
Merging Alignments for Decomposed Replay

H.M.W. Verbeek(B) and W.M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{h.m.w.verbeek,w.m.p.v.d.aalst}@tue.nl

Abstract. In the area of process mining, conformance checking aims
to find an optimal alignment between an event log (which captures the
activities that actually have happened) and a Petri net (which describes
expected or normative behavior). Optimal alignments highlight discrep-
ancies between observed and modeled behavior. To find an optimal align-
ment, a potentially challenging optimization problem needs to be solved
based on a predefined cost function for misalignments. Unfortunately,
this may be very time consuming for larger logs and models and often
intractable. A solution is to decompose the problem of finding an optimal
alignment in many smaller problems that are easier to solve. Decompo-
sition can be used to detect conformance problems in less time and pro-
vides a lower bound for the costs of an optimal alignment. Although the
existing approach is able to decide whether a trace fits or not, it does not
provide an overall alignment. In this paper, we provide an algorithm that
is able to provide such an optimal alignment from the decomposed align-
ments if this is possible. Otherwise, the algorithm produces a so-called
pseudo-alignment that can still be used to pinpoint non-conforming parts
of log and model. The approach has been implemented in ProM and
tested on various real-life event logs.

1 Introduction

The ultimate goal of process mining [2] is to gain process-related insights based
on an event log created by some system. Such an event log contains a sequence of
events for every case that was handled by the system. As an example, an event
could be as follows:

On October 1st, 2011, the resource 112 has completed the activity a1.

A sequence of events contained in an event log is commonly referred to as a trace.
From the data associated with the trace, we can derive for which particular case
the activity a1 was completed.

Within process mining, the field of process conformance [2,4,5,7–11,13,15,
17] deals with checking to what extent a process model (like a Petri net) and an
event log conform to each other, that is, how well they match. For this sake, the
event log is first replayed on the Petri net as best as possible, which results in
an optimal alignment between both. Such an optimal alignment relates events

c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 219–239, 2016.
DOI: 10.1007/978-3-319-39086-4 14

220 H.M.W. Verbeek and W.M.P. van der Aalst

in the event log to activities (transition labels) in the Petri net in the best-
possible way. Based on this optimal alignment, conclusions can then be drawn
on important metrics like fitness (how well does the event log conform to the
Petri net?), precision (how well does the Petri net conform to the event log?),
and generalization (how well does the Petri net conform to the system?).

A cutting-edge algorithm to compute an alignment is the cost-based
replayer [3], which finds a cost-minimal alignment between the event log and
the Petri net. Although this algorithm is very efficient and effective for smaller
logs and smaller nets, it has problems when dealing with larger logs and larger
nets. To speed up problematic replays, a decomposition technique has been pro-
posed in [1]. This decomposition technique decomposes an overall log and an
overall Petri net into a collection of decomposed logs and a collection of match-
ing decomposed Petri nets, and guarantees that the decomposed costs (the costs
of the replaying the decomposed logs on the decomposed nets) equal 0 if and only
if the non-decomposed costs (the costs of replaying the overall log on the over-
all net) equal 0. Hence, the approach is able to accurately identify deviating and
non-deviating traces, often in a fraction of the time. Furthermore, this technique
guarantees that the decomposed costs are a lower bound for the non-decomposed
costs.

An open issue for the decomposition approach is that it does not prescribe
how to merge the decomposed alignments into an overall alignment, if possible.
Whereas the replay of the overall log on the overall net results in an overall
alignment, replaying the decomposed logs on the decomposed nets results in a
collection of decomposed alignments. By merging these decomposed alignments
into an overall alignment, which may be much faster than computing the non-
decomposed alignment, one can also obtain diagnostic information on where the
event log and the Petri net do not match. This paper introduces an algorithm to
merge decomposed alignments into an overall alignment, again if possible. If not
possible, then the algorithm will result in a so-called pseudo-alignment, which is
a relaxation of the regular alignment. Such pseudo-alignments provide valuable
diagnostic information and help to diagnose the misalignments.

The core of this algorithm consists of 3 alignment rules and 2 pseudo-
alignment rules. Only applying the alignment rules will result in an alignment,
but might not be feasible as in certain situations no alignment rule can be applied
anymore. In such situations, we can apply a pseudo-alignment rule, but then the
result will be a pseudo-alignment.

The approach has been implemented in ProM and has been applied to a large
collection of logs and models showing that the constructed (pseudo-)alignments
indeed help to diagnose conformance problems.

The remainder of this paper is organized follows. First, Sect. 2 provides the
preliminaries, that is, logs, nets, alignments, and the decomposition. Second,
Sect. 3 introduces our alignment merge, that is, the 3 alignment rules and the
2 pseudo-alignment rules. Third, Sect. 4 introduces the implementation of the
merge. Fourth, Sect. 5 discusses the benefits of using the algorithm. Fifth, Sect. 6
concludes the paper.

Merging Alignments for Decomposed Replay 221

2 Preliminaries

2.1 Logs

In this paper, we consider activity logs, which are an abstraction of the event
logs as found in practice. An activity log is a collection of traces, where every
trace is a sequence of activities [2]. Table 1 shows the example activity log L1,
which contains information about 20 cases, for example, 4 cases followed the
trace 〈a1, a2, a4, a5, a8〉. In total, the log contains 13 + 17 + 9 + 2 × 9 + 9 + 4 ×
5 + 9 + 9 + 5 + 5 + 17 + 3 × 5 + 5 + 5 = 156 activities.

Definition 1 (Universe of Activities). The set A denotes the universe of
activities.

To capture an activity log, we use multi-sets. If S is a set of objects, then
B(S) is a multi-set of objects, that is, if B ∈ B(S) and o ∈ S, then object o
occurs B(o) times in multi-set B.

Definition 2 (Activity Log). Let A ⊆ A be a set of activities. An activity log
L over A is a multi-set of activity traces over A, that is, L ∈ B(A∗).

2.2 Nets

A Petri net is a modelling formalism that contains three different types of ele-
ments: places, transitions, and arcs [16]. Figure 1 shows an example Petri net
containing 10 places (p1 through p10), 11 transitions (t1 through t11), and 24
arcs.

Table 1. An example activity log L1 in tabular form.

Trace Frequency

〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a8〉 2

〈a1, a2, a4, a5, a6, a4, a3, a5, a7〉 1

〈a1, a2, a4, a5, a8〉 4

〈a1, a3, a4, a5, a6, a4, a3, a5, a7〉 1

〈a1, a3, a4, a5, a6, a4, a3, a5, a8〉 1

〈a1, a3, a4, a5, a8〉 1

〈a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8〉 1

〈a1, a4, a2, a5, a7〉 3

〈a1, a4, a2, a5, a8〉 1

〈a1, a4, a3, a5, a7〉 1

〈a1, a4, a3, a5, a8〉 1

222 H.M.W. Verbeek and W.M.P. van der Aalst

p3 p5

p2

p4 p6

p7

p8

p9

p10
t2

t1

t8

t3

t4

t5 t7

t10

t11

t6 t9
p1

Fig. 1. A Petri net.

a1

a4 a5a6

a2

a3

a7

a8

p3 p5

p2

p4 p6

p7

p8

p9

p10
t2

1

t8

t3

t4

t5 t7

t10

t11

t6 t9
p1

Fig. 2. An accepting Petri net N1.

Definition 3 (Petri Net). A Petri net is a 3-tuple (P, T, F) where P is a set
of places, T is a set of transitions such that P ∩T = ∅, and F ⊆ (P ×T)∪(T ×P)
is a set of arcs.

For our purposes, we extend Petri nets with labels, an initial marking, and a
set of final markings, yielding an accepting Petri net. Figure 2 shows an accepting
Petri net based on the example Petri net, with labels (like a1 and a8), an initial
marking ([p1]), and one final marking ([p10]).

The labels are used to link transitions in the Petri net to activities in an
activity log. As an example, transition t1 is linked to activity a1. Transitions
that are linked to log activities are called visible transitions. Transitions that
are not linked to a log activity, like transition t2, are called invisible transitions.
These invisible transitions are linked to a dummy activity named τ . Note that
τ 	∈ A.

Definition 4 (Accepting Petri Net). Let A ⊆ A be a set of activities. An
accepting Petri net over the set of activities A is a 6-tuple (P, T, F, l, I, O) where
(P, T, F) is a Petri net, l ∈ T → (A ∪ {τ}) is a labeling function that links
every transition onto an activity (possibly the dummy activity τ), I ∈ B(P) is
an initial marking, and O ⊆ B(P) is a set of final markings.

As a result of the labeling, we can obtain an activity sequence from a transi-
tion sequence by removing all invisible transitions while replacing every visible
transition with its label. For example, the example transition sequence 〈t1, t2, t3〉
yields 〈a1, a2〉 as activity sequence.

The initial marking and final markings are included because process mining
considers complete traces and not a prefix-closed language. When replaying an
activity log on a Petri net, the Petri net needs to have an initial marking to start
with, and final markings to conclude whether the replay has reached a proper
final marking. In the example, a replay of some trace starts from marking [p1],
and the replay will be successful if and only if the marking [p10] is reached.

2.3 Alignments

A trace alignment [2,3] links activities in a trace onto transitions in a Petri
net. As an example, Fig. 3 shows a possible trace alignment for the trace

Merging Alignments for Decomposed Replay 223

t1 t2 t3 t5 t6 t7 t9 t10� �
a1 τ a2 a4 τ a5 τ a7a3 a6

�
a8

0 0 0 0 0 0 0 010 10 10

Fig. 3. A trace alignment extended with costs for the trace 〈a1, . . . , a8〉 and net N1.
Every column corresponds to a move, where the top row contains the activity, the
middle row the transitions, and the bottom row the costs of this activity-transition
pair.

〈a1, a2, a3, a4, a5, a6, a7, a8〉 and the accepting Petri net N1. We use � to denote
the lack of a visible transition in an alignment. For example, the occurrence of
activity a3 was not matched by a firing of transition t4 in the net. In such a
case, we use � to indicate that no corresponding transition was fired. Likewise,
although not present in this example, it is possible that transition t4 was fired
but that this was not matched by an occurrence of activity a3 in the log. In
such a case, we also use � but now to indicate that no corresponding activity
occurred.

The occurrence of a1 matches the firing of transition t1 (this is a so-called
synchronous move, as both the log and the net can advance), then we need to
fire the transition t2 in the net which has no counterpart in the log (a so-called
invisible model move), followed by another synchronous move for a2 and t3,
after which we need to skip the activity a3 (a so-called log move) as there is
no transition enabled in the net that matches this activity, etc. Note that we
require the transition sequence in the middle row of the alignment to lead from
the initial marking of the net to some final marking.

Definition 5 (Legal Moves). Let A ⊆ A be a set of activities, let σ ∈ A∗ be
an activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri net
over A. The set of legal moves of A and N is the union of the sets {(a, t)|a ∈
A ∧ t ∈ T ∧ l(t) = a} (synchronous moves), {(a,�)|a ∈ A} (log moves), {(�
, t)|t ∈ T ∧ l(t) ∈ A} (visible model moves), and {(τ, t)|t ∈ T ∧ l(t) = τ} (invisible
model moves).

Definition 6 (Trace Alignment). Let A ⊆ A be a set of activities, let σ ∈ A∗

be an activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri
net over A. A trace alignment h for trace σ on net N is a sequence of legal moves
(a, t) ∈ ((A ∪ {τ,�}) × (T ∪ {�})) such that:

– σ = h�1A and
– For some o ∈ O it holds that I[h�2T 〉o,
where

h�1A=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈a〉 · h�1A if h = 〈(a, t)〉 · h and a ∈ A;
h�1A if h = 〈(a, t)〉 · h and a 	∈ A;

224 H.M.W. Verbeek and W.M.P. van der Aalst

and

h�2T=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈t〉 · h�2T if h = 〈(a, t)〉 · h and t ∈ T ;
h�2T if h = 〈(a, t)〉 · h and t 	∈ T ;

The bottom row in Fig. 3 shows the possible costs of every move. In this
example, a synchronous move costs 0, a visible model move costs 4, an invisible
model move costs 0, and a log move costs 10. The total costs for the example
alignment is 30.

Definition 7 (Costs Structure). Let A ⊆ A be a set of activities, and let
N = (P, T, F, l, I, O) be an accepting Petri net over A. A cost structure $ for A
and N is a function that maps every legal move of A and N onto a (non-negative)
natural number.

Typically, the costs of all synchronous moves and all invisible model moves
are set to 0, as then a perfect match has costs 0. The user then only needs to
set the costs for the log moves and the visible model moves. If these costs would
be set to 10 and 4 for all transitions and activities, then we would have that
$(�, t3) = 4, $(a2,�) = 10, and $(a2, t3) = 0.

Definition 8 (Costs of Trace Alignment). Let A ⊆ A be a set of activities,
let σ ∈ A∗ be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting
Petri net over A, let h = 〈(a1, t1), . . . , (an, tn)〉 be a trace alignment (of length
n) for σ and N , and let $ be a cost structure for A and N . The costs of trace
alignment h, denoted $h, is defined as the sum of the costs of all legal moves in
the alignment, that is, $h =

∑
i∈{1,...,n} $(ai, ti).

If no other alignment results in lower costs, the alignment is called optimal.
There may exist multiple optimal alignments for a single trace. For example, the
alignment as shown in Fig. 3 is optimal, but the alignment as shown in Fig. 4 is
also optimal.

Definition 9 (Optimal Trace Alignment). Let A ⊆ A be a set of activities,
let σ ∈ A∗ be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting
Petri net over A, let h be a trace alignment for σ and N , and let $ be a cost
structure for A and N . The trace alignment h is called optimal if there exists no
other trace alignment h′ such that $h′ < $h.

t1 t2 t4 t5 t6 t7 t9 t11� �
a1 τ a2 a4 τ a5 τ a7a3 a6

�
a8

0 0 0 0 0 0 0 010 10 10

Fig. 4. Another optimal trace alignment for the trace 〈a1, a2, a3, a4, a5, a6, a7, a8〉 and
Petri net N1 (now t4 and t11 fire rather than t3 and t10).

Merging Alignments for Decomposed Replay 225

A log alignment is a trace alignment for every trace in the activity log,
an optimal log alignment is an optimal trace alignment for every trace in
the activity log. As a result of a log alignment, any trace in the log can be
mapped to the transition sequence that best matches this trace. As an exam-
ple, an optimal trace alignment for the trace 〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4,
a2, a5, a7〉 from log L1 could include the transition sequence 〈t1, t2, t3, t5, t6, t7,
t8, t2, t3, t5, t6, t7, t8, t5, t2, t3, t6, t7, t9, t10〉 in net N1, and the costs of this align-
ment would be 0.

Definition 10 ((Optimal) Log Alignment). Let A ⊆ A be a set of activities,
let L ∈ B(A∗) be an activity log over A, and let N = (P, T, F, l, I, O) be an
accepting Petri net over A. A log alignment H for log L and net N is a function
that maps every possible trace σ ∈ L to a trace alignment. A log alignment is
called optimal if and only if all its trace alignments are optimal.

Clearly, log L1 can be perfectly aligned to net N1, as there exists an alignment
where all trace alignments have costs 0. Using such a log alignment, it is possible
to project the date and information that is present in a log onto the net, and
obtain average durations between activities, an animation with the token replay,
etc.

2.4 Decomposition

The overall net and the overall log can be decomposed in a number of decom-
posed nets and decomposed logs, in such a way that (1) the costs of the opti-
mal overall alignment is 0 if and only if the costs of every optimal decomposed
alignment is 0, and (2) the accumulated costs of the decomposed alignments
are a lower bound for the costs of the overall alignment [1]. This allows us to
decompose an overall alignment problem into a number of decomposed align-
ment problems, which can possibly be solved much faster, while still providing
certain guarantees.

Figure 5 shows the five decomposed nets that result from decomposing the
net N1. For an in-depth description of such decompositions, we refer to [1]. For
this paper, it is sufficient to know that (1) every visible transition occurs in one
or more decomposed nets, (2) for every label all different transitions sharing

a1

a4a6

a2

a3

a4 a5

a2

a3

a5

a7

a8

a6

a1
a7

a8

N1a N1b N1c N1d N1e

Fig. 5. Decomposed nets obtained by decomposing the net N1. Nets N1b, N1c, N1d,
and N1e have the empty marking as initial marking, while the nets N1a, N1b, N1c, and
N1d have the empty marking as the only final marking.

226 H.M.W. Verbeek and W.M.P. van der Aalst

that label occur in a single decomposed net, and (3) that every place, invisible
transition, and arc occurs in only a single decomposed net. As such, a token can
only flow from one decomposed net to another decomposed net through firing
some visible transition, which is hence observable in the log.

Based on the activity sets as present in these decomposed nets, five decom-
posed logs will be created. Every decomposed log contains as many traces as the
overall log, but every trace in a decomposed log contains only those activities
that are present in the corresponding net. As an example, Table 2 shows the
decomposed log resulting from filtering log L1 using the decomposed net N1b,
that is, the net that corresponds to the set of activities {a1, a2, a3, a4, a6}.

Table 2. Decomposed log for activities {a1, a2, a3, a4, a6} in tabular form. This is the
log that would be replayed on the decomposed net N1b as shown in Fig. 5.

Trace Frequency

〈a1, a2, a4, a6, a2, a4, a6, a4, a2〉 1

〈a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4〉 1

〈a1, a2, a4, a6, a3, a4〉 3

〈a1, a2, a4, a6, a4, a3〉 1

〈a1, a2, a4〉 4

〈a1, a3, a4, a6, a4, a3〉 2

〈a1, a3, a4〉 1

〈a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4〉 1

〈a1, a4, a2〉 4

〈a1, a4, a3〉 2

By replaying every decomposed log on the corresponding decomposed net,
we obtain optimal decomposed alignments, say h1 to hn. From [1] we know that
the costs of these optimal decomposed alignments are guaranteed to be 0 if and
only if the costs of an optimal overall alignment (of the overall log on the overall
net) is 0. Furthermore, we know from [1] that we can use these decomposed
alignments to obtain a lower bound for the costs of the overall alignment.

Figure 6 shows the usefulness of the decomposition approach. It shows the
required computation times1 and numbers of activities for the DMKD 2006,
BPM 2013, and IS 2014 data sets [12,14,15]. These data sets contain in total 59
cases of varying size, ranging from 12 to 429 activities, from 500 to 2000 traces,
with varying numbers of mismatching traces (from 0 % to 50 %). Obviously,
the decomposed replay is more robust when it comes to computation times,
while it provides the same guarantee as mentioned earlier. For larger events
logs and models, computing optimal alignments can take days and is often

1 All tests are performed on a desktop computer with an Intel Core-i7-4770 CPU at
3.40 GHz, 16 GB of RAM, running Windows 7 Enterprise (64-bit), and using a 64-bit
version of Java 7 where 4 GB of RAM was allocated to the Java VM.

Merging Alignments for Decomposed Replay 227

Fig. 6. Computation times and numbers of activities for the replay on some data sets.
The non-decomposed replay did not finish in 10 min for some cases, typically the cases
with many different activities.

intractable. For example, for some of the cases that did not finish in 10 min
it is known that they also do not finish within 12 h [15], or that they do not
finish because they run out of memory. If the net has a suitable decomposition,
replay time may thus be reduced from more than 12 h or infeasible to 10 s.

As a result of this replay, we will have a collection of decomposed alignments
and a lower bound for the costs. To be able to diagnose the mismatches between
the log and the net, we want to be able to merge the decomposed alignments
into an overall alignment, and project that overall alignment onto the log or the
net. Note that as a result of the guarantees of the decomposition, a trace has
no costs in the overall alignment if and only if it has costs in the decomposed
alignments.

3 Merging Alignments

This section introduces an algorithm to merge a coherent set of decomposed
alignments, that is, a set of alignments that result from replaying decomposed
logs on corresponding decomposed nets. Please note that the costs of the merged
alignment are simply the accumulation of the costs of the decomposed alignments
[1]. As a result, when merging the alignments we do not need to take the costs into
account. Instead, we can focus on the diagnostic value of the merged alignment.

To explain issues at hand for this step, we assume that we need to replay the
trace 〈a1, a2, a3, a4, a5, a6, a7, a8〉 on the net N1 (see Fig. 2). Figure 3 shows an
optimal overall alignment for this trace, which shows that the optimal costs for
replaying this trace are 30. Figure 7 shows a set of possible optimal decomposed
alignments, obtained by replaying the decomposed logs on the decomposed nets
(see Fig. 5). Accumulating the costs from these decomposed alignments yields
costs 27, which is caused by the fact that net h1d can do the model move (�, t7)
instead of the more expensive log move (a6,�).

The algorithm needs to merge these five decomposed alignments into one
overall alignment, if possible. To do so, the algorithm takes the trace, an empty

228 H.M.W. Verbeek and W.M.P. van der Aalst

t1

a1

0

t2 t3 t5� �
τ a2 a4a3 a6

0 0 5 0 5

t1

a1

0

� t5 t7t6t4

a2 a4 a5a3 τ

5 0 0 00

t7 t8 �
�a5 a6 a7 a8τ

0 0 2 0 0 5

t7 t9 t10 �
a7 a8

0 5

t10

h1a h1b h1c h1d h1e

Fig. 7. Possible optimal decomposed alignments. h1b is an optimal alignment for the
decomposed log shown in Table 2 and the decomposed net N1b, etc.

alignment, and the five decomposed alignments, and works its way through the
trace and the decomposed alignment while building up the overall alignment:

– The algorithm first encounters the activity a1 in the trace, which is covered
by two decomposed alignments (h1a and h1b). Fortunately, both decomposed
alignments agree on a synchronous move on a1 and transition t1, so the algo-
rithm adds the legal move (a1, t1) to the overall alignment and advances both
the trace and the decomposed alignments.

– The algorithm then encounters the activity a2, which is also covered by two
decomposed fragments (h1b and h1c). However, h1b is not yet ready to accept
a2 as it first needs to do an invisible model move on the transition t2. There-
fore, the algorithm first adds the invisible model move (�, t2) to the overall
alignment and advances the state of h1b. Then, unfortunately, the algorithm
notices that h1b and h1c disagree on the move on a2, as h1b suggests a syn-
chronous move (on transition t3) while h1c suggests a log move. In case of such
a conflict, we can either take an optimistic approach (by selecting the least
expensive move) or a pessimistic approach (by selecting the most expensive
move). In the remainder of this paper, we will use the pessimistic approach,
as the optimistic approach tends to mask mismatches by selecting, in case of a
conflict, moves without costs. Clearly, when diagnosis is the goal, one should
not mask possible problems, but one should stress them. So, the algorithm
adds the log move (a2,�) to the overall alignment and advances the state of
the trace and both h1b and h1c.

– Activity a3 is handled by the algorithm in a similar way as a2, as h1b and
h1c again disagree. Note that as a result, the algorithm now has added two
log moves for a2 and a3 to the overall alignment, which leads to a transition
sequence that is not executable in the overall net, and to an overall alignment
which is (by definition) not a proper alignment. For this reason, we introduce
so-called pseudo-alignments, which are alignments except for the fact that the
trace does not need to be executable in the net. The result of merging the
decomposed alignments at hand would then be a pseudo-alignment instead of
an alignment.

– Etc.

This result of this merging is visualized in Fig. 8. In this figure, the middle
row shows the alignment of alignments that results from merging the decom-
posed alignments. In this row, the legal moves that have been ignored (because
they were in conflict and were less expensive, like (a2, t3), or because they were

Merging Alignments for Decomposed Replay 229

t2 t3 t5� �
τ a2 a4a3 a6

0 0 5 0 5

t1

a1

0

t7 t8 �
�a5 a6 a7 a8τ

0 0 2 0 0 5

t7 t9 t10t1

a1

0

�
a7 a8

0 5

t10

� t5 t7t6t4

a2 a4 a5a3 τ

5 0 0 00

t1

a1

0

t2

τ

0

�
a2

5

�
a3

5

t5

a4

0

t6

τ

0

t7

a5

0

� �
a6 a7 a8τ

5 0 0 10

t9 t10

a1 a2 a3 a4 a5 a6 a7 a8

t7

�

2

t7

Fig. 8. Alignment of the decomposed alignments for obtaining the overall pseudo-
alignment. The top row shows the trace that we need to align in the net. The middle
row shows the optimal decomposed alignments of Fig. 7 laid out in such a way that
the activities match in the vertical direction. Note that the ordering in the vertical
direction of these decomposed alignments is of no importance. The bottom row shows
the pseudo-alignment that results from merging these decomposed alignments.

missing, like a move on t7) are indicated with a grey background. The overall
pseudo-alignment (see the bottom row in Fig. 8) follows directly from this align-
ment of decomposed alignments by taking in every column a legal move that has
no grey background, and by accumulating the costs in every column.

To avoid the introduction of the same concepts in the formal definitions over
and over again, we first define a base setting for these formal definitions. This
definition is to be used as a preamble for all other definitions in this section.

Definition 11 (Base Setting). The base setting for this section is as follows:

– A ⊆ A denotes a set of activities,
– L denotes an activity log over A,
– σ denotes an activity trace from L,
– N = (P, T, F, l, I, O) denotes an accepting Petri net over A,
– $ denotes a cost structure for A and N ,
– h denotes an optimal trace alignment of σ for A and N , given $,
– n equals the number of decomposed nets obtained by decomposing N ,
– for every i ∈ {1, . . . , n}:

• Ai denotes the set of activities of the i-th decomposed net,
• Li denotes the log obtained from L by filtering out all activities not in Ai,

230 H.M.W. Verbeek and W.M.P. van der Aalst

• σi denotes the activity trace from Li obtained from L by filtering out all
activities not in Ai,

• N i = (P i, T i, F i, li, Ii, Oi) denotes the i-th decomposed net obtained by
decomposing N as explained in [1], where P i ⊆ P , T i ⊆ T , F i ⊆ F ,
∀t∈T i li(t) = l(t), Ii = I ∩ P i, and Oi = {o ∩ P i|o ∈ O},

• hi denotes an optimal trace alignment of σi for Li and N i.

First, we introduce the space of alignments that we are interested in, that is,
the collection of overall alignments that fit the decomposed alignments. Later
on, we introduce the algorithm that returns an alignment from this space.

Definition 12 (Merged Trace Alignment). The trace alignment h′ is a
merged trace alignment of h1, . . . , hn if and only if ∀i∈{1,...,n}h′↓Ai= hi, where
h′↓Ai is defined as follows:

h′↓Ai=

⎧
⎨

⎩

〈〉 if h′ = 〈〉;
〈(a, t)〉 · h′↓Ai if h′ = 〈(a, t)〉 · h′ and a ∈ Ai ∨ t ∈ T i;
h′↓Ai if h′ = 〈(a, t)〉 · h′ and a 	∈ Ai ∧ t 	∈ T i;

For decomposed alignments that conflict on some legal move no such merged
trace alignment exists.

Observation 1. (A merged trace alignment may not exist) For arbitrary decom-
posed alignments h1, . . . , hn, a merged trace alignment h′ may not exist.

See Fig. 8: Either we have the legal move (a2, t3) or the legal move (a2,�). In
the former case, the decomposed alignment that contains the legal move (a2,�)
cannot be matched. In the latter case, the decomposed alignment that contains
the legal move (a2, t3) cannot be matched.

In such cases, to get any result of merging the decomposed alignments, we
need to let go of the requirement that for some o ∈ O it holds that I[σ〉o, that
is, the result is not an alignment, but a pseudo-alignment.

Definition 13 (Trace Pseudo-Alignment). A trace pseudo-alignment h for
trace σ on net N is a sequence of legal moves (a, t) ∈ (A∪{τ,�})× (T ∪{�}))
such that σ = h�1A, where h�1A is defined as in Definition 6.

In a pseudo alignment we drop the second requirement in Definition 6. Using
these pseudo-alignments, the algorithm can handle conflicts between the decom-
posed alignments. A merged pseudo alignment has only legal moves for:

– Each activity in the log trace. In case of conflicts, the cheapest legal move is
selected for the overall pseudo-alignment.

– A model move that all agree on. Note that, by definition, for an invisible
model move all agree, as there is only one decomposed net that contains this
transition.

Definition 14 (Merged Trace Pseudo-Alignment). The trace pseudo-
alignment h′ is a merged trace pseudo-alignment of h1, . . . , hn if and only if

Merging Alignments for Decomposed Replay 231

∀i∈{1,...,n}h′↓Ai= hi, where h′↓Ai is defined as follows:

h′↓Ai=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈〉 if h′ = 〈〉;
〈(a, t′)〉 · h′↓Ai if h′ = 〈(a, t)〉 · h′ and a ∈ Ai,

for some t′ such that $(a, t′) ≥ $(a, t);
〈(x, t)〉 · h′↓Ai if h′ = 〈(x, t)〉 · h′, x ∈ {τ,�}, and t ∈ T i;
h′↓Ai if h′ = 〈(�, t)〉 · h′ and t ∈ T i;
h′↓Ai if h′ = 〈(a, t)〉 · h′ and a 	∈ Ai and t 	∈ T i;

As a result, in case of conflicting legal moves, the most expensive legal move
is selected to be included in the overall pseudo-alignment (see the second item).
Of course, this selected legal move will not match some unselected legal moves,
which most likely breaks the execution of the transition sequence in the net.
Furthermore, note that it is possible to ignore visible model moves (see the
fourth item). This is required for completeness as otherwise we cannot deal
with a conflict for such transitions. For example, observe that the decomposed
alignment h1d includes the legal move (�, t7), which is not matched in the
decomposed alignment h1c. Having (�, t7) in the corresponding position in h′

would work for h1d, but not for h1c. Likewise, not having it would work for h1c,
but not for h1d. To solve this problem, we decide to have (�, t) in h′ (for sake
of diagnosis) and to compensate for this using this fourth item.

Theorem 1 (A merged trace pseudo-alignment always exists). For arbi-
trary decomposed alignments h1, . . . , hn, a merged trace pseudo-alignment h′

always exists.

Proof. Assume that such an h′ does not exist, and assume that we could find
a prefix of h′ such that the projection of this prefix onto every Ai does result
in a prefix of hi. Obviously, the empty prefix satisfies this requirement. Now,
assume that we cannot extend this prefix anymore, that is, we cannot add a
new legal move, while a final marking has not been reached yet. This can obvi-
ously not involve an invisible transition, as there can be no conflict on such
transition. Likewise, this can also not involve a visible transition contained in
only one decomposed alignment. However, this can also not involve a shared
visible transition that is enabled by all sharing decomposed alignments, as then
we could simply take a most expensive of the legal moves proposed by these
alignments. As a result, this can only happen in case at least one of the sharing
alignments expects another shared visible transition first. Such a shared visible
transition cannot correspond to a model move, as otherwise we could use the
fourth item to continue, as explain above. As a result, there should be a conflict
with synchronous moves. But this clearly contradicts the fact that every decom-
posed alignment adheres to the order of these transitions in the original trace.
Therefore, it cannot be that we cannot extend the prefix, unless we have reached
a final marking.

Theorem 2 (A merged trace pseudo-alignment may not be an align-
ment). Let the trace pseudo-alignment h′ be a merged trace pseudo-alignment
of h1, . . . , hn. Then h′ may not be a trace alignment for L and N .

232 H.M.W. Verbeek and W.M.P. van der Aalst

Proof. See Fig. 8: We added the legal move (a2,�) as this is more expensive
than adding (a2, t3). In a similar fashion, we also added (a3,�). As a result,
neither t3 nor t4 is present in the transition sequence of the alignment. But,
clearly, net N1 requires either t3 to t4 to fire to reach the final marking. Hence
the resulting transition sequence σ does not satisfy the requirement that I[σ〉o,
for some o ∈ O.

Based on these definitions, we first introduce three alignment stitching rules,
followed by two pseudo-alignment stitching rules. The alignment stitching rules
construct a merged trace alignment, if possible. If this succeeds, we know that
the result is again an alignment, and that the reported costs are exact, and not
just a lower bound. Otherwise, we need a pseudo-alignment stitching rule to be
able to continue, but this will result in a pseudo-alignment, and the reported
costs will only be a lower bound.

Definition 15 (Stitching Function Y). Let H be the set of all possible trace
pseudo-alignments of L and N , and let Hi be the set of all possible trace align-
ments of Li and N i. The function Y ∈ (H×A∗×H1×. . .×Hn) → H returns the
first argument concatenated by the merged trace pseudo-alignment of the third
and following arguments (h1, . . . , hn), where the second argument (σ) is used
to guide the stitching. As a result, Y (〈〉, σ, h1, . . . , hn) returns the merged trace
pseudo-alignment of h1, . . . , hn.

The first alignment stitching rule is a simple rule that detects when the
algorithm is done: If the trace and all decomposed alignments have been dealt
with completely.

Alignment Stitching Rule 1 (All Done)

Y (h′, 〈〉, 〈〉, . . . , 〈〉) = h′

The second alignment stitching rule is a rule that allows the algorithm to
continue if all relevant decomposed alignments agree on the first activity in the
trace. If so, this activity is now dealt with and so are the corresponding legal
moves in the relevant decomposed alignments. For the irrelevant decomposed
alignments, nothing changes.

Alignment Stitching Rule 2 (Activity w/o Conflict)

If σ = 〈a〉 · σ and t ∈ (T ∪ {�})
and ∀i∈{1,...,n}(a ∈ Ai) ⇒ (hi = 〈(a, t)〉 · hi)
and ∀i∈{1,...,n}(a 	∈ Ai) ⇒ (hi = hi)
then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(a, t)〉, σ, h1, . . . , hn)

The third alignment stitching rule is a rule that allows the algorithm to con-
tinue if all relevant decomposed alignments agree on a next model move. If so,
these legal moves are now dealt with. Note that the set of relevant decomposed

Merging Alignments for Decomposed Replay 233

alignments differs per model move, as this set comprises all decomposed align-
ments where the corresponding decomposed net contains the transition involved
in the selected legal move. As a result, multiple legal model moves could be
a candidate for applying this rule. Note that this indicates that the candidate
transitions are now all enabled, that is they are concurrent.

Alignment Stitching Rule 3 (Transition w/o Conflict)

If t ∈ T and x ∈ {τ,�}
and ∀i∈{1,...,n}(t ∈ T i) ⇒ (hi = 〈(x, t)〉 · hi)
and ∀i∈{1,...,n}(t 	∈ T i) ⇒ (hi = hi)
then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(τ, t)〉, σ, h1, . . . , hn)

As mentioned before, applying these rules will result in an alignment if the
algorithm ends and Rule 1 can be applied. However, it may be that no rule is
applicable before reaching the end of one or more decomposed alignments.

Theorem 3 (Alignment Stitching Rules Result in an Alignment). Pro-
vided that the application of the alignment stitching rules ends, that is, if at
the end Rule 1 is applied, then the result of applying these rules is an alignment
merged trace alignment, that is, a trace alignment.

Proof. By construction, the alignment stitching rules append h′ with a legal
move (a, t) if and only if all relevant decomposed alignments hi agree on this
legal move. See also [1].

If conflicts between activities and/or transitions do occur, the algorithm can
use one of the following rules to continue. However, by applying these rules, we
know that the end result will not be an alignment. As we favor alignments, over
pseudo-alignments, we only apply the following stitching rules if the previous
stitching rules can not be applied.

The first pseudo-alignment stitching rule is a rule that allows the algorithm to
continue if the relevant decomposed alignments disagree on the next legal move
containing the first activity in the trace, that is, a synchronous or log move. If
so, the most expensive of the conflicting legal moves is added to the resulting
pseudo alignment, the activity in the trace is now dealt with, and so are all the
conflicting moves in the relevant decomposed alignment.

Pseudo-Alignment Stitching Rule 1 (Activity w/ Conflict)

If σ = 〈a〉 · σ and R = {i ∈ {1, . . . , n}|a ∈ Ai} and m ∈ R

and ∀i∈R(ti ∈ (T i ∪ {�}) ∧ hi = 〈(a, ti)〉 · hi ∧ $(a, tm) ≥ $(a, ti))
and ∀i∈{1,...,n}\Rhi = hi

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(a, tm)〉, σ, h1, . . . , hn)

In this definition, R can be interpreted as the set of (indices of) relevant decom-
posed alignments, and m can be interpreted as the (index of the) relevant decom-
posed alignment with maximal costs.

234 H.M.W. Verbeek and W.M.P. van der Aalst

The second pseudo-alignment stitching rule is a rule that allows the algorithm
to continue if the relevant decomposed alignments disagree on a next model
move. If so, one of these model moves is selected, and added to the pseudo-
alignment, and all corresponding model moves are now dealt with.

Pseudo-Alignment Stitching Rule 2 (Transition w/ Conflict)

If t ∈ T and l(t) ∈ A
and R = {i ∈ {1, . . . , n}|hi = 〈(�, t)〉 · . . .} and R 	= ∅
and ∀i∈Rhi = 〈(�, t)〉 · hi

and ∀i∈{1,...,n}\Rhi = hi

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(�, t)〉, σ, h1, . . . , hn)

In this definition, again R can be interpreted as the set of (indices of) relevant
decomposed alignments.

Note that both rules are not deterministic, as there may be more activities
or multiple visible transitions that satisfy the preamble. In such a case, one can
select any of these activities or transitions, apply the rule using that activity or
transition, and continue.

Theorem 4 (Stitching Rules Are Complete). Applying all five rules ends,
and the result of applying them is a merged trace pseudo-alignment.

Proof. By construction, Pseudo-alignment Stitching Rule 1 appends h′ with a
legal move (a, t) if and only if it is the most expensive option, which corresponds
1-to-1 with the second item of the merged trace pseudo-alignment. As a result,
this rule deals effectively with conflicting synchronous moves and conflicting
log moves (as ti is allowed to be �). Also by construction, Pseudo-alignment
Stitching Rule 2 allows to add a conflicting model move, as it may add such a
model move to h′ while not adding it to some hi. This correspond 1-to-1 with
the fourth item of the conflicting merged trace alignment. As a result, the rule
deals effectively with conflicting model moves. What remains is the proof that
Alignment Stitching Rule 1 can be applied at some point in time (algorithm
ends). Assume that the stitching blocks at some point in time, while σ starts
with a. If all corresponding hi’s start with the same legal move, then Alignment
Stitching Rule 2 can be applied. If these hi’s start with conflicting legal moves,
then Pseudo-alignment Stitching Rule 1 can be applied. As a result, to have no
stitching rule applicable at this moment, some of these hi’s need to start with
a model move, that is, with some (τ, ti) or (�, ti). In case of (τ, ti), Alignment
Stitching Rule 3 can be applied, as ti only occurs in T i. Otherwise, in case of
(�, ti), Pseudo-alignment Stitching Rule 2 can be applied. Hence, the stitching
cannot block.

We now have everything in place for the merge algorithm, which simply
keeps on checking whether the rules as provided earlier (in the order given) can
be applied. As soon as it detects a rule that it can apply, it applies that rule and
starts over again by checking whether the rules can be applied. In the end, the
first rule is applied, which provides us with the result: either a pseudo-alignment
or a proper alignment.

Merging Alignments for Decomposed Replay 235

Fig. 9. Screenshot of the result of the decomposed replay (left-hand side) and of the
result of the non-decomposed replay (right-hand side). Both alignments are projected
onto the overall log.

4 Implementation

The alignment merge as described in the previous section has been implemented
in the “LogAlignment” package of ProM 6 [19]. This “LogAlignment” package2

is part of the “DivideAndConquer” framework [18] in ProM 6 that supports
decomposed discovery and decomposed replay.

In the framework, a single replay (that is, on overall alignment of every trace
in a log on a net) has a timeout of 10 min. In Fig. 6 we already noted that some
non-decomposed replays did not finish within this time. This timeout of 10 min is
set to prevent a single replay to take almost forever. Experiences indicated that
only rarely a replay finishes successfully after more than these 10 min [14,15].
In case of a decomposed replay, this timeout is enforced in a progressive way. If
one of the decomposed replays has failed, then the resulting pseudo-alignment
will be empty. For this reason, after one of the decomposed replays has exceeded
the timeout, the timeout will be set to 0 min. This effectively prevents time
being spent in decomposed replays that are not needed anyway as the resulting
pseudo-alignment is already known to be empty.

Figure 9 shows two screenshots: one of the result of the decomposed replay
and the alignment merge, and one of the result of the non-decomposed replay.
The resulting (pseudo-)alignments have both been projected onto the overall log.
This figure shows that the decomposed replay followed by the alignment merge
successfully matches all synchronous moves (the lighter and green chevrons), and
also most of the visible model moves (the darker and purple chevrons).

2 See https://svn.win.tue.nl/repos/prom/Packages/LogAlignment/Trunk.

https://svn.win.tue.nl/repos/prom/Packages/LogAlignment/Trunk

236 H.M.W. Verbeek and W.M.P. van der Aalst

Fig. 10. Computation times for the replay and the alignment merge on the data sets.

5 Discussion

Figure 10 shows the computation time needed for the decomposed replay
extended with the alignment merge for the three data sets introduced earlier.
For sake of reference, this figure also includes the computation time needed for
both the non-decomposed replay and the decomposed replay. Clearly, in many
cases, doing a decomposed replay followed by an alignment merge is faster than
doing a non-decomposed replay. As a result, a pseudo-alignment can be returned
in a fraction of the time it would take to return an alignment. Note that, for
every data set used, the computation of a pseudo-alignment would take up to
20 s, whereas the computation of an alignment might take more than 10 min,
that is, days [14,15].

If the decomposed alignments do no incur any costs, then there exists an
alignment that is the result of the merge [1]. For this alignment, it is guaranteed
that there are no conflicts when merging. As a result, in such cases, the algorithm
as introduced in this paper is guaranteed to return an alignment instead of only
a pseudo-alignment.

If the decomposed alignments do incur costs, then it is still possible that an
optimal alignment is returned by the stitching algorithm: If at every step during
the stitching all relevant decomposed alignments agree on a next legal move,
then the result will be an alignment. Note that this alignment may still incur
costs, as every relevant decomposed alignment may agree on the move to be a
log move, or in case all misalignments are local. As a result, in certain cases if
costs are incurred, the algorithm will return an alignment, and this alignment
will have the same costs as the non-decomposed alignment [1].

Figure 11 shows that in general it is not possible to obtain an alignment in every
case. The dashed line in this net indicates the only way this net can be decomposed
into nets: The first decomposed net (Na) contains all transitions labeled a and the
second net (Nd) contains all transitions labeled d. Now assume that the trace at
hand is the empty trace and that every model move costs 4. The optimal alignment
for Na contains only the legal move (�, tc) (with costs 2), whereas the optimal
alignment for Nd contains only (�, tb) (also with costs 2). Clearly, there is no
alignment in the overall net that has lower costs than the costs (4) of these two

Merging Alignments for Decomposed Replay 237

b
tb

a

d

ta1
td1

a
tak

c
tc

d
tdl

. . .

. . .

k transitions labeled a

l transitions labeled d

Fig. 11. An example net for which there is no proper alignment.

model moves: The upper branch would cost 4×k+2, the lower branch 2+4×l. This
example also shows that we cannot give an upper bound for an overall alignment
using the decomposed alignment, as k and l could be arbitrary high.

At the moment, the cost-based replay algorithm results in on overall optimal
alignment. As a result, it is conceivable that for two decomposed replays two opti-
mal decomposed alignments are returned which have conflicts, while there would
also be two optimal decomposed alignments that do not conflict. In case of the
conflicting decomposed alignments, the algorithm returns a pseudo-alignment,
whereas it would return an alignment if the alignments do not conflict. As such, it
would be beneficial for the merge algorithm if the replay algorithm would return
all optimal alignments instead of only one. If so, then the merge algorithm could
return an alignment in more cases, although of course this would take more time
as the algorithm would have to check possibly many combinations of decomposed
alignments.

6 Conclusions

This paper has introduced an algorithm to merge decomposed alignments. In
general, the result of the algorithm will be a pseudo-alignment, that is, an align-
ment except for the fact that it may not be executable in the net. However, if
the decomposed alignments agree with each other, then the algorithm returns a
proper optimal alignment. In case of a perfect match between the log and the
net, then these decomposed alignments will always agree with each other [1], and
hence the result of the algorithm will be an alignment. In case of mismatches
between the log and the net, the result many still be an alignment, but then all
decomposed alignments need to agree.

This paper has also shown that, especially for logs and nets that contain many
activities, the computation of a (non-decomposed) alignment takes longer than
the computations of the decomposed alignments and the time it takes to merge
them. As the pseudo-alignment that results from the decomposed approach can
still be used effectively to diagnose mismatches, it will often be more convenient
to use this approach.

In case the algorithm returns a proper alignment, then the costs of this align-
ment are exact, that is, it equals the costs obtained through a non-decomposed
replay. In case the algorithm does not return an alignment but a pseudo-
alignment, then the costs of this alignment are a lower bound for the costs
obtained through a non-decomposed replay.

238 H.M.W. Verbeek and W.M.P. van der Aalst

In the future, we want to see whether heuristics exist that help the merge into
obtaining better (pseudo-)alignments. As is, the current algorithm contains non-
determinism, in which case it has several alternatives to proceed. For example,
there could be multiple visible model moves to merge next. Possibly, using some
local heuristic, we can select a next merge action which most likely results in a
(pseudo-)alignment that better matches the overall alignment one would get by
doing a non-decomposed replay. Note that the better this match, the better the
gain of using the non-decomposed replay.

Also, we want to extend the stitching rules with rules that allow for differ-
ent ways of decomposing the net. The decomposition introduced in [1] takes
care that every invisible transition ends up in a single decomposed net. As a
result, there can be no conflict that involves invisible transitions. However, dif-
ferent decomposition approaches may not guarantee this. As an example take a
decomposition approach where a decomposed net is obtained by simply hiding
(that is, making invisible) those visible transitions that are not relevant for this
decomposed net. For such a decomposition approach, every transition occurs in
every decomposed net, only some visible transitions will be made invisible. Of
course, if some visible transition has been made invisible in some decomposed
net, then there will definitely be a conflict when merging the alignment. This gets
even more complicated if the decomposition approach first reduces the decom-
posed nets, for example, by using existing Petri net reduction rules [6,16]. Then
some invisible transitions will be present in only some decomposed nets, and
some of them might also have visible counterparts in other decomposed nets.

Finally, an interesting idea is to recompose decomposed nets and decomposed
logs in case their decomposed alignments have many conflicts. By recomposing
the nets and the logs, we remove these conflicts but obtain a slightly larger
recomposed net and recomposed log. As this recomposed net and recomposed log
might still be much smaller than the overall net and overall log, the decomposed
replay might still be much faster than the overall replay.

References

1. van der Aalst, W.M.P.: Decomposing Petri Nets for process mining:
a generic approach. Distrib. Parallel Databases 31(4), 471–507 (2013).
http://dx.doi.org/10.1007/s10619-013-7127-5

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer, Heidelberg (2011)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying his-
tory on process models for conformance checking and performance analy-
sis. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012).
http://dx.doi.org/10.1002/widm.1045

4. Adriansyah, A., van Dongen, B.F, van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Proceedings of the 2011 IEEE 15th Interna-
tional Enterprise Distributed Object Computing Conference, EDOC 2011, pp. 55–
64. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/
EDOC.2011.12

http://dx.doi.org/10.1007/s10619-013-7127-5
http://dx.doi.org/10.1002/widm.1045
http://dx.doi.org/10.1109/EDOC.2011.12
http://dx.doi.org/10.1109/EDOC.2011.12

Merging Alignments for Decomposed Replay 239

5. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In: 2011 11th International Conference on Application of Concurrency
to System Design (ACSD), pp. 57–66, June 2011

6. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) Advances in Petri Nets 1986, Part I. LNCS, vol. 254, pp.
360–376. Springer, Heidelberg (1987)

7. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determin-
ing process model precision and generalization with weighted artificial negative
events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

8. Calders, T., Günther, C.W., Pechenizkiy, M., Rozinat, A.: Using minimum descrip-
tion length for process mining. In: Proceedings of the 2009 ACM Symposium on
Applied Computing, SAC 2009, pp. 1451–1455. ACM, New York (2009). http://
doi.acm.org/10.1145/1529282.1529606

9. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the
correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol. 8(2),
147–176 (1999). http://doi.acm.org/10.1145/304399.304401

10. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust f-measure for
evaluating discovered process models. In: 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), pp. 148–155, April 2011

11. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discov-
ery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009).
http://dl.acm.org/citation.cfm?id=1577069.1577113

12. Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., Van Den Bosch,
A.: A rule-based approach for process discovery: dealing with noise and
imbalance in process logs. Data Min. Knowl. Disc. 13(1), 67–87 (2006).
http://dx.doi.org/10.1007/s10618-005-0029-z

13. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-15618-2 16

14. Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance checking in
the large: partitioning and Topology. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 130–145. Springer, Heidelberg (2013)

15. Muñoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-
exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014).
http://dx.doi.org/10.1016/j.is.2014.04.003

16. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

17. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes
based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008).
http://www.sciencedirect.com/science/article/pii/S030643790700049X

18. Verbeek, H.M.W.: Decomposed process mining with divide-and-conquer. In: BPM
2014 Demos, vol. 1295, pp. 86–90. CEUR-WS.org (2014). http://ceur-ws.org/
Vol-1295/paper11.pdf

19. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P: ProM
6: the process mining toolkit. In: Proceedings of BPM Demonstration Track 2010,
vol. 615, pp. 34–39. CEUR-WS.org (2010). http://ceur-ws.org/Vol-615/paper13.
pdf

http://doi.acm.org/10.1145/1529282.1529606
http://doi.acm.org/10.1145/1529282.1529606
http://doi.acm.org/10.1145/304399.304401
http://dl.acm.org/citation.cfm?id=1577069.1577113
http://dx.doi.org/10.1007/s10618-005-0029-z
http://dx.doi.org/10.1007/978-3-642-15618-2_16
http://dx.doi.org/10.1016/j.is.2014.04.003
http://www.sciencedirect.com/science/article/pii/S030643790700049X
http://ceur-ws.org/Vol-1295/paper11.pdf
http://ceur-ws.org/Vol-1295/paper11.pdf
http://ceur-ws.org/Vol-615/paper13.pdf
http://ceur-ws.org/Vol-615/paper13.pdf

	Merging Alignments for Decomposed Replay
	1 Introduction
	2 Preliminaries
	2.1 Logs
	2.2 Nets
	2.3 Alignments
	2.4 Decomposition

	3 Merging Alignments
	4 Implementation
	5 Discussion
	6 Conclusions
	References

