
Renew 2.5 – Towards a Comprehensive
Integrated Development Environment for Petri

Net-Based Applications

Lawrence Cabac(B), Michael Haustermann(B), and David Mosteller(B)

Department of Informatics, University of Hamburg, Hamburg, Germany
{cabac,haustermann,mosteller}@informatik.uni-hamburg.de

Abstract. Renew (The Reference Net Workshop) is an extensible Petri
net IDE that supports the development and execution of high-level Petri
nets and other modeling techniques. The Reference net formalism – the
major formalism for Renew – includes concepts such as net instances,
synchronous channels and seamless Java integration. It combines the
advantages of Petri nets and object-oriented programming for the devel-
opment of concurrent and distributed software systems. Modeling sup-
port of Renew focuses on convenience and ease for Petri net develop-
ment. An outstanding feature is the support for multi-formalism sim-
ulation. The plugin architecture of Renew enables the developers to
extend the IDE for instance with additional formalisms. Alternatively to
the inline mode – within the graphical user interface – the Simulator can
also be run in a headless server fashion. Several configurations of Renew
are available, which are constituted through selections of plugins provid-
ing specialized functionality for multiple platforms. In this manner the
Renew family constitutes a product line architecture. Renew is avail-
able free of charge including the Java source code. In this contribution
we provide information about Renew’s functionality and architecture as
well as the development of the tool set over the last decade.

Keywords: High-level Petri nets · Nets-within-nets · Reference nets ·
Integrated Development Environment (IDE) · Java · Plugin architecture

1 Introduction

Renew is a continuously developed extensible modeling and execution environ-
ment for Petri nets with various formalisms and other modeling techniques. The
main formalism of Renew is the Reference net formalism [10], which combines
the concept of nets-within-nets [15] with a reference semantics and the expres-
sive power of object-oriented programming in the form of Java. Reference nets
in Renew can handle Java objects as tokens and Java expressions in transition
inscriptions to execute Java code during the simulation. With the nets-within-
nets concept, it is possible to build dynamic hierarchies of arbitrary height.
Multiple nets can communicate using synchronous channels, which enable the
c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 101–112, 2016.
DOI: 10.1007/978-3-319-39086-4 7



102 L. Cabac et al.

bidirectional exchange of information. The formalism is, thus, well-suited for
the implementation of concurrent software systems. Renew is written in Java
and is available for multiple platforms (including Windows, Linux and Mac). An
experimental version of the simulator for Android exists. The current version 2.5
is available for download1 free of charge including the source code [11].

This contribution presents the Renew environment with its objectives and
history (Sect. 2), a selection of features and improvements over the recent years of
continuous development (Sect. 3) and a brief overview of the plugin architecture
(Sect. 4). The paper is summarized in Sect. 5.

2 Objectives

Up to today the objectives of the Renew tool and its various plugins have been
widely extended. The following section gives a brief summary of the evolution of
Renew over the past recent years. This section is followed by some information
about current research topics in the context of Renew development.

2.1 History

The first official version of Renew was released in 1999. Since then it has con-
tinuously been developed as a Petri net IDE by the TGI Group2. Figure 1 shows
the user interface of the first release of Renew, which offers the drawing of Petri
net models and the starting and stopping of the simulation. Although other for-
malisms than Reference nets are available, the user interface offers no means of
control to switch compilers.

Fig. 1.Renew 1.0 GUI, Debian 8/Java 7 together with a four seasons example (pattern
and instance) featuring a simple Java inscription.

1 Renew 2.5 available at: http://www.renew.de.
2 Theoretical Foundations Group, Department of Informatics, University of Hamburg.

http://www.renew.de


Renew 2.5 – Towards a Comprehensive Integrated Development 103

The continuous development resulted in many improvements and bugfixes
as well as feature enhancements. One major task has been the decoupling of
editor and simulator, which started with the introduction of the separation layer
in Renew 1.6. The plugin system, introduced with the major release 2.0 in
2004 [12], enabled the extension of Renew into various directions. Renew was
extensively applied and extended to perform agent-oriented software engineer-
ing (see following sections) and was furthermore utilized to provide a workflow
management engine and clients. Besides using Renew primarily for modeling
Petri nets, plugins provide support for various modeling techniques, e.g. dia-
grams from UML or BPMN. Over the years Renew evolved increasingly more
into an IDE for software engineering with high-level Petri nets.

2.2 Implementing Petri Net-Based Applications

One main focus of Renew is the execution/simulation of Reference nets. With
the full support of that formalism, Renew serves as an execution engine for
net-based Java applications. Figure 2 shows a simple example net that uses Java
objects, which could be part of a graphical application. In the net a frame and a
button are created concurrently. After that the button is added to the frame and
the frame is resized (again concurrently). When these two steps are finished the
frame is displayed and in a next step disposed. This simple example gives a first
impression on how to implement Petri net-based applications. With the possi-
bility to structure multiple nets using the nets-within-nets concept, it is possible
to implement even complex software systems (e.g. with the Paose approach, see
Sect. 2.3).

Fig. 2. Example net using Java objects.

2.3 Petri Net-Based, Agent-Oriented Software Engineering

The Petri Net-Based agent-oriented software engineering (Paose, [2]) is an app-
roach to software development with an emphasis on distribution and concur-
rency. With the Mulan framework (multi-agent nets, [14]) Reference nets are



104 L. Cabac et al.

applied as implementation artifacts for the development of multi-agent applica-
tions (MAA). To this end Renew serves as an IDE for the development of MAA
by providing the editing, debugging and simulation facilities. With its support
for abstract modeling languages and the use of generative techniques to translate
them into Reference nets Renew supports the Paose development process in
every single step from requirements engineering to system execution. Renew is
applied in the context of Paose as a tool for teaching and research in the field
of agent-oriented software engineering.

Fig. 3. Renew 2.5 execution of a multi-agent system.

Figure 3 shows the current version of the Renew GUI together with several
views on the system provided by various tools. The whole structure of the simu-
lated Paose system can be inspected and navigated with the MulanViewer [3],
displayed beneath the main GUI. In the structure tree the developers may inspect
the agents with their sub-components. In the image the transformation decision



Renew 2.5 – Towards a Comprehensive Integrated Development 105

component (DC) of the WebGateway agent is selected and details about this arti-
fact can be inspected in the detail view (to the right of the structure tree, partly
hidden). In the center/lower part a fraction of the artifact itself – the transforma-
tion DC – is displayed featuring one selected transition (ARM – asynchronous
request message) and a marked place (REQ). The simulation has been halted
for inspection after the transition ARM has fired through a preset local simu-
lation breakpoint. This transition was involved in the firing step 1956 as can be
inspected in the simulation log window depicted in the right. The selection of
the transition in the Petri net has been done from the simulation log by using
the context menu, which has been activated again for the presentation. The sin-
gle token depicted as 1 on the place REQ can be inspected either by changing
the representation directly in the net instance to a token bag view showing the
string representation of the object or through a UML-like deep inspection of the
object shown in the window located in the lower left corner of the screenshot.
The token is a WebMessge, which contains the login data of a user that has
clicked on the login button in the Web interface shown in the upper right cor-
ner of the screenshot. The deep inspection window is provided by the Feature
Structure plugin.

Several implementations based on Mulan are available on the Paose Web
page3. These include some demos, a distributed implementation of a multi-player
game, and an export and diffing Web service for Renew-compatible diagrams.
The latter is presented through a stand-alone Web interface as well as integrated
into the Redmine project management environment.

2.4 PAOSE Meta-Modeling

During its evolution over the years Renew’s capabilities for providing modeling
support were extended beyond the initial focus on Petri nets. A great num-
ber of the additional modeling techniques are applied within the Paose app-
roach. As mentioned in the previous section Renew supports each step of the
Paose development process from requirements engineering, over system design
and specification to implementation and execution with appropriate modeling
techniques [2]: we use Concept Diagrams to model agent ontologies, Use-Case
Diagrams to capture the overall structure and a variant of Sequence Diagrams to
model agent behavior in conversations. The latter are used to generate Reference
nets, which can be executed as protocols in agent interactions. With the plugin
from Haustermann [8], BPMN models can also be applied for this purpose. In our
current research we are working on the Renew Modeling and Transformation
framework (RMT [13]), a framework for model-driven development of domain
specific modeling languages and tools based on Renew.

3 Highlights and Improvements

Renew offers a wide range of features for the creation, the editing and manip-
ulation of models as well as for execution, debugging and deployment of the
3 Paose Web page: http://www.paose.net.

http://www.paose.net


106 L. Cabac et al.

designed systems. We present a selection that – to our opinion – describes best
the nature of the tool set. Although many of the presented features can not be
put into one category we present the highlights as functional feature, as usability
feature or as IDE related feature.

3.1 Functional Features

Multiple Formalisms. The simulator is capable of handling different for-
malisms. The main formalism is the Java Reference net formalism, for which
different extensions exist, such as inhibitor, reset and timed arcs. The workflow
net formalism, provided by an optional plugin, adds a task transition, which can
be canceled during execution, so that its effect on the net can be reverted. Other
formalisms provide simulation of P/T nets, feature structure nets and bool nets.
Simulation is available in different modes. In the interactive simulation mode the
user may control the simulation by choosing the transitions to fire and inspect
each single step. The automatic simulation mode is usable for system execution
and can be run with and without graphical feedback (operation as server).

Net Loading and Class Loading. Renew features dynamic loading of nets on
demand from the netpath or from the GUI. Nets may be available in the Renew
editor’s format (rnw), which permits direct inspection, or as pre-compiled net
system without graphical information (shadow net system), which allows a silent
execution. The configurable class reinit mode allows to quickly develop models
that combine nets and Java classes. Classes that are recompiled are reloaded at
simulation start, allowing nets and Java classes to be quickly developed, tested
and debugged without any restart of the environment.

Logging and Remote Monitoring. Logging in Renew is provided through
log4j. It is configurable and allows to log tool behavior and simulation events.
Several plugins, which provide general or special purpose monitoring facilities
may also be used for the inspection of local or remote simulations.

Graphical Editor. Renew provides an easy to use graphical editor for Petri
net models and other types of models and a simulation engine, which is seam-
lessly integrated into this editor. It has a plugin architecture, which makes it
easily extensible. The core plugins are provided as part of the Renew distribu-
tion. Many advanced features are supplied as optional plugins.

FreeHep Graphical Export. Since version 2.2 the graphical export relies on
the FreeHep4 libraries, which provide a wider range of formats including SVG
and a high quality of output.

4 The FreeHep libraries are available at https://github.com/freehep/.

https://github.com/freehep/


Renew 2.5 – Towards a Comprehensive Integrated Development 107

3.2 Usability Features

Drag & Drop. Drag and drop support for Renew and the navigator eases the
usability by providing means to opening files or project folders directly within the
editor’s GUI. Additionally, images can now be added to a drawing by dropping
them on the canvas.

Interaction Enhancements. The quick-draw mode has been improved to even
faster draw Petri net models. Also configurable shortcuts for drawing tools and
layout manipulation are available in order to combine tool selection by keyboard
and positioning of net elements by the mouse.

Several drawing elements react to modifier keys during direct manipulation,
so that ratios of height and width can be preserved or unified. This is for example
useful when re-sizing an image.

Target Text Tool. The target text tool allows to add hyperlinks to graphical
elements of a model. By this means models may be inter-linked, in order to offer
simplified navigation between related models. Additionally, the usual schemes
are supported through the desktop integration as well, allowing to link to Web
pages (e.g. documentation/wikis) or other source code.

3.3 IDE Features

The editor has been improved over the last years and received many small usabil-
ity enhancements and has evolved into an integrated development environment
(IDE) for net-based software development. It contains a syntax check during
editing and debugging tools, such as breakpoints or manual transitions. Further-
more the editor features desktop integration, a file navigator and image export
to various formats.

Net/Diagram Diff. The net diff feature – for the first time presented in 2008 –
has been added as ImageNetDiff [5,6] plugin to the optional plugins in ver-
sion 2.3 and has been further enhanced for effectiveness and efficiency. It pro-
vides the functionality of diffing Petri net models and other diagrams directly
within Renew or as a Web service5, which is used and integrated to offer this
for the integrated project-management environment Redmine [1].

Quick-Fix. Syntax error notification dialogues are now enhanced to suggest
possible solutions to the syntax errors, such as available methods, fields or con-
structors. The user can interactively choose from the provided solutions and
apply the changes to the model in a quick-fix manner. Also undeclared variables
are semi-automatically added to the declaration node. In Fig. 4 the variable net

5 Available at http://paose.informatik.uni-hamburg.de/export/.

http://paose.informatik.uni-hamburg.de/export/


108 L. Cabac et al.

(compare with the declaration node) is not yet declared, which results in a syn-
tax exception. The exception presents several solutions, of which the first one
is currently selected. By clicking on the apply button (or double-clicking on the
proposal) the variable will be added to the declaration node.

Refactoring. The renaming of variables in a Petri net drawing and changing
of synchronous channels in net systems is now supported through the Refac-
toring plugin. However, these features are still under development and are still
experimental.

Project Navigator. The Navigator – first introduced in version 2.3 – has been
further improved. Due to a complete redesign, it provides a quicker update strat-
egy, persistence and a filter functionality. The Navigator GUI is now extendable
by plugins. On the right hand side of Fig. 4 the new Navigator GUI is displayed.
The top level of buttons provides control over the content of the Navigator’s tree
view. The second row provides a filter for the elements in the view. Extensions
may add functionality as additional buttons or as context menus. The SVN/Diff
Navigator extension provides the diff of two selected Petri nets (or other models)
via button and diffs against the document base via context menu. Other SVN
related functionality is provided as well.

Console Plugin. The new Console plugin, which utilizes JLine6 as library, pro-
vides many convenience enhancements for the Renew command line in compar-

Fig. 4. Renew Editor GUI featuring the navigator and the quick-fix functionality.

6 JLine: https://github.com/jline/jline2/.

https://github.com/jline/jline2/


Renew 2.5 – Towards a Comprehensive Integrated Development 109

ison to the replaced Prompt plugin. The main advantages are editable command
lines, tab-based command and argument completions as well as searchable and
persistent command history.

Analysis. With the integration of the LoLA7 verification tool [9] Renew is also
suited for verification tasks during modeling. So far only verification of P/T net
models is provided through LoLA.

Net Components. Net components can be provided – and shared among devel-
oping teams – in order to ease recurrent modeling tasks and provide a conven-
tionalized modeling style, which improves the readability and maintainability of
net models.

Availability and OS-Integration. Renew is available for most common plat-
forms including Linux (and other Unices), Windows and Mac OS X. For all
Platforms there exists a GUI integration into the respective Desktop environ-
ment. For Linux/X11 we provide an integration for the FreeDesktop standard
and experimental debian/ubuntu packages. For Mac OS X we provide a special-
ized plugin for the desktop integration and an application bundle as well as a
specialized installation package (DMG, disk image file).

4 Architecture

The plugin architecture – introduced in release 2.0 of Renew – has already been
presented [4,7,12]. Figure 5 shows the main parts, such as simulator, graphical
framework (JHotDraw8), the formalism management and the Petri net IDE
core. The latter extends the graphical framework as well as the simulator. On
top of these core elements other plugins can be included, such as editor plugins,
formalism plugins, tools that extend these formalisms and also applications,
which may use Java code and Petri net code in combination.

Over the last years many plugins in various stages of maturity have been
created by the maintainers or by other developers (e.g. students). Some of these
extend the Renew environment, while others extend the Mulan environment
or provide multi-agent applications.

A boost for the development of plugins have been the plugins that allow the
creation of plugin source folders. There exists a rather simple version of a Plu-
gin Development Plugin for Renew plugins and a more elaborated version that
allows the creation of multi-agent application folders – the Use Case Compo-
nents Plugin9. With these plugins it is possible to create a new Renew plugin
simply by providing the name and the location of the source folder. The lat-
ter must be a valid source code repository in order to be able to compile the
7 LoLA – A Low Level Petri Net Analyzer: http://www.service-technology.org.
8 JHotDraw: http://www.jhotdraw.org.
9 The palette of the Use Case Components Plugin is activated in Fig. 3.

http://www.service-technology.org
http://www.jhotdraw.org


110 L. Cabac et al.

JHotDraw Simulator

Formalism
management

Formalism tool
management

Special formalism tools

Special
formalism
compiler

other editor
plug−ins

Common basis
(Util, Java, OS)

Petri net
implemented
application

Petri net IDE

Fig. 5. Renew’s abstract architecture [7] – components as plugins.

plugin. A newly created plugin folder features already all necessary artifacts for
the compilation of the plugin. These are the Ant build script, the plugin con-
figuration file (plugin.cfg) as well as the source code folder. Additionally, a valid
plugin facade class is generated. The Use Case Components Plugin also gener-
ates artifacts for the creation of Mulan applications according to a provided
Coarse Design Diagram (CDD, a form of Use Case Diagram). These artifacts
comprise the skeletons for agent role declarations, interaction definitions and
ontology specification.

Java classes, Renew nets and other artifacts – for instance JavaCC gram-
mars or JavaScript files – can be added to the source code folder. The plugins
may be accompanied by third party libraries and test cases.

An application that has been used heavily in the last couple of years is
the above mentioned export and diff Web service. The Mulan Export plugin
provides an agent (the ExportAgent) that offers the export and diff services to
other agents and through the WebGateway also as a Web service to other clients.
The backend of the export and diff functionality is provided by the respective
Renew plugins (FreeHep Export and ImageNetDiff). Over the last couple of
years the service running as a Mulan system in an instance of Renew has
been constantly available and used, with up-times of several months. These long
lasting running instances of Reference net systems and the high availability of
the services show the feasibility and efficiency of the approach. Now several
instances10 of the export and diff service are running on several servers.

10 A publicly available demo can reached from the Paose home page: http://www.
paose.net.

http://www.paose.net
http://www.paose.net


Renew 2.5 – Towards a Comprehensive Integrated Development 111

5 Conclusion

Renew’s development has been ongoing for almost two decades. It has devel-
oped from a simulator and editor for a single high-level Petri net formalism to an
integrated development environment for Java- and Petri net-based applications.
The Reference net formalism and Renew’s simulator have proven themselves in
various implementations to provide powerful and efficient means to develop and
execute systems that include a strong focus on concurrency. Within the Paose
context distributed, concurrency-aware systems have been implemented with the
Mulan framework extension. In this environment many objectives, such as sup-
port for monitoring or specialized modeling techniques, have been provided on
the grounds of the Renew framework and were only possible through Renew’s
plugin architecture.

Today Renew exists in various configurations. Since the possibilities are
growing constantly we are aiming at a product line architecture in order to ease
configuration-intensive work and endorse reliable, feature-complete tool sets for
multiple application domains.

Acknowledgment. We thank all developers that participated in the development of
Renew, especially Prof. Dr. Rüdiger Valk, Dr. Daniel Moldt and all of the TGI group
of the Department of Informatics, University of Hamburg.

References

1. Betz, T., Cabac, L., Güttler, M.: Improving the development tool chain in the
context of Petri net-based software development. In: Duvigneau, M., Moldt, D.,
Hiraishi, K. (eds.) Petri Nets and Software Engineering. International Workshop
PNSE 2011, Newcastle upon Tyne, UK, June 2011. CEUR Workshop Proceedings,
vol. 723, pp. 167–178. CEUR-WS.org, June 2011. http://CEUR-WS.org/Vol-723

2. Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications, Agent Technol-
ogy - Theory and Applications, vol. 5. Logos Verlag, Berlin (2010). http://www.
logos-verlag.de/cgi-bin/engbuchmid?isbn=2673&lng=eng&id=

3. Cabac, L., Dörges, T., Rölke, H.: A monitoring toolset for Paose. In: van Hee,
K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 399–408. Springer,
Heidelberg (2008)

4. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling dynamic architectures
using nets-within-nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 148–167. Springer, Heidelberg (2005)

5. Cabac, L., Markwardt, K., Schlüter, J.: ImageNetDiff: finding differences in models.
In: Moldt, D., Ultes-Nitsche, U., Augusto, J.C. (eds.) In: Proceedings of the 7th
International Workshop on Modelling, Simulation, Verification and Validation of
Enterprise Information Systems - MSVVEIS 2009. Conjunction with ICEIS 2009.
Milan, Italy, May 2009, pp. 156–161. INSTICC PRESS, Portugal (2009)

6. Cabac, L., Schlüter, J.: ImageNetDiff: a visual aid to support the discovery of dif-
ferences in Petri nets. In: 15. Workshop Algorithmen und Werkzeuge für Petrinetze,
AWPN 2008. CEUR Workshop Proceedings, vol. 380, pp. 93–98. Universität
Rostock, September 2008. http://CEUR-WS.org/Vol-380/paper15.pdf

http://CEUR-WS.org/Vol-723
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2673&lng=eng&id=
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2673&lng=eng&id=
http://CEUR-WS.org/Vol-380/paper15.pdf


112 L. Cabac et al.

7. Duvigneau, M.: Konzeptionelle Modellierung von Plugin-Systemen mit Petrinet-
zen, Agent Technology - Theory and Applications, vol. 4. Logos Verlag, Berlin
(2010)

8. Haustermann, M.: BPMN-Modelle für petrinetzbasierte agentenorientierte Soft-
waresysteme auf Basis von Mulan/Capa. Master thesis, Department of Informatics,
University of Hamburg, Vogt-Kölln Str. 30, D-22527 Hamburg, September 2014

9. Hewelt, M., Wagner, T., Cabac, L.: Integrating verification into the PAOSE app-
roach. In: Duvigneau, M., Moldt, D., Hiraishi, K. (eds.) Petri Nets and Software
Engineering. International Workshop PNSE 2011, Newcastle upon Tyne, UK, June
2011. CEUR Workshop Proceedings, vol. 723, pp. 124–135. CEUR-WS.org, June
2011. http://CEUR-WS.org/Vol-723

10. Kummer, O.: Referenznetze. p. 456. Logos Verlag, Berlin (2002). http://www.
logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&lng=eng&id=

11. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L.: Renew - user guide (Release
2.4.2). In: Faculty of Informatics, Theoretical Foundations Group, University of
Hamburg, Hamburg, January 2015. http://www.renew.de/

12. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

13. Mosteller, D., Cabac, L., Haustermann, M.: Providing petri net-based semantics in
model driven-development for the renew meta-modeling framework. In: Moldt, D.,
Rölke, H., Störrle, H. (eds.) Petri Nets and Software Engineering. International
Workshop, PNSE 2015, Brussels, Belgium, June 22–23, 2015. CEUR Workshop
Proceedings, vol. 1372, pp. 99–114. CEUR-WS.org (2015). http://CEUR-WS.org/
Vol-1372

14. Rölke, H.: Modellierung von Agenten und Multiagentensystemen - Grundlagen und
Anwendungen, Agent Technology - Theory and Applications, vol. 2. Logos Verlag,
Berlin (2004). http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&
id=

15. Valk, R.: Petri nets as token objects: an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

http://CEUR-WS.org/Vol-723
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&lng=eng&id=
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&lng=eng&id=
http://www.renew.de/
http://CEUR-WS.org/Vol-1372
http://CEUR-WS.org/Vol-1372
http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&id=
http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&id=

	Renew 2.5 -- Towards a Comprehensive Integrated Development Environment for Petri Net-Based Applications
	1 Introduction
	2 Objectives
	2.1 History
	2.2 Implementing Petri Net-Based Applications
	2.3 Petri Net-Based, Agent-Oriented Software Engineering
	2.4 PAOSE Meta-Modeling

	3 Highlights and Improvements
	3.1 Functional Features
	3.2 Usability Features
	3.3 IDE Features

	4 Architecture
	5 Conclusion
	References


