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Abstract Determining lot sizes is an essential step during the material requirements
planning phase influencing total production cost and total throughput time of a
production system. It is well-known that lot-sizing and scheduling decisions are
intertwined. Neglecting this relation, as it is done in the classical hierarchical
planning approach, leads to inefficient and sometimes infeasible plans. In this
work we compare different approaches for integrating the lot-sizing and the
scheduling decisions in multi-stage systems. We show their abilities and limitations
in describing relevant aspects of a production environment. By applying the models
to benchmark instances we analyze their computational behavior. The structural and
numerical comparisons show that there are considerable differences between the
approaches although all models aim to describe the same planning problem. The
results provide a guideline for selecting the right modeling approach for different
planning situations.

1 Introduction

In the recent years a trend towards integrating multiple levels of the classical
hierarchical and sequential planning concept of the production planning and control
systems into a single planning step can be observed. This trend results in a
demand for new modeling concepts that include lot-sizing as well as capacity
planning and scheduling decisions within the material requirements planning.
That means planning models are needed which respect the relations between raw
materials, intermediate items, subassemblies, and final products (given by the bill-
of-materials), capacity restrictions, and timing of production lots simultaneously.
Of course, the price to pay for the increased complexity and more detailed models
is that (1) the models are usually tailored to a specific situation and they are not
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general-purpose anymore, and (2) the computational effort to solve these models is
increasing despite the technological progress in hardware and software.

In this paper we have a more detailed look on the different model classes
discussed in the research literature regarding the aforementioned aspects of tailored
models and computational effort. In particular, we investigate models for the capac-
itated multi-level lot-sizing and scheduling problem and analyze the underlying
assumptions and the limitations of those models and their computational properties
using a set of benchmark instances.

The main classification of lot-sizing models for dynamic deterministic demand is
related to the underlying time structure. The small-bucket models are characterized
by a partitioning of the planning horizon into short time buckets (micro-periods)
during which only a single setup operation on a machine is allowed. This class of
models is solving simultaneously the lot-sizing and the scheduling problem. Big-
bucket models use quite long time periods (macro-periods) during which several
production lots can be processed on a machine, but each product only once.
Here the scheduling aspect is not considered within the basic model concept.
Surprisingly, the core of the research literature on multi-level lot-sizing deals with
big-bucket formulations (cf. a recent review on big-bucket models by Buschkühl
et al. 2010). Nevertheless, there are recent multi-level formulations based on small-
bucket models, which we will consider in our study. The goal of this paper is to
analyze those different modeling approaches. Hence, the contribution of this paper
is twofold:

• We show and compare the limitations of different modeling concepts due to the
underlying assumptions. These results will help to select an appropriate modeling
approach for a specific situation.

• We provide a numerical comparison of all models in order to underline the
limitations and differences discussed in the previous point and to determine more
promising model approaches regarding the computational tractability using a
standard optimization software.

The paper is organized as follows: in Sect. 2 the relevant literature is discussed.
In Sect. 3 the different models are presented and compared regarding their internal
structure, whereas in Sect. 4 the computational comparison is provided. Section 5
concludes the paper summarizing the major findings of this study.

2 Literature Review

All basic lot-sizing models for dynamic demand — based on the formulation
introduced by Wagner and Whitin (1958) — are driven by the trade-off between the
setup and holding costs. Introducing capacity limitations and considering several
products simultaneously led to the capacitated lot-sizing problem (CLSP), which
Bitran and Yanasse (1982) have shown to be NP-hard. Billington et al. (1983)
were among the first researches extending the big-bucket formulation of the CLSP
towards the multi-level situation of the material requirements planning which led
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to the multi-level capacitated lot-sizing problem (MLCLSP). The disregard of the
scheduling problem in connection with a multi-level structure in the MLCLSP
potentially leads to capacity and inventory problems as shown by Almeder et al.
(2015). Therefore, the models have to be extended either considering a one period
long delay between the production of a predecessor and a successor item, or
allowing a detailed sequencing of lots within a period. The first approach has been
used by many researchers (cf. Buschkühl et al. 2010) but it produces unnecessary
high work-in-process levels (cf. Almeder et al. 2015). The latter approach is rather
complex. A very detailed non-linear model was formulated by Fandel and Stammen-
Hegene (2006), but this model is beyond any possibility to be solved. A formulation
as a mixed integer linear program by Almeder et al. (2015) is used in this paper.

The continuous setup and lot-sizing problem (CSLP) and the proportional lot-
sizing and scheduling problem (PLSP) are the most prominent model approaches
in the class of small-bucket problems (cf. Drexl and Kimms 1997). An extension
to multi-level systems is straight forward. Nevertheless, not many researchers have
been working on this multi-level extension. Stadtler (2011) formulated a multi-level
PLSP model which allows the production of a predecessor and a successor product
within the same time period. But he restricts his model to the rather simple single-
machine case.

Seeanner and Meyr (2013) extended the general lot-sizing and scheduling
problem (GLSP) to the multi-level multi-machine case. The GLSP is in some
sense a hybrid model concept combining small-bucket and big-bucket ideas.
The planning horizon is divided into longer time periods (big buckets), but
each such period is subdivided into several smaller periods (small buckets) of
variable length. Another approach to the simultaneous lot-sizing and schedul-
ing problem in a multi-level system described in the research literature is a
scheduling based one. Kim et al. (2008) proposed an integrated model, where
each demand is transformed into production jobs for the requested product and
all its predecessors. The resulting scheduling problem is solved using a genetic
algorithm. The main criticism might be that this approach does not consider
lot-sizing possibilities at their full extent. In fact, lots are formed by combin-
ing different (subsequent) demands of the same item, but no demand is split
into several lots. Dauzère-Pérès and Lasserre (2002) enhanced a multi-level lot-
sizing problem by special scheduling constraints as a substitute for the capacity
constraints. They do not consider any setup processes and do not solve the
model as an integrated one, but split it into a lot-sizing and a capacity refining
step.



336 C. Almeder

3 Model Formulations

3.1 Overview

In this paper, a comparison of three model classes is conducted. The focus lies on
the comparison of deterministic capacitated multi-level lot-sizing problems with
dynamic demand, a finite planning horizon and a general product structure. The
objective is to minimize the sum of setup and inventory costs.

First, the class of small-bucket models is considered. Here the continuous setup
lot-sizing problem (MLCSLP) and the proportional lot-sizing problem (MLPLSP)
for the multi-level case are analyzed. One of the main disadvantages of these
formulations is that they are not adequate for problems where long setup operations
occur, as the duration of these operations must not exceed one micro-period.
However, enabling multi-period setup operations may cause a substantial increase
in model complexity. A recent formulation (MLPLSPSS) by Stadtler (2011) is
considered in addition, that is built on the MLPLSP and accounts for period
overlapping setup times to enable more flexibility in planning. Moreover, Stadtler
(2011) assumes a zero lead time offset, whereas for the MLCSLP and the MLPLSP
a delay of one micro-period between production of predecessor and successor items
is necessary.

The second class reflects the big-bucket models. The basic multi-level capaci-
tated lot-sizing problem (MLCLSP) does not allow to carry over the setup state of
a machine from one period to the next one, i.e., in each period a setup is necessary
to start production. In order to be consistent and comparable with the small-
bucket models, a version with linked lots between periods is used (MLCLSPL).
Furthermore, two variants presented in Almeder et al. (2015) are considered. One
covers the lot-streaming case (referred to as MLCLSPLS) and the other allows
production in batches (MLCLSPBS), where the production of a batch has to be
finished before the items can be used as input for the production of successor items.

The third class is the general lot-sizing and scheduling problem for multiple
stages (GLSPMS) proposed by Seeanner and Meyr (2013) with their underlying
two-stage time structure. The model accounts for both, setup operation and produc-
tion quantity splitting over consecutive variable micro-periods. Quantity splitting
means that the whole production amount of one micro-period is virtually split into
two parts, one is available to subsequent processing in the on-going micro-period
and the other in the following micro-period at the earliest.

In order to keep this paper comprehensive we refer the reader for detailed
model descriptions for MLPLSPSS, MLCLSPBS, MLCLSPLS, and MLGLSP to the
respective literature (Stadtler 2011; Almeder et al. 2015; Seeanner and Meyr 2013).
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3.2 Basic Notation

Indices and index sets
N number of products, i; j 2 f1; : : : ; Ng
M number of resources, m 2 f1; : : : ; Mg
T number of periods, t 2 f1; : : : ; Tg
S number of micro periods, s 2 f1; : : : ; Sg
ˆ set of micro periods
ˆt � ˆ set of micro periods forming the last micro period within a macro

period
�.i/ set of immediate successors of product i based on BOM
�.m/ set of items assigned to resource m

Decision variables
Xmis/Xmit production quantity of item i in period s or t on machine m
Iis/Iit inventory of item i at the end of period s or t

˛mis/˛mit

�
1 if resource m is set up for item i at the beginning of period s or t
0 otherwise

Tmijs/Tmijt

�
1 if there is a set up from item i to j on machine m in period s or t
0 otherwise

Parameters
aij amount of item i, required for production of one unit of j
pmi time required for production of one unit of i on resource m
stmij time required to setup resource m from item i to item j
cmij cost incurring on resource m when setup from item i to item j
Eis/Eit external demand of item i in period s or t
Ii0 initial inventory of item i
hi inventory costs of product i
Lms/Lmt available production time on machine m in period s or t
li lead time of item i in number of periods
G a sufficient large number.

3.3 Small-Bucket Models

We use the MLCSLP and MLPLSP formulations proposed by Kimms and Drexl
(1998) and incorporate setup times. While in the MLCSLP only one setup is allowed
to be performed at the beginning of each micro-period, in the MLPLSP this very
restrictive assumption is relaxed by allowing the setup to be performed at any
time within a period and therefore inducing the possibility to produce two distinct
items within one micro-period. Hence, these models implicitly determine also a
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production schedule. In order to enable a numerical comparison between the micro-
period and macro-period structure, a constant number of micro-periods of the same
length are embedded into macro-periods. Holding cost and demand will only occur
in the last micro-period of a macro-period (if s 2 ˆt). The model formulation for
the MLCSLP reads:

min
X

i;s

ci � Tis C
X

i;s2ˆt

hi � Iis (1)

subject to

Iis D Ii.s�1/ C Xis � Eis �
X

j2�.i/

aij � Xjs 8 i; s (2)

Iis �
X

j2�.i/

minŒsCliIS�X
�DsC1

aij � Xj� 8 i; s D 0; : : : ; S � 1 (3)

X
i2�.m/

˛is � 1 8 m; s (4)

Tis � ˛is � ˛i.s�1/ 8 i; s (5)

pi � Xis C si � Tis � Lms � ˛is 8 i; s (6)

Iis; Xis; Tis � 0; ˛is 2 f0; 1g 8 i; s (7)

The objective to be minimized consists of setup and holding cost (1). External
and internal demands have to be fulfilled without delay which is shown by the
inventory balance equations (2). Lead times between predecessors and successors
are incorporated by constraints (3). Constraints (4) enforce a unique setup state and
constraints (5) describe the setup decisions. Either a setup for i takes place in s
(Tis D 1) or a setup state for i is carried over from s � 1 to s. Constraints (6)
constitute the capacity restrictions and finally, (7) are the non-negativity constraints
and binary variables restrictions. Substituting (6) by constraints (8), describing a
setup to be made at any time within a micro-period and new capacity constraints (9)
leads to the MLPLSP:

pi � Xis � Lms � .˛i.s�1/ C ˛is/ 8 i; s (8)X
i2�.m/

. pi � Xis C si � Tis/ � Lms 8 m; s (9)

A major design decision when employing small-bucket models is the appropriate
number of micro-periods for each macro-period. The appropriate number depends
on several circumstances: How many distinct items are to be produced, is there a
lead time to be considered, of how many stages consists the production process, does
the length of the shortest period at least correspond to the length of the longest setup
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operation? If too few micro-periods are embedded into a macro-period, the detailed
planning offered by the model is not exploited and finding a feasible solution may
become quite difficult. On the other hand, a very large number of micro-periods
leads to very long computational times for real-world instances (cf. Seeanner and
Meyr 2013).

The two models above consider a lead time of at least one micro-period. How-
ever, situations may occur where even one micro-period lead time is not realistic.
Stadtler (2011) extended the single machine PLSP to a multi-level single machine
PLSP with zero lead time (MLPLSPSS) that accounts for the problem arising in a
specific pharmaceutical company. In order to make this model comparable with the
other models analyzed, we adapted the original model to the multi-machine case by
defining a set of products i 2 '.m/ assigned to a machine m.

3.4 Big-Bucket Models (MLCLSP)

The second class of lot-sizing models we are discussing are the big-bucket models,
where the planning horizon is divided into a few large macro-periods. The MLCLSP
by Billington et al. (1983) has some drawbacks compared with the small-bucket
models. The scheduling is completely neglected in the MLCLSP. Instead, it is
assumed that the production scheduling is carried out in an additional subsequent
planning level. This causes serious feasibility problems in multi-level planning
when coordination between the production stages is neglected (cf. Almeder et al.
2015). Considering a full macro-period lead time1 allows to generate feasible
production plans, but it leads to overestimated cycle times and huge work-in-process
(WIP).

Furthermore, the classical MLCLSP does not preserve the setup state of a
machine from one period to the next one, i.e., if the same product is produced at
the end of a period and at the beginning of the next period an additional setup
is necessary. Hence, a logical extension of the MLCLSP is to introduce so-called
linked lots, denoted by MLCLSPL (cf. Suerie and Stadtler 2003; Haase 1994).
We will focus on a formulation by Sahling et al. (2009) that accounts for setup
carryovers over multiple periods and lead times.

Since we deal with macro-periods in the MLCLSP, we replace the index s by t
for macro-periods. In addition to the variables listed in the basic notation table in
Sect. 3.2, a variable for the initial inventory level Oyi and an auxiliary variable vmt is
used in the model formulation.

1The actual processing time of a lot usually takes only a small fraction of a macro-period.
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The objective function of the MLCLSPL reads:

min
X

i;t

.ci � .˛it � Tit/ C hi � Iit/ (10)

subject to:

Ii.t�1/ C Xit �
X

j2�.i/

aij � Xj.tC1/ � Iit D Eit 8 i; t D 2; : : : ; T � 1 (11)

Ii.T�1/ C XiT � IiT D EiT 8 i (12)

Oyi �
X

j2�.i/

aij � Xj1 � Ii0 D 0 8 i (13)

Ii0 C Xi1 �
X

j2�.i/

aij � Xj2 � Ii1 D Ei1 8 i (14)

X
i

. pi � Xit C si � .˛it � Tit// � Lmt 8 m; t (15)

Xit � G � ˛it 8 i; t (16)X
i2�.m/

Tit � 1 8 m; t (17)

Tit � ˛i.t�1/ 8 i; t (18)

Tit � ˛it 8 i; t (19)

Tit C Ti.tC1/ � 1 C vmt 8 m; i 2 �.m/ (20)

.˛it � Tit/ C vmt � 1 8 i (21)

Ti1 D 0 8 m; i 2 �.m/ (22)

Iit; Xit; I0
i ; vmt � 0I ˛it; Tit 2 f0; 1g 8 m; i; t (23)

Constraints (11)–(14) reflect the inventory balance equations where a one macro-
period lead time is incorporated to achieve coordination between the production
levels. The initial inventory of item i is denoted by Oyi. Constraints (15) are again the
capacity restrictions enforcing the capacity limits to be kept. Note, that Tit now has
a different meaning from the small bucket models discussed above, as it constitutes
the setup carry-over variable, so that Tit D 0 if there is no setup carryover and thus
a setup operation for i takes place. A product can only be produced if a machine is
in the appropriate setup state (16). For each period and machine at most one setup
carryover is allowed (17) . The setup carryover itself is described by (18) and (19)
stating that a setup carryover is only possible (Tit D 1) if the resource is set up for
item i in both period t and t � 1 (˛it D 1 and ˛i;t�1 D 1). Constraints (20) and (21)
model the multi-period setup carryover characteristic of the formulation.
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As mentioned earlier, incorporating a full macro-period lead time may result in
long cycle times and huge amounts of WIP. Two extensions of the MLCLSP are
proposed by Almeder et al. (2015) dealing with the problem of incorporating lead
times in the MLCLSP, one based on batch production and the other on lot-streaming.
In contrast to the MLCLSPL, where scheduling is neglected and the small-bucket
models, where sequencing is done implicitly, scheduling is done simultaneously to
lot-sizing in these MLCLSP extensions. This can be achieved by using a formulation
based on models for sequence-dependent setups. Furthermore, the beginning of
production of an item i in period t is captured by a continuous decision variable �it.

The first model MLCLSPBS is based on batch production, where a lot of products
can only be further processed when the production of the whole lot is finished. At the
start of production of item i the whole amount of predecessor j needed for production
of i must be available. The second formulation MLCLSPLS assumes lot-streaming,
meaning that each single item produced may be further processed immediately in
the next stage without delay times. Strictly speaking, it allows even simultaneous
production of predecessors and successors on different machines. However, one
might account for a minimum production lead time �i that could be added to the
starting time �it of product i. For both versions the in-period inventory levels are
tracked using the new decision variables �it. Additional constraints ensure that this
in-period inventory does not become negative.

3.5 Mixed Models (GLSPMS)

The last model considered here is the GLSPMS by Seeanner and Meyr (2013),
which is an extension to the single-level GLSP introduced by Fleischmann and Meyr
(1997).

The main characteristic of this model is the two-level time structure. The external
dynamics within a planning horizon are described by demand data and holding
cost and are defined on a fixed discrete time frame of a few macro-periods. Each
macro-period t is split into a predetermined number of non-overlapping micro-
periods s 2 ˆt. These micro-periods are in contrast to the pure small-bucket
models of variable length depending on the lot sizes and the setup operations.
Thus, the scheduling problem is solved implicitly by assigning lots to the different
micro-periods. In order to enable synchronization over all levels and machines, the
GLSPMS enforces the same micro-period structure (i.e. equal starting times and
equal length) on all machines. As only one product is allowed to be produced
within a micro-period, scheduling is performed by determining the starting times
of the variable micro-periods. As in the MLPLSPSS, in the full variant of GLSPMS,
Seeanner and Meyr (2013) split the lot of one micro-period into two parts, one
allowed to be further processed in the actual period, the other in the next period at
the earliest. In such a way it allows immediate usage of an item for the production
of a successor without any delay.
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3.6 Comparison of Model Characteristics

In Table 1 some of the major characteristics of the discussed models are summa-
rized. One important distinguishing characteristic of the models regards the way
to organize synchronization between production stages. Because of their detailed
structure, considering a minimum lead time of one micro-period in the MLCSLP
and MLPLSP is a good compromise when lot-streaming is not realizable. The
MLPLSPSS allows going beyond this lead time of one micro-period, because it
allows the production of predecessor and successor items in the same micro-
period, but only if production is in the first and second campaign, respectively.
Furthermore, with none of the small-bucket models it is possible to realize a
batching constraint, i.e. starting a successor only after the finishing of the complete
batch of the predecessor, because usually a production batch lasts for several
micro-periods. For the big-bucket models MLCLSPL;BS;LS the picture is clear.
Here we have either synchronization via a lead time of one macro-period, a
lot-streaming possibility or a batching constraint. The GLSPMS enables partial
lot-streaming (only possible where the production rate of the successor is not
higher than of the predecessor) as a result of the variable micro-periods and
because of the identical structure of these periods on all machines at all different
stages.

Regarding the timing of the setup operations only the MLCSLP is quite
restrictive, because it allows only setups at the beginning of the fixed micro-
periods. All other models have considerably more flexibility. For the MLPLSP it
may be at any time within a micro-period, for the MLPLSPSS and the GLSPMS
it is also possible to split setup operations between micro-periods. All big-bucket
models as well as the GLSPMS allow setup operations at any time during a macro-
period. (Due to the variable micro-period length also the GLSPMS allows this
flexibility.)

Considering the possible number of different products and the possible number of
setups within a macro-period, there is a notable difference. All small-bucket models
allow a setup each micro-period and in the GLSPMS a micro-period can contain two
fractions of different setup operations. Hence, it is possible to produce S=T (S=T C1

for the MLPLSP and MLPLSPSS) different lots within a macro-period. These lots
might be of different products or of the same products. The big-bucket models allow
only a single setup and a single lot for each product per macro-period.
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4 Computational Results

4.1 Test Instances

In order to enable a comparison between the models a subset of the class 1
instances from Tempelmeier and Buschkühl (2009) are used. In total we use 480
instances, each representing a problem with 10 products produced on 3 machines in
3 production stages over a planning horizon of 4 macro-periods. The test instances
have the following properties:

Product structure: general and assembly
Machine assignment: cyclic and acyclic
Coefficient of variation (CV) of the demand: 0.2, 0.5, 0.8
Capacity utilization (CU): 50, 70, 90 %, increasing and decreasing from the

final to the first production stage.
Time-between-orders (TBO): 1, 2, 4, and varying.

All instances are capacity feasible considering the MLCLSPL formulation. Due to
the complexity of some of the model formulations, it makes no sense to consider
bigger instances. Some pretests on a smaller subset of instances have shown that
for small-bucket models 5 micro-periods per macro-period provide a good balance
between solution quality and computational tractability. All test instances were
solved on a INTEL X5570 processor with 4 GB memory and with a Linux operating
system using IBM ILOG CPLEX 12.4.

4.2 Results

All test instances were solved using all seven model variants (MLCSLP, MLPLSP,
MLPLSPSS, MLCLSPL, MLCLSPBS, MLCLSPLS and GLSPMS). A maximum
runtime of one hour was applied. In Table 2 we report the obtained results. MAPD
denotes the mean average percentage deviation of all instances solved with a specific
model to the best solution found. In particular, the model which provides the lowest

Table 2 Computational results of all test instances

Small-bucket Big-bucket GLSPMS

MLCSLP MLPLSP MLPLSPSS MLCLSPL MLCLSPBS MLCLSPLS GLSPMS

MAPD (%) 6.5 2.1 1.3 34.1 9.2 0.2 4.4

MAPDhc (%) 6.9 2.3 1.6 41.4 10.5 0.4 0.4

MAPDsc (%) 9.3 4.0 1.5 20.3 12.1 0.2 10.2

GAP (%) 5.6 10.6 4.1 0.0 8.9 9.1 29.6

Optimal (%) 13.8 0.0 22.7 100 26.7 35.0 0.0

RT (s) 3329 3600 3039 <0.01 2809 2548 3600
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cost for a certain instance is used as the benchmark. MAPDsc and MAPDhc are
showing the deviation of holding cost and setup cost, respectively. GAP reports the
average gap returned by CPLEX after one hour runtime and the row optimal shows
the percentage of instances that could be solved to optimality. The final row RT
indicates the average run time.

MLCLSPLS provides in most cases the solution with the lowest cost. This is
not surprising, because this model allows simultaneous production of predecessor
and successor items and full scheduling flexibility within a macro-period. The
small-bucket models are providing results with slightly higher cost, but the cost
are decreasing with the additional flexibility when switching from MLCSLP to
MLPLSP and to MLPLSPSS. The results of the MLCLSPBS indicate that the
batching assumption leads to an average cost increase of 9.2 %. Since the MLCLSPL

includes a lead time of one macro-period a lot of additional inventory is necessary
such that the total cost increase by 34.1 %. Surprisingly the quality provided by
the GLSPMS is between the MLCSLP and the MLPLSP although it provides more
flexibility. But this lower quality might be caused by the extraordinary high average
gap of 29.6 %. In particular, the computational behavior regarding gap and average
runtime is quite similar with two exceptions. MLCLSPL can be solved for each
instance without any problem and GLSPMS cannot be solved for any instance
within the time limit.

In Table 3 we disaggregate the gap and the MAPD results for different instances
classes. The reported gaps show that for all model variants the instances with a
general product structure and an acyclic machine assignment are the easiest to solve.
This is surprising because an assembly structure where each item has at most one
successor should simplify the scheduling problem. The CV has a clear impact on
the solvability—the higher the variation, the easier to solve. An explanation might
be that for a uniform demand pattern there exist multiple solutions with similar cost
which avoid the early pruning of the branch-and-bound tree. Only the GLSPMS
is an exception, where the CV seems to have no effect. The TBO aspect has a
different effect on the small- and big-bucket models. For the small-bucket models it
is better to have a small TBO, i.e. setup costs are small compared to holding cost.
For the GLSPMS this effect is quite dramatic. For the MLCLSPBS and MLCLSPLS

the picture is contrary. Here it seems that a higher TBO leads to easier problems,
which is in contrast to the usual findings for lot-sizing problems. When looking at
the CU results, the small-bucket models are not affected by a change of the CU,
whereas the big-bucket versions behave like expected, namely, they are easier to
solve if the CU is low.

The results for the MAPD show that an increased CV reduces the differences
between the model variants, but regarding the TBO and CU we cannot identify a
clear picture. The results of the MLCLSPL indicate that neglecting the scheduling
aspect leads to worse results, if the problem instance allows a lot of flexibility in the
solution, i.e., a low CV, TBO or CU.
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5 Conclusions

We have shown various ways, derived from literature, to model a multi-level
capacitated lot-sizing and scheduling problem. Although all the models are aiming
to solve the same problem, there are substantial differences. The first aspect is the
model structure itself. Here we have seen different ways to represent the scheduling
and synchronization aspects in the multi-level product structure. This ranges from
allowing simultaneous production of predecessor and successor items (MLCLSPLS)
to batch production, where a lot has to be completed before it can be used for further
processing (MLCLSPL, MLCLSPBS). In between there are models with a relation
between successor and predecessor which depends on the internal time structure of
the model (MLCSLP, MLPLSP, MLPLSPSS, GLSPMS). Also the timing of setup
operations is an issue in most model variants due to the enforced decomposition of
the planning horizon into time buckets.

The numerical results have shown, that all models, which solve the full schedul-
ing problem, demand a high computational effort. Nevertheless, it seems that rather
complex big-bucket formulations are worth to consider, because of their additional
flexibility regarding the timing and their computational tractability. A surprising
result is, that the GLSPMS as a flexible small-bucket model drops behind when
solving it. Of course, all models provide different solutions and thus also different
objective values. This can be seen as measure of flexibility allowed by the model
formulation. Summarizing the results it seems that the MLPLSPSS, the MLCLSPLS,
and the MLCLSPBS are the most favorable formulations, regarding flexibility,
detailed modeling and computational tractability. But still a significant demand of
new and fast solution algorithms is given for these complex models in order to be
applied to bigger problem instances and probably sometimes to real-world cases.

Acknowledgement The author wants to thank Renate Traxler for performing the numerical
experiments.
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