,2014) =
Defects(‘Brazil’,‘ACME Phone-One’,2014) /
Sales(‘Brazil’,‘ACME Phone-One’,2014)

A derived KPI is simply a KPI that is defined in terms of other KPIs. A simple
KPI is calculated from a set of atomic observations. Note that the arguments
of the two KPIs ‘Defects’ and ‘Sales’ are the same, i.e., the context of the two
underlying observation types is the same.

Figure 2 visualizes the step from multi-dimensional atomic observations
(upper part) to multi-dimensional aggregated observations (lower part). The
aggregated observations are sets of atomic observations about the usage activi-
ties of cutomers with products where the dimension entities of the atomic obser-
vations are member of the dimension values of the aggregated observation. The
lower shows rolled-up dimension entities (all for customer, 2014 for time, and
product group S). These dimension entities match a set of observations, which
can be aggregated e.g. by counting the number of observations. Any set of atomic
observations can define a multitude of KPIs by combining different dimension
values. For example, the KPI

Defects(‘Brazil’,‘ACME Phone-One’,2014-01)

aggregates all defect observation in Brazil for the product group ’ACME Phone-
One’ in January 2014. We call all such KPIs simple KPIs even though equalities
such as

Defects(‘All’,‘ACME Phone-One’,2014) =
Defects(‘Brazil’,‘ACME Phone-One’,2014-01) +
Defects(‘Brazil’,‘ACME Phone-One’,2014-02) +
...
Defects(‘Brazil’,‘ACME Phone-One’,2014-12)



Key Performance Indicators in Data Warehouses 119

Fig. 2. Context of atomic and aggregated observations

hold true. The equality holds true due to the definition of the KPIs on the same
set of atomic observation and the roll-up relations of the dimension entities.

We conclude that observations about processes are the basis to define KPIs
and that the context of observations can be represented as a combination of
entities such as products, resources, time, and location. These entities are the
same entities that form the dimensions in a data warehouse. This view is not
the only view on KPIs but it is the one used subsequently to create guidelines
on how to derive data warehouse schemas and queries from KPI definitions.

4 From KPI Definitions to Data Warehouse Schemas

As motivated before, any KPI is based on observations about underlying
processes. We focus on simple KPIs here, i.e. KPIs that are based on a single
type of observation denoted as

O(e1, e2, . . . ,m)

where ei are the entities participating in the observation and m is the value of
the observation, usually a number. Hence, an observation is a synonym to a fact
in a data warehouse where all dimension values are taken from the lowest rollup
level. We also use the functional representation

O(e1, e2, . . .) = m

when appropriate. Since the majority of KPIs are process-oriented, we use
process models to relate them to elements of process models. Specifically, we
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Fig. 3. Participating entities and measurements

use the Petri net notation [20] extended by resource and input/output elements
to represent process model patterns. Petri nets are the formal basis for process
modeling languages such as BPMN. They provide a clear token passage seman-
tics of the process execution, which is necessary to define performance indicators
such as cycle time.

4.1 Motivating Example: Derive a DW Schema for the KPI
“Average Speed of Cars”

Is it a simple or derived KPI? This is a simple KPI with an atomic underlying
observation type.

What is the structure of the observation type? We identify the participating
entities car (given by its identification), the location of the speed measurement,
and the time when the measurement was taken. The measure is a number with
unit km/h. Hence the type of the observation is

speed(CAR,LOC, TIM,SPEEDM)

What is the schema of the fact table of a data warehouse supporting the KPI?
The participating entities become dimensions, e.g.,

CREATE TABLE SPEEDS (
CARID INT,
LOCID INT,
TIMID INT,
SPEEDM FLOAT,
PRIMARY KEY (CARID,LOCID,TIMID),
FOREIGN KEY (CARID) REFERENCES CAR (CARID),
FOREIGN KEY (LOCID) REFERENCES LOCATION (LOCID),
FOREIGN KEY (TIMID) REFERENCES TIMETBL (TIMID));

We omit the definitions of the dimension tables since the roll-up hierarchies are
not mentioned in the KPI definitions. The query for computing the KPI is then
a straightforward aggregate query on the fact table.
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4.2 Pattern 1: Derive a DW Schema for the KPI “Average
Processing Time for a Task in a Process”

Figure 4 shows a Petri-net-style process fragment to analyze the KPI. Place p1
represents that some case is currently being processed by task 1. The places are
waiting positions for the cases that flow through the process. The two transitions
‘begin’ and ‘end’ start or terminate the task, respectively. A case is a data object
representing an external or internal event to which an organization has to react.
It carries an identifier (the case id) and possibly further attributes that describe
the case. The attributes are used to decide how to route a case thru a process
[20]. The inner place pi is uniquely defined for each task in a process model.

Fig. 4. Process fragment for understanding processing time

Is it a simple or derived KPI? This is a derived KPI based on the arrival and
departure times of cases at the inner place pi of a task.

What is the structure of the observation types? There are two observation types:

arrivaltime(CASE,PLACE,ARRTIME)
departuretime(CASE,PLACE,DEPTIME)

Here the time is not a participating entity but a measurement. There are two
dimensions involved in the observation: the case dimension and the place dimen-
sion. The place dimension can be rolled up to the task to which it is connected
and then to the process to which the task belongs.

What is the schema of the fact tables of a data warehouse supporting the KPI?

CREATE TABLE ARRIVALTIME (
CASEID INT,
PLACEID INT,
ARRTIME DOUBLE,
PRIMARY KEY (CASEID,PLACEID));

CREATE TABLE DEPARTURETIME (
CASEID INT,
PLACEID INT,
DEPTIME DOUBLE,
PRIMARY KEY (CASEID,PLACEID));

The query to compute the simple KPI arrivaltime(o,p) is then
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SELECT ARRTIME FROM ARRIVALTIME WHERE
CASEID = o AND
PLACEID = p;

The two fact tables can also be merged into a single one with two mea-
surement attributes. Foreign key references and the definitions of the dimension
tables are omitted. The query to compute the KPI aggregates the average of
the difference of the departure time of the inner place p1 of a given task. We
leave the query coding to the reader. The Petri net view on the process allows to
determine what events need to be recorded by a process execution system. For
pattern 1, the system has to record the time when a case is picked up by a task
(arrival time at pi) and when the task finishes a case (departure time at pi).

Fig. 5. Cycle time of process

4.3 Pattern 2: Average Cycle Time of a Case in a Process

The cycle time is the accumulated time of a case in a process, from start to end.
Assume that ps is the unique start place of the process and pe is its unique end
place, then the cycle time of a case c is a derived KPI based on the arrival time:

cycletime(c) = arrivaltime(c, pe) − arrivaltime(c, ps)

We thus can reuse the definition of arrivaltime of the previous example. We
assume that the process has a unique start ps and a unique end pe. The SQL
query to compute the average cycle time over all cases is left to the reader. It
multiple processes are analyzed by the same data warehouse, then one can add a
process dimension to the fact table for cycletime. Processes can be rolled-up to
process groups at the discretion of the data warehouse designer.

The cycletime is calculated here from the simple KPI arrivaltime. If the
complete process definition is known, then one can establish an equality of the
cycletime with the sum of all waiting times plus all processing times for a case
flowing through the process.

4.4 Pattern 3: Average Waiting Time on a Place

This is another derived KPI that can be defined in terms of arrival and departure
time:

waittime(c, p) = arrivaltime(c, p) − departuretime(c, p)
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The waittime can be aggregated to the total waiting time of a case in a process.
If a process proc has no cycles, then it is defined by the formula

procwaittime(proc) =
sum{arrivaltime(c, p) − departuretime(c, p) | c in CASE, p.process = proc}

If the process has cycles, then cases can visit the same place multiple times.
Then, our original definitions for arrival and departure time cannot be used
anymore. To solve the problem, we add an additional participating entity ‘visit’
that contains the identifier of the visit of a case on a place:

CREATE TABLE ARRIVALTIME (
VISITID INT AUTOINCREMENT,
CASEID INT,
PLACEID INT,
ARRTIME DOUBLE,
PRIMARY KEY (VISITID,CASEID,PLACEID));

The fact table for departure time is updated accordingly. Then, the process
waiting time can be defined as

procwaittime(proc) =
sum{arrivaltime(v, c, p) − departuretime(v, c, p) | c in CASE,

p.process = proc, v in INT}
We leave the SQL query for calculating the KPI to the reader.

4.5 Pattern 4: Average Person Hours Spent on a Task for a Given
Case

Person hours are an example of a resource-based metric. Resources are allocated
to tasks. They are reserved during the execution of the task and typically released
before the end of the task. We can distinguish consumable resources such as
energy and non-consumable resources such as machines or employees. The latter
can be converted to consumable resources by considering resource hours instead
of the resource itself.

Figure 6 links a resource to a task in a SADT-like style as also used by Fenton
and Pfleeger for software processes [22]. In an SADT (structured analysis and

Fig. 6. Resources linked to tasks
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design technique) diagram, a task has inputs, outputs, resources used for the
task and control information (e.g. a time schedule). The resource consumption
can be observed by identifying the current case, the task to be performed, the
identifier of the resource. The measurement is the consumption of the resource,
e.g. person hours. Hence the observation type is

personhours(CASE, TASK,RESOURCE,RHOURS)

The following fact table implements the observation type:

CREATE TABLE PERSONHOURS (
CASEID INT,
TASKID INT,
RESOURCEID INT,
RHOURS DOUBLE,
PRIMARY KEY (CASEID,TASKID,RESOURCEID));

The query to compute the resource consumption per task and resource is then
as follows:

SELECT TASKID, RESOURCEID, AVG(RHOURS)
FROM PERSONHOURS
GROUP BY (TASKID,RSOURCEID);

4.6 Pattern 5: Percentage of the Truck Shipment Time Where
the Truck Cooling Device Is Active

This KPI is derived from the process time of the truck shipment and the aggre-
gated cooling times of the cooling device resource. The first KPI is discussed in
Example 2. Hence, we only need to handle the use of the cooling device.

cooling(ENGAGE,CASE, TASK,CTIME)

The cooling device can be engaged multiple times during a shipment. The obser-
vation has as participating entities the engagement id, the case, the task (ship)
and as measurement the time of the engagement.

CREATE TABLE COOLING (
ENGAGEID INT AUTOINCREMENT,
CASEID INT,
TASKID INT,
CTIME DOUBLE,
PRIMARY KEY (ENGAGEID, CASEID, TASKID));

The cooling time aggregated over all engagements for a given task and case is
then:

SELECT TASKID, CASEID, SUM(CTIME)
FROM COOLING
GROUP BY (TASKID, CASEID);

In a similar way one can implement KPIs on power consumption of a machine
resource used to perform a given task.
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Fig. 7. Use of the cooling device

4.7 Pattern 6: Material Used to Create a Product

Physical processes create output products using input products. The input prod-
ucts are not resources but they become part of the output. To model KPIs
for such processes, we need to explicitly represent inputs and outputs of tasks.
Figure 8 shows the inputs and outputs of a task. Note that inputs and outputs
of the task are different from the control flows from place 1 to the task, and from
the task to place 2. A task can have multiple products as inputs and also produce
multiple outputs. Each participating product can have a quantity (measured in
physical units or as count). For example, to produce an engine for a car, one
needs a certain quantity of aluminum poured in a form. The observation type
for input products is characterized by the participating entities case, the task,
and the input product. The measurement is the quantity of the product used for
the task on the given case.

input(CASE, TASK,PRODUCT,QUANTITY )

The outputs can be characterized accordingly

output(CASE, TASK,PRODUCT,QUANTITY )

Let us assume that 23.23 kg of aluminum are used to create a certain engine
123. The observation facts would then be:

input(engine123, pour, aluminum, 23.23)
output(engine123, pour, engine, 1)

Fig. 8. Inputs and outputs of a task



126 M.A. Jeusfeld and S. Thoun

The next engine could require slightly less aluminum:

input(engine124, pour, aluminum, 23.19)
output(engine124, pour, engine, 1)

CREATE TABLE INPUT (
CASEID INT,
TASKID INT,
PRODUCTID INT,
QUANTITY DOUBLE,
PRIMARY KEY (CASEID,TASKID,PRODUCTID));

The average consumption of aluminum per engine is then a simple aggregate
query over the input table:

SELECT TASKID, PRODUCTID, AVG(QUANTITY)
FROM INPUT
GROUP BY (TASKID,PRODUCTID);

4.8 Pattern 7: As-Is vs. To-Be Comparisons

The last pattern discussed in this chapter are deviations from the plan and KPIs
that relate planned performance to the actual performance. A typical example
is a budget for a project. This is a planned measure. The actual cost of the
project may be less, equal, or more than the planned budget. Another example
is the deadline for a certain task. The previous patterns already discussed the
actual performance of a process, including resource consumption. Figure 9 adds
planned performance to our extended process model. We can regard the planned
performance as a simple observation type, which has no participating case.

As an example, consider the planned processing time of task 1. It can be
represented in an observation fact

plannedproctime(TASK,PTIME)

This observation fact can be used like any other to form aggregate KPIs like the
average planned processing time over all tasks. The more interesting use is to
form derived KPIs with KPIs on the actual performance. Similar planned per-
formance KPIs can be defined for resource consumption, and input and outputs.

Fig. 9. Planned performance
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5 Conclusions

This paper discussed how to map a KPI definition to a data warehouse schema
and the query calculating the KPI. Rather than developing a method to auto-
matically generate the schema and queries, we elaborated on patterns for process
performance KPIs. The patterns included processing time, waiting time, resource
consumption, material use, and the comparison of planned versus actual per-
formance. An extended process model that includes places, tasks, resources,
inputs/outputs, and plans was incorporated to derive the observation types
underlying the KPIs. Simple KPIs have a single observation type associated
to them. Derived KPIs are computed as expressions over simple KPIs.

The patterns can be used to support the top-down design of a data warehouse
from a set of process-related KPIs that shall be computed by it. The starting
points are the natural language KPI definition and a process model fragment
that visualizes the context in which the observations belonging to the KPI are
collected. The notion of Petri-net places allowed for a straight-forward definition
of time-based KPIs by just using arrival and departure times of cases at and
from places. The pattern on resource consumption allows dealing with a whole
group of KPIs such as person hours spent on a task.

The input/output pattern allows to measure physical material flow. These
patterns can also be combined with the other patterns, e.g. to measure how
many person hours are needed to produce a certain number of products. Finally,
planned performance is realized by a simplified observation type that has no case
identifiers.

We argue that practically all KPIs are process-related because any change of
a state requires some activity leading to the state change. Some KPIs are about
‘stock’ observations (cf. Lenz and Shoshani [19]), e.g., observing the number
of cars on a certain street segment. The observation is related to the ongoing
travel processes of the car drivers, which are not made explicit in an information
system about the traffic status. The observation times are independent of the
underlying travel processes: two consecutive observations could be about the
very same state. If the process is not explicit, then it cannot be controlled so
easily. ‘Flow’ observations are directly linked to a process task, since they make
an explicit statement on a state change. In the traffic example, each time that a
car enters or leaves the street segment, an observation would be recorded. This
type of observation allows to control the traffic, e.g. by using traffic lights for
the street segment that is set to red when too many cars are in the segment. In
this paper, we thus focused on flow observations.

Future work is needed to understand how to define a KPI in a formal language
such that a supporting data warehouse schema can be automatically generated
from the KPI definition. Another open question is whether the discussed 7 pat-
terns cover a considerable portion of KPIs actually used in practice. The KPI
Library (http://kpilibrary.com) contains more than a thousand KPIs in high
level natural language that can be used to answer this question. We did not dis-
cuss how dimension tables can be created and populated. Most rollup hierarchies
are domain-specific with the exception of time.

http://kpilibrary.com
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Finally, it would be interesting to investigate rules for the correct definitions
of derived KPIs in terms of constraints on the use of parameters for the partic-
ipating entities of the observation facts. For example, it does not make (much)
sense to compare the arrival times and departure times of places belonging to
different processes.

KPIs can also be regarded as statistical variables, possibly depending on each
other. The long-term collection of KPIs can be used to calculate their correlation
and thus to form a theory on estimating dependent KPIs from independent ones.
This paper was meant to encourage the systematic collection of many process
KPIs such that theories for predicting them can be developed and validated
using methods from SPC [25].
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