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Abstract. This paper examines the impact of the degree of self-
similarity on the selected AQM mechanisms. During the tests we ana-
lyzed the length of the queue, the number of rejected packets and waiting
times in queues. We use fractional Gaussian noise as a self-similar traffic
source. The quantitative analysis is based on simulation.
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1 Introduction

The development of the Internet is partially based on new solutions for traffic con-
trol to improve the Quality of Service (QoS) provided at the network layer. Among
others, the studies are related to real-time applications such as Voice over IP or
Video on Demand. To ensure QoS, the Internet Engineering Task Force (IETF)
has proposed Integrated Services (IntServ) and Differentiated Services (DiffServ)
architectures. They include a number of mechanisms, in particular for queue man-
agement in routers and the efficiency of the TCP protocol depends largely on
them. Queue management may be passive or active. In passive solutions, pack-
ets coming to a buffer are rejected only if there is no space in the buffer to store
them, hence the senders have no earlier warning on the danger of the increasing
congestion and all packets coming during saturation of the buffer are lost.

To enhance the throughput and fairness of a link sharing, also to eliminate
the synchronization, the IETF recommends active algorithms of buffer manage-
ment (Active Queue Management, AQM) [1]. They incorporate mechanisms of
preventive packet dropping already when there is still place to store packets,
this way advertising that the queue is increasing and the danger of congestion
is ahead. The packets are dropped randomly, hence only certain users are noti-
fied and the global synchronization of connections is avoided. The probability of
packet rejection is increasing with the level of congestion.
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The basic active queue management algorithm is Random Early Detection
(RED) algorithm. It was primarily proposed in 1993 by Sally Floyd and Van
Jacobson [2]. Its performance is based on a drop function giving probability that
a packet is rejected. The argument avg of this function is a weighted moving
average queue length determined at arrival of a packet:

avg = (1 − wq)avg′ + wqq

where q is the current queue length, avg′ is the previous value of avg and wq is
a weight parameter, typically wq << 1, thus avg varies much more slowly than q.
Therefore avg indicates long-term changes of q. If avg < Minth, all packets are
admitted. If Minth < avg < Maxth, then dropping probability p is increasing
linearly:

‘p = pmax
avg − Minth

Maxth − Minth
.

The value pmax corresponds to a probability of packet rejecting at avg = Maxth.
If avg > Maxth then all packets are dropped. Dropping probability p is thus
dependent on network load.

Efficient operation of the RED mechanism depends on the proper selection of
its parameters. There were several works on the impact of various parameters on
the RED performance [3] and many variants of RED mechanism were developed to
improve its performance [4–6]. They may be classified according to the dropping
packet function and according to the parameters of the algorithm. Section 2 briefly
reviews the modifications of the RED mechanism studied in this article.

Research related to the Internet traffic aims to provide a better understanding
of the modern Internet, inter alia, by presenting the current characteristics of
Internet traffic based on a large number of experimental data and introducing
the internet traffic models. The understanding of the traffic nature of the modern
Internet is important to the Internet community. It supports optimization and
development of protocols and network devices, improves the network applications
security and the protection of network users.

Measurements and statistical analysis (performed already in the 90s) of
packet network traffic show that this traffic displays a complex statistical nature
including self-similarity, long-range dependence and burstiness [7–10].

Self-similarity of a process means that the change of time scale does not
influence the statistical characteristics of the process. It results in long-distance
auto-correlation and makes possible the occurrence of very long periods of high
(or low) traffic intensity. These features have a great impact on a network per-
formance [11]. They enlarge mean queue lengths at buffers and increase the
probability of packet loss, deteriorating this way the quality of services provided
by a network.

In consequence, it is needed to propose new or to adapt known types of
stochastic processes able to model these negative phenomena in network traf-
fic. Several models have been introduced to imitate self-similar processes in
the network traffic. They use fractional Brownian Motion, chaotic maps, frac-
tional Autoregressive Integrated Moving Average (fARIMA), wavelets and mul-
tifractals, and processes based on Markov chains: SSMP (Special Semi-Markov
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Process), MMPP (Markov-Modulated Poisson Process) [12], HMM (Hidden
Markov Model) [13]. Section 3 briefly describes the self-similar traffic source used
in this article.

2 Our Modifications of the RED Mechanism

Our previous works [14–16] presented a study of the influence of RED modifica-
tions on its performance in the presence of self-similar traffic.

In classic RED and its variations described in the literature a packet to be
dropped is taken usually from the end of the queue. As Sally Floyd wrote: “when
RED is working right, the average queue size should be small, and it shouldn’t
make too much difference one way or another whether you drop a packet at the
front of the queue or at the tail”. Our article [14] reconsiders the problem of
choosing tail or front packets in presence of self-similar traffic.

It was shown that in the case of light non-self-similar traffic the obtained
results confirmed the opinion of S. Floyd. If the mean queue length is relatively
low, the influence of dropping scheme on queueing time is negligible: the intro-
duction of drop-front strategy gives less then 1% shorter mean queueing time. In
the case of heavy traffic, drop from front strategy gives two times shorter mean
queueing times. However, when the Poisson traffic is replaced by self-similar one
with the same intensity and the same parameters of RED are preserved, the
length of the queue increases and the influence of the dropping scheme is more
visible: drop from front strategy reduces mean queueing time by about 16% even
in the case of light load. This fact confirms the advantage of drop from front
strategy if the traffic exhibits the self-similarity.

In [15] we investigated the influence of the self-similarity on the non-linear
packet dropping function in a special case of NLRED queues. In the NLRED
mechanism the linear packet dropping function is usually replaced by a quadratic
function. We introduced a linear combination of independent polynomials of
3rd degree:

p(x, a1, a2, pmax) =

⎧
⎨

⎩

0 for x < Minth

ϕ0(x) + a1ϕ1(x) + a2ϕ2(x) for Minth ≤ x ≤ Maxth

1 for x > Maxth

where the set of basis function is defined as follows:

ϕ0(x) = pmax
x − Minth

Maxth − Minth
,

ϕ1(x) = (x − Minth)(Maxth − x),
ϕ2(x) = (x − Minth)2(Maxth − x).

The process of finding the best values of pmax, a1 and a2 for a given type of traffic
may be considered as optimization problem in 3-dimensional space. The exper-
imental results show the existence of one optimal set of values of parameters;
self-similarity of network traffic and traffic load have no influence on the choice
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of the optimal dropping packet function. The results obtained for this optimal
set of parameter values demonstrate that the mean waiting time is two and half
times shorter compared to the RED mechanism in the case of non-self-similar
traffic and it is four times shorter in the case of self-similar traffic.

Then in [16] we investigated the impact of the way how the weighted moving
average is defined on the performance of the RED mechanism in the presence of
self-similar traffic. The proposed approach, named REDwM, is an extension of
RED where the average queue length A(n) at a moment n is given by the first
order difference equation

A(n) = a1A(n − 1) + a2A(n − 2) + . . . + akA(n − k)
+ b0Q(n) + b1Q(n − 1) + . . . + bmQ(n − m)

where aj (j = 1, . . . , k) and bi (i = 0, . . . ,m) are constant, A(l) is the average
queue length at the l-th moment of time, and Q(l) is the current length of the
packet queue at the l-th moment; aj and bi are subject to constraints:

k∑

j=1

aj +
m∑

i=0

bi = 1 ∧ aj ≥ 0 ∧ bi ≥ 0.

The optimal values of equation coefficients were found during minimization
of the score function. The improvements, following numerical experiments, are
over 5% if we refer to results given by the classic RED approach (for the assumed
score function based on the mean waiting time).

The improvements of the RED mechanism described above may be combined
making NLREDwM mechanism. The primary goal of this article is to study its
performance.

3 Self-Similar Traffic Source

Previously in [14–16] we used the SSMP markovian traffic source to represent the
self-similar traffic. Such Markov based model can generate a self-similar traffic
over a finite number of time scales. Here we use fractional Gaussian noise which
is an exactly self-similar traffic source.

Fractional Gaussian noise (fGn) has been proposed in [17] as a model for
the long-range dependence postulated to occur in a variety of hydrological and
geophysical time series. Nowadays, fGn is one of the most commonly used self-
similar processes in network performance evaluation [18] and the only stationary
Gaussian process being exactly self-similar.

The autocorrelation function of fGn process [7]

ρ(m)(k) = ρ(k) =
1
2

[
(k + 1)2H − 2k2H + (k − 1)2H

]

assures second-order self-similarity.
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Fig. 1. Maximum and minimum difference between assumed and estimated Hurst
parameter

The synthetic generation of sample paths (traces) of self-similar processes is
an important problem [18]. In this paper we use a fast algorithm for generating
approximate sample paths for a fGn process, first introduced in [19].

The Hurst parameter H characterizes a process in terms of the degree of
self-similarity, the degree increases with the increase of H. Thge value H ≤ 0.5
denotes the lack of long-range dependence, but the process is still self-similar,
[20]. We have generated the sample traces with the Hurst parameter with the
range of 0.5 to 0.95. After each trace generation, the parameter was estimated
with the use of aggregated variance method [21]. Table 1 presents results of this
estimation for 10 generated traces with the Hurst parameter assumed to be equal
to 0.7. These results show that the assumed and estimated Hurst parameters
are not the same. This situation repeated for each value of Hurst parameter
(see Fig. 1).

Table 1. Estimated Hurst parameters obtained for sample fGn traces generated for
assumed Hurst parameter H = 0.7

Trace number Estimated Hurst parameter Trace number Estimated Hurst parameter

1 0.7279822 6 0.73197

2 0.7299411 7 0.7311628

3 0.7288566 8 0.7291909

4 0.731594 9 0.7290085

5 0.7313482 10 0.7284157
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Table 2. FIFO queue

Hurst
parameter

Mean queue
length

Mean waiting
time

Rejected packets

Tail drop 0.50 299.099 119.380 249520 49.90 %

Front drop 0.50 299.089 119.223 249494 49.89 %

Tail drop 0.70 298.118 119.158 249879 49.97 %

Front drop 0.70 298.132 119.118 250034 50.01 %

Tail drop 0.80 296.878 118.883 250354 50.07 %

Front drop 0.80 296.870 118.772 250383 50.08 %

Tail drop 0.90 248.553 102.061 256587 51.32 %

Front drop 0.90 247.848 101.399 255954 51.19 %

fGn generator usually generates the traffic with a slightly greater Hurst para-
meter. The difference between assumed and estimated Hurst parameter decreases
with the increase of the value of Hurst parameter. For our purpose we chose the
samples with the smallest difference.

4 Obtained Results

The simulation model of an appropriate AQM mechanism was prepared with
the use of SimPy. SimPy is a process-based discrete-event simulation frame-
work based on the language Python. Its event dispatcher is based on Python’s
generators [22]. SimPy is released under the MIT License (free software license
originating at the Massachusetts Institute of Technology).

We investigated the influence of combination of modifications described in
Sect. 2 on RED performance. We also studied the impact of the degree of self-
similarity on the examined AQM mechanisms. During the tests we analyzed the
following parameters of the transmission with AQM: the length of the queue,
queue waiting times and the number of rejected packets. The service time rep-
resented the time of a packet treatment and dispatching. The input process,
following fGn was based on descrete time slots (1 or 0 arrivals in a time slot),
the average interarrival time was 2 time slots. The size of this time slot was
our symbolic time unit presented in figures. The service time was geometrically
distributed with the average of 4 time slots. That means a heavy charge, leading
to the link saturation, as our goal was to study the mechanisms performance at
high load intervals. The type of the distributions and their mean values were the
same for all Hurst parameters.

Table 2 shows the results obtained for the FIFO queue without any AQM
mechanism. The introduction of drop from front strategy gives shorter mean
waiting time compared to drop tail strategy. Additionally, an increase in the
degree of self-similarity causes an increase in number of rejected packets. The
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Fig. 2. FIFO queue – drop from front, waiting time distribution (top), fluctuations of
queue length (bottom), Hurst parameter H = 0.90

reason of it is bursty nature of self-similar traffic. Figure 2 shows fluctuations of
queue length in the case of H = 0.9.

The same results were obtained in case of the RED queue (see Table 3). The
RED parameters were: buffer size 300 packets, threshold values Minth = 100
and Maxth = 200, pmax = 0.1, w = 0.02. We distinguish packets rejected when
RED starts dropping packets and packets rejected when the walking average of
the queue is at the maximum threshold. Table 3 shows that majority of packets
were rejected when the average is at the maximum threshold. The number of
packets rejected because of reaching the maximum threshold increased with the
increase of Hurst parameter.

Tables 4 and 5 show the results obtained for two sets of parameter values of
our NLRED mechanism (described in Sect. 2). The first set of values of parame-
ters (Table 4) refers to the case with the minimal value of average waiting time
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Table 3. RED queue

Hurst
parameter

Mean queue
length

Mean
waiting
time

No. of rejected packets

≤ Maxth > Maxth

Tail drop 050 199.801 79.865 27616 5.52 % 222436 44.48 %

Front drop 050 199.841 79.477 27083 5.41 % 222318 44.46 %

Tail drop 070 198.549 79.485 26948 5.38 % 223461 44.69 %

Front drop 070 198.524 79.079 27230 5.44 % 222519 44.50 %

Tail drop 080 196.941 78.473 26805 5.36 % 222453 44.49 %

Front drop 080 196.864 78.604 26491 5.29 % 223819 44.76 %

Tail drop 090 158.818 66.119 19108 3.82 % 240991 48.19 %

Front drop 090 158.541 65.797 19487 3.89 % 240405 48.08 %

at the expense of the number of rejected packets (the best case). The second
set (Table 5) refers to the case with the maximal value of average waiting time
(the worst case). The results obtained for the worst case resemble those obtained
for the classical RED mechanism. In the best case all packets are rejected when
RED starts dropping packets. In this case the mean waiting time is 1.77 times
shorter compared to the RED mechanism (in the case of H = 0.9). The results
presented in both tables show the impact of degree of self-similarity on mean
queue length, mean waiting time and number of rejected packets. Figures 3 and
4 compare the waiting time distributions and queue length fluctuations (the best
case of NLRED) for non-self-similar traffic to the case of self-similar traffic with
H = 0.9.

Table 4. NLRED queue; a1 = 0.00042, a2 = −0.0000038, pmax = 0.855

Hurst
parameter

Mean queue
length

Mean waiting
time

No. of rejected packets

≤ Maxth > Maxth

Tail drop 050 112.3725 44.8316 249846 49.96 % 0

Front drop 050 112.4435 44.6774 249943 49.98 % 0

Tail drop 070 111.3998 44.6255 250865 50.17 % 0

Front drop 070 111.3741 44.2123 249685 49.93 % 0

Tail drop 080 109.9958 43.8370 249588 49.91 % 0

Front drop 080 109.9371 43.6606 249788 49.95 % 0

Tail drop 090 87.7811 36.8922 264244 52.84 % 0

Front drop 090 87.7484 37.0343 264662 52.93 % 0
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Table 5. NLRED queue; a1 = −0.00008, a2 = −0.0000008, pmax = 0.6

Hurst
parameter

Mean queue
length

Mean waiting
time

No. of rejected packets

≤ Maxth > Maxth

Tail drop 050 194.1852 77.8825 227407 45.48% 23477 4.69%

Front drop 050 194.1163 77.3081 227516 45.50% 22249 4.44%

Tail drop 070 191.3899 76.4370 201347 40.26% 48478 9.70%

Front drop 070 191.3007 76.2139 200608 40.12% 49243 9.85%

Tail drop 080 188.8292 75.4878 183403 36.68% 66689 13.34%

Front drop 080 188.8145 75.1376 184170 36.83% 65392 13.08%

Tail drop 090 152.5569 63.7271 143043 28.61% 117863 23.57%

Front drop 090 152.4339 63.4312 142710 28.54% 118333 23.67%

Table 6. NLREDwM mechanism; a1 = 0.00042, a2 = −0.0000038, pmax = 0.855

Hurst
parameter

Mean queue
length

Mean waiting
time

No. of rejected packets

≤ Maxth > Maxth

Tail drop 050 112.4056 44.8221 249713 49.94 % 0

Front drop 050 112.4650 44.8019 250599 50.12 % 0

Tail drop 070 111.3513 44.3102 249209 49.84 % 0

Front drop 070 111.3267 44.1467 249418 49.88 % 0

Tail drop 080 109.9675 43.7743 249306 49.86 % 0

Front drop 080 110.1168 43.7970 250160 50.03 % 0

Tail drop 090 87.5870 37.1751 264962 52.99 % 0

Front drop 090 87.4502 36.8666 264395 52.88 % 0

Table 7. NLREDwM mechanism; a1 = −0.00008, a2 = −0.0000008, pmax = 0.6

Hurst
parameter

Mean queue
length

Mean waiting
time

No. of rejected packets

≤ Maxth > Maxth

Tail drop 050 194.2196 77.5939 228135 45.63% 21802 4.36%

Front drop 050 194.1596 77.3485 226814 45.36% 23049 4.61%

Tail drop 070 191.4063 76.5439 201466 40.29% 48687 9.74%

Front drop 070 191.4217 76.4816 201918 40.38% 48654 9.73%

Tail drop 080 188.8828 75.3979 184848 36.97% 64876 12.98%

Front drop 080 188.8172 75.1325 184379 36.88% 65160 13.03%

Tail drop 090 152.4997 63.7525 141616 28.32% 119465 23.89%

Front drop 090 152.3294 63.4188 142388 28.48% 118311 23.66%
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Fig. 3. NLRED – tail drop, waiting time distribution (top), fluctuations of queue length
(bottom), H = 0.50, a1 = 0.00042, a2 = −0.0000038, pmax = 0.855

Tables 6 and 7 show the results obtained for NLREDwM mechanism (best and
worse case), which is a combination of our NLRED and REDwM mechanisms
(described in Sect. 2). The introduction of modified weighted moving average
function gives about 0.1% of changes compared to NLRED. This improvement
increases with the increase of Hurst parameter.

5 Conclusions

The article confirms the important impact of the degree of self-similarity
(expressed in terms of Hurst parameter) on the following parameters of the
transmission with AQM: the length of the queue, queue waiting times and the
number of rejected packets. We discuss the problem of choosing the optimal
shape of dropping packet function for NLRED algorithm and at the same time
investigate the influence of the weighted moving average on packet waiting time
reduction for this NLRED mechanism.
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Fig. 4. NLRED – tail drop, waiting time distribution (top), fluctuations of queue length
(bottom), H = 0.90, a1 = 0.00042, a2 = −0.0000038, pmax = 0.855

Drop from front strategy, when applied in place of tail drop one, results
in reduction of packet waiting time in examined AQM mechanism. Obtained
results are closely related to the level of self-similarity. Hence the application of
presented AQM mechanism may be recommended for bursty traffic connections
with real-time requirements.
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8. Domański, A., Domańska, J., Czachórski, T.: The impact of self-similarity on traffic
shaping in wireless LAN. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.)
NEW2AN 2008. LNCS, vol. 5174, pp. 156–168. Springer, Heidelberg (2008)
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