Decidability Border for Petri Nets with Data:
WQO Dichotomy Conjecture

Stawomir Lasota(®)

Institute of Informatics, University of Warsaw, Warsaw, Poland
sl@mimuw.edu.pl

Abstract. In Petri nets with data, every token carries a data value,
and executability of a transition is conditioned by a relation between
data values involved. Decidability status of various decision problems for
Petri nets with data may depend on the structure of data domain. For
instance, if data values are only tested for equality, decidability status
of the reachability problem is unknown (but decidability is conjectured).
On the other hand, the reachability problem is undecidable if data values
are additionally equipped with a total ordering.

We investigate the frontiers of decidability for Petri nets with vari-
ous data, and formulate the WQO Dichotomy Conjecture: under a mild
assumption, either a data domain exhibits a well quasi-order (in which case
one can apply the general setting of well-structured transition systems to
solve problems like coverability or boundedness), or essentially all the deci-
sion problems are undecidable for Petri nets over that data domain.

1 Introduction

We investigate the model of Petri nets with data, where tokens carry values from
some data domain, and executability of transitions is conditioned by a relation
between data values involved. One can consider unordered data, like in [26],
i.e. an infinite data domain with the equality as the only relation; or ordered
data, like in [24], i.e. an infinite densely totally ordered data domain. One can
also consider a more general setting of Petri nets over an arbitrary fixed data
domain A. In Sect.2 we provide such a general definition of Petri nets with
atoms A, parametric in a relational structure A. For instance, unordered and
ordered data are modeled by A = (N, =) and A = (Q, <), respectively. We want
to emphasize here that the idea seems not at all new, as similar net models have
been proposed already in the early 80ies: high-level Petri nets [13] and colored
Petri nets [19]. Since then, similar formalisms seem to have been rediscovered,
for instance constraint multiset rewriting [5,8,9].

Equivalently, Petri nets with atoms are just reinterpretation of the classical
definition of Petri nets with a relaxed notion of finiteness, namely orbit-finiteness,
where one allows for orbit-finite sets of places and transitions instead of just finite
ones; this is along the lines of [3,4].
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It is well known that the reachability problem is undecidable for Petri nets
with ordered data, while the decidability status of this problem for unordered
data is a intriguing open problem. In this note we do not embark on investigation
of the reachability problem. Instead, we concentrate on the termination problem,
the boundedness problem, the coverability problem, and alike, jointly called
here standard problems. Again, it is well known that standard problems are
decidable for Petri nets with ordered data [24] (and in consequence also for
Petri nets with unordered data), as the model fits into the framework of well-
structured transition systems of [11]. Most importantly, the structure of ordered
data admits, in a certain technical sense explained in Sect. 5, a well quasi-order
(wqo).

The decidability status of standard problems depends on the choice of atoms
A, and the purpose of this note is to investigate the decidability border. In order
to make it possible to finitely present Petri nets and its configurations, and in
particular to consider Petri nets as input to algorithms, we restrict to relational
structures A that are homogeneous [25] and effective (the formal definitions
are given in Sect.4). On one side, in Sect.5 we provide a simple but general
decidability result that works under the sole additional assumption that A admits
a WQO (which generalizes the decidability result for ordered data [24]). On the
other side, in Sect. 3 we provide an example of an effective homogeneous structure
A that makes all standard problems for Petri nets undecidable; further such
examples are mentioned in Sect.6. An observation that none of this examples
admits a WQO naturally leads to the WQO Dichotomy Conjecture formulated
in Sect. 6: for a homogeneous effective structure A, either A admits a wQo (and
then the standard problems are easily decidable), or all the standard problems
are undecidable for Petri nets with atoms A. It seems that either confirming or
falsifying this conjecture would be very interesting: in the former case one can
expect a deeper insight into the power of WQO-based methods, while in the latter
case one would have to come up with a completely new approach to deciding
properties of Petri nets with data.

In this note we do not use the recent approach to forward analysis of well-
structured transition systems based on idea completion [10]. In [17] this approach
have been recently applied to compute Karp-Miller trees for Petri nets with
unordered data. The procedure does not generalize however to other structures
A that admit a wqQo, for instance to ordered data.

2 Petri Nets with Atoms

Atoms. A model of data Petri nets, to be defined below, is parametric in the
underlying logical structure; the structure can be seen as data domain. Thus in
the sequel we always assume a fixed a countable relational® structure A, which
we call atoms. Here are some example structures of atoms:

! Restriction to only relational structures is for the sake of simplicity.
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Fig.1. A Petri net with equality atoms with places P = {p1,p2} and transitions
T = {t1,t2}. Different atoms are depicted through differently colored tokens.

— FEquality atoms: natural numbers with equality A = (N, =); equally well any
other countable infinite set could be used instead of natural numbers N, as
the only available relation is equality.

— Total order atoms: rational numbers with the natural order A = (Q, <); again,
any other countable infinite dense total order without extremal elements could
be used instead.

— Timed atoms: A = (Q, <,+1) extending total order atoms with the binary
relation x + 1 = y.

Note that every structure in the above list extends the preceding one by some
additional relations. In the sequel we always assume that the vocabulary (signa-
ture) X' of A is finite and contains the equality =.

Petri Nets with Atoms. We define a model that extends classical place/tran-
sition Petri nets. A Petri net with atoms A consists of two disjoint finite sets of
places P and of transitions T, the arcs A C PxT U Tx P, and two labelings:

— arcs are labelled by pairwise disjoint finite nonempty sets of variables;

— transitions are labelled by first-order formulas over the vocabulary X' of A,
such that free variables of the formula labeling a transition ¢ belong to the
union of labels of the arcs incident to ¢.

Example 1. As an illustrating example, consider a Petri net with equality atoms
with two places p1,ps and two transitions tq,ts depicted on Fig. 1. Transition
t1 outputs two tokens with arbitrary but distinct data values onto place p;.
Transition ¢ inputs two tokens with the same data value, say a, one from p;
and one from ps, and outputs three tokens: two tokens with arbitrary but equal
data values, say b, one onto p; and the other onto po; and one token with a data
value ¢ # a onto py. Note that transition ¢5 does not specify whether b = a, or
b= ¢, or b # a, c, and therefore all three options are allowed. Variables y;, y2 can
be considered as input variables of to, while variables z1, 22, 23 can be considered
as output ones; analogously, ¢; has no input variables, and two output ones
T1,T2.

From syntactic point of view, the net in Fig.1 can be considered to be over
any atoms A, as we always assume equality relation to be available in A.
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The formal semantics of Petri nets with atoms is given by translation to
multiset rewriting. Given a set X, finite or infinite, a finite multiset over X is a
finite (possible empty) partial function from X to positive integers. In the sequel
let M(X) stand for the set of all finite multisets over X. A multiset rewriting
system (P, T) consists of a set P, and a set of rewriting rules:

T C M(P)x M(P).

Configurations C' € M(P) are finite multisets over P, and the step relation
— between configurations is defined as follows: for every (I,0) € 7 and every
M € M(P), there is the step (+ stands for multiset union)

M+IT — M4+ O.

For instance, a classical Petri net induces a multiset rewriting system where P is
the set of places, and 7 is essentially the set of transitions, both P and 7 being
finite. Configurations correspond to markings.

A Petri net with atoms A induces a multiset rewriting system (P, 7 ), where
P = P x A and is thus infinite. Configurations are finite multisets over P x A
(cf. a configuration depicted in Fig.1). The rewriting rules 7 are defined as

T = U

teT

where the relation 7; € M(P) x M(P) is defined as follows. Let ¢ denote the
formula labeling the transition ¢, and let X;, X, be the sets of input and output
variables of t. Every valuation v; : X; — A gives naturally raise to a multiset
M,, over P, where M,, (p,a) is the (positive) number of variables z labeling the
arc (p,t) with v;(x) = a. Likewise for valuations v, : X, — A. Then let

Z:{(Mvavo)lviin_’Aa Vo 1 Xy — A, ’Ui,UO):(b}-

Like P, the set of rewriting rules 7 is infinite in general.

As usual, for a net NV and its configuration C, a run of (N, C) is a maximal
finite, or infinite sequence of step starting in C'. A configuration of NV is reachable
from C' if it appears in some run of (N, C).

Remark 1. Petri nets with equality atoms are equivalent to (even if defined dif-
ferently than) unordered data Petri nets of [24]. An even different but equivalent
definition, in the style of vector addition systems, have been used in [17]. Another
equivalent model is v-PNs of [26] but without name creation: indeed, name cre-
ation considered in [26] is generation of a globally fresh atom, while in Petri
nets with equality atoms it is only possible to generate a locally fresh one. Petri
nets with total ordered atoms are equivalent to ordered data Petri nets of [24].
Finally, Petri nets with timed atoms subsume many timed extensions of Petri
nets, including timed Petri nets [1] and timed-arc Petri nets [18].
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Fig. 2. A pair of configurations related by =, in the case of equality atoms. One wit-
nessing automorphism maps black to blue, blue to brown, and preserves red; the other
one maps black to red, red to blue, and blue to brown. (Color figure online)

Orbit-Finiteness. An atom automorphism is an automorphism of A with itself,
that is a bijection A — A such that for every n-tuple (a1, ...,a,) and every n-
ary relation r in A, r(aq,...,a,) holds if, and only if »(f(a1),..., f(as)) holds.
For instance, in the case of equality atoms these are all bijections of N, in the
case of total order atoms these are all monotonic bijections of Q, and in the
case of timed atoms these are monotonic bijections of QQ that preserve integer
differences.

We define an action of atom automorphisms on configurations: for a configu-
ration C' and an atom automorphism =, let C-7 denote a configuration obtained
from C by applying 7 to every atom carried by every token in C'. Using the
action, we define a quasi-order (i.e., a reflexive and transitive relation) on con-
figurations: C < C’" if C - w C (' for some atom automorphism 7, where C
stands for multiset inclusion (cf. Fig.2). If C < C' < C then C -7 = C’ for
some atom automorphism 7, in which case we call C' and C’ equivalent. Note
that the step relation is invariant under the equivalence: for equivalent C, C’, if
C — D then C" — D’ for some D’ equivalent to D. This is due to the fact the
transitions are specified in the first-order logic which is clearly invariant under
atom automorphisms.

A set of configurations C is orbit-finite if it is finite up to the equivalence.
In other words, C is contained in a finite union of orbits, where an orbit of a
configuration C' is defined as { C - 7|7 an atom automorphism }. Similarly one
can define orbits, and orbit-finiteness, for any other set on which an action of
atom automorphisms is defined.

Remark 2. Our presentation is in the style of [14,26], in order to keep it sim-
ple. Interestingly, an equivalent but more abstract definition can be provided, by
following the approach of [3]. In this approach, a model of computation is reinter-
preted with finiteness relaxed to orbit-finiteness. In case of Petri nets this boils
down to allowing orbit-finite sets of places and transitions instead of finite ones
only. Following the approach, one would consider the set P directly as places,
and the set 7 as transitions of a net. For w-categorical structures A, including
all homogeneous relational structures [25], both P and T are orbit-finite sets.

Standard Decision Problems. We focus on classical decision problems, like
the termination problem: does a given (N, C) admit only finite runs? The struc-
ture of atoms is considered as a parameter, and hence itself does not constitute
part of input. Concerning representation of input, the net IV is represented by
finite sets P,T, A and appropriate labelings with variables and formulas. Rep-
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resentation of a configuration C' will be discussed in Sect.4. Another classical
problem is the place non-emptiness problem (markability): given (NV,C) and a
place p of N, does (N, () admit a run that puts at least one token on place p?

In order to define some other standard problems we need to take the action
of atom automorphisms on configurations into account. For instance, a Petri net
with atoms has typically infinitely many reachable configurations, and hence
the classical boundedness question is not interesting. Thus we say that (N, C)
is bounded if the set of reachable configurations is orbit-finite. This defines the
appropriate variant of the boundedness problem. The coverability problem we
define as follows: given N, C and C’, is there a configuration C"” of N reachable
from C with ¢/ < C”? In the same vein one translates other decision problems
to nets with atoms, for instance the evitability problem: given (N, C) and a finite
set C of configurations of N, is there a run of (IV,C) whose all configurations
arein [C={C'|3CeC.C<C"}?

All the decision problems mentioned above we jointly call standard prob-
lems. These should be considered as examples rather that an exhaustive list —
the results reported in the sequel keep holding for many other problems not
mentioned above (we refrain however from an attempt of characterization of all
such problems). An example of the problem for which the results do not hold is
the place-boundedness problem, which is decidable for equality atoms (as shown
in [17], using the forward analysis via computation of a Karp-Miller tree), but
undecidable for total order atoms [24]. Also, we do not consider here the ‘hard’
decision problems, like reachability or liveness.

3 Undecidability

As already mentioned, decidability status of standard problems depends on the
choice of data domain A. Before stating a general decidability result for a wide
class of structures A (cf. Sect.5), in this section we exhibit an undecidable case
— we sketch a proof of undecidability of the standard problems when tokens are
allowed, roughly speaking, to carry pairs of equality atoms. Formally speaking,
we consider Petri nets with atoms

Ay = (N?,=1,=9,=12),

where =1, =5, and =35 are binary relations describing, respectively, equality
on the first coordinate, equality on the second coordinate, and equality of the
first coordinate of the first argument with the second coordinate of the second
argument. We show that Petri nets with atoms Ay can faithfully simulate com-
putations of Minsky counter machines.

In the sequel consider a fixed deterministic Minsky machine M with two
counters ¢y, ¢o, and states (). We will sketch a construction of a Petri net N over
A, that simulates the computation of M from the initial state with the initial
counter values ¢; = co = 0. The net will have the following transitions:

T )
T = {ZlvZ25dlad27lla125217l2atlat2}
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Fig. 3. Transition z; simulating zero test of counter c;. The equality z = z’ is a

shorthand for x =1 2’ A x =5 2’. For simplicity, the places corresponding to control
states of M are omitted.

z ’y:12an::12Ay:2z

Fig. 4. Transition z; simulating decrement operation on counter c;.

and its places will include, except for a number of auxiliary ones, the following
places:
{p17p27Qar} ) Q g P.

In particular, every state of M will have a corresponding place in N. The idea is
to represent a value ¢; = n by storing n + 1 tokens on place p;, carrying atoms

(a1,a2), (az,a3),...,(an,any1), (@ni1,a1),

for some arbitrary but distinct ay,...,a,4+1 € N. Intuitively, if atoms were con-
sidered as directed edges, a value n of a counter is represented by a directed
cycle of length n + 1. The initial configuration C' of N encodes counter val-
ues ¢ = co = 0, by placing on p; and ps an atom (a,a), for some arbitrary
a € N, corresponding to a self-loop. In addition, C' contains a token on the place
corresponding to the initial state of M.

Zero Test: A zero test on a counter c; is performed by a transition z; that
inputs one token from p; (cf. Fig. 3). The transition detects a self-loop using the
constraint x =12 x, where z is the input variable. The input token is output
back onto place p; in order to preserve the representation of the counter value.

Decrement: The decrement operation on a counter c¢; is simulated, roughly
speaking, by replacing two consecutive edges on a cycle by one edge; using
the condition y =12 = we can enforce that the edge y follows the edge x on
the cycle. This is achieved by a transition d; (cf. Fig.4) that inputs from p; two
tokens carrying atoms (a, a’) and (a’, a”), for arbitrarily chosen pairwise different
a,a’,a” € N, and outputs to p; one token carrying (a,a’”).

Increment: Slightly more complicated is the simulation of the increment oper-
ation on a counter, as it involves creating a fresh natural number that must be
different from all currently used ones. In the first step of the simulation, the net
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Fig. 5. Transition ¢; constituting the crucial part of simulation of increment operation
on counter c;.

executes a transition i; that inputs a token (a,a’) from p; and outputs, for an
arbitrarily chosen a” € N different than a and o', two tokens carrying (a,a’)
and (a”,a’) onto an auxiliary place ¢. In addition, let the transition output a
token carrying (a”,a’) onto place r. In the very last step of the simulation, two
tokens will be moved from place ¢ to p; by a transition i;, and a single token
will be removed from 7. The aim of the remaining steps is to check that a” does
not currently appear on place p;. To this aim the net traverses the cycle stored
on pj, starting from the edge (a”,a’). The traversal is done by iterative execu-
tion of the transition t;, depicted on Fig.5, that uses the place r to store the
current edge in the course of traversal. The condition x =15 z ensures that the
edge x, picked up from place p;, follows the edge z on the cycle. The equalities
x = 1’ = 2’ enforce that the edge x is put both back to ¢;, and also copied to
r. Finally, the condition x #5 y; checks that the edges x and y; have different
endpoints.

Note that replacing x #2 y1 by z =2 y1 would allow to detect that a” does
appear on the cycle, which means that a” has been chosen incorrectly in the first
step of the simulation. Note also that replacing x #2 y1 by y1 =12 = allows to
detect that the endpoint of x equals a, and thus the traversal can be finished.
Finally, observe that the case when the incremented counter has value c¢; = 0
needs a separate treatment.

We have thus sketched a construction of a net N and configuration C' such
that the place corresponding to the halting state of M is nonempty in some
reachable configuration of (N,C) if, and only if the machine M halts. This
entails undecidability of the place non-emptiness, coverability and evitability
problems. Furthermore, (N, C) terminates if and only if the machine M halts.
This entails undecidability of the termination and boundedness problems.

Proposition 1. The standard problems are undecidable for Petri nets with
atoms As.

A similar undecidability argument can be given for Petri nets with slightly sim-
pler atoms A5 = (N? =;,=5). In contrast to this, all the standard problems
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are decidable for Petri nets with atoms A; = (N?,=1,=), which will become
apparent shortly. Below we investigate in more detail the decidability border
between those atoms that admit decidability of classical decision problems and
those atoms that do not.

4 Effective Homogeneous Atoms

In this section and in the next one we are going to stay on the decidable side.
In this section we prepare the ground: we define the class of structures A we
are going to restrict to, namely effective homogeneous ones [25]. This restriction
will guarantee, in particular, that configurations of a Petri net can be finitely
presented and thus input by an algorithm. We will also provide an operation
of wreath product that preserves effective homogeneity. In the next section we
will state a general decidability result for Petri nets over effective homogeneous
atoms A, using the setting of well-structured transition systems [11].

For two relational Y-structures A and B we say that A embeds in B, written
A 4B, if A is isomorphic to an induced substructure of B, i.e. to a structure
obtained by restricting B to a subset of its domain. This is witnessed by an
injective function? h : A — B, which we call embedding. The class of finite
structures that embed into A we denote by AGE(A).

Homogeneous Structures. A Y-structure A is homogeneous if every isomor-
phism between two finite induced substructures of A extends to an automor-
phism of A. (Intuitively, the ‘position’ of a finite induced substructure inside A
depends only on its isomorphism type.) For instance, equality atoms and total
order atoms are homogeneous structures. In the latter case finite induced sub-
structures are just finite total orders, and every isomorphism between any two
such total orders does extend to a monotonic bijection from Q to Q. Timed atoms
are not homogeneous: no isomorphism between two induced 2-element substruc-
tures {—1,3} and {0.5,2.5} extends to an automorphism of timed atoms, as the
distances between —1 and 3, and between 0.5 and 2.5, are different integers.

There is a one-to-one correspondence between infinite countable homoge-
neous structures, and classes of finite structures over the same vocabulary that
are closed under isomorphisms and induced substructures, and satisfy the amal-
gamation property® (such classes of structures are called Fraissé classes). In one
direction, the class AGE(A), for a homogeneous X-structure A, is a Fraissé class.
In the other direction, a Fraissé class of finite X-structures induces a unique up to
isomorphism homogeneous X-structure via the construction of Fraissé limit [12].
In particular, (N, =) is the Fraissé limit of finite pure sets (structures with = as
the only relation) and (Q, <) is the Fraissé limit of finite total orders.

2 We deliberately do not distinguish a structure A from its domain set.

3 A class has amalgamation property if for every two embeddings hi : A — B; and
ho : A — Ba there is a structure C and two embeddings g1 : B1 — C and g2 : B2 — C
such that g1 o h1 = g2 0 ha (see [12,25] for details).
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Many other natural classes of structures have the amalgamation property:
finite graphs, finite directed graphs, finite partial orders, finite equivalence rela-
tions, finite tournaments, etc. Each of these classes induces, as the Fraissé limit,
a homogeneous relational structure. For instance finite graphs induce the univer-
sal graph (called also random graph) [12], which is the infinite countable graph
that results with probability 1, if every pair of vertices is related by an edge with
probability p, irrespectively of the choice of the probability as long as 0 < p < 1.
Therefore, every finite graph G embeds into the universal graph, and if G embeds
into another finite graph H then every embedding of GG into the universal graph
extends to an embedding of H. Along the same lines, finite partial orders induce
the universal partial order, finite tournaments induce the universal tournament,
etc. The Fraissé limit of the finite equivalence relations is (D, R, =), where D is a
countably-infinite set and R is an infinite-index equivalence relation over D s.t.
each one of the infinitely-many equivalence classes is itself an infinite subset of
D. This structure is isomorphic to (N?,=;,=) and can be used to model data
with nested equality, where one can check whether two elements belong to the
same equivalence class and, if so, whether they are actually equal. Examples of
homogeneous structures abound, see for instance [25].

From this point on we assume atoms to be a X-structure A satisfying the
following two conditions:

(Al) A is a homogeneous countable infinite relational structure.
(A2) the following age problem for A is decidable: given a finite X-structure A,
decide whether A < A.

Such structures A we call effective homogeneous. All the structures A mentioned
so far, except for timed atoms, are effective homogeneous.

Among various good properties, homogeneous structures admit quantifier
elimination: every first-order formula is equivalent to (i.e., defines the same set
as) a quantifier-free one. Therefore, from now on we may assume wlog. that
formulas labeling transitions are quantifier-free.

Wreath Product. Given two relational structures A = (A4, Ry,...,R,,) and
B = (B,S1,...,S,), their wreath product is the relational structure A @ B =
(Ax B,Ry,...,R.,, S1,...,S)), where

- ((a1,b1),...,(ax,bg)) € R} if (a1,...,ax) € R;, and
= ((a1,b1),..., (ar,by)) € Sj if a1 = --- = a and (by,...,bx) € Sj.

Intuitively, A®B is obtained by replacing each element in A with a disjoint copy
of B. For instance, (N, =) ® (N, =) is exactly A; = (N?,=;,=). More generally,
one can model data with k-nested equality: take By = (N, =) and, for each k > 1,
let Byy1 = B1 ®Bg. Up to isomorphism, By is the structure (D, Ry, ..., Ri) with
k nested equivalence relations Ry,..., Ry over an infinite set D, where R, has
infinitely many infinite equivalence classes, R;;1 refines every equivalence class
of R; into infinitely many classes, for ¢ = 1,...,k — 1; and the finest relation Ry
is the equality.
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The wreath product preserves effective homogeneity: first, if A and B are
homogeneous then the same holds for A ® B, and second, the age problem for
A ® B reduces to the same problem for A and B [7]. As an example, the wreath
product (Q, <) ® (N, =) is, up to isomorphism, the universal total quasi-order,
i.e. the Fraissé limit of all finite total quasi-orders.

5 Well-Structured Petri Nets

Fix an effective homogeneous X-structure A. For a set X, let AGE(A, X)) denote
the set of all functions A — X, where A € AGE(A). In other words, AGE(A, X)
contains finite induced substructures of A labeled by elements of X.

Finite Representations. Recall that a configuration is a finite partial function
from A x P to positive integers, which can be reformatted into a total function
A — M(P) from a finite (possibly empty) induced substructure A of A to finite
multisets* over P. Thus from now on we consider configurations as elements of

conf(A, P) = AGE(A, M(P)).

By homogeneity of atoms, two configurations C : A — M(P) and D : B —
M(P) are equivalent if, and only if the two domain structures A, B are related
by an isomorphism h : A — B that preserves labels: C(a) = D(h(a)) for every
a € A. Similarly, C < C’ if, and only if there is an embedding h : A — B
that increases labels: C'(a) C D(h(a)) for every a € A (recall that C stands for
multiset inclusion).

Recall that the step relation is invariant under equivalence: equivalent config-
urations have equivalent successor configurations. Thus to represent a configu-
ration it is enough to know the equivalence class of a configuration; furthermore,
by homogeneity it is enough to know the isomorphism type of the domain struc-
ture A. Therefore configurations of a Petri net with homogeneous atoms can be
finitely represented (up to isomorphism of the domain structure), which makes
the model amenable to algorithmic analysis.

Well Quasi-orders. By skeleton of a quasi-order (X, <) we mean the partial
order obtained as the quotient of X by the equivalence relation that relates every
two elements z,y € X satisfying ¢ < y < x. We call two quasi-orders (X, <)
and (X', <') skeleton-isomorphic, and write (X, <) = (X', <’), if their skeletons
are isomorphic.

A quasi-order (X, <) lifts naturally to AGE(A,X): for f : A — X and
g: B — X, let f dx <) g if there is an embedding h : A — B such that
f(a) < g(h(a)) for every a € A. For instance, for equality atoms we obtain the
natural lifting of (X, <) to finite multisets over X, and for total order atoms we
obtain Higman ordering of finite sequences X* over X with respect to the base

4 We could further restrict the codomain to nonempty finite multisets over P.
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order (X, <) (see e.g. [10] for formal definitions). When (X, <) = (M(P),C),
one obtains the quasi-order of configurations:

(AGE(A, M(P)),dm(pyc)) = (conf(A,P),=).

A well quasi-order (WQO) is a quasi-order (X, <) such that for every infinite
sequence i, Z2,... of elements of X, there are positions ¢ < j with z; < z;.
Equivalently, a wQO is a well founded quasi-order without infinite antichains.
For two skeleton-isomorphic quasi-orders, if one is a WQO than the other is a
WQO too. For the rest of this section assume that

A3) for every wQO (X, <), the lifted quasi-order (AGE(A, X), </x <)) is a WQO
(X,<)
(we say in this case that A preserves WQO).

For example, both equality atoms and total order atoms preserve wQoO. Indeed,
if (X, <) is a wQo then (AGE((N, =), X), d(x <)) is a WQO, which is a gener-
alization of Dickson’s Lemma; and (AGE((Q, <), X), d(x <)) is a WQO as well,
which is exactly Higman’s Lemma [16]. Interestingly, for a suitably defined struc-
ture of atoms (a forest order, see [2] for details) one can also provide a similar
model-theoretic reformulation of Kruskal’s lemma [22].

When A preserves wQO then (AGE(A), Q) is necessarily a wqQo. We do not
know whether the converse holds, and thus the following question is open:

Question 1. For every homogeneous A such that (AGE(A), <) is a wQO, and for
every WQO (X, <), is the lifted quasi-order (AGE(A, X), d(x <)) a WQO?

Let’s concentrate on an important special case, when (X, <) = (AGe(B), <) for
some homogeneous structure B. We observe that AGE(A, AGE(B)), containing
induced substructures of A labeled by induced substructures of B, is essentially
the same set as AGE(A ® B), containing induced substructures of the wreath
product. Furthermore, the lifted quasi-order coincides with the embedding quasi-
order on AGE(A ® B). Formally, the following two quasi-orders are isomorphic:

(AGE(A,AGE(B)),<«4) = (ACE(A®B), Q). (1)

This leads to a ‘weaker’ version of Question 1 (in the sense that the positive
answer to Question 1 implies the same answer to the following one):

Question 2. For every homogeneous structures A, B such that both (AGE(A), <)
and (ACE(B), <) are wQos, is (A @ B, <) a wQo?

Note that the answer to Question 2 is positive in the special case when A pre-
serves WQO.

We stress upon importance of the homogeneity assumption, as one can easily
come up with a non-homogeneous counterexample to both questions, for instance
taking A = (N, +1).
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Well-Structured Petri Nets with Atoms. We are now going to use the set-
ting of well-structured transition systems of [11] to derive a general decidability
result. Consider in the sequel a fixed effective homogeneous X-structure A that
preserves WQO, and a fixed Petri net with atoms A. We need to check a number
of assumptions required for the decidability results of [11].

By decidability of the embedding problem one easily deduces that the step
relation is computable. Indeed, a satisfying valuation of variables of a formula
corresponds to an embedding of finite structure A in A, and thus one can com-
pute all (up to isomorphism) valuations satisfying a quantifier-free formula that
labels a transition, by enumerating all finite X-structures A of bounded size.
In particular one can compute successors { ¢’ |C — C’ } of a given configura-
tion C' (note that the successor set is finite, up to isomorphism of the domain
structure). The ordering < is also easily decidable.

Like for classical Petri nets, step relation of a Petri net with atoms A satisfies
a compatibility condition with respect to <: if C < D and C — C’ then
there exists a configuration D’ with C’ < D’ and D — D’. This property,
combined with the invariance of step relation under equivalence, implies strong
strict compatibility of [11].

Let 1C = {C’|C =< C’"} denote the upward closure of C. By compatibility,
the predecessor set pred(1C) = {C"|C' — C” € 1C'} is upward closed. As A
preserves WQO, (conf(A, P), <) is a wQO and hence the set pred(1C) has only
finitely many minimal elements. Using decidability of the embedding problem
one shows the property called effective pred bases in [11]: given a configuration
C, the finite set min(pred(7C')) is computable.

We have thus completed the check-list: (conf(A, P),—, =) is a well-
structured transition system that satisfies all assumptions of Theorems 3.6, 4.6,
4.8 and (if skeleton of (conf(A, P), <) is considered) Theorem 4.11 in [11]. There-
fore we may state the following general decidability result:

Theorem 1. If A is an effective homogeneous structure that preserves WQO
then the standard problems are decidable for Petri nets with atoms A.

This generalizes the decidability result of [24], and applies to a range of different
structures of atoms including, among the others, equality atoms, total order
atoms, and all structures obtained from them by the wreath product. Indeed,
using the following generalization of the isomorphism (1):

(AGE(Av AGE(BvX))vﬁﬁ(X,S)) = (AGE(A®]37X)’S](X,S));

one easily shows that wreath product, in addition to preservation of effective
homogeneity, also preserves WQO-preservation: if homogeneous structures A and
B preserve wQO then A®B also does. For instance, in the case of nested equality
atoms A; = (N,=) ® (N,=), the lifted quasi-order is skeleton isomorphic to
the natural ordering of M(M(X)) finite multisets over finite multisets over X;
and when atoms is the wreath product (Q, <) ® (N,=) of total order atoms
and equality atoms, the lifted quasi-order is skeleton-isomorphic to the Higman
ordering of M(X)" finite sequences of finite multisets over X.
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The decision procedures solving the standard problems, as derived from [11],
can be actually directly encoded in the one of recently developed programming
languages designed for manipulating infinite definable structures: LOIS [21] or
N [20].

6 The WQO Dichotomy Conjecture

What is the crucial difference between atoms A; = (N =, =) and A} =
(N®) =, =,) that makes Petri nets with the former atoms decidable, while
Petri nets with the latter atoms undecidable? We claim that the crucial dif-
ference is that the quasi-order (conf(A;, P), <) is a wWQO, while the quasi-oder
(conf(A}, P), <) is not. All quasi-orders considered by us are well founded (as
P is finite), hence the difference lies in existence of an infinite antichain in
(conf(A), P), <).

The induced substructure of A with domain A C A we call below the sub-
structure induced by A. For the encoding of counter values in the undecidabil-
ity proof in Sect.3 we have actually used an infinite antichain {A4;,4s,...} in
(AGE(A2), 9), namely one that contains, for every n > 1, the substructure A,
of A, induced by:

A, ={(a1,a2), (az,a3),...,(an-1,0n), (an,a1)},

for some arbitrary but pairwise different aq,...,a, € N. Note that when one
moves to A}, the substructures A}, induced by the same subsets A,, do not form
an antichain any more; indeed, for n < m, an arbitrary injection A,, — A,,
is an embedding of A/, into A/ . In order to adapt the undecidability proof to
Petri nets with atoms A}, we can use another infinite antichain, namely one that
contains, for every n > 1, the substructure of A/, induced by:

A/n - {(ala bl)a (Cl2, bl)a (Clg, b2)7 (a37 b2)7 s (any bn—l)a (ana bn)a (ala bn)}a

for some arbitrary but pairwise different ay,...,a, € N, and arbitrary but pair-
wise different by,...,b, € N. We leave it as an exercise to check that this is an
antichain in (AGE(A}), <), and to adapt the undecidability proof.

Interestingly, for all structures A not preserving wQo that have been men-
tioned so far, one easily comes up with an infinite antichain {A;, Az, ...} admit-
ting an undecidability argument similar to the one in Sect. 3. For instance, in
the case of the random graph atoms, take as 4,, a cycle of length n, and in the
case of the directed random graph, take as A4,, a directed cycle of length n.

For the universal partial order (D, <), take as A, for n > 1, a crone partial

order (cf. Fig.6) consisting of 2n elements ay,...,an,b1,...,b, € D such that
a; < bj if and only if 7 = j,ori = j+1,0or i =1 and j = n, and moreover
{a1,...,a,} and {b1,...,b,} are pairwise incomparable w.r.t. <. One readily

verifies that this is an antichain. Essentially, the antichain provides an encoding
of finite cycles into partial orders.

For the universal tournament, take as A,, for n > 7, an n-element tour-
nament obtained from an n-element total order a7 < as < ... < a, by
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bl bg b3 b4 bs

YN

a1 a2 as aq as

Fig. 6. A crone partial order As.

ar

AEA

as ae as

Fig. 7. A tournament Asg [15,23]. All missing edges are oriented from left to right.

reversing edges (a1, a3), (an—2, a,), and all edges (a;, a;+1) (cf. Fig. 7). Again, this
is essentially an encoding of finite cycles into tournaments. A formal proof that
{ A, |n>T7} is an antichain can be found in [15,23]. We encourage the reader
to try reusing some of the antichains listed above in the undecidability proof.

We do not know whether every homogeneous structure not preserving wQo
admits a similar encoding of finite cycles. Formally, we do not know the answer
to the following question:

Question 3. When A is an effective homogeneous structure not preserving wQo,
are all the standard problems undecidable for Petri nets with atoms A?

We conjecture positive answers to Questions 1-3. Put explicitly, we formulate
the following:

Congecture 1 (WQO Dichotomy). For every effective homogeneous infinite
countable relational structure A over a finite vocabulary, exactly one of the
two conditions hold:

- (AGE(A), ) is a WQO;
— the standard problems are undecidable for Petri nets with atoms A.

Any answers to Questions 1-3 will be interesting. If the conjecture is proved,
this would shed a new light on the decidability border, and on the power of
WQO-based methods. On the other hand, in order to falsify the conjecture one
has to come up with a completely new method for solving (some of) the standard
problems for Petri nets with data.

The conjecture is easily confirmed for atoms A ranging over a restricted
subclass of homogeneous graph, or homogeneous directed graphs, using the clas-
sification result by Cherlin [6].

Remark 3 An analogous conjecture can be stated for other models of computa-
tion. For instance, instead of the standard problems for Petri nets with atoms,
one can consider the universality problem for nondeterministic finite automata
with one register, or the emptiness problems for alternating automata with one
register (cf. [2]).
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