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Abstract We consider the neoclassical one-sector growth model in continuous
time with elastic labor supply and a learning-by-doing externality. It is shown
that this model can have a continuum of balanced growth paths. Some of these
balanced growth paths can be locally unique (determinate) whereas others can be
indeterminate.
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1 Introduction

The neoclassical one-sector growth model with infinitely-lived households and
endogenous labor supply combines two of the most fundamental macroeconomic
tradeoffs in a simple dynamic general equilibrium setting: the division of output
between consumption and investment and the division of time between productive
activities and leisure. It is therefore not surprising that this model forms the non-
stochastic backbone of real business cycle theories, which have been developed
to simulate the reaction of output and employment to various types of exogenous
shocks.!

'In growth theory, however, the labor-leisure trade-off is surprisingly often disregarded. Eriksson
(1996) writes that “The choice between work and leisure has been remarkably neglected in the
theory of economic growth” (Eriksson 1996, p. 533) and even the very comprehensive and more
recent survey of economic growth theory provided by Acemoglu (2009) does not discuss the case
of elastic labor supply except for briefly mentioning real business cycle models in Section 17.3.
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The present note seeks to contribute to the understanding of the complexities
that can arise in this rather simple model. More specifically, we augment the basic
framework by a mechanism that generates endogenous growth and prove that the
resulting model can have infinitely many different balanced growth paths. In order
to see how this finding adds to existing knowledge, we start by providing a brief and
selective survey of the literature. In doing this, it is useful to distinguish between
results that have been proved for the discrete-time version of the model and those
that hold in its continuous-time counterpart.

Using a discrete-time framework and considering the model without a growth-
generating mechanism, De Hek (1998) shows by means of numerical examples that
there can be multiple (i.e., finitely many) steady states as well as stable period-2
cycles. Kamihigashi (2015) addresses the multiplicity of steady states in a more
systematic way and proves that the model can have any finite number of steady
states or even a continuum of steady states. Moreover, multiplicity of steady states
can occur for all values of the time-preference factor between O and 1 and for
all production functions satisfying standard assumptions. Sorger (2015) proves a
similar result for period-2 cycles by showing that such periodic solutions can occur
for all values of the time-preference factor between 0 and 1 even if one restricts
the technology to be of the Cobb-Douglas type. He also shows that the model
can generate period-3 cycles and topological chaos if the time-preference factor
is sufficiently small.

Whereas the findings of Kamihigashi (2015) can easily be transferred to the
continuous-time setting, this is not the case for those of Sorger (2015). This follows
from a result by Hartl (1987) according to which all optimal solutions to continuous-
time dynamic optimization problems with a single state variable must be monotonic.
Sorger (2000a) studies the model in continuous time without endogenous growth as
a decentralized market economy and allows that the households differ from each
other with respect to their initial capital holdings (they are assumed to be identical
in all other respects). He finds that even with the standard parameterizations
used in real business cycle models, there exists a continuum of steady states that
differ from each other not only with respect to the distribution of capital among
households but also with respect to the level of aggregate output. Sorger (2000b)
transfers these results into a model with endogenous growth that is driven by a
learning-by-doing externality a la Arrow (1962) and Romer (1986). He shows that
such an endogenous growth model admits a continuum of balanced growth paths
that differ from each other with respect to the income distribution and the long-
run growth rate of the economy. It is important to emphasize, however, that the
possibility of infinitely many steady states or balanced growth paths in Sorger
(2000a,b), respectively, is solely due to the heterogeneous initial endowments of the
households. In both papers, the steady state or balanced growth path, respectively,
would be unique if a representative household assumption would be imposed.
Benhabib and Farmer (1994) already note that the model with a representative
household can have two interior balanced growth paths if one allows for production
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externalities that generate increasing returns to scale on the aggregate level. Eriksson
(1996) uses a continuous-time model and standard parameterizations of preferences
and technology to show that the long-run growth rate typically depends on the
preference parameters both when growth is due to exogenous technological progress
and when it is generated endogenously.

In view of the above mentioned results, the present note can be interpreted in
two different ways: either as a translation of the results about the multiplicity of
steady states from Kamihigashi (2015) into a setting with endogenous growth, or
as a complement to Sorger (2000b) which shows the possibility of a continuum
of balanced growth paths without resorting to heterogeneity of households. In this
respect, it has to be noted that the translation of the results by Kamihigashi (2015) to
a framework with endogenous growth is by no means trivial. This is so because the
elasticity of marginal utility of consumption must be constant along every balanced
growth path, which considerably restricts the preferences for which balanced growth
paths can occur. Therefore one cannot proceed as in Kamihigashi (2015), namely
by fixing the technology (in an arbitrary way) and choosing preferences such that
multiple steady states exist. Instead we start from a fixed preference specification
that is consistent with balanced growth and choose the production function so as to
allow for a continuum of balanced growth paths.

The paper is organized as follows. Section 2 formulates the model and defines
equilibria and balanced growth paths and Sect. 3 presents the results.

2 Model Formulation

In this section we formulate the one-sector growth model with elastic labor supply.
The basic structure of the model is identical to the deterministic version of the
standard real business cycle model in continuous time. In order to allow for
endogenous growth, we include a learning-by-doing externality a la Arrow (1962)
and Romer (1986). Similar formulations have been studied for example by Benhabib
and Farmer (1994), Eriksson (1996), and Sorger (2000b).

Consider an economy that evolves continuously over the infinite time-horizon
R.. There exists a unit interval of identical and infinitely-lived households. The
representative household is endowed with k(0) > 0 units of capital at time 0 as well
as with a constant flow (normalized to 1) of time that can be used either for work or
for leisure. Let us denote the rate at which the household consumes output at time
t by ¢(r) > 0, the rate at which it supplies labor to the firms by £(¢) € [0, 1], and
the capital holdings (wealth) of the household at time # by k(¢). This implies that,
at time ¢, leisure is consumed at rate 1 — £(f). The flow budget constraint of the
representative household can be expressed as

k(1) = [g(1) = 8Jk(1) + w(®)£(0) = (), (1



192 G. Sorger

where § > 0 is the rate at which capital depreciates and where ¢(f) and w(r) are the
factor prices of capital and labor, respectively, at time . The household maximizes
the objective functional

+o0
/ e Puc(r), 1 —L(1)) dt, 2)
0
subject to the flow budget constraint (1) and the no-Ponzi game condition

lim e~ hla@=8ldrg(py > 0 3)

t—>—+400

where p > 0 is the time-preference rate and where u is the instantaneous utility
function.

Assumption 1 The function u : Ry x [0, 1] — R is continuous, non-decreasing,
and concave. On the interior of its domain it is twice continuously differentiable as
well as strictly increasing and strictly concave in each of its arguments.

There exists a unit interval of identical firms i € [0, 1], which rent the factor
inputs from the households and maximize their profits. Denoting the capital input
and the labor input of firm i at time 7 by K;(7) and L;(¢), respectively, firm i produces
output at time ¢ at the rate F(K;(r),A(f)L;(r)), where A(¢) is the efficiency of labor at
time ¢ and where F is the production function. Every firm i takes the factor prices as
well as the efficiency of labor as given and maximizes the profit rate, which is given
by

F(Ki(n), A(Li()) — q()Ki(r) — w(t)Li(1) “)

at each time ¢ subject to non-negativity constraints on both factor inputs.

Assumption 2 The function F : Ri — R4 is continuous, non-decreasing,
concave, and homogeneous of degree 1. On the interior of its domain it is twice
continuously differentiable as well as strictly increasing and strictly concave in each
of its arguments. Furthermore, it holds that (0, 1) = 0.

Since all firms are identical it holds that K;(#) = K(¢) and L;(#) = L(¢), where
K@) = fol Ki(r)di and L(1) = fol L;(¢) di are the aggregate factor inputs at time .
We follow Arrow (1962) and Romer (1986) and assume that the efficiency of labor
is positively related to the aggregate capital stock. More specifically, we assume that
A(r) is proportional to K(¢) and we normalize the factor of proportionality without
loss of generality by 1, that is,

A(f) = K(1). (5)
An economy is a quadruple (u, p, F, §) consisting of a utility function u satisfying

Assumption 1, a time-preference rate p > 0, a production function F' satisfying
Assumption 2, and a capital depreciation rate § > 0.
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An equilibrium of the economy (u,p,F,8) is a family of functions
{k. €, c,(Ki,L)iep,1. K, L, A, g, w}, all defined on the common domain R4, such
that the following conditions hold:

1. Given g and w, the triple (k, £, ¢) maximizes (2) subject to (1) and (3).

2. Foralli € [0,1], all t € R4, and given (g(¢), w(r), A(¢)) it holds that the pair
(Ki(t), L;(t)) maximizes (4).

3. The factor markets clear at all times, that is, L;(f) = L(f) = £(r) and K;(r) =
K(t) = k(t) hold for all t € R .2

4. The externality condition (5) holds for all € R..

An equilibrium is said to be interior if none of the non-negativity constraints on
the functions £, 1 — ¢, ¢, (K, L;)ic[,1] binds at any time 7.

A balanced growth path (BGP) is an equilibrium such that all functions k, ¢, c,
(Ki, Li)iepo,11, K, L, A, g, and w take strictly positive values and have constant growth
rates.’

3 Results

Let us define the intensive production function f : Ry +— Ry by f(x) = F(x, 1).
Under Assumption 2 it follows that the intensive production function is continuous,
strictly increasing, and concave, and that it is twice continuously differentiable on
the interior of its domain. Moreover, it holds that f(0) = 0. The following lemma
states necessary and sufficient equilibrium conditions.

Lemma 1 Consider an economy (u, p, F,8) and let f be the intensive production
function.

@) If{k. €, c,(Ki,L)iepy. K, L, A, g, w} is an interior equilibrium of the econony
(u, p, F, 8), then it follows that the functions k, £, ¢ satisfy the conditions®
k(1) /() = Lf (/@) = 8 = c(0)/k(0), (©)
ur(c(t), 1 = £(1)) = k(OLF(1/€(0) —f' (1 /L@0)) [ED]ur (c(0), 1 = £()). (7)
i (D). 1 = £D)e(0) = una(e(). 1 = LO)()
= [p+ 8 —f' A/t (c(®). 1 — L)), (®)
lim e " uy(c(), 1 —€(1))k(r) = 0. C))

t——+00

2It follows from Walras® law that the output market clears as well.
3The growth rate of a function z : Ry +> R at time ¢ is given by z(¢)/z().

“Partial derivatives are denoted by subscripts. For example, u;(c, 1 — £) denotes the partial
derivative of the function u with respect to its first argument evaluated at the point (c, 1 — £).
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(b) Conversely, if there exist strictly positive functions k, £, ¢ such that £(t) < 1
and conditions (6)—(9) hold, then one can find functions (K;, L;)icjo,1}, K, L, A,
g, and w such that {k, £, c, (K;, Li)icp,1). K. L, A, q, w} is an equilibrium of the
economy (u, p, F, §).

Proof The necessary and sufficient conditions for (K;(¢),L;(f)) to be an interior
maximum in (4) are g(t) = F1(K;(¢), A(1)L;(1)) and w(t) = A()F»(K;(t), A(1)L;(1)).
Since equilibrium requires K;(r) = K(t) = k(t), L;(tf) = L(t) = £(z), and (5) and
since F' is homogeneous of degree 1, this implies that

gy =f1A/t®)  and  w) =kOFA/L0) —f(1/L0)/EO].  (10)
The Hamiltonian of the representative household’s optimization problem is
H(k,c,t,A, 1) =u(c,1 =€) + A{[q(t) — 8]k + w(t)f — c},

where A denotes the adjoint variable. The necessary and sufficient first-order
conditions for an interior maximum are’

ur(c(@), 1 = £(1)) = A(r) = 0,
—up(c(t),1 = L(t)) + A(t)w(t) = 0,
A1) = [p + 8 = A0,

t_ljJrrnoo e P A(Ok(t) = 0.

Eliminating the adjoint variable from these conditions and using the expressions for
the factor prices from (10), we obtain the conditions stated in part (a). It is obvious
that these steps can be reversed such that part (b) is proven as well. O

Let us now focus on BGP. Since £(r) = L(t) = L;(t) € [0,1] must hold
for all i € [0,1] and all + € R4, the growth rate of £(f) must be non-positive.
Eriksson (1996) focuses on the case where £(f) has a negative growth rate because
he wants to match the stylized fact of falling labor supply. BGP with declining
labor supply, however, are only possible if the production function is of the Cobb-
Douglas form (at least for sufficiently large capital-labor ratios), as Eriksson (1996)
indeed assumes. Furthermore, capital and consumption must also be declining. This
is shown in our next lemma.

Lemma 2 Consider an economy (u, p, F,§) and assume that there exists a BGP
along which labor supply declines. Then there exist numbers A, o, and k such that
the intensive production function f satisfies f(x) = Ax* for all x > k. Furthermore,
the growth rates of capital and consumption along the BGP must be negative as
well.

3See Feichtinger and Hartl (1986).
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Proof Suppose that there exists a BGP along which capital, consumption, and labor
grow at the rates yy, ¥, and y,. Suppose furthermore that y, < 0. From (6) it follows
that

Vi + 8 = £(0)e"'F(L(0) ey — %em—w. (11

Suppose first that y. = y;. In this case it is obvious that £(0)e?”¢f(£(0) " e~ 7")
must be independent of ¢, that is, there exists m € R such that £(0)e?!'f(£(0)™!
e 7"y = m holds for all ¢ € R4 . This implies that

m

JFA/E@) = fLO) e = me—m

Differentiating this equation with respect to ¢ we obtain f/(1/£() =
f'(€)~le7"") = m for all t € R,. Obviously, this is a contradiction to the
strict concavity of f and it follows that y,. # .

If y. # w, then Eq. (11) can only hold for all € Ry if y, = —§ and if

FA/L@) = fEO) ™) = me

holds for all + € R4, where m = ¢(0)/[k(0)£(0)] and & = y. — v — ys.
Differentiation with respect to ¢ yields

_LOmp e _ 1 SA/LD)
ve ve 1/€@t) °

FA/E@) =f(L©) ") =

Obviously, this implies that f(x) = Ax* for some A € R, « = —u/y¢, and all
x>k = 1/£(0). Since y¢ < Oand ¢ = —p/ye = (Ve — ye)/ye + 1 € (0, 1) must
hold, it follows that y, < y, = —8 < 0. This completes the proof of the lemma. O

Note that the proof of the above lemma uses only the equilibrium condition (6),
which is the capital accumulation equation. In other words, the lemma holds
independently of the specification of the preferences. We consider the case of a BGP
along which capital, consumption, and labor supply decline as rather uninteresting
and will therefore from now on focus on those BGP, along which the labor supply
remains constant. Furthermore, in what follows, we assume that the utility function
is specified by

u(c,1 —0) =771 —£)°, (12)
where o € (0, 1) is the elasticity of marginal utility of consumption. It is easy to see

that this function satisfies Assumption 1. The following lemma characterizes those
BGP along which labor supply remains constant.
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Lemma 3 Consider an economy (u, p, F, §) in which the utility function u is given
by (12) and let f be the intensive production function. There exists an interior BGP
along which labor supply is constant and equal to £ if and only if the conditions

(1 — 12")4&(1/@) Fp+(1—0) = (2—0— I_T“)f/a/é), (13)

p+(1—-0)8

= (14)

ra/h <

hold.

Proof Suppose that £(f) = ¢ holds for all t € R . It follows immediately from (6)
that k and ¢ must grow at the same rate, such that k(7)/c(f) = k(0)/c(0) holds for
all + € Ry. Let us denote the common growth rate of capital and consumption by
y. With this notation, we can rewrite the equilibrium conditions for a BGP (with
constant labor supply é) from (6)—(9) as

_ by s €O
y=ira/h-s- 5.
oc(0) S~ /)
_ —rayn =LY
(1 —0)(1 — D)k(0) fA70 ==

—oy =p+8—£(1/0),
—p+y(l—-0)<0.

Solving the first and the third of these conditions for y and c¢(0)/k(0) and
substituting the results into the other two conditions, we obtain (13)—(14). O

We are now ready to state the main result of the paper.

Theorem 1 Fix any strictly positive values p and 8. There exist functions u and
F satisfying Assumptions 1 and 2, respectively, such that the economy (u, p, F,§)
admits a continuum of mutually different BGP.

Proof Because of Lemma 3 it is sufficient to show that there exists a strictly
increasing, strictly concave, and smooth function f : Ry +— R4 with f(0) = 0 such
that conditions (13)—(14) hold for a continuum of values i e (0, 1). We proceed in
four steps.

STEP 1:  Let Q be an arbitrary positive number and define the function ¢ : [0, (2 —
0)/(1 —0)] = Ry by

$09 = 01— — (1~ )=o) PEOZO,
— 0
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Obviously, ¢ is continuous, satisfies ¢(0) = 0, and is twice continuously
differentiable on the interior of its domain. The first- and second-order derivatives
of ¢ are

+,0+(1—a)8

¢'(0) = Ol = (1 =02 =0 — (1 = o) 7o (meame) 4 = —

and
¢//(x) — _Q(l _ 0)[2 —0 — (1 _ O,)x]—(3—(7)/(Z—U)x—(3—2(7)/(2—a)'

Because of Q > 0 and o € (0, 1) we have ¢”(x) < Oforallx € (0, 2—0)/(1 —
0)) and it follows that ¢ is strictly concave.

STEP 2: Definex = 1/(1—o0). Itis easy to see that lim,_, ¢’ (x) = +00, ¢'(x) =
[0+ (1 —0)8]/(1 —0) > 0, and lim,—, o—g)/(1—0) ' (x) = —00. Consequently,
there exists a unique value xy € (x, (2—0)/(1 — o)) for which ¢’ (xp) = 0 holds.
We choose an arbitrary number X € (x, xo) and note that ¢’(x) > 0 holds.

STEP3: Let <;~S : [x, +00) — R4 be an arbitrary smooth, strictly increasing, and
strictly concave function that satisfies ¢(¥) = ¢ (%), ¢’ (¥) = ¢(%), and ¢" (%) =
¢" (x). We define the intensive production functionf : Ry +— R4 by

fly =) 21O = > =%

¢(x) otherwise
and the production function F : Ri_ — R4 by F(K,AL) = ALf(K/(AL)).
From steps 1 and 2 and the construction of f it follows that f is continuous,
strictly increasing, strictly concave, and twice continuously differentiable on the
interior of its domain. Moreover, it holds that f(0) = 0. It is easy to see that these
properties imply that F satisfies Assumption 2.

STEP 4: Finally consider an arbitrary i e [1/x,1/x) and define x = 1 /f. Note
that this implies X € (x, x] and, consequently, that f(X) = ¢ (%) and f'(X) = ¢’ (%)
hold. It follows therefore that conditions (13)—(14) can be written as

P ()

X

N-(1-0)22 +p+(1-0)§ =2—0—(1—0)3P ()

and

1—0)8
Using the expressions for ¢ (x) and ¢’(x) stated in step 1, it is straightforward to
verify that the first condition holds. The second one follows from x > x and the
definition of x. The proof of Theorem 1 is now complete.
O
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The above theorem demonstrates that there exists an economy with a continuum
of interior BGP. Using arguments similar to those employed in the proof of
Proposition 3 in Kamihigashi (2015) one can also show that, for every integer n,
there exists an economy with exactly n different BGP. We will not provide the details
of such a proof here. Instead, we want to illustrate a different way of proving the
possibility of multiple BGP. This alternative proof has the advantage that it allows
us also to verify local uniqueness or indeterminacy, respectively, of the BGP.

Lemma 4 Consider an economy (u, p, F,8) in which the utility function is given
by (12). Let f be the intensive production function and define W : Ry +— Ry by

W(x) = f(x) — 1" (x).

@) If{k, €, c,(Ki,L)icjo1). K, L, A, q, w} is an interior equilibrium of the economy
(u, p, F, §), then it follows that the function € satisfies the differential equation

oW (1/€0)E() -0
Tarwariy = || gy | OO o —on
-0,
— [2—0 -0 }f (1/4(1)). (15)

(b) Conversely, if there exists a function £ such that £(t) € (0,1) and Eq. (15)
hold, then one can find functions k, ¢, (Ki,Li)icp,1), K, L, A, g, and w such
that the family of functions {k, £, ¢, (K;, Li)icj0,11, K, L, A, g, w} forms an interior
equilibrium of (u, p, F, §).

Proof If the utility function is given by (12), then conditions (7)—(8) simplify to

oc(t)

Aol —t0] k(@)W (1/£(2)), (16)
&(t) b ,
_G%_al—ﬁ(t) =p+8—f(1/L()). 17
From (16) it follows that
) =+ ZKOW /L)~ )] ()

which, in turn, implies

o)y k() W@l Lo

c) k() WAHL@@? 1L

Combining (6) with (18) one obtains

19)

KO worasem) - s - = Twagewpn - ew)
k(?) o
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Using this equation to eliminate () /k(r) from (19) and substituting the resulting
expression for ¢(¢)/c(t) into (17) we obtain after some algebraic manipulations
equation (15). Conversely, if a solution £ of Eq. (15) is given such that £(r) € (0, 1)
holds for all # € R4, then one can compute c(z)/k(f) from (18). Substituting this
result into (6) one obtains a differential equation that can be used to compute k. O

Note that Eq. (15) is a differential equation for the labor supply, which is a jump
variable. Hence, no initial value £(0) is given. This observation allows us to derive
the following characterization of the determinacy of BGP.

Theorem 2 Consider an economy (u, p, F, §) in which the utility function is given
by (12) and let f be the intensive production function. Consider an interior BGP
with constant labor supply equal to £. This BGP is a locally unique equilibrium if

Brafd-irash+ (2-0- 15 ) s =0
holds, and it is indeterminate if the above inequality holds with the reversed (strict)
inequality sign.

Proof The labor supply £(¢) is a jump variable for which no initial value is given. A
BGP with constant labor supply { is therefore locally unique if { is an unstable fixed
point of Eq. (15) and it is indeterminate if { is a stable fixed point of (15). Denoting
the right-hand side of Eq. (15) by g(£(¢)) it is easy to see that

G)f”(l/l)} |

Since W/(x) > 0 holds for all x € Ry, it is clear that { is an unstable fixed point
of (15) if g’(£) > 0 holds and that it is locally asymptotically stable if g’'(£) < 0 is
satisfied. This completes the proof of the theorem. O

¢ = g eram-uam+ (2-

It is well known that the one-sector growth model with elastic labor supply
and production externalities can have indeterminate equilibria; see Benhabib and
Rustichini (1994) or Benhabib and Farmer (1994). The reason why we include the
above theorem in this paper is that our setting allows for multiple BGP, whereas the
existing literature typically makes assumptions under which there exists exactly one
BGP. As will be illustrated in the following example, the model can simultaneously
have determinate and indeterminate BGP.

Example 1 Suppose that the intensive production function f satisfies

f(0) =0, f(5/2) =15/2, f(8/3) = 38/5. f'(5/2) = 1, f'(8/3) = 3/10.

It is not difficult to see that a smooth, strictly increasing, and strictly concave
function f with these properties exists. Now consider the utility function from (12)
with parameter 0 = 1/2. Furthermore, choose the unit of time in such a way that
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p + 8/2 = 1. With these specifications it follows that conditions (13)—(14) hold
for both { = 3/8 and i = 2/5. Hence, the economy (u, p, F,§) has (at least)
two interior BGP with labor supplies 3/8 and 2/5, respectively. Substituting the
value { = 3 /8 into the condition stated in Theorem 2, it can be seen that the BGP
with { = 3 /8 is indeterminate if f”(3/8) < —459/80 whereas it is locally unique
if f(3/8) > —459/80. Analogously, the BGP with ¢ = 2/5 is indeterminate if
f"(2/5) < —16/5 and it is locally unique if /”(2/5) > —16/5.

Finally, let us define the elasticities eo(x) = f'(x)x/f(x) and &(x) =
If” (x)x/f’(x)|. Using this notation we can write the inequality stated in Theorem 2
as

1

eo(1/0)

—(2—0— 120)81(1/£)> 1.

This shows that the BGP with constant labor supply equal to (s locally unique if
both elasticities £9(1/£) and g, (1/£) are small, whereas it is indeterminate if at least
one of these elasticities is sufficiently large.
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