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Abstract. A word is called Petri net solvable if it is isomorphic to the
reachability graph of an unlabelled Petri net. In this paper, the class
of finite, two-letter, Petri net solvable words is studied. A linear time,
necessary condition allows for an educated guess at which words are solv-
able and which are not. A full decision procedure with a time complexity
of O(n2) can be built based on letter counting. The procedure is fully
constructive and can either yield a Petri net solving a given word or
determine why this fails. Algorithms solving the same problem based on
systems of integer inequalities reflecting the potential Petri net structure
are only known to be in O(n3). Finally, the decision procedure can be
adapted from finite to cyclic words.

Keywords: Binary words · Labelled transition systems · Petri nets ·
Synthesis

1 Introduction

The relationship between a Petri net and its reachability graph can be viewed
from a system analysis or from a system synthesis viewpoint. In system analysis,
a system could, for instance, be modelled by a marked Petri net whose (unique)
reachability graph serves to facilitate its behavioural analysis [9]. We may get
various kinds of interesting structural results for special classes of Petri nets. For
example, if the given system is described by a marked graph, then its reachability
graph enjoys a long list of useful properties [7]. In system synthesis, a behavioural
specification is typically given, and a system implementing it is sought. For
example, one may try to find a Petri net whose reachability graph is isomorphic to
a given labelled transition system [1]. We may get structural results of a different
nature in this case. For example, [4] describes a structural characterisation of
the class of marked graph reachability graphs in terms of a carefully chosen list
of graph-theoretical properties.
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Region theory [1] establishes an indirect characterisation of the class of Petri
net reachability graphs. This characterisation essentially consists of an algorithm
solving many systems of linear inequalities derived from a given transition system
[5,10]. By its linear-algebraic nature, it provides little insight into the structural
properties of Petri net reachability graphs. The aim of the present paper is to
complement this indirect characterisation by a direct one, and to show that
such a direct characterisation can lead to different, time-efficient, algorithms for
checking synthesisability. However, we shall limit ourselves to a special class of
transition systems, namely to finite, non-branching ones having at most two
edge labels. That is, we study the class of binary, finite or cyclic words (possibly
with some finite initial part). We shall obtain a characterisation of the Petri net
synthesisable ones amongst them, along with corresponding algorithms.

In a first step, we shall develop a necessary criterion that must hold for
finite, binary, synthesisable words. This will frequently allow us to spot non-
synthesisable words in linear time. In a second step, we shall provide charac-
terisations of binary, synthesisable words in the finite as well as in the cyclic
case with a quadratic time complexity, allowing for a faster decision procedure
than via the region based approach. More specifically, the structure of the paper
is as follows. Section 2 contains some basic definitions about labelled transition
systems, Petri nets, and regions. Section 3 describes properties of synthesisable
words leading to a necessary criterion for synthesisability. Sections 4 and 5 char-
acterise synthesisable word in the finite case and in the cyclic case, respectively.
Section 6 compares an implementation of our results with the region based algo-
rithms of Synet [5] and APT [10]. Section 7 concludes the paper.

2 Basic Concepts, and Region-Based Synthesis

2.1 Transition Systems, Words, and Petri Nets

A finite labelled transition system with initial state is a tuple TS = (S,→, T, s0)
with nodes S (a finite set of states), edge labels T (a finite set of letters), edges
→⊆ (S × T × S), and an initial state s0 ∈ S. A label t is enabled at s ∈ S,
denoted by s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through
the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s
to s′ whose edges are labelled consecutively by σ. The set of states reachable
from s is denoted by [s〉. A sequence σ ∈ T ∗ is allowed, or firable, from a
state s, denoted by s[σ〉, if there is some state s′ such that s[σ〉s′. We use
σ|sσ′ as an abbreviation for s0[σ〉s[σ′〉. Two labelled transition systems TS1 =
(S1,→1, T, s01) and TS2 = (S2,→2, T, s02) are isomorphic if there is a bijection
ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all
s, s′ ∈ S1.

A word over T is a sequence w ∈ T ∗, and it is binary if |T | = 2. For a word w
and a letter t, #t(w) denotes the number of times t occurs in w. A word w′ ∈ T ∗

is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w
′u2. A word

w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system
TS(w) = ({0, . . . , n}, {(i − 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).
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An initially marked Petri net is denoted as N = (P, T, F,M0) where P is
a finite set of places, T is a finite set of transitions with P ∩ T = ∅, F is the
flow function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0

is the initial marking (where a marking is a mapping M : P → N, indicating
the number of tokens in each place). A side-place is a place p with p•∩•p = ∅,
where p• = {t ∈ T | F (p, t)>0} and •p = {t ∈ T | F (t, p)>0}. A transition
t ∈ T is enabled at a marking M , denoted by M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t).
The firing of t leads from M to M ′, denoted by M [t〉M ′, if M [t〉 and M ′(p) =
M(p)−F (p, t)+F (t, p). This can be extended, as usual, to M [σ〉M ′ for sequences
σ ∈ T ∗, and [M〉 denotes the set of markings reachable from M . The reachability
graph RG(N) of a bounded (such that the number of tokens in each place does
not exceed a certain finite number) Petri net N is the labelled transition system
with the set of vertices [M0〉, initial state M0, label set T , and set of edges
{(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If a labelled transition system TS is
isomorphic to the reachability graph of a Petri net N , we say that N PN-solves
(or simply solves) TS, and that TS is synthesisable to N . We say that N solves
a word w if it solves TS(w). We frequently identify the states of TS with the
markings of N then, writing e.g. s(p) ≥ F (p, t).

2.2 Basic Region Theory, and an Example

Let a finite labelled transition system TS = (S,→, T, s0) be given. In order to
synthesise – if possible – a Petri net with isomorphic reachability graph, T must,
of course (since we do not consider any transition labels), be used directly as the
set of transitions. For the places, 1

2 ·(|S|·(|S|−1)) state separation problems and
up to |S|·|T | event/state separation problems have to be solved, as follows:

• A state separation problem consists of a set of states {s, s′} with s = s′ where
s and s′ must be mapped to different markings in the synthesised net. Such
problems are always solvable if TS = TS(w) originates from a word w, for
instance by introducing a counting place which has j tokens in state j.

• An event/state separation problem consists of a pair (s, t) ∈ S×T with ¬(s[t〉).
For every such problem, one needs a place p such that M(p) < F (p, t) for the
marking M corresponding to state s, where F refers to the arcs of the hoped-
for net.

For example, in Fig. 1, TS1 is PN-solvable, since the reachability graph of
N1 is isomorphic to TS1. Note that N1 has exactly two transitions a and b,
which is true for any net solving a binary word over {a, b}. By contrast, TS2 is
not PN-solvable. The word abbaa, from which TS2 is derived, is actually one of
the two shortest non-solvable binary words (the other one being baabb, its dual
under swapping a and b).

To see that abbaa (viz., TS2) is not PN-solvable, we may use the following
argument. State s = 2 generates an event/state separation problem ¬(s[a〉), for
which we need a place q whose number of tokens in the marking corresponding
to state 2 is less than necessary for transition a to be enabled. Such a place q
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Fig. 1. TS1 and TS2 correspond to aab and abbaa, respectively. N1 solves TS1. No
Petri net solution of TS2 exists.
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Fig. 2. A place with four arc weights a−, a+, b−, b+ and initial marking m

has the general form shown in Fig. 2. We now show that such a place does not
exist.

In order to present this proof succinctly, it is useful to define the effect E(τ)
of a sequence τ ∈ T ∗ on place q. The effect of the empty sequence is E(ε) = 0.
The effect of a sequence aτ is defined as E(aτ) = (a+−a−)+E(τ), and similarly,
E(bτ) = (b+ − b−) + E(τ). For instance, E(abbaa) = 3·(a+ − a−) + 2·(b+ − b−).
In general, E(τ) = #a(τ) · E(a) + #b(τ) · E(b).

If q (as in Fig. 2) prevents a at the marking corresponding to state 2 in abbaa
(cf. TS2 in Fig. 1), then it must satisfy the following inequalities: a− ≤ m, since
state 0 enables a; a− ≤ m + E(abba), since state 4 enables a; m + E(ab) < a−,
since q prevents a at state 3. Using E(abba) = E(ab) + E(ab), it is immediate to
see that this set of inequalities cannot be solved in the natural numbers.

2.3 Worst Case Complexity of the General Algorithm

In a word of length n, the equation system for a single event/state separation
problem comprises n + 1 inequalities, n for the states 0, . . . , n − 1 and one for
the event/state separation. In binary words, we have n + 2 such problems, one
for every state 0, . . . , n − 1 and two for the last state. A word w of length n is
PN-solvable if and only if all n + 2 systems, each having n + 1 inequalities and
five unknowns a−, a+, b−, b+,m, are solvable in N.

Suppose that we solve this special case (with five unknowns) by Khachiyan’s
algorithm [6]. Solving O(n) systems of inequalities, we may roughly expect a
running time of O(n3).
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3 Necessary Conditions for Solvability

As a first step of characterising solvable words over {a, b}∗, and quoting various
related partial results from [2], we develop a necessary criterion with a linear
time complexity. From this we will get a good idea of how solvable words are
structured and can easily sort out the majority of unsolvable words just by
looking at them.

Proposition 1. [2] Solvability of Subwords.

If w = xvy with x, y ∈ {a, b} is solvable, then xv and vy are also solvable.

The reverse does not hold, of course, otherwise there would be no unsolvable
words at all. With x = y though, solvability can be propagated:

Proposition 2. [2] Solvability of awb from aw and wb.
If both aw and wb are solvable, then awb is also solvable.

This also holds for bw and wa, of course. It is also possible to prefix a solvable
word by its first letter.

Proposition 3. [2] Prefixing Solvable Words by their First Letter.
Let v be a solvable word starting with a letter x ∈ {a, b}. Then, xv is solvable.

An unsolvable word w is minimal if all subwords of w are solvable. For this,
it is sufficient that for w = xvy with x, y ∈ {a, b} both xv and vy are solvable.
So, due to Proposition 2, minimal unsolvable words must start and end with
the same letter. They are also restricted to which subwords aa or bb can be
contained:

Proposition 4. [2] Never aa and bb inside a minimal unsolvable word.
If a minimal non-solvable word is of the form u = aαa, then either α does

not contain the factor (subword) aa or α does not contain the factor bb.

Propositions 3 and 4 together now also suggest a restriction for solvable
words. Solvable words may contain both aa and bb as subwords, but only if one
of these subwords appears at the beginning of the word, created by the prefixing
mechanism of Proposition 3. This is indeed the case:

Proposition 5. Never aa and bb in Solvable Words after Initial a+.
Let w ∈ {a, b}∗ be a solvable word, decomposable into w = anbα with n ≥ 1

and α ∈ {a, b}∗. Then, bα does not contain the factor aa or it does not contain
the factor bb.

Proof: Assume w contains both factors aa and bb in bα. Select “neighboring”
factors aa and bb, such there is no other factor aa or bb in between. Since
neither chosen factor is at the start of the word, w can be decomposed into
w = βabibb(ab)jaaγ or w = βbaiaa(ba)jbbγ with β, γ ∈ {a, b}∗ and i, j ≥ 0.
The neighbors aa and bb have been underlined. W.l.o.g. let us assume the latter
form.
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Let N = (P, T, F,M0) be a Petri net solving w and select states s, s′, and
s′′ such that w = β|s′baia|sa(ba)jb|s′′bγ. Since b cannot fire at s, there must be
a place p ∈ P with s(p) < b− (compare Fig. 2). At s′ and s′′ the transition b
can fire, so s′(p) ≥ b− ≤ s′′(p) holds. As firing a enables b again after s, a must
produce tokens on p and E(a) > 0. Since b does not remain enabled from s′ to s,
it has to consume tokens from p, so E(b) < 0. Computing the token differences
on p between our chosen states we then obtain

0 > s(p) − s′(p) = (i + 1) · E(a) + E(b) and
0 < s′′(p) − s(p) = (j + 1) · E(a) + (j + 1) · E(b).

Comparing the lines gives E(a) > −E(b) > (i+1) ·E(a), which is a contradiction,
i.e. w is not solvable. �� 5

This reduces the potentially solvable words to the regular expression

a∗b+(ab+)∗(a|ε) | b∗a+(ba+)∗(b|ε) | ε,

where in the first subexpression aa may only occur at the beginning of the word
and in the second one the roles of a and b are switched. The following results
are shown for the first expression only, but hold for both, of course.

If we compare two different blocks of the form ab+ in the regular expression
we find that their lengths must be nearly equal.

Lemma 1. Block Lengths Differ by at most 1.
Let w ∈ a∗b+(ab+)∗(a|ε) be a word that contains both babia and abbib with

i ≥ 1 as subwords. Then, w is not solvable.

Proof: Consider first the case w = α|sbabi|s′(abbi)kabbi|s′′bβ with α, β ∈
{a, b}∗. If there are more or less than i + 1 b’s in any of the intermediate k ≥ 0
blocks we can choose factors babia and abbib that are closer together (possibly
even having an a in common). Assume p to be a place of a Petri net solving w
with s′(p) < b− ≤ s(p), i.e. E(babi) = s′(p) − s(p) < 0. Due to Parikh equiva-
lence, E(babi) = E(abbi), we know s′′(p) = s′(p) + (k + 1) ·E(abbi) < s′(p) < b−,
which is a contradiction to b being enabled at s′′.

The second case, w = α|sabbibj(babi)k|s′babi|s′′aβ with α, β ∈ {a, b}∗ and
j, k ≥ 0, we also obtain by choosing the factors – first abbib, then babia this time
– as close together as possible. Assume p to be a place with s′(p) < a− ≤ s′′(p),
then with s′′(p)−s′(p) = E(babi) = E(abbi) > 0 and E(b) > 0 (since firing b at s′

enables a), we obtain s(p) = s′(p) − k ·E(babi) − j ·E(b) −E(abbi) < s′(p) < a−.
This contradicts a being enabled at s. �� 1

Solvable words must then fulfill a kind of balancing property where the blocks
of b’s must almost all have almost the same length.



Characterising Petri Net Solvable Binary Words 45

Proposition 6. Balancing Property.

Let w = akbx1abx2 . . . abxn with k ≥ 0, n ≥ 2, x1, . . . , xn ≥ 1. Then, the
following hold:

1. w solvable ⇒ xj − 1 ≤ xi for 2 ≤ i ≤ n − 1, 2 ≤ j ≤ n.
2. wa solvable ⇒ xj − 1 ≤ xi for 2 ≤ i, j ≤ n.
3. If k > 0 the above implications also hold for j = 1.

Proof: Assume there are i and j such that one of the above implications does
not hold. Then, w (or wa) contains the subwords babxia (since i ≥ 2) as well as
abbxib as a (possibly trivial) prefix of abxj . Lemma 1 shows that the word is not
solvable, yielding a contradiction. �� 6

The first block of b’s can have arbitrary length (e.g., both abab9ab9ab9a and
b9abbabbabba are solvable). The last block of b’s cannot be longer, but it can be
much shorter than the average b-block if no final a follows; e.g. ab9ab9ab9ab is
solvable while abababab9 is not. In the former case, we may even append some
more b’s.

Lemma 2. Prolonging the Last b-Block.
Let w = akbx1abx2a . . . abxn be a solvable word with k ≥ 0 and xi − 1 > xn

for all 1 ≤ i < n. Then, w′ = akbx1abx2a . . . abxn+1 is solvable.

Proof: Consider the case k ≤ 1 first. Assume N = (P, T, F,M0) to be a Petri net
solving w = akbx1abx2 . . . abxi−1 |s′abxi−1|s′′ba . . . b|sabxn |f with a place p that
prevents b at some s′ before s. Then, s′(p) < b− and s′′(p) = s′(p)+E(abxi−1) ≥
b−, i.e. E(abxi−1) > 0. With s(p) ≥ b+ (b fires directly before s) and E(b) < 0
(b fires directly before s′), we conclude f(p) = s(p) +E(abxn) ≥ b+ +E(abxn) =
b+ + E(abxi−1) − E(bxi−1−xn) > b+ − (xi − 1 − xn) · E(b) ≥ b+ − E(b) = b−.
Therefore, a place p preventing b at such s′ cannot prevent b at the end of w.
At s, b can be prevented by a new place q with b− = 1, b+ = 0, a− = 0,
a+ = min{x1, . . . , xn−1}, and an initial token count of (

∑n−1
i=1 xi) − (n − 2 +

k) · min{x1, . . . , xn−1} (which is non-negative). Then, s(q) = 0 and f(q) =
s(q) + a+ − xn > 0. A place preventing a (except after the last a) must have
E(b) > 0, so it cannot prevent b at the end either. After the last a, a new place
with #a(w) initial tokens, a− = 1, and a+ = 0 can disable any further a. With
these modifications, a place preventing b at the end of the word w is not needed
to prevent any other occurrence of a or b any more. We can now delete all places
preventing b at the end of w from N and create a new place with 1 +

∑n
i=1 xi

tokens, b− = 1, and b+ = 0, to prevent b after w′ is complete. The modified
Petri net solves w′.

In case k > 1, we cut off all leading a’s but one, apply the above proof, and
then reprepend the missing a’s using Proposition 3. �� 2

Deleting one b from each block of b’s will also not turn a word unsolvable.
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Lemma 3. Length Reduction of b-Blocks.
Let w = akbx1abx2a . . . abxnaj with j ∈ {0, 1}, k ≥ 0, and x1, . . . , xn ≥ 2 be

a solvable word. Then, also w′ = akbx1−1abx2−1 a . . . abxn−1aj is solvable.

Proof: For k > 1, cut off all leading a’s but one, apply the following proof for
k = 1, and reprepend the missing a’s using Proposition 3. So, let now k ≤ 1. In
case j = 1, we apply the proof to the word wb [and w′], which by Lemma 2 and
Proposition 1 is solvable if and only if w is. If k = 0 we use the words w and
bw′, where k = 0 and j = 1 are, of course, combinable, and w′ is solvable if bw′

is. After applying the above modifications, note that with the homomorphism
h(a) = ab and h(b) = b, we get h(w′) = w.

Let N be a Petri net solving w. For each place p with arc weights a+, a−,
b+, and b− let ip := max{0,−a+ − E(b)} and define a place p′ for a new Petri
net N ′ with M ′

0(p
′) := M0(p) + ip, b′

− := b− + ip, b′
+ := b+ + ip, a′

− := a− + ip,
and a′

+ := a+ + E(b) + ip. In all cases, a′
+ − a′

− = E(ab) and b′
+ − b′

− = E(b)
and all new arc weights (especially a′

+) are non-negative. By induction over the
length of prefixes of w′, the state reached in N ′ after some prefix v of w′ is the
state reached in N after the corresponding prefix h(v) of w plus the additional
(ip)p. We conclude that w′ and only w′ can fire in N ′, i.e. N ′ solves w′. �� 3

This lemma suggests that comparing the lengths of b-blocks are more impor-
tant for solvability than computing their absolute lengths. Our necessary crite-
rion, being a summary of the results of this section, establishes this intuition
more formally as follows:

Theorem 1. Linear Time Necessary Criterion.

If a word w ∈ {a, b}∗ is solvable, it is the empty word w = ε or it
has the form w = akbx1abx2a . . . abxnaj or w = bkax1bax2b . . . baxnbj, where
j, k, n, x1, . . . , xn ∈ N with j ≤ 1, n ≥ 0 and there is some x ∈ N such
that x2, . . . , xn−1 ∈ {x, x + 1} and xn ≤ x + 1. Furthermore, if j > 0 also
xn ∈ {x, x + 1}, and if k > 0 also x1 ≤ x + 1.

The criterion is in linear time as we can detect the structure of a word w
by going over it once from left to right. Remembering the block lengths that
occurred so far allows us to check if the next block also has a valid length.

What we do not know so far is when a block may have length x + 1 in the
criterion, and when only length x is allowed. E.g., abababbabba, ababbababba,
ababbabbaba, abbababbaba, and abbabababba are all solvable while abbabbababa is
not. One could suspect that the high number of early b’s makes the latter word
unsolvable. This will be made precise in the following section.

4 Characterisation of Solvable Binary Words

For a decomposition w = u|sxv with x ∈ {a, b}, let us call y ∈ {a, b} with y = x
separable at s iff we can construct a Petri net with transitions a and b and one
place p such that w can be fired completely and at s, y is not enabled.
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Theorem 2. Characterisation of Solvable Words.

A word w ∈ {a, b}∗ is solvable if and only if the following formula holds for
x = a ∧ y = b as well as for x = b ∧ y = a:

∀α, β, γ, δ : (w = αyβxγyδ ⇒ #y(yβ) · #x(xγ) > #x(yβ) · #y(xγ)).

Proof: We need to show that for any decomposition w = u|sxv with x ∈ {a, b},
the other letter y = x, y ∈ {a, b} is separable at s if and only if the above
formula holds for all decompositions of u = αyβ and v = γyδ. We outsource this
proof to Lemma 4. Disabling a and b at the end of the word is trivially done by
putting |w| tokens on a new place, from which each transition takes one token
upon firing. �� 2

Lemma 4. Characterisation of separable states.

For a word w ∈ {a, b}∗ let w = u|sxv be an arbitrary decomposition with
x ∈ {a, b}. Let y ∈ {a, b} with y = x be the other letter in our alphabet. Then, y
is separable at s if and only if

∀α, β, γ, δ : (w = αyβ|sxγyδ ⇒ #y(yβ) · #x(xγ) > #x(yβ) · #y(xγ)).

Proof: “⇒”: Let p be a place (of some Petri net) enabling y at s′ and s′′ but
not at s in a decomposition w = α|s′yβ|sxγ|s′′yδ. Since p disables y at s but not
at s′′, the number of tokens on p must increase from s to s′′, and also from s to
the first y after s, where only letters x are present. Thus, x effectively increases
the token count on p, i.e. E(x) > 0.

Assume firing y would not lower the token count on p. Since y is enabled
at s′, it will also be enabled at every state afterwards, even at s. So, p would
not disable y at s. We conclude that y effectively removes tokens from p, i.e.
E(y) < 0.

Since y can fire at s′ but not at s, tokens are consumed by yβ, i.e.
#y(yβ)·(−E(y)) > #x(yβ)·E(x). From s to s′′, for analogous reasons, tokens are
produced on p, so #x(xγ) ·E(x) > #y(xγ) ·(−E(y)). Multiply the first inequality
by #x(xγ) and the second one by #x(yβ), then divide both by −E(y) to make
them comparable:

#y(yβ) · #x(xγ) > #x(yβ) · E(x)
−E(y)

· #x(xγ) > #x(yβ) · #y(xγ).

“⇐”: Let S′ := {s′ | ∃α, β : w = α|s′yβ|sxv} and S′′ := {s′′ | ∃γ, δ : w =
u|sxγ|s′′yδ}. Denoting by #x(s′, s) the number of occurrences of x between states
s′ and s (and analogously for y and for pairs of states (s, s′′)), let us define ratios
of y and x in Q ∪ {−∞,∞} via

rmax(s) := min
s′∈S′

{
#y(s′, s)
#x(s′, s)

}

and rmin(s) := max
s′′∈S′′

{
#y(s, s′′)
#x(s, s′′)

}

.

In case S′ = ∅ we assume the minimum rmax(s) to be ∞ as a default value,
if S′′ = ∅ the maximum rmin(s) will be −∞. #x(s, s′′) and #y(s′, s) cannot be
zero (as there is an x directly after s and a y after s′ and s′′), so no ambiguos
fraction 0

0 can occur. If #x(s′, s) is zero, we assume the (obvious) default value
of ∞ for this fraction. See Fig. 3 for a visualisation.
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s

1/0
2/0

0/1
1/2

2/2
rmax(s) = ∞ rmin(s) = 2/2

0

1
2 3 4 5 6 7 8 9a

a b b a b a b b

TS w = aabbababb

select 3
2 ∈]2/2,∞[

(2 − 1 tokens on p at s)

a b

p

−1
3 2

avoid neg. init.marking:

a b

p
3

3

1

Fig. 3. TS corresponding to aabbababb with a state s at which b must not occur. We
compute maximal/minimal b/a-ratios rmin(s)/rmax(s) for words starting with b ending
at s and starting at s ending in front of a b, respectively. The production/consumption
ratio for a place p in a Petri net prohibiting b at s must fall into the open interval
]rmin(s), rmax(s)[. A loop around b can be added to prevent a negative initial marking.

We now show that rmax(s) > rmin(s). This is trivial in case one of the two
assumes its default value ∞ or −∞. Otherwise, for all decompositions w =
α|s′yβ|sxγ|s′′yδ with s′ ∈ S′ and s′′ ∈ S′′, we get #y(yβ) · #x(xγ) > #x(yβ) ·
#y(xγ). We now select those s′ ∈ S′ and s′′ ∈ S′′ that yield the ratio values
rmax(s) and rmin(s) in the above definitions, respectively. For these two states
we obtain:

rmax(s) =
#y(s′, s)
#x(s′, s)

=
#y(yβ)
#x(yβ)

>
#y(xγ)
#x(xγ)

=
#y(s, s′′)
#x(s, s′′)

= rmin(s).

We now create a Petri net with two transitions x and y and a single place p
that will disable y at s but not at any other state in S′ ∪ S′′. In a first step, let
us choose arc weights y− ∈ N

+ (from p to y) and x+ ∈ N
+ (from x to p) such

that
rmax(s) >

x+

y−
> rmin(s),

which is obviously possible; compare Fig. 3. Furthermore, let us assume there
are y− − 1 tokens on p at state s, so p disables y at s. Choose any state s′ ∈ S′,
then

#y(s′, s)
#x(s′, s)

≥ rmax(s) >
x+

y−
.

In case #x(s′, s) > 0, we can multiply with this value and with y− to obtain

#y(s′, s) · y− > #x(s′, s) · x+.
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In case #x(s′, s) = 0 the above inequality is trivially true, since s′ is imme-
diately followed by a y. The inequality shows that there are more tokens on p
in s′ than in s. Due to our choice of y− − 1 tokens for s, y is not disabled at s′

by p.
Analogously, for a state s′′ ∈ S′′, we have

x+

y−
> rmin(s) ≥ #y(s, s′′)

#x(s, s′′)

and by multiplying with the non-zero denominators we get

#x(s, s′′) · x+ > #y(s, s′′) · y−.

So, at s′′ there are more tokens on p than at s, and p cannot disable y at s′′.
It remains to be shown that there are always at least zero tokens on p at any

possible state. This is already known for all states from S′ ∪ S′′ (having at least
y− tokens) and for all states ŝ immediately following a state from S′ ∪ S′′ (only
y− tokens are consumed). Since from such an ŝ until the next state in S′ ∪ S′′

only x occurs in the word w, the number of tokens will only be increased. So,
all states beginning with the first state from S′ ∪ S′′ in the word w are covered.
Before this first state, only letters x occur in w, so it suffices to check if the
initial state of the Petri net has at least zero tokens on p.

If the initial state s0 is in S′ ∪ S′′, we are done. Otherwise, we compute the
initial number of tokens via s(p) = y− − 1 in w: n := y− − 1 + #y(s0, s) · y− −
#x(s0, s) · x+. Only in case of an initial marking n < 0 we have a problem.
This can be easily solved, though, by creating an arc from y to p with weight
F (y, p) := −n and replacing the values for the reverse arc weight and the initial
marking by F (p, y) := y− −n and M0(p) := n−n = 0. The additional −n tokens
are never used up but are always needed for y, so they will neither allow any
additional firing of y nor prevent any required one. �� 4

Proposition 7. Shared Separating Places.

Let w = u|sxv|ŝxz be a solvable word with x ∈ {a, b} and with two states s,
ŝ after which the same letter x occurs. Then, for s and ŝ, we can use the same
place for the separation if and only if the open intervals ]rmin(s), rmax(s)[ and
]rmin(ŝ), rmax(ŝ)[ (from the proof of Lemma 4) have a non-empty intersection.

Proof: The first direction of the proof of Lemma 4 shows that the arc weight
ratio x+

y−
of the occurring letter x compared to the separation letter y must lie

inside the open interval. If one separation place is enough for both states, the arc
weight ratio must fall into both open intervals. Similarly, if the intervals have a
non-empty intersection, the arc weight ratios in the second part of the proof of
Lemma 4 can be chosen identical, so the same place is generated for both states.
The different separation states may require a different number of loops at y to
prevent a negative initial marking. In this case, the higher number of loops will
always suffice. �� 7
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Let us take a look at the word w = aabbababb from Fig. 3 again. For states
followed by an a we get rmin(0) = max{ 0

2 , 1
2 , 2

3 , 3
4 , 4

4} = 1, rmax(0) = ∞ with
the interval ]1,∞[, rmin(1) = max{ 0

1 , 1
1 , 2

2 , 3
3 , 4

3} = 4
3 , rmax(1) = ∞ with the

interval ]43 ,∞[, rmin(4) = max{ 0
1 , 1

2 , 2
2} = 1, rmax(4) = min{ 2

0 , 1
0} = ∞ with

]1,∞[, and rmin(6) = max{ 0
1 , 1

1} = 1, rmax(6) = min{ 3
1 , 2

1 , 1
0} = 3 with ]1, 3[.

The value 3
2 lies in all open intervals, so we get one place p with E(a) = 3 and

E(b) = −2 and at most 2−1 = 1 tokens on it at each of the four states. Backward
calculation of the initial state gives 1, −2, −1, and −2 tokens for the states 0,
1, 4, and 6, respectively. We set b− = 2 + 2, b+ = 2 to obtain zero tokens in
the initial marking. For states followed by b we have rmin(2) = max{ 0

2 , 1
3} = 1

3 ,
rmax(2) = min{ 2

0 , 1
0} = ∞, rmin(3) = max{ 0

1 , 1
2} = 1

2 , rmax(3) = min{ 2
1 , 1

1} =
1, rmin(5) = max{ 0

1} = 0, rmax(5) = min{ 3
2 , 2

2 , 1
0} = 1, rmin(7) = −∞,

rmax(7) = min{ 4
3 , 3

3 , 2
1 , 1

0} = 1, rmin(8) = −∞, rmax(8) = min{ 4
4 , 3

4 , 2
2 , 1

1} = 3
4 .

We are inside all intervals if we choose 2
3 ∈]12 , 3

4 [ for a new place q with E(b) = 2,
E(a) = −3, and at most 3 − 1 = 2 tokens at any of these states. We compute
for the initial marking 8, 6, 7, 7, 6 tokens (for the five states), so by the proof of
Lemma 4 six initial tokens are enough to enable a where it occurs in w, but not
anywhere else. Adding a place f with 9 tokens to prevent a and b at the end, we
obtain the net in Fig. 4.

a

b

q6p f9

3

4

2

2
3

Fig. 4. A Petri net solving the word aabbababb

In all examples we examined so far, all the open intervals ]rmin(s), rmax(s)[,
for the same separation letter, had a common intersection. With one additional
place needed to prevent a and b at the end of a word, we therefore believe:

Conjecture 1. Solutions for Binary Solvable Words need ≤3 Places.
For any solvable word w ∈ {a, b}∗ there is a Petri net with at most three

places solving it. �� Conjecture 1

The following algorithm for the Petri net synthesis for a finite word w is in
O(|w|2):
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Algorithm 1. ABSolve
Input: w ∈ {a, b}∗

Output: A Petri net N = (P, {a, b}, F, M0) solving w if it exists
P ← ∅, F ← ∅, M0 ← ∅
for i = 0 to |w| − 1 do {separation point s}

rmin[i] ← −∞, rmax[i] ← ∞ {defaults}
N [0] ← 0, N [1] ← 0 {for counting a’s and b’s}
if w[i] = ′a′ then R ← 1 else R ← 0 {fraction selector}
for j = i − 1 down to 0 do {compute rmax}

if w[j] = ′a′ then N [0] ← N [0] + 1 else N [1] ← N [1] + 1

if w[j] �= w[i] and rmax[i] > N [R]
N [1−R]

then rmax[i] ← N [R]
N [1−R]

endfor
N [0] ← 0, N [1] ← 0
for j = i + 1 to |w| − 1 do {compute rmin}

if w[j − 1] = ′a′ then N [0] ← N [0] + 1 else N [1] ← N [1] + 1

if w[j] �= w[i] and rmin[i] < N [R]
N [1−R]

then rmin[i] ← N [R]
N [1−R]

endfor
if rmin[i] ≥ rmax[i] then return {unsolvable}

endfor
S ← {0, . . . , |w| − 1} {unprocessed intervals}
while S �= ∅ do

choose I ⊆ S with |{w[i]|i ∈ I}| = 1 and
⋂

i∈I ]rmin[i], rmax[i][ �= ∅
S ← S\I
choose m

n
∈ ⋂i∈I ]rmin[i], rmax[i][

P ← P ∪ {pI}
� ← w[min I] {doesn’t matter which i ∈ I}
if � = ′a′ then F (a, pI) ← m, F (pI , b) ← n else F (b, pI) ← m, F (pI , a) ← n
compute the minimal M0(pI) ∈ Z for i ∈ I from M(pI) = n − 1

{via backward firing M0[w[0] . . . w[i − 1]〉M}
if M0(pI) < 0 and � = ′a′ then

F (b, pI) ← F (b, pI) − M0(pI), F (pI , b) ← F (pI , b) − M0(pI), M0(pI) ← 0
if M0(pI) < 0 and � = ′b′ then

F (a, pI) ← F (a, pI) − M0(pI), F (pI , a) ← F (pI , a) − M0(pI), M0(pI) ← 0
endwhile
return (P, {a, b}, F, M0)

Note that the first part (with the for-loops) is obviously quadratic, and the
while-loop is run two times if Conj. 1 holds and at most |w| times otherwise.
For the choice of I, select one interval and intersect consecutively with any other
interval unless the intersection would become empty, resulting in O(|w|) time.
The choice of m

n can be done in constant time unless some “optimal” value is
sought. The computation of M0(pI) by backward firing is in O(|w|). So, overall,
the while-loop is in O(|w|2) in the worst case.

For an enumeration of all solvable words (ordered by length) without syn-
thesising Petri nets, we would need to remember all solvable words of the same
length and their rmax[i]-values (in a breadth-first manner). If we append a letter
x to some word w, all comparisons of rmin and rmax for wx have already been
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done when we inspected w, except (possibly) for the comparison of rmax[i] with
the ratio of the subword from position i to |wx| − 1, for each i. Starting with
i = |wx| − 1 and counting down, these comparisons can be done in linear time.
So our enumeration takes at most O(|w|) time per solvable word w.

The algorithm ABSolve can be adapted for k-bounded Petri nets (where in
every reachable marking every place has at most k tokens). Note that when
choosing m

n , both m ≤ k and n ≤ k must hold, so the number of options does
not depend on |w|. We need to check, though, if the created place could have
more than k tokens on it (in linear time for fixed m, n by “firing” the word
and computing the maximal token difference). Unluckily, it is possible that the
intersection of intervals of the form ]rmin(s), rmax(s)[ does not allow for a valid
choice of m and n while there are valid choices for each interval separately. So, if
we create one place for each interval we could do the second half of ABSolve in
O(k2 · |w|2) (the first half remaining unchanged), but an optimal solution with
as few places as possible is much harder to gain.

5 Cyclic Solvable Words

A word w = t1 . . . tn (with ti ∈ T ) is cyclic solvable if the transition system
TScyc(w) = ({0, . . . , n}, {(i − 1, ti, i) | 0 < i < n ∧ ti ∈ T} ∪ {(n, tn, 0)}, T, 0) is
solvable. TScyc(w) represents the infinite word wω. A Petri net solving TScyc(w)
reproduces its initial marking by firing w and allows for the (infinite) firing of wω.

Theorem 3. Characterisation of Cyclic Solvable Binary Words.

A word w ∈ {a, b}+ is cyclic solvable if and only if ∀x, y ∈ {a, b}∀α, β, γ, u, v:

(x = y ∧ w = uv ∧ vu = xαyβ) ⇒ #x(xα) · #y(w) > #y(xα) · #x(w).

Proof: “⇒”: Let N be the Petri net solution for w. Due to the reproduction
of the initial marking we can fire w arbitrarily often, i.e. for ww = uvuv we
can investigate the decomposition of vuvu = xα|s′yβ|sxα|s′′yβ. Looking at the
subword from s′ to s′′, by Lemma 4 we know #y(yβ)·#x(xα) > #x(yβ)·#y(xα).
Since #y(w) = #y(xα) + #y(yβ) and #x(w) = #x(xα) + #x(yβ), the ratio of
y to x (∈ Q ∪ {∞}) in w must lie between those of xα and yβ:

#y(yβ)
#x(yβ)

>
#y(w)
#x(w)

>
#y(xα)
#x(xα)

.

The latter inequality completes this direction of the proof.
“⇐”: Consider a decomposition of the ‘rolled out’ version wω of w

. . . |s′ŵi|ŝ′yβ|sxα|ŝ′′w̃j |s′′y . . .

where ŵ = yβγ and w̃ = δxα (with some γ, δ ∈ {a, b}∗) have the same Parikh
vector as w and i, j ≥ 0. Note that xα and yβ may each have a length up
to |w| − 1, so they might not add up to w. If we show that all possible finite
subwords from some s′ to s′′ around our separation point s fulfill the condition
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of Lemma 4, the lemma is applicable with the result of y being separable at s.
Since s is chosen arbitrarily, the infinite word wω is solvable and thus w is cyclic
solvable.

If xα is a factor in w, we know #x(xα) ·#y(w) > #y(xα) ·#x(w). If xα = uv
is distributed such that w = vyγu, we come to the same conclusion by using the
rolled version uvyγ in the precondition. For yβ, consider the rolled version xγyβ
of w (with γ chosen accordingly). We then know #x(xγ)·#y(w) > #y(xγ)·#x(w)
and conclude that the ratio of x and y in w must be between those of xγ and
yβ, i.e.

#y(yβ)
#x(yβ)

>
#y(w)
#x(w)

>
#y(xγ)
#x(xγ)

.

Overall, we get
#y(yβ)
#x(yβ)

>
#y(w)
#x(w)

>
#y(xα)
#x(xα)

,

which is the precondition for Lemma 4 at ŝ′ and ŝ′′. We can now argue that

#y(yβ)
#x(yβ)

>
#y(ŵyβ)
#x(ŵyβ)

>
#y(w)
#x(w)

(and analogously for xα and xαw̃). Just note that ŵ and w have the same
Parikh vector, so the same number of x and y in it. The argument can be
applied repeatedly until ŵi and w̃j are reached and we get

#y(ŵiyβ)
#x(ŵiyβ)

>
#y(w)
#x(w)

>
#y(xαw̃j)
#x(xαw̃j)

.

So, the precondition for Lemma 4 is fulfilled for arbitrary s′ and s′′ that are
followed by y, and by arbitrary s followed by x. Lemma 4 is applicable and y is
separable at s. This concludes the proof. �� 3

Note that with increasing i and j the ratios of y and x in the words ŵiyβ and
xαw̃j converge against #y(w)

#x(w) (without ever reaching it). Thus, the open interval
in Lemma 4 from which we can choose the arc weight ratio for the place p to be
created turns into a single point #y(w)

#x(w) – independently of the separation point,
as long as we prevent the same transition y. We conclude:

Proposition 8. Nets for Cyclic Solvable Words.

If w ∈ {a, b}+ is cyclic solvable, there is a Petri net solving it that has at
most two places. The arc weights of these places are determined by the ratios
#a(w)
#b(w) and #b(w)

#a(w) , respectively.

Take the word w = ababbab as an example. We check prefixes ending before
some b first. The a

b -ratio must be better than in w, i.e. >3
4 . This is true for

a (∞), aba (2), abab (1), and ababba (1). Then, rotate the front a to the end
(babbaba) and check again (now for the b

a -ratio >4
3 , and prefixes ending before

an a): b (∞), babb (3), and babbab (2). We continue until we end up rotating back
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to w. Here, everything is ok and w is cyclic solvable. The Petri net solving it is
depicted in Fig. 5. Note, however, that at this point of the development, we do
not know about its initial marking; it is only the next proposition which allows
us to compute it.

a

b

p2p1 5

4

33

4

Fig. 5. A Petri net solving the word (ababbab)ω

Let us call a word w ∈ {a, b}+ minimal cyclic solvable if it is cyclic solvable
and there is no shorter word v, |v| < |w|, with vω = wω.

Proposition 9. Token Count for Cyclic Solvable Words.

Let w ∈ {a, b}+ be minimal cyclic solvable. There is a Petri net N =
({p1, p2}, {a, b}, F , M0) solving wω such that for all M ∈ [M0〉, M(p1) +
M(p2) = |w| − 1.

Proof: From Proposition 8 we have a Petri net solution with two places and
two transitions and know that we may choose arc weights F (p1, a) = F (a, p2) =
#b(w) and F (p2, b) = F (b, p1) = #a(w). Thus, ∀M ∈ [M0〉: M(p1) + M(p2) =
M0(p1) + M0(p2). Let w[i] be the ith letter of w and let Mi markings with
Mi−1[w[i]〉Mi for 1 ≤ i ≤ |w|. Then, M0 = M|w| and due to minimal cyclic
solvability of w, Mi = Mj for 0 ≤ i < j < |w| (otherwise, vω = wω for some
rotation v of w[i+1] . . . w[j]). We conclude |[M0〉| = |w|. Since |P | = 2, there are
at most M0(p1)+M0(p2)+1 reachable states in N , i.e. M0(p1)+M0(p2) ≥ |w|−1.
Assume, n := M0(p1) + M0(p2) ≥ |w|. Then, markings (#b(w) + k,#a(w) + 
)
with k, 
 ≥ 0 must be unreachable as they allow firing of both transitions. The
remaining possible markings (0, n), . . ., (#b(w) − 1, n − #b(w) + 1) and (n, 0),
. . ., (n − #a(w) + 1,#a(w) − 1) are exactly the |w| = #a(w) + #b(w) markings
reachable in N . Now, (0, n)[b〉(#b(w), n − #b(w)) would reach an unreachable
marking, a contradiction. Thus, M0(p1) + M0(p2) = |w| − 1. �� 9

Algorithm 2 for cyclic solving of a word w is obviously in O(|w|2).
Lemma 5. Solvable Binary Words of the Form vwω.

Let v ∈ {a, b}+ and w ∈ {a, b}+\(a+ ∪ b+). The infinite word vwω is solvable
if and only if w is cyclic solvable and v is a postfix of wi for some i ≥ 1.

Proof: “⇒”: For arbitrary late parts of vwω, Lemma 4 results in the same
conditions as for wω, i.e. if vwω is solvable by N = ({p1, p2}, {a, b}, F,M0), so is
wω (possibly with a different initial marking). W.l.o.g. let w be minimal cyclic
solvable (otherwise rewrite vwω accordingly). If v is not a postfix of wi (with
i such that |v| ≤ |wi|), we find u, x, y with (w.l.o.g.) v = xau and wi = ybu,
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Algorithm 2. ABCycSolve
Input: w ∈ {a, b}+

Output: Petri net solving wω if it exists
compute W [0] ← #a(w), W [1] ← #b(w)
m0 ← 0, m ← 0 {tokens available for a}
for i = 0 to |w| − 1 do {rotations of w}

v ← w[i] . . . w[|w| − 1]w[0] . . . w[i − 1]
if v[0] = ′a′ then R ← 0 else R ← 1 {fraction selector}
N [0] ← 0, N [1] ← 0 {for counting a’s and b’s}
for j = 0 to |v| − 1 do {prefixes of v}

if v[0] �= v[j] and N [R] ∗ W [1 − R] ≤ W [R] ∗ N [1 − R]
then return {unsolvable}

if v[j] = ′a′ then N [0] ← N [0] + 1 else N [1] ← N [1] + 1
endfor
if v[0] = ′a′ then m ← m − W [1] else m ← m + W [0] {fire}
if m < 0 then m0 ← m0 − m, m ← 0

endfor
F (p1, a) ← #b(w), F (a, p2) ← #b(w), F (p2, b) ← #a(w), F (b, p1) ← #a(w)
return ({p1, p2}, {a, b}, F, {p1 → m0, p2 → |w| − 1 − m0})

and M0[xa〉M [uyb〉M for some marking M . Since w contains an a and a b,
w.l.o.g. p1 receives tokens from b and delivers to a, and p2 covers the other
direction. Thus, M(p1) + M(p2) ≥ F (b, p1) + F (a, p2) = #a(w) + #b(w) = |w|,
contradicting Proposition 9.

“⇐”: If v is a postfix of wi we can rewrite vwω as uω with u and w being
rotations of each other, and thus having the same Petri net solving them by
Theorem 3, differing only at the initial marking. �� 5

So, words vwω with #a(w) > 0 < #b(w) are solvable only if they can be
rewritten as uω. Checking words in which w contains only one letter, we get:

Lemma 6. Solvable Binary Words of the Form vaω.
Let v ∈ {a, b}+. The infinite word vaω is solvable if and only if v ∈ b∗a∗.

Proof: “⇐”: If #b(v) > 0, the Petri net N = ({p1, p2}, {a, b}, F,M0) with
F (p1, a) = F (a, p1) = #b(v), F (p2, b) = 1 = F (b, p1), M0(p2) = #b(v), and
M0(p1) = 0 solves vaω. With #b(v) = 0, the trivial Petri net (∅, {a}, ∅, ∅) is a
solution.

“⇒”: Assume v /∈ b∗a∗, then a decomposition vaω = u|sa|s′b|s′′aω exists. A
place p preventing a at s′ exists with s′(p) − s(p) = E(a) < 0. Thus, a cannot
fire infinitely often at s′′. �� 6

Summing up these lemmas, we obtain the following theorem for words that
consist of a finite prefix and a cyclic remainder.

Theorem 4. Solvable Cyclic Binary Words with a Prefix.
A word vwω with v, w ∈ {a, b}∗ is solvable if and only if w = ε or vwω can

be rewritten as a cyclic solvable word uω or it has the form a+bω or b+aω.
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6 Experimental Results

In an implementation of the general synthesis algorithm using the region-based
approach, it is very likely that one of the freely available ILP solvers is employed.
Since such solvers usually implement the simplex algorithm, our theoretical con-
siderations of Sect. 2.3 are of limited practical value and need to be comple-
mented by benchmarks. In particular, while the simplex algorithm can have
exponential run times, it frequently allows a system of linear equations to be
solved in linear time, which is much better than Khachiyan’s worst case com-
plexity.

To see how our algorithm fares compared to the region-based approach, we
used the tools Synet and APT, both of which can synthesise Petri nets, and
let all three run on the same computer. APT and our algorithm ABSolve have
been implemented in Java while Synet was written in OCaml, which is known to
produce efficient code. For each single test that was done we randomly generated
4000 words meeting certain criteria and fed them to all tools (including a pseudo-
tool “no-op” doing virtually nothing), trying to synthesize the whole set of words.
From the composite result we computed the average run time per word.

We made tests for words in (a|b)x with a fixed word length x ∈ {1, . . . , 700},
i.e. 700 tests times 4000 words per tool, and again for words from (ab|abb)x,
where we expected a higher probability for solvable words. (Note that for x = 1
randomisation means we tested the words a and b each about 2000 times, but
e.g. at x = 50 it is extremely unlikely that we tested the same word twice.) Fig. 6
(upper left) shows the results for (a|b)x on a logarithmic time scale. ABSolve is
about a factor 103 faster than APT and Synet, and by the same factor slower
than “no-op”. In the upper right we normalised all curves by dividing all values
of each curve by its value at x = 350. Due to the linear time scales we can see that
ABSolve and APT both seem to have run time O(n) while Synet shows a clearly
parabolic curve, i.e. O(nk) with k > 1. The lower left part of the figure shows the
results for (ab|abb)x. The times are higher than for (a|b)x, but this seems to be
mostly due to the increased word length. We then tried to compare random sets
of solvable words with sets from all words. From about x = 40 upwards it takes
a lot of time to randomly generate solvable words (by randomly creating words
and then picking the solvable ones) as solvable words become scarce. The lower
right part of the figure shows that solvable words take distinctly more time with
APT or ABSolve than arbitrary ones. This is the result of quick fail strategies in
both algorithms (we stop checking at the first unsolvable system of equations or
the first empty open interval, respectively). It also explains the linear run time
for ABSolve and APT (we expect at least quadratic for solvable words) and the
visible hook at the beginning of the curve for ABSolve in the other three pictures.
Synet has identical times for solvable and for arbitrary words and was thus left
out of the picture. A likely reason for this is the missing quick fail mechanism,
at least in our version of Synet.
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Fig. 6. Tests were done for random sets of 4000 words for each x with 1 ≤ x ≤ 700
where words stem from (ab|abb)x (lower left) or (a|b)x (the other three pictures). Time
scales are linear (but different for each curve) in the upper right picture and logarithmic
in the others.

7 Concluding Remarks

In this paper, the class of Petri net synthesisable binary words has been stud-
ied in depth. We have presented a linear-time necessary condition for solvability
representing an educated guess (Theorem 1), as well as quadratic time character-
isations for finite binary words and for cyclic binary words (Theorems 2 and 3).
The proof of Theorem 2 can easily be turned into a proof of a conjecture stated
in [2], the main difference being that the latter is formulated for minimal unsolv-
able (rather than general) words. The algorithms derived from our quadratic-
time characterisations allow to check solvability considerably more quickly than
a general synthesis algorithm could. This has been confirmed both by the theo-
retical estimates contained in this paper and by experimental validation.

It would be interesting to consider extensions and ramifications. For exam-
ple, we know of no results characterising PN-solvable acyclic labelled transition
systems with few branching points, or with some other regular structure. The
work described in [4] is an exception, a reason being that the cyclic structure
of marked graph reachability graphs is particularly harmonious. Extending the
results from binary words to words over a larger alphabet should also be worth-
while, and does not seem to be easy.

The present work could also be of interest in a wider context, as it might
entail nontrivial necessary conditions for the solvability of an arbitrary labelled



58 E. Best et al.

transition system. If the latter is solvable, then finding a PN-unsolvable structure
in it may have a strong impact on its structure or shape. Also, words are persis-
tent in the sense of [8] and tractable by the method described in [3]. However,
they form (in some sense) a worst case and still lead to many region inequal-
ities. It could therefore be interesting to check more closely whether the work
described here can be of any benefit in enhancing the method described in [3].
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1. Badouel, É., Bernardinello, L., Darondeau, P.: Petri Net Synthesis, 339 p. Springer,
Heidelberg (2015). ISBN 978-3-662-47966-7

2. Barylska, K., Best, E., Erofeev, E., Mikulski, �L., Pi ↪atkowski, M.: On binary words
being Petri net solvable. In: Carmona, J., Bergenthum, R., van der Aalst, W. (eds)
Proceedings of the ATAED 2015, pp. 1–15 (2015). http://ceur-ws.org/Vol1371

3. Best, E., Devillers, R.: Synthesis of bounded choice-free Petri nets. In: Aceto, L.,
Frutos Escrig, D. (eds) Proceedings of the 26th International Conference on Con-
currency Theory (CONCUR 2015), LIPICS, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Dagstuhl, pp. 128-141 (2015). doi:10.4230/LIPIcs.CONCUR.2015.
128

4. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez,
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