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Abstract We study an optimal AK-like model of capital accumulation and growth
in the presence of a negative environmental externality in the tradition of Stokey (Int
Econ Rev 39(1):1–31, 1998). Both production and consumption activities generate
polluting waste. The economy exerts a recycling effort to reduce the stock of waste.
Recycling also generates income, which is fully devoted to capital accumulation.
The whole problem amounts to choosing the optimal control paths for consumption
and recycling to maximize a social welfare function that notably includes the
waste stock and disutility from the recycling effort. We provide a mathematical
analysis of both the asymptotic behavior of the optimal trajectories and the shape of
transition dynamics. Numerical exercises are performed to illustrate the analysis and
to highlight some of the economic implications of the model. The results suggest
that when recycling acts as an income generator, (1) a contraction of both the
consumption and capital stock is observed in the long run after an expansion phase;
(2) whether polluting waste is predominantly due to production or consumption,
greater consumption and lower capital stock are obtained in the long run compared
with the situation when recycling does not create additional income; (3) greater
recycling effort and lower stock of waste are resulted in the long run.
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1 Introduction

Since the Meadows report (1972), economic research on the limits of the contem-
poraneous growth regime and the design of optimal sustainable policies has been
central to many agendas. While the very first attempts along these investigation
lines have been directed at the issue of non-renewable resources (see for example,
Stiglitz 1974, or Hartwick 1977), substantial efforts have been devoted to studying
the impact of pollution on growth and social welfare, especially since the ‘90s.
A fundamental theoretical contribution to this topic is that of Stokey (1998).
Within various optimal growth settings, Stokey studied the implications of pollution
externalities for optimal capital accumulation (and therefore for optimal growth).
A remarkable outcome of this study is the analysis of the AK economy with and
without pollution externalities. In the latter case, the economy optimally starts
on exponentially growing balanced growth paths with strictly positive growth
rates. When pollution produces negative welfare losses, the economy no longer
follows these virtuous paths; rather, it converges to optimal steady states (therefore,
with zero growth). In other words, pollution drastically limits (optimal) growth.
Several authors have extended Stokey (1998)’s framework to account for more
technological or ecological ingredients; Boucekkine et al. (2013) is one of the most
recent extensions. When pollution is irreversible (that is, when the environmental
absorption capacity irreversibly declines above a certain pollution stock level), these
authors show that the optimal relationship between income and pollution can take a
much richer set of forms, although optimal exponential growth invariably vanishes
under pollution externalities.

This paper incorporates polluting waste and recycling into this type of optimal
relationship analysis. More precisely, we are interested in polluting waste for which
natural absorption takes extremely long. A characteristic example of such pollution
is that of plastic waste, that is, bags, bottles, etc., which can be absorbed by the
environment only after four to six centuries. Because of this extremely long time,
no natural amenities can be reasonably assumed, and recycling efforts are required
to avoid massive accumulation with harmful consequences in the long run. In the
case of plastic waste, it seems that insufficient efforts have been deployed to prevent
such a scenario, as evidenced by the emergence of several plastic vortexes in the
oceans (Kaiser 2010). Jambeck et al. (2015) calculated that 275 million metric tons
of plastic was generated in 192 coastal countries in 2010, with 4.8–12.7 million
metric tons entering the ocean. In spite of the significant development of recycling
and energy recovery activities, post-consumer plastic waste predominantly goes to
landfill (PlasticsEurope 2015). Jambeck et al. (2015) consider that without waste
management infrastructure improvements, the cumulative quantity of plastic waste
available to enter the ocean from land is predicted to reach 80 million metric tons
by 2025.

Several authors have already modeled waste generation and recycling activities
within economic frameworks. Of course, these models are largely found in the
industrial organization literature (see for example, Martin 1982, or Grant 1999).
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Nonetheless, waste and recycling are increasingly being examined from a more
macroeconomic perspective. The recent macroeconomic literature contains studies
of the impact of recycling on aggregate fluctuations (see De Beir et al. 2010, for
example). There have also been several attempts to incorporate waste and recycling
in a sustainability analysis, as we are doing in our paper, most often in decentralized
equilibrium frameworks with technological progress (see for example, the recent
paper by Fagnart and Germain 2011).

Below we provide a first-best central planner analysis in line with Stokey’s
seminal paper incorporating waste (both from consumption and production) and
recycling. Perhaps the work that is most closely related to ours is that of Lusky
(1976). Lusky (1976) also solved a central planner problem regarding waste and
recycling. However, our problem differs from his along three essential dimensions.
First, Lusky (1976) has strictly concave production functions with labor as a unique
input, whereas capital accumulation is an essential feature of our model and we use
an AK production technology as in Stokey (1998). Second, recycling is modeled
differently in Lusky (1976): recycling produces a consumable good (so it increases
consumption possibilities), while in our model recycling output goes to capital
accumulation given that our focus is sustainable growth via capital accumulation,
to which recycling contributes. Third, the social welfare functions are not the same.
In particular, while in both papers waste produces negative externalities, recycling
increases instantaneous utility in Lusky (1976) via the recycled consumption good
whereas the recycling effort supposes a strictly concave welfare loss in our set-up.

The problem we consider is an infinite time horizon problem with two control
variables (consumption and recycling effort) and two states (capital and stock of
waste). The state equations are linear mainly due to the linearity of the production
function and of waste generation processes. Using a version of the maximum
principle, we can extract the (necessary and sufficient) optimality conditions, and
study the asymptotic properties of the optimal paths. The economic implications of
this analysis are then evaluated in light of the sustainability literature à la Stokey.

Our results suggest that when recycling acts as an income generator, (1) a
contraction of both the consumption and capital stock is observed in the long
run after an expansion phase; (2) whether polluting waste is predominantly due
to production or consumption, greater consumption and lower capital stock are
obtained in the long run compared with the situation when recycling does not create
additional income; (3) greater recycling effort and lower stock of waste are resulted
in the long run.

The paper is organized as follows. Section 2 gives the specifications of our central
planner problem with waste and recycling. Section 3 analyzes the mathematical
properties of the model. In Section 4, we perform some quantitative exercises and
we bring out the main lessons we can draw from the point of view of sustainability.
Section 5 concludes the paper.
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2 Model

Assume that the social planner owns a stock of productive capital that provides
a continuous flow of revenue, aK(t), where K.t/ � 0 denotes the capital stock
at time t, and a > 0, the constant marginal unit of revenue generated by the
productive capital stock. The production function is linear in the stock of capital,
as in Stokey (1998) and Boucekkine et al. (2013). The flow of revenue allows for
a certain consumption level, c.t/ > 0. The revenue generation process and the
consumption decisions are both assumed to generate polluting waste, w.t/ � 0,
where w.t/ D ˛aK.t/ C ˇc.t/, ˛; ˇ > 0 being the marginal wasting impact of the
revenue generation process and the current consumption, respectively.

Though most of the polluting waste is generally related to productive processes
(Klassen 2001), it is not clear whether the consumption process generates more
waste than the revenue generation process. In the case of the plastics industry,
polluting waste is predominant in either process depending on the market segment
and the polymer type (PlasticsEurope 2015). In this regard, we assume that ˛ >

<
ˇ. By

construction (no capital accumulation), waste is generated only by consumption in
Lusky (1976). The same is assumed in the macroeconomic literature in line with De
Beir et al. (2010), which relies heavily on the related industrial organization (e.g.,
Martin 1982): waste produced from consumption is used one period ahead as an
input in the recycling sector. In this paper, waste can come from both consumption
and production (or capital utilization), and some of the essential properties of
optimal paths may depend on whether ˛ >

<
ˇ.

To reduce the stock of polluting waste, denoted by W.t/ � 0, the social
planner may invest in recycling efforts v.t/ � 0 over time. We assume that the
waste generating processes and recycling operations are mutually independent so
that the recycling efforts are non-proportional to the waste emissions (e.g., El
Ouardighi et al. 2015). This assumption allows for unbounded recycling efforts,
i.e., v.t/ <

>
w.t/, to account for the possibility of reduction of past waste emissions.

The environmental absorption capacity of polluting waste is approximated by zero.
This approximation is consistent with the extremely long time needed for natural
absorption of plastic waste. In economic terms, it implies that the social planner
cannot benefit from any natural abatement of pollution waste.1

Finally, a fixed proportion of recycled waste is supposed to generate additional
revenues, 'v(t), and therefore to positively influence the capital accumulation
process, 1 � ' � 0 being the marginal proportion of the recycled waste that adds
to capital accumulation. An illustration of this assumption is related to the plastics
industry, where 60 million tons of plastics diverted from landfills are equivalent to
over 60 billion euros (PlasticsEurope 2015).

1This assumption is optimistic because accumulation of polluting waste can lead to negative
environmental absorption capacity that might create additional negative externalities (see El
Ouardighi et al. 2014).
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In more elaborated industrial organization models of recycling, the recycling
sector may produce profits (as in Martin 1982), which are later redistributed to the
owners. In our central planner setting, the idea is pretty much the same: recycling
not only decreases the level of polluting waste, but it also generates an income,
which contributes to capital accumulation. Both functions of recycling help alleviate
the sustainability problem faced by the economy. Only abatement plays this role in
Stokey (1998) for example. If ' D 0, the income generation channel of recycling
is shut down, and we are closer to Stokey’s framework regarding the impact of
pollution control instruments.

Based on these assumptions, the endogenous capital accumulation process is
described as follows:

:

K D aK.t/ � c.t/ C 'v.t/; K.0/ D K0 > 0

where a positive difference between the total revenues from capital and recycled
waste, and current consumption results in investment in productive capital, while
a negative difference leads to disinvestment. The initial endowment in productive
capital is given by K0 > 0.

The dynamics of polluting waste are given by:

:

W D ˛aK.t/ C ˇc.t/ � v.t/; W.0/ D W0 > 0

where the recycling efforts are such that
:

W >
<

0, 8t > 0, for a given initial stock of
waste,W0 > 0.

Regarding the objective function of the social planner, we make the following
assumptions. At each period, the instantaneous social utility is given as the differ-
ence between the utility drawn from current consumption and the costs incurred
from the stock of waste and the recycling efforts, respectively. The instantaneous
utility from current consumption is a concave function, that is, ln c(t). In addition,
the stock of waste entails negative externalities such as environmental pollution
and destruction of the biomass (e.g., Barnes 2002). These negative externalities are
valued as an increasing convex function of the stock of waste, that is, eW(t)2/2,
e > 0. Lastly, the recycling effort generates an increasing quadratic cost, denoted
by fv(t)2/2, f > 0. Without loss of generality, we set f D 1.

Denoting the discounting rate by r > 0, and assuming an infinite planning
horizon, the social planner’s optimal control problem is:

U D
1Z

0

e�rt

 
ln c.t/ � eW.t/2

2
� v.t/2

2

!
dt (1)
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subject to:

:

K D aK.t/ � c.t/ C 'v.t/; K.0/ D K0 > 0 (2)

:

W D ˛aK.t/ C ˇc.t/ � v.t/; W.0/ D W0 > 0 (3)

As mentioned in the introduction, our social welfare function differs from Lusky
(1976)’s in that it includes a welfare loss due to the recycling effort and has
no additional (recycled) consumption term. Note that we consider a pollution
(via aggregate waste) negative externality while the macroeconomic literature of
recycling and fluctuations does not (see for example De Beir et al. 2010). The
same comparison holds with the ecological sustainability literature (see Fagnart and
Germain 2011).

We now come to the mathematical resolution of the optimal control problem
considered. We limit our presentation to the case of an interior solution.

3 Analysis

Skipping the time index for convenience, the current-value Hamiltonian is:

H D ln c � eW2

2
� v2

2
C � .aK � c C 'v/ C � .˛aK C ˇc � v/ (4)

where � � �.t/ and � � �.t/ are costate variables, j D 1; 2, that evolve according
to:

:

� D .r � a/ � � �˛a (5)

:
� D r� C eW (6)

Necessary conditions for optimality are:

Hc D 1

c
� � C �ˇ D 0 ) c D 1

� � �ˇ
(7)

Hv D �v C �' � � D 0 ) v D �' � � (8)
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Because the stock of polluting waste has a negative marginal influence on the social
planner’s objective function, its implicit price should be non-positive, i.e., � � 0.
Along with � > 0, this should result in strictly positive consumption and recycling
effort respectively in (7) and (8).

The Legendre-Clebsch condition of concavity of the Hamiltonian with respect to
the control variables is satisfied, as the Hessian:

�
Hcc Hcv

Hvc Hvv

�
D
��c�2 0

0 �1

�

is negative definite. This guarantees a maximum of the Hamiltonian.

Lemma 1 The necessary conditions are sufficient for optimality.
Plugging the respective expressions of c and v from (7) and (8) in (4) results in

the maximized Hamiltonian:

H0 D ln

�
1

� � �ˇ

�
� 1 C .�' � �/2

2
C .� C �˛/ aK � eW2

2

from which the Hessian matrix:

�
HKK HKW

HWK HWW

�
D
�

0 0

0 �e

�

is negative semi-definite. This ensures that the necessary conditions are also
sufficient for optimality. �

Plugging the value of c and v from (7) and (8) in (2) and (3), respectively, the
equations:

:

K D aK � 1

� � �ˇ
C '.�' � �/ (9)

:

W D ˛aK C ˇ

� � �ˇ
� �' C � (10)

along with (5) and (6), form the canonical system in the state-costate space.
We now prove that as in Stokey (1998), the dynamic system will not converge

to a balanced growth path despite the assumed impacts of recycling on the stock of
pollution and on income generation. We first show the existence of steady states and
then assess stability.
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Proposition 1 In the case of a patient social planner, i.e., r < a, and ˇ' < 1, the
steady state is unique and given by:

�
KS WS cS vS

�T D
 

.1 � ˇ'/
p

.1 C '˛/ a � r

a
p

.1 C ˛'/ .˛ C ˇ/ ˆ

� r .a � r/
p

˛ C ˇ

e
p

.1 C '˛/ Œ.1 C '˛/ a � r� ˆ

�
s

.1 C '˛/ Œ.1 C '˛/ a � r�

.˛ C ˇ/ ˆ

�
s

.˛ C ˇ/ Œ.1 C '˛/ a � r�

.1 C '˛/ ˆ

!

(11)

where ˆ D Œa .˛ C ˇ/ � rˇ�, and the superscript ‘S’ stands for steady state.

Proof Equating the RHS of (9)-(10)-(5)-(6) to 0 and solving by identification and
substitution, we get:

�S D ˛a
p

˛ C ˇp
.1 C '˛/ Œ.1 C '˛/ a � r� ˆ

�S D � .a � r/
p

˛ C ˇp
.1 C '˛/ Œ.1 C '˛/ a � r� ˆ

and KS and WS as given in (11). Note that r < a implies that r < .1 C '˛/ a <

.˛ C ˇ/ a=ˇ, which allows for a feasible steady state stock of waste. Conversely,
for any r > a, the steady state stock of waste is not feasible. Plugging the above
expressions in (7) and (8), respectively, and simplifying, yields cS and vS in (11).

From (11), it can be shown that the limiting transversality conditions are satisfied
for the saddle-paths because:

lim
t 7!C1e�rt�.t/K.t/ D lim

t 7!C1

�
.1 � ˇ'/ ˛e�rt

.1 C '˛/ ˆ

�
D 0

lim
t 7!C1e�rt�.t/W.t/ D lim

t 7!C1

(
� r .˛ C ˇ/ .a � r/2e�rt

e .1 C '˛/ Œ.1 C '˛/ a � r� ˆ

)
D 0

This ensures the uniqueness of the globally optimal solution. �
In the case where r < a, and ˇ' < 1, a zero steady state is obtained which is not

optimal. The reason is the following. To be steady, zero waste and capital require



Optimal Growth with Polluting Waste and Recycling 117

zero recycling and consumption, which with respect to costate Eqs. (5) and (6),
implies that the corresponding costate variables must be zero as well. Substituting
zero costates into the optimality condition (7), we find that the optimal consumption
tends to infinity rather than to zero. Consequently, a zero waste and capital is steady
but not optimal. This indeed does not affect the results as they are derived for a
non-zero steady state.

From the canonical system (5)-(6)-(9)-(10), the isoclines of
:

K D 0 and
:

W D 0

are given by:

KŠˇ̌ :
KD0

D r .a � r/

aˆeWS
� ' Œ.1 C ˛'/ a � r� eWS

ra .a � r/
(12)

KŠˇ̌ :
WD0

D 1

˛a

�
Œ.1 C ˛'/ a � r� eWS

r .a � r/
� rˇ .a � r/

ˆeWS

�
(13)

Using (12)–(13) and (11), Fig. 1 describes the sensitivity of the state variables at the
steady state to the parameters.

From Fig. 1, the marginal wasting impact of both the revenue generation process
(˛) and the consumption process (ˇ) on the capital stock is negative. In contrast, the
influence of these processes on the stock of waste is different because an increase
in the marginal wasting impact of the revenue generation (consumption) process
results in less (more) waste stock. In contrast, an increase in the marginal impact of
the recycling effort on the capital accumulation process (') reduces both the capital
stock and the waste stock. Note that the influence of the discounting rate and the
marginal revenue coefficient on the stock of capital and of waste is similar to that of
the marginal polluting impact of revenue generation (˛) and the marginal impact of
the recycling effort on the capital accumulation process ('). The marginal revenue
coefficient (a) has a similar impact on the stock of capital and the stock of waste
as the marginal wasting impact of the consumption process (ˇ). Finally, a greater

Fig. 1 Sensitivity of the steady state to the parameter values



118 R. Boucekkine and F. El Ouardighi

cost coefficient of the waste stock (e) lowers the waste stock and does not affect the
capital stock, and vice-versa.

We now move to the stability analysis and investigate the structure of the
associated stable manifolds.

Proposition 2 The steady state exhibits a (local) two-dimensional stable manifold
if the social planner is moderately patient (i.e., r < .1 C '˛/ a), and a one-
dimensional stable manifold otherwise.

Proof To analyze the stability of the steady state, we compute the Jacobian matrix
of the canonical system (9)-(10)-(5)-(6), that is:

J D

2
66664

a 0 1

.��ˇ�/2 C '2 � ˇ

.��ˇ�/2 � '

˛a 0 � ˇ

.��ˇ�/2 � '
ˇ2

.��ˇ�/2 C 1

0 0 r � a �˛a
0 e 0 r

3
77775

Given that � and � are evaluated at their steady state value, we compute the
determinant:

jJj D ae

�
.1 C '˛/ Œ.1 C '˛/ a � r� C .˛ C ˇ/ ˆ

.� � ˇ�/2

	

D 2ae .1 C '˛/ Œ.1 C '˛/ a � r�

which has a positive value for a moderately patient social planner (r < .1 C '˛/ a),
and negative otherwise. As shown in Dockner and Feichtinger (1991), a negative
determinant is a necessary and sufficient condition for the Jacobian matrix to
have one negative eigenvalue and either three positive eigenvalues or one positive
eigenvalue and two with positive real parts. In terms of dynamic behavior, this
corresponds to the case of a one-dimensional stable manifold.

In the case of a moderately patient social planner (r < .1 C '˛/ a), we use
Dockner’s formula (Dockner 1985) to determine the sum of the principal minors of
J of order 2 minus the squared discounting rate, that is:

‰ D �a .a � r/ � e

�
ˇ2

.� � ˇ�/2
C 1

�

D �a .a � r/ � e

�
ˇ2 .1 C '˛/ Œ.1 C '˛/ a � r�

.˛ C ˇ/ ˆ
C 1

�

The necessary and sufficient conditions that ensure that two eigenvalues have
negative real parts and two have positive real parts, which corresponds to the case
of a two-dimensional stable manifold, are jJj > 0 and ‰ < 0. The sign of � is
negative, which implies that a two-dimensional stable manifold (saddle-point) exists
in the case of a moderately patient social planner. �
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According to Proposition 2, if the social planner is relatively impatient, the zero
steady state cannot be reached from some or all initial states, which confirms that it
is not optimal. Conversely, if the social planner is moderately patient, the positive
saddle-point exists that can be reached. We may dig deeper in the analysis and draw
further properties of the optimal paths, in particular about the existence of oscillatory
transitions to the steady states. This gives a rough idea of the ability of the model to
generate non-monotonic optimal trajectories and fluctuations, a central issue in the
recent recycling-related macroeconomic literature (De Beir et al. 2010).

Proposition 3 Assuming a patient social planner (i.e., r < a), for any given a, e,
and ˇ' < 1, there exists a threshold Q̨ > 0 such that for any ˛ > Q̨ , the convergence
to the steady state is oscillatory.

Proof To determine whether the optimal path is monotonic or follows cyclical
motions, we compute the expression (Dockner 1985):

� D ‰2 � 4 jJj D
�

a .a � r/ C e

�
ˇ2 .1 C '˛/ Œ.1 C '˛/ a � r�

.˛ C ˇ/ ˆ
C 1

�	 2

�8ae .1 C '˛/ Œ.1 C '˛/ a � r�

A positive (negative) sign of ˝ indicates that convergence to the saddle-point is
monotonic (spiraling) near the steady state. Because the sign of ˝ is ambiguous, a
limit value analysis highlights the role played by a, e, ', ˛ and ˇ in the sign of ˝

for a given r < a (Table 1).
The results suggest that ˝ is generally positive, which implies that convergence

to the saddle-point is monotonic near the steady state in general. However, given
that lim

˛ 7!0C
� > 0 and lim

˛ 7!1� D �1, it can be shown that @�=@˛ < 0.

Therefore, we conclude that there exists a threshold Q̨ > 0 such that for any
˛ > Q̨ , we have � < 0. �

According to Proposition 3, if the social planner is patient, convergence to the
locally stable steady state is either monotonic or oscillatory, depending on the
magnitude of the wasting impact of the revenue generation process. That is, if the
wasting impact of the revenue generation process is excessively high, the optimal

Table 1 Limit value analysis

lim
a 7!0C

� D e2Œ˛.1Cˇ'/C2ˇ�
2

.˛Cˇ/
2 lim

a 7!1
� D 1

lim
e 7!0C

� D a2.a � r/2 lim
e 7!1

� D 1
lim

' 7!0C
� D a2.a � r/2 lim

' 7!.1=ˇ/
�

� D 1
lim

˛ 7!0C
� D Œa .a � r/ � 2e�2 lim

˛ 7!1
� D �1

lim
ˇ 7!0C

� D lim
ˇ 7!.1='/

�
� D a2.a � r/2 � 8˛'ae Œ.2 C ˛'/ a � r� � e Œ6a .a � r/ � e�
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policy follows a spiralling path which has the effect of reducing both the long run
stock of capital and stock of waste, as suggested in Fig. 1. Therefore, a monotonic
convergence is less detrimental to the capital stock but also more detrimental to the
environment than a spiralling convergence.

Proposition 4 The saddle paths of the control and state variables in the neighbor-
hood of the steady state are:

c.t/ D 1

�S � ˇ�S C .B1 � ˇB3/ e�1t C .B2 � ˇB4/ e�3t
(14)

v.t/ D '�S � �S C .'B1 � B3/ e�1t C .'B2 � B4/ e�3t (15)

K.t/ D KS C B5e�1t C B6e�3t (16)

W.t/ D WS C B7e�1t C B8e�3t (17)

where B1, : : : , B8 are constants of integration and �1; �3 < 0.

Proof The linear approximation of the system (5)-(6)-(9)-(10) around the steady
state is:

:

� D .r � a/ � � �˛a

:
� D r� C eW

:

K D aK C � � ˇ� � 2 .� � ˇ�/

.� � ˇ�/2
C '.�' � �/

:

W D ˛aK � ˇ Œ� � ˇ� � 2 .� � ˇ�/�

.� � ˇ�/2
� .�' � �/

Using Dockner’s formula (1985), the four eigenvalues associated with the Jacobian
matrix of the canonical system are:

1
3�4

2 D r

2
˙
s

r2

4
� ‰

2
˙ 1

2

q
‰2 � 4 jJj

D r

2
˙
s

r2

4
C 1

2

�
a .a � r/ C e

�
ˇ2 .1 C '˛/ Œ.1 C '˛/ a � r�

.˛ C ˇ/ ˆ
C 1

�	
˙

p
�

2

and �S and �S are given in the proof of Proposition 1. As expected, two eigenvalues,
�1 and �3, have a negative sign and two have a positive sign, �2 and �4. Choosing
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the negative roots for convergence, the time paths of the costate and state variables
are written as:

�.t/ D �S C B1e�1t C B2e�3t

�.t/ D �S C B3e�1t C B4e�3 t

K.t/ D KS C B5e�1t C B6e�3t

W.t/ D WS C B7e�1t C B8e�3t

These equations involve 10 unknowns (i.e., B1, : : : , B8,�(0), �(0)) that can be
solved with the 10 following equations, which are drawn from the above expressions
and the linearized versions of (5)-(6)-(9)-(10):

�.0/ D �S C B1 C B2

�.0/ D �S C B3 C B4

K0 D KS C B5 C B6

W0 D WS C B7 C B8

.r � a/ �S C .r � a � �1/ B1 C .r � a � �3/ B2 � ˛a
�
�S C B3 C B4

� D 0

r�S C .r � �1/ B3 C .r � �3/ B4 C e
�
WS C B7 C B8

� D 0

aKS � �S � ˇ�S � B1 � B2 C ˇ .B3 C B4/

.�S � ˇ�S/
2

C .a � �1/ B5 C .a � �3/ B6

C'


'
�
�S C B1 C B2

� � �S � B3 � B4

� D 0

˛a
�
KS C B5 C B6

�C ˇ


�S � ˇ�S � B1 � B2 C ˇ .B3 C B4/

�
.�S � ˇ�S/

2

�'
�
�S C B1 C B2

�C �S C B3 C B4 � �1B7 � �3B8 D 0

.r � a/2�S C
h
.r � a/2 � �2

1

i
B1 C

h
.r � a/2 � �2

3

i
B2

C˛a


.a � 2r/

�
�S C B3 C B4

� � e
�
WS C B7 C B8

�� D 0

r2�S C �
r2 � �1

2
�

B3 C �
r2 � �3

2
�

B4 C e


rWS C .r C �1/ B7 C .r C �3/ B8

� D 0
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This system of equations can be solved numerically. Finally, using (7), and (8) yields
(14), (15), (16), and (17).

4 Numerical Example

We now give a numerical example to suggest the economic insight that could be
gained from our model. To this end, we use the following parameter values (Table 2).

The parameter values in Table 2 reflect a configuration characterized by players’
relative patience with a discounting rate, r, similar to the market interest in normal
time (that is, 5 %), and lower than the marginal revenue from the productive capital
stock, a, which is set at an intermediate value (that is, 10 %). By varying parameters
˛, ˇ and ', we show that various structurally different solutions are possible. The
numerical solutions were computed with Maple 18.0.

The induced steady state values are reported in the following table (Table 3).
The main relationship to be investigated is that between the optimal stocks

of capital and pollution to uncover a possible environmental Kuznets curve as in
Stokey (1998) or Boucekkine et al. (2013). Regarding this relationship, the results
of our experiments are reported in Fig. 2 below. Several remarkable features can be
deduced from these figures.

The first result is that the relationship between capital (or income) and pollution
is non-monotonic, if recycling generates additional income (that is ' > 0). This
is true when production is more wasteful than consumption (Fig. 2a) and in the
opposite case (Fig. 2). In both cases, we observe that the stock of pollution decreases
while capital rises initially, but in the last stage of convergence to the steady state
both stocks go down. In contrast, also in both cases, the relationship is permanently
monotonic if recycling does not generate income (that is, ' D 0): the pollution stock
decreases to its steady state value whereas capital increases to its corresponding
stationary value. No turning point is observed in such cases.

Table 2 Parameter values r a ˛ ˇ ' e K0 W0

0.05 0.1 (0.5, 0.8) (0.5, 0.8) (0, 0.1) 1 5 5

Table 3 State and control steady state values under various configurations

Production more wasteful than
consumption˛ D 0:8; ˇ D 0:5

Consumption more wasteful than
production˛ D 0:5; ˇ D 0:8

Capital-improving
recycling' D 0:1

Capital-neutral
recycling' D 0

Capital-improving
recycling' D 0:1

Capital-neutral
recycling' D 0

KS 5.95880809 6.052275326 6.155758759 6.537204503
WS 0.03514723465 0.039333978962 0.0395379762 0.04249182928
cS 0.6774223934 0.6052275326 0.7025594235 0.8698354766
vS 0.815415844 0.7867957925 0.8698354766 0.8498365856
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Fig. 2 Phase-planes of stock of capital and stock of waste. (a) Production more wasteful than
consumption; (b) Consumption more wasteful than production

Fig. 3 Time paths of control variables (logarithmic time scale). (a) Consumption; (b) Recycling
effort

It is worth pointing out two interesting connected outcomes at this stage. First,
the kind of non-monotonicity we get is not of the environmental Kuznets curve
kind, which is therefore not the rule in our optimal recycling model. Second,
this non-monotonicity only arises when recycling generates additional income. To
understand these remarkable properties, it is useful to have a look at the optimal
control time paths. They are reported in Fig. 3.

In all the parametric configurations, optimal consumption starts at a relatively
low level, in contrast to recycling. We are therefore in a situation where both controls
act as substitutes. In our calibrated economy, priority is given to pollution control in
the short run to decrease the stock of polluting waste as quickly as possible. In the
transition to the steady states, consumption increases steadily to its corresponding
stationary value when recycling has no additional income (' D 0:1) or rises then
decreases to the steady state value when recycling does generate income (' > 0).



124 R. Boucekkine and F. El Ouardighi

Fig. 4 Overall social utility

Whatever the parameterization, recycling effort always starts at a high value and
follows an unambiguous monotonically decreasing path to its steady state value.

With these elements in hand, one can rationalize the optimal relationship between
income and pollution we have uncovered. When recycling generates income,
capital increases markedly in the initial stage of transitional dynamics because
recycling is highest at this stage, and income from recycling goes entirely to capital
accumulation. This significant increment in the stock of capital ends up boosting
production and therefore consumption (notably with respect to the case where
recycling does not generate income). In the medium term, consumption is quite
high while recycling drops sharply. In the last stage of the transitional dynamics,
the consumption level is still markedly higher than in the case ' D 0, while income
from recycling is much lower than in the initial stage of the transition dynamics
(because the amount recycled in also much lower). The conjunction of the two latter
forces pushes capital down in the ultimate adjustment stage given the law of motion
of capital (2), generating the turning point observed and described above.

Therefore, the non-monotonicity observed is mainly due to the timing of
optimal recycling, which massively takes place in the initial periods. The welfare
implications of such timing can be seen in Fig. 4, where the social welfare function
is computed for different time horizons. The initial sharp drop in social welfare is
due to the initial intense recycling period.

5 Conclusion

In this paper, we have studied the sustainability of a Stokey-inspired AK model, one
that considers a negative environmental externality that arises both from production
and consumption. Instead of the typical abatement technologies, we present novel
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recycling modelling where recycling also generates income that is fully devoted to
capital accumulation.

We have studied the qualitative properties of the resulting optimal control
problem, notably in terms of optimal asymptotic states, stability and transition.
We have also worked out a numerical example and got some highly interesting
economic results in comparison with the seminal framework of Stokey, both in terms
of the optimal pace of recycling and the relationship between income and pollution.

In particular, the role played by recycling as an income generator is crucial in the
sense that it gives rise to a contraction of both the consumption and capital stock in
the long run after an expansion phase. Whether polluting waste is predominantly due
to production or consumption, when recycling generates additional income, greater
consumption and lower capital stock are obtained in the long run compared with
the situation when recycling does not create additional income. In parallel, when
recycling generates additional income, greater recycling effort and lower stock of
waste are resulted in the long run than when recycling has no additional income.

Of course, this is just a preliminary investigation; further analyses involving
control-state constraints and alternative specifications within the same class of mod-
els along with alternative calibrations are needed to corroborate and complement
this study.
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