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Abstract. This paper addresses the problem of investigating long-range
dependence (LRD) and self-similarity in Web traffic. Popular techniques
for estimating the intensity of LRD via the Hurst parameter are pre-
sented. Using a set of traces of a popular e-commerce site, the presence
and the nature of LRD in Web traffic is examined. Our results confirm
the self-similar nature of traffic at a Web server input, however the result-
ing estimates of the Hurst parameter vary depending on the trace and
the technique used.
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1 Introduction

Analysis and modelling of Web traffic has been a hot research issue in recent
years. HTTP requests’ arrival times at a Web server may be easily observed and
analyzed. In reality, a request arrival process on a Web server has been proven to
reveal significant variance (burstiness): peak request rates can exceed the average
request rate even tenfold and surpass the server capacity, resulting in the poor
quality of Web service [1,2]. When this process is bursty on a wide range of time
scales, it may have a feature of self-similarity. As a consequence of burstiness on
many time scales, the arrival process may show long-range dependence (LRD),
which means that values at any instant are non-negligibly positively correlated
with values at all future instants [3]. Although the concepts of self-similarity
and long-range dependence are not equivalent, in the literature they are often
used interchangeably which may be attributed to the fact that the presence of
both self-similarity and LRD may be estimated with the Hurst parameter (Hurst
index), denoted as H.

Self-similarity has been discovered not only in Web server workload [2–4]
but also in computer network traffic [5–9] or Web query traffic [10]. The syn-
thetic self-similar traffic can be constructed by multiplexing a large number of
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on/off sources characterized by heavy-tailed on and off period lengths. Analysis
of the Web traffic [3] showed that the self-similarity feature of such traffic can be
attributed to several factors, including heavy-tailed distributions of Web docu-
ment sizes and user “think times”, the effect of caching, and the superimposition
of many such transfers in the network.

Self-similarity may have a significant negative impact on system performance
and scalability [11]. That is why taking into consideration this Web traffic feature
is essential when developing a synthetic workload model used to test the server
system capacity – otherwise system performance may be overestimated. A num-
ber of traffic models and synthetic traffic generators implementing self-similarity
and burstiness have been proposed [12–15].

Very few studies have investigated self-similarity and LRD of the arrival
process at e-commerce websites so far [2,4]. The main impediment for this fact
is a difficulty in obtaining traffic traces from online retailers, mainly due to e-
business profitability and e-customer privacy concerns. In this paper, we investi-
gate LRD in traffic arriving on a popular e-commerce Web server. The additional
motivation for our study was a huge increase in popularity of online marketing
and Web analytics in recent years, which could induce changes in Web traffic pat-
terns at e-commerce servers, mainly due to the increased share of bot-generated
traffic.

The paper is organized as follows. Section 2 presents background information
on self-similary, LRD, and some methods for investigating these phenomena in
time series. Section 3 presents datasets analyzed in our study and discusses the
results of LRD intensity estimation. Section 4 concludes the paper.

2 Background

In this section notions of self-similarity and long-range dependence are briefly
presented and some methods for estimating these phenomena are introduced.
For detailed discussion on these issues refer e.g. to [16].

2.1 Self-similarity and Long-Range Dependence

Self-similarity may be defined in terms of the process distribution as follows.
A stochastic process Y (t) is self-similar with a self-similarity parameter H if for
any positive stretching factor c, the distribution of the rescaled process c−HY (ct)
is equivalent to that of the original process Y (t) [17].

A self-similar process shows long-range dependence if its autocorrelation func-
tion follows a power law: r(k) ∼ k−β as k → ∞, where β ∈ (0, 1) [3] (it is worth
noting that LRD can be also defined for non self-similar processes).

A presence and a degree of self-similarity and long-range dependence is
expressed by the Hurst parameter, H. When H is in the range of 0.5 and 1,
one can say that a process is self-similar [18] and the higher H is, the higher
degree of self-similarity and LRD is revealed by the series [2] (although a process
can be self-similar even if H ≤ 0.5, e.g., for the special case of Fractional Brown-
ian motions).
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2.2 Selected Methods for Estimating the Hurst Parameter

We apply five popular methods for assessing self-similarity and LRD of the
Web traffic [3,8,12,19]. Four of them are graphical methods: aggregate variance
method, R/S plot, periodogram-based method, and wavelet-based method. The
last method is Local Whittle estimator.

The aggregate variance method and the R/S plot method are in the time
domain. Let us consider a time series X = (Xt; t = 1, 2, . . . , N). In the aggregate
variance method, the m-aggregated series X(m) = (X(m)

k ; k = 1, 2, . . .) is defined
by summing the time series X over nonoverlapping blocks of length m. The
variance of series X(m) is plotted against m on a log-log plot and the points are
approximated by a straight line, e.g., by using the least squares method. Then,
the slope of the line, −β, is established and the Hurst parameter is computed
as H = 1 − β/2. For a self-similar series variance decays slowly so −β is greater
than −1, which gives H higher than 0.5.

In the R/S plot method, the rescaled range, i.e., the R/S statistic, is plotted
against m (which has been traditionally denoted by d in this method) on a log-
log plot. For a self-similar series, R/S grows according to a power law with
exponent H as a function of d and the plot has slope which is an estimate of H.

Other three methods are in the frequency domain. In the periodogram-based
method, a periodogram of a time series X is defined by:
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where i =
√−1. Usually it is evaluated at the Fourier Frequencies λj,N = 2πj

N ,
where j ∈ [0, n/2]. The estimation of H is based on the slope γ of a log-log plot
IN (λj,N ) versus λj,N as frequency approaches zero. The relationship between the
periodogram slope and the Hurst parameter is given by the formula γ = 1−2H.

Local Whittle estimator is a non-graphical method based on periodograms.
This method assumes that the spectral density f(λ) of the series can be approx-
imated by the function:

fc,H(λ) = cλ1−2H (2)

for frequencies λ as frequency approaches zero. The Local Whittle estimator of
H is defined by minimizing:

m∑

j=1

log fc,H(λj,N ) +
IN (λj,N )
fc,H(λj,N )

(3)

with respect to c and H; IN is defined in (1) and fc,H is defined in (2).
In the wavelet-based estimator of the Hurst parameter, wavelets are con-

sidered as a generalisation of Fourier transform. For the series X the wavelet
coefficients are determined; based on their values a time average μj is performed
at a given scale (for the j-th octave). The relationship between μj and H is given
by the formula:

E log2(μj) ∼ (2H − 1)j + C, (4)
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where E means the average, C depends only on H. Using this relationship,
H may be determined based on the slope of an appropriate weighted linear
regression.

Some other methods for determining the Hurst parameter in time series have
been also proposed, e.g. detrended fluctuation analysis (DFA) [20] or multifractal
analysis [21]. We do not discuss them in the paper due to space limitations.

3 Estimation of the Hurst Parameter for E-Commerce
Traffic

3.1 Data Collection

The main goal of our analysis was to investigate LRD in e-commerce Web traffic.
The analysis was done for data recorded in Web server log files obtained from
an online retailer trading car parts and accessories. HTTP description lines were
converted into time series reflecting the request arrival process at the Web server
during the successive 14 days. 14 one-day traces were separately analyzed (traces
are named with dates of traffic collection).

To verify the results obtained for the e-commerce traces, we decided to per-
form an additional LRD analysis of traffic at an actual non e-commerce server.
To this end, we used seven traces from a server hosting a specialized mailing list.

The number of samples (i.e., the number of HTTP requests) in each trace is
presented in Table 1.

Table 1. Cardinality of the analyzed data sets

E-commerce trace Non e-commerce trace

Trace (date) Number of samples Trace (date) Number of samples

01.12.2015 13 643 10.01.2016 12 151

02.12.2015 56 284 11.01.2016 13 832

03.12.2015 9 642 12.01.2016 13 640

04.12.2015 17 842 13.01.2016 13 552

05.12.2015 25 082 14.01.2016 14 010

06.12.2015 16 092 15.01.2016 15 438

07.12.2015 15 860 16.01.2016 1 765

08.12.2015 16 138

09.12.2015 190 934

10.12.2015 170 529

11.12.2015 41 249

12.12.2015 9 758

13.12.2015 14 594

14.12.2015 17 453
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Package R [22] was used to estimate the Hurst parameter for both sets of
traces with the application of the five methods described in Subsect. 2.2.

3.2 Results and Discussion

Figures 1, 2, 3, 4 provide examples of the application of four graphical methods
to analyze two e-commerce traces, collected on 1 and 5 December 2015. Traffic
in the 01.12.2015 trace is characterized by rather low LRD intensity compared
to other e-commerce traces. On the other hand, for traffic registered in the
05.12.2015 trace, the highest mean H estimate was achieved in our analysis.
Thus, in Figs. 1, 2, 3, 4 one can compare plots for Web traffic characterized with
a moderate and a high level of long-range dependence.

Fig. 1. Aggregate variance plot for the 01.12.2015 trace (left) and the 05.12.2015 trace
(right)

Fig. 2. R/S plot for the 01.12.2015 trace (left) and the 05.12.2015 trace (right)
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Figure 1 shows the aggregate variance plots. One can observe that the linear
plots are characterized by a slope clearly different from −1 which confirms the
self-similarity of the analyzed time series. The slope of the plot for 01.12.2015
data (left) was estimated as −0.56, giving an estimate for the Hurst parameter
of 0.72. The slope estimated for a 05.12.2015 data plot (right) is −0.18 which
results in H of 0.91.

The R/S plots in Fig. 2 have an asymptotic slope between 0.5 and 1 (the
corresponding lines are shown for comparison). The slope, being an estimate
of H, was determined using regression as 0.65 for the 01.12.2015 trace and 0.54
for the 05.12.2015 trace.

Fig. 3. Periodogram for the 01.12.2015 trace (left) and the 05.12.2015 trace (right)

Fig. 4. R/S plot for the 01.12.2015 trace (left) and the 05.12.2015 trace (right)
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Fig. 5. Comparison of H estimates for the e-commerce traces

Figure 3 presents example results achieved using the periodogram-based
method. Regression lines for periodogram plots have a slope of −0.36 and −0.5,
giving the estimates of H as 0.68 and 0.75 for the 01.12.2015 and 05.12.2015
traces, correspondingly.

Figure 4 shows results of application of the wavelet-based estimator of the
Hurst parameter to the two example e-commerce traces. The corresponding H
of 0.77 and 1.09 were estimated. For H determined with this method confidence
intervals are provided (Table 2).

Table 2 summarizes the results of our study across the different methods for
all 14 e-commerce traces. In general, the H estimate exceeds 0.5 which indicates
the self-similar character of the traffic. Only H estimated for the 09.12.2015
trace using the R/S plot method was 0.46. Other values of the Hurst parameter
exceed 0.5 and they vary significantly, ranging from 0.51 to even 0.98.

Mean H values estimated for each e-commerce trace (the last column) show
significant fluctuations in LRD intensity depending on a day, with H ranging
from 0.6 for the 09.12.2015 trace to 0.8 for the 05.12.2015 trace. The last row of
Table 2 shows even bigger differences in H estimates depending on the method
applied.

Fluctuations in H estimates depending on the trace and the method applied
are graphically presented in Fig. 5. One can observe that for the Local Whittle
method, the estimate of H stays relatively consistent across all 14 analyzed
datasets (with the mean value of 0.63). On the other hand, for the graphical
methods it varies greatly. The wavelet-based method tends to give the highest H
estimates (with the mean of 0.85) whereas H estimates for the R/S plot method
are the lowest (with the mean of 0.6). We cannot give reasons for such a big
variance of H estimates across various methods. However, such variance is not
uncommon - it has been also obtained in some previous studies, e.g., for network
traffic [8,12] and MPEG-1 encoded video sequences2 [23].

Table 3 presents estimates of the Hurst parameter for the non e-commerce
traces and Fig. 6 illustrates fluctuations in these estimates depending on the
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Table 2. H estimates for the e-commerce traces

Trace Aggregate
variance
method

R/S plot Periodogram-
based method

Local
Whittle
estimator

Wavelet-
based
method

MEAN

01.12.2015 0.72 0.65 0.68 0.62 0.77 ± 0.05 0.67

02.12.2015 0.90 0.63 0.74 0.65 0.75 ± 0.04 0.73

03.12.2015 0.68 0.58 0.71 0.64 0.80 ± 0.06 0.65

04.12.2015 0.73 0.54 0.73 0.63 0.85 ± 0.07 0.66

05.12.2015 0.91 0.59 0.98 0.64 0.98 ± 0.03 0.80

06.12.2015 0.68 0.70 0.70 0.62 0.75 ± 0.05 0.68

07.12.2015 0.70 0.72 0.70 0.63 0.83 ± 0.06 0.69

08.12.2015 0.81 0.63 0.85 0.64 0.97 ± 0.03 0.74

09.12.2015 0.67 0.46 0.66 0.58 0.74 ± 0.03 0.60

10.12.2015 0.90 0.51 0.94 0.63 0.95 ± 0.07 0.74

11.12.2015 0.94 0.56 0.79 0.65 0.79 ± 0.05 0.73

12.12.2015 0.67 0.53 0.73 0.64 0.79 ± 0.05 0.64

13.12.2015 0.78 0.67 0.92 0.64 0.94 ± 0.03 0.75

14.12.2015 0.69 0.64 0.67 0.62 0.75 ± 0.05 0.65

Mean 0.77 0.60 0.79 0.63 0.85

Table 3. H estimates for the non e-commerce traces

Trace Aggregate
variance
method

R/S plot Periodogram-
based method

Local
Whittle
estimator

Wavelet-
based
method

MEAN

10.01.2016 0.60 0.65 0.62 0.62 0.66 ± 0.02 0.63

11.01.2016 0.61 0.62 0.64 0.62 0.66 ± 0.01 0.63

12.01.2016 0.59 0.64 0.60 0.62 0.65 ± 0.02 0.62

13.01.2016 0.68 0.60 0.74 0.63 0.75 ± 0.04 0.68

14.01.2016 0.73 0.62 0.73 0.65 0.73 ± 0.03 0.69

15.01.2016 0.61 0.61 0.61 0.62 0.65 ± 0.02 0.62

16.01.2016 0.79 0.74 0.73 0.68 0.71 ± 0.02 0.73

Mean 0.66 0.64 0.66 0.63 0.69

trace and the method used. For this traffic the Hurst parameter (with the mean
of 0.66) seems to be a little lower than the one for the e-commerce traffic (with
the mean of 0.7). At the same time, H estimates for non e-commerce traffic are
much more consistent across days and methods applied (c.f. Fig. 5).
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Fig. 6. Comparison of H estimates for the non e-commerce traces

4 Conclusions

Application of five popular Hurst parameter estimators to e-commerce traffic
shows that this traffic reveals a significant level of long-range dependence. The
mean H estimate ranges from 0.6 to 0.8 depending on a day. This result is
consistent with results for request arrival process at other e-commerce sites: 0.66
in [2] and 0.73–0.8 in [4]. Furthermore, our study confirms previous findings
that one cannot rely on a single method to estimate the Hurst parameter since
different methods usually give different results. In our case, the mean H estimate
for the e-commerce traffic ranges from 0.6 to 0.85 depending on the method. For
the non e-commerce traffic, analyzed in the paper for comparative purposes,
these fluctuations are much smaller and range from 0.63 to 0.69.

A coarse analysis of our results shows that the Hurst parameter determined
for 24-hour intervals does not depend on the number of HTTP requests arrived
on the server within these intervals. It also does not depend on the share of Web
bot requests in the intervals. A deeper LRD analysis, performed for intervals
shorter than 24 hours, is being planned to investigate these possible relationships.
Furthermore, we plan to use traces from multiple Web servers to inspect if it is
possible to use the Hurst parameter to distinguish between e-commerce and non
e-commerce source.
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