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Abstract. An undetectable eavesdropping of the entanglement based
quantum direct communication in lossy quantum channels has already
been demonstrated by Zhang et al. (Phys Lett A 333(12):46–50, 2004).
The circuit proposed therein induces losses at a constant 25 % rate. Skip-
ping of some protocol cycles is advised in situations when the induced
loss rate is too high. However, such policy leads to a reduction in infor-
mation gain proportional to the number of skipped cycles.

The entangling transformation, parametrized by the induced loss
ratio, is proposed. The new method permits fine-tuning of the loss ratio
by a modification of coupling coefficients. The proposed method signifi-
cantly improves efficiency of the attack operated in the low loss regime.
The other properties of the attack remain the same.
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1 Introduction

The ping-pong protocol [1] aims to provide confidentiality without encryption.
It has been proven that it is asymptotically secure in lossless channels [2–6].
Unfortunately, the existence of the losses is a rule in a quantum world and their
exclusion from the analysis is an oversimplification. Zhang et al. [7] presented
a circuit than permits successful eavesdropping of 0.311 bits per protocol cycle at
the price of loosing one quarter of control photons. The attack targets the only
practical implementation [8] of the protocol, so its further analysis and deeper
understanding is scientifically justified.

To exemplify the power of the attack, it is frequently argued that the existing
quantum channel can be replaced with a better one to mask the presence of the
circuit. Although in practice this is usually not the option, the attack still cannot
be excluded completely. Legitimate parties usually monitor the average loss ratio
of the channel and they assume some safety margin to avoid false alarms. The
presence of an adversary is hidden as long as the additional losses stay below
that margin, which is usually much lower than 25 % rate. The typical policy of
an eavesdropper is to skip some protocol cycles to reduce induced losses. Linear
reduction of average information gain with the number of skipped cycles is the
price he pays.
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It follows that impact of the attack on practically deployed systems is deter-
mined by its properties in the low-loss regime. The new method of an attack that
outperforms known solutions in this area is proposed. It permits fine-tuning of
the loss ratio by a modification of coupling coefficients of the entangling trans-
formation. The other properties of the attack remain the same.

The paper is constructed as follows. A brief reclaim the ping-pong protocol
and the analysis of the Zhang’s circuit is provided in Sect. 2. An alternative
entangling transformation and key results are introduced in Sect. 3. Concluding
remarks are made in the last section.

2 Analysis

The message mode of the ping-pong protocol is composed of three phases:
an entanglement distribution, a message encoding and its subsequent decod-
ing. Its further description adheres to the standard cryptographic personification
rules: Alice and Bob are the names of the communicating parties, the malevolent
eavesdropper is referred as Eve.

Bob starts the communication process through the creation of an EPR pair

|ψinit〉 = |ψ+〉 = (|0B〉|1A〉 + |1B〉|0A〉) /
√

2. (1)

The qubits that constitute the pair are further referred to as home and travel/sig-
nal qubits, respectively. Bob sends the signal qubit to Alice. Alice applies a phase
flip operator ZA = |0A〉〈0A| − |1A〉〈1A| to the received qubit to encode a single
classic bit

|ψν〉 = ZA|ψinit〉 = (ZA)ν |ψ+〉 = ((−1)ν |0B〉|1A〉 + |1B〉|0A〉) /
√

2. (2)

The signal particle is sent back to Bob, who identifies the transformation that
has been applied through the measurement of both qubits (Fig. 1).

Fig. 1. The schematic diagram of a message mode in the ping-pong protocol

Unfortunately, such a communication scenario is vulnerable to the intercept-
resend attack. As a countermeasure, Alice measures the received qubit in
randomly selected protocol cycles and asks Bob over an authenticated classic
channel to do the same with his qubit (Fig. 2). Her measurement causes the col-
lapse of the shared state. The correlation of the outcomes is preserved only if the
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qubit measured by Alice is the same one that was sent by Bob. That way Alice
and Bob can convince themselves with the confidence approaching certainty that
the quantum channel is not spoofed provided that they have executed a suffi-
cient number of control cycles. The above scheme is asymptotically secure in the
absence of losses and/or transmission errors i.e., in a perfect quantum channel.

Fig. 2. The schematic diagram of a control mode in the ping-pong protocol

Further, we will consider individual (incoherent) attacks in which Eve attacks
each protocol cycle independently. The signal particle travelling back and forth
between Alice and Bob can be the subject of any quantum action Q introduced
by Eve, as depicted in Fig. 3. Eve’s activity can be described as a unitary oper-
ation acting on the signal qubit and two additional qubit registers, as follows
from Stinespring’s dilation theorem.

Fig. 3. A schematic diagram of an individual attack

The efficiency of the eavesdropping detection depends on the properties of
the control mode. In the seminal version of the protocol, the reliability of quan-
tum communication is estimated by the measurements in the computational
basis. The probability of verification failure pC (the specific form of the operator
depends on the assumed initial state) and the probability of a non-conclusive
control cycle pL (it is assumed that Bob’s qubit is never lost) can be found as
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PC = |0B〉|0A〉〈0A|〈0B | + |1B〉|1A〉〈1A|〈1B |, (3)
PL = IB ⊗ |vA〉〈vA|, (4)

pC,L = Trx,y ((PC,L ⊗ IE) (IB ⊗ Q) |ψinit〉|χE〉) . (5)

where |v〉 denotes vacuum state and |χE〉 is the initial state of the ancilla system.
Zhang’s attack [7] addresses the violation of the protocol security in the

presence of losses in a quantum channel. The clever circuit permits the detection
of phase flip operations at the price of introducing some losses. The expected
correlation of outcomes of the conclusive measurements made in the control
mode (3) is also preserved so the attack is undetectable.

The Zhang’s circuit is composed of two modules [7, Eq. (2)]: the coupling
unit CU followed by the selective swap CSWAP (Fig. 4). The first one entangles
the signal qubit from register A with the ancilla registers x and y. The second
module swaps the contents of the A and x registers exclusively for signal qubit
being in state |1A〉. If qubit in register A is equal to |0A〉 then no swapping
occurs. Both modules are build around Controlled Polarization Beam Splitter
(CPBS) originally proposed by Wójcik [9].

Fig. 4. The block diagram of the Zhang’s circuit

Polarization Beam Splitter (PBS) is a two qubit gate which conditionally
swaps the port of the input based on its value – the qubit |0〉 arriving on port
x (y) appears on port y (x) of output, but the qubit set to |1〉 does not change
its port. The CPBS acts as normal PBS for control qubit is set to |0〉. In the
complementary situation, i.e., for the control register set to |1〉, we have the
opposite behaviour: |1〉 (|0〉) is swapped (hold). The CPBS can be realized as
PBS preceded and followed by double CNOT gates (Fig. 5).

The coupling module CU is realized as a circuit from Fig. 5. The quantum
state of the whole system is given as

|ψ(0)
BAE〉 = |ψinit〉|χE〉 =

1√
2

(|0B〉|1A〉 + |1B〉|0A〉) |vx〉|0y〉, (6)

where it was assumed that the ancilla is initially in the state |χE〉 = |vx〉|0y〉.
The CU actions are as follows

CU|0A〉|vx〉|0y〉 =
1√
2
|0A〉 (|0x〉|vy〉 + |vx〉|1y〉) = |0A〉|α+〉, (7a)
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CU|0A〉|vx〉|1y〉 =
1√
2
|0A〉 (|0x〉|vy〉 − |vx〉|1y〉) = |0A〉|α−〉, (7b)

CU|1A〉|vx〉|0y〉 =
1√
2
|1A〉 (|vx〉|0y〉 + |1x〉|vy〉) = |1A〉|β+〉, (7c)

CU|1A〉|vx〉|1y〉 =
1√
2
|1A〉 (|vx〉|0y〉 − |1x〉|vy〉) = |1A〉|β−〉. (7d)

so the resulting state of the system takes the form (compare with Fig. 4)

|ψ(1)
BAE〉 =

1√
2

(|1B〉|0A〉|α+〉 + |0B〉|1A〉|β+〉) . (8)

Fig. 5. The coupling circuit CU

It enters the CSWAP circuit (Fig. 6) which is also build on the CPBS basis,
but this time the y register serves as the control.

Fig. 6. The selective swap circuit CSWAP

The circuit does nothing for signal qubit set to |0A〉. Otherwise, i.e., for signal
qubit equal to |1A〉, it swaps the contents of A and x registers:

CSWAP|0A〉|α+〉 =
1√
2

(|0A〉|0x〉|vy〉 + |0A〉|vx〉|1y〉) = |0A〉|α+〉, (9a)

CSWAP|1A〉|β+〉 =
1√
2

(|vA〉|1x〉|0y〉 + |1A〉|1x〉|vy〉) . (9b)

In effect, the state of the system at Alice’s end reads (see Fig. 4)

|ψ(2)
BAE〉 =

1√
2
|1B〉|0A〉|α+〉+

1√
2
|0B〉

[
1√
2

(|vA〉|1x〉|0y〉 + |1A〉|1x〉|vy〉)
]

. (10)
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Her encoding affects only the term in square brackets

Zν
A (|vA〉|1x〉|0y〉 + |1A〉|1x〉|vy〉) = (|vA〉|1x〉|0y〉 + (−1)ν |1A〉|1x〉|vy〉) . (11)

The photons that “carry” encoded information and travel back to Bob
are affected by C−1

SWAP. The component with |α+〉 is not changed again but the
term (11) sensitive to Alice’s encoding operation is transformed to

1√
2
|1A〉 (|vx〉|0y〉 + (−1)ν |1x〉|vy〉) = |1A〉|β±〉. (12)

Thus the forward and backward application of the CSWAP circuit to the state (8)
caused that Alice’s encoding is effectively applied to the x register. The states
visible at this cross-section after applied encoding read (Fig. 4)

ν = 0 |ξ0〉 =
1√
2

(|1B〉|0A〉|α+〉 + |0B〉|1A〉|β+〉) , (13a)

ν = 1 |ξ1〉 =
1√
2

(|1B〉|0A〉|α+〉 + |0B〉|1A〉|β−〉) , (13b)

where |β±〉 = (|vx〉|0y〉 ± |1x〉|vy〉). These states are transformed by the C−1
U to

|ε0〉 = C−1
U |ξ0〉 =

1√
2

(|1B〉|0A〉|vx〉|0y〉 + |0B〉|1A〉|vx〉|0y〉) , (14a)

|ε1〉 = C−1
U |ξ1〉 =

1√
2

(|1B〉|0A〉|vx〉|0y〉 + |0B〉|1A〉|vx〉|1y〉) , (14b)

where expressions (7) have been taken into account. Eve has to discriminate
between states

ρ0 = TrBA (|ε0〉〈ε0|) =|vx〉|0y〉〈vx|〈0y|, (15)

ρ1 = TrBA (|ε1〉〈ε1|) =
1
2
|vx〉|0y〉〈vx|〈0y| +

1
2
|vx〉|1y〉〈vx|〈1y|. (16)

The information she can draw is limited by the Holevo bound [10]

IAE = S

(
1
2
ρ0 +

1
2
ρ1

)
− 1

2
S (ρ0) − 1

2
S (ρ1) (17)

where S (·) denotes von Neumann entropy. The straightforward analysis shows
that Eve’s information gain is equal to IAE = 0.311 bits per single message
mode cycle. However, the information is intercepted at the price of an induction
of a 25 % loss rate in the control mode (10). As long as legitimate parties accept
losses above that threshold, the quantum channel can be in theory replaced
with a perfect one and the attack can be applied without modification. But the
replacement of the quantum channel is impossible in typical real-life scenarios.
Moreover, the communicating parties monitor the average losses occurring in the
link they use and any abrupt change and/or excess value can trigger an alarm.
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However, to avoid false alarms, the estimation procedure cannot be exact and
some safety margin have to be assumed. This opens a gap for mounting the
attack as long as the induced losses are below that margin. It is advised that
Eve should skip some protocol cycles to keep average induced losses below the
required threshold. But this decreases her information gain proportionally to the
number of omitted cycles. Further, it is shown that such a policy is not optimal.
The entangling transformation that provides fine-tuning of the induced loss rate
via the control of the coupling coefficients, is proposed. It provides better results
than a linear decrease in information gain while reducing losses. The proposed
enhancement can be considered as the generalization of the Zhang’s attack.

3 Results

The map (7) that defines coupling of the signal qubit with the ancilla has
straightforward generalization

W|0A〉|vx〉|0y〉 = |0A〉 (a|0x〉|vy〉 + f |vx〉|1y〉) = |0A〉|α+〉, (18)
W|1A〉|vx〉|0y〉 = |1A〉 (a|1x〉|vy〉 + f |vx〉|0y〉) = |1A〉|β+〉, (19)

where |a|2 + |f |2 = 1. The transformation W is unitary when

W|0A〉|vx〉|1y〉 = |0A〉 (f |0x〉|vy〉 − a|vx〉|1y〉) = |0A〉|α−〉, (20)
W|1A〉|vx〉|1y〉 = |1A〉 (f |1x〉|vy〉 − a|vx〉|0y〉) = |1A〉|β−〉, (21)

fa∗ = f∗a and

W|0A〉|0x〉|vy〉 = |0A〉|vx〉|0y〉, W|0A〉|1x〉|vy〉 = |0A〉|1x〉|vy〉, (22)
W|1A〉|0x〉|vy〉 = |1A〉|0x〉|vy〉, W|1A〉|1x〉|vy〉 = |1A〉|vx〉|1y〉. (23)

The state (10) used for control measurements then takes the form

|ψ(1)
BAE〉 =

1√
2
|1B〉|0A〉|α+〉 +

1√
2
|0B〉 (f |vA〉|1x〉|0y〉 + a|1A〉|1x〉|vy〉) . (24)

The average loss rate observed in control measurements is related to coefficient f as

pL =
1
2

|f |2 (25)

and Eve is now able to fine-tune induced losses by an appropriate selection of
this coupling parameter. However, the above capability does not come without
a price. Alice’s encoding is still effectively applied to the x register when the
system state is observed at the CSWAP-CU cross-section. But this time information
encoding does not transform |β+〉 into |β−〉 as in (13) but instead into the state

|βz〉 = (−a|1x〉|vy〉 + f |vx〉|0y〉) . (26)
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Fig. 7. Eve’s information gain as a function of the average loss rate

so the information-encoded states take the form

ν = 0 |ξ0〉 =
1√
2

(|1B〉|0A〉|α+〉 + |0B〉|1A〉|β+〉) , (27a)

ν = 1 |ξ1〉 =
1√
2

(|1B〉|0A〉|α+〉 + |0B〉|1A〉|βz〉) , (27b)

Consequently, disentangling W−1 = W† leads to states

|ε0〉 = W†|ξ0〉 =
1√
2

(|1B〉|0A〉|vx〉|0y〉 + |0B〉|1A〉|vx〉|0y〉) , (28a)

|ε1〉 = W†|ξ1〉, (28b)

and Eve’s information gain is determined by the distinguishability of states

ρ0 = TrBA (|ε0〉〈ε0|) = |vx〉|0y〉〈vx|〈0y|, (29)

ρ1 = TrBA

(W†|ε1〉〈ε1|W
)
. (30)

Figure 7 presents Eve’s information gain for the two policies of total induced
loss reduction. A key “Zhang” denotes the information gain when the losses are
reduced by the plain skipping of protocol cycles. The curve marked as “PZ” illus-
trates the same quantity computed with the introduced technique and obtained
for real-valued coefficient f . The improvement ΔI = IPZ − IZhang expressed in
bits does not first appear to be impressive as it does not exceed ΔImax = 0.1 bit.
However, the ratio of the additional eavesdropped information to the one received
with the traditional technique better exhibits the strength of the contribution.
As the graph illustrates, the new way of eavesdropping can be almost 80 % bet-
ter than methods proposed so far. The other features of the new method remain
unchanged compared to Zhang’s method. Numerical simulations have shown
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that maximal information gain is obtained for a = f = 1/
√

2 i.e., for values
hard encoded in Zhang’s circuit. At the same time, the maximal loss ratio is
observed for these coupling constants.

4 Conclusion

The entangling transformation, parametrized by the induced loss ratio, is pro-
posed. In the new method, the eavesdropper’s information gain exceeds val-
ues offered by other methods. The other key properties of the attack remain
the same. The proposed method significantly improves efficiency when attack is
operated in low loss regime. It follows, that instead of skipping some protocol
cycles, a better policy based on the modification of the entangling transformation
parameters should be used to fine tune induced losses.
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