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Preface

This volume constitutes the proceedings of the 37th International Conference on
Application and Theory of Petri Nets and Concurrency (Petri Nets 2016). This series of
conferences serves as an annual meeting place to discuss progress in the field of Petri
nets and related models of concurrency. These conferences provide a forum for
researchers to present and discuss both applications and theoretical developments in
this area. Novel tools and substantial enhancements to existing tools can also be
presented. This year, the satellite program of the conference comprised three work-
shops, two Petri net courses, two advanced tutorials, and a model checking contest.

Petri Nets 2016 was co-located with the Application of Concurrency to System
Design Conference (ACSD 2016). Both were organized by the Faculty of Mathematics
and Computer Science of the Nicolaus Copernicus University. It took place in Toruń,
Poland, during June 19–24, 2016. We would like to express our deepest thanks to the
Organizing Committee chaired by Łukasz Mikulski for the time and effort invested in
the local organization of this event.

This year, 42 regular papers were submitted to Petri Nets 2016. The authors of the
submitted papers represented 29 different countries. We thank all the authors. Each
paper was reviewed by at least three reviewers, three and a half on average. The
Program Committee (PC) meeting took place electronically, using the EasyChair
conference system for the paper selection process. The PC selected 16 papers for
presentation, among them three are tool papers. The program also included four invited
talks. After the conference, some authors were invited to submit an extended version
of their contribution for consideration in a special issue of a journal.

We thank the PC members and other reviewers for their careful and timely evalu-
ation of the submissions before the meeting and the fruitful discussions during the
electronic meeting. The Springer LNCS team and the EasyChair system provided
excellent support in the preparation of this volume. We are also grateful to the invited
speakers for their contribution:

– Ian Foster, University of Chicago, who delivered the Distinguished Carl Adam Petri
Lecture
“Reasoning About Discovery Clouds”

– Manfred Broy, Technical University of Munich
“From Actions, Transactions, and Processes to Services”

– Slawomir Lasota, University of Warsaw
“Decidability Border for Petri Nets with Data: WQO Dichotomy Conjecture”

– Jetty Kleijn, Leiden University
“On Processes and Paradigms”

June 2016 Fabrice Kordon
Daniel Moldt
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On Processes and Paradigms

Jetty Kleijn

LIACS, Leiden University, P.O. Box 9512, 2300 RA, The Netherlands
h.c.m.kleijn@liacs.leidenuniv.nl

Summary

Understanding the causal relations between occurrences of actions during a run of a
distributed system is crucial for reasoning about the behaviour of such systems.
Knowledge of dependencies between events (occurrences of actions) may facilitate the
identification of different (sequential) observations belonging to the same run. The
resulting equivalence classes (traces) comprise observations that have the same
underlying events and agree on their dependencies. The elements of a trace thus share a
common dependency structure the closure of which defines an invariant labelled
relational structure that characterises the trace. For systems modelled by Petri nets,
dependencies between events during a run of a net are determined by local interactions
of transitions as made visible in the corresponding process, i.e. an unfolding of the net
according to the given execution. Abstraction from places in combination with a
closure operation then leads to a causality semantics in terms of relational structures
labelled with transition names. Consequently, a trace semantics and a process
semantics of a Petri net model ‘fit together’ if the labelled relational structures they
associate with concurrent runs are always in agreement. A classical example of
such fitting is provided by Elementary Net (EN) Systems, see, e.g., [5]. For this
fundamental class of Petri nets, the process semantics fits through partial orders with
the classical Mazurkiewicz’ traces [4] consisting of firing sequences and defined using
a structural independence relation on transitions.

In this lecture, we will present a generalisation of this semantical theory to the case
that observations are represented by sequences of steps (sets of one or more simulta-
neous events) rather than sequences of single occurrences and apply it to extended EN
systems. In case of EN systems and their step sequences, two transitions that can be
observed consecutively in any order can also be observed (in an equivalent observa-
tion) as occurring in a single step, and vice versa. This property reflects the ‘true
concurrency paradigm’. Consequently, for this net model, the structure of runs can still
be described in terms of partial orders.

In general however, the relational structures obtained from sets of step sequences
are no longer partial orders but rather rely on dependence relations that can describe
events as being ‘unordered but never simultaneous’ and ‘always ordered or simulta-
neous’. Such global relationships between events in sets of related observations of a
system identify the concurrency paradigm to which it adheres, with the least restrictive,
most general paradigm making no assumptions at all. The order structures that



correspond to this most general paradigm have been characterised in [2]. They can
capture any history, i.e. any set of labelled structures underlying the step sequences that
form the observations of a run. Moreover, these general order structures match exactly
with step traces [1], a generalisation of Mazurkiewicz’ traces to equivalence classes of
step sequences, based on simultaneity and sequentialisation relations between actions
to swap and split steps.

EN systems with inhibitor arcs and mutex arcs are a system model for the most
general concurrency paradigm [3]. We will demonstrate that their process semantics
and step trace semantics fit together through the general order structures identified
above.

Acknowledgement The work presented is based on and extends earlier work with
Ryszard Janicki, Maciej Koutny, and Łukasz Mikulski.
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Reasoning About Discovery Clouds

Ian Foster1,2(B)

1 Argonne National Laboratory, Argonne, IL 60439, USA
2 The University of Chicago, Chicago, IL 60637, USA

foster@uchicago.edu

Abstract. A discovery cloud is a set of automated, cloud-hosted ser-
vices to which individuals may outsource their routine and not-so-routine
research tasks: finding relevant data, inferring links between data, run-
ning computational experiments, inferring new knowledge claims, evalu-
ating the credibility of knowledge claims produced by others, designing
experiments, and so on. If developed successfully, a discovery cloud can
accelerate and democratize access to data and knowledge tools and the
collaborative construction of new knowledge. Such systems are also fas-
cinating to consider from a reasoning perspective because they integrate
great complexity at multiple levels: the underlying cloud-based hardware
and software, for which issues of reliability and responsiveness may be
paramount; the knowledge bases and inference engines that sit on that
cloud substrate, for which issues of correctness may be less well defined;
and the human communities that form around the discovery clouds, and
that arguably form as much as part of the cloud as the hardware, soft-
ware, and data. I raise questions here about what it might mean to reason
about such systems. I do not provide any answers.

1 Introduction

I am a researcher who seeks to advance knowledge by building systems. I build
systems for two reasons: because I believe strongly in the power of automa-
tion (Whitehead: Civilization advances by extending the number of important
operations which we can perform without thinking about them [1]) and because
experience teaches that it is only when we build systems that we learn how
people use them in practice. Perhaps because of this predilection for engineer-
ing, I have little experience with the theory that was at the core of Carl Petri’s
work [2]. Instead, therefore, I will write here about the nature of the systems
that I want to build in the coming decade, and the modeling challenges that
they may introduce. I will be delighted if this presentation spurs discussions of
how theory and modeling can be applied to such systems.

2 The Changing Nature of Science

The world of science is changing rapidly due to rapid evolution in sensor tech-
nologies, digitization of existing (e.g., textual) data sources, and increasingly
c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-39086-4 1



4 I. Foster

powerful computers. These developments have many implications for the nature
of both discovery and knowledge. The opportunities inherent in so-called big
data are widely discussed: for example, the ability to learn, via examination of
large numbers of examples, how to label objects in images [3], translate text
from one human language to another [4], or even synthesize explanatory theo-
ries for natural phenomena [5]. So too are the challenges: the massive quantities
of data that must be stored and processed, the uncertain nature of knowledge
based on data mining or deep learning, and the difficulty of maintaining pri-
vacy when many information is integrated from many sources. Supercomputers,
too, present exciting new opportunities, allowing the implications of theoretical
models to be explored in unprecedented detail and sensitivity to unknown para-
meters. Increasingly, also, data and simulation are being combined, with data
used to calibrate or validate theoretical models and computational simulations
used to explain data or propose new experiments.

These developments have two interesting consequences. First, the scale and
complexity of the data, software, and computing hardware required to under-
stand natural phenomena (in the case of science) or design new systems (in
the case of engineering) grows every larger. Increasingly, therefore, the individ-
ual investigator must outsource important elements of the discovery process to
remote computing systems, whether a curated database, a supercomputer sim-
ulation, or a machine learning process. I use the term discovery cloud to denote
the resulting environment, and discuss some of its attributes below.

Second, our understanding of new discoveries or new engineered systems
is increasingly often based on our understanding of, or faith in, the various
elements of this discovery cloud. In part, the issue is that our understanding is
increasingly encoded in algorithms rather than equations [6], to the extent that,
arguably, “applied computer science is now playing the role which mathematics
did from the seventeenth through the twentieth centuries: providing an orderly,
formal framework and exploratory apparatus for other sciences” [7]. Equally
importantly, the machinery that is used to execute, and in many cases construct,
these algorithms becomes part of our explanatory apparatus.

3 Discovery Engines

Not so long ago, a researcher or engineer conducted their work on the basis of
their own observations of the natural world, the knowledge of others as obtained
from personal correspondence or the library, and a suite of mathematical tools.
Results were communicated in the form of scientific articles or products, which
others could review and test.

The rapidly growing data volumes and use of computational methods referred
to above, as well as other related factors such as increasingly collaborative
research and greater methodological complexity, are transforming the nature
of investigation in many fields. Increasingly, research depends on the ability to
search and compute over large quantities of data, at scales that are not easily
supported in a typical investigator’s lab. Thus, we see the emergence of a new
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form of instrument: the storage, computing, data, and code required to allow
community analysis of a large dataset—what I term a discovery engine [8]. Many
individuals and groups may work on a single discovery engine over a period of
months or years, asking different questions, and producing 10s or even 1000s of
publications. The community needs to have access to the datasets and the analy-
sis and visualization tools, along with all of the provenance needed to interpret,
reproduce, and extend results.

Successful discovery engines have been developed within a few disciplines
and projects: see, for example, the Sloan Digital Sky Survey’s SkyServer [9],
the SEED system for microbial genomes [10,11], the MG-RAST metagenomics
server [12], and what Szalay calls Open Numerical Laboratories [13]. The Sloan
survey, for example, has collected imaging data for more than 35 % of the sky
with photometric observations of ∼500 million objects and spectra for more
than 3 million objects. Importantly, SDSS does not simply provide the commu-
nity with access to raw data: the SkyServer provides a range of interfaces for
querying and accessing the data, including the CasJobs interface [14] for running
computationally intensive SQL queries. As of March 2016, use of SDSS data has
resulted in >5,800 refereed papers with >245,000 citations.

The SEED was first established in 2004, at a time when large numbers of
sequenced bacterial genomes were being produced, with the goal of producing
superior annotations (e.g., labeling genes with their functional role) for the first
1,000 sequenced genomes. To this end, the SEED team pioneered a new app-
roach to genome annotation based on the annotation of subsystems by expert
annotators across many genomes. Users upload genomes the system for auto-
mated analysis and annotation; genes are called by comparison to the knowledge
maintained within the SEED system. As of 2013, >12,000 users worldwide had
annotated >60,000 distinct genomes. The related MG-RAST server, launched
in 2007, has as of March 2016 processed 239,314 metagenomes totalling >100
trillion base pairs for >12,000 users.

These usage data illustrate the outsize impact that discovery engines can have
on their communities. Importantly, the systems cited are all easily accessible by
researchers with limited information technology experience and resources. They
thus serve to both empower researchers who could not otherwise easily analyze
data from new instruments, and as loci for collaboration around that data.

4 The Discovery Cloud

While the discovery engine is relatively new to science, similar entities have
existed for some time, and indeed on much larger scales, within industry. The
Google search engine is a massive collection of data, organized and processed so
as to permit rapid query by any web user and presumably yet more powerful
computations by Google employees. So too are the Amazon catalog and Face-
Book social network. And these services are just three (albeit large) instances of
a vast array of cloud services on which businesses, consumers, and indeed soci-
ety as a whole increasingly rely. The full spectrum of cloud services encompass a
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tremendous variety of computational and data-oriented services to which busi-
nesses and consumers can outsource tasks that until recently were performed
either manually or on personal computers: for example, booking travel, manag-
ing travel information, writing documents, organizing photographs, or tracking
customer relationships. The convenient and cost structures of these services are
such that small businesses, in particular, often choose to outsource essentially
all of their IT to such software-as-a-service (SaaS) providers [15–17]. And SaaS
providers themselves frequently outsource responsibility for providing the com-
puting and storage that they need to operate to infrastructure-as-a-service (IaaS)
providers, such as Amazon Web Services, Microsoft Azure, and Google cloud,
and leverage capabilities provided by platform as a service (PaaS) systems [18].

Scientists make frequent use of consumer cloud services in their work, using
for example Google Docs or GitHub for collaborative authoring, Skype for com-
munication, and DropBox for data sharing. But such usage is still incidental
to the main business of science: the painstaking steps by which experiments
are designed However, a growing number of services are emerging that provide
on-demand access to functions more directly relevant to scientific practice. In
addition to the discovery engines listed above, we can point to Google Scholar
for searching papers and retrieving citation information, Globus services for data
transfer and sharing [19], the nanoHUB system for nanotechnology simulation
software [20], and iPlant (now CyVerse) services [21].

If enough such science services [22] can be assembled, we can establish the
Discovery Cloud [23], a set of services that (a) address directly the data lifecy-
cle and computational challenges faced by researchers; (b) allow rapid adoption
within advanced discovery tools, without requiring substantial technical exper-
tise or local infrastructure; and (c) adapt easily to varied disciplinary needs and
rapidly evolving science requirements. Such services will enable state-of-the-art
discovery and education within those labs that today struggle with IT challenges,
while also accelerating work within even the best-resourced labs by slashing time
spent on mundane and routine activities. It will thus allow researchers to com-
pete and indeed prosper in a world of increasingly large, noisy, and complex
datasets and ever more sophisticated computation. The availability of powerful
commercial cloud platforms allow the Discovery Cloud to focus on developing,
adapting, and integrating higher-level services, including those that were orig-
inally developed for enterprise or big science collaborations, and delivering the
resulting tools through a framework designed specifically to meet the needs of
researchers.

While our vision for the Discovery Cloud is expansive, it is firmly rooted
in practical experience. Over the past five years we have developed and oper-
ated Globus [19]—a collection of cloud-hosted services designed specifically to
address SML data management challenges [24] and platform requirements [25].
The results of this experiment have been positive: Globus services have been
incorporated into many thousands of research workflows worldwide. The rapid
growth of usage combined with overwhelmingly positive feedback, has high-
lighted the value of service-based delivery of scientific capabilities.
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We anticipate the Discovery Cloud building on this experience, leveraging
proven services (e.g., Globus authentication, identity management, data trans-
fer, data sharing), while supporting the development and integration of new
capabilities, providing a platform to simplify the creation of new services while
reducing development and operations costs, and creating new mechanisms that
directly address the inherent sustainability challenges of research software.

The Discovery Cloud can also create opportunities for new research projects
focused on the nature of research. The fact that a greater number of research
tasks are digitally mediated makes it possible, in principle, to treat research
processes as objects of study in their own right. The resulting metaknowledge [26]
can provide insights into the nature of effective research strategies [27].

5 Reasoning About Discovery Clouds

In a Discovery Cloud environment, substantial parts of an end-to-end research
workflow will routinely be outsourced to cloud services. Workflow results will
often depend on data and computation maintained by sophisticated discovery
engines that are frequently updated with new data, inferences, and inference
methods.

In this context, issues relating to the documentation, integrity, and repro-
ducibility of research results can become far more challenging than in a pre-cloud
environment. For example, consider the following questions: Which specific data
products were used to obtain a result? What code was executed to create a
dataset? What do I need to do to reproduce a result? Is my computation deter-
ministic? How do I account for a result obtained from machine learning service
that uses neuromorphic hardware [28]? What steps should I follow to reproduce
a result? Who is authorized to alter data? What work do I need to redo upon
correcting an error in an input dataset?

Each of these questions will often be straightforward to answer when working
only on a personal computer. Answering them in a Discovery Cloud environment
may be much harder, given that a singe computation may engage many services,
each with different internal processes and policies.

Another set of research challenges relate to the often complex computational
workflows associated with data-intensive scientific applications. These workflows
may span many services and sites and involve thousand or millions of distinct
computational steps. Increasingly, higher-level workflow management systems
(e.g., Galaxy [29], Pegasus [30], Swift [31], Taverna [32]) are used to express and
manage such processes. Petri nets have been used to express and reason about
workflows [33] but are not yet mainstream, perhaps because they are viewed as
being less expressive than other approaches.

The solution to these challenges may be to develop new approaches to rea-
soning about distributed systems, that focus on the data and code maintained
by different services rather than on service interactions. (It may be interesting
to focus on specifying events in a data elements lifecycle and the actions that
should be taken when certain events occur [34,35].) I would certainly like a dis-
covery engine service to maintain versioning information for its code and data.
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But that information is less useful if (as will often be the case) code and data are
changing frequently. Some code changes will be relevant to my science and others
will not. Some data changes will effect the results that I obtain, while others do
not. (The magnitude of the change may also be important.) Are there invariants
that I would like a discovery engine to maintain for me, with methods for noti-
fying me when invariants no longer hold? I will also want the Discovery Cloud
as a whole to maintain the integrity of my data, which implies a need to reason
about properties such as confidentiality, authorization, and data replication.

6 Summary

In science as in business, large-scale automation and outsourcing can slash costs
and democratize access to powerful big data and computational services. The
Discovery Cloud thus has the potential to accelerate discovery across a range of
disciplines and problems.

The Discovery Cloud environment also poses challenges in terms of scien-
tific method: as research processes are distributed over cloud services, it can
become harder to document provenance, validate results, and ensure repro-
ducibility. These challenges may motivate new approaches to reasoning about
distributed systems, for example to focus on the data that a set of distributed
services maintain, and the computations that they perform, rather than on ser-
vice interactions.
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1 Introduction

For the problem domain of business process engineering we introduce, model, and
formalize notions of business processes such as action, actor, event, business process,
and business transaction. In addition, for the solution domain of service-oriented archi‐
tectures (SOA) we introduce, model, and formalize notions of service, service compo‐
sition, service-oriented architecture, and layered SOA in a systematic way. We do that
by a rigorous mathematical system model. For that purpose, we first develop a basic
mathematical system model for formalizing fundamental concepts of processes and
services. The goal is to provide a minimal set of formal modeling concepts, nevertheless
expressive enough to formalize key notions and concepts in business process engi‐
neering and service-oriented architectures capturing also their mutual relationships. This
way, the relationship between central notions in business process models is captured
formally, which provides a basis for a methodology for deriving the systematic speci‐
fication and design of service-oriented architectures from business process modeling.
The purpose of the approach is manifold; one goal is a clear definition of terminology,
concepts, terms, and models in business process modeling and SOA; another goal is a
rigorous formal basis for the specification, design, and development of business
processes and, in particular, SOAs. We end up with a strictly formal concept for the
development steps from business process models to services as part of a SOA-oriented
development process.

This is an extended abstract of [Broy 15].

2 Business Process Design

When designing business processes and, in turn, developing business transaction and
workflow support software, concepts of domain modeling in terms of business processes
and software based business applications are needed. In consequence, various notions
and modeling concepts of two disciplines, namely software engineering and business
process engineering, have to be related, harmonized, integrated, and conceptually
unified. The challenge is to provide a comprehensive modeling framework expressive
enough to support the development steps in the construction of service-oriented archi‐
tectures (SOA) on the basis of business process models.

In the development of a SOA for business applications, it is first to capture and work
out the goals and requirements in the application domain. Then based on these
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requirements we work out the business processes. Finally, we determine which parts of
the software processes are to be supported by computer-based services to derive from
them the software requirements and specifications, further on the software service archi‐
tecture, and finally service implementations. For carrying out such development tasks,
models, and modeling concepts are applied both from the field of business process
modeling and model based software and system development – more specifically from
the field of service-oriented architecture.

Our main concern is to provide formal models for processes and formal models for
service-oriented systems in terms of their interfaces to model key notions in business
process engineering. We use process models to model notions like business process and
business process transaction. We use the notion of systems and system interface
behavior to model business services. One of our goals is to relate these notions to the
concept of services as studied in service-oriented architectures.

We aim at a synergy between the problem domains of business process engineering
and that of formal system modeling. For both areas, we work out formal concepts as a
basis for engineering service-oriented architectures (SOA).

Remark: Avoiding clashes in engineering terminology.
One delicate difficulty for our approach is a terminological clash between two disci‐
plines, that of “business process engineering” and that of “formal process modeling”.
This difficulty is immediately recognized when studying the general term “process” in
the field of event processing. Moreover, in the field of business processes, the term
“business process” is used differently addressing a number of different notions like the
business process of an organization, the instance of the business process during a day
of operation, or the business process of a business transaction as an instance of a specific
business case; in formal system modeling, formal models of discrete processes are
introduced as generic concepts for modeling discrete activities.

End_of_Remark

For service-oriented architecture we formalize the notion of the service layer leading to
the concept of service-layered architecture.

3 Fundamentals in Discrete Process Modeling

Modeling discrete processes is one of the challenges in the development of automation
systems – be it in business automation or in production automation.

The term process is used for many quite different notions and concepts. It is used for
behavior described by a system or by a system model, execution mechanism (a Petri-
net, for instance), or for a particular instance of behavior of a system or system execution
mechanism model (an occurrence net for a Petri-net). In addition, given such an instance
of behavior, we may consider certain sub-behaviors representing (smaller) instances of
behavior.

This shows that we deal with three forms of notions of processes and their description:

• process descriptions (by modeling concepts) with which we associate
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• sets of instances (scenarios) of behavior, the members of which are
• instances (scenarios) of behaviors.

In the following, we use the word “process” strictly for an instance of behavior. So
we get the following terminology:

• a system description (of a business system), called a process specification, describes a
• set of (business) processes where
• (business) processes are instances of system behavior (representations of system

executions).

In this terminology, a process is used to denote the run (“history”) of a system like
an occurrence net represents an instance of behavior of a Petri-net. A Petri-net is an
example of a process specification. Since we can identify in a given process several sub-
processes, a process can also be understood as describing sets of (sub-)processes. This
general approach of understanding the term process is used in the following in a more
concrete and detailed form by introducing a modeling theory for processes.

4 Process Descriptions and Instances Business
Process Engineering - Notions and Concepts

In business process engineering, the concept of a process is essential. The term “business
process” is used in business process engineering in a very generic way. It addresses the
process (in the sense of instance) of a particular business transaction as well as the
process of a particular sub-organization as well as the comprehensive set of activities
of an entire company or even a network of companies. In this section, we introduce a
taxonomy of slightly different form for capturing business processes and their specifi‐
cation.

A business process consists of a set of business actions1 (often called “steps”)
executed by business actors. Their actions are in some logical, causal, and temporal
relationship.

For a business process and its specification, we introduce several views and struc‐
tures. We take the following fundamental viewpoint onto business processes. In a busi‐
ness process, actors execute a set of actions. This way we obtain two essential notions:

• business actions (singe steps of activity in a process)
• business actors (humans or machines that carry out actions).

In addition, we might consider business objects and business data as they are used
to capture the states related to business transactions. Business actions usually have
certain effects on business objects. They may change states of business objects and they
may consume or produce events that relate to actions in terms of the exchange of
messages (or even exchange of material or energy). We do not consider business objects

1
Note that the choice of a set of actions determines also the granularity of the model of a business
process. This granularity can be changed by replacing an action by a set of sub-actions or vice
versa.
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and business data, in particular, in the following; they can be added, however, in a
straightforward manner to the approach.

Actors are humans or computer systems that carry out actions. By carrying out
actions, actors provide specific services. While carrying out services actors may observe
certain actions executed by other actors. These observations may trigger actors to execu‐
tions of further actions.

This leads to another key notion in business process engineering, the notion of a
service, more precisely to the notion of a

• business service.

A business service is carried out (provided) by some business actor or a set of actors
(the service provider); it consists of a business process generated by the actor in reaction
to the process and the actions the actor observes. The set of actions the actor observes
(which form a sub-process of the overall process) are called its service input, the set of
actions generated by the actor (which also form a process) are called its service output.

To illustrate our notions, we sketch the example of a web shop with the help of our
previously introduced terminology. Words referring to key concepts are put in italic.
The web shop operates by carrying out a number of actions. The ordering of a product
in the web shop by a customer is done by a set of actions by the customer and the web
shop forming a business transaction (instance). The structure of all possible business
transactions can be described by a business transaction specification. Within a given
time interval (one hour, one day, one month, one year) a set of business transactions is
carried out; they form what we call a business transaction flow (for instance, the process
of the web shop consisting of all actions and transactions carried out in one year). Note
that there may be and usually are dependencies between the individual business actions
and business transactions that occur within a business transaction flow. There are various
ways to describe such dependencies (for instance, business objects) and derive sub-
transactions (sub-processes) from a business transaction flow.

There are several ways to define the notion of a business process. It addresses the
set of transactions that serve a certain business purpose (“business purpose viewpoint”):

(a) We may call the set of all possible business transactions business process.
(b) We may call the set of all possible business transaction flows business process.
(c) We may call an instance of a business transaction business process.

We tend to follow position (c) where we include (b) since the business transaction
flows include the business transactions as sub-transactions (“sub-processes”). We call
what is addressed by (a) and (b) the business process specification. For our running
example, the business process specification describes all the business transaction flows
and also the set of all possible business transactions of the web shop.

5 From Business Processes to Service-Oriented Architectures

Services and service-oriented architectures (SOA) have received much attention in
recent years for good reasons (see [Broy 05], [Broy et al. 07]). When dealing with large
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systems, it is generally recognized that we need appropriate abstractions. These abstrac‐
tions have to be useful for the implementation of systems, but they are even more
urgently needed for the design and specification of domain specific aspects of informa‐
tion processing systems. Service-oriented architectures aim, in particular, at structuring
software systems not so much governed by technical concepts of implementation but
rather driven by concepts of the application domain with its domain-specific terms and
conditions.

We understand service-oriented architecture as an approach that follows classical
general goals and principles of software system construction such as modularity, appli‐
cation domain orientation, and strict concentration onto the user-centric functionality of
systems. These principles are in response to the growing demand of putting emphasis
on system evolution and maintenance with flexible response to changing requirements.
In addition, SOA is expected to lead to a higher quality of software systems in terms of
changeability, adaptability, interoperability, and reusability. In the following, we intro‐
duce a basic formal model for services as they are used in service-oriented architectures.

A further important issue is a methodological one defining what are systematic steps
of the development of service architectures starting from high-level requirements and
use cases. In this section, we give a very short and brief preliminary description of how
such a top-down development methodology could look like.

We characterize the proceeding by the following steps:

1. We give use cases. In each use case, we describe scenarios of service use that corre‐
spondent very directly to scenarios that can be formally seen as service instances.

2. From the scenarios, we derive service processes they can be described by process
diagrams or by interaction diagrams. To do these diagrams we also have to formalize
the service messages. The service messages can be directly identified from the
service use cases.

3. In the processes, we have steps, which are done manually and steps, which are done
by the software systems. Therefore, it is an important decision which of the steps in
the systems are done manually and which of the steps are done by the software.

4. By identifying steps that are to be done by software, we can derive from the service
processes, the service hierarchy as well as services instances for each of the services
in the hierarchy.

5. For each of the services, we define its service interface behavior. Perhaps, we decide
to introduce additional auxiliary services that provide small service provision
networks for the services to implement.

6. From this, we get on one hand service architectures and a black box descriptions of
each of the services involved.

7. The black box view of the provided services, have to be correctly represented by the
service composition, including a layered architecture in terms of a stack of internal
services.

This shows, how service architectures can be worked out in a top-down fashion. In
fact, we could also use the same approach in a bottom up development. What we finally
get is an artifact model for service-oriented architecture where all of the ingredients of
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a service architecture are given that are more less as described by the notion and concept
model by the introduced mathematical techniques.

6 Conclusion

In this paper, we base the formalization of SOA concepts on the theory of processes and
process oriented service functions. We can use all concepts such as

• service separation
• service refinement
• service specification and implementation.

for the engineering of SOA systems.
An interesting question addresses the difference between object- and service-orien‐

tation (OO vs. SO). For a number of practical SOA approaches the answer is not obvious,
in particular, when OO concepts are used to represent services. However, there is a
significant difference between OO and SOA that has to be understood to see the advan‐
tages of SOA over OO:

• Typically, OO-concepts are sequential and method-invocation oriented,
• SOA approaches are, by nature, taking into account time, parallel and concurrent

computation and explicitly support of distribution, interaction, and time.

Of course, we may use OO-concepts to implement SOA, but these concepts are too
weak to represent SOA ideas explicitly. The strength of SOA can be fully exploited only
by a dedicated modeling framework addressing interaction and concurrency explicitly.

By the constructions introduced, we provide the following foundations:

• We describe general models for several important notions and terms in business
process modeling.

• We introduce a very compact general formal model and theory for processes and
services.

• Due to the form of models, we can define formally the relationship between these
notions and how they interact with each other.

• The main idea is to use this as a foundational framework for a methodology and
development processes for business systems.

The ultimate goal is to provide a foundation for a formalized approach to service-
oriented architectures. Service-oriented architectures claim to be the better approach to
develop main business process applications. A key issue here is the step from a descrip‐
tive approach to processes where processes are described as structures of activities to
an input/output oriented view, which we call services. By our notion, we capture
formally the heart of the idea of business process modeling and the formal step from
business process modeling into SOA.
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Abstract. In Petri nets with data, every token carries a data value,
and executability of a transition is conditioned by a relation between
data values involved. Decidability status of various decision problems for
Petri nets with data may depend on the structure of data domain. For
instance, if data values are only tested for equality, decidability status
of the reachability problem is unknown (but decidability is conjectured).
On the other hand, the reachability problem is undecidable if data values
are additionally equipped with a total ordering.

We investigate the frontiers of decidability for Petri nets with vari-
ous data, and formulate the WQO Dichotomy Conjecture: under a mild
assumption, either a data domain exhibits a well quasi-order (in which case
one can apply the general setting of well-structured transition systems to
solve problems like coverability or boundedness), or essentially all the deci-
sion problems are undecidable for Petri nets over that data domain.

1 Introduction

We investigate the model of Petri nets with data, where tokens carry values from
some data domain, and executability of transitions is conditioned by a relation
between data values involved. One can consider unordered data, like in [26],
i.e. an infinite data domain with the equality as the only relation; or ordered
data, like in [24], i.e. an infinite densely totally ordered data domain. One can
also consider a more general setting of Petri nets over an arbitrary fixed data
domain A. In Sect. 2 we provide such a general definition of Petri nets with
atoms A, parametric in a relational structure A. For instance, unordered and
ordered data are modeled by A = (N,=) and A = (Q,≤), respectively. We want
to emphasize here that the idea seems not at all new, as similar net models have
been proposed already in the early 80ies: high-level Petri nets [13] and colored
Petri nets [19]. Since then, similar formalisms seem to have been rediscovered,
for instance constraint multiset rewriting [5,8,9].

Equivalently, Petri nets with atoms are just reinterpretation of the classical
definition of Petri nets with a relaxed notion of finiteness, namely orbit-finiteness,
where one allows for orbit-finite sets of places and transitions instead of just finite
ones; this is along the lines of [3,4].
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It is well known that the reachability problem is undecidable for Petri nets
with ordered data, while the decidability status of this problem for unordered
data is a intriguing open problem. In this note we do not embark on investigation
of the reachability problem. Instead, we concentrate on the termination problem,
the boundedness problem, the coverability problem, and alike, jointly called
here standard problems. Again, it is well known that standard problems are
decidable for Petri nets with ordered data [24] (and in consequence also for
Petri nets with unordered data), as the model fits into the framework of well-
structured transition systems of [11]. Most importantly, the structure of ordered
data admits, in a certain technical sense explained in Sect. 5, a well quasi-order
(wqo).

The decidability status of standard problems depends on the choice of atoms
A, and the purpose of this note is to investigate the decidability border. In order
to make it possible to finitely present Petri nets and its configurations, and in
particular to consider Petri nets as input to algorithms, we restrict to relational
structures A that are homogeneous [25] and effective (the formal definitions
are given in Sect. 4). On one side, in Sect. 5 we provide a simple but general
decidability result that works under the sole additional assumption that A admits
a wqo (which generalizes the decidability result for ordered data [24]). On the
other side, in Sect. 3 we provide an example of an effective homogeneous structure
A that makes all standard problems for Petri nets undecidable; further such
examples are mentioned in Sect. 6. An observation that none of this examples
admits a wqo naturally leads to the WQO Dichotomy Conjecture formulated
in Sect. 6: for a homogeneous effective structure A, either A admits a wqo (and
then the standard problems are easily decidable), or all the standard problems
are undecidable for Petri nets with atoms A. It seems that either confirming or
falsifying this conjecture would be very interesting: in the former case one can
expect a deeper insight into the power of wqo-based methods, while in the latter
case one would have to come up with a completely new approach to deciding
properties of Petri nets with data.

In this note we do not use the recent approach to forward analysis of well-
structured transition systems based on idea completion [10]. In [17] this approach
have been recently applied to compute Karp-Miller trees for Petri nets with
unordered data. The procedure does not generalize however to other structures
A that admit a wqo, for instance to ordered data.

2 Petri Nets with Atoms

Atoms. A model of data Petri nets, to be defined below, is parametric in the
underlying logical structure; the structure can be seen as data domain. Thus in
the sequel we always assume a fixed a countable relational1 structure A, which
we call atoms. Here are some example structures of atoms:

1 Restriction to only relational structures is for the sake of simplicity.
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p1 p2

t1
x1, x2

t2

y1 y2

z1 z2, z3

x1 �= x2 y1 = y2 �= z3 ∧ z1 = z2

Fig. 1. A Petri net with equality atoms with places P = {p1, p2} and transitions
T = {t1, t2}. Different atoms are depicted through differently colored tokens.

– Equality atoms: natural numbers with equality A = (N,=); equally well any
other countable infinite set could be used instead of natural numbers N, as
the only available relation is equality.

– Total order atoms: rational numbers with the natural order A = (Q,≤); again,
any other countable infinite dense total order without extremal elements could
be used instead.

– Timed atoms: A = (Q,≤,+1) extending total order atoms with the binary
relation x + 1 = y.

Note that every structure in the above list extends the preceding one by some
additional relations. In the sequel we always assume that the vocabulary (signa-
ture) Σ of A is finite and contains the equality =.

Petri Nets with Atoms. We define a model that extends classical place/tran-
sition Petri nets. A Petri net with atoms A consists of two disjoint finite sets of
places P and of transitions T , the arcs A ⊆ P×T ∪ T×P , and two labelings:

– arcs are labelled by pairwise disjoint finite nonempty sets of variables;
– transitions are labelled by first-order formulas over the vocabulary Σ of A,

such that free variables of the formula labeling a transition t belong to the
union of labels of the arcs incident to t.

Example 1. As an illustrating example, consider a Petri net with equality atoms
with two places p1, p2 and two transitions t1, t2 depicted on Fig. 1. Transition
t1 outputs two tokens with arbitrary but distinct data values onto place p1.
Transition t2 inputs two tokens with the same data value, say a, one from p1
and one from p2, and outputs three tokens: two tokens with arbitrary but equal
data values, say b, one onto p1 and the other onto p2; and one token with a data
value c �= a onto p2. Note that transition t2 does not specify whether b = a, or
b = c, or b �= a, c, and therefore all three options are allowed. Variables y1, y2 can
be considered as input variables of t2, while variables z1, z2, z3 can be considered
as output ones; analogously, t1 has no input variables, and two output ones
x1, x2.

From syntactic point of view, the net in Fig. 1 can be considered to be over
any atoms A, as we always assume equality relation to be available in A.



Decidability Border for Petri Nets with Data: WQO Dichotomy Conjecture 23

The formal semantics of Petri nets with atoms is given by translation to
multiset rewriting. Given a set X, finite or infinite, a finite multiset over X is a
finite (possible empty) partial function from X to positive integers. In the sequel
let M(X) stand for the set of all finite multisets over X. A multiset rewriting
system (P, T ) consists of a set P, and a set of rewriting rules:

T ⊆ M(P) × M(P).

Configurations C ∈ M(P) are finite multisets over P, and the step relation
−→ between configurations is defined as follows: for every (I,O) ∈ T and every
M ∈ M(P), there is the step (+ stands for multiset union)

M + I −→ M + O.

For instance, a classical Petri net induces a multiset rewriting system where P is
the set of places, and T is essentially the set of transitions, both P and T being
finite. Configurations correspond to markings.

A Petri net with atoms A induces a multiset rewriting system (P, T ), where
P = P × A and is thus infinite. Configurations are finite multisets over P × A

(cf. a configuration depicted in Fig. 1). The rewriting rules T are defined as

T =
⋃

t∈T

Tt,

where the relation Tt ⊆ M(P) × M(P) is defined as follows. Let φ denote the
formula labeling the transition t, and let Xi, Xo be the sets of input and output
variables of t. Every valuation vi : Xi → A gives naturally raise to a multiset
Mvi

over P, where Mvi
(p, a) is the (positive) number of variables x labeling the

arc (p, t) with vi(x) = a. Likewise for valuations vo : Xo → A. Then let

Tt = { (Mvi
,Mvo

) | vi : Xi → A, vo : Xo → A, vi, vo � φ } .

Like P, the set of rewriting rules T is infinite in general.
As usual, for a net N and its configuration C, a run of (N,C) is a maximal

finite, or infinite sequence of step starting in C. A configuration of N is reachable
from C if it appears in some run of (N,C).

Remark 1. Petri nets with equality atoms are equivalent to (even if defined dif-
ferently than) unordered data Petri nets of [24]. An even different but equivalent
definition, in the style of vector addition systems, have been used in [17]. Another
equivalent model is ν-PNs of [26] but without name creation: indeed, name cre-
ation considered in [26] is generation of a globally fresh atom, while in Petri
nets with equality atoms it is only possible to generate a locally fresh one. Petri
nets with total ordered atoms are equivalent to ordered data Petri nets of [24].
Finally, Petri nets with timed atoms subsume many timed extensions of Petri
nets, including timed Petri nets [1] and timed-arc Petri nets [18].
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p1 p2

�
p1 p2

Fig. 2. A pair of configurations related by �, in the case of equality atoms. One wit-
nessing automorphism maps black to blue, blue to brown, and preserves red; the other
one maps black to red, red to blue, and blue to brown. (Color figure online)

Orbit-Finiteness. An atom automorphism is an automorphism of A with itself,
that is a bijection A → A such that for every n-tuple (a1, . . . , an) and every n-
ary relation r in A, r(a1, . . . , an) holds if, and only if r(f(a1), . . . , f(an)) holds.
For instance, in the case of equality atoms these are all bijections of N, in the
case of total order atoms these are all monotonic bijections of Q, and in the
case of timed atoms these are monotonic bijections of Q that preserve integer
differences.

We define an action of atom automorphisms on configurations: for a configu-
ration C and an atom automorphism π, let C ·π denote a configuration obtained
from C by applying π to every atom carried by every token in C. Using the
action, we define a quasi-order (i.e., a reflexive and transitive relation) on con-
figurations: C � C ′ if C · π 	 C ′ for some atom automorphism π, where 	
stands for multiset inclusion (cf. Fig. 2). If C � C ′ � C then C · π = C ′ for
some atom automorphism π, in which case we call C and C ′ equivalent. Note
that the step relation is invariant under the equivalence: for equivalent C, C ′, if
C −→ D then C ′ −→ D′ for some D′ equivalent to D. This is due to the fact the
transitions are specified in the first-order logic which is clearly invariant under
atom automorphisms.

A set of configurations C is orbit-finite if it is finite up to the equivalence.
In other words, C is contained in a finite union of orbits, where an orbit of a
configuration C is defined as { C · π |π an atom automorphism }. Similarly one
can define orbits, and orbit-finiteness, for any other set on which an action of
atom automorphisms is defined.

Remark 2. Our presentation is in the style of [14,26], in order to keep it sim-
ple. Interestingly, an equivalent but more abstract definition can be provided, by
following the approach of [3]. In this approach, a model of computation is reinter-
preted with finiteness relaxed to orbit-finiteness. In case of Petri nets this boils
down to allowing orbit-finite sets of places and transitions instead of finite ones
only. Following the approach, one would consider the set P directly as places,
and the set T as transitions of a net. For ω-categorical structures A, including
all homogeneous relational structures [25], both P and T are orbit-finite sets.

Standard Decision Problems. We focus on classical decision problems, like
the termination problem: does a given (N,C) admit only finite runs? The struc-
ture of atoms is considered as a parameter, and hence itself does not constitute
part of input. Concerning representation of input, the net N is represented by
finite sets P, T,A and appropriate labelings with variables and formulas. Rep-
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resentation of a configuration C will be discussed in Sect. 4. Another classical
problem is the place non-emptiness problem (markability): given (N,C) and a
place p of N , does (N,C) admit a run that puts at least one token on place p?

In order to define some other standard problems we need to take the action
of atom automorphisms on configurations into account. For instance, a Petri net
with atoms has typically infinitely many reachable configurations, and hence
the classical boundedness question is not interesting. Thus we say that (N,C)
is bounded if the set of reachable configurations is orbit-finite. This defines the
appropriate variant of the boundedness problem. The coverability problem we
define as follows: given N,C and C ′, is there a configuration C ′′ of N reachable
from C with C ′ � C ′′? In the same vein one translates other decision problems
to nets with atoms, for instance the evitability problem: given (N,C) and a finite
set C of configurations of N , is there a run of (N,C) whose all configurations
are in ↑C = { C ′ | ∃C ∈ C. C � C ′ }?

All the decision problems mentioned above we jointly call standard prob-
lems. These should be considered as examples rather that an exhaustive list –
the results reported in the sequel keep holding for many other problems not
mentioned above (we refrain however from an attempt of characterization of all
such problems). An example of the problem for which the results do not hold is
the place-boundedness problem, which is decidable for equality atoms (as shown
in [17], using the forward analysis via computation of a Karp-Miller tree), but
undecidable for total order atoms [24]. Also, we do not consider here the ‘hard’
decision problems, like reachability or liveness.

3 Undecidability

As already mentioned, decidability status of standard problems depends on the
choice of data domain A. Before stating a general decidability result for a wide
class of structures A (cf. Sect. 5), in this section we exhibit an undecidable case
– we sketch a proof of undecidability of the standard problems when tokens are
allowed, roughly speaking, to carry pairs of equality atoms. Formally speaking,
we consider Petri nets with atoms

A2 = (N2,=1,=2,=12),

where =1, =2, and =12 are binary relations describing, respectively, equality
on the first coordinate, equality on the second coordinate, and equality of the
first coordinate of the first argument with the second coordinate of the second
argument. We show that Petri nets with atoms A2 can faithfully simulate com-
putations of Minsky counter machines.

In the sequel consider a fixed deterministic Minsky machine M with two
counters c1, c2, and states Q. We will sketch a construction of a Petri net N over
A2 that simulates the computation of M from the initial state with the initial
counter values c1 = c2 = 0. The net will have the following transitions:

T = {z1, z2, d1, d2, i1, i2, i
′
1, i

′
2, t1, t2}
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pj

zj

x

x′ x =12 x ∧ x = x′

Fig. 3. Transition zj simulating zero test of counter cj . The equality x = x′ is a
shorthand for x =1 x′ ∧ x =2 x′. For simplicity, the places corresponding to control
states of M are omitted.

pj

dj

x, y

z y =12 x ∧ x =1 z ∧ y =2 z

Fig. 4. Transition zj simulating decrement operation on counter cj .

and its places will include, except for a number of auxiliary ones, the following
places:

{p1, p2, q, r} ∪ Q ⊆ P.

In particular, every state of M will have a corresponding place in N . The idea is
to represent a value cj = n by storing n + 1 tokens on place pj , carrying atoms

(a1, a2), (a2, a3), . . . , (an, an+1), (an+1, a1),

for some arbitrary but distinct a1, . . . , an+1 ∈ N. Intuitively, if atoms were con-
sidered as directed edges, a value n of a counter is represented by a directed
cycle of length n + 1. The initial configuration C of N encodes counter val-
ues c1 = c2 = 0, by placing on p1 and p2 an atom (a, a), for some arbitrary
a ∈ N, corresponding to a self-loop. In addition, C contains a token on the place
corresponding to the initial state of M.

Zero Test: A zero test on a counter cj is performed by a transition zj that
inputs one token from pj (cf. Fig. 3). The transition detects a self-loop using the
constraint x =12 x, where x is the input variable. The input token is output
back onto place pj in order to preserve the representation of the counter value.

Decrement: The decrement operation on a counter cj is simulated, roughly
speaking, by replacing two consecutive edges on a cycle by one edge; using
the condition y =12 x we can enforce that the edge y follows the edge x on
the cycle. This is achieved by a transition dj (cf. Fig. 4) that inputs from pj two
tokens carrying atoms (a, a′) and (a′, a′′), for arbitrarily chosen pairwise different
a, a′, a′′ ∈ N, and outputs to pj one token carrying (a, a′′).

Increment: Slightly more complicated is the simulation of the increment oper-
ation on a counter, as it involves creating a fresh natural number that must be
different from all currently used ones. In the first step of the simulation, the net
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pj q

r

tj

x

x′

y1, y2

y′
1, y

′
2

z z′

x =12 z ∧ x = x′ = z′ ∧ y2 =12 y1 ∧ x �=2 y1 ∧ y′
1 = y1 ∧ y′

2 = y2

Fig. 5. Transition tj constituting the crucial part of simulation of increment operation
on counter cj .

executes a transition ij that inputs a token (a, a′) from pj and outputs, for an
arbitrarily chosen a′′ ∈ N different than a and a′, two tokens carrying (a, a′′)
and (a′′, a′) onto an auxiliary place q. In addition, let the transition output a
token carrying (a′′, a′) onto place r. In the very last step of the simulation, two
tokens will be moved from place q to pj by a transition i′j , and a single token
will be removed from r. The aim of the remaining steps is to check that a′′ does
not currently appear on place pj . To this aim the net traverses the cycle stored
on pj , starting from the edge (a′′, a′). The traversal is done by iterative execu-
tion of the transition tj , depicted on Fig. 5, that uses the place r to store the
current edge in the course of traversal. The condition x =12 z ensures that the
edge x, picked up from place pj , follows the edge z on the cycle. The equalities
x = x′ = z′ enforce that the edge x is put both back to qj , and also copied to
r. Finally, the condition x �=2 y1 checks that the edges x and y1 have different
endpoints.

Note that replacing x �=2 y1 by x =2 y1 would allow to detect that a′′ does
appear on the cycle, which means that a′′ has been chosen incorrectly in the first
step of the simulation. Note also that replacing x �=2 y1 by y1 =12 x allows to
detect that the endpoint of x equals a, and thus the traversal can be finished.
Finally, observe that the case when the incremented counter has value cj = 0
needs a separate treatment.

We have thus sketched a construction of a net N and configuration C such
that the place corresponding to the halting state of M is nonempty in some
reachable configuration of (N,C) if, and only if the machine M halts. This
entails undecidability of the place non-emptiness, coverability and evitability
problems. Furthermore, (N,C) terminates if and only if the machine M halts.
This entails undecidability of the termination and boundedness problems.

Proposition 1. The standard problems are undecidable for Petri nets with
atoms A2.

A similar undecidability argument can be given for Petri nets with slightly sim-
pler atoms A

′
2 = (N2,=1,=2). In contrast to this, all the standard problems
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are decidable for Petri nets with atoms A1 = (N2,=1,=), which will become
apparent shortly. Below we investigate in more detail the decidability border
between those atoms that admit decidability of classical decision problems and
those atoms that do not.

4 Effective Homogeneous Atoms

In this section and in the next one we are going to stay on the decidable side.
In this section we prepare the ground: we define the class of structures A we
are going to restrict to, namely effective homogeneous ones [25]. This restriction
will guarantee, in particular, that configurations of a Petri net can be finitely
presented and thus input by an algorithm. We will also provide an operation
of wreath product that preserves effective homogeneity. In the next section we
will state a general decidability result for Petri nets over effective homogeneous
atoms A, using the setting of well-structured transition systems [11].

For two relational Σ-structures A and B we say that A embeds in B, written
A � B, if A is isomorphic to an induced substructure of B, i.e. to a structure
obtained by restricting B to a subset of its domain. This is witnessed by an
injective function2 h : A → B, which we call embedding. The class of finite
structures that embed into A we denote by Age(A).

Homogeneous Structures. A Σ-structure A is homogeneous if every isomor-
phism between two finite induced substructures of A extends to an automor-
phism of A. (Intuitively, the ‘position’ of a finite induced substructure inside A

depends only on its isomorphism type.) For instance, equality atoms and total
order atoms are homogeneous structures. In the latter case finite induced sub-
structures are just finite total orders, and every isomorphism between any two
such total orders does extend to a monotonic bijection from Q to Q. Timed atoms
are not homogeneous: no isomorphism between two induced 2-element substruc-
tures {−1, 3} and {0.5, 2.5} extends to an automorphism of timed atoms, as the
distances between −1 and 3, and between 0.5 and 2.5, are different integers.

There is a one-to-one correspondence between infinite countable homoge-
neous structures, and classes of finite structures over the same vocabulary that
are closed under isomorphisms and induced substructures, and satisfy the amal-
gamation property3 (such classes of structures are called Fräıssé classes). In one
direction, the class Age(A), for a homogeneous Σ-structure A, is a Fräıssé class.
In the other direction, a Fräıssé class of finite Σ-structures induces a unique up to
isomorphism homogeneous Σ-structure via the construction of Fräıssé limit [12].
In particular, (N,=) is the Fräıssé limit of finite pure sets (structures with = as
the only relation) and (Q,≤) is the Fräıssé limit of finite total orders.

2 We deliberately do not distinguish a structure A from its domain set.
3 A class has amalgamation property if for every two embeddings h1 : A → B1 and
h2 : A → B2 there is a structure C and two embeddings g1 : B1 → C and g2 : B2 → C
such that g1 ◦ h1 = g2 ◦ h2 (see [12,25] for details).
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Many other natural classes of structures have the amalgamation property:
finite graphs, finite directed graphs, finite partial orders, finite equivalence rela-
tions, finite tournaments, etc. Each of these classes induces, as the Fräıssé limit,
a homogeneous relational structure. For instance finite graphs induce the univer-
sal graph (called also random graph) [12], which is the infinite countable graph
that results with probability 1, if every pair of vertices is related by an edge with
probability p, irrespectively of the choice of the probability as long as 0 < p < 1.
Therefore, every finite graph G embeds into the universal graph, and if G embeds
into another finite graph H then every embedding of G into the universal graph
extends to an embedding of H. Along the same lines, finite partial orders induce
the universal partial order, finite tournaments induce the universal tournament,
etc. The Fräıssé limit of the finite equivalence relations is (D, R,=), where D is a
countably-infinite set and R is an infinite-index equivalence relation over D s.t.
each one of the infinitely-many equivalence classes is itself an infinite subset of
D. This structure is isomorphic to (N2,=1,=) and can be used to model data
with nested equality, where one can check whether two elements belong to the
same equivalence class and, if so, whether they are actually equal. Examples of
homogeneous structures abound, see for instance [25].

From this point on we assume atoms to be a Σ-structure A satisfying the
following two conditions:

(A1) A is a homogeneous countable infinite relational structure.
(A2) the following age problem for A is decidable: given a finite Σ-structure A,

decide whether A � A.

Such structures A we call effective homogeneous. All the structures A mentioned
so far, except for timed atoms, are effective homogeneous.

Among various good properties, homogeneous structures admit quantifier
elimination: every first-order formula is equivalent to (i.e., defines the same set
as) a quantifier-free one. Therefore, from now on we may assume wlog. that
formulas labeling transitions are quantifier-free.
Wreath Product. Given two relational structures A = (A,R1, . . . , Rm) and
B = (B,S1, . . . , Sn), their wreath product is the relational structure A ⊗ B =
(A × B,R′

1, . . . , R
′
m, S′

1, . . . , S
′
n), where

– ((a1, b1), . . . , (ak, bk)) ∈ R′
i if (a1, . . . , ak) ∈ Ri, and

– ((a1, b1), . . . , (ak, bk)) ∈ S′
j if a1 = · · · = ak and (b1, . . . , bk) ∈ Sj .

Intuitively, A⊗B is obtained by replacing each element in A with a disjoint copy
of B. For instance, (N,=) ⊗ (N,=) is exactly A1 = (N2,=1,=). More generally,
one can model data with k-nested equality: take B1 = (N,=) and, for each k ≥ 1,
let Bk+1 = B1⊗Bk. Up to isomorphism, Bk is the structure (D, R1, . . . , Rk) with
k nested equivalence relations R1, . . . , Rk over an infinite set D, where R1 has
infinitely many infinite equivalence classes, Ri+1 refines every equivalence class
of Ri into infinitely many classes, for i = 1, . . . , k − 1; and the finest relation Rk

is the equality.
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The wreath product preserves effective homogeneity: first, if A and B are
homogeneous then the same holds for A ⊗ B, and second, the age problem for
A ⊗ B reduces to the same problem for A and B [7]. As an example, the wreath
product (Q,≤) ⊗ (N,=) is, up to isomorphism, the universal total quasi-order,
i.e. the Fräıssé limit of all finite total quasi-orders.

5 Well-Structured Petri Nets

Fix an effective homogeneous Σ-structure A. For a set X, let Age(A,X) denote
the set of all functions A → X, where A ∈ Age(A). In other words, Age(A,X)
contains finite induced substructures of A labeled by elements of X.

Finite Representations. Recall that a configuration is a finite partial function
from A × P to positive integers, which can be reformatted into a total function
A → M(P ) from a finite (possibly empty) induced substructure A of A to finite
multisets4 over P . Thus from now on we consider configurations as elements of

conf(A, P ) = Age(A,M(P )).

By homogeneity of atoms, two configurations C : A → M(P ) and D : B →
M(P ) are equivalent if, and only if the two domain structures A, B are related
by an isomorphism h : A → B that preserves labels: C(a) = D(h(a)) for every
a ∈ A. Similarly, C � C ′ if, and only if there is an embedding h : A → B
that increases labels: C(a) 	 D(h(a)) for every a ∈ A (recall that 	 stands for
multiset inclusion).

Recall that the step relation is invariant under equivalence: equivalent config-
urations have equivalent successor configurations. Thus to represent a configu-
ration it is enough to know the equivalence class of a configuration; furthermore,
by homogeneity it is enough to know the isomorphism type of the domain struc-
ture A. Therefore configurations of a Petri net with homogeneous atoms can be
finitely represented (up to isomorphism of the domain structure), which makes
the model amenable to algorithmic analysis.

Well Quasi-orders. By skeleton of a quasi-order (X,≤) we mean the partial
order obtained as the quotient of X by the equivalence relation that relates every
two elements x, y ∈ X satisfying x ≤ y ≤ x. We call two quasi-orders (X,≤)
and (X ′,≤′) skeleton-isomorphic, and write (X,≤) ∼= (X ′,≤′), if their skeletons
are isomorphic.

A quasi-order (X,≤) lifts naturally to Age(A,X): for f : A → X and
g : B → X, let f �(X,≤) g if there is an embedding h : A → B such that
f(a) ≤ g(h(a)) for every a ∈ A. For instance, for equality atoms we obtain the
natural lifting of (X,≤) to finite multisets over X, and for total order atoms we
obtain Higman ordering of finite sequences X∗ over X with respect to the base

4 We could further restrict the codomain to nonempty finite multisets over P .
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order (X,≤) (see e.g. [10] for formal definitions). When (X,≤) = (M(P ),	),
one obtains the quasi-order of configurations:

(Age(A,M(P )),�(M(P ),�)) ∼= (conf(A, P ),�).

A well quasi-order (WQO) is a quasi-order (X,≤) such that for every infinite
sequence x1, x2, . . . of elements of X, there are positions i < j with xi ≤ xj .
Equivalently, a wqo is a well founded quasi-order without infinite antichains.
For two skeleton-isomorphic quasi-orders, if one is a wqo than the other is a
wqo too. For the rest of this section assume that

(A3) for every wqo (X,≤), the lifted quasi-order (Age(A,X),�(X,≤)) is a wqo
(we say in this case that A preserves WQO).

For example, both equality atoms and total order atoms preserve wqo. Indeed,
if (X,≤) is a wqo then (Age((N,=),X),�(X,≤)) is a wqo, which is a gener-
alization of Dickson’s Lemma; and (Age((Q,≤),X),�(X,≤)) is a wqo as well,
which is exactly Higman’s Lemma [16]. Interestingly, for a suitably defined struc-
ture of atoms (a forest order, see [2] for details) one can also provide a similar
model-theoretic reformulation of Kruskal’s lemma [22].

When A preserves wqo then (Age(A),�) is necessarily a wqo. We do not
know whether the converse holds, and thus the following question is open:

Question 1. For every homogeneous A such that (Age(A),�) is a wqo, and for
every wqo (X,≤), is the lifted quasi-order (Age(A,X),�(X,≤)) a wqo?

Let’s concentrate on an important special case, when (X,≤) = (Age(B),�) for
some homogeneous structure B. We observe that Age(A,Age(B)), containing
induced substructures of A labeled by induced substructures of B, is essentially
the same set as Age(A ⊗ B), containing induced substructures of the wreath
product. Furthermore, the lifted quasi-order coincides with the embedding quasi-
order on Age(A ⊗ B). Formally, the following two quasi-orders are isomorphic:

(Age(A,Age(B)),��) ∼= (Age(A ⊗ B),�). (1)

This leads to a ‘weaker’ version of Question 1 (in the sense that the positive
answer to Question 1 implies the same answer to the following one):

Question 2. For every homogeneous structures A, B such that both (Age(A),�)
and (Age(B),�) are wqos, is (A ⊗ B,�) a wqo?

Note that the answer to Question 2 is positive in the special case when A pre-
serves wqo.

We stress upon importance of the homogeneity assumption, as one can easily
come up with a non-homogeneous counterexample to both questions, for instance
taking A = (N,+1).
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Well-Structured Petri Nets with Atoms. We are now going to use the set-
ting of well-structured transition systems of [11] to derive a general decidability
result. Consider in the sequel a fixed effective homogeneous Σ-structure A that
preserves wqo, and a fixed Petri net with atoms A. We need to check a number
of assumptions required for the decidability results of [11].

By decidability of the embedding problem one easily deduces that the step
relation is computable. Indeed, a satisfying valuation of variables of a formula
corresponds to an embedding of finite structure A in A, and thus one can com-
pute all (up to isomorphism) valuations satisfying a quantifier-free formula that
labels a transition, by enumerating all finite Σ-structures A of bounded size.
In particular one can compute successors { C ′ |C −→ C ′ } of a given configura-
tion C (note that the successor set is finite, up to isomorphism of the domain
structure). The ordering � is also easily decidable.

Like for classical Petri nets, step relation of a Petri net with atoms A satisfies
a compatibility condition with respect to �: if C ≺ D and C −→ C ′ then
there exists a configuration D′ with C ′ ≺ D′ and D −→ D′. This property,
combined with the invariance of step relation under equivalence, implies strong
strict compatibility of [11].

Let ↑C = { C ′ |C � C ′ } denote the upward closure of C. By compatibility,
the predecessor set pred(↑C) = { C ′ |C ′ −→ C ′′ ∈ ↑C } is upward closed. As A

preserves wqo, (conf(A, P ),�) is a wqo and hence the set pred(↑C) has only
finitely many minimal elements. Using decidability of the embedding problem
one shows the property called effective pred bases in [11]: given a configuration
C, the finite set min(pred(↑C)) is computable.

We have thus completed the check-list: (conf(A, P ),−→,�) is a well-
structured transition system that satisfies all assumptions of Theorems 3.6, 4.6,
4.8 and (if skeleton of (conf(A, P ),�) is considered) Theorem 4.11 in [11]. There-
fore we may state the following general decidability result:

Theorem 1. If A is an effective homogeneous structure that preserves wqo
then the standard problems are decidable for Petri nets with atoms A.

This generalizes the decidability result of [24], and applies to a range of different
structures of atoms including, among the others, equality atoms, total order
atoms, and all structures obtained from them by the wreath product. Indeed,
using the following generalization of the isomorphism (1):

(Age(A,Age(B,X)),��(X,≤)) ∼= (Age(A ⊗ B,X),�(X,≤)),

one easily shows that wreath product, in addition to preservation of effective
homogeneity, also preserves wqo-preservation: if homogeneous structures A and
B preserve wqo then A⊗B also does. For instance, in the case of nested equality
atoms A1 = (N,=) ⊗ (N,=), the lifted quasi-order is skeleton isomorphic to
the natural ordering of M(M(X)) finite multisets over finite multisets over X;
and when atoms is the wreath product (Q,≤) ⊗ (N,=) of total order atoms
and equality atoms, the lifted quasi-order is skeleton-isomorphic to the Higman
ordering of M(X)∗ finite sequences of finite multisets over X.
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The decision procedures solving the standard problems, as derived from [11],
can be actually directly encoded in the one of recently developed programming
languages designed for manipulating infinite definable structures: LOIS [21] or
Nλ [20].

6 The WQO Dichotomy Conjecture

What is the crucial difference between atoms A1 = (N(2),=1,=) and A
′
2 =

(N(2),=1,=2) that makes Petri nets with the former atoms decidable, while
Petri nets with the latter atoms undecidable? We claim that the crucial dif-
ference is that the quasi-order (conf(A1, P ),�) is a wqo, while the quasi-oder
(conf(A′

2, P ),�) is not. All quasi-orders considered by us are well founded (as
P is finite), hence the difference lies in existence of an infinite antichain in
(conf(A′

2, P ),�).
The induced substructure of A with domain A ⊆ A we call below the sub-

structure induced by A. For the encoding of counter values in the undecidabil-
ity proof in Sect. 3 we have actually used an infinite antichain {A1,A2, . . .} in
(Age(A2),�), namely one that contains, for every n ≥ 1, the substructure An

of A2 induced by:

An = {(a1, a2), (a2, a3), . . . , (an−1, an), (an, a1)},

for some arbitrary but pairwise different a1, . . . , an ∈ N. Note that when one
moves to A

′
2, the substructures A′

n induced by the same subsets An do not form
an antichain any more; indeed, for n < m, an arbitrary injection An → Am

is an embedding of A′
n into A′

m. In order to adapt the undecidability proof to
Petri nets with atoms A′

2, we can use another infinite antichain, namely one that
contains, for every n ≥ 1, the substructure of A′

2 induced by:

A′
n = {(a1, b1), (a2, b1), (a2, b2), (a3, b2), . . . , (an, bn−1), (an, bn), (a1, bn)},

for some arbitrary but pairwise different a1, . . . , an ∈ N, and arbitrary but pair-
wise different b1, . . . , bn ∈ N. We leave it as an exercise to check that this is an
antichain in (Age(A′

2),�), and to adapt the undecidability proof.
Interestingly, for all structures A not preserving wqo that have been men-

tioned so far, one easily comes up with an infinite antichain {A1,A2, . . .} admit-
ting an undecidability argument similar to the one in Sect. 3. For instance, in
the case of the random graph atoms, take as An a cycle of length n, and in the
case of the directed random graph, take as An a directed cycle of length n.

For the universal partial order (D,≤), take as An, for n ≥ 1, a crone partial
order (cf. Fig. 6) consisting of 2n elements a1, . . . , an, b1, . . . , bn ∈ D such that
ai ≤ bj if and only if i = j, or i = j + 1, or i = 1 and j = n, and moreover
{a1, . . . , an} and {b1, . . . , bn} are pairwise incomparable w.r.t. ≤. One readily
verifies that this is an antichain. Essentially, the antichain provides an encoding
of finite cycles into partial orders.

For the universal tournament, take as An, for n ≥ 7, an n-element tour-
nament obtained from an n-element total order a1 < a2 < . . . < an by
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Fig. 6. A crone partial order A5.

a1 a3 a4 a5 a6 a8

a2 a7

Fig. 7. A tournament A8 [15,23]. All missing edges are oriented from left to right.

reversing edges (a1, a3), (an−2, an), and all edges (ai, ai+1) (cf. Fig. 7). Again, this
is essentially an encoding of finite cycles into tournaments. A formal proof that
{ An |n ≥ 7 } is an antichain can be found in [15,23]. We encourage the reader
to try reusing some of the antichains listed above in the undecidability proof.

We do not know whether every homogeneous structure not preserving wqo
admits a similar encoding of finite cycles. Formally, we do not know the answer
to the following question:

Question 3. When A is an effective homogeneous structure not preserving wqo,
are all the standard problems undecidable for Petri nets with atoms A?

We conjecture positive answers to Questions 1–3. Put explicitly, we formulate
the following:

Conjecture 1 (WQO Dichotomy). For every effective homogeneous infinite
countable relational structure A over a finite vocabulary, exactly one of the
two conditions hold:

– (Age(A),�) is a wqo;
– the standard problems are undecidable for Petri nets with atoms A.

Any answers to Questions 1–3 will be interesting. If the conjecture is proved,
this would shed a new light on the decidability border, and on the power of
wqo-based methods. On the other hand, in order to falsify the conjecture one
has to come up with a completely new method for solving (some of) the standard
problems for Petri nets with data.

The conjecture is easily confirmed for atoms A ranging over a restricted
subclass of homogeneous graph, or homogeneous directed graphs, using the clas-
sification result by Cherlin [6].

Remark 3 An analogous conjecture can be stated for other models of computa-
tion. For instance, instead of the standard problems for Petri nets with atoms,
one can consider the universality problem for nondeterministic finite automata
with one register, or the emptiness problems for alternating automata with one
register (cf. [2]).
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24. Lazić, R.S., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.B.: Nets with
tokens which carry data. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 301–320. Springer, Heidelberg (2007)

25. Macpherson, D.: A survey of homogeneous structures. Discrete Math. 311(15),
1599–1634 (2011)

26. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

http://www.mimuw.edu.pl/~erykk/lois/lois-sat.pdf


Petri Net Synthesis



Characterising Petri Net Solvable Binary Words
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Abstract. A word is called Petri net solvable if it is isomorphic to the
reachability graph of an unlabelled Petri net. In this paper, the class
of finite, two-letter, Petri net solvable words is studied. A linear time,
necessary condition allows for an educated guess at which words are solv-
able and which are not. A full decision procedure with a time complexity
of O(n2) can be built based on letter counting. The procedure is fully
constructive and can either yield a Petri net solving a given word or
determine why this fails. Algorithms solving the same problem based on
systems of integer inequalities reflecting the potential Petri net structure
are only known to be in O(n3). Finally, the decision procedure can be
adapted from finite to cyclic words.

Keywords: Binary words · Labelled transition systems · Petri nets ·
Synthesis

1 Introduction

The relationship between a Petri net and its reachability graph can be viewed
from a system analysis or from a system synthesis viewpoint. In system analysis,
a system could, for instance, be modelled by a marked Petri net whose (unique)
reachability graph serves to facilitate its behavioural analysis [9]. We may get
various kinds of interesting structural results for special classes of Petri nets. For
example, if the given system is described by a marked graph, then its reachability
graph enjoys a long list of useful properties [7]. In system synthesis, a behavioural
specification is typically given, and a system implementing it is sought. For
example, one may try to find a Petri net whose reachability graph is isomorphic to
a given labelled transition system [1]. We may get structural results of a different
nature in this case. For example, [4] describes a structural characterisation of
the class of marked graph reachability graphs in terms of a carefully chosen list
of graph-theoretical properties.
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Region theory [1] establishes an indirect characterisation of the class of Petri
net reachability graphs. This characterisation essentially consists of an algorithm
solving many systems of linear inequalities derived from a given transition system
[5,10]. By its linear-algebraic nature, it provides little insight into the structural
properties of Petri net reachability graphs. The aim of the present paper is to
complement this indirect characterisation by a direct one, and to show that
such a direct characterisation can lead to different, time-efficient, algorithms for
checking synthesisability. However, we shall limit ourselves to a special class of
transition systems, namely to finite, non-branching ones having at most two
edge labels. That is, we study the class of binary, finite or cyclic words (possibly
with some finite initial part). We shall obtain a characterisation of the Petri net
synthesisable ones amongst them, along with corresponding algorithms.

In a first step, we shall develop a necessary criterion that must hold for
finite, binary, synthesisable words. This will frequently allow us to spot non-
synthesisable words in linear time. In a second step, we shall provide charac-
terisations of binary, synthesisable words in the finite as well as in the cyclic
case with a quadratic time complexity, allowing for a faster decision procedure
than via the region based approach. More specifically, the structure of the paper
is as follows. Section 2 contains some basic definitions about labelled transition
systems, Petri nets, and regions. Section 3 describes properties of synthesisable
words leading to a necessary criterion for synthesisability. Sections 4 and 5 char-
acterise synthesisable word in the finite case and in the cyclic case, respectively.
Section 6 compares an implementation of our results with the region based algo-
rithms of Synet [5] and APT [10]. Section 7 concludes the paper.

2 Basic Concepts, and Region-Based Synthesis

2.1 Transition Systems, Words, and Petri Nets

A finite labelled transition system with initial state is a tuple TS = (S,→, T, s0)
with nodes S (a finite set of states), edge labels T (a finite set of letters), edges
→⊆ (S × T × S), and an initial state s0 ∈ S. A label t is enabled at s ∈ S,
denoted by s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through
the execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s
to s′ whose edges are labelled consecutively by σ. The set of states reachable
from s is denoted by [s〉. A sequence σ ∈ T ∗ is allowed, or firable, from a
state s, denoted by s[σ〉, if there is some state s′ such that s[σ〉s′. We use
σ|sσ′ as an abbreviation for s0[σ〉s[σ′〉. Two labelled transition systems TS1 =
(S1,→1, T, s01) and TS2 = (S2,→2, T, s02) are isomorphic if there is a bijection
ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all
s, s′ ∈ S1.

A word over T is a sequence w ∈ T ∗, and it is binary if |T | = 2. For a word w
and a letter t, #t(w) denotes the number of times t occurs in w. A word w′ ∈ T ∗

is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w
′u2. A word

w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system
TS(w) = ({0, . . . , n}, {(i − 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).
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An initially marked Petri net is denoted as N = (P, T, F,M0) where P is
a finite set of places, T is a finite set of transitions with P ∩ T = ∅, F is the
flow function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0

is the initial marking (where a marking is a mapping M : P → N, indicating
the number of tokens in each place). A side-place is a place p with p•∩•p 
= ∅,
where p• = {t ∈ T | F (p, t)>0} and •p = {t ∈ T | F (t, p)>0}. A transition
t ∈ T is enabled at a marking M , denoted by M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t).
The firing of t leads from M to M ′, denoted by M [t〉M ′, if M [t〉 and M ′(p) =
M(p)−F (p, t)+F (t, p). This can be extended, as usual, to M [σ〉M ′ for sequences
σ ∈ T ∗, and [M〉 denotes the set of markings reachable from M . The reachability
graph RG(N) of a bounded (such that the number of tokens in each place does
not exceed a certain finite number) Petri net N is the labelled transition system
with the set of vertices [M0〉, initial state M0, label set T , and set of edges
{(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If a labelled transition system TS is
isomorphic to the reachability graph of a Petri net N , we say that N PN-solves
(or simply solves) TS, and that TS is synthesisable to N . We say that N solves
a word w if it solves TS(w). We frequently identify the states of TS with the
markings of N then, writing e.g. s(p) ≥ F (p, t).

2.2 Basic Region Theory, and an Example

Let a finite labelled transition system TS = (S,→, T, s0) be given. In order to
synthesise – if possible – a Petri net with isomorphic reachability graph, T must,
of course (since we do not consider any transition labels), be used directly as the
set of transitions. For the places, 1

2 ·(|S|·(|S|−1)) state separation problems and
up to |S|·|T | event/state separation problems have to be solved, as follows:

• A state separation problem consists of a set of states {s, s′} with s 
= s′ where
s and s′ must be mapped to different markings in the synthesised net. Such
problems are always solvable if TS = TS(w) originates from a word w, for
instance by introducing a counting place which has j tokens in state j.

• An event/state separation problem consists of a pair (s, t) ∈ S×T with ¬(s[t〉).
For every such problem, one needs a place p such that M(p) < F (p, t) for the
marking M corresponding to state s, where F refers to the arcs of the hoped-
for net.

For example, in Fig. 1, TS1 is PN-solvable, since the reachability graph of
N1 is isomorphic to TS1. Note that N1 has exactly two transitions a and b,
which is true for any net solving a binary word over {a, b}. By contrast, TS2 is
not PN-solvable. The word abbaa, from which TS2 is derived, is actually one of
the two shortest non-solvable binary words (the other one being baabb, its dual
under swapping a and b).

To see that abbaa (viz., TS2) is not PN-solvable, we may use the following
argument. State s = 2 generates an event/state separation problem ¬(s[a〉), for
which we need a place q whose number of tokens in the marking corresponding
to state 2 is less than necessary for transition a to be enabled. Such a place q
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Fig. 1. TS1 and TS2 correspond to aab and abbaa, respectively. N1 solves TS1. No
Petri net solution of TS2 exists.
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Fig. 2. A place with four arc weights a−, a+, b−, b+ and initial marking m

has the general form shown in Fig. 2. We now show that such a place does not
exist.

In order to present this proof succinctly, it is useful to define the effect E(τ)
of a sequence τ ∈ T ∗ on place q. The effect of the empty sequence is E(ε) = 0.
The effect of a sequence aτ is defined as E(aτ) = (a+−a−)+E(τ), and similarly,
E(bτ) = (b+ − b−) + E(τ). For instance, E(abbaa) = 3·(a+ − a−) + 2·(b+ − b−).
In general, E(τ) = #a(τ) · E(a) + #b(τ) · E(b).

If q (as in Fig. 2) prevents a at the marking corresponding to state 2 in abbaa
(cf. TS2 in Fig. 1), then it must satisfy the following inequalities: a− ≤ m, since
state 0 enables a; a− ≤ m + E(abba), since state 4 enables a; m + E(ab) < a−,
since q prevents a at state 3. Using E(abba) = E(ab) + E(ab), it is immediate to
see that this set of inequalities cannot be solved in the natural numbers.

2.3 Worst Case Complexity of the General Algorithm

In a word of length n, the equation system for a single event/state separation
problem comprises n + 1 inequalities, n for the states 0, . . . , n − 1 and one for
the event/state separation. In binary words, we have n + 2 such problems, one
for every state 0, . . . , n − 1 and two for the last state. A word w of length n is
PN-solvable if and only if all n + 2 systems, each having n + 1 inequalities and
five unknowns a−, a+, b−, b+,m, are solvable in N.

Suppose that we solve this special case (with five unknowns) by Khachiyan’s
algorithm [6]. Solving O(n) systems of inequalities, we may roughly expect a
running time of O(n3).



Characterising Petri Net Solvable Binary Words 43

3 Necessary Conditions for Solvability

As a first step of characterising solvable words over {a, b}∗, and quoting various
related partial results from [2], we develop a necessary criterion with a linear
time complexity. From this we will get a good idea of how solvable words are
structured and can easily sort out the majority of unsolvable words just by
looking at them.

Proposition 1. [2] Solvability of Subwords.

If w = xvy with x, y ∈ {a, b} is solvable, then xv and vy are also solvable.

The reverse does not hold, of course, otherwise there would be no unsolvable
words at all. With x 
= y though, solvability can be propagated:

Proposition 2. [2] Solvability of awb from aw and wb.
If both aw and wb are solvable, then awb is also solvable.

This also holds for bw and wa, of course. It is also possible to prefix a solvable
word by its first letter.

Proposition 3. [2] Prefixing Solvable Words by their First Letter.
Let v be a solvable word starting with a letter x ∈ {a, b}. Then, xv is solvable.

An unsolvable word w is minimal if all subwords of w are solvable. For this,
it is sufficient that for w = xvy with x, y ∈ {a, b} both xv and vy are solvable.
So, due to Proposition 2, minimal unsolvable words must start and end with
the same letter. They are also restricted to which subwords aa or bb can be
contained:

Proposition 4. [2] Never aa and bb inside a minimal unsolvable word.
If a minimal non-solvable word is of the form u = aαa, then either α does

not contain the factor (subword) aa or α does not contain the factor bb.

Propositions 3 and 4 together now also suggest a restriction for solvable
words. Solvable words may contain both aa and bb as subwords, but only if one
of these subwords appears at the beginning of the word, created by the prefixing
mechanism of Proposition 3. This is indeed the case:

Proposition 5. Never aa and bb in Solvable Words after Initial a+.
Let w ∈ {a, b}∗ be a solvable word, decomposable into w = anbα with n ≥ 1

and α ∈ {a, b}∗. Then, bα does not contain the factor aa or it does not contain
the factor bb.

Proof: Assume w contains both factors aa and bb in bα. Select “neighboring”
factors aa and bb, such there is no other factor aa or bb in between. Since
neither chosen factor is at the start of the word, w can be decomposed into
w = βabibb(ab)jaaγ or w = βbaiaa(ba)jbbγ with β, γ ∈ {a, b}∗ and i, j ≥ 0.
The neighbors aa and bb have been underlined. W.l.o.g. let us assume the latter
form.
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Let N = (P, T, F,M0) be a Petri net solving w and select states s, s′, and
s′′ such that w = β|s′baia|sa(ba)jb|s′′bγ. Since b cannot fire at s, there must be
a place p ∈ P with s(p) < b− (compare Fig. 2). At s′ and s′′ the transition b
can fire, so s′(p) ≥ b− ≤ s′′(p) holds. As firing a enables b again after s, a must
produce tokens on p and E(a) > 0. Since b does not remain enabled from s′ to s,
it has to consume tokens from p, so E(b) < 0. Computing the token differences
on p between our chosen states we then obtain

0 > s(p) − s′(p) = (i + 1) · E(a) + E(b) and
0 < s′′(p) − s(p) = (j + 1) · E(a) + (j + 1) · E(b).

Comparing the lines gives E(a) > −E(b) > (i+1) ·E(a), which is a contradiction,
i.e. w is not solvable. �� 5

This reduces the potentially solvable words to the regular expression

a∗b+(ab+)∗(a|ε) | b∗a+(ba+)∗(b|ε) | ε,

where in the first subexpression aa may only occur at the beginning of the word
and in the second one the roles of a and b are switched. The following results
are shown for the first expression only, but hold for both, of course.

If we compare two different blocks of the form ab+ in the regular expression
we find that their lengths must be nearly equal.

Lemma 1. Block Lengths Differ by at most 1.
Let w ∈ a∗b+(ab+)∗(a|ε) be a word that contains both babia and abbib with

i ≥ 1 as subwords. Then, w is not solvable.

Proof: Consider first the case w = α|sbabi|s′(abbi)kabbi|s′′bβ with α, β ∈
{a, b}∗. If there are more or less than i + 1 b’s in any of the intermediate k ≥ 0
blocks we can choose factors babia and abbib that are closer together (possibly
even having an a in common). Assume p to be a place of a Petri net solving w
with s′(p) < b− ≤ s(p), i.e. E(babi) = s′(p) − s(p) < 0. Due to Parikh equiva-
lence, E(babi) = E(abbi), we know s′′(p) = s′(p) + (k + 1) ·E(abbi) < s′(p) < b−,
which is a contradiction to b being enabled at s′′.

The second case, w = α|sabbibj(babi)k|s′babi|s′′aβ with α, β ∈ {a, b}∗ and
j, k ≥ 0, we also obtain by choosing the factors – first abbib, then babia this time
– as close together as possible. Assume p to be a place with s′(p) < a− ≤ s′′(p),
then with s′′(p)−s′(p) = E(babi) = E(abbi) > 0 and E(b) > 0 (since firing b at s′

enables a), we obtain s(p) = s′(p) − k ·E(babi) − j ·E(b) −E(abbi) < s′(p) < a−.
This contradicts a being enabled at s. �� 1

Solvable words must then fulfill a kind of balancing property where the blocks
of b’s must almost all have almost the same length.
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Proposition 6. Balancing Property.

Let w = akbx1abx2 . . . abxn with k ≥ 0, n ≥ 2, x1, . . . , xn ≥ 1. Then, the
following hold:

1. w solvable ⇒ xj − 1 ≤ xi for 2 ≤ i ≤ n − 1, 2 ≤ j ≤ n.
2. wa solvable ⇒ xj − 1 ≤ xi for 2 ≤ i, j ≤ n.
3. If k > 0 the above implications also hold for j = 1.

Proof: Assume there are i and j such that one of the above implications does
not hold. Then, w (or wa) contains the subwords babxia (since i ≥ 2) as well as
abbxib as a (possibly trivial) prefix of abxj . Lemma 1 shows that the word is not
solvable, yielding a contradiction. �� 6

The first block of b’s can have arbitrary length (e.g., both abab9ab9ab9a and
b9abbabbabba are solvable). The last block of b’s cannot be longer, but it can be
much shorter than the average b-block if no final a follows; e.g. ab9ab9ab9ab is
solvable while abababab9 is not. In the former case, we may even append some
more b’s.

Lemma 2. Prolonging the Last b-Block.
Let w = akbx1abx2a . . . abxn be a solvable word with k ≥ 0 and xi − 1 > xn

for all 1 ≤ i < n. Then, w′ = akbx1abx2a . . . abxn+1 is solvable.

Proof: Consider the case k ≤ 1 first. Assume N = (P, T, F,M0) to be a Petri net
solving w = akbx1abx2 . . . abxi−1 |s′abxi−1|s′′ba . . . b|sabxn |f with a place p that
prevents b at some s′ before s. Then, s′(p) < b− and s′′(p) = s′(p)+E(abxi−1) ≥
b−, i.e. E(abxi−1) > 0. With s(p) ≥ b+ (b fires directly before s) and E(b) < 0
(b fires directly before s′), we conclude f(p) = s(p) +E(abxn) ≥ b+ +E(abxn) =
b+ + E(abxi−1) − E(bxi−1−xn) > b+ − (xi − 1 − xn) · E(b) ≥ b+ − E(b) = b−.
Therefore, a place p preventing b at such s′ cannot prevent b at the end of w.
At s, b can be prevented by a new place q with b− = 1, b+ = 0, a− = 0,
a+ = min{x1, . . . , xn−1}, and an initial token count of (

∑n−1
i=1 xi) − (n − 2 +

k) · min{x1, . . . , xn−1} (which is non-negative). Then, s(q) = 0 and f(q) =
s(q) + a+ − xn > 0. A place preventing a (except after the last a) must have
E(b) > 0, so it cannot prevent b at the end either. After the last a, a new place
with #a(w) initial tokens, a− = 1, and a+ = 0 can disable any further a. With
these modifications, a place preventing b at the end of the word w is not needed
to prevent any other occurrence of a or b any more. We can now delete all places
preventing b at the end of w from N and create a new place with 1 +

∑n
i=1 xi

tokens, b− = 1, and b+ = 0, to prevent b after w′ is complete. The modified
Petri net solves w′.

In case k > 1, we cut off all leading a’s but one, apply the above proof, and
then reprepend the missing a’s using Proposition 3. �� 2

Deleting one b from each block of b’s will also not turn a word unsolvable.
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Lemma 3. Length Reduction of b-Blocks.
Let w = akbx1abx2a . . . abxnaj with j ∈ {0, 1}, k ≥ 0, and x1, . . . , xn ≥ 2 be

a solvable word. Then, also w′ = akbx1−1abx2−1 a . . . abxn−1aj is solvable.

Proof: For k > 1, cut off all leading a’s but one, apply the following proof for
k = 1, and reprepend the missing a’s using Proposition 3. So, let now k ≤ 1. In
case j = 1, we apply the proof to the word wb [and w′], which by Lemma 2 and
Proposition 1 is solvable if and only if w is. If k = 0 we use the words w and
bw′, where k = 0 and j = 1 are, of course, combinable, and w′ is solvable if bw′

is. After applying the above modifications, note that with the homomorphism
h(a) = ab and h(b) = b, we get h(w′) = w.

Let N be a Petri net solving w. For each place p with arc weights a+, a−,
b+, and b− let ip := max{0,−a+ − E(b)} and define a place p′ for a new Petri
net N ′ with M ′

0(p
′) := M0(p) + ip, b′

− := b− + ip, b′
+ := b+ + ip, a′

− := a− + ip,
and a′

+ := a+ + E(b) + ip. In all cases, a′
+ − a′

− = E(ab) and b′
+ − b′

− = E(b)
and all new arc weights (especially a′

+) are non-negative. By induction over the
length of prefixes of w′, the state reached in N ′ after some prefix v of w′ is the
state reached in N after the corresponding prefix h(v) of w plus the additional
(ip)p. We conclude that w′ and only w′ can fire in N ′, i.e. N ′ solves w′. �� 3

This lemma suggests that comparing the lengths of b-blocks are more impor-
tant for solvability than computing their absolute lengths. Our necessary crite-
rion, being a summary of the results of this section, establishes this intuition
more formally as follows:

Theorem 1. Linear Time Necessary Criterion.

If a word w ∈ {a, b}∗ is solvable, it is the empty word w = ε or it
has the form w = akbx1abx2a . . . abxnaj or w = bkax1bax2b . . . baxnbj, where
j, k, n, x1, . . . , xn ∈ N with j ≤ 1, n ≥ 0 and there is some x ∈ N such
that x2, . . . , xn−1 ∈ {x, x + 1} and xn ≤ x + 1. Furthermore, if j > 0 also
xn ∈ {x, x + 1}, and if k > 0 also x1 ≤ x + 1.

The criterion is in linear time as we can detect the structure of a word w
by going over it once from left to right. Remembering the block lengths that
occurred so far allows us to check if the next block also has a valid length.

What we do not know so far is when a block may have length x + 1 in the
criterion, and when only length x is allowed. E.g., abababbabba, ababbababba,
ababbabbaba, abbababbaba, and abbabababba are all solvable while abbabbababa is
not. One could suspect that the high number of early b’s makes the latter word
unsolvable. This will be made precise in the following section.

4 Characterisation of Solvable Binary Words

For a decomposition w = u|sxv with x ∈ {a, b}, let us call y ∈ {a, b} with y 
= x
separable at s iff we can construct a Petri net with transitions a and b and one
place p such that w can be fired completely and at s, y is not enabled.
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Theorem 2. Characterisation of Solvable Words.

A word w ∈ {a, b}∗ is solvable if and only if the following formula holds for
x = a ∧ y = b as well as for x = b ∧ y = a:

∀α, β, γ, δ : (w = αyβxγyδ ⇒ #y(yβ) · #x(xγ) > #x(yβ) · #y(xγ)).

Proof: We need to show that for any decomposition w = u|sxv with x ∈ {a, b},
the other letter y 
= x, y ∈ {a, b} is separable at s if and only if the above
formula holds for all decompositions of u = αyβ and v = γyδ. We outsource this
proof to Lemma 4. Disabling a and b at the end of the word is trivially done by
putting |w| tokens on a new place, from which each transition takes one token
upon firing. �� 2

Lemma 4. Characterisation of separable states.

For a word w ∈ {a, b}∗ let w = u|sxv be an arbitrary decomposition with
x ∈ {a, b}. Let y ∈ {a, b} with y 
= x be the other letter in our alphabet. Then, y
is separable at s if and only if

∀α, β, γ, δ : (w = αyβ|sxγyδ ⇒ #y(yβ) · #x(xγ) > #x(yβ) · #y(xγ)).

Proof: “⇒”: Let p be a place (of some Petri net) enabling y at s′ and s′′ but
not at s in a decomposition w = α|s′yβ|sxγ|s′′yδ. Since p disables y at s but not
at s′′, the number of tokens on p must increase from s to s′′, and also from s to
the first y after s, where only letters x are present. Thus, x effectively increases
the token count on p, i.e. E(x) > 0.

Assume firing y would not lower the token count on p. Since y is enabled
at s′, it will also be enabled at every state afterwards, even at s. So, p would
not disable y at s. We conclude that y effectively removes tokens from p, i.e.
E(y) < 0.

Since y can fire at s′ but not at s, tokens are consumed by yβ, i.e.
#y(yβ)·(−E(y)) > #x(yβ)·E(x). From s to s′′, for analogous reasons, tokens are
produced on p, so #x(xγ) ·E(x) > #y(xγ) ·(−E(y)). Multiply the first inequality
by #x(xγ) and the second one by #x(yβ), then divide both by −E(y) to make
them comparable:

#y(yβ) · #x(xγ) > #x(yβ) · E(x)
−E(y)

· #x(xγ) > #x(yβ) · #y(xγ).

“⇐”: Let S′ := {s′ | ∃α, β : w = α|s′yβ|sxv} and S′′ := {s′′ | ∃γ, δ : w =
u|sxγ|s′′yδ}. Denoting by #x(s′, s) the number of occurrences of x between states
s′ and s (and analogously for y and for pairs of states (s, s′′)), let us define ratios
of y and x in Q ∪ {−∞,∞} via

rmax(s) := min
s′∈S′

{
#y(s′, s)
#x(s′, s)

}
and rmin(s) := max

s′′∈S′′

{
#y(s, s′′)
#x(s, s′′)

}
.

In case S′ = ∅ we assume the minimum rmax(s) to be ∞ as a default value,
if S′′ = ∅ the maximum rmin(s) will be −∞. #x(s, s′′) and #y(s′, s) cannot be
zero (as there is an x directly after s and a y after s′ and s′′), so no ambiguos
fraction 0

0 can occur. If #x(s′, s) is zero, we assume the (obvious) default value
of ∞ for this fraction. See Fig. 3 for a visualisation.
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Fig. 3. TS corresponding to aabbababb with a state s at which b must not occur. We
compute maximal/minimal b/a-ratios rmin(s)/rmax(s) for words starting with b ending
at s and starting at s ending in front of a b, respectively. The production/consumption
ratio for a place p in a Petri net prohibiting b at s must fall into the open interval
]rmin(s), rmax(s)[. A loop around b can be added to prevent a negative initial marking.

We now show that rmax(s) > rmin(s). This is trivial in case one of the two
assumes its default value ∞ or −∞. Otherwise, for all decompositions w =
α|s′yβ|sxγ|s′′yδ with s′ ∈ S′ and s′′ ∈ S′′, we get #y(yβ) · #x(xγ) > #x(yβ) ·
#y(xγ). We now select those s′ ∈ S′ and s′′ ∈ S′′ that yield the ratio values
rmax(s) and rmin(s) in the above definitions, respectively. For these two states
we obtain:

rmax(s) =
#y(s′, s)
#x(s′, s)

=
#y(yβ)
#x(yβ)

>
#y(xγ)
#x(xγ)

=
#y(s, s′′)
#x(s, s′′)

= rmin(s).

We now create a Petri net with two transitions x and y and a single place p
that will disable y at s but not at any other state in S′ ∪ S′′. In a first step, let
us choose arc weights y− ∈ N

+ (from p to y) and x+ ∈ N
+ (from x to p) such

that
rmax(s) >

x+

y−
> rmin(s),

which is obviously possible; compare Fig. 3. Furthermore, let us assume there
are y− − 1 tokens on p at state s, so p disables y at s. Choose any state s′ ∈ S′,
then

#y(s′, s)
#x(s′, s)

≥ rmax(s) >
x+

y−
.

In case #x(s′, s) > 0, we can multiply with this value and with y− to obtain

#y(s′, s) · y− > #x(s′, s) · x+.
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In case #x(s′, s) = 0 the above inequality is trivially true, since s′ is imme-
diately followed by a y. The inequality shows that there are more tokens on p
in s′ than in s. Due to our choice of y− − 1 tokens for s, y is not disabled at s′

by p.
Analogously, for a state s′′ ∈ S′′, we have

x+

y−
> rmin(s) ≥ #y(s, s′′)

#x(s, s′′)

and by multiplying with the non-zero denominators we get

#x(s, s′′) · x+ > #y(s, s′′) · y−.

So, at s′′ there are more tokens on p than at s, and p cannot disable y at s′′.
It remains to be shown that there are always at least zero tokens on p at any

possible state. This is already known for all states from S′ ∪ S′′ (having at least
y− tokens) and for all states ŝ immediately following a state from S′ ∪ S′′ (only
y− tokens are consumed). Since from such an ŝ until the next state in S′ ∪ S′′

only x occurs in the word w, the number of tokens will only be increased. So,
all states beginning with the first state from S′ ∪ S′′ in the word w are covered.
Before this first state, only letters x occur in w, so it suffices to check if the
initial state of the Petri net has at least zero tokens on p.

If the initial state s0 is in S′ ∪ S′′, we are done. Otherwise, we compute the
initial number of tokens via s(p) = y− − 1 in w: n := y− − 1 + #y(s0, s) · y− −
#x(s0, s) · x+. Only in case of an initial marking n < 0 we have a problem.
This can be easily solved, though, by creating an arc from y to p with weight
F (y, p) := −n and replacing the values for the reverse arc weight and the initial
marking by F (p, y) := y− −n and M0(p) := n−n = 0. The additional −n tokens
are never used up but are always needed for y, so they will neither allow any
additional firing of y nor prevent any required one. �� 4

Proposition 7. Shared Separating Places.

Let w = u|sxv|ŝxz be a solvable word with x ∈ {a, b} and with two states s,
ŝ after which the same letter x occurs. Then, for s and ŝ, we can use the same
place for the separation if and only if the open intervals ]rmin(s), rmax(s)[ and
]rmin(ŝ), rmax(ŝ)[ (from the proof of Lemma 4) have a non-empty intersection.

Proof: The first direction of the proof of Lemma 4 shows that the arc weight
ratio x+

y−
of the occurring letter x compared to the separation letter y must lie

inside the open interval. If one separation place is enough for both states, the arc
weight ratio must fall into both open intervals. Similarly, if the intervals have a
non-empty intersection, the arc weight ratios in the second part of the proof of
Lemma 4 can be chosen identical, so the same place is generated for both states.
The different separation states may require a different number of loops at y to
prevent a negative initial marking. In this case, the higher number of loops will
always suffice. �� 7
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Let us take a look at the word w = aabbababb from Fig. 3 again. For states
followed by an a we get rmin(0) = max{ 0

2 , 1
2 , 2

3 , 3
4 , 4

4} = 1, rmax(0) = ∞ with
the interval ]1,∞[, rmin(1) = max{ 0

1 , 1
1 , 2

2 , 3
3 , 4

3} = 4
3 , rmax(1) = ∞ with the

interval ]43 ,∞[, rmin(4) = max{ 0
1 , 1

2 , 2
2} = 1, rmax(4) = min{ 2

0 , 1
0} = ∞ with

]1,∞[, and rmin(6) = max{ 0
1 , 1

1} = 1, rmax(6) = min{ 3
1 , 2

1 , 1
0} = 3 with ]1, 3[.

The value 3
2 lies in all open intervals, so we get one place p with E(a) = 3 and

E(b) = −2 and at most 2−1 = 1 tokens on it at each of the four states. Backward
calculation of the initial state gives 1, −2, −1, and −2 tokens for the states 0,
1, 4, and 6, respectively. We set b− = 2 + 2, b+ = 2 to obtain zero tokens in
the initial marking. For states followed by b we have rmin(2) = max{ 0

2 , 1
3} = 1

3 ,
rmax(2) = min{ 2

0 , 1
0} = ∞, rmin(3) = max{ 0

1 , 1
2} = 1

2 , rmax(3) = min{ 2
1 , 1

1} =
1, rmin(5) = max{ 0

1} = 0, rmax(5) = min{ 3
2 , 2

2 , 1
0} = 1, rmin(7) = −∞,

rmax(7) = min{ 4
3 , 3

3 , 2
1 , 1

0} = 1, rmin(8) = −∞, rmax(8) = min{ 4
4 , 3

4 , 2
2 , 1

1} = 3
4 .

We are inside all intervals if we choose 2
3 ∈]12 , 3

4 [ for a new place q with E(b) = 2,
E(a) = −3, and at most 3 − 1 = 2 tokens at any of these states. We compute
for the initial marking 8, 6, 7, 7, 6 tokens (for the five states), so by the proof of
Lemma 4 six initial tokens are enough to enable a where it occurs in w, but not
anywhere else. Adding a place f with 9 tokens to prevent a and b at the end, we
obtain the net in Fig. 4.

a

b

q6p f9

3

4

2

2
3

Fig. 4. A Petri net solving the word aabbababb

In all examples we examined so far, all the open intervals ]rmin(s), rmax(s)[,
for the same separation letter, had a common intersection. With one additional
place needed to prevent a and b at the end of a word, we therefore believe:

Conjecture 1. Solutions for Binary Solvable Words need ≤3 Places.
For any solvable word w ∈ {a, b}∗ there is a Petri net with at most three

places solving it. �� Conjecture 1

The following algorithm for the Petri net synthesis for a finite word w is in
O(|w|2):
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Algorithm 1. ABSolve
Input: w ∈ {a, b}∗

Output: A Petri net N = (P, {a, b}, F, M0) solving w if it exists
P ← ∅, F ← ∅, M0 ← ∅
for i = 0 to |w| − 1 do {separation point s}

rmin[i] ← −∞, rmax[i] ← ∞ {defaults}
N [0] ← 0, N [1] ← 0 {for counting a’s and b’s}
if w[i] = ′a′ then R ← 1 else R ← 0 {fraction selector}
for j = i − 1 down to 0 do {compute rmax}

if w[j] = ′a′ then N [0] ← N [0] + 1 else N [1] ← N [1] + 1

if w[j] �= w[i] and rmax[i] > N [R]
N [1−R]

then rmax[i] ← N [R]
N [1−R]

endfor
N [0] ← 0, N [1] ← 0
for j = i + 1 to |w| − 1 do {compute rmin}

if w[j − 1] = ′a′ then N [0] ← N [0] + 1 else N [1] ← N [1] + 1

if w[j] �= w[i] and rmin[i] < N [R]
N [1−R]

then rmin[i] ← N [R]
N [1−R]

endfor
if rmin[i] ≥ rmax[i] then return {unsolvable}

endfor
S ← {0, . . . , |w| − 1} {unprocessed intervals}
while S �= ∅ do

choose I ⊆ S with |{w[i]|i ∈ I}| = 1 and
⋂

i∈I ]rmin[i], rmax[i][ �= ∅
S ← S\I
choose m

n
∈ ⋂i∈I ]rmin[i], rmax[i][

P ← P ∪ {pI}
� ← w[min I] {doesn’t matter which i ∈ I}
if � = ′a′ then F (a, pI) ← m, F (pI , b) ← n else F (b, pI) ← m, F (pI , a) ← n
compute the minimal M0(pI) ∈ Z for i ∈ I from M(pI) = n − 1

{via backward firing M0[w[0] . . . w[i − 1]〉M}
if M0(pI) < 0 and � = ′a′ then

F (b, pI) ← F (b, pI) − M0(pI), F (pI , b) ← F (pI , b) − M0(pI), M0(pI) ← 0
if M0(pI) < 0 and � = ′b′ then

F (a, pI) ← F (a, pI) − M0(pI), F (pI , a) ← F (pI , a) − M0(pI), M0(pI) ← 0
endwhile
return (P, {a, b}, F, M0)

Note that the first part (with the for-loops) is obviously quadratic, and the
while-loop is run two times if Conj. 1 holds and at most |w| times otherwise.
For the choice of I, select one interval and intersect consecutively with any other
interval unless the intersection would become empty, resulting in O(|w|) time.
The choice of m

n can be done in constant time unless some “optimal” value is
sought. The computation of M0(pI) by backward firing is in O(|w|). So, overall,
the while-loop is in O(|w|2) in the worst case.

For an enumeration of all solvable words (ordered by length) without syn-
thesising Petri nets, we would need to remember all solvable words of the same
length and their rmax[i]-values (in a breadth-first manner). If we append a letter
x to some word w, all comparisons of rmin and rmax for wx have already been
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done when we inspected w, except (possibly) for the comparison of rmax[i] with
the ratio of the subword from position i to |wx| − 1, for each i. Starting with
i = |wx| − 1 and counting down, these comparisons can be done in linear time.
So our enumeration takes at most O(|w|) time per solvable word w.

The algorithm ABSolve can be adapted for k-bounded Petri nets (where in
every reachable marking every place has at most k tokens). Note that when
choosing m

n , both m ≤ k and n ≤ k must hold, so the number of options does
not depend on |w|. We need to check, though, if the created place could have
more than k tokens on it (in linear time for fixed m, n by “firing” the word
and computing the maximal token difference). Unluckily, it is possible that the
intersection of intervals of the form ]rmin(s), rmax(s)[ does not allow for a valid
choice of m and n while there are valid choices for each interval separately. So, if
we create one place for each interval we could do the second half of ABSolve in
O(k2 · |w|2) (the first half remaining unchanged), but an optimal solution with
as few places as possible is much harder to gain.

5 Cyclic Solvable Words

A word w = t1 . . . tn (with ti ∈ T ) is cyclic solvable if the transition system
TScyc(w) = ({0, . . . , n}, {(i − 1, ti, i) | 0 < i < n ∧ ti ∈ T} ∪ {(n, tn, 0)}, T, 0) is
solvable. TScyc(w) represents the infinite word wω. A Petri net solving TScyc(w)
reproduces its initial marking by firing w and allows for the (infinite) firing of wω.

Theorem 3. Characterisation of Cyclic Solvable Binary Words.

A word w ∈ {a, b}+ is cyclic solvable if and only if ∀x, y ∈ {a, b}∀α, β, γ, u, v:

(x 
= y ∧ w = uv ∧ vu = xαyβ) ⇒ #x(xα) · #y(w) > #y(xα) · #x(w).

Proof: “⇒”: Let N be the Petri net solution for w. Due to the reproduction
of the initial marking we can fire w arbitrarily often, i.e. for ww = uvuv we
can investigate the decomposition of vuvu = xα|s′yβ|sxα|s′′yβ. Looking at the
subword from s′ to s′′, by Lemma 4 we know #y(yβ)·#x(xα) > #x(yβ)·#y(xα).
Since #y(w) = #y(xα) + #y(yβ) and #x(w) = #x(xα) + #x(yβ), the ratio of
y to x (∈ Q ∪ {∞}) in w must lie between those of xα and yβ:

#y(yβ)
#x(yβ)

>
#y(w)
#x(w)

>
#y(xα)
#x(xα)

.

The latter inequality completes this direction of the proof.
“⇐”: Consider a decomposition of the ‘rolled out’ version wω of w

. . . |s′ŵi|ŝ′yβ|sxα|ŝ′′w̃j |s′′y . . .

where ŵ = yβγ and w̃ = δxα (with some γ, δ ∈ {a, b}∗) have the same Parikh
vector as w and i, j ≥ 0. Note that xα and yβ may each have a length up
to |w| − 1, so they might not add up to w. If we show that all possible finite
subwords from some s′ to s′′ around our separation point s fulfill the condition
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of Lemma 4, the lemma is applicable with the result of y being separable at s.
Since s is chosen arbitrarily, the infinite word wω is solvable and thus w is cyclic
solvable.

If xα is a factor in w, we know #x(xα) ·#y(w) > #y(xα) ·#x(w). If xα = uv
is distributed such that w = vyγu, we come to the same conclusion by using the
rolled version uvyγ in the precondition. For yβ, consider the rolled version xγyβ
of w (with γ chosen accordingly). We then know #x(xγ)·#y(w) > #y(xγ)·#x(w)
and conclude that the ratio of x and y in w must be between those of xγ and
yβ, i.e.

#y(yβ)
#x(yβ)

>
#y(w)
#x(w)

>
#y(xγ)
#x(xγ)

.

Overall, we get
#y(yβ)
#x(yβ)

>
#y(w)
#x(w)

>
#y(xα)
#x(xα)

,

which is the precondition for Lemma 4 at ŝ′ and ŝ′′. We can now argue that

#y(yβ)
#x(yβ)

>
#y(ŵyβ)
#x(ŵyβ)

>
#y(w)
#x(w)

(and analogously for xα and xαw̃). Just note that ŵ and w have the same
Parikh vector, so the same number of x and y in it. The argument can be
applied repeatedly until ŵi and w̃j are reached and we get

#y(ŵiyβ)
#x(ŵiyβ)

>
#y(w)
#x(w)

>
#y(xαw̃j)
#x(xαw̃j)

.

So, the precondition for Lemma 4 is fulfilled for arbitrary s′ and s′′ that are
followed by y, and by arbitrary s followed by x. Lemma 4 is applicable and y is
separable at s. This concludes the proof. �� 3

Note that with increasing i and j the ratios of y and x in the words ŵiyβ and
xαw̃j converge against #y(w)

#x(w) (without ever reaching it). Thus, the open interval
in Lemma 4 from which we can choose the arc weight ratio for the place p to be
created turns into a single point #y(w)

#x(w) – independently of the separation point,
as long as we prevent the same transition y. We conclude:

Proposition 8. Nets for Cyclic Solvable Words.

If w ∈ {a, b}+ is cyclic solvable, there is a Petri net solving it that has at
most two places. The arc weights of these places are determined by the ratios
#a(w)
#b(w) and #b(w)

#a(w) , respectively.

Take the word w = ababbab as an example. We check prefixes ending before
some b first. The a

b -ratio must be better than in w, i.e. >3
4 . This is true for

a (∞), aba (2), abab (1), and ababba (1). Then, rotate the front a to the end
(babbaba) and check again (now for the b

a -ratio >4
3 , and prefixes ending before

an a): b (∞), babb (3), and babbab (2). We continue until we end up rotating back
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to w. Here, everything is ok and w is cyclic solvable. The Petri net solving it is
depicted in Fig. 5. Note, however, that at this point of the development, we do
not know about its initial marking; it is only the next proposition which allows
us to compute it.

a

b

p2p1 5

4

33

4

Fig. 5. A Petri net solving the word (ababbab)ω

Let us call a word w ∈ {a, b}+ minimal cyclic solvable if it is cyclic solvable
and there is no shorter word v, |v| < |w|, with vω = wω.

Proposition 9. Token Count for Cyclic Solvable Words.

Let w ∈ {a, b}+ be minimal cyclic solvable. There is a Petri net N =
({p1, p2}, {a, b}, F , M0) solving wω such that for all M ∈ [M0〉, M(p1) +
M(p2) = |w| − 1.

Proof: From Proposition 8 we have a Petri net solution with two places and
two transitions and know that we may choose arc weights F (p1, a) = F (a, p2) =
#b(w) and F (p2, b) = F (b, p1) = #a(w). Thus, ∀M ∈ [M0〉: M(p1) + M(p2) =
M0(p1) + M0(p2). Let w[i] be the ith letter of w and let Mi markings with
Mi−1[w[i]〉Mi for 1 ≤ i ≤ |w|. Then, M0 = M|w| and due to minimal cyclic
solvability of w, Mi 
= Mj for 0 ≤ i < j < |w| (otherwise, vω = wω for some
rotation v of w[i+1] . . . w[j]). We conclude |[M0〉| = |w|. Since |P | = 2, there are
at most M0(p1)+M0(p2)+1 reachable states in N , i.e. M0(p1)+M0(p2) ≥ |w|−1.
Assume, n := M0(p1) + M0(p2) ≥ |w|. Then, markings (#b(w) + k,#a(w) + 
)
with k, 
 ≥ 0 must be unreachable as they allow firing of both transitions. The
remaining possible markings (0, n), . . ., (#b(w) − 1, n − #b(w) + 1) and (n, 0),
. . ., (n − #a(w) + 1,#a(w) − 1) are exactly the |w| = #a(w) + #b(w) markings
reachable in N . Now, (0, n)[b〉(#b(w), n − #b(w)) would reach an unreachable
marking, a contradiction. Thus, M0(p1) + M0(p2) = |w| − 1. �� 9

Algorithm 2 for cyclic solving of a word w is obviously in O(|w|2).
Lemma 5. Solvable Binary Words of the Form vwω.

Let v ∈ {a, b}+ and w ∈ {a, b}+\(a+ ∪ b+). The infinite word vwω is solvable
if and only if w is cyclic solvable and v is a postfix of wi for some i ≥ 1.

Proof: “⇒”: For arbitrary late parts of vwω, Lemma 4 results in the same
conditions as for wω, i.e. if vwω is solvable by N = ({p1, p2}, {a, b}, F,M0), so is
wω (possibly with a different initial marking). W.l.o.g. let w be minimal cyclic
solvable (otherwise rewrite vwω accordingly). If v is not a postfix of wi (with
i such that |v| ≤ |wi|), we find u, x, y with (w.l.o.g.) v = xau and wi = ybu,
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Algorithm 2. ABCycSolve
Input: w ∈ {a, b}+

Output: Petri net solving wω if it exists
compute W [0] ← #a(w), W [1] ← #b(w)
m0 ← 0, m ← 0 {tokens available for a}
for i = 0 to |w| − 1 do {rotations of w}

v ← w[i] . . . w[|w| − 1]w[0] . . . w[i − 1]
if v[0] = ′a′ then R ← 0 else R ← 1 {fraction selector}
N [0] ← 0, N [1] ← 0 {for counting a’s and b’s}
for j = 0 to |v| − 1 do {prefixes of v}

if v[0] �= v[j] and N [R] ∗ W [1 − R] ≤ W [R] ∗ N [1 − R]
then return {unsolvable}

if v[j] = ′a′ then N [0] ← N [0] + 1 else N [1] ← N [1] + 1
endfor
if v[0] = ′a′ then m ← m − W [1] else m ← m + W [0] {fire}
if m < 0 then m0 ← m0 − m, m ← 0

endfor
F (p1, a) ← #b(w), F (a, p2) ← #b(w), F (p2, b) ← #a(w), F (b, p1) ← #a(w)
return ({p1, p2}, {a, b}, F, {p1 → m0, p2 → |w| − 1 − m0})

and M0[xa〉M [uyb〉M for some marking M . Since w contains an a and a b,
w.l.o.g. p1 receives tokens from b and delivers to a, and p2 covers the other
direction. Thus, M(p1) + M(p2) ≥ F (b, p1) + F (a, p2) = #a(w) + #b(w) = |w|,
contradicting Proposition 9.

“⇐”: If v is a postfix of wi we can rewrite vwω as uω with u and w being
rotations of each other, and thus having the same Petri net solving them by
Theorem 3, differing only at the initial marking. �� 5

So, words vwω with #a(w) > 0 < #b(w) are solvable only if they can be
rewritten as uω. Checking words in which w contains only one letter, we get:

Lemma 6. Solvable Binary Words of the Form vaω.
Let v ∈ {a, b}+. The infinite word vaω is solvable if and only if v ∈ b∗a∗.

Proof: “⇐”: If #b(v) > 0, the Petri net N = ({p1, p2}, {a, b}, F,M0) with
F (p1, a) = F (a, p1) = #b(v), F (p2, b) = 1 = F (b, p1), M0(p2) = #b(v), and
M0(p1) = 0 solves vaω. With #b(v) = 0, the trivial Petri net (∅, {a}, ∅, ∅) is a
solution.

“⇒”: Assume v /∈ b∗a∗, then a decomposition vaω = u|sa|s′b|s′′aω exists. A
place p preventing a at s′ exists with s′(p) − s(p) = E(a) < 0. Thus, a cannot
fire infinitely often at s′′. �� 6

Summing up these lemmas, we obtain the following theorem for words that
consist of a finite prefix and a cyclic remainder.

Theorem 4. Solvable Cyclic Binary Words with a Prefix.
A word vwω with v, w ∈ {a, b}∗ is solvable if and only if w = ε or vwω can

be rewritten as a cyclic solvable word uω or it has the form a+bω or b+aω.
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6 Experimental Results

In an implementation of the general synthesis algorithm using the region-based
approach, it is very likely that one of the freely available ILP solvers is employed.
Since such solvers usually implement the simplex algorithm, our theoretical con-
siderations of Sect. 2.3 are of limited practical value and need to be comple-
mented by benchmarks. In particular, while the simplex algorithm can have
exponential run times, it frequently allows a system of linear equations to be
solved in linear time, which is much better than Khachiyan’s worst case com-
plexity.

To see how our algorithm fares compared to the region-based approach, we
used the tools Synet and APT, both of which can synthesise Petri nets, and
let all three run on the same computer. APT and our algorithm ABSolve have
been implemented in Java while Synet was written in OCaml, which is known to
produce efficient code. For each single test that was done we randomly generated
4000 words meeting certain criteria and fed them to all tools (including a pseudo-
tool “no-op” doing virtually nothing), trying to synthesize the whole set of words.
From the composite result we computed the average run time per word.

We made tests for words in (a|b)x with a fixed word length x ∈ {1, . . . , 700},
i.e. 700 tests times 4000 words per tool, and again for words from (ab|abb)x,
where we expected a higher probability for solvable words. (Note that for x = 1
randomisation means we tested the words a and b each about 2000 times, but
e.g. at x = 50 it is extremely unlikely that we tested the same word twice.) Fig. 6
(upper left) shows the results for (a|b)x on a logarithmic time scale. ABSolve is
about a factor 103 faster than APT and Synet, and by the same factor slower
than “no-op”. In the upper right we normalised all curves by dividing all values
of each curve by its value at x = 350. Due to the linear time scales we can see that
ABSolve and APT both seem to have run time O(n) while Synet shows a clearly
parabolic curve, i.e. O(nk) with k > 1. The lower left part of the figure shows the
results for (ab|abb)x. The times are higher than for (a|b)x, but this seems to be
mostly due to the increased word length. We then tried to compare random sets
of solvable words with sets from all words. From about x = 40 upwards it takes
a lot of time to randomly generate solvable words (by randomly creating words
and then picking the solvable ones) as solvable words become scarce. The lower
right part of the figure shows that solvable words take distinctly more time with
APT or ABSolve than arbitrary ones. This is the result of quick fail strategies in
both algorithms (we stop checking at the first unsolvable system of equations or
the first empty open interval, respectively). It also explains the linear run time
for ABSolve and APT (we expect at least quadratic for solvable words) and the
visible hook at the beginning of the curve for ABSolve in the other three pictures.
Synet has identical times for solvable and for arbitrary words and was thus left
out of the picture. A likely reason for this is the missing quick fail mechanism,
at least in our version of Synet.
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Fig. 6. Tests were done for random sets of 4000 words for each x with 1 ≤ x ≤ 700
where words stem from (ab|abb)x (lower left) or (a|b)x (the other three pictures). Time
scales are linear (but different for each curve) in the upper right picture and logarithmic
in the others.

7 Concluding Remarks

In this paper, the class of Petri net synthesisable binary words has been stud-
ied in depth. We have presented a linear-time necessary condition for solvability
representing an educated guess (Theorem 1), as well as quadratic time character-
isations for finite binary words and for cyclic binary words (Theorems 2 and 3).
The proof of Theorem 2 can easily be turned into a proof of a conjecture stated
in [2], the main difference being that the latter is formulated for minimal unsolv-
able (rather than general) words. The algorithms derived from our quadratic-
time characterisations allow to check solvability considerably more quickly than
a general synthesis algorithm could. This has been confirmed both by the theo-
retical estimates contained in this paper and by experimental validation.

It would be interesting to consider extensions and ramifications. For exam-
ple, we know of no results characterising PN-solvable acyclic labelled transition
systems with few branching points, or with some other regular structure. The
work described in [4] is an exception, a reason being that the cyclic structure
of marked graph reachability graphs is particularly harmonious. Extending the
results from binary words to words over a larger alphabet should also be worth-
while, and does not seem to be easy.

The present work could also be of interest in a wider context, as it might
entail nontrivial necessary conditions for the solvability of an arbitrary labelled



58 E. Best et al.

transition system. If the latter is solvable, then finding a PN-unsolvable structure
in it may have a strong impact on its structure or shape. Also, words are persis-
tent in the sense of [8] and tractable by the method described in [3]. However,
they form (in some sense) a worst case and still lead to many region inequal-
ities. It could therefore be interesting to check more closely whether the work
described here can be of any benefit in enhancing the method described in [3].

Acknowledgments. We would like to thank Raymond Devillers for his very helpful
suggestions to improve this paper and Valentin Spreckels for his valuable support in
computing the experimental data.
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Abstract. In this paper, we shall examine properties of labelled transi-
tion systems which are motivated by system synthesis. Most of them are
necessary conditions for synthesis by Petri nets to be successful. They can
be checked in a pre-synthesis phase, allowing the immediate rejection of
transition systems not satisfying them as non-synthesisable. The order of
checking such conditions plays an important role in pre-synthesis optimi-
sation. It is particularly desirable to know which conditions are implied
by others, especially if the latter can be machine-verified more simply
than the former. The purpose of this paper is to describe some mathe-
matical results exhibiting a number of such implications.

Two properties called strong cycle-consistency and full backward
determinism, respectively, are particularly hard to check. They are gen-
eralised counterparts of the marking equation of Petri net theory. We
show that under some circumstances, they may be deduced from other
properties which are easier to check. Amongst these other properties, the
prime cycle property plays a particularly important role, not just because
it is strong enough to imply others, but also because it is interesting to
be checked on its own, if synthesis is targetted towards choice-free Petri
nets.

Keywords: Choice-free Petri nets · Cyclic behaviour · Labelled transi-
tion systems · System synthesis

1 Introduction

Some Background. In Petri net synthesis [1], a labelled transition system is
viewed as a specification for which a Petri net implementation with the same
behaviour is sought. Petri net synthesis is useful, for instance, in case a sequential
specification is given by a labelled transition system, and a smaller, concurrent
implementation is aimed at.
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Synthesis may be directed at specific classes of implementations, for instance
at choice-free Petri nets. Such nets are defined by the absence of concurrency-
unrelated choices; they have applications in hardware design [14] as well as in
manufacturing [20,25], and allow a distributed implementation [7]. In tight syn-
thesis (such as considered here, and largely in [1]), “the same behaviour” means
that the reachability graph of a target Petri net should be isomorphic to a given
source transition system, and that the Petri net’s transitions should correspond
uniquely to the labels of the transition system (thus there are no silent transi-
tion, no two transitions with the same label, and no transition with a sequence of
labels). Such synthesis supports the physical distribution of Petri nets [4,17,18].

Both theoretically and algorithmically, the synthesis problem has been solved
for finite transition systems [1,16] and, partially, for infinite ones [15]. The algo-
rithms described in [1] are polynomial for place/transition Petri nets [23] and
exponential for 1-bounded Petri nets, for which the problem is NP-complete [2].
All general algorithms, even when polynomial, are very costly. If the given tran-
sition system specification has n states, O(n2) transitions, and m labels, then
(n · (n + 1)/2) + O(n · m) systems of inequalities, each having O(n) inequations
and O(m) variables, have to be solved for a Petri net to be created. Even allow-
ing for the fact that m may be considerably smaller than the set of states, n is
usually a very large number. The entire algorithm tends to be of the order of n6

or slightly less. This is problematic for all but relatively small n.

Motivation. The present paper is part of an on-going effort to alleviate the
computational burden implicated by the general Petri net synthesis algorithm,
and to improve failure information. For example, it was shown in [8,10] that
if a given labelled transition system satisfies a list of properties, then it can
be synthesised into a marked graph [13], even without solving a single linear
inequality system. In effect, this provides a structural characterisation of such
transition systems.

In more general cases, however, such a characterisation seems out of reach,
and our approach is to minimise, by mathematical analysis, the number and size
of linear inequality systems that need to be solved. In [9], it was shown that if
the given transition system satisfies a number of structural preconditions (much
weaker than the ones for marked graphs), then synthesis can be sped up by
restricting the necessary linear inequation systems to small subsets of states. In
effect, this approach suggests splitting synthesis into two phases: a first one –pre-
synthesis–, in which the preconditions are scrutinised (and a transition system
is rejected if it does not satisfy them), and a second one –proper synthesis–, in
which the remaining (minimised but unavoidable) part of the general synthesis
algorithm is carried out.

Remarkably, while some of these preconditions may be hard to check indi-
vidually during pre-synthesis, some are not too difficult to verify once other
ones have already been checked, and others may be verified simultaneously. In
the present paper, we shall examine a list of properties which are inspired by
(more precisely: are necessary for) a labelled transition system to be Petri net
synthesisable. The main purpose of this investigation is to find dependencies
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between these properties. This allows pre-synthesis algorithms to be optimised
by fine-tuning the order in which they are checked.

In addition, synthesis can be optimised, in the sense that some unsuitable
input is rejected as early as possible, revealing structural reasons for such a
rejection and for the implied (and inevitable) failure of synthesis, without actu-
ally carrying it out. The designer is then free to use the structural information
in order to inspect his transition system as to which parts (if any) might be in
need of re-design. This kind of information tends to be more useful than the error
messages issued by a general synthesis algorithm, which typically just state that
some of the many inequation systems are unsolvable. For an idea, the reader is
referred to AppendixA below.

Structure. In Sect. 2, a list of relevant properties of labelled transition systems
is defined and explained on some examples. Some of these properties are “local”
(i.e., pertaining only to single states and their immediate surroundings), others
are “global” (i.e., pertaining to the relationship between pairs or triples of states
which might be very far from each other in the transition system, with long
paths between them). Section 3 explains why these properties are important in
the context of choice-free Petri net synthesis, and recalls a number of results
from previous papers which will heavily be used here. In Sects. 4 and 5, we
concentrate on deriving two rather unwieldy global properties, called strong
cycle-consistency and full backward determinism, respectively, from other ones
that are easier to check, in particular the property that the label counts of each
small cycle are relatively prime. A summary can be found in Sect. 6, together
with some observations about the difficulty to check the needed properties. Some
concluding remarks are contained in Sect. 7.

2 Labelled Transition Systems

Definition 1. lts, reachability, Parikh vectors, cycles. A labelled tran-
sition system with initial state, abbreviated lts, is a quadruple TS = (S,→, T, ı0)
where S is a set of states, T is a set of labels, →⊆ (S×T ×S) is the transition rela-
tion, and ı0 ∈ S is an initial state. A label t is enabled in a state s, denoted by s[t〉,
if there is some state s′ such that (s, t, s′) ∈→. For t ∈ T , s[t〉s′ iff (s, t, s′) ∈→,
meaning that s′ is reachable from s through the execution of t. For sequences
σ ∈ T ∗, s[ε〉 and s[ε〉s are always true; and s[σt〉 (s[σt〉s′) iff there is some s′′

with s[σ〉s′′ and s′′[t〉 (s′′[t〉s′, respectively). A state s′ is reachable from state s if
∃σ ∈ T ∗ : s[σ〉s′. The set of states reachable from s is denoted by [s〉.

A T -vector is a function Φ : T → N, and its support is supp(Φ) = {t ∈ T |
Φ(t) > 0}. When supp(Φ) �= ∅, the greatest common divisor gcd(Φ) is defined as
gcd{Φ(t) | t ∈ supp(Φ)}. Two T -vectors Φ1, Φ2 : T → N are label-disjoint if their
supports are disjoint. For a finite sequence σ ∈ T ∗, the Parikh vector of σ is a
T -vector Ψ(σ), where Ψ(σ)(t) denotes the number of occurrences of t in σ. For
brevity, let the support of a sequence σ be defined as supp(σ) = supp(Ψ(σ)).
Two finite sequences are Parikh-equivalent if they have the same Parikh vector.
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A path s[σ〉s′ is called a cycle, or more precisely a cycle at (or around) state
s, if s = s′. The cycle is nontrivial if σ �= ε. A nontrivial cycle s[σ〉s is called small
if there is no nontrivial cycle s′[σ′〉s′ (with s, s′ ∈ S) such that Ψ(σ′) � Ψ(σ),
where, by definition, � equals (≤ ∩ �=). A path s[σ〉s′ is called short (or short
from s to s′, to be precise), if there is no path s[σ′〉s′ with |σ′| < |σ|. ��

Note that a cycle s[σ〉s is short if and only if it is trivial, i.e., σ = ε.

Definition 2. Determinism, persistence, and other lts properties.
A labelled transition system (S,→, T, ı0) is called

• finite if S and T (hence also →) are finite;
• totally reachable if [ı0〉 = S (i.e., every state is reachable from ı0);
• (weakly forward) deterministic if, for all states s, s′, s′′ ∈ S, and for any label

t ∈ T , s[t〉s′ and s[t〉s′′ imply s′ = s′′ (i.e., an executable label uniquely
determines the successor state);

• (weakly) backward deterministic if, for all states s, s′, s′′ ∈ S, and for any label
t ∈ T , s′[t〉s and s′′[t〉s imply s′ = s′′;

• fully forward deterministic if, for all states s, s′, s′′ ∈ S and for all sequences
α, α′ ∈ T ∗, (s[α〉s′ ∧ s[α′〉s′′ ∧ Ψ(α) = Ψ(α′)) entails s′ = s′′ (i.e., the Parikh
vector of an executable sequence uniquely determines the target state);

• fully backward deterministic if, for all states s, s′, s′′ ∈ S and for all sequences
α, α′ ∈ T ∗, (s′[α〉s ∧ s′′[α′〉s ∧ Ψ(α) = Ψ(α′)) entails s′ = s′′;

• persistent if for all states s, s′, s′′ ∈ S, and labels t �= u, if s[t〉s′ and s[u〉s′′,
then there is some state r ∈ S such that both s′[u〉r and s′′[t〉r (i.e., once two
different labels are both enabled, neither can disable the other, and this leads
to the same state, forming a characteristic diamond shape);

• backward persistent if for all states s, s′, s′′ ∈ S, and labels t �= u, if s′[t〉s and
s′′[u〉s, then there is some state r ∈ S such that both r[u〉s′ and r[t〉s′′. ��
See Figs. 1, 2 and 3 for some examples. We shall use them as running examples

and refer to the transition systems shown there by their names (TS 1,TS 2, . . .).

Definition 3. Home states, and other cyclicity properties of an lts.
A state s ∈ S of TS = (S,→, T, ı0) is called a home state if ∀s′ ∈ S : s ∈ [s′〉
(i.e., s is always reachable from any state). Moreover, TS is called

TS1:

ı0 s1 s2a b

a

TS2:

ı0 s1 s2a b
a

Fig. 1. TS1 satisfies all properties of Definitions 2 to 4 (including the existence of home
states) except weak and strong backward determinism (due to ı0[a〉s1 and s2[a〉s1) and
all forms of cycle-consistency (due to ı0[ab〉s2 and s2[ab〉s2). TS2 satisfies all properties
except all forms of cycle-consistency (due to ı0[a〉s1 and s2[a〉s2).
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TS3:

ı0 s1
a
b

b

a

TS4:
ı0

s1

s2 s3

c c c c

b

b

a

a

Fig. 2. TS3 satisfies simple cycle-consistency but not mild cycle-consistency (since
ı0[aa〉ı0, ı0[a〉s1, Ψ(aa) = 2 · Ψ(a), but ı0 �= s1, and similarly for b). TS3 satisfies all
other properties except weak periodicity, the prime cycle property, and the disjoint
small cycle property (since TS3 has four partly overlapping small cycles ı0[β〉ı0, one –
ı0[aa〉ı0 – with Parikh vector (2 0), another one – ı0[bb〉ı0 – with Parikh vector (0 2), and
two Parikh-equivalent ones – ı0[ab〉ı0 and ı0[ba〉ı0 – with Parikh vector (1 1)). TS4 is
path-disjoint (there are disjoint non-cyclic paths, for instance ı0[c〉s2 and ı0[a〉s1[b〉s2).

• weakly periodic if for every s1 ∈ S, label sequence σ ∈ T ∗, and infinite sequence
s1[σ〉s2[σ〉s3[σ〉s4[σ〉 . . ., either si = sj for all i, j ≥ 1, or si �= sj for all i, j ≥ 1
with i �= j;

• weakly cycle-consistent if for all σ ∈ T ∗, (∃s ∈ S : s[σ〉s) implies
(∀s′, s′′ ∈ S : s′[σ〉s′′ ⇒ s′ = s′′);

• simply cycle-consistent if for all σ ∈ T ∗, (∃s ∈ S : s[σ〉s) implies
(∀s′, s′′ ∈ S, σ′ ∈ T ∗ : (s′[σ′〉s′′ ∧ Ψ(σ) = Ψ(σ′)) ⇒ s′ = s′′);

• mildly cycle-consistent if for all σ ∈ T ∗, (∃s ∈ S : s[σ〉s) implies
(∀s′, s′′ ∈ S, σ′ ∈ T ∗ : (s′[σ′〉s′′ ∧ ∃q ∈ N \ {0} : Ψ(σ) = q · Ψ(σ′)) ⇒ s′ = s′′);

• strongly cycle-consistent if for all σ ∈ T ∗, (∃s ∈ S : s[σ〉s) implies
(∀s′, s′′ ∈ S, σ′ ∈ T ∗ : (s′[σ′〉s′′ ∧∃p, q ∈ N\{0} : p ·Ψ(σ) = q ·Ψ(σ′)) ⇒ s′=s′′).

Moreover, TS will be said to have the disjoint small cycle property if there
exist a number n ≤ |T | and a finite set of mutually label-disjoint T -vectors
Υ1, . . . , Υn : T → N such that

{Υ1, . . . , Υn} = {Ψ(β)| there is a state s and a small cycle s[β〉s}

If this property is satisfied, we shall abbreviate it to P{Υ1, . . . , Υn} (for Parikh
vectors of small cycles).
Finally, TS will be said to have the prime cycle property if every small cycle
s[β〉s is prime, i.e., by definition, satisfies gcd(Ψ(β)) = 1. ��

Cycle-consistency specifies how the presence of a cycle determines that other,
Parikh-related, paths are also cyclic. Weak cycle-consistency disallows a cycle
and a non-cycle which are the same (as label sequences). Simple cycle-consistency
disallows a cycle and a non-cycle to be Parikh-equivalent. Mild cycle-consistency
forbids the Parikh vector of a cycle to be the multiple (by q ≥ 1) of the Parikh
vector of a non-cyclic path. Strong cycle-consistency prevents any cycle and non-
cycle at all to be Parikh-related. Obviously, the cycle-consistency notions form
a hierarchy: strong ⇒ mild ⇒ simple ⇒ weak. It is also not hard to see that
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TS5:ı0

s1

s2 s3
s4

s5

a

b c
a

c

b

TS7: ı0
a b b a a

TS6: ı0

s1

s2

r
s q1

q2

b

c

c

b

a

a

a

b

c

b

c

b

c

Fig. 3. TS5 is not fully backward deterministic (since ı0[abc〉s3, s3[acb〉s3, Ψ(abc) =
Ψ(acb), and ı0 �= s3). TS5 is also not simply cycle-consistent (for the same reason), but
it is weakly cycle-consistent (since there is no non-cyclic path acb, cba or bac). Also,
TS5 satisfies the prime cycle property. TS6 is not weakly (hence fully) backward deter-
ministic (since s1[a〉s and s2[a〉s but s1 �= s2), not mildly cycle-consistent (because, e.g.,
s[bbb〉s is cyclic but s[b〉q1 is not), but simply and weakly cycle-consistent. Moreover,
TS6 does not satisfy the prime cycle property (because, e.g., s[bbb〉s is a small, non-
prime cycle), and it is path-disjoint (because, e.g., s[b〉q1 and s[c〉q1 with b �= c). Both
TS5 and TS6 are forward deterministic and persistent, and they have home states.
TS7 satisfies all properties of Definitions 2, 3, and 4, including the existence of a home
state.

mild cycle-consistency implies weak periodicity. See Figs. 1, 2 and 3 for some
examples.

Definition 4. Path properties of an lts. A labelled transition system TS =
(S,→, T, ı0) will be said

• to have the short path property if for all states s, s′ ∈ S and sequences σ, τ ∈
T ∗, if s[σ〉s′ and s[τ〉s′ are short paths, then Ψ(σ) = Ψ(τ);

• and to be path-nondisjoint if for all states s, s′ ∈ S and sequences σ, τ ∈ T ∗

with s[σ〉s′ and s[τ〉s′, s �= s′ implies supp(σ) ∩ supp(τ) �= ∅; path-disjoint if
it is not path-nondisjoint. ��
The short path property essentially means that all the short paths between

two states are Parikh-equivalent, and the path-nondisjointness property is typi-
cally satisfied when we have the short path property and all the paths between
two states Parikh-dominate the short paths.

3 Properties of a Synthesisable Lts

Let us first recall some basic definitions about Petri nets.

Definition 5. Petri nets, markings, reachability graphs. A (finite,
initially marked, place-transition, arc-weighted) Petri net is a tuple N =
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(P, T, F,M0) such that P is a finite set of places, T is a finite set of transitions,
with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P )) → N, M0 is the initial
marking, where a marking is a mapping M : P → N. A transition t ∈ T is enabled
by a marking M , denoted by M [t〉, if for all places p ∈ P , M(p) ≥ F (p, t). If t is
enabled at M , then t can occur (or fire) in M , leading to the marking M ′ defined
by M ′(p) = M(p) − F (p, t) + F (t, p) (denoted by M [t〉M ′). A marking M ′ is
reachable from M if there is a sequence of firings leading from M to M ′. The set
of markings reachable from M is denoted by [M〉. The reachability graph of N is
the labelled transition system RG(N) with the set of vertices [M0〉, initial state
M0 and transitions {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. A Petri net N is
called plain if cod(F ) ⊆ {0, 1}; a marked graph [13] if N is plain and |p•| = 1 and
|•p| = 1 for all places p ∈ P ; and choice-free if |p•| ≤ 1 for all places p ∈ P . A
marked Petri net N = (P, T, F,M0) is bounded if RG(N) is finite, and persistent
if RG(N) is persistent. ��

The next proposition renders the mathematical background of our approach
in precise terminology. It specifies which ones of the properties defined in the
previous section are necessary for (choice-free) Petri net synthesisability.

Proposition 1. Properties of Petri net reachability graphs. The
reachability graph RG of a Petri net N is finite iff N is bounded. Moreover:

• RG is totally reachable, fully deterministic in both directions, and strongly
cycle-consistent, i.e., satisfies all properties listed in Definition 2 except per-
sistence; and all properties of Definition 3 except the existence of home states,
the disjoint small cycle property, and the prime cycle property.

• If N is bounded and choice-free, then RG satisfies, in addition, all remaining
properties of Definition 3; and all properties of Definition 4. In particular, RG
is persistent, has home states and satisfies the disjoint small cycle property,
the prime cycle property, the short path property and the path-nondisjointness.

��
The proof of the first part of Proposition 1 is easy, as well as basic, in Petri net

theory [23]. Total reachability arises by the definition of RG . Full determinism
derives from the marking equation [23]. Strong cycle-consistency derives from
the fact that every cycle determines a Petri net T-invariant, in combination
with the marking equation. For the proof of the second part of Proposition 1,
see [9] (more precisely: choice-free nets are clearly structurally persistent; disjoint
small cycles arise from Theorem 3.1 of [9]; prime cycles arise from Lemma 3.6;
and path-nondisjointness and the short path property are corollaries of Lemma
3.8 in [9]), and also [25] where it was first shown that realisable T-invariants in
choice-free Petri nets enjoy stronger properties than in general nets.

If any of the properties listed in part 1 of Proposition 1 does not hold in
a given TS , then Petri net synthesis necessarily fails. If any of the properties
listed in the two parts of Proposition 1 does not hold, then choice-free Petri net
synthesis necessarily fails. TS7 (shown in Fig. 3) demonstrates that Proposition 1
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has no converse: it satisfies all properties mentioned there, but is not realisable by
any Petri net (that is, there is no Petri net whose reachability graph is isomorphic
to TS 7 [5]). Figures 4 and 5 show, on the other hand, that Proposition 1 is sharp
with respect to the properties of prime cycles and short paths: Both TS8 and
TS 9 have Petri net implementations (as shown in the figures), but they do not
have choice-free Petri net solutions.

TS8:

ı0 s
b

d

d

b

a

a

a

d
e

d
e

b

c

b

c

a

c b

e d

Fig. 4. Upper part: an lts which is PN-solvable but has no choice-free Petri net realisa-
tion. TS8 satisfies all properties of Proposition 1 except the short path property (since
ı0[bac〉s and ı0[dae〉s are not Parikh-equivalent). Lower part: non-choice-free solution
of TS8.

TS9: ı0
a

a
bb

c

c
c a

b

2

2 2

Fig. 5. Left-hand side: another PN-solvable lts without choice-free Petri net realisation.
TS9 satisfies all properties of Proposition 1 except the prime cycle property (since
ı0[aabbcc〉ı0 with gcd(aabbcc) = 2). Right-hand side: non-choice-free solution of TS9.

In the remaining part of this section we recall Keller’s theorem, which is
valuable as a tool for simplifying proofs about persistent lts, and some results
about home states and small cycle decomposability.
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Definition 6. Residues. Suppose that τ, σ ∈ T ∗. By τ−•σ, we denote the (right)
residue of τ left after cancelling successively in τ the leftmost occurrences of all
symbols from σ, read from left to right. Formally: τ−• ε = τ ; and τ−• t = τ , if
t /∈ supp(τ); and τ−• t = the sequence obtained by erasing the leftmost t in τ , if
t ∈ supp(τ); and τ−• (tσ) = (τ−• t)−• σ. ��
Theorem 1. Keller [21]. Let (S,→, T, ı0) be a weakly forward deterministic,
persistent lts. Let τ and σ be two label sequences activated at some state s. Then
τ(σ−• τ) and σ(τ−• σ) are also activated from s. Furthermore, the state reached
after τ(σ−• τ) equals the state reached after σ(τ−• σ). ��

An easy corollary of this result is that any weak forward deterministic and
persistent lts satisfies full forward determinism, since σ−•τ = ε when Ψ(σ) = Ψ(τ)
(i.e., in this case a global property is implied by local ones).

Proposition 2. Finite persistent lts have home states [6]. Let
(S,→, T, ı0) be a finite, totally reachable, weakly forward deterministic, and per-
sistent lts. Then there exists a home state s̃. ��
Proposition 3. Cycles may be pushed to home states [6]. Let (S,→
, T, ı0) be a weakly forward deterministic, persistent lts, and let s̃ be a home
state. For any cycle s[ρ〉s from some state s ∈ S, there exists a cycle s̃ [ ρ̃ 〉 s̃
such that Ψ(ρ) = Ψ(ρ̃). ��

Both propositions are easy consequences of Keller’s theorem.

Proposition 4. Small cycle decomposition. Let (S,→, T, ı0) be a weakly
forward deterministic, persistent lts with a home state. For any cycle s[ρ〉s we
have Ψ(ρ) =

∑n
i=1 ki · Υi where, for each i, ki ∈ N and Υi is the Parikh vector

of some small cycle.

Proof: The proposition is obvious if ρ is small or empty.
Let us thus assume that there is a small cycle si[αi〉si whose Parikh vector is

smaller than the Parikh vector of ρ, i.e. Υi = Ψ(αi) � Ψ(ρ). From Proposition 3,
both ρ and αi may be pushed Parikh-equivalently around any home state s̃,
yielding s̃ [ ρ̃ 〉 s̃ and s̃ [ α̃i 〉 s̃ with Ψ(ρ) = Ψ(ρ̃) and Ψ(αi) = Ψ(α̃i). Keller’s
theorem can be applied, starting from s̃, in the following way:

s̃ [ ρ̃ 〉 s̃ [ α̃i −• ρ̃ 〉 ŝ

and s̃ [ α̃i 〉 s̃ [ ρ̃−• α̃i 〉 ŝ

The first line entails s̃ = ŝ, since α̃i −• ρ̃ = ε on account of Ψ(αi) � Ψ(ρ).
The second line then yields s̃ [ ρ̃ −• α̃i 〉 s̃, that is, ρ̃ −• α̃i is cyclic around s̃.
Moreover, Ψ(ρ) = Ψ(ρ̃) = Ψ(αi) + Ψ(ρ̃ −• α̃i), again using Ψ(αi) � Ψ(ρ).

Resuming the decomposition for ρ̃ −• α̃i, we shall eventually get the claimed
result. ��



68 E. Best and R. Devillers

Remark: The decomposition is not necessarily unique, as shown by system TS3,
depicted in Fig. 2: ı0[abab〉ı0 and Ψ(abab) = 2 · Ψ(ab) = Ψ(aa) + Ψ(bb). However,
it is easy to see that this does not happen if small cycles are label-disjoint
whenever they are not Parikh-equivalent (without overlapping supports, two
different linear combinations may not be the same). This shows the importance
of the next result. ��
Theorem 2. Disjoint small cycles ([6], with an amendment). Let TS =
(S,→, T, ı0) be a finite and totally reachable lts which is weakly forward deter-
ministic, persistent, and weakly periodic. Then there are n disjoint T -vectors
Υ1, . . . , Υn, with n ≤ |T |, such that P{Υ1, . . . , Υn} is satisfied.

Proof (Sketch). The proof in [6] works by exploiting Proposition 3 to the effect
that all small cycles can be realised Parikh-equivalently around any home state,
and that at such a state, they are label-disjoint or their Parikh vectors are equal.

Actually, Theorem 2 of [6] lists weak cycle-consistency (just called “cycle-
consistency” in [6]) as a further premise. However, a closer examination reveals
that weak cycle-consistency is used only once in the proof. At that point, it can
be replaced by a different argument not needing weak cycle-consistency.

More precisely: In Lemma 6 of [6], just after equation (3), the desired con-
clusion s′[τ−• σ〉s′ is yielded by s[τ−• σ〉s, s[a〉s′ and a /∈ Ψ(τ−• σ), using Lemma 1
of [6], without the need to invoke weak cycle-consistency. ��
Remark: TS 3, depicted in Fig. 2, shows that Theorem 2 is sharp with respect
to the weak periodicity property; namely, TS3 satisfies all premises of the result,
except weak periodicity, and it fails to satisfy P{Υ1, Υ2, Υn}: the four small cycles
around any of the two states ı0, s1 have three different Parikh vectors that are,
however, not label-disjoint.

4 Strong Cycle-Consistency

Our aim in this section is to derive strong cycle-consistency, which can be hard
to check because it may be necessary to consider rather long paths, from other
global properties which may be easier to check, together with a set of mainly
local properties, namely finiteness, forward determinism, and persistence. This
will be done in two steps.

In the first step (Theorem 3), the goal is to show that the disjoint small cycle
property is implied by a different set of premises than those of Theorem2, not
using weak periodicity, but using, instead, the prime cycle property.

Theorem 3. Disjoint prime cycles. Let TS = (S,→, T, ı0) be a finite,
totally reachable, weakly forward deterministic, persistent lts. Also, assume that
TS satisfies the prime cycle property. Then TS satisfies P{Υ1, . . . , Υn} for some
label-disjoint T -vectors Υ1, . . . , Υn and a number n ≤ |T |.
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Proof: Let s ∈ [ı0〉 be a home state. Such a state exists by Proposition 2. From
Proposition 3, all cycles, and in particuler the small ones, may be pushed Parikh-
equivalently around s. We shall thus examine the set of small cycles around s
and show that they are either Parikh-equivalent or label-disjoint.

We proceed by contradiction. Let s[α1〉s and s[α2〉s be two non-Parikh equiv-
alent small cycles with supp(α1) ∩ supp(α2) �= ∅, and let us choose them in such
a way that α1 has a minimal support set among the small cycles sharing labels
with non-Parikh-equivalent ones.

Given α1 and α2, we consider the relatively prime natural numbers x, y such
that

x

y
= max

{
Ψ(α2)(t)
Ψ(α1)(t)

| t ∈ supp(α1)
}

(1)

Since supp(α1) �= ∅, the definition is sound, and since supp(α1) ∩ supp(α2) �= ∅,
x, y ≥ 1. Now we use the cyclicity of α1 and α2 (repeating x times α1 and y
times α2) and Keller’s theorem in the following way, starting with state s1 = s:

s1 [ αy
2 〉 s1 [ αx

1 −• αy
2︸ ︷︷ ︸

β

〉 s2 and s1 [ αx
1 〉 s1 [ αy

2 −• αx
1︸ ︷︷ ︸

γ

〉 s2

By the definition of −• , β and γ are label-disjoint, so that we may still apply
Keller’s theorem repeatedly:

s1 [ β 〉 s2 [ β 〉 s3 [ β 〉 s4 . . .

and s1 [ γ 〉 s2 [ γ 〉 s3 [ γ 〉 s4 . . .

Since S is finite, there are two indices i < j such that si = sj . If the system is
weakly backward deterministic, by following backward β and γ we immediately
get that si = s1; otherwise, since s is a home state we may push, Parikh-
equivalently, the cycles si[β(j−i)〉si and si[γ(j−i)〉si around s: s[β̃〉s and s[γ̃〉s
with Ψ(β̃) = (j − i) · Ψ(β) and Ψ(γ̃) = (j − i) · Ψ(γ).

Let us consider the Parikh vectors Ψ(β) and Ψ(β̃).
If a transition t is not in supp(α1), then Ψ(β)(t) = 0, because Ψ(α1)(t) is

zero, and −• -subtracting something from it does not change the zero; hence also
Ψ(β̃)(t) = 0.

For any transition t ∈ supp(α1) realising the maximum in (1) (hence for at
least one transition), we have Ψ(β)(t) = 0, because x · Ψ(α1)(t) = y · Ψ(α2)(t).

Hence, supp(β̃) = supp(β) � supp(α1). Then, either s[β̃〉s is a small cycle,
or by Proposition 4 it is a linear combination of small cycles, all having labels in
common with α1 and a smaller support than α1, contradicting the choice of the
latter.

As a consequence, β = ε. This also implies that for every t ∈ supp(α1), the
fraction Ψ(α2)(t)

Ψ(α1)(t)
actually equals x/y, because otherwise Ψ(β) = x ·Ψ(α1)(t)− y ·

Ψ(α2)(t) > 0. In particular, that also means that supp(α1) ⊆ supp(α2).
If x > y, or if x = y but supp(α1) � supp(α2), that means that Ψ(α1) �

Ψ(α2), i.e., α2 is not small.
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If x = y and supp(α1) = supp(α2), that means that α1 and α2 are Parikh-
equivalent.

If x < y, we have 2 ≤ y and, since x · Ψ(α1)(t) = y · Ψ(α2)(t) for each
t ∈ supp(α1), any prime factor of y must divide Ψ(α1)(t) (it does not divide x
since by definition x and y are relatively prime). Hence α1 is not prime.

In all cases, we get a contradiction with the way we chose α1 and α2, so that,
for any two small cycles, either they are label-disjoint or Parikh-equivalent, as
claimed. ��
Example: In TS 3, consider the two overlapping small cyclic Parikh vectors

α1 : a, b �→ 2, 0 and α2 : a, b �→ 1, 1

We have supp(α1)∩ supp(α2) = {a} and b ∈ supp(α2) \ supp(α1). The construc-
tion yields x = 1 and y = 2, showing that α1 is not prime.

Remark: Figure 2 shows that the prime cycle property is necessary for the
conclusion of Theorem 3 to be valid. TS 3 contains two non-prime small cycles,
and the non-Parikh-equivalent small cycles are not mutually label-disjoint.

In the second part of this section, our goal is to derive strong cycle-consistency
from full backward determinism and the prime cycle property.

Theorem 4. Deriving strong cycle-consistency. Let TS = (S,→, T, ı0)
be finite, totally reachable, forward deterministic, persistent. Also assume that
TS is fully backward deterministic and satisfies the prime cycle property. Then
TS is strongly cycle-consistent.

Proof: Assume ı0[β〉s[α〉s, with α being a cycle around s, and ı0[γ〉s1[α′〉s2.
Also assume that p · Ψ(α) = q · Ψ(α′), for 1 ≤ p, q ∈ N. We want to prove that
s1 = s2.

The property is obvious if α is empty.
Since cycles can be pushed Parikh-equivalently to home states and home

states exist, we can assume, without loss of generality, that s is a home state.
By Theorem 3, we can decompose s[α〉s as

s [ αp1
1 . . . αpm

m 〉 s
with Ψ(α) = p1 · Ψ(α1) + . . . + pm · Ψ(αm) (2)

where for 1 ≤ j ≤ m, 1 ≤ pj ∈ N and s[αj〉s are mutually label-disjoint small
cycles. Since p · Ψ(α) = q · Ψ(α′), we also have a decomposition

q · Ψ(α′) = p · p1 · Ψ(α1) + . . . + p · pm · Ψ(αm)

By the prime cycle property and the label-disjointness, no prime divisor of q
divides Ψ(αj), and therefore, q divides p · pj , say 1 ≤ rj = (p · pj)/q ∈ N, for
1 ≤ j ≤ m. Thus, we have:

Ψ(α′) = r1 · Ψ(α1) + . . . + rm · Ψ(αm)
with rj ≥ 1 for all 1 ≤ j ≤ m
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By Keller’s theorem, applied to ı0[β〉s and ı0[γ〉s1, we get

ı0 [ β 〉 s [ γ−• β 〉 s̃ and ı0 [ γ 〉 s1 [ δ 〉 s̃

with δ = β−• γ
(3)

Since s̃ is also a home state and s[α〉s, we get s̃ [ α̃ 〉 s̃ with some α̃ satisfying
Ψ(α̃) = Ψ(α). More precisely, as in (2), Ψ(α̃) = p1 · Ψ(α̃1) + . . . + pm · Ψ(α̃m) for
some small cycles s̃ [ α̃j 〉 s̃, such that Ψ(α̃j) = Ψ(αj) for all 1 ≤ j ≤ m.
Combining this and (3) with the assumption s1[α′〉s2, we get

s1 [ α′ 〉 s2 and s1 [ δ 〉 s̃ [ η 〉 s̃, with η = α̃ r1
1 . . . α̃ rm

m

and we can apply Keller’s theorem once more, getting:

s1 [ α′ 〉 s2 [ (δ η)−• α′ 〉 ŝ

and s1 [ δ 〉 s̃ [ α′ −• (δ η) 〉 ŝ

Note that Ψ(η) = Ψ(α′). Thus, the second line gives ŝ = s̃, since α′ −• (δ η) = ε

because of Ψ(α′) ≤ Ψ(δ η). The first line then gives s2 [ δ̃ 〉 s̃ for some sequence δ̃

with Ψ(δ̃) = Ψ(δ), because of Ψ(α′) = Ψ(η). In all, we have s1 [ δ 〉 s̃ and s2 [ δ̃ 〉 s̃,
with Ψ(δ̃) = Ψ(δ).

Full backward determinism then yields s1 = s2. ��
Remark: TS2 and TS 4 (shown in Figs. 1 and 2, respectively) prove that the
prime cycle property is essential for the result to be valid. TS5 (cf. Fig. 3) demon-
strates that full backward determinism is needed, as well.

5 Full Backward Determinism

In this section, we show that full backward determinism (a global property, used
as a premise in Theorem 4, which may be a bit hard to check in all generality)
can be derived from other – more easily checkable – properties. There will be two
variants of this result. In the first variant (Theorem5), we use, additionally, mild
cycle-consistency, another global property. In the second variant (Theorem7), we
use, in addition, the prime cycle property and simple cycle-consistency. It turns
out that the nondisjoint path property also follows from these latter assumptions
(Theorem 6).

Theorem 5. Deriving full backward determinism, variant 1. Let TS =
(S,→, T, ı0) be finite, totally reachable, forward deterministic, persistent. Also
assume that TS is mildly cycle-consistent. Then TS is fully backward determin-
istic.

Proof: Assume that s1[γ1〉s and s2[γ2〉s, with s, s1, s2 ∈ S and Ψ(γ1) = Ψ(γ2).
We need to show that s1 = s2.

The property is obvious if γ1 = ε or γ2 = ε.



72 E. Best and R. Devillers

By total reachability, there are sequences α, β such that ı0[α〉s1 and ı0[β〉s2.
Thus ı0[αγ1〉s and ı0[βγ2〉s. An application of Keller’s theorem yields

ı0 [ α 〉 s1 [ β−• α 〉 s′

and ı0 [ β 〉 s2 [ α−• β 〉 s′

One further application of Keller’s theorem yields

ı0 [ αγ1 〉 s [ (βγ2)−• (αγ1) 〉 ŝ

and ı0 [ βγ2 〉 s [ (αγ1)−• (β γ2) 〉 ŝ

and since Ψ(γ1) = Ψ(γ2), we get

s [ β̃ 〉 ŝ and s [ α̃ 〉 ŝ

with Ψ(β̃) = Ψ(β−• α)andΨ(α̃) = Ψ(α−• β)

If s = ŝ, then both β̃ and α̃ are cyclic around s with the same Parikh vectors
as β−• α and α−• β, respectively. Simple cycle-consistency implies s1 = s′ = s2 as
desired. (Note that only simple, not mild, cycle-consistency has been necessary,
up to this point.)

Lastly, suppose that s �= ŝ. Then both s[β̃〉ŝ and s[α̃〉ŝ with β̃ �= ε and α̃ �= ε.
Now we use the fact that β−• α and α−• β and thus also β̃ and α̃, are label-

disjoint, by the definition of −• . By applying Keller’s theorem repeatedly, we find
two infinite paths as follows:

s [ β̃ 〉 ŝ [ β̃ 〉 ̂̂s . . . and s [ α̃ 〉 ŝ [ α̃ 〉 ̂̂s . . .

By the finiteness of TS , these sequences contain two states which are the
same, say s̃, and thus, a nonempty cycle s̃ [(β̃)q〉 s̃ and another nonempty cycle
s̃ [(α̃)q〉 s̃, with some natural number q ≥ 1. By mild cycle-consistency, β−• α is
cyclic around s1, implying s1 = s′, and α−•β is cyclic around s2, implying s2 = s′.

Altogether, this entails s1 = s2 as claimed. ��
Remark: TS 5, as shown in Fig. 3, demonstrates that mild cycle-consistency
is necessary for the theorem’s conclusion to hold. TS5 satisfies all premises of
Theorem 5, except mild cycle-consistency, and is not fully backward determinis-
tic. TS6 shows that replacing mild cycle-consistency by simple cycle-consistency
destroys the validity of the theorem, but note that in this case the small cycle
is not prime.

In the second part of this section, we show that requiring the prime cycle
property allows us to weaken the other premises of the previous theorem. First,
it is shown that path-nondisjointness is implied.

Theorem 6. Deriving path-nondisjointness. Let TS be finite, totally
reachable, weakly forward deterministic, and persistent. Also assume that TS
satisfies the prime cycle property and is weakly cycle-consistent. Then TS is
path-nondisjoint.
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Proof: Suppose that ı0[δ〉s1[α〉s2 and ı0[δ〉s1[β〉s2 with two label-disjoint paths
α, β, i.e., supp(α)∩ supp(β) = ∅. Suppose that s1 �= s2 (hence α �= ε and β �= ε).
We shall derive a contradiction.

By persistence and label disjointness, we find two infinite sequences as follows:

s1[α〉s2[α〉s3 . . . and s1[β〉s2[β〉s3 . . .

By the finiteness of TS , the sequence s1, s2, . . . contains two states which are
the same. Thus, in this sequence, there is a state si and a number q ∈ N \ {0}
such that si[αq〉si (and also si[βq〉si, but we can forget about β from now on).
If si+1 = si, then α is cyclic around si and non-cyclic around s1, contradicting
weak cycle-consistency.

Hence si[α〉si+1 and si �= si+1.
Next, let s be any home state and consider a sequence si[γ〉s. Let k be the

maximum number of times a letter from α occurs in γ. We apply Keller’s theorem
in the following way, using the cyclicity of αq (hence also of αk·q) around si:

si [ αk·q 〉 si [ δ 〉 s′ with δ = γ −• αk·q

and si [ γ 〉 s [ αk·q −• γ 〉 s′

By q ≥ 1 and the definition of k, si[δ〉s′ is a sequence which is label-disjoint with
α. Moreover, s′ is also a home state since it is reachable from s.

By Proposition 4 and Theorem 3, we know that the Parikh vectors of all
cycles have a disjoint decomposition into sums of Parikh vectors of small
cycles around home states. So, there are mutually label-disjoint small cycles
s′[α1〉s′, . . . , s′[αm〉s′ such that Ψ(αq) =

∑
1≤j≤m pj ·Ψ(αj), with some numbers

pj ; in other words,

q · Ψ(α) = p1 · Ψ(α1) + . . . + pm · Ψ(αm)

Since all the αj are not just small but also prime, and by their label-disjointness,
no prime divisor of q divides Ψ(αj), and therefore, q divides each of the pj . It is
thus possible to execute each αj at s′ only pj/q times, instead of pj times, and
we get a cycle s′[α̃〉s′ around s′ which has the same Parikh vector as α.

Now persistency, applied to si[α〉 and si[δ〉s′, and considering also that α and
δ are label-disjoint, allows to infer s′[α〉 (in exactly the same order as in si[α〉).
But since s′[α̃〉s′ is cyclic and Ψ(α̃) = Ψ(α), we may use full forward determinism
(implied by the premises) to conclude s′[α〉s′. This contradicts si �= si+1, by weak
cycle-consistency, and ends the proof. ��
Remark: TS4 (as depicted in Fig. 2) shows that the prime cycle property is
essential for Theorem 6 to be true. The example TS10 (as shown in Fig. 6) demon-
strates that weak cycle-consistency cannot be omitted.

Theorem 7. Deriving full backward determinism, variant 2. Let TS =
(S,→, T, ı0) be finite, totally reachable, weakly forward deterministic, and per-
sistent. Also assume that TS satisfies the prime cycle property and is simply
cycle-consistent. Then TS is fully backward deterministic.
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TS10:
ı0

s

a

b

a

b

Fig. 6. TS10 is finite, totally reachable, weakly forward deterministic, and persistent.
It also satisfies the prime cycle property but is not weakly cycle-consistent. Moreover,
TS10 is not path-nondisjoint.

Proof: Theorem 6 implies that in the proof of Theorem5, s = ŝ, provided the
prime cycle property is added to the premises. Thus, in that case, the last step
of the proof of Theorem5 does not materialise. Hence, simple cycle-consistency,
instead of mild cycle-consistency, suffices to get the desired result. ��
Remark: TS6 (as shown in Fig. 3) satisfies all premises of Theorem 7 except the
prime cycle property. This shows that omitting the prime cycle property from the
set of preconditions does not allow the conclusion of the theorem to be drawn.
The example TS5 (as shown in Fig. 3) proves that simple cycle-consistency can-
not be omitted, or weakened to weak cycle-consistency, either.

6 Summary and Discussion

The results of this paper can be summarised as follows: For labelled transition
systems which are finite, totally reachable, weakly forward deterministic and
persistent,

• weak periodicity ⇒ disjoint small cycles (Theorem 2)
• mild cycle-consistency ⇒ disjoint small cycles (Theorem 2 and the fact that

mild cycle-consistency implies weak periodicity)
• prime cycles ⇒ disjoint small cycles (Theorem 3)
• prime cycles + full backward determinism ⇒ strong cycle-consistency (Theo-

rem 4)
• mild cycle-consistency ⇒ full backward determinism (Theorem5)
• prime cycles + weak cycle-consistency ⇒ path-nondisjointness (Theorem6)
• prime cycles + simple cycle-consistency ⇒ full backward determinism (The-

orem 7).

It turns out that the prime cycle property implies strong structural restrictions.
In any pre-synthesis algorithm for choice-free Petri nets, the order of checking
these properties is thus likely to have an impact on performance.

For instance, in choice-free synthesis, we might first perform some checks
for total reachability (which is not entirely local but not too difficult to check),
weak forward determinism and persistence, and then two global checks for prime
cycles and weak cycle-consistency (possibly by incorporating them in known,
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fast, cycle-detection algorithms such as Johnson’s [19]).1 Then all other inter-
esting properties – except the short path property – follow, using the theorems
quoted above in a suitable order. In particular, strong cycle consistency and
full backward determinism, which are hard to check individually,2 are logically
implied.

Note also that, once total reachability, weak forward determinism and per-
sistence are known to hold for a given lts, the computation of small cycles can
be limited to an arbitrarily chosen home state. Moreover, there can be no more
than at most |T | mutually disjoint (Parikh vectors of) cycles, where T , the set of
labels, is normally much smaller than the set of states. An added benefit of such
an approach is that the computed disjoint small cycle decomposition can serve
as an input to dedicated synthesis algorithms, for example the one developed
in [9].

If synthesis targets marked graphs (as it is the case in some applications
[14,20]), then backward persistence can be added to the list of properties [8,10].
This, of course, allows full backward determinism to be derived from its weak
counterpart. Prime cycles still have to be checked (otherwise, TS 3 in Fig. 2 would
be a counterexample), but can be limited to Parikh vectors having entries ≤ 1
only. In fact, an initial test for live marked graphs is incorporated in the general
synthesis algorithm of APT [11,24], leading to an enormous speedup when marked
graphs can be synthesised. Noticeable slowdown in negative cases was avoided by
performing quick-fail tests that have a high expectation of a negative outcome
first. (More precisely, for example, it is tested initially whether the initial state
has an incoming arrow, and if not, the entire test is skipped, because no live
marked graph is then synthesisable.) This experiment shows that pre-synthesis
can be implemented feasibly.

7 Concluding Remarks

The results described in this paper reveal some relationships between a variety
of cycle and path properties of labelled transition systems. Such properties have
been motivated by Petri net synthesis. Some of them (such as the determin-
ism and cycle-consistency properties) must hold whenever Petri net synthesis is
meant to succeed; others (such as the prime cycle property) must hold when-
ever choice-free Petri nets are to be synthesised. We expect that our results are
helpful for the design of a pre-synthesis phase during which unsuitable transition
systems are sorted out, providing some meaningful error information.

The results we obtained in this paper can be interpreted as going a small
way towards a partial structural characterisation of Petri net synthesisable tran-
sition systems. However, we would like to emphasise that such an endeavour is
1 This algorithm has a complexity of O(n·e·γ) where n is the number of nodes of a

graph, e the number of edges, and γ the number of small cycles. Thus, in our context,
a bad upper bound is O(n3·m) where n = |S| and m = |T |, which, however, still
compares favourably with O(n6) for the full synthesis algorithm.

2 Since, in brute force form, they involve, for all states s ∈ S, Parikh-comparisons of
pairs of – possibly long – paths emanating from s.
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extremely difficult. For instance, it has been a major task just to characterise the
set of binary words corresponding to Petri net reachability graphs [5], and there
are still a lot of labelled transition systems which satisfy all properties listed in
Proposition 1 but do not allow to be synthesised.

In future work, we would like to discover further relationships of this kind, and
more generally, to explore algorithmic improvements for synthesis. For example,
the reader may have noticed that the short path property (which is a good
candidate for being checked in choice-free synthesis) does not appear in one of
our theorems. Indeed, though having an intuitive hunch, we do not know for
sure, at the present stage, whether this property is connected to the other ones
described in this paper.

Acknowledgments. The authors would like to thank Harro Wimmel and Valentin
Spreckels for carefully commenting on a draft version of this paper and for checking and
confirming that the assumption of weak cycle-consistency can indeed be circumvented
in the proof of Theorem 2. The authors are also indebted to the anonymous reviewers
for useful detailed comments.

A Error messages of synet and APT (and pre-synthesis)

When asked to synthesise TS 2 (Fig. 1), synet [12] outputs

State separation failures:

States 0 1 are not separated pairwise.

Event-state separation failures:

Event a and states 1 are not separated.

Event b and states 0 are not separated.

Synthesized net:

-b:=1

while APT’s [24] output is:

success: No

failedStateSeparationProblems: [[s0, s1]]

failedEventStateSeparationProblems: {a=[s1], b=[s0]}

Instead, our suggested pre-synthesis algorithm would issue an error message
such as:

Synthesis not possible:

Path"a" may not be a cycle [s2 a s2]

and a non-cycle [s0 a s1]
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Abstract. This paper first recapitulates an algorithm for Petri net
synthesis. Then, this algorithm is extended to special classes of Petri
nets. For this purpose, any combination of the properties plain, pure,
conflict-free, homogeneous, k-bounded, generalized T-net, generalized
marked graph, place-output-nonbranching and distributed can be speci-
fied. Finally, a fast heuristic and an algorithm for minimizing the number
of places in the synthesized Petri net is presented and evaluated experi-
mentally.
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1 Introduction

Algorithms for Petri net synthesis produce a Petri net that generates a given
state space. More precisely, their task is to construct a Petri net whose reach-
ability graph is isomorphic to a given labelled transition system (lts), although
other notions of equivalence, for example language-equivalence, are possible as
well.

The theory behind Petri net synthesis is based on regions of the lts and was
developed by Ehrenfeucht and Rozenberg for partial 2-structures [25,26], which
are related to elementary nets [4]. These results were later extended to pure
Petri nets [1]. Another branch of research is synthesis up to language-equivalence
[23,28] which has applications to process discovery, e.g. [15,29]. An overview of
these results can be found in [4]. A newer and more detailed explanation is
available in [2]. Besides these general results, there are also special algorithms
for the synthesis of marked graphs [7], T-systems [8], and output-nonbranching
Petri nets [9] (called choice-free in [9]).

Several tools for Petri net synthesis have been implemented, e.g. Synet, Pet-
rify and GENET. The Synet tool [1,3,13] can produce general and pure P/T nets.
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In contrast to this, Petrify [19–22] always produces 1-boundedPetri nets and allows
properties like pure and free-choice to be specified for the resulting Petri net.
Another tool is GENET [14,16,17] which can produce k-bounded Petri nets and
which can over-approximate its input, if no exact solution is possible. It supports a
restriction to marked graphs.

Depending on the context, different restrictions via additional properties can
be useful. For example, Petrify has applications in circuit design, where the
desired behaviour of a circuit is used as specification. The Petri net synthesized
by Petrify provides a possible encoding of the internal states of the circuit. Synet
is used with a communication protocol and the resulting Petri net models two
communicating automata [13]. In more general terms, Petri net synthesis can be
used to highlight possible concurrency in an lts, see e.g. [3].

All of these tools allow some specifically targeted synthesis, but they are
mutually incomparable and apparently no focus was put on different classes of
nets, perhaps with the exception of Petrify, which however can only synthesize
1-bounded Petri nets. What is missing is a systematic approach, starting from
a synthesis algorithm that allows the entire class of P/T-nets and deriving an
algorithm that can be used for a large class of targets and which may be useful
in a variety of circumstances.

The purpose of the present paper is to introduce a Petri net synthesis algo-
rithm which can also deal with various properties that the calculated Petri net
should satisfy. Based on this, another algorithm is described which calculates a
Petri net with a minimal number of places. An implementation of these algo-
rithms is already available in our tool APT [11]. An overview of APT’s capabil-
ities, which go beyond Petri net synthesis, can be found in [10]. As an example
application of this tool in research, our group is trying to structurally charac-
terize the reachability graphs of some classes of Petri nets in the sense of [7–9].
For this purpose it is necessary to decide if some structure can be generated by
some class of nets and helpful to get hints about where the problems are.

There is of course previous work that handles some restrictions on the synthe-
sized Petri net, as indicated by the capabilities of the tools mentioned above. The
approach of [20,21] always produces elementary nets1 and relies on label-splitting
to produce e.g. free-choice solutions. Label-splitting produces non-injectively-
labelled Petri nets. The present paper does not consider label-splitting, because
this weakens isomorphic solutions to just bisimilar ones. Isomorphic reachability
graphs correspond more strongly to the input of the synthesis algorithm and
allow to investigate the expressivity of Petri nets. The algorithm for the synthe-
sis of general Petri nets that is presented in [28] is extended with restrictions
for elementary nets in the same paper. This is done with constraints equivalent
to the ones used in the present paper. However, here these constraints are lifted
to the general case of k-boundedness and pureness is also handled. Synthesis of
distributed Petri nets was already examined in [3]. The present paper incorpo-
rates these results into its framework. An algorithm for the synthesis of plain
Petri nets based on integer linear programming is extended with some structural

1 Elementary nets correspond to pure, plain and 1-bounded Petri nets.
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constraints in [29], for example pure, free-choice, marked graph and elementary
net. All the properties that are not specific to a workflow context, but applica-
ble to general Petri net synthesis, can also be handled in the framework that is
presented in this paper. The encoding of these constraints is done in a similar
way in this paper.

In summary, this paper presents an approach for Petri net synthesis that can
deal with all previously examined classes of Petri nets and that is not limited to
the synthesis of plain nets. Additionally, properties like e.g. homogeneity can be
handled, which were not dealt with before.

The general approach of the algorithm is to encode the behaviour of the
system into a formula that is then solved via an off-the-shelf library. Specifically,
APT encodes the problem in first-order logic with linear arithmetic over integers
without quantifiers (the QF LIA logic defined in the SMT-LIB standard [5]) and
uses the SMTInterpol library [18] to solve the constructed formula.

The next section introduces the general settings of lts and Petri nets, and
Sect. 3 introduces region theory and presents an algorithm for Petri net synthesis
without further restrictions. This algorithm is extended in Sect. 4 to support
additional properties that a synthesized Petri net must have. In Sect. 5 some
optimizations are presented, specifically a heuristic for removing superfluous
places from the synthesized net, an approach for speeding up some detail of
the algorithm, and an algorithm that calculates a Petri net with the minimal
possible number of places. This section also contains an experimental evaluation
of the presented optimizations.

2 Labelled Transition Systems and Petri Nets

An lts (labelled transition system with initial state) is a tuple (S,→, T, s0), where
S is a set of states, T is a set of labels with S ∩ T = ∅, → ⊆ (S × T × S) is
the transition relation, and s0 ∈ S is an initial state. A label t is enabled in a
state s, denoted by s

t−→, if there is some state s′ such that (s, t, s′) ∈ →. This
situation is written as s

t−→ s′ and means that s′ is reachable from s through the
execution of t. The definitions of enabledness and of the reachability relation are
extended as usual to label sequences (or directed paths) σ ∈ T ∗: s

ε−→ and s
ε−→ s

are always true; s
σt−→ (s σt−→ s′) iff there is some s′′ with s

σ−→ s′′ and s′′ t−→
(s′′ t−→ s′, respectively). A state s′ is reachable from a state s if there is a label
sequence σ such that s

σ−→ s′. A state s′ is reachable if it is reachable from s0. By
s→, we denote the set of states reachable from s. The Parikh vector Ψ(σ) of a
sequence σ ∈ T ∗ is a T -vector where Ψ(σ)(t) denotes the number of occurrences
of t in σ.

Two lts (S1,→1, T, s01) and (S2,→2, T, s02) over the same set of labels T are
isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1

⇐⇒ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.
A labelled transition system (S,→, T, s0) is called finite if S and T (hence

also →) are finite sets. It is deterministic if for any reachable state s and label t,
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s
t−→ s′ and s

t−→ s′′ implies s′ = s′′ and it is totally reachable if S = s→
0 and

∀t ∈ T : ∃s ∈ s→
0 : s

t−→.
A spanning tree of a totally reachable lts (S,→, T, s0) is an lts (S,→′, T, s0)

with →′⊆→ so that for every s ∈ S there is a unique σ ∈ T ∗ with s0
σ−→ s. The

Parikh vector of σ for a given s ∈ S is called Ψs.
A (finite, initially marked, place-transition, arc-weighted, unlabelled) Petri

net is a tuple (P, T, F,M0) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P )) → N, and
M0 is the initial marking, where a marking is a mapping M : P → N, indicating
the number of tokens in each place. F (p, t) = w > 0 (resp. F (t, p) = w > 0)
means that there is an arc from p to t (resp. from t to p) with arc weight w. A
transition t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places p ∈
P , M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M , leading to
the marking M ′ defined by ∀p ∈ P : M ′(p) = M(p)−F (p, t)+F (t, p) (notation:
M [t〉M ′). The reachability graph of N , with initial marking M0, is the labelled
transition system with the set of vertices [M0〉 (i.e., the markings which are
reachable from M0) and the set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉∧M [t〉M ′}.
If an lts A is isomorphic to the reachability graph of a Petri net N , then we
will also say that N solves A. For a place p of a Petri net N = (P, T, F,M0), let
•p = {t ∈ T | F (t, p) > 0} be its preset, and p• = {t ∈ T | F (p, t) > 0} its postset.
Analogously, for a transition t define its preset as •t = {p ∈ P | F (p, t) > 0},
and its postset as t• = {p ∈ P | F (t, p) > 0}.

3 Region Theory

This section introduces region theory and recapitulates an algorithm for Petri net
synthesis from [2,4]. In this section, we fix an arbitrary (finite, deterministic, and
totally reachable2) lts A = (S,→, T, s0) with T = {t1, . . . tn}. Also, (S,→′, T, s0)
is a fixed and arbitrary spanning tree of A. Recall from its definition that this
assigns a Parikh vector Ψs to each state s ∈ S.

A region of an lts A = (S,→, T, s0) is a triple (R,B,F) ∈ (NS ,NT ,NT ) such
that the following holds:

∀s
t−→ s′ ∈ → : R(s) ≥ B(t) ∧ R(s′) = R(s) − B(t) + F(t) (1)

Intuitively, this describes a possible place in a Petri net generating A where
B(t), resp. F(t), describes the number of tokens consumed, resp. produced, by a
transition t ∈ T and R(s) is the number of tokens on this place in state s ∈ S.
The requirement above then describes an occurrence of transition t.

For every region (R,B,F), if s
σ−→ s′ for some s, s′ ∈ S and σ = ta1ta2 . . . tak

∈
T ∗, then R(s′) = R(s) +

∑k
i=1(F(tai

) − B(tai
)) follows by induction from (1).

Since we are assuming that the lts is totally reachable, R is thus fully determined

2 The reachability graph of a Petri net is always deterministic and totally reachable.
Thus, these properties can be assumed without loss of generality.
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by R(s0) via R(s) = R(s0) +
∑n

i=1 Ψs(ti) · (F(ti) − B(ti)). We identify a region
r = (R,B,F) with a vector r ∈ N

1+2n:

r = (r0, . . . , r2n) = (R(s0),B(t1), . . . ,B(tn),F(t1), . . . ,F(tn))

The function that reconstructs the value R(s) for a state s ∈ S from such a
vector is given by tokens(r, s) := r0 +

∑n
i=1 Ψs(ti) · (rn+i − ri).

With the knowledge so far we can write a predicate that ensures that a vector
x = (x0, . . . , x2n) ∈ Z

1+2n is the vector representation of some region of A:

is Region(x) :=
2n∧

i=0

xi ≥ 0 ∧
∧

s
ti−→s′∈→

tokens(x, s) ≥ xi

∧
∧

s
ti−→s′∈→\→′

tokens(x, s) + xn+i − xn = tokens(x, s′)

Recall that the definition of a region requires all elements of R, B and F to be non-
negative. This is enforced in the first expression. The remainder represents the
two conditions in (1). Note that the last condition is only required for transitions
that are not in the spanning tree, because the definition of tokens(x, s) already
guarantees this relation for the transitions in the spanning tree.

For a set R of regions, the corresponding Petri net NR = (P, T, F,M0) has
P = R and for each r = (Rr,Br,Fr) ∈ R define F (r, t) = Br(t), F (t, r) = Fr(t)
and M0(r) = Rr(s0). Note that the set of transitions is the set of labels T from
the lts A. As this definition suggests, a region of a reachability graph models a
possible place p in the generating Petri net. Vice versa, every place p of a Petri
net gives rise to a region in the reachability graph of its Petri net. We can now
give an intuitive understanding of the two conditions in (1). The first condition
states that no transition in the lts may be prevented. The second condition
enforces consistency between R, B, and F. For example, a cycle s

σ−→ s in A
corresponds to M [σ〉M in NR with the marking M defined by M(r) = Rr(s) for
all r ∈ R.

For synthesizing a Petri net from A, we need to find regions such that the
corresponding Petri net has a reachability graph isomorphic to the lts A. Finding
regions requires separation problems to be solved. An event/state separation
problem is a pair (s, t) ∈ S × T with ¬(s t−→). This problem is solved by a
region (R,B,F) iff R(s) < B(t), which means that t is prevented in state s.
This is expressed by the predicate ESSP(r, s, ti) := (tokens(r, s) < ri). A state
separation problem is a set of two states {s, s′} ⊆ S with s �= s′ that must
be distinguishable and it is solved by a region r with Rr(s) �= Rr(s′). The
corresponding predicate is SSP(r, s, s′) := (tokens(r, s) �= tokens(r, s′)). The set
of all separation problems of A is called SPA. For readability, given any kind of
separation problem pr ∈ SPA, we define SP(r, pr):

SP(r, pr) :=

{
ESSP(r, s, ti) = (tokens(r, s) < ri) if pr = (s, ti)
SSP(r, s, s′) = (tokens(r, s) �= tokens(r, s′)) if pr = {s, s′}
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Input : lts A , predicate additional Properties
Output : Petri net with reachability graph isomorphic to A
begin

R ← ∅
for pr ∈ SPA : // For each separation problem

find r satisfying is Region(r) ∧ SP(r, pr) ∧ additional Properties(r)
i f unso lvab l e : return e r r o r
else : R ← R ∪ {r}

return NR // Petri net corresponding to the regions R
end

Listing 1. A general Petri net synthesis algorithm. For now additional Properties(r)
can be assumed to be always true, which results in an algorithm from [2].

Finally, a set R of regions is called admissible if for each separation problem a
region solving it is contained in R. In this case the corresponding Petri net NR

of R has a reachability graph that is isomorphic to A, as shown in [4].
This allows to define a first formula for solving a separation problem: The

separation problem pr is solvable and has a solution r, if and only if is Region(r)∧
SP(r, pr) has a solution. Based on this, a Petri net is computed by calculating
solutions to all separation problems. The algorithm doing this is depicted in
Listing 1. For now we will assume that additional Properties(r) is always true.

3.1 Example

As an example for the synthesis approach, consider the lts B from Fig. 1. In state
s3, the label t2 is not enabled, so pr = (s3, t2) is an event/state separation prob-
lem. A region r solving this problem satisfies is Region(r) ∧ SP(r, pr). Applying
the definitions of SP and ESSP produces is Region(r) ∧ tokens(r, s3) < r2. State
s3 is reached in the spanning tree from the initial state in Fig. 1 via the word

s0
s5

s1

s2

s3

s6

s4

t1

t2

t2

t1

t3

t1

t2

t4

t4t4

B

t1 t2

t3

t4

p0

p2 p3

p1

p4

N1

t1

t2

t3 t4

p

2
N2

Fig. 1. A deterministic and totally reachable lts B, including one of its spanning trees.
Transitions that are part of the spanning tree are drawn as straight lines. Other transi-
tions are dashed. Two Petri nets N1, N2 with reachability graphs isomorphic to B are
shown on the right.
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t2t1t3. Thus, we obtain SP(r, pr) = (tokens(r, s3) < r2) = (r0 + 1 · (r5 − r1) +
1 · (r6 − r2) + 1 · (r7 − r3) + 0 · (r8 − r4) < r2). If we expand is Region(r) in a
similar way, the following inequality system is produced.

All variables are non-negative (
∧

ri ≥ 0):

0 ≤ r0 ∧ 0 ≤ r1 ∧ 0 ≤ r2 ∧ 0 ≤ r3 ∧ 0 ≤ r4

∧ 0 ≤ r5 ∧ 0 ≤ r6 ∧ 0 ≤ r7 ∧ 0 ≤ r8

The condition
∧

tokens(x, s) ≥ xi is satisfied. In detail this means for the initial
state that labels t1 and t2 are allowed:

∧ r1 ≤ tokens(r, s0) = r0

∧ r2 ≤ tokens(r, s0) = r0

In s1, which is reachable via t2, label t1 is enabled. In s2, which is reached from
s0 via t2t1, label t3 is enabled:

∧ r1 ≤ tokens(r, s1) = r0 + (r6 − r2) = R(s0) + (F(t2) − B(t2))
∧ r3 ≤ tokens(r, s2) = r0 + (r6 − r2) + (r5 − r1)

In state s3 (after t2t1t3), labels t1 and t4 are enabled:

∧ r1 ≤ tokens(r, s3) = r0 + (r6 − r2) + (r5 − r1) + (r7 − r3)
∧ r4 ≤ tokens(r, s3) = r0 + (r6 − r2) + (r5 − r1) + (r7 − r3)

Next, t2 and t4 can fire in s4, in s5 label t2 is enabled and in s6, t4 can fire:

∧ r2 ≤ tokens(r, s4) = r0 + 2(r5 − r1) + (r6 − r2) + (r7 − r3)
∧ r4 ≤ tokens(r, s4) = r0 + 2(r5 − r1) + (r6 − r2) + (r7 − r3)
∧ r2 ≤ tokens(r, s5) = r0 + 2(r5 − r1) + (r6 − r2) + (r7 − r3) + (r8 − r4)
∧ r4 ≤ tokens(r, s6) = r0 + 2(r5 − r1) + 2(r6 − r2) + (r7 − r3)

Finally, the condition
∧

tokens(x, s) + xn+i − xn = tokens(x, s′) needs to be
satisfied for transitions that are not part of the spanning tree. This results in a
couple of equalities which are all3 equivalent to the following:

∧ 0 = (r5 − r1) + (r6 − r2) + (r7 − r3) + (r8 − r4)

The vector r = (1, 0, 1, 1, 0, 1, 0, 0, 1) is a possible solution of is Region(r) ∧
SP(r, (s3, t2)). This corresponds to the place p4 of N1 in Fig. 1. Alternatively, the
vector r′ = (2, 0, 2, 0, 0, 1, 0, 0, 1) corresponding to place p in the Petri net N2 also
is a solution. For solving other separation problems, only the single inequality
for SP(r, (s3, t2)) has to be replaced while is Region(r) stays the same. Solving
all separation problems can lead, for example, to the five regions corresponding
to the places in N1.

In N1, place p1 prevents t2 in states {s1, s2, s6}. Place p4 prevents t2 and t3
in states {s1, s3, s6} and p3 prevents t3 in {s0, s3, s4, s5}. The places p0 and p2
solve all event/state separation problems involving transition t1, respectively t4.
3 This occurs because all smallest cycles contain each label exactly once.
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4 Synthesis with Additional Properties

In this section, the general synthesis algorithm presented in Listing 1 is
extended so that synthesis can be restricted to several classes of Petri nets.
This is done by defining suitable predicates that can be used for the input
additional Properties(r) of the algorithm. The predicates that are defined can
be combined arbitrarily. Note that the predicates are constructed so that they
only depend on the structure of the lts. This means that no further input is
required. Some of these restrictions were already examined before, however not
in the context of non-plain Petri nets.

Plain. A Petri net is called plain if arcs have only weights zero or one. Formally,
this means that cod(F ) ⊆ {0, 1}. The corresponding predicate enforces an upper
limit of one for each arc weight:

is Plain(r) :=
2n∧

i=1

ri ≤ 1

Pure. A place p is pure if transitions cannot be in its preset and its postset at
the same time, i.e. •p∩p• = ∅. If this holds for all its places, a Petri net is called
pure. Thus, at least one of the arc weights connecting a transition with p has to
be zero:

is Pure(r) :=
n∧

i=1

(ri = 0 ∨ rn+i = 0)

Conflict-Free. A conflict-free Petri net is plain and satisfies additionally ∀p ∈
P : |p•| > 1 ⇒ p• ⊆ •p. For each place, there is either just a single transition
ti consuming tokens from it (ri = 1 ∧ ∀k �= i : rk = 0), or all transitions ti
consuming from p must also produce a token there (ri ≤ ri+n). Specifically, the
only forbidden case is ri = 1 ∧ ri+n = 0:

is CF(r) := is Plain(r) ∧
(

n∑

i=1

ri = 1 ∨
n∧

i=1

ri ≤ ri+n

)

Homogeneous. A place p is homogeneous if its outgoing arcs all have the same
weight, i.e. ∀t1, t2 ∈ p• : F (p, t1) = F (p, t2). In the predicate, this is expressed
as pairs of weights being either zero or equal to each other:

is Homogeneous(r) :=
n∧

i=1

n∧

j=i+1

(ri = 0 ∨ rj = 0 ∨ ri = rj)
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Generalized T-Net. Each place p ∈ P has at most one transition in its preset
and one in its postset, i.e. |•p| ≤ 1 ≥ |p•|. So, the weights of all but one transition
in each B and F (of the p-region) must be zero, which can be expressed as a
disjunction of all-but-one arc weight sums being zero:

is GTNet(r) :=
n∨

i=1

n∑

j=1
j �=i

rj = 0 ∧
n∨

i=1

n∑

j=1
j �=i

rj+n = 0

Generalized Marked Graph. In addition to the generalized T-net, each place
p ∈ P must be connected to two transitions, i.e. |•p| = 1 = |p•|. In our predicate,
we force the potentially non-zero weights to be truly positive:

is GMGraph(r) :=
n∨

i=1

⎛

⎜⎜⎝ri > 0 ∧
n∑

j=1
j �=i

rj = 0

⎞

⎟⎟⎠ ∧
n∨

i=1

⎛

⎜⎜⎝ri+n > 0 ∧
n∑

j=1
j �=i

rj+n = 0

⎞

⎟⎟⎠

Non-generalized T-Net/Marked Graph. Beyond the generalized net vari-
ant we require these nets to be plain:

is TNet(r) := is Plain(r) ∧ is GTNet(r)
is MGraph(r) := is Plain(r) ∧ is GMGraph(r)

k-Boundedness. The number of tokens on any place can never exceed k ∈ N,
i.e. ∀M ∈ [M0〉 : ∀p ∈ P : M(p) ≤ k. Since we already have a function for
counting tokens in states, we can simply define:

is kBounded(r, k) :=
∧

s∈S

tokens(r, s) ≤ k

Distributed according to loc. A distributed Petri net can be thought of as a
structural partition of the net into several locations. Locations can send messages
to each other, but these might take an arbitrary time to reach their destination.
Each location has a local state and cannot query the state of other locations.
Based on [6], let LOCS be some arbitrary, fixed, finite and suitable large set of
so-called locations. Given a mapping: locT → LOCS, a Petri net is distributed
according to loc, if all t1, t2 ∈ T with loc(t1) �= loc(t2) satisfy •t1 ∩ •t2 = ∅ (no
shared read access between locations). This means, each place/region belongs to
one location. A place belonging to more than one location or to none at all does
not allow any read access. This is also reflected in the following predicate. Its
location related parts can be evaluated at creation time and is eliminated before
giving the inequality system to a solver:

is Distributed(r, loc) :=
∨

l∈LOCS

n∧

i=1

(loc(ti) �= l ⇒ ri = 0)
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A similar approach is used in [3] which deals specifically with the synthesis of
distributable Petri nets.

Place-output-nonbranching (ON). This is defined as |p•| ≤ 1 for all places
p ∈ P , i.e. only one transition can consume tokens from each place. This can
be expressed by putting each transition into its own location via the identity
location mapping with id(t) = t:

is ON(r) := is Distributed(r, id)

In Fig. 1, the net N2 is ON while N1 is not, because place p4 has transitions
t2 and t3 that both consume tokens from it. On the other hand, if we define a
location specification loc via loc(t1) �= loc(t2) = loc(t3) �= loc(t4) and loc(t1) �=
loc(t4), then N1 is distributed according to loc with the maximally possible three
locations.

It can be seen that many structural properties and even the behavioural
property of k-boundedness can be expressed via the predicates presented here.
However, this procedure has its limit and there are properties that we cannot
express easily. For example, a Petri net is a P-net if it is plain and it satisfies
|t•| ≤ 1 ≥ |•t| for each t ∈ T . In a P-net, each transition can consume and
produce at most a single token. The P-net property cannot be checked by looking
at places individually, in contrast to the properties we just defined. Thus, the
P-net property can also not be expressed as a predicate on an individual region.
A similar observation was made in [29] for the synthesis of P-nets with their
algorithm based on integer linear programming.

Other properties that cannot easily be expressed are free-choice4,
behavioural-conflict-freeness5, and graph-properties like weak/strong connect-
edness. All of these properties are, in a sense, not local to single places.

4.1 Example

In Sect. 3.1, the regions r = (1, 0, 1, 1, 0, 1, 0, 0, 1) and r′ = (2, 0, 2, 0, 0, 1, 0, 0, 1)
of the lts B from Fig. 1 were calculated. It was already noted that r corresponds
to place p4 of the net N1 in Fig. 1 while r′ represents the place p of N2. Let’s
see what happens if we add the property ON (which N1 does not fulfil) to
our inequality system from Sect. 3.1. For good measure, we would also like to
keep our net pure (which both N1 and N2 were). We do this by extending
the inequality system with the predicate additional Properties(r) = is ON(r) ∧
is Pure(r), compare Listing 1.

First we expand is Pure(r) to the following system:

(r1 = 0 ∨ r5 = 0) ∧ (r2 = 0 ∨ r6 = 0) ∧ (r3 = 0 ∨ r7 = 0) ∧ (r4 = 0 ∨ r8 = 0)

4 Plain and two transitions with non-disjoint presets must have the same presets.
5 For all M ∈ [M0〉 : M [t1〉 ∧ M [t2〉 ∧ t1 �= t2 ⇒ •t1 ∩ •t2 = ∅.
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Next, we use the definitions of is ON(r) and is Distributed(r, id):

is ON(r) = is Distributed(r, id) =
∨

l∈LOCS

n∧

i=1

(id(ti) �= l ⇒ ri = 0)

The inner conjunction with l = t1 produces (id(t1) �= t1 ⇒ r1 = 0) ∧ (id(t2) �=
t1 ⇒ r2 = 0) ∧ (id(t3) �= t1 ⇒ r3 = 0) ∧ (id(t4) �= t1 ⇒ r4 = 0). We can evaluate
id and simplify the system to r2 = 0 ∧ r3 = 0 ∧ r4 = 0. If this procedure is done
for all locations6, the following inequality system is generated:

(r2 = 0 ∧ r3 = 0 ∧ r4 = 0) ∨ (r1 = 0 ∧ r3 = 0 ∧ r4 = 0)
∨(r1 = 0 ∧ r2 = 0 ∧ r4 = 0) ∨ (r1 = 0 ∧ r2 = 0 ∧ r3 = 0)

Due to these new conditions, the vector r = (1, 0, 1, 1, 0, 1, 0, 0, 1) correspond-
ing to place p4 is not a solution to the system is Region(r) ∧ SP(r, (s3, t2)) ∧
additional Properties(r). On the other hand, the vector r′ = (2, 0, 2, 0, 0, 1, 0, 0, 1)
describing the place p from the net N2 also solves the extended system.

5 Optimization Strategies

This section presents three different algorithms. First, we introduce a heuristic
that removes redundant regions, then we propose an optimization for checking
state separation, and in the last part we suggest an algorithm for calculating
Petri nets with a minimal number of places.

5.1 Heuristically Shrinking the Number of Places

The goal of our heuristic is to choose from its input set R of regions a small subset
Rm ⊆ R so that all separation problems solved by regions from R are also solved
by Rm. For an admissible set of regions this means that Rm should also be an
admissible set. This heuristic can be run after a Petri net was synthesized to
reduce the size of the result.

For each separation problem pr ∈ SPA we refer to the set of regions that
solve pr as R(pr) ⊆ R. If R(pr) only contains a single region r, this region is
called required, because it cannot be omitted from Rm while still solving pr . All
required regions are elements of Rm.

From each R(pr) with |R(pr)| > 1 we have to select at least one region for
Rm. In general, this problem is NP-complete. To obtain a low complexity, we
randomly select a region for a not yet solved separation problem and add it to
Rm until all separation problems solved by R are also solved by Rm. If R is
admissible, then Rm will also be admissible. This heuristic is shown in Listing 2.

This approach is non-deterministic, because its result depends on the order
in which the separation problems are investigated and the way in which an
6 In general it suffices to evaluate this disjunction for the subset of locations that can

appear in the image of the location function. In our case this is {t1, t2, t3, t4}.
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Input : l t s A , s e t o f r e g i on s R on A
Output : Set o f r e g i on s s o l v i ng the same sepa ra t i on problems
begin

Rm ← ∅
for pr ∈ SPA : // For each separation problem

i f |R(pr)| = 1 :
Rm ← Rm ∪ R(pr)

for pr ∈ SPA with R(pr) �= ∅ : // For each solved problem

i f R(pr) ∩ Rm = ∅ :
// pr is not solved by any region from Rm, so pick one

pick any r ∈ R(pr)
Rm ← Rm ∪ {r}

return Rm

end

Listing 2. Shrinking the number of places

element r is chosen from R(pr). Also, the heuristic cannot guarantee an optimal
result. However, in practice the heuristic produces good results in minimizing
the number of regions that are needed and can be implemented efficiently. This
is evaluated in Sect. 5.4.

A similar approach is presented in algorithm 8 in [2] which calculates for
each region the set of all solved separation problems and compares these sets.
However, our proposed approach is more time and space efficient because we
examine only a single separation problem at a time. As the results in Sect. 5.4
will show, the gained reduction is still significant.

5.2 Reducing the Computation Time for State Separation

There is a event/state separation problem for each event that is not enabled in
a given state. Thus, |S| · |T | is an upper bound for the number of event/state
separation problems. On the other hand, there is a state separation problem for
any two states and thus there are 1

2 |S|(|S| − 1) such problems. So, the number
of state separation problems grows quadratically in the number of states while
the number of event/state separation problems only grows linearly. This means
state separation must be solved efficiently.

As a general rule, it is a lot faster to check if a region r solves a separation
problem pr than to compute a new region r solving pr , because the check only
requires the predicate SP(r, pr) to be evaluated while calculating a new region
means solving an inequality system in which SP(r, pr) also appears. Thus, a
first speed-up is gained by checking if one of the regions already found solves p
before a new region is computed, which is also done in algorithm 8 from [2]. This
can also be useful for checking state separation by first solving all event/state
separation problems, because this already solves many state separation problems.
So the remaining problem is how to quickly compute the set of unsolved state
separation problems, for which we propose a new approach.
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Input : l t s A
Output : Petri net with reachability graph isomorphic to A
begin

R ← s o l u t i o n s to a l l event / s t a t e s epa ra t i on problems
for each equ iva l ence c l a s s [r] o f ≡R :

for every s, s′ ∈ [r] with s �= s′ :
s o l v e {s, s′} and add r e s u l t to R

return NR // Petri net corresponding to the regions R
end

Listing 3. Optimized synthesis algorithm

We define an equivalence ≡r⊆ S × S from a region r = (R,B,F) by s ≡r

s′ ⇐⇒ R(s) = R(s′). The region r solves the state separation problem {s, s′}
iff s �≡r s′. The equivalence is canonically extended to a set R of regions by
≡R=

⋂
r∈R ≡r. Since s �≡r s′ iff r separates these two states, it holds that s �≡R s′

iff some region r ∈ R separates these states. Thus, the equivalence classes of ≡R

contain states which pairwise have unsolved state separation problems.
For calculating the equivalence classes of ≡R, R(s) has to be computed for

all states and all regions found so far. This can be done faster than checking
all state separation problems individually. The resulting algorithm is shown in
Listing 3.

5.3 Finding the Minimal Number of Places

The goal of this section is to describe an algorithm that produces a Petri net
with the minimal number of places possible. The algorithm is taken from [2,12]
where an integer linear programming approach is used and reformulated in the
presented setting, so that it can be combined with the various properties of Petri
nets that were previously described. A key ingredient is a procedure that checks
if a Petri net with at most � places exists for which the reachability graph is
isomorphic to the lts A. The value � is then lowered until a minimal number of
places is found.

To check if a solution with � regions/places is possible, the synthesis algorithm
from the previous section is modified. Instead of calculating a solution to a
single separation problem p, a solution for all separation problems is computed
at once. The vectors r1, . . . , r� ∈ N

1+2k should be � regions that together form
an admissible set of regions. This can be expressed as the following system:

�∧

i=1

(is Region(ri) ∧ additional Properties(ri)) ∧
∧

pr∈SPA

�∨

i=1

SP(ri, pr)

The system asserts that all ri are regions of the lts and that for each separation
problem pr ∈ SPA there is at least one region ri that solves it. Thus, this system
is solvable if and only if a Petri net solution with � places exists. The predicate
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additional Properties(ri) can again be used to require additional properties. For
example, setting additional Properties(ri) = is kBounded(ri, 5) means that the
resulting system is solvable if and only if a 5-bounded Petri net with � places
exists with a reachability graph isomorphic to A.

To find a minimal Petri net, we first synthesize a Petri net as before. This
provides an upper bound k for the number of places that are needed. Next a
solution with k − m for m = 1, 2, 3 . . . places is attempted until the resulting
inequality system becomes unsolvable. Then the previous solution had the min-
imal number of places possible.

It might be tempting to optimize this simple, linear scheme and to do a binary
search for the minimal number of places. However, our experiments suggest that
solving an inequality system is easier than deriving its unsolvability. The run
times between these two kinds of problems varies hugely. Thus, it is in general
better to do the linear search that is suggested here.

On the contrary, an optimization is possible using the fact that most sepa-
ration problems are state separation problems. Our experiments show that it is
often worthwhile to ignore state separation at first. In most cases, the regions
computed for event/state separation already solve state separation. If this is not
the case, the algorithm is repeated with these previously unsolved state sepa-
ration problems. To guarantee termination, if this needs to be repeated more
than once, all previously unsolved state separation problems are included in all
following iterations. In the end, a feasible set of regions solving all separation
problems is found, including state separation problems.

5.4 Experimental Evaluation

To evaluate the performance of the heuristics7, some experiments were con-
ducted. For this purpose, several classes of Petri nets were used. For each net,
the reachability graph was generated and a Petri net solution was then synthe-
sized from it in different ways. The experiments were conducted via the synthesis
implementation in the tool APT [11].

We used four classes of Petri nets. The bit nets model n independent bits
which can individually be set and unset. The Petri nets for words have this word
and its prefixes as their only firing sequences. These words are defined inductively
via w1 = a1 and for n > 1 it holds that wn = wn−1anwn−1. This models a
binary counter with n bits counting to its maximum value. The philosophers are
a version of Dijkstra’s dining philosophers [24] where each philosopher grabs first
his left fork, then the right one, but releases forks in a single step. Finally, the
rw-mutex-rn-wm is a mutual exclusion algorithm with n readers and m writers
where readers are allowed simultaneous access to a shared resource. These classes
of Petri nets range from highly concurrent behaviour in the bit nets to fully
sequential behaviour in the binary counters. The results can be seen in Table 1.
7 No comparison with other tools was done, because e.g. the proposed algorithm needs

more than 10 s to solve w9 plainly while Petrify only needs 0.01 s. Similar results are
produced with GENET and rw-mutex-r8-w5. The strength of our approach is its
flexibility. Thus, only the proposed heuristics are evaluated.
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Table 1. Comparison of algorithms. The table shows the size of output and the run
time which was limited to 1 h (except for bit-5 and phil-4). The input has |S| states
and is generated by a net with |P | places, “base” uses no optimizations, “reuse” only
computes new regions if needed, “heuristic” also applies Listing 2, and “minimal” is
the algorithm from Sect. 5.3

System |S| |P | Base Reuse Heuristic Minimal

bit-3 8 6 24 (1.2 s) 9 (0.7 s) 9 (0.7 s) 6 (3.1 s)

bit-4 16 8 87 (3.1 s) 25 (1.2 s) 13 (1.4 s) 8 (45.5 s)

bit-5 32 10 169 (8.2 s) 43 (2.4 s) 22 (2.5 s) 10 (4 h)

bit-6 64 12 458 (24.2 s) 77 (5.4 s) 31 (5.3 s) - (>1 h)

bit-7 128 14 1021 (172 s) 133 (10.9 s) 60 (9.8 s) - (>1 h)

bit-8 256 16 2277 (1616 s) 153 (21.6 s) 64 (20.7 s) - (>1 h)

word w3 8 6 23 (0.9 s) 8 (0.5 s) 5 (0.5 s) 5 (1.1 s)

word w4 16 8 51 (2.2 s) 14 (1.0 s) 7 (0.8 s) 7 (3.7 s)

word w5 32 10 153 (5.7 s) 21 (1.2 s) 9 (1.4 s) 9 (19.5 s)

word w6 64 12 408 (19.8 s) 20 (1.9 s) 11 (1.9 s) 11 (818 s)

word w7 128 14 1046 (187 s) 34 (3.3 s) 13 (2.9 s) - (>1 h)

phil-2 6 8 31 (1.1 s) 14 (0.6 s) 7 (0.6 s) 5 (3.3 s)

phil-3 14 12 94 (2.3 s) 29 (1.2 s) 14 (1.2 s) 7 (40.5 s)

phil-4 34 16 286 (7.8 s) 55 (2.2 s) 22 (2.0 s) - (>1 day)

phil-5 82 20 838 (27.2 s) 90 (5.6 s) 39 (5.0 s) - (>1 h)

phil-6 198 24 2429 (343 s) 282 (13.3 s) 99 (13.3 s) - (>1 h)

phil-7 478 28 − (>1 h) 320 (35.7 s) 138 (36.6 s) - (>1 h)

rw-mutex-r4-w1 17 11 119 (3.7 s) 23 (1.3 s) 11 (1.3 s) 5 (9.7 s)

rw-mutex-r5-w1 33 13 299 (9.3 s) 45 (2.4 s) 16 (2.5 s) 6 (103 s)

rw-mutex-r6-w1 65 15 675 (28.8 s) 39 (3.8 s) 20 (4.1 s) - (>1 h)

rw-mutex-r7-w1 129 17 1575 (184 s) 48 (8.5 s) 18 (8.2 s) - (>1 h)

rw-mutex-r8-w1 257 19 3979 (1951 s) 67 (11.1 s) 23 (12.2 s) - (>1 h)

rw-mutex-r4-w5 21 19 230 (5.5 s) 58 (2.2 s) 18 (1.8 s) 5 (22.1 s)

rw-mutex-r5-w5 37 21 417 (11.6 s) 75 (3.6 s) 20 (3.8 s) 6 (314 s)

rw-mutex-r6-w5 69 23 922 (32.4 s) 91 (5.3 s) 25 (5.5 s) - (>1 h)

rw-mutex-r7-w5 133 25 2022 (232 s) 101 (8.1 s) 28 (10.9 s) - (>1 h)

rw-mutex-r8-w5 261 27 4484 (2111 s) 118 (14.7 s) 32 (15.1 s) - (>1 h)

For each such class, instances of several sizes were measured. For the rw-
mutex class, no further restrictions were imposed. For all other classes, plain
Petri nets were synthesized8. For columns “reuse” and “heuristic”, before solving

8 The restriction to plain nets was chosen, because the Petri nets that generate these
lts are also plain. Thus, the results can be compared with the input.
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a separation problem pr , all regions r ∈ R that were already found are first
checked against SP(r, pr). If a solution is found, then no new region needs to
be computed. The approach from Sect. 5.2 for speeding up state separation is
always used.

It can be seen that calculating a minimal solution always takes longer than
computing any solution at all and often runs into the time limit of one hour. This
is expected since here more complicated systems have to be solved or proved
unsolvable and, as was already mentioned in Sect. 5.3, deriving unsolvability
takes longer than calculating a solution. It can also be seen that the other algo-
rithms9 almost always produce larger Petri nets.

Also, the base algorithm performs a lot worse than the other algorithms.
In most cases it produces an order of magnitude more places and its execution
time increases rapidly. This shows that only computing a new region when really
necessary improves the execution time a lot. It can be seen that the heuristic from
Sect. 5.1 to remove unnecessary places doesn’t have an impact on the execution
time. However, it shrinks the number of regions a lot and for the word examples
achieves minimal solutions. This shows that our proposed heuristic is efficient
and produces good results. While it is not shown in the table, we want to mention
that the algorithm together with all heuristics can handle rw-mutex-r12-r5 in
28 min. This is an lts with 4101 states, which is a lot larger than the other lts.
Without our heuristic, the time limit is already exceeded for rw-mutex-r9-w1.

Sequential systems can be handled more efficiently than concurrent systems.
For example, bit-7 and word w7 have the same size, but, except for the base
algorithm, bit-7 needs more time and more places to be solved. This is presum-
ably linked to a difference in structural complexity in Petri nets that produce
these behaviour, but may warrant further investigations.

6 Conclusion

This paper extends a well-known algorithm for Petri net synthesis so that an
arbitrary combination of the following properties can be required from the result-
ing Petri nets:

plain, pure, conflict-free, homogeneous, k-bounded for some k ∈ N, general-
ized T-net, generalized marked graph, place-output-nonbranching, and distrib-
uted according to a location specification.

However, some properties were identified which cannot be expressed easily.
Then, a heuristic was presented which can be used as a post-processing step for
Petri net synthesis in general. This heuristic produces smaller Petri nets. Another
heuristic speeds up the synthesis procedure. We also extended the algorithm for
Petri net synthesis so that a Petri net with a minimal number of places can be
calculated. This extension is compatible with the restricted classes of Petri nets
that we defined before. Finally, we evaluated the performance of the presented
algorithms on several examples. This showed that the heuristic has a low time
overhead, but manages to remove many places from the calculated Petri nets.
9 And even the Petri nets produced by hand and used for generating the lts.
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Future work includes identifying further Petri net classes which can be
expressed in the framework we introduced. It would also be interesting to extend
this framework to properties that currently cannot be expressed. A further direc-
tion would be to improve the efficiency of the algorithm. For example, the pred-
icate for k-boundedness has a linear size in the number of states of the lts. [4]
presents polynomial algorithms for general and pure Petri nets which are also
experimentally faster than the presented algorithm. This efficiency comes from
exploitation of homogeneous inequalities. Extending these faster algorithms in
a way similar to the presented framework is another interesting direction for
further research. If this problem is overcome, then it might also be possible
to extend our framework with the results for synthesis from infinite lts which
also use homogeneous systems. Our heuristic for removing superfluous places is
efficient and can discard many places, but the calculated Petri nets are often
larger than solutions produced by hand, so there is potential for more effective
approaches. Also, other notions of equivalence could be investigated. For exam-
ple, we already lifted the approach that is presented here from producing Petri
nets whose reachability graph is isomorphic to the input lts to producing Petri
nets that are language equivalent to the input.
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Abstract. Renew (The Reference Net Workshop) is an extensible Petri
net IDE that supports the development and execution of high-level Petri
nets and other modeling techniques. The Reference net formalism – the
major formalism for Renew – includes concepts such as net instances,
synchronous channels and seamless Java integration. It combines the
advantages of Petri nets and object-oriented programming for the devel-
opment of concurrent and distributed software systems. Modeling sup-
port of Renew focuses on convenience and ease for Petri net develop-
ment. An outstanding feature is the support for multi-formalism sim-
ulation. The plugin architecture of Renew enables the developers to
extend the IDE for instance with additional formalisms. Alternatively to
the inline mode – within the graphical user interface – the Simulator can
also be run in a headless server fashion. Several configurations of Renew

are available, which are constituted through selections of plugins provid-
ing specialized functionality for multiple platforms. In this manner the
Renew family constitutes a product line architecture. Renew is avail-
able free of charge including the Java source code. In this contribution
we provide information about Renew’s functionality and architecture as
well as the development of the tool set over the last decade.

Keywords: High-level Petri nets · Nets-within-nets · Reference nets ·
Integrated Development Environment (IDE) · Java · Plugin architecture

1 Introduction

Renew is a continuously developed extensible modeling and execution environ-
ment for Petri nets with various formalisms and other modeling techniques. The
main formalism of Renew is the Reference net formalism [10], which combines
the concept of nets-within-nets [15] with a reference semantics and the expres-
sive power of object-oriented programming in the form of Java. Reference nets
in Renew can handle Java objects as tokens and Java expressions in transition
inscriptions to execute Java code during the simulation. With the nets-within-
nets concept, it is possible to build dynamic hierarchies of arbitrary height.
Multiple nets can communicate using synchronous channels, which enable the
c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 101–112, 2016.
DOI: 10.1007/978-3-319-39086-4 7



102 L. Cabac et al.

bidirectional exchange of information. The formalism is, thus, well-suited for
the implementation of concurrent software systems. Renew is written in Java
and is available for multiple platforms (including Windows, Linux and Mac). An
experimental version of the simulator for Android exists. The current version 2.5
is available for download1 free of charge including the source code [11].

This contribution presents the Renew environment with its objectives and
history (Sect. 2), a selection of features and improvements over the recent years of
continuous development (Sect. 3) and a brief overview of the plugin architecture
(Sect. 4). The paper is summarized in Sect. 5.

2 Objectives

Up to today the objectives of the Renew tool and its various plugins have been
widely extended. The following section gives a brief summary of the evolution of
Renew over the past recent years. This section is followed by some information
about current research topics in the context of Renew development.

2.1 History

The first official version of Renew was released in 1999. Since then it has con-
tinuously been developed as a Petri net IDE by the TGI Group2. Figure 1 shows
the user interface of the first release of Renew, which offers the drawing of Petri
net models and the starting and stopping of the simulation. Although other for-
malisms than Reference nets are available, the user interface offers no means of
control to switch compilers.

Fig. 1.Renew 1.0 GUI, Debian 8/Java 7 together with a four seasons example (pattern
and instance) featuring a simple Java inscription.

1
Renew 2.5 available at: http://www.renew.de.

2 Theoretical Foundations Group, Department of Informatics, University of Hamburg.

http://www.renew.de
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The continuous development resulted in many improvements and bugfixes
as well as feature enhancements. One major task has been the decoupling of
editor and simulator, which started with the introduction of the separation layer
in Renew 1.6. The plugin system, introduced with the major release 2.0 in
2004 [12], enabled the extension of Renew into various directions. Renew was
extensively applied and extended to perform agent-oriented software engineer-
ing (see following sections) and was furthermore utilized to provide a workflow
management engine and clients. Besides using Renew primarily for modeling
Petri nets, plugins provide support for various modeling techniques, e.g. dia-
grams from UML or BPMN. Over the years Renew evolved increasingly more
into an IDE for software engineering with high-level Petri nets.

2.2 Implementing Petri Net-Based Applications

One main focus of Renew is the execution/simulation of Reference nets. With
the full support of that formalism, Renew serves as an execution engine for
net-based Java applications. Figure 2 shows a simple example net that uses Java
objects, which could be part of a graphical application. In the net a frame and a
button are created concurrently. After that the button is added to the frame and
the frame is resized (again concurrently). When these two steps are finished the
frame is displayed and in a next step disposed. This simple example gives a first
impression on how to implement Petri net-based applications. With the possi-
bility to structure multiple nets using the nets-within-nets concept, it is possible
to implement even complex software systems (e.g. with the Paose approach, see
Sect. 2.3).

Fig. 2. Example net using Java objects.

2.3 Petri Net-Based, Agent-Oriented Software Engineering

The Petri Net-Based agent-oriented software engineering (Paose, [2]) is an app-
roach to software development with an emphasis on distribution and concur-
rency. With the Mulan framework (multi-agent nets, [14]) Reference nets are
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applied as implementation artifacts for the development of multi-agent applica-
tions (MAA). To this end Renew serves as an IDE for the development of MAA
by providing the editing, debugging and simulation facilities. With its support
for abstract modeling languages and the use of generative techniques to translate
them into Reference nets Renew supports the Paose development process in
every single step from requirements engineering to system execution. Renew is
applied in the context of Paose as a tool for teaching and research in the field
of agent-oriented software engineering.

Fig. 3. Renew 2.5 execution of a multi-agent system.

Figure 3 shows the current version of the Renew GUI together with several
views on the system provided by various tools. The whole structure of the simu-
lated Paose system can be inspected and navigated with the MulanViewer [3],
displayed beneath the main GUI. In the structure tree the developers may inspect
the agents with their sub-components. In the image the transformation decision
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component (DC) of the WebGateway agent is selected and details about this arti-
fact can be inspected in the detail view (to the right of the structure tree, partly
hidden). In the center/lower part a fraction of the artifact itself – the transforma-
tion DC – is displayed featuring one selected transition (ARM – asynchronous
request message) and a marked place (REQ). The simulation has been halted
for inspection after the transition ARM has fired through a preset local simu-
lation breakpoint. This transition was involved in the firing step 1956 as can be
inspected in the simulation log window depicted in the right. The selection of
the transition in the Petri net has been done from the simulation log by using
the context menu, which has been activated again for the presentation. The sin-
gle token depicted as 1 on the place REQ can be inspected either by changing
the representation directly in the net instance to a token bag view showing the
string representation of the object or through a UML-like deep inspection of the
object shown in the window located in the lower left corner of the screenshot.
The token is a WebMessge, which contains the login data of a user that has
clicked on the login button in the Web interface shown in the upper right cor-
ner of the screenshot. The deep inspection window is provided by the Feature
Structure plugin.

Several implementations based on Mulan are available on the Paose Web
page3. These include some demos, a distributed implementation of a multi-player
game, and an export and diffing Web service for Renew-compatible diagrams.
The latter is presented through a stand-alone Web interface as well as integrated
into the Redmine project management environment.

2.4 PAOSE Meta-Modeling

During its evolution over the years Renew’s capabilities for providing modeling
support were extended beyond the initial focus on Petri nets. A great num-
ber of the additional modeling techniques are applied within the Paose app-
roach. As mentioned in the previous section Renew supports each step of the
Paose development process from requirements engineering, over system design
and specification to implementation and execution with appropriate modeling
techniques [2]: we use Concept Diagrams to model agent ontologies, Use-Case
Diagrams to capture the overall structure and a variant of Sequence Diagrams to
model agent behavior in conversations. The latter are used to generate Reference
nets, which can be executed as protocols in agent interactions. With the plugin
from Haustermann [8], BPMN models can also be applied for this purpose. In our
current research we are working on the Renew Modeling and Transformation
framework (RMT [13]), a framework for model-driven development of domain
specific modeling languages and tools based on Renew.

3 Highlights and Improvements

Renew offers a wide range of features for the creation, the editing and manip-
ulation of models as well as for execution, debugging and deployment of the
3
Paose Web page: http://www.paose.net.

http://www.paose.net
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designed systems. We present a selection that – to our opinion – describes best
the nature of the tool set. Although many of the presented features can not be
put into one category we present the highlights as functional feature, as usability
feature or as IDE related feature.

3.1 Functional Features

Multiple Formalisms. The simulator is capable of handling different for-
malisms. The main formalism is the Java Reference net formalism, for which
different extensions exist, such as inhibitor, reset and timed arcs. The workflow
net formalism, provided by an optional plugin, adds a task transition, which can
be canceled during execution, so that its effect on the net can be reverted. Other
formalisms provide simulation of P/T nets, feature structure nets and bool nets.
Simulation is available in different modes. In the interactive simulation mode the
user may control the simulation by choosing the transitions to fire and inspect
each single step. The automatic simulation mode is usable for system execution
and can be run with and without graphical feedback (operation as server).

Net Loading and Class Loading. Renew features dynamic loading of nets on
demand from the netpath or from the GUI. Nets may be available in the Renew

editor’s format (rnw), which permits direct inspection, or as pre-compiled net
system without graphical information (shadow net system), which allows a silent
execution. The configurable class reinit mode allows to quickly develop models
that combine nets and Java classes. Classes that are recompiled are reloaded at
simulation start, allowing nets and Java classes to be quickly developed, tested
and debugged without any restart of the environment.

Logging and Remote Monitoring. Logging in Renew is provided through
log4j. It is configurable and allows to log tool behavior and simulation events.
Several plugins, which provide general or special purpose monitoring facilities
may also be used for the inspection of local or remote simulations.

Graphical Editor. Renew provides an easy to use graphical editor for Petri
net models and other types of models and a simulation engine, which is seam-
lessly integrated into this editor. It has a plugin architecture, which makes it
easily extensible. The core plugins are provided as part of the Renew distribu-
tion. Many advanced features are supplied as optional plugins.

FreeHep Graphical Export. Since version 2.2 the graphical export relies on
the FreeHep4 libraries, which provide a wider range of formats including SVG
and a high quality of output.

4 The FreeHep libraries are available at https://github.com/freehep/.

https://github.com/freehep/
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3.2 Usability Features

Drag & Drop. Drag and drop support for Renew and the navigator eases the
usability by providing means to opening files or project folders directly within the
editor’s GUI. Additionally, images can now be added to a drawing by dropping
them on the canvas.

Interaction Enhancements. The quick-draw mode has been improved to even
faster draw Petri net models. Also configurable shortcuts for drawing tools and
layout manipulation are available in order to combine tool selection by keyboard
and positioning of net elements by the mouse.

Several drawing elements react to modifier keys during direct manipulation,
so that ratios of height and width can be preserved or unified. This is for example
useful when re-sizing an image.

Target Text Tool. The target text tool allows to add hyperlinks to graphical
elements of a model. By this means models may be inter-linked, in order to offer
simplified navigation between related models. Additionally, the usual schemes
are supported through the desktop integration as well, allowing to link to Web
pages (e.g. documentation/wikis) or other source code.

3.3 IDE Features

The editor has been improved over the last years and received many small usabil-
ity enhancements and has evolved into an integrated development environment
(IDE) for net-based software development. It contains a syntax check during
editing and debugging tools, such as breakpoints or manual transitions. Further-
more the editor features desktop integration, a file navigator and image export
to various formats.

Net/Diagram Diff. The net diff feature – for the first time presented in 2008 –
has been added as ImageNetDiff [5,6] plugin to the optional plugins in ver-
sion 2.3 and has been further enhanced for effectiveness and efficiency. It pro-
vides the functionality of diffing Petri net models and other diagrams directly
within Renew or as a Web service5, which is used and integrated to offer this
for the integrated project-management environment Redmine [1].

Quick-Fix. Syntax error notification dialogues are now enhanced to suggest
possible solutions to the syntax errors, such as available methods, fields or con-
structors. The user can interactively choose from the provided solutions and
apply the changes to the model in a quick-fix manner. Also undeclared variables
are semi-automatically added to the declaration node. In Fig. 4 the variable net

5 Available at http://paose.informatik.uni-hamburg.de/export/.

http://paose.informatik.uni-hamburg.de/export/


108 L. Cabac et al.

(compare with the declaration node) is not yet declared, which results in a syn-
tax exception. The exception presents several solutions, of which the first one
is currently selected. By clicking on the apply button (or double-clicking on the
proposal) the variable will be added to the declaration node.

Refactoring. The renaming of variables in a Petri net drawing and changing
of synchronous channels in net systems is now supported through the Refac-
toring plugin. However, these features are still under development and are still
experimental.

Project Navigator. The Navigator – first introduced in version 2.3 – has been
further improved. Due to a complete redesign, it provides a quicker update strat-
egy, persistence and a filter functionality. The Navigator GUI is now extendable
by plugins. On the right hand side of Fig. 4 the new Navigator GUI is displayed.
The top level of buttons provides control over the content of the Navigator’s tree
view. The second row provides a filter for the elements in the view. Extensions
may add functionality as additional buttons or as context menus. The SVN/Diff
Navigator extension provides the diff of two selected Petri nets (or other models)
via button and diffs against the document base via context menu. Other SVN
related functionality is provided as well.

Console Plugin. The new Console plugin, which utilizes JLine6 as library, pro-
vides many convenience enhancements for the Renew command line in compar-

Fig. 4. Renew Editor GUI featuring the navigator and the quick-fix functionality.

6 JLine: https://github.com/jline/jline2/.

https://github.com/jline/jline2/
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ison to the replaced Prompt plugin. The main advantages are editable command
lines, tab-based command and argument completions as well as searchable and
persistent command history.

Analysis. With the integration of the LoLA7 verification tool [9] Renew is also
suited for verification tasks during modeling. So far only verification of P/T net
models is provided through LoLA.

Net Components. Net components can be provided – and shared among devel-
oping teams – in order to ease recurrent modeling tasks and provide a conven-
tionalized modeling style, which improves the readability and maintainability of
net models.

Availability and OS-Integration. Renew is available for most common plat-
forms including Linux (and other Unices), Windows and Mac OS X. For all
Platforms there exists a GUI integration into the respective Desktop environ-
ment. For Linux/X11 we provide an integration for the FreeDesktop standard
and experimental debian/ubuntu packages. For Mac OS X we provide a special-
ized plugin for the desktop integration and an application bundle as well as a
specialized installation package (DMG, disk image file).

4 Architecture

The plugin architecture – introduced in release 2.0 of Renew – has already been
presented [4,7,12]. Figure 5 shows the main parts, such as simulator, graphical
framework (JHotDraw8), the formalism management and the Petri net IDE
core. The latter extends the graphical framework as well as the simulator. On
top of these core elements other plugins can be included, such as editor plugins,
formalism plugins, tools that extend these formalisms and also applications,
which may use Java code and Petri net code in combination.

Over the last years many plugins in various stages of maturity have been
created by the maintainers or by other developers (e.g. students). Some of these
extend the Renew environment, while others extend the Mulan environment
or provide multi-agent applications.

A boost for the development of plugins have been the plugins that allow the
creation of plugin source folders. There exists a rather simple version of a Plu-
gin Development Plugin for Renew plugins and a more elaborated version that
allows the creation of multi-agent application folders – the Use Case Compo-
nents Plugin9. With these plugins it is possible to create a new Renew plugin
simply by providing the name and the location of the source folder. The lat-
ter must be a valid source code repository in order to be able to compile the
7 LoLA – A Low Level Petri Net Analyzer: http://www.service-technology.org.
8 JHotDraw: http://www.jhotdraw.org.
9 The palette of the Use Case Components Plugin is activated in Fig. 3.

http://www.service-technology.org
http://www.jhotdraw.org
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Fig. 5. Renew’s abstract architecture [7] – components as plugins.

plugin. A newly created plugin folder features already all necessary artifacts for
the compilation of the plugin. These are the Ant build script, the plugin con-
figuration file (plugin.cfg) as well as the source code folder. Additionally, a valid
plugin facade class is generated. The Use Case Components Plugin also gener-
ates artifacts for the creation of Mulan applications according to a provided
Coarse Design Diagram (CDD, a form of Use Case Diagram). These artifacts
comprise the skeletons for agent role declarations, interaction definitions and
ontology specification.

Java classes, Renew nets and other artifacts – for instance JavaCC gram-
mars or JavaScript files – can be added to the source code folder. The plugins
may be accompanied by third party libraries and test cases.

An application that has been used heavily in the last couple of years is
the above mentioned export and diff Web service. The Mulan Export plugin
provides an agent (the ExportAgent) that offers the export and diff services to
other agents and through the WebGateway also as a Web service to other clients.
The backend of the export and diff functionality is provided by the respective
Renew plugins (FreeHep Export and ImageNetDiff). Over the last couple of
years the service running as a Mulan system in an instance of Renew has
been constantly available and used, with up-times of several months. These long
lasting running instances of Reference net systems and the high availability of
the services show the feasibility and efficiency of the approach. Now several
instances10 of the export and diff service are running on several servers.

10 A publicly available demo can reached from the Paose home page: http://www.
paose.net.

http://www.paose.net
http://www.paose.net
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5 Conclusion

Renew’s development has been ongoing for almost two decades. It has devel-
oped from a simulator and editor for a single high-level Petri net formalism to an
integrated development environment for Java- and Petri net-based applications.
The Reference net formalism and Renew’s simulator have proven themselves in
various implementations to provide powerful and efficient means to develop and
execute systems that include a strong focus on concurrency. Within the Paose

context distributed, concurrency-aware systems have been implemented with the
Mulan framework extension. In this environment many objectives, such as sup-
port for monitoring or specialized modeling techniques, have been provided on
the grounds of the Renew framework and were only possible through Renew’s
plugin architecture.

Today Renew exists in various configurations. Since the possibilities are
growing constantly we are aiming at a product line architecture in order to ease
configuration-intensive work and endorse reliable, feature-complete tool sets for
multiple application domains.

Acknowledgment. We thank all developers that participated in the development of
Renew, especially Prof. Dr. Rüdiger Valk, Dr. Daniel Moldt and all of the TGI group
of the Department of Informatics, University of Hamburg.
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Abstract. We present a tool for simulation of populations of living cells
interacting in spatial structures. Each cell is modelled with the Quasi-
Steady Petri Net that integrates dynamic regulatory network expressed
with a Petri Net (PN) and Genome Scale Metabolic Networks (GSMN)
where linear programming is used to explore the steady-state metabolic
flux distributions in the whole-cell model.

Similar simulations have already been conducted for single cells, but
we present an architecture to simulate populations of millions of inter-
acting cells organized in spatial structures which can be used to model
tumour growth or formation of tuberculosis lesions. For that we use the
Spark framework and organize the computation in an agent based “think
like a vertex” fashion as in Pregel like systems. In the cluster we intro-
duce a special kind of per node caching to speed up computation of the
steady-state metabolic flux.

Our tool can be used to provide a mechanistic link between genotype
and behaviour of multicellular system.

1 Introduction and Objectives

Mechanistic modelling of biological systems is making increasing impact in
research and industry. The ultimate goal is to predict behaviour of the system
given information about its genetic blueprint and environmental conditions to
which it is responding. Progress towards this goal is necessary to enable person-
alised and precision medicine, where diagnostics, disease prevention and therapy
will be tailored to patient’s genetic background and lifestyle. In the context of
biotechnology and synthetic biology, computer simulation of biological systems is
necessary tool for rational design of genetically engineered cells. With the advent
of Next Generation Sequencing full genome sequence of any species, cell line or
individual is now possible to obtain. Moreover, large number of other ∼omics
approaches enable measurements of the proteins, RNAs and metabolites with
increasing quantitative accuracy. Availability of these data as well as legacy of
c© Springer International Publishing Switzerland 2016
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over half a century of molecular biology research further motivate mechanis-
tic modelling of the relationship between genotype, environment and biological
systems behaviour.

The Constrained Based Modelling (CBM) has achieved spectacular success
in modelling metabolism at the full genome scale [2,10]. It capitalises on the
fact that connectivity of a metabolic network is the best-studied sub-system
within the full network of molecular interactions of the cell, and can be mod-
elled at quasi-steady state due to time-scale separation between gene regula-
tion (hours) and metabolism (seconds). This enables exploration of metabolic
flux distributions within the GSMN consistent with stoichiometric and thermo-
dynamic constraints as well as flux measurements and constraints formulated
according to ∼omics data on enzymatic gene expression [7]. The Quasi-Steady
Petri Net (QSSPN) [4] algorithm has been developed to integrate Petri Net (PN)
models of gene regulatory and signalling networks in the cell with steady state
models of Genome Scale Metabolic Networks (GSMN). The quasi-steady state
approximation is used, where for every state of dynamic, PN model the steady-
state metabolic flux distribution of GSMN is explored with CBM approach. The
QSSPN has been first applied to the integration a liver-specific GSMN with a
qualitative model of a large-scale regulatory network responsible for homeosta-
tic regulation of bile acid synthesis. The method was shown to be successful in
simulation of individual cells.

In this paper we present AB-QSSPN a prototype tool which objective is to
extends the QSSPN method to multicellular systems and provide a mechanistic
link between genotype and behaviour of multicellular system. The multiscale
nature of biological systems is one of the major challenges of their mechanistic
modelling, especially in medical applications. The physiological state at health
and disease emerges from events occurring at molecular, cellular, multicellular
(tissue), organ and whole-body levels. Some of these processes, such as develop-
ment, tumour growth or formation of tuberculosis lesions require spatial mod-
elling of structures formed by millions of cells. AB-QSSPN integrates simulation
of Agent Based models of multicellular systems and qualitative QSSPN models.
To the best of our knowledge this is the first demonstration of the feasibility of
simulation describing multicellular system and the network of gene regulatory,
signalling and whole-cell scale metabolic reactions operating within each indi-
vidual cell. To make this simulation possible, we capitalized on MapReduce [3]
model and its open source implementation Hapdoop [1]. These recent develop-
ments in distributed computing enable reliable computation on clusters of com-
modity computers. As we are interested in iterative simulations we use Apache
Spark [12], a new programming system which is de facto successor of MapRe-
duce. It neatly follows a shift in the hardware used in data processing centers
where the processing nodes are equipped with increasing amount of RAM mem-
ory. Spark is based on the Resilient Distributed Datasets abstraction where the
data by default, if possible is kept in memory avoiding unnecessary spills to disk
which are by orders of magnitude slower that in-memory operations. This allows
Spark to overtake Hadoop in iterative computation similarly as HaLoop, Twister
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and Pregel/Giraph do. On the other hand Spark is similar to MapReduce in the
way how data is grouped and shuffled between nodes. Its programming model
extends the simple programming model of MapReduce with additional opera-
tions like joins and sorts and allows explicit control of data distribution with
repartitions. Spark dataflows can also be composed of more steps than just map
and reduce. The grouping of those steps between the group by/shuffle phases is
optimized by the framework. This feature can be used in future version of our
system to extend it with post-processing of the results.

In the following sections we describe QSSPN and its integration with AB
model so that potential users can understand how to specify their models. The
use of Petri net formalism makes it possible to make this description formal. We
also present the functionality and the architecture of AB-QSSPN and a use case
demonstrating application of the method to the simulation of one million liver
cells undergoing metabolic reprogramming during bile acid synthesis.

AB-QSSPN is available atwww.mimuw.edu.pl/∼w.ptak/AB-QSSPN together
with biological models on which we tested it.

2 The Model

In this section we define how we model a single cell in the Quasi-Steady Petri
Net (QSSPN) algorithm and then how those cells interact within a population.

2.1 Single Cell

Essentially a cell can be thought of as a complex metabolic network of chemical
reactions whose capacity is determined by gene regulation and signalling. The
reactions are in the so called steady state so that consumption and production
of metabolites is balanced. They are represented with the steady state models of
GSMN. The regulatory part is represented with a PN whose state determines the
bounds for the reactions, e.g., marking of places in the net represents occurrences
of conditions that catalyse the reactions. For every state of the dynamic PN
model the steady-state metabolic flux distribution of GSMN is explored with
CBM approach, e.g., with the Flux Balance Analysis method [10] that applies
linear programming. A simple overview QSSPN model adapted from [4] with the
regulatory PN and the metabolism as a black box is presented in Fig. 1.

Metabolism. GSMN is represented with the stoichiometry matrix S ∈ R
m×n

where each column contains all the coefficients of one reaction while one row
contains the coefficients for a particular metabolite in all the reactions. For
example for a reaction C1 +2C4 → C5, the corresponding column would contain
−1 in the row for compound C1, −2 in the row for compound C4 and 1 in the
row for compound C5. As reactions can occur at different rates there is a vector
of fluxes v = (v1, v2, . . . , vn) and in the steady state it holds Sv = 0. The
regulatory part introduces constraints for reactions of the form ai < vi < bi. In

www.mimuw.edu.pl/~w.ptak/AB-QSSPN
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Fig. 1. A simple overview QSSPN model

practice, as there are more reactions than metabolites (n > m), the system of
equations has infinite number of solutions even with such constraining.

To determine single points within the solution space, an objective function
Z = cTv is used and we look for points that maximize this function. The coef-
ficients of the goal vector c define the linear combination of fluxes through a
chosen set of reactions. This can be used to look for points corresponding to
maximum growth rate, or maximum ATP production, or to maximum linear
combination of fluxes through a subset of reactions.

The optimization problem defined by the stoichiometry matrix S, the con-
straints for the reaction a and b, and the goal vector c, can be solved with linear
programming libraries such as GLPK.

In the following we assume that the linear problems that we deal with always
have a solution and that if there are multiple solutions we somehow choose one
of them, e.g. the smallest one in the lexicographical order. We define a partial
function fba : Rm×n ×R

n ×R
n ×R

n → R
n to return this solution vector. That

is, for optimisation of the linear problem for S ∈ R
m×n, a ∈ R

n, b ∈ R
n and

c ∈ R
n, and its chosen solution v ∈ R

n, we have fba(S,a, b, c) = v.

Regulation. The gene regulatory and signalling networks in the cell are mod-
elled with a PN. The existence of a token in a place means that there is “just
enough” of some metabolite to trigger a reaction, thus it is possible to model
interactions requiring only that some metabolites are present.

As is often in bioinformatics [11], an extra edge type, called inhibitor edge, is
introduced to make it possible to model interactions requiring that some metabo-
lites are not present. In the graphical notation such edges are distinguished from
ordinary edges by using an empty circle in place of the arrowhead. Existence of
such an edge prevents the destination transition from firing if tokens are present
in the source place.

We assume the reader to be familiar with PN and its semantics and do not
define it here. In the following we assume that for a PN pn its set of places is
given by Ppn, and denote with Mpn the set of all possible markings of pn where
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each marking is an assignment of number of tokens for each place. We assume
that a net pn defines a transition system such that M1 →pn M2 if M1,M2 ∈ Mpn

and M2 can be obtained from M1 by firing one of its enabled transitions.

Combining Metabolism and Regulation. Now we define the interaction of
metabolism with the regulatory net.

The metabolism and the regulatory net models interact both ways. One
way genes regulate enzymes and enzymes regulate reactions. The other way
around the production of certain metabolites influences gene expression. The
core assumption is that when a change in the regulation occurs the metabolism
quickly stabilises and reaches a steady state. This assumption is justified by
time-scale separation between gene regulation (hours) and metabolism (seconds).
Thus the metabolism has enough time to stabilise between every two firings of
transitions of the regulatory Petri net. In our model the “regulatory” Petri net
firing will be interleaved with metabolic phases.

After each transition firing, the marking of predefined places of the net deter-
mines the values for the constraints limiting the minimum and maximum flow
for predefined reactions in the metabolism, i.e., the values of ai and bi for some i.
Based on the modified constraints, the whole FBA optimisation is rerun several
times for different goal functions to determine the optimal values of the fluxes.
The values of the optimal fluxes for each goal determine the state of some pre-
defined places in the regulatory net (regardless of their previous marking) and
thus the state. This process repeats.

The user defines how a marking of the regulatory net translates to the
constraints for reactions. We abstract this with functions a, b : Mpn → R

n.
The user also defines some g goal vectors c1, . . . , cg and how the results of
those optimizations influence the marking of the PN which we abstract with
the function reg : Mpn × R

g → Mpn. Thus, if M is the initial marking, the
new marking of the regulatory net after the metabolism stabilizes is defined by
reg(M, [fba(S, a(M), b(M), c1), . . . , fba(S, a(M), b(M), cg)]).

The combined behaviour of a single cell is thus defined by the transition
system where states are markings of the regulatory net and the system can
transition from state M to state M ′, which we denote by M � M ′, if there exists
M ′′ ∈ M such that M →pn M ′′’ and M ′ = reg(M ′′, [fba(S, a(M ′′), b(M ′′),
c1), . . . , fba(S, a(M ′′), b(M ′′), cg)]).

2.2 Population of Cells

In this subsection we describe how we model populations of interacting cells.
We assume the cells are placed in a three dimensional grid. A cell interacts

with up to 26 cells surrounding it (6 in our experiments). The interaction mecha-
nism is based on marking of some chosen places in the surrounding cells, if those
places get marked, by the metabolic or regulatory part of the cell itself. This
allows to model situations where a cell produces and introduces to the environ-
ment some protein that activates some of its and its neighbours receptors.
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Let P̂ ⊂ P be the set of places used for communication. The state of the
whole population G is defined as a matrix of the states of the individual cells G ∈
M

k×k×k
pn for k being the dimension of the population grid (in practice populations

of at least of million of cells are interesting with k = 100). A transition from the
state G to state G′ is possible, which we denote by G � G′, iff there exists G′′ ∈
M

k×k×k
pn such that for each 1 ≤ i, j, l ≤ k it holds: (1) Gi,j,l →pn G′′

i,j,l for some
G′′

i,j,l, (2) for each p ∈ (P \P̂ ) it holds G′
i,j,l(p) = G′′

i,j,l(p), and (3) for each p ∈ P̂
it holds G′

i,j,l(p) = G′′
i,j,l(p)+Σi′,j′,l′ neigh. of i,j,k max(0, G′′

i′,j′,l′(p)−Gi′,j′,l′(p)).

3 Functionality

The AB-QSSPN is to the best of our knowledge the first tool enabling simula-
tion of large multicellular systems integrated with wholegenome scale metabolic
networks and dynamic models of gene regulation and signalling representing
molecular processes operating within each individual cell. We have successfully
tested AB-QSSPN a model of million liver cells, which is sufficient cellular pop-
ulation size to draw biologically meaningful conclusions. We formulated caching
mechanism which allowed this calculations to be completed on a cluster of just
15 computers.

The input of AB-QSSPN is a model provided in the format of QSSPN soft-
ware [4]. We provide biologically realistic example of such model on the project
website. The users can examine the model in standard PN tool Snoopy [11],
modify the model and rerun simulations. The user is also expected to define
the set of PN places used by the cells for communication (see Sect. 2.2). Our
tool reports reachability of certain states in individual cells. Users can extend
the PN representing regulatory part of the cells (see Sect. 2.1) to include places
representing behaviours of interest, such as homeostatic response to external
perturbation. Our experiments also show how the user can pipeline AB-QSSPN
and Spark for analysis of the simulation trajectories. This is another advantage
of using Spark framework.

The software distribution includes scripts for running simulation on an exist-
ing spark cluster. We also provide Docker [9] images for users who would like to
quickly test AB-QSSPN without configuring and running a Spark cluster. The
images require minimal setup as they already provide configured AB-QSSPN,
installation of HDFS and Spark with all the necessary libraries.

4 Architecture

AB-QSSPN is organized in three subprojects:

– GSMN metabolism server — implemented in C++ server that accepts GSMN
problems and computes results with the GLPK linear programming solver;
the server provides caching feature so that the same optimisation problems
are not solved multiple times,
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– QSSPN single cell simulator — implemented in C++ single cell simulator
that encompasses both metabolism and regulation, it uses the metabolism
server for solving GSMN problems,

– population simulator — simulator implemented in Spark that uses the agent
based “think like a vertex” pattern of Pregel like systems for populations
of cells, individual cells are simulated with the QSSPN single cell simulator
and one per cluster node GSMN metabolism server is used to solve GSMN
problems.

We use the GraphX [6] library of Spark to model populations of cells as
graphs. Its operators are powerful enough to implement the Pregel computation
model with its agent based “think like a vertex” pattern. The computation is
organized in processing supersteps. In each superstep every cell performs one
step of QSSPN simulation with regulatory PN and metabolic CB parts. Then,
the cells communicate with neighbours and spread information about new tokens
in places used for communication.

Fig. 2. Architecture of AB-QSSPN

The computation is distributed into a cluster of commodity computers by
Spark. The cells in the population are partitioned by Spark between the com-
puters see Fig. 2. The communication between cells in each node does not require
network transfer. The cells from different nodes do not exchange individual
messages but the framework groups the messages per node, which reduces the
network overhead. We significantly speed up the processing by implementing
GSMN as a separate server with a results caching feature, so that the same
optimization problems are not repeated. Each computing node in the cluster
has its own GSMN metabolism server instance, which minimises the network
communication.
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At the same time usage of GraphX allows for easier development of graph
analytic pipelines which include simulation and post processing of the results
like computation of statistics of how many cells reached homoeostasis in each
superstep.

5 Use Case and Experimental Evaluation

5.1 Individual Cell Model

To demonstrate our AB-QSSPN approach we have constructed the model of the
gene regulation, signalling, whole cell metabolism and cell-cell communication
involved in homeostatic regulation of bile acid synthesis in human liver. Primary
bile acids (BAs) are produced by hepatocytes as the products of cholesterol
catabolism. They are vital for the intestinal absorption of lipophilic nutrients
and the hepatobiliary secretion of endogenous and xenobiotic metabolites. They
also act as signalling molecules and play important roles in the regulation of
glucose and lipid metabolism in the enterohepatic system, and peripheral tissues.
Given their global influence on the physiological state of the organism and their
toxicity at high levels, it is not surprising that BA synthesis is tightly regulated
and that BA homeostasis is essential for health [8]. The QSSPN model of bile acid
homeostasis has been constructed and described in detail in the original QSSPN
publication [4]. We modify this model in the following ways. First, we assume
only two discrete states – fully active (one token) and basal (zero tokens), rather
then 3 states. Second, we do not use inhibitory edges any more. All inhibitor
interactions are now simulated (by using dual places). This step does not change
biological meaning of the model. Third, MAP kinase pathway is now lumped into
one transition. Simulations performed in our previous work [4] show that this
simplification does not influence behaviour of interest. Final model has 130 places
and 163 transitions in regulatory network part. The linear model of whole-cell
metabolism contains 2539 reactions of 777 metabolites [5]. The model is available
in AB-QSSPN distribution. The users can examine the model in standard Petri
Net tool Snoopy [11], modify the model and rerun the simulations.

5.2 Multicellular Simulation of Liver Tissue

To provide Use Case for AB-QSSPN we have investigated the role of cell-to-cell
communication through cytokine FGF19 on bile acid homeostasis response at
tissue level. The FGF19 is produced by hepatocytes and secreted to the outside of
the cell. It can then bind FGFR4 protein receptor, which triggers MAP kinase
pathway. The FGF19 can act as autocrine signal, where it binds to FGFR4
receptor on the surface of the same cell that produced it, or as an paracrine signal
where FGF19 produced by a particular cell binds too FGF19 receptor of others.
In our previous work we did not distinguish these two signaling modes. The
AB-QSSPN tool gives us for the first time opportunity to do it and to examine
whether communication between cells (paracrine mode) within a volume element
of liver tissue is important factor in bile acid homeostasis.
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Fig. 3. Cell count by step

We have arranged 106 copies of the individual cell QSSPN model on the
100× 100× 100 grid. The state of FGF19 place in a particular cell was “visi-
ble” to all 6 neighbors in the grid. The AB-QSSPN simulation has been per-
formed using algorithm described in Sect. 2.2. Trajectory of 200 time units
has been simulated on a cluster of 15 university lab computers. The state
of BA HOMEOSTASIS node, representing successful homeostatic response has
been monitored. Figure 3 shows distribution of the number of steps needed to
reach BA HOMEOSTASIS for the first time. The mean number of reaction fir-
ings required to reach BA HOMEOSTASIS decreases from 164 to 142. While
the time units are arbitrary in Qualitative Petri Net simulation, the simulations
demonstrate that cooperative effect of cellular communication results in faster
mean response time to increasing burst of bile acid. This demonstrates that even
in this relatively simple system it is important to consider cell-to-cell communi-
cation. In models of tumour growth or immune responses these effects will be
more prominent. In conclusion, this Use Case demonstrates that AB-QSSPN is
a unique tool for the first time enabling multiscale simulation of multicellular
systems with consideration of intracellular whole-cell metabolic, gene regulatory
and signaling networks. Recent advances in distributed computing applied here
for the first time for QSSPN, make these simulations feasible.

6 Summary and Further Research

We have verified that AB-QSSPN architecture can be used to simulate pop-
ulations of millions of cells modelled with QSSPN on only small clusters of
commodity computers. As to our knowledge simulations of this scale have never
been conducted so far. Such populations are biologically significant and their
modelling can be useful for example while studding tumour growth where the
conditions for cells in the population depend on their spacial position within the
tumour. Usage of Spark framework allows for easy post processing of the simu-
lation results, which comprise big data of states of every cell in several hundred
of supersteps. Spark is ideal for aggregation and querying of data of such size.



122 W. Ptak et al.

Acknowledgements. This research was sponsored by National Science Centre based
on decision DEC-2012/07/D/ST6/02492.

References

1. Apache. Hadoop. http://hadoop.apache.org/
2. Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O.: Constraint-based models pre-

dict metabolic and associated cellular functions. Nat. Rev. Genet. 15(2), 107–120
(2014)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

4. Fisher, C.P., Plant, N.J., Moore, J.B., Kierzek, A.M.: QSSPN: dynamic simulation
of molecular interaction networks describing gene regulation, signalling and whole-
cell metabolism in human cells. Bioinformatics 29(24), 3181–3190 (2013). Oxford
Univ Press
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Abstract. PetriDotNet is an extensible Petri net editor and analysis tool
originally developed to support the education of formal methods. The
ease of use and simple extensibility fostered more and more algorithmic
developments. Thanks to the continuous interest of developers (especially
M.Sc. and Ph.D. students who choose PetriDotNet as the framework of
their thesis project), by now PetriDotNet became an analysis platform,
providing various cutting-edge model checking algorithms and stochastic
analysis algorithms. As a result, industrial application of the tool also
emerged in recent years. In this paper we overview the main features
and the architecture of PetriDotNet, and compare it with other available
tools.

Keywords: Petri nets · Modelling · Simulation · Model checking ·
Stochastic analysis · Editor

1 Introduction and Objectives

Ordinary and coloured Petri nets are simple, yet powerful formal modelling
formalisms that are covered by most undergraduate Formal Methods courses.
They are widely used to demonstrate concurrency, causality and other principles
of systems design. In addition, thanks to their simple syntax and semantics, Petri
nets help to introduce various generic concepts, such as state space, coverability
graph, invariants, reachability, temporal logic and model checking. To support
active learning, a demonstrator tool is needed to give the students insight into
these concepts and let them do experiments on their own.

The goal of the Formal Methods courses is to teach students the foundations.
Talented students, however, are interested in diving deeper into the theoretical
and algorithmic background. Petri nets have been studied for a long time, thus
many analysis algorithms are described in the literature. The implementation
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and improvement of these algorithms can provide interesting challenge for the
students, and it also gives an opportunity for the lecturers to assess the students’
skills and scientific potential. In such cases a framework should be accessible for
them to experiment with advanced algorithms and methods. Unfortunately, the
freely available and actively maintained Petri net editor and analysis tools have
different strengths and weaknesses (see more details in Sect. 5), thus it is hard
to find a single tool that is able to satisfy the above mentioned requirements of
the education as well as to provide analysis algorithms that can be effectively
used and extended in research.

According to these needs, PetriDotNet, our Petri net editor and analysis tool
offers the following main features:

– It provides a convenient graphical editor for creating (ordinary or coloured)
Petri nets. Besides simulation, the basic step to understand the dynamic
behaviour of nets, it is extended with analysis of structural and dynamic
properties, as well as reachability and model checking capabilities in order
to support the Formal Methods courses.

– Furthermore, PetriDotNet is a simple, generic and extensible platform for new,
Petri net-based algorithms that provides wide access to the Petri net data
structures and the graphical user interface.

The development of PetriDotNet started as an ordinary Petri net editor
in 2007 [22] as a Master’s thesis project (named as Petri.NET at that time).
During the last nearly ten years, the tool has been heavily modified, improved
and extended, thanks to the contribution of many enthusiastic B.Sc., M.Sc. and
Ph.D. students of the Fault Tolerant Systems Research Group (FTSRG) at the
Budapest University of Technology and Economics.

The structure of this paper is the following. Section 2 describes the current
functionality of PetriDotNet. The architecture of the tool is briefly described in
Sect. 3. Next, we present some use cases in Sect. 4 and a comparison to other
tools in Sect. 5. Finally, Sect. 6 discusses the installation and usage.

2 Functionality

This section overviews the main functionality of PetriDotNet and the plug-ins
shipped with the tool.

Editor Features. First and foremost, PetriDotNet is an editor for Petri nets.
It provides graphical editing capabilities (cf. Fig. 1) for both ordinary and well-
formed coloured Petri nets (see [25] for the definition of the supported coloured
Petri net variant). The tool supports Petri nets extended with inhibitor arcs,
transition priorities, and places with limited token capacity. Moreover, the con-
struction of hierarchical Petri nets is supported by allowing coarse transitions
that can be refined by a subnet.

The tool provides simulation functionality (token game) for Petri nets, where
the simulation can be manually conducted or automatically executed. The tool
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Fig. 1. The main window of PetriDotNet

is shipped with a plug-in that can perform large scale simulation, executing
thousands or millions of non-deterministic firing, and then present the statistics.

To save and load the Petri nets, PetriDotNet supports two formalisms
natively. The default format is PNML (Petri Net Markup Language) [15], a
standard, XML-based Petri net description format. PNML is supported by
various other tools, therefore this is an interface between these tools and
PetriDotNet. A binary, custom file format is also supported that provides more
efficient persistence for large models.

Plug-In Features. The functionality of the tool is extensible with plug-ins.
Plug-ins can perform simulation tasks, provide analysis features (e.g. model
checking) or export/import capabilities. Each plug-in can access the Petri net
data models, use the graphical user interface, add new menu items, and call
built-in PetriDotNet commands. The architecture of the tool is designed to keep
the development of plug-ins simple, in order to help the users to focus on func-
tionality instead of technology. See Sect. 3 for more details.

Export and Import Features. It is possible to export the constructed Petri
nets into other Petri net formalisms, such as to the syntax of the GPenSIM1

(General Purpose Petri Net Simulator) and the .pnt format of the INA2 (Inte-
grated Net Analyzer) tool. Also, the Petri net models can be translated into to
the input format of SAL3 (Symbolic Analysis Laboratory). Furthermore, import
1 http://www.davidrajuh.net/gpensim/.
2 http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/.
3 http://sal.csl.sri.com/.

http://www.davidrajuh.net/gpensim/
http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
http://sal.csl.sri.com/
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is also provided from the .net textual Petri net file format used by the INA/Tina4

tools, among others. New import or export plug-ins can be developed easily as
the internal model representations are simply accessible.

Formal Methods Course Plug-In. As one of the first motivations was to
support the education, the framework has built in support for the following
tasks:

– Calculating invariants, and displaying the results right on the Petri net,
– Generating the reachability/coverability graph, and exporting their graphical

representation into image files,
– Computing various liveness properties [21].

The invariant analysis covers both P and T-invariants based on the well-
known Martinez–Silva algorithm [17], and a different algorithm by Cayir and
Ucer [2] that computes the bases of invariants.

Integrated Analysis Methods. In the last five years, in addition to the edu-
cational features, PetriDotNet became a Petri net analysis package providing
plug-ins for a wide range of analysis methods. Among others, as detailed below,
PetriDotNet supports advanced formal verification techniques based on decision
diagrams and abstraction.

Saturation-Based Model Checking Algorithms. In PetriDotNet, various algo-
rithms provide model checking based on the saturation algorithm [3–5]. The
CTL model checking approaches are based on the work of Ciardo [28] and the
bounded model checking approach is the extension of [27]. The LTL model check-
ing algorithms are built on top of the ideas of [11,14]. Our research resulted in
significant extensions and improvements, this way PetriDotNet currently sup-
ports novel analysis algorithms as follows:

– CTL model checking of ordinary and coloured Petri nets based on traditional
and extended versions of saturation [1,25],

– Bounded CTL model checking based on a novel saturation-based algorithm,
with various search strategies [10,24],

– LTL model checking based on a novel synchronous product computation algo-
rithm [20] and incremental SCC detection [19].

CEGAR-Based Reachability Algorithms. PetriDotNet includes reachability
analysis algorithms based on Counterexample-Guided Abstraction Refinement
(CEGAR) [6] for ordinary Petri nets. Petri net CEGAR-based algorithms over-
approximate the set of reachable states using the state equation, which is a
necessary criterion for reachability. The CEGAR algorithm for Petri nets intro-
duced in [26] was the base of our work. Our implementation includes various
search strategies, adapted to the characteristics of the different models [12,13].
4 http://projects.laas.fr/tina/.

http://projects.laas.fr/tina/
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Stochastic Analysis Algorithms. Recently the tool was extended to support the
modelling and analysis of stochastic Petri net models. The goal was to provide a
configurable stochastic analysis framework where various state space exploration,
matrix representation and numerical analysis algorithms can be combined [16].
PetriDotNet provides the following stochastic analysis for ordinary stochastic
Petri net models:

– Steady-state reward and sensitivity analysis,
– Transient reward analysis,
– Calculation of the mean time to reach a state partition, that is used to calculate

mean-time-to-first-failure (MTFF) in dependability models.

3 Architecture

General Architectural Overview. The tool is written in C#, based on the
Microsoft .NET framework. The architecture of PetriDotNet is kept as simple as
reasonably possible. It is a modular tool: it provides some basic functionalities,
and can be extended by various plug-ins.

The tool uses a base library defining the Petri net data structures, developed
for PetriDotNet. This library contains object models for ordinary and coloured
Petri nets. The PetriDotNet core contains the graphical user interface and the
plug-in interface. The architecture of the tool is summarized in Fig. 2.

Plug-in Interface. To follow the previously presented educational goals, it is
simple to extend PetriDotNet with a new plug-in. This allows a steep learning
curve and low entry barrier, therefore the plug-in developers can focus on their
algorithms, instead of the applied technologies. From the tool’s point of view, a
plug-in is just a .dll file in the add-in folder, in which at least one class imple-
ments the IPDNPlugin interface (see Fig. 3). Metadata about the plug-in (e.g.
name, author, required PetriDotNet version) can be provided using annotations

Fig. 2. High-level overview of the PetriDotNet architecture
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Fig. 3. PetriDotNet plug-ins

of this class (e.g. [AddinAuthor("X. Y.")]). When PetriDotNet starts, it loads
all plug-ins and calls their Initialize method. In this method the plug-ins can
make their menu contributions and store the application descriptor. This latter
allows the plug-ins to call commands (e.g. save, load) and to access the currently
active Petri net.

Being a .NET-based tool, PetriDotNet requires that the plug-ins are also
implemented in one of the .NET languages. While having a graphical editor for
Petri nets developed in .NET is a reasonable choice, implementing e.g. model
checking algorithms seems to be uncommon, as managed languages are consid-
ered to have some overhead. However, (i) according to our experience the run
time of the .NET-based implementations of various model checking algorithms
proved to be competitive compared to their native version, and (ii) the develop-
ment in .NET is easier and less error-prone than e.g. in C or C++ for computer
engineering students, allowing them to make correct implementations in shorter
time. Thus the choice of .NET can be regarded as sacrificing some run time
performance in favour of development time, which is similarly important in our
educational setting. If the performance needs cannot be satisfied using .NET,
the plug-in can wrap or depend on a native implementation (.dll).

4 Use Cases

This section overviews the use cases where we applied PetriDotNet as an editor
or an analysis tool. According to the original goals we start the overview with
educational use cases, then we move on to industrial case studies.

Application in Education. PetriDotNet is used as an educational tool and a tool
for the homework assignments in the Formal Methods course of the Budapest
University of Technology and Economics since 2011. During this time, approxi-
mately 900 M.Sc. students attended the course. The stochastic analysis module
of the tool is used for demonstration purposes in the Software and Systems
Verification course to teach reliability modelling for the students.

Student Projects. To this day 23 B.Sc. and M.Sc. theses were written that applied
or extended PetriDotNet. Besides, the various new formal verification algorithms
resulted in 20 scientific papers presented in conferences or journals5. Several stu-
dents who started to get familiar with research by extending and implementing
5 See the complete list of related publications at http://petridotnet.inf.mit.bme.hu/

publications/.

http://petridotnet.inf.mit.bme.hu/publications/
http://petridotnet.inf.mit.bme.hu/publications/
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an algorithm in PetriDotNet are now Ph.D. students or planning to apply for
post-graduate programmes.

Application in Industrial Cases. We are aware of various usages of our tool to
model, simulate and analyse different real life systems.

– We have applied PetriDotNet to model and formally verify a safety logic of
the Paks Nuclear Power Plant using saturation-based CTL model checking
in [1,25]. This work validated the coloured Petri net editing capabilities and
proved the efficiency of our CTL model checking algorithms, as [1] presented
the first successful formal verification of the complete safety logic.

– PetriDotNet was used to model and simulate sensor nets in [18] and in the
FuturICT.hu project6.

– PetriDotNet was applied to model and study railway interlocking systems [7].
– The R3-COP project7 applied PetriDotNet to generate test input sequences

for testing the robustness of communicating autonomous robots [9].
– Initial case studies were made to apply PetriDotNet to analyse control software

used at the European Organization for Nuclear Research (CERN) [8].
– Stochastic analysis and MTFF computation were used in an industrial project

at our department to evaluate safety (hazard rate) of an embedded control sys-
tem. The mean time to reach undetected failures or shutdown was computed
in a stochastic model of a two-channel architecture with separate diagnostic
facility, comparison, and time-limited degraded (single-channel) functionality.

5 Comparison with Other Tools

During the last decades several Petri net based editor and analysis tools were
implemented, some of them are surveyed in [23]. In our comparison (see Table 1)
we focused on the freely available, actively maintained, and/or widely used tools.
The table characterizes the supported nets, the tool features, and the analysis
capabilities. It illustrates that PetriDotNet is a quite versatile tool, offering the
features necessary for educational purposes, and also providing sophisticated
analysis capabilities [19] that allow to use it as a modelling and analysis tool in
research and industrial development projects.

As a highlight, we emphasize the extensibility (plug-ins). The only other tool
providing a plug-in interface is Charlie, but Charlie is strictly an analysis tool,
whereas PetriDotNet contains the editing, simulation, and analysis functions in
a single integrated application. Moreover, the features of the plug-ins in Charlie
are more limited, while PetriDotNet plug-ins can extend all of its main functions.
Other important features of PetriDotNet are the standard PNML support, the
efficient state space representation, the CTL and LTL model checking, and the
reward-based stochastic analysis capabilities.

6 http://www.futurict.szte.hu/en/home/.
7 http://www.r3-cop.eu/.

http://www.futurict.szte.hu/en/home/
http://www.r3-cop.eu/
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Table 1. Comparison of Petri net editor and analysis tools

In our view, having all the features summarized in Table 1 in a single, inte-
grated, and extensible tool is a unique feature. Note that the specific features
of our enhanced analysis algorithms (implemented as plug-ins) are detailed and
compared to similar solutions in the respective papers (see the references in
Sects. 2 and 4).

6 Installation and Usage

The installation and usage of PetriDotNet is extremely simple. After downloading
the tool from our website8, the user has to extract the tool by executing the
downloaded file. After this, the tool can be started by running PetriDotNet.exe.

During the development, we have paid special attention to keep the main
features easy to use. Using the toolbox on the left side of the window it is
straightforward to create or modify Petri nets. To use the more advanced features
(e.g. analysis modules), we refer the reader to the user manual, accessible on our
webpage.

Installing add-ins is similarly straightforward: the files of the add-in have
to be placed under the add-in folder of the tool. From the next startup of
PetriDotNet, the add-ins will be loaded and their menu items will show up in the
Add-in menu.

PetriDotNet is shipped with a set of analysis and import/export plug-ins.
They can be accessed from the Add-in menu. The invariant, reachability, CTL
and LTL analysis algorithms are aggregated to a common interface that can be
accessed by selecting the Net analysis item in the Add-in menu.

8 http://petridotnet.inf.mit.bme.hu/en/.

http://petridotnet.inf.mit.bme.hu/en/
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A set of example and benchmark models is distributed with the tool, located
in the models folder.
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Abstract. TinyOS is a widely used platform for the development of
networked embedded systems offering a programming model targeting
resource constrained devices. We present a semi-automatic software engi-
neering approach where Coloured Petri Net (CPNs) models are used as a
starting point for developing protocol software for the TinyOS platform.
The approach consists of five refinement steps that allow a developer to
gradually transform a platform-independent CPN model into a platform-
specific model that enables automatic code generation. To evaluate our
approach, we use it to obtain an implementation of the IETF RPL rout-
ing protocol for sensor networks.

1 Introduction

Model-driven software engineering [10] and verification have several attractive
properties for the development of flexible and reliable software systems. In order
to fully leverage modelling investments, it is desirable to use also the constructed
models to obtain an implementation. Coloured Petri Nets [3] (and Petri Nets in
general) constitute a general purpose modelling language supporting platform-
independent modelling of concurrent systems. Hence, in most cases, such models
are too abstract to be used directly to implement software. In order to bridge the
gap between abstract and platform independent CPN models and the implemen-
tation of software to be deployed, the concept of pragmatics was introduced in
[12]. Pragmatics are syntactical annotations that can be added to a CPN model
and used to direct code generation for a specific platform. The contribution of
this paper is an approach that exploits pragmatics in combination with a five
step refinement methodology to enable code generation for the TinyOS platform.

Applications for TinyOS [7] are implemented using the nesC programming
language (a dialect of C) providing an event-based split-phase programming
model. An application written in nesC is organised into a wired set of modules
each providing an interface consisting of commands and events. The (manual)
model refinement starts from a platform independent CPN model constructed
typically with the aim of specifying the protocol operation and performing model
checking of the protocol design. Each step consists of a transformation that uses

c© Springer International Publishing Switzerland 2016
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the constructs of the CPN modelling language to add details to the model. Fur-
thermore, in each step pragmatics are added that direct the code generation
performed after the fifth step. The first step concentrates on the component
architecture and consists of annotating CPN submodules and substitution tran-
sitions corresponding to TinyOS components, and make explicit the interfaces
used and provided by components. The second step is to resolve any interface
conflicts allowing components to use multiple instances of an interface. This is
done by annotating CPN arcs with information providing locally unique names.
The third step consists of adding type signatures to components and interfaces by
creating explicit submodules for command and events, and by refining colour sets
to reflect the interface signatures. The fourth step further refines the components
by classifying them into four main types: timed, external, boot, and generic.
The fifth step consists of refining internal component behaviour by modelling
the individual commands and events such that control flow and data manipula-
tion become explicit and organised into atomic statement blocks. After the fifth
refinement step the CPN model can be used for automated code generation.

To demonstrate the practical applicability of our approach, we have con-
ducted a case study based on the RPL routing protocol [2] developed by the
Internet Engineering Task Force (IETF). The RPL protocol allows a set of sen-
sor nodes to construct a destination-oriented directed acyclic graph which can
be used for multi-hop communication. To support the automatic code genera-
tion for TinyOS, we have developed a software prototype in Java that performs
a template-based model-to-text transformation on the models resulting from
the fifth refinement step. The code generator performs a top-down traversal of
the CPN model where code templates are invoked according to the pragmatic
annotations of the CPN model elements encountered.

The rest of this paper is organised as follows. In Sect. 2 we introduce the RPL
protocol and the CPN model used as a starting point for refinement. Section 3
briefly introduces the TinyOS platform and the nesC programming model that
serve as the target platform for the code generation. Section 4 describes the
application of the refinement steps to the RPL CPN model, and Sect. 5 discusses
the code generation. Finally, in Sect. 6 we sum up conclusions and discuss related
and future work. The reader is assumed to be familiar with CPN modelling
concepts. An early report on our work has appeared as a poster [14]. Details
omitted from this paper due to space limitations can be found in [13].

2 CPN Model of the RPL Protocol

The RPL protocol (also known as Roll) is an IPv6 routing protocol for low-
power and lossy networks such as distributed sensor networks. RPL relies on so-
called Destination-Oriented Directed Acyclic Graphs (DODAGs) for constructing
routes connecting the nodes (devices) of the network and uses five different types
of IPv6 messages for communication between the devices.

A DODAG typically only has one root node and is organised as a directed
graph consisting of children and parent nodes. A child typically only has one
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parent, while a parent-node can have multiple children. The traffic flow in a
DODAG can go in two directions: unicasted upwards in the graph from child to
parent (towards the root node), or downwards by being broadcasted to all child
nodes.

Fig. 1. Network and DODAG example.

A DODAG is uniquely identified
by the combination of a DODAGID
(which is a unique number identifying
the DODAG root-node), an RPLIn-
stanceID (which is a unique ID identi-
fying the network), and a DODAGVer-
sionNumber. The DODAGVersion-
Number is the current iteration num-
ber of the DODAG. Each node in the
DODAG has an associated rank. An
objective function is used to determine how the nodes should choose their best
parent based on attributes such as rank, DODAGVersionNumber and DIS-
TANCE. Figure 1 illustrates how a network topology can be represented as a
DODAG. The solid arrows in Fig. 1(middle) shows the route towards the root.

Figure 2 shows how nodes may exchange packets to join and form a DODAG
using the physical network in Fig. 1(left), with one root node (root1) and five
non-root nodes (nodes 2–6). The root-node (root1) is a preconfigured node and
is acting as a sink in the network. Figure 2(left) shows the exchange of network
packets, while Fig. 2(right) shows the current DODAG representation of the
connected nodes. The nodes will send discovery requests (DIS messages) with
their current rank and DODAGVersionNumber in attempt to find a DODAG
to join. When a node is part of an RPL instance (has joined a DODAG) it
will respond to incoming discovery requests with a discovery response (DIO
message). The node will then, based on the incoming responses, pick the most
suited parent according to the objective function which is used to calculate the
most favourable parent. The objective function will always favour the parent
with the highest DODAGVersionNumber and select the one with the lowest
rank within that version of the DODAG. If a node gets multiple responses, the
node will choose the parent as described by the objective function. The node
will evaluate the response regardless of whether it already has a parent or not,
and choose the optimal one. This is illustrated in Fig. 2 by node6.

We have constructed a baseline CPN model of RPL based on the IETF spec-
ification. The CPN model reflects how nodes in a network obtain configuration
parameters (DODAGVersionNumber and rank) from neighbouring nodes and
how the nodes choose their parents based on that information. Furthermore, the
CPN model captures how nodes discover that their parents have disconnected.
This is done by sending destination advertisements (DAO messages) explicitly
asking for acknowledgements. The top-level module of the CPN model is shown
in Fig. 3(left). The substitution transition Protocol in Fig. 3(left) is representing
the RPL protocol logic, while the substitution transition LinkLayer represents the
physical network link layer. Figure 3(right) shows the hierarchical organisation
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Fig. 2. Example of nodes forming a new instance of a DODAG.

of the eight modules that constitute the CPN RPL model. The top-level module
RPLNetwork has two submodules: one for the link layer and one for the protocol
logic as shown in Fig. 3(left). The Protocol module contains the behaviour of the
routing protocol and has four submodules that specifies the protocol logic for:
discovering and joining (DISDIO), sending destination advertisements (DAO),
handling acknowledgements (DAOACK), and initial joining and local configura-
tion (StartupandTimeOut). The LinkLayer module represents the link layer and
is responsible for transmitting messages between the nodes and for maintaining
the current physical topology of the network. Below we discuss selected repre-
sentative lower-level modules in order to illustrate the abstraction level of the
model that is to serve as a starting point for the refinement steps.

The protocol module shown in Fig. 4 is comprised of four substitution tran-
sitions for: discovering and joining a DODAG (DISDIO), sending packets con-
taining payload (DAO), acknowledging packets containing payloads (DAOACK),

Fig. 3. The top-level module of CPN model (left) and module hierarchy (right).
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Fig. 4. The Protocol module - submodule of the top-level module in Fig. 3.

and for performing node configuration (StartupandTimeout). The port place Link-
ToRPL is used for incoming packets from the link layer, and RPLToLink is used
for packets being sent to the link layer, i.e., outgoing packets from the node.

The place DodagState represents the information each node currently has
about the DODAG and in which state the node is in. Figure 5 shows the colour
sets defined for modelling nodes and the main states of nodes. A node in our
model is represented as a NetNode (see below) and has a unique identifier. The
NetNode is a product of five colour sets representing: an identification number
(Nodes), a rank (Rank), a version number (DodagVerNum), a parent (Nodes) and a
state (STATE). The enumeration colour set STATE is used for modelling the main
states that the nodes can be in. The CPN model describes three main active
states that a node can be in: JOINING when trying to find and connect to an
existing DODAG; JOINED when currently connected to a DODAG; and WAITING
when connected to a DODAG and waiting for an acknowledgement. The CPN
model encompasses two types of nodes: root nodes and non-root nodes. Both non-
root nodes and root-nodes will start in a booting-state INITNODE and INITROOT,
respectively. A root node will not attempt to discover or rejoin a DODAG as
the root node is a preconfigured entity in the network and will be in the state
ROOTJOINED until disconnected. Being a root-node allows the node to increase
the version number of the DODAG. Non-root nodes will start in the JOINING
state and this will enable them to probe the network to find information about
the current DODAG, and thus allowing them to join.

The colour set PacketType shown in Fig. 6 is used for modelling the packets
exchanged. The colour set represents each of the different types of RPL packets
(messages): DIS, DAO and DAOACK, and DIO. The DIS packet contains no
extra information relevant to the RPL specification and is a constant. DIO and
DAOACK packets contain information about the rank and version number of
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Fig. 5. Colour set definitions for modelling nodes and their state.

the sender. The DAO packets (DAOpack) in addition to this also contain a Data
and an option field Options (not shown). The option field is used to inform the
receiver whether it should respond with a DAOACK or not. The Packet colour
set contains information about the packet and the destination. The destination
can either be a unicast to a single neighbour (DEST(n)) or a multicast to all the
neighbours (DEST(ALL)). The NodexPacket is a product of the colour sets Nodes
and Packet and is used to model packets going over the network with the Nodes
component representing the source of the packet.

Fig. 6. Colour set definitions for modelling the RPL network packets.

The DISDIO module shown in Fig. 7 is the submodule associated with the
DISDIO substitution transition in Fig. 4 and contains logic for obtaining informa-
tion about a DODAG and for joining based on an objective function. The other
submodules specifying protocol logic are similar in complexity and abstraction
level and we therefore concentrate only on the DISDIO module. A node wanting
to join the network (state JOINING) will send a DODAG Information Solicita-
tion (DIS packet) to obtain information about nearby DODAG instances. This is
done by probing the neighbouring nodes in the physical network. When a node is
part of a DODAG (state JOINED) and receives a DIS packet, the node will reply
with a DODAG Information Object (DIO packet). This allows new nodes to
discover existing DODAGs in a network, along with obtaining information and
configuration parameters of the DODAG. When a node is in the state JOINING
the transition SendDISReq will be enabled, and the node will be able to send
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Fig. 7. The DISDIO module

out a DIS request to the network via the place RPLToLink. The packet will then
be broadcast on the link layer to all the neighbouring nodes. Incoming pack-
ets will arrive on the place LinkToRPL. The SendDIOResponse transition models
that when there is an incoming DIS packet, then it will trigger nodes in the
state of JOINED or ROOTJOINED to reply with a DIO packet. The node receiving
the DIS packet will respond with a DIO(rank,ver) packet containing the node
rank and version of a DODAG. When a node receives a DIO response, it will
evaluate the response against the information it already has and determine if
the incoming DIO contains a better suited parent than the current one based on
the objectiveFunction.

3 TinyOS and the nesC Programming Language

TinyOS is a specialised operating system that targets devices with very lim-
ited hardware capabilities such as nodes in sensor networks. TinyOS supports
a wide range of wireless sensor network (WSN) platforms, microprocessors and
peripherals. TinyOS is accompanied with a programming language dialect of C
named nesC which targets the development of software systems with constraints
on processing power and memory usage.

A nesC application for TinyOS consists of a configuration file, components,
and interfaces. Interfacing in nesC is a way of structuring the software architec-
ture of an application. The purpose of the configuration file is to wire (connect)
components using these interfaces. Figure 8 shows the relationship between com-
ponents in a simplified nesC implementation of RPL for TinyOS that we will
use to introduce the basic concepts of our target platform. The squares repre-
sent components, and the triangles represent interfaces. A triangle inside of a
square is an interface that the component is providing, while a triangle outside
of a square represent an interface that the component uses. In this application,
we have four components: MainC provides the Boot-interface used by the appli-
cation as an entry point. The RPLProtocolC component constitutes the main
program and the DAOC and DIOC components implement the processing of the
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Fig. 8. Software architecture of a partial implementation of RPL for TinyOS.

network packets. Compilation of software for the TinyOS platform relies on the
nesC compiler which compiles a collection of nesC files into a single C file. This
C file is then compiled to binary code by a C compiler such as GCC.

The DAOC and DIOC components are handling incoming packets. To be
able to decide on what to do with the incoming packets, these components
need to know which state the node is in which is stored in the RPLProtocolC
component. The packet processing components (DIOC/DAOC) use the NODE
interface that RPLProtocolC provides to access information about the current
state, rank, parent, and DODAGVersionNumber of the node. Figure 9 shows the
basic nesC type definitions needed to represent the state of a node in RPL.

Fig. 9. Example of nesC datatypes for representing nodes and their state.

Components communicate with split-phase events as the application is com-
piled to binary code that typically is used by non-blocking hardware platforms.
This means that the signal that initialises an event completes immediately. When
an invoked function is done processing the request, it sends a callback (signal) to
the components implementing the event-handler. This is implemented in nesC
using the keywords signal and event. To invoke a function from another compo-
nent nesC uses the keyword call. To attach an event-listener, the keyword event
is used, and to trigger an event, the keyword signal is used.

A nesC interface describes events that could occur (and that should be han-
dled) and commands that are available for use. The RPLPacket interface in
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Fig. 10. Example of nesC interfaces.

Fig. 10 defines a function void receive(Packet packet) that takes a packet
as an argument and returns nothing (void). This function will be implemented
in the component providing the interface. The send event defined in the inter-
face will be signalled from the component providing the RPLPacket interface.
Components using the interface will have to implement the event listener for the
void send(packet packet) event, while the component using the interface will
have access to use the function RPLPacket.receive(..) from the component
providing the interface. The NODE interface does not use events. The function
getState() returns a value (State) instead of triggering a callback using sig-
nal. This can be done safely for functionality that do not require complex or
time-consuming operations.

The RPLProtocolC component in Fig. 11 uses two interfaces as shown in
Fig. 8: Boot, which is a standard TinyOS interface that will give a callback
when the device has booted, and RPLPacket (Line 4–5) which is an interface
for sending and receiving packets. The RPLProtocolC component also provides a
simple interface (NODE, Line 2) for accessing the state of the node. The keyword
command defines a function which can have parameters and return a value.

It can be seen that the RPLProtocolC component listens to three events.
The first one is the booted() event (Line 12) triggered by the Boot interface.
This will be triggered when the TinyOS booting process is done. The next two
events are callbacks from the components handling DAO and DIO packets. The
DAO.send(Packet packet) event (Line 16) will be triggered when the DAOC
component signals the send(packet) event. Similarly, the DIO.send(Packet
packet) event (Line 17) will be triggered by the DIOC component.

Wiring is the concept used by nesC to connect the components by describ-
ing which components the interfaces used are connected to. The configuration
file in Fig. 12 specifies how the components of the RPL application in Fig. 8
is wired. The RPLProtocolC is using the Boot interface from the MainC com-
ponent providing callbacks when the booting process is completed (Line 5).
The RPLProtocolC component is also using the two components for processing
RPL packets: the DAOC and DIOC components (Line 6−7). The DAOC and DIOC
components both provide the same interface but are mapped to two different
name spaces in the RPLProtocolC component. The line RPLProtocolC.DAO ->
DAOC.RPLPacket can be read as PRLProtocolC uses the RPLPacket interface
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Fig. 11. RPLProtocolC component - example of a nesC component implementation.

Fig. 12. Configuration file for the simplified RPL protocol implementation.

found in the DAOC component with the local identifying name DAO. DAOC uses the
NODE interface provided by the RPLProtocolC component (Line 8).

4 CPN Model Refinements

The CPN model presented in Sect. 2 was created without detailed prior knowl-
edge of the TinyOS as a target platform. The motivation for this was to keep
the CPN model platform independent in order to give us a stronger indication
on the generality of our refinement approach. The refinement approach that
we have developed consist of five manual steps and makes it possible to use
the resulting refined CPN model to automatically generate the nesC protocol
application for TinyOS. The refinements rely on the use of pragmatics which
are syntactical annotations that are eventually used to direct the code gener-
ation. The pragmatics are in our approach used to describe details related to
the target platform. The pragmatic annotations can be viewed as a subtyping
of CPN model elements and makes the CPN model more expressive in terms of
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linking elements and structure to the target platform. Aligned with [12], we use
<<type (param1, param2,...)>> as the concrete syntax for pragmatics. The
type describes the pragmatics type, and the param describes parameters.

The main elements of the refinement steps are introduced below and illus-
trated on the CPN model of the RPL protocol introduced in Sect. 2.

Step 1: Component Architecture. The first step is to define the architec-
ture of the application by annotating the substitution transitions that represent
TinyOS components, and by inscribing the connected CPN arcs with text speci-
fying which TinyOS interfaces they are using or providing. The top-level module
of the model was shown in Fig. 4 and is comprised of four substitution transitions
with the associated submodules DISDIO, DAO, DAOACK, and StartupandTime-
out modelling the protocol logic. The basic idea underlying the first refinement
step is that both CPN modules and TinyOS components are encapsulating logic,
and for code generation purposes TinyOS components are represented by CPN
submodules. This also aligns well with the wiring of components then being
represented by the socket places connecting the substitution transitions.

We introduce the <<component>> and <<interface>> pragmatics to make
explicit the relationship between a TinyOS component and a CPN module. We
annotate the CPN arcs with text to describe what interfaces each of the compo-
nents are using and providing. This is done by inscribing arcs connected to the
submodules with interface names. Figure 13 shows the result of the first refine-
ment step which affects only the top-level of the CPN model. The substitution
transitions are annotated with the <<component>> pragmatics, and the arcs con-
nected to the substitution transitions are annotated with which interface they
are related to. The arc going from LinkToRPL to DISDIO in Fig. 13 is inscribed
with the parameter INetPacket. This is a representation of the interface that
would be provided by the generated DISDIO TinyOS component.

Step 2: Resolving Interface Conflicts. The first CPN model refinement
allows us to generate the overall structure of the TinyOS application with infor-
mation about the components and how they are connected. However, if the same
interface is used multiple times by a single component there is no way to differ-
entiate between which interface is provided by what component. As an example,
the DISDIO and DAO components in Fig. 13 both provide INetPacket. The sec-
ond issue with interfaces after the first refinement step is that a single component
cannot use multiple instances of a single interface provided by different compo-
nents. As an example, the socket place LinkToRPL connecting the top level of the
CPN model to the protocol submodule is acting as both an external interface
for the CPN network module, and as a local interface for the submodules in
the protocol module. Furthermore, the inscription on the arcs does not specify
whether the interface is used or provided. The second step of the refinement is
to resolve ambiguities in the way interfaces are described.

Figure 14 shows the protocol module after the second step of the refinement.
To resolve the ambiguities where socket places was used as multiple interfaces,
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Fig. 13. Protocol annotated with pragmatics for TinyOS interfaces and components

we add an additional transition Dispatch between the incoming socket place
and the places going into submodules. This effectively splits the original Link-
ToRPL place into two places such that we can differentiate between the externally
received packets (tokens added to the LinkToRPL place), and the packets that
are processed within the application. In order to allow TinyOS components to
use multiple instances of a single interface the as keyword on the arcs allows us
to give interfaces local unique names. The parameters provides and uses make
explicit which interfaces are being used which are being provided.

Figure 15 illustrates the nesC code that can be generated based on the
second refinement step. Line 3 lists the CPN submodules annotated with the
<<component>> pragmatic. The TinyOS wiring reflects the use of interface
aliases, and the wiring in Line 4–6 connects the interfaces provided by DISDIO,
DAO and DAOACK to the Protocol component. Lines 9–11 describes how the
Protocol component uses a single interface with three distinct local names, i.e.,
the interface INetPacket is given a unique alias for each instance. The wiring
specifies how the aliases are mapped to other components.

Step 3: Component and Interface Signatures. The second refinement has
resolved the ambiguities with providing and using multiple interfaces. The third
refinement step introduces types, events and commands to represent the sig-
natures of components and interfaces. The basic idea is to exploit the rela-
tionship between CPN places and TinyOS interfaces. CPN places are used for
moving tokens between CPN submodules and can be viewed as a representation
of TinyOS interfaces. We use the <<interface>> pragmatic to make explicit
the relationship between CPN places and TinyOS interfaces. This means that
we do not need to make the assumption that all connected places are interfaces,
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Fig. 14. Protocol module after the second refinement step.

Fig. 15. Sketch of nesC code generated based on the second refinement step.

and the colour set of a CPN place can be used when generating the interface
signature.

The CPN model that served as a starting point made used of a highly com-
pact modelling approach in which a small number of transitions and places is
used for modelling the behaviour. In particular, a transition executes multiple
actions at once via complex expressions on the outgoing arcs. This is illustrated
by the original DISDIO module in Fig. 7 which contains logic for handling both
DIS and DIO packets. The CPN submodule can receive packets from the Link-
ToRPL place and based on the packet type, it will either send a response by
enabling the SendDIOResponse transition or update the node status by enabling
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Fig. 16. Refined DISDIO module (left) and nesC data types for the interface (right).

the ReceiveDIOResponse transition. The module could also send DIS (the Send-
DISReq transition) requests regardless of it receiving packets or not. In particular,
there is no explicit information in the module on the command and events. In
the third step we therefore also refine the model to encapsulate the logic for
events and commands in individual submodules.

Figure 16(left) shows the DISDIO module after the third refinement step.
Each event is represented as a substitution transition annotated with the
<<event>> pragmatic. The submodules contains the logic associated with the
corresponding event. The arcs describe the relationship to other interfaces, and
the places connected to the submodule describe interface signatures. Figure 17
shows the generated code for the interface provided by the DISDIO component
which uses the data types for the DISDIO interface shown in Fig. 16(right). The
interface contains all the events and commands in a submodule annotated with
the <<event>> or <<command>> pragmatics. Line 1 includes the generated header
file containing the nesC types translated from the colour set of the CPN model.
Line 3 corresponds to the arc between DISDIO and receiveDIO in Fig. 16, and
Line 4 to the arc between DISDIO and receiveDIS.

Step 4: Component Classification. The fourth step classifies component
types into components that should be executed at boot (startup) time, timed
components representing tasks to be executed at a given interval, external com-
ponents, dispatch components that parse network packets, and regular compo-
nents triggered by event or command invocation. The classification is specified
using a parameter on the component pragmatic. Figure 18 shows the refined
protocol module with the component classification added. In the refined CPN

Fig. 17. Generated nesC interface signature with data types for the DISDIO module.
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Fig. 18. The protocol module after the fourth refinement step.

model, the Startup component annotated with the boot parameter contains logic
for deciding if the node should boot as a root-node or as a regular node. The
timed component TimedEvents in the refined CPN model has functionality for
periodically sending DIS and DAO packets, for increasing the DODAG version
number, and logic for timing out while waiting for DAO acknowledgements. The
components annotated with <<component (external)>> are components that
will not be generated by the code generator, but which are being provided by
existing TinyOS libraries on the platform. The Dispatch component is assigned
to be a dispatcher for network packets. The dispatcher is an interface towards
the external network, and receives the network packets and signals the correct
component based on which type of packet is received.

Step 5: Internal Behaviour. The final step refines the internal behaviour of
the individual commands and event handlers of components. We introduce prag-
matics to describe the control flow. By having a single token move between places
representing control-flow locations, we are able to obtain a clearly identifiable
control flow that can be exploited for code generation purposes.

Figure 19 shows the refined receiveDIO event. The ReceiveDIO event module is
a refinement of the ReceiveDIO transition in Fig. 16. Using the <<ID>> pragmatic,
we obtain a clearly identifiable path of execution. The initial place of the control
flow, Idle, is identifiable by having an initial marking (()). The token is moved
down through the path of places annotated with the <<ID>> pragmatic. We use
the <<invoke>> pragmatic to describe the signature of the event or command,
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Fig. 19. Refined control-flow oriented modelling of the ReceiveDIO event module.

and the <<var>> pragmatic on places representing local variables accessed by
transitions representing the control flow.

5 Code Generation and Initial Validation

We have implemented a nesC code generator that takes a CPN model refined
according to the five steps in Sect. 4 as input. The code generator is implemented
in Java and uses the Access/CPN framework [15] for parsing the CPN model.
We outline the central elements of the code generation below.

Data Types. The colour sets used in the CPN model are mapped into equiva-
lent nesC data types. The atomic data types UNIT, BOOL, INT and STRING colour
sets are mapped directly into equivalent nesC data types. Enumeration colour
sets are also translated directly. Structured colour sets (product, union, and
records) are mapped into nesC structs while lists are mapped into nesC arrays.

Interfaces. The nesC interfaces are generated based on the places annotated
with the <<interface>> pragmatic. As an example, the protocol module in
Fig. 18 has the interface place DISDIO and an outgoing arc to the DISDIO sub-
stitution transition which specifies that it provides this interface. The code gen-
erator then uses the command and events specified inside this component (see
Fig. 16) to automatically generate the interface signature (see Fig. 17).



Transforming CPN Models into Code for TinyOS 151

Fig. 20. Generated code for the DISDIO component.

Components. Components are generated based on the substitution transitions
annotated with the <<component>> pragmatic and the connected arcs which
specifies the interfaces that the component uses and provides. As an example,
Fig. 20 shows the code generated for the DISDIO component in Fig. 18 which
provides the DISDIO interface and uses the State and NetSend interfaces.

Configuration and Wiring. The wiring of component and interfaces is gen-
erated based on the substitution transitions annotated with the <<component>>
pragmatic and the arcs specifying the interfaces used which are mapped against
the component proving the respective interfaces. Figure 21 shows the generated
wiring. Line 3 lists the components in the application, and lines 5-12 show how
the components are using interfaces, and which components that are providing
the used interfaces.

Command and Event Behaviour. The implementation of the event and
command behaviour are obtained from the corresponding module (e.g., Fig. 19)
where pragmatics are used to separate the control-flow from variable updates
and method invocation. The code generation is based on representing the control

Fig. 21. Generated configuration file for the wiring of components and interfaces.
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flow location as a state machine and the use of code generation templates for
method invocation, variable assignment, interface invocation, variable access,
and method return. Figure 22 shows part of the generated nesC code for the
receiveDIO event (Fig. 19).

Fig. 22. Part of the code generated for the receiveDIO event.

To perform an initial validation of the implementation produced by the code
generation we have used the TOSSIM simulation framework [1]. TOSSIM is a
simulator for TinyOS with virtual sensor nodes capable of executing code with-
out having to install the code onto a physical device. The TOSSIM framework
supports the construction of simulation scenarios that captures changes in the
network topology (via the creation and deletion of network links) and packet
loss. TOSSIM also allows us to simulate the booting sequence of nodes run-
ning the TinyOS application. After defining the topology, the noise models and
the booting sequences, we are able to simulate network nodes in the TOSSIM
TinyOS environment. We simulate events in the environment by calling the
runNextEvent() method of the TOSSIM environment as shown in Fig. 23.

Fig. 23. Simulating the behaviour of nodes in the network.

We validated the generated code by logging the events taking place in the
generated code using debug channels. The resulting log files were then inspected
and validated against the expected sequence of events for the simulated scenario.
Figure 24 shows how we use the dbg(CHAN, msg) method to create debug chan-
nels that allow us to log events and behaviour. In Line 3, we add a debug channel
called state that will be invoked when the nesC method DODAG.setState(...)
is called during simulation.
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Fig. 24. Use of event-logging in the protocol component.

As an example, given a scenario where the nesC program boots and a node
changes state from 0 (INITNODE) to 2 (JOINING) the event log file would contain
the following two lines:

DEBUG (0): 0:0:0.0000000300 RPL | Application booted.
DEBUG (0): 0:0:0.0000000300 RPL | State change: 0 -> 2.

The DEBUG (0) indicates that the identifier of the node invoking the dbg()
method is 0. The information following is the time of invocation (0000000300)
and the debug message (RPL | Application booted).

6 Summary and Conclusions

We have suggested an approach based on pragmatics [12] that enables nesC
code for the TinyOS platform to be generated from a CPN model of the appli-
cation design. The approach consists of five manual refinement steps followed
by automatic code generation. The main benefit offered by this approach is that
it enables verification of the application model prior to code generation, and
model construction efforts can be leveraged to obtain an implementation. Our
case study of the RPL protocol has demonstrated the feasibility of our approach
and included an initial validation of the generated code via event logging.

A detailed comparison between pragmatic-based code generation and other
code generation approaches for high-level Petri nets [4–6,8,9] has already been
provided in [11]. The original pragmatic-based approach to protocol software
generation [12] was based on a platform-independent set of pragmatics that
could be used for any target platform. This came at the price of restricting the
class of CPN models that can be used for code generation. We found that the
class of CPNs considered [12] was not well-suited for the TinyOS programming
model and that it would be beneficial to start from more abstract application
design models. We have therefore suggested a set of platform-specific pragmatics
with five manual refinements steps that can serve as a basis for code generation.

There are two main directions for future work. Our refinement steps are
currently only informally specified and one direction of future work is to develop
formal meta-models for the intermediate models produced by the refinement
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steps. Another direction is automatic validation of the generated code. This will
involve: (1) verification of the intermediate models in the refinement steps to
check that desired behavioural properties are preserved; and (2) model-based
test case derivation to overcome the limitations of manual inspection of event-
logs as performed in this paper for the initial validation of the implementation.
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Abstract. This paper considers realizability of schedules by stochastic
concurrent timed systems. Schedules are high level views of desired exe-
cutions represented as partial orders decorated with timing constraints,
while systems are represented as elementary stochastic time Petri nets.
We first consider logical realizability: a schedule is realizable by a net N
if it embeds in a time process of N that satisfies all its constraints. How-
ever, with continuous time domains, the probability of a time process
that realizes a schedule is null. We hence consider probabilistic realiz-
ability up to α time units, that holds if the probability that N logically
realizes S with constraints enlarged by α is strictly positive. Upon a
sensible restriction guaranteeing time progress, logical and probabilistic
realizability of a schedule can be checked on the finite set of symbolic
prefixes extracted from a bounded unfolding of the net. We give a con-
struction technique for these prefixes and show that they represent all
time processes of a net occurring up to a given maximal date. We then
show how to verify existence of an embedding and compute the proba-
bility of its realization.

1 Introduction

Correct scheduling of basic operations in automated systems (manufacturing
or transport systems,...) is a way to manage at best available resources, avoid
undesired configurations, or achieve an objective within a bounded delay. Follow-
ing a predetermined schedule is also a way to meet QoS objectives. For instance,
changes to predetermined schedules in metro networks may cause congestion and
reduce QoS. Schedules provide high-level views for correct ordering of important
operations in a system, consider time issues and provide optimal dates for a
production plan. They can be seen as partial orders among basic tasks, deco-
rated with dates and timing constraints, that abstract low-level implementation
details.

Designing a correct and optimal schedule for a system is a complex problem.
Occurrence dates of events can be seen as variables, and correct and optimal
schedules as optimal solutions (w.r.t. some criteria) for a set of constraints over
these variables. Linear programming solutions have been proposed to optimize
scheduling in train networks [8,9]. The size of models for real systems that run for
a full day call for approximated solutions usually provided by experts. When a
c© Springer International Publishing Switzerland 2016
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high-level schedule and the low-level system that implements it are designed in a
separate way, nothing guarantees that the system is able to realize the expected
schedule. This calls for tools to check realizability of a schedule by a system.
One can notice that optimal and realizable schedules are not necessarily robust
if they impose tight realization dates to systems that are subject to random
variations (delays in productions, faults. . . ). In metro networks, trains delays
are expected and are part of the normal behavior of the system. To overcome
this problem, metro schedules integrate small recovery margins that avoid the
network performance to collapse as soon as a train is late. Note also that for
systems where time issues are defined with continuous variables, the probability
to execute a given event at a precise date is zero. Furthermore, being able to
realize a schedule does not mean that the probability to meet optimal objectives
is high enough. Beyond logical realizability, a schedule shall hence be considered
as realizable if it can be approached with a significant probability.

This paper addresses realizability of schedules by stochastic timed systems.
We define schedules as labeled partial orders decorated with dates and tim-
ing constraints, and represent systems with elementary stochastic time Petri
nets (STPN for short), a model inspired from [13]. We particularly emphasize
on resources: non-availability of a resource (represented by a place) may block
transitions. This leads to the definition of a blocking semantics for STPNs that
forbids firing a transition if one of its output places is filled. We then propose a
notion of realizability: a schedule S is realizable by an STPN N if S embeds in
a symbolic process of N that meets constraints of S. We prove that upon some
reasonable time progress assumption, realizability can be checked on a finite set
of symbolic processes, obtained from a bounded untimed unfolding [12,16] of N .
Symbolic processes are processes of the unfolding with satisfiable constraints on
occurrence dates of events. A symbolic framework to unfold time Petri nets was
already proposed in [4,6] but blocking semantics brings additional constraints on
firing dates of transitions. Embedding of a schedule in a process of N only guar-
antees logical realizability: the probabilty of a time process in which one event is
forced to occur at a precise date is 0. We use transient analysis of STPNs [13] to
compute the probability that a schedule is realized by a symbolic time process
of N up to an imprecision of δ. This allows to show that N realizes S ± δ with
strictly positive probability, and then define a notion of probabilistic realizability.

The paper is organized as follows: Sect. 2 introduces schedules and our variant
of stochastic time Petri nets with blocking semantics. Section 3 defines a notion of
symbolic processes. Section 4 shows how to verify that a schedule is compatible
with at least one process of the system and measure the probability of such
realization. Due to lack of space, proofs and several technical details are provided
in an extended version available at hal.inria.fr/hal-01284682.

2 Schedules and Stochastic Time Petri Nets

A schedule describes causal dependencies among tasks, and timing constraints
on their respective starting dates. Schedules are defined as decorated partial
orders. We allow timing constraints among tasks that are not causally related.

https://hal.inria.fr/hal-01284682
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Definition 1 (Schedule). A schedule over a finite alphabet A is a quadruple
S � 〈N,→, λ, C〉 where N is a set of nodes, → ⊆N ×N is an acyclic precedence
relation, λ : N → A is a labeling of nodes, and C : N × N � Q>0 is a partial
function that associates a time constraint to pairs of nodes. A dating function
for a schedule S is a function d : N → Q≥0 that satisfies all constraints of C and
→: 〈n, n′〉 ∈→ implies d(n′) ≥ d(n), and C(n, n′) = x implies d(n′) − d(n) ≥ x.

This model for schedules is inspired from [8,9]. Intuitively, if C(n, n′) =
x, then n′ cannot occur earlier than x time units after n, and if 〈n, n′〉 ∈ →,
then n (causally) precedes n′. Constraints model the minimal times needed to
perform tasks and initiate the next ones in production cells, the times needed
for trains to move from a station to another, etc. A schedule S is consistent
if the graph 〈N,→ ∪ {〈n, n′〉 | C(n, n′) is defined}〉 does not contain cycles.
Obviously, consistent schedules admit at least one dating function. A frequent
approach is to associate costs to dating functions and to find optimal functions
that meet a schedule. A cost example is the earliest completion date. Optimizing
this cost amounts to assigning to each node the earliest possible execution date.
However, these optimal schedules are not the most probable ones. For the earliest
completion date objective, if an event n occurs later than prescribed by d, then
all its successors will also be delayed. In real systems running in an uncertain
environment (e.g., with human interactions or influenced by weather conditions),
tight timings are impossible to achieve. Finding a good schedule is hence a trade-
off between maximization of an objective and of the likelihood to stay close to
optimal realizations at runtime.

We want to check whether a consistent schedule S with its dating function d
can be realized by a system. Systems are described with a variant of Petri nets
with time and probabilities, namely stochastic time Petri nets [13]. We will show
how to check that (S, d) is realizable by an STPN N , and then how to measure
the probability that (S, d) is realized by N . Roughly speaking, an STPN is a time
Petri net with distributions on firing times attached to transitions. As for Petri
nets, the semantics of our model moves tokens from the preset of a transition to
its postset. The time that must elapse between enabling of a transition and its
firing is sampled according to the distribution attached to the transition. The
major difference with [13] is that we equip our STPNs with a blocking semantics.
Due to blockings, stochastic time Petri nets are safe (1-bounded). This semantics
restriction is justified by the nature of the systems we address: in production
chains, places symbolize tools that can process only one item at a time. Similarly,
when modeling train networks, an important security requirement is that two
trains cannot occupy the same track portion, which can only be implemented
with such a blocking semantics. Standard time or stochastic Petri nets do not
assume a priori bounds on their markings. A way to force boundedness is to add
complementary places to the original Petri net and then study it under the usual
semantics [7]. However, this trick does not allow to preserve time and probability
issues in STPNs with blockings.

For simplicity, we only consider closed intervals of the form [a, b] with a < b
and open intervals of the form [a,+∞). A probability density function (PDF)
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for a continuous random variable X is a function fX : R → [0, 1] that describes
the relative likelihood for X to take a given value. Its integral over the domain
of X is equal to 1. A cumulative distribution function (CDF) FX : R → [0, 1]
for X describes the probability for X to take a value less than or equal to a
chosen value. We denote by Σpdf the set of PDFs, Σcdf the set of CDFs, and we
only consider PDFs for variables representing durations, i.e., whose domains are
included in R≥0. The CDF of X can be computed from its PDF as FX(x) =∫ x

0
fX(y) dy. A marking is a function that assigns 0 or 1 token to each place

p ∈ P .

Definition 2 (Stochastic Time Petri Net). A stochastic time Petri net
(STPN for short) is a tuple N = 〈P, T,•(), ()•,m0, eft, lft,F ,W〉 where P is a
finite set of places; T is a finite set of transitions; •() : T → 2P and ()• : T → 2P

are pre and post conditions depicting from which places transitions consume
tokens, and to which places they output produced tokens; m0 : P → {0, 1} is the
initial marking of the net; eft : T → Q≥0 and lft : T → Q≥0 ∪{+∞} respectively
specify the minimum and maximum time-to-fire that can be sampled for each
transition; and F : T → Σpdf and W : T → R>0 respectively associate a PDF
and a strictly positive weight to each transition.

For a given place or transition x ∈ P ∪ T , •x will be called the preset of
x, and x• the postset of x. We denote by ft the PDF F(t), and by Ft the
associated CDF. To be consistent, we assume that for every t ∈ T , the support
of ft is [eft(t), lft(t)]. This syntax of STPNs is similar to [13], but we equip them
with a blocking semantics, defining sequences of discrete transition firings, and
timed moves. We will say that a transition t is enabled by a marking m iff
∀p ∈ •t,m(p) = 1. We denote by enab(m) the set of transitions enabled by a
marking m.

For a given marking m and a set of places P ′, we will denote by m − P ′ the
marking that assigns m(p) tokens to each place p ∈ P \P ′, and m(p)−1 tokens to
each place p ∈ P ′. Similarly, we will denote by m + P ′ the marking that assigns
m(p) tokens to each place p ∈ P \ P ′, and m(p) + 1 tokens to each place p ∈ P ′.
Firing a transition t is done in two steps and consists in: (1) consuming tokens
from •t, leading to a temporary marking mtmp = m − •t, then (2) producing
tokens in t•, leading to a marking m′ = mtmp + t•.

The blocking semantics can be informally described as follows. A variable
τt is attached to each transition t of the STPN. As soon as the preset of a
transition t is marked, τt is set to a random value ζt (called the time-to-fire of
t, or TTF for short) sampled from [eft(t), lft(t)] according to ft. We will assume
that every CDF Ft is strictly increasing on [eft(t), lft(t)], which allows to use
inverse transform sampling to choose a value (see for instance [17] for details).
Intuitively, this TTF represents a duration that must elapse before firing t once
t is enabled. The value of τt then decreases as time elapses but cannot reach
negative values. When the TTF of a transition t reaches 0, then if t• is empty in
mtmp, t becomes urgent and has to fire unless another transition with TTF 0 and
empty postset fires; otherwise (if t• is not empty in mtmp), t becomes blocked : its
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TTF stops decreasing and keeps value 0, and its firing is delayed until the postset
of t becomes empty; in the meantime, t can be disabled by the firing of another
transition. The semantics of STPNs is urgent : time can elapse by durations that
do not exceed the minimal remaining TTF of enabled transitions that are not
blocked. If more than one transition is urgent, then the transition that fires is
randomly chosen according to the respective weights of urgent transitions. We
formalize the semantics of STPNs in terms of discrete and timed moves between
configurations that memorize markings and TTFs for enabled transitions.

Definition 3 (Configuration of an STPN). A configuration of an STPN is
a pair CN � 〈m, τ〉 where m is a marking, and τ : enab(m) → R≥0 is a function
that assigns a positive real TTF τi � τ(ti) to each transition ti enabled by m. A
transition t is enabled in a configuration 〈m, τ〉 iff it is enabled by m.

Definition 4 (Firable and Blocked Transitions). A transition t is firable
in 〈m, τ〉 iff it is enabled by m, all places of its postset are empty in m −•t, and
its TTF is equal to 0. We denote by fira(〈m, τ〉) the set of firable transitions of
〈m, τ〉. A transition t is blocked in 〈m, τ〉 iff it is enabled by m, its TTF τ(t)
is equal to 0, and one of its postset places is marked in m − •t. We denote by
blck(〈m, τ〉) the set of blocked transitions in 〈m, τ〉.

Timed Moves: A timed move 〈m, τ〉 δ−→ 〈m, τ ′〉 lets a strictly positive duration
δ elapse. To be allowed, δ must be smaller or equal to all TTFs of transitions
enabled by m and not yet blocked. The new configuration 〈m, τ ′〉 decreases TTFs
of every enabled and non-blocked transition t by δ time units (τ ′(t) = τ(t) − δ).
Blocked transitions keep a TTF of 0, and m remains unchanged.
Discrete Moves: A discrete move 〈m, τ〉 t−→ 〈m′, τ ′〉 consists in firing a tran-
sition t from a configuration 〈m, τ〉 to reach a configuration 〈m′, τ ′〉. Discrete
moves change the marking of a configuration, and sample new times to fire for
transitions that become enabled after the move. To define the semantics of dis-
crete moves, we first introduce newly enabled transitions.

Definition 5 (Newly Enabled Transitions). Let m be a marking and t a
transition enabled by m. A transition t′ is newly enabled after firing of t from
m iff it is enabled by marking m′ = (m −•t) + t• and either it is not enabled by
m−•t or t′ = t. We denote by newl(m, t) � enab(m′)∩({t} ∪ (T \ enab(m −•t)))
the set of transitions newly enabled by firing of t from m.

The transition t fired during a discrete move is chosen among all firable
transitions of 〈m, τ〉. The new marking reached is m′ = (m − •t) + t•, and τ ′ is
obtained by sampling a new TTF for every newly enabled transition and keeping
unchanged TTFs of transitions already enabled by m and still enabled by m′.

Complete operational rules for STPN moves can be found in the extended
version. We will write 〈m, τ〉 → 〈m′, τ ′〉 iff there exists a timed or discrete move
from 〈m, τ〉 to 〈m′, τ ′〉, and 〈m, τ〉 ∗−→ 〈m′, τ ′〉 iff there exists a sequence of moves
leading from 〈m, τ〉 to 〈m′, τ ′〉. An initial configuration for N is a configuration
〈m0, τ0〉 where τ0 attaches a sampled TTF to each transition enabled by m0.
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Fig. 1. (a) An example STPN N1 and (b) a time process of N1

Consider the STPN N1 of Fig. 1, and suppose that N1 is in configuration
〈m, τ〉, with m(p1) = 1, m(p2) = m(p3) = 0, τ(t1) = 5.5. From this config-
uration, one can let 5.5 time units elapse, and then fire t1. After this firing,
the STPN reaches marking m′ with m′(p1) = m′(p2) = 1, m′(p3) = 0. New
TTFs d1, d2 are sampled for t1, t2, leading to a configuration 〈m′, τ ′〉, where
τ ′(t1) = d1 and τ ′(t2) = d2. Let us suppose that d1 = 1.5 and d2 = 2.6. Then
one can let 1.5 time units elapse, but after this timed move, transition t1 cannot
fire, as place p2 contains a token. N1 is hence in a configuration 〈m′, τ ′′〉, where
τ ′′(t1) = 0, τ ′′(t2) = 1.1, and t1 is blocked. After letting 1.1 time units elapse,
transition t2 can fire, leading to marking m′′(p1) = m′′(p3) = 1,m′′(p2) = 0, and
t1 immediately fires at the same date.

Let us now assign probabilities to STPN moves. Randomness in STPNs
semantics mainly comes from sampling of TTFs. However, when several transi-
tions are firable from a configuration, weights are used to determine the prob-
ability for a transition to fire first. Timed moves are achieved with probability
1: once TTFs are set, there is a unique configuration allowing discrete moves.
In a move 〈m, τ〉 t−→ 〈m′, τ ′〉, m′ is built deterministically, but τ ′ is obtained by
sampling a random value ζt for each newly enabled transition t. Each ζt is chosen
according to CDF Ft, i.e., we have P(ζt ≤ x) = Ft(x) (for any x ∈ [eft(t), lft(t)]).
When more than one transition is firable from 〈m, τ〉, the transition that fires is
randomly chosen, and each transition tk in fira(〈m, τ〉) has a probability to fire
Pfire(tk) = W(tk)

/ ∑
ti∈fira(〈m,τ〉) W(ti). Note that, as STPNs have continuous

probability laws, the probability to choose a particular value ζt is the probabil-
ity of a point in a continuous domain and is hence null. However, in the next
sections, we will consider probabilities for events of the form τ(ti) ≤ τ(tj), which
may have strictly positive probability.

STPNs define sequences of moves ρ = (〈m, τ〉 ei−→ 〈m′, τ ′〉)i∈1...k, where ei is a
transition name in discrete moves and a real value in timed moves. Leaving prob-
abilities for the moment, STPNs can also be seen as generators for timed words
over T . A timed word over an alphabet A is a sequence 〈a1, d1〉 . . . 〈aq, dq〉 . . .
in (A × R≥0)∗, where each ai is a letter from A, each di defines the occurrence
date of ai, and d1, . . . , dq is an increasing sequence of positive real numbers.
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Letting i1, . . . , iq denote the indices of discrete moves in ρ, we can build a timed
word uρ = 〈ai1 , d1〉 . . . 〈aiq , dq〉 ∈ (T × R≥0)q that associates dates to transitions
firings, where d1 =

∑
j<i1

ej , and dj = dj−1 +
∑

ij−1<k<ij
ek for j ∈ {2, . . . , q}.

The timed language of an STPN N is the set L(N ) of timed words associated
with its sequences of moves. We denote by L≤D(N ) the set of words in L(N )
whose maximal date is lower than D.

As already highlighted in [2] for TPNs, timed languages give a sequen-
tial and interleaved view for executions of inherently concurrent models. A
non-interleaved semantics can be defined using time processes, i.e., causal nets
equipped with dating functions. We recall that causal nets are finite acyclic nets
of the form CN � 〈B,E,•(), ()•〉, where for every b ∈ B, |b•| ≤ 1 and |•b| ≤ 1.
Intuitively, a causal net contains no conflict (pairs of transition with common
places in their presets) nor place receiving tokens from more than one transition.

Definition 6 (Time Process). A time process is a tuple TP � 〈CN, θ〉, where
CN � 〈B,E,•(), ()•〉 is a causal net, and θ : E → R≥0 associates a positive real
date to transitions of the net, and is such that ∀e, e′ ∈ E with e•∩•e′ 
= ∅ we have
θ(e) ≤ θ(e′). In time processes, places in B are called conditions, and transitions
in E are called events. The depth of a time process is the maximal number of
events along a path of the graph 〈B ∪ E,•() ∪ ()• 〉. We will write e ≺ e′ iff
e•∩•e′ 
= ∅, and denote by � the transitive and reflexive closure of ≺.

Intuitively, conditions in B represent occurrences of places fillings, and events
in E are occurrences of transitions firings. Given an STPN N , for every timed
word u = 〈a1, d1〉 . . . 〈an, dn〉 in L(N ), we can compute a time process TPu =
〈B,E,•(), ()•, θ〉. The construction described below is the same as in [2]. It does
not consider probabilities and, as the construction starts from an executable
word, it does not have to handle blockings either. To differentiate occurrences
of transitions firings, an event will be defined as a pair e � 〈X, t〉, where t is the
transition whose firing is represented e and X is the set of conditions it consumes.
Similarly, a condition is defined as a pair b � 〈p, e〉, where p is the place whose
filling is represented by b, and e is the event whose occurrence created b.

We denote by tr(e) the transition t attached to an event e, and by pl(b)
the place p associated with a condition b. The flow relations are hence implicit:
•e = {b | e = 〈X, t〉∧b ∈ X}, and similarly e•= {b | b = 〈p, e〉}, and for b = 〈p, e〉,
•b = e and b• = {e ∈ E | b ∈ •e}. We will then drop flow relations and simply
refer to time processes as triples TP � 〈B,E, θ〉. The time process TPu obtained
from a timed word u = 〈t1, d1〉〈t2, d2〉 . . . 〈tk, dk〉 ∈ L(N ) is built inductively as
follows. We assume a dummy initial event ⊥ that initializes the initial contents
of places according to m0. We start from the initial process TP0 = 〈B0, E0, θ0〉
with a set of conditions B0 = {(p,⊥) | p ∈ m0}, a set of events E0 = {⊥}, and
a function θ0 : {⊥} → {0}.

Let TPu,i = 〈Bi, Ei, θi〉 be the time process built after i steps for the prefix
〈t1, d1〉 . . . 〈ti, di〉 of u, and let 〈t, di+1〉 be the (i + 1)th entry of u. We denote
by last(p,Ei, Bi) the last occurrence of place p in TPu,i, i.e., the only condition
b = 〈p, e〉 with an empty postset. Then, we have Ei+1 = Ei∪{e}, where e = 〈t,X〉
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with X = {b | b = last(p,Ei, Bi) ∧ p ∈ •t} and Bi+1 = Bi ∪ {〈p, e〉 | p ∈ t•}. We
also set θ(e) = di+1. The construction ends with TPu = TPu,|u|.

Figure 1(b) is an example of a time process for STPN N1. In this exam-
ple, event tji (resp. condition pj

i ) denotes the jth occurrence of transition
ti (resp. place pi). This time process corresponds to the time word u =
〈t1, 5.5〉〈t2, 8.1〉〈t1, 8.1〉 ∈ L(N1). It contains causal dependencies among transi-
tions (e.g., from t11 to t12). Event t21 cannot occur before t12 as t1 cannot fire as
long as place p2 is filled. However, this information is not explicit in the process.
The timed language L(N ) of a TPN can be reconstructed as the set of lineariza-
tions of its time processes. In these linearizations, ordering of events considers
both causality and dates of events: e must precede e′ 
= e in a linearization of
a process if θ(e) < θ(e′) or if e � e′. With blocking semantics, some causality
and time-preserving interleavings may not be valid timed words of L(N ): in the
process of Fig. 1(b), t21 cannot occur before t12, even if both transitions have the
same date. A correct ordering among events with identical dates in a process
TPu can however be found by checking that a chosen ordering does not prevent
occurrence of other transitions.

3 Unfolding of STPNs

A time process emphasizes concurrency but only gives a partial order view of a
single timed word. Many time processes of N1 have the same structure as the
process of Fig. 1(b), but different dating functions. Indeed, there can be uncount-
ably many time processes with identical structure, but different real dates. It is
hence interesting to consider symbolic (time) processes, that define constraints
on events dates instead of exact dates. Similarly, to avoid recomputing the struc-
tural part of each symbolic process, we will work with unfoldings, i.e., structures
that contain all symbolic processes of an STPN, but factorize common prefixes.
Symbolic unfoldings were introduced for TPNs in [18] and used in [5]. In this
section, we show how to unfold STPNs with blockings and extract symbolic
processes out of this unfolding. Our aim is to find the minimal structure that
represents prefixes of all symbolic processes that embed a schedule of known
duration. We show that if a system cannot execute arbitrary large sets of events
without progressing time, unfolding up to some bounded depth is sufficient.

Definition 7 (Time Progress). An STPN N guarantees time progress iff
there exists δ ∈ Q>0 such that ∀t ∈ T, i ∈ N, and for every time word
u = 〈t1, d1〉 . . . 〈ti, θ1〉 . . . 〈ti+1, θ2〉 . . . 〈tk, dk〉 ∈ L(N ) where ti denotes the ith

occurrence of t, we have θ2 − θ1 ≥ δ.

Time progress is close to non-Zenoness property, and is easily met (e.g., if no
transition has an earliest firing time of 0). Any execution of duration Δ of an
STPN that guarantees time progress is a sequence of at most |T |·�Δ

δ � transitions.
As in processes, unfoldings will contain occurrences of transitions firings (a

set of events E), and occurrences of places fillings (a set of conditions B). We
associate to each event e ∈ E positive real valued variables doe(e), dof(e) and
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θ(e) that respectively define the enabling, firability and effective firing date of
the occurrence of transition tr(e) represented by event e. Similarly, we associate
to each condition b positive real valued variables dob(b) and dod(b) that respec-
tively represent the date of birth of the token in place pl(b), and the date at
which the token in place pl(b) is consumed. We denote by var(E,B) the set
of variables

⋃
e∈E doe(e) ∪ dof(e) ∪ θ(e) ∪ ⋃

b∈B dob(b) ∪ dod(b) (with values in
R≥0). A constraint over var(E,B) is a boolean combination of atoms of the form
x 
� y, where x ∈ var(E,B), 
� ∈{<,>,≤,≥} and y is either a variable from
var(E,B) or a constant value. A set of constraints C over a set of variables V is
satisfiable iff there exists at least one valuation v : V → R such that replacing
each occurrence of each variable x by its valuation v(x) yields a tautology. We
denote by Sol(C) the set of valuations that satisfy C.

Definition 8 (Unfolding). A (structural) unfolding of an STPN N is a pair
U � 〈E,B〉 where E is a set of events and B a set of conditions.

Unfoldings can be seen as processes with branching. As for processes, each
event e ∈ E is a pair e = 〈•e, tr(e)〉 where •e ⊆ B is the set of predecessor
conditions of e (the conditions needed for e to occur). A condition b ∈ B is a
pair b � 〈•b, pl(b)〉 where •b ⊆ E is the predecessor of b, i.e., the event that created
condition b. We assume a dummy event ⊥ that represents the origin of the initial
conditions in an unfolding. Function •(), ()•, pl() and tr() keep the same meaning
as for time processes. The main change between processes and unfoldings is that
conditions may have several successor events. Using relations ≺ and � as defined
for processes, we define the causal past of e ∈ E as ↑e � {e′ ∈ E | e′ � e}. A set
of events E′ ⊆ E is causally closed iff ∀e ∈ E′, ↑ e ⊆ E′. We extend this notion
to conditions. Two events e, e′ are in conflict, and write e�′e, iff •e ∩•e′ 
= ∅. A
set of events E′ ⊆ E is conflict free if it does not contain conflicting pairs of
events. Two events e, e′ are competing iff tr(e)•∩ tr(e′)• 
= ∅ (they fill a common
place).

Definition 9 (Pre-processes of an Unfolding). A pre-process of a finite
unfolding U = 〈E,B〉 is a pair 〈E′, B′〉 such that E′ ⊆ E is a maximal (i.e.,
there is no larger pre-process containing E′, B′), causally closed and conflict free
set of events, and B′ = •E′ ∪ E′•. PE(U) denotes the set of pre-processes of U .

We say that a condition b ∈ B is maximal in U = 〈E,B〉 or in a pre-process
of U when it has no successor event (b• = ∅), and denote the set of maximal
conditions of B by max(B). As for time processes construction, given a finite
pre-process 〈E′, B′〉 ∈ PE(U), and a place p of the considered STPN, we denote
by last(p,E′, B′) the maximal occurrences of place p w.r.t. ≺ in 〈E′, B′〉. A cut
of a pre-process is an unordered set of conditions. We denote by Cuts(E,B) the
set of cuts of pre-process 〈E,B〉.

Unfolding an STPN up to depth K is performed inductively, without consid-
ering time. We will then use this structure to find processes. Timing issues will
be considered through addition of constraints on occurrence dates of events.
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Structural Unfolding: Following [12], we inductively build unfoldings
U0, . . . ,UK . Each step k adds new events at depth k and their postset to the
preceding unfolding Uk−1. We start with the initial unfolding U0 � 〈∅, B0〉
where B0 = {〈⊥, p〉 | p ∈ m0}. Each induction step that builds Uk+1 from
Uk adds new events and conditions to Uk as follows. Letting Uk = 〈Ek, Bk〉
be the unfolding obtained at step k, we have Uk+1 = 〈Ek ∪ Ê, Bk ∪ B̂〉 where
Ê � {〈B, t〉 ∈ (2Bk × T ) \ Ek | ∃〈X,Y 〉 ∈ PE(Uk), B ⊆ Cuts(X,Y ),•t = pl(B)},
and B̂ � {〈e, p〉 ∈ Ê × T | e = 〈B, t〉 ∈ Ê ∧ p ∈ t•}. Intuitively, Ê adds an occur-
rence of a transition if its preset is contained in the set of conditions representing
the last occurrences of places contained in some pre-process of Uk, and B̂ adds
the conditions produced by Ê.

The structural unfolding of an STPN does not consider timing issues nor
blockings. Hence, an (untimed) pre-process of PE(UK) need not be the untimed
version of a time process obtained from a word in L(N ). Indeed, urgent transi-
tions can forbid firing of other conflicting transitions. Similarly, blockings prevent
an event from occurring as long as a condition in its postset is filled. They may
even prevent events in a pre-process from being executed if a needed place is
never freed. We will show later that, once constrained, time processes of N are
only prefixes of pre-processes in PE(UK) with associated timing function. To
introduce timing aspects, we now attach constraints on events and conditions of
pre-processes as follows:

Constraints: Let UK = 〈EK , BK〉 be the unfolding of an STPN N up to depth
K, and let E ⊆ EK be a conflict free and causally closed set of events, and
B = •E ∪ E• (B is contained in BK). We define ΦE,B as the set of constraints
attached to events and conditions in E,B, assuming that executions of N start
at a fixed date d0. Constraints must be set to guarantee that occurrence dates
of events are compatible with the earliest and latest firing times of transitions
in N , and that urgency or blocking is never violated. Let us first define the
constraints associated with each condition b = 〈e, p〉. Recalling that variable
dob(b) represents the date at which condition b is created, ΦE,B must impose
that for every b ∈ B0, dob(b) = d0.

For all other conditions b = 〈e, p〉, as the date of birth is exactly the occur-
rence date of e, we set dob(b) = θ(e) for every b = 〈e, p〉. Despite this equality,
we will use both variables θ(e) and dob(b) for readability reasons. Recall that
dod(b) is a variable that designates the date at which a place is emptied by
some transition firing, dod(b) is hence the occurrence date of an event that has
b as predecessor. Within a conflict free set of events, this event is unique. In
the considered subset of conditions B, several conditions may represent fillings
of the same place, and B can hence be partitioned into B1 � B2 � · · · � B|P |,
where conditions in Bi represent fillings of place pi. Due to blocking semantics,
all conditions in a particular subset Bi = {bi,1, bi,2, . . . , bi,k} must have disjoint
existence dates, that is for every j, j′ ∈ {1, 2, . . . , k} with j 
= j′, the intersection
between [dob(bi,j), dod(bi,j)] and [dob(bi,j′), dod(bi,j′)] is either empty, or limited
to a single value. This constraint can be encoded by the disjunction:
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no-overlap(bi,j , bi,j′) �⎧
⎨

⎩

dod(bi,j) ≤ dob(bi,j′) ∨ dod(bi,j′) ≤ dob(bi,j) if bi,j
• 
= ∅ ∧ bi,j′• 
= ∅,

dod(bi,j) ≤ dob(bi,j′) if bi,j
• 
= ∅ ∧ bi,j′•= ∅,

dod(bi,j′) ≤ dob(bi,j) otherwise.

Note that if bj � bj′ , then the constraint among events and transitions imme-
diately ensures dob(bj,i) ≤ dod(bj,i) ≤ dob(bj′,i) ≤ dod(bj′,i). However, we need
to add a consistency constraint for every pair of concurrent conditions bi,j , bi,j′

that belong to the same Bi. Hence, calling I(bi,j , E,B) the set of conditions that
represent the same place as bi,j and are concurrent with bi,j in 〈E,B〉, we have to
ensure the constraint non-blocking(bi,j) �

∧
bi,j′ ∈I(bi,j ,E,B) no-overlap(bi,j , bi,j′).

In words, condition bi,j does not hold during the validity dates of any concurrent
condition representing the same place. In particular, a time process of N cannot
contain two maximal conditions with the same place.

Let us now consider the constraints attached to events. An event e = 〈B, t〉 is
an occurrence of a firing of transition t that needs conditions in B to be fulfilled
to become enabled. Calling doe(e) the date of enabling of e, we necessarily have
doe(e) = max{dob(b) | b ∈ B}. Event e is firable at least eft(t) time units, and
at most lft(t) time units after being enabled. We hence have doe(e) + eft(t) ≤
dof(e) ≤ doe(e) + lft(t). However, execution of e does not always occur immedi-
ately when e is firable. Execution of e occurs after e is firable, as soon as the places
filled by e are empty, i.e., e occurs at a date θ(e) that guarantees that no place
in t• is occupied. This is guaranteed by attaching to every event e the constraints
θ(e) = dob(b1), θ(e) = dob(b2), . . . , θ(e) = dob(bk), where {b1, b2, . . . bk} = e•,
and constraints non-blocking(b1), non-blocking(b2), . . . , non-blocking(bk). Last, as
semantics of STPNs is urgent, once firable, e has to fire at the earliest possible
date. This is encoded by the constraint θ(e) = min{x ∈ R≥0 | x /∈]dob(b), dod(b)[
for some b ∈ ⋃

I(bi)∧x ≥ dof(e)}. Figure 2 shows the effect of blocking and pos-
sible free firing dates for some event with a condition b in its postset. Horizontal
lines represent real lines, and intervals values in interval [dob(bi), dod(bi)] for
i ∈ 0, 1, 2. Suppose that I(b) = {b0, b1, b2}. Then [dob(b), dod(b)] have to be fully
inscribed in one of these thick segments. An event with b in its postset can occur
only at dates contained in these thick segments.

b

b0
dob(b0) dod(b0)

b1
dob(b1) dod(b1)

b2
dob(b2) dod(b2)

Fig. 2. Constraints on dates of birth of tokens in a shared place.
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Written differently,

θ(e) =

{
dof(e) if

∧
b∈I(b1)∪...I(bk)

dof(e) ≤ dob(b), and
min{dod(b) | ∀b′ ∈ ⋃

bi∈e
•I(bi), dod(b) /∈ ]dob(b′), dod(b′)[} otherwise.

This formula can be translated in boolean combinations of inequalities over vari-
ables of var(E,B). Similarly, event e = 〈B, t〉 must occur before all its conflicting
events. If an event e′ in conflict with e is executed, at least one condition in B
is consumed, and e cannot occur in a time process containing e′. We hence
need the additional constraint

∧
e′�e notMoreUrg(e, e′) to guarantee that there

exists no other event that is forced to occur before e due to urgency. We define
notMoreUrg(e, e′) as the following constraint:
notMoreUrg(e, e′) � θ(e) ≥ doe(e′) + lft(tr(e′)) ⇒ tiled(e, e′) ∨ ∨

e′′||e
preempts(e′, e′′)

where tiled(e, e′) � free(e′) ∩ [doe(e′) + lft(tr(e′)), θ(e)] = ∅, e′′||e refers to
events that are concurrent with e in the considered set of events E, free(e′) =
R≥0 \ {[dob(b), dod(b)] | ∃b′ ∈ e′•, b ∈ I(b′)} is the set of intervals in which
places attached to conditions in e′• are empty, and preempts(e′, e′′) � θ(e′′) ≤
min(]doe(e′) + lft(tr(e′)), θ(e)[ ∩ free(e′)) means e′′ disabled e′ by consuming a
condition in •e′′.

Constraint notMoreUrg(e, e′) means that if e′ is in conflict with e, then at
least one condition in •e′ is consumed before e′ can fire, or if e′ becomes firable
before e fires, the urgent firing of e′ is delayed by blockings so that e can occur.
As for constraint attached to blockings, notMoreUrg(e, e′) can be expressed as a
boolean combination of inequalities. One can also notice that notMoreUrg(e, e′)
can be expressed without referring to variables attached to event e′ nor e′•, as
doe(e′) = max

bi∈•
e′ dob(bi) and the intersection of I(b) and e′• is void.

For causally closed sets of events and conditions E ∪ B contained in some
pre-process of UK , the constraint ΦE,B applying on events and conditions of
E ∪ B is now defined as ΦE,B =

∧
x∈E∪B ΦE,B(x) where:

∀b ∈ B, ΦE,B(b) = non-blocking(b) ∧

⎧
⎪⎪⎨

⎪⎪⎩

dob(b) = d0 if b ∈ B0, and b is maximal,
dob(b) = d0 ∧ dob(b) ≤ dod(b) if b ∈ B0,
dob(b) = θ(

•
b) if b /∈ B0 and b is maximal,

dob(b) = θ(
•
b) ∧ dob(b) ≤ dod(b) otherwise.

∀e ∈ E,ΦE,B(e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

doe(e) = max
b∈•

e
dob(b)

∧ doe(e) + eft(tr(e)) ≤ dof(e) ≤ doe(e) + lft(tr(e))
∧ dof(e) ≤ θ(e) ∧ ∧

b∈•
e
dod(b) = θ(e)

∧ ∧
b∈e

• θ(e) = dob(b)
∧ ∧

e′�e notMoreUrg(e, e′)

We can now define symbolic processes, and show how instantiation of their
variables define time processes of N . Roughly speaking, a symbolic process is a
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prefix of a pre-process of UK (it is hence a causal net) decorated with a satisfi-
able set of constraints on occurrence dates of events. Before formalizing symbolic
processes, let us highlight three important remarks. Remark 1: an unfolding
up to depth K misses some constraints on occurrence dates of events due to
blockings by conditions that do not belong to UK but would appear in some
larger unfolding UK′ , with K ′ > K. We will however show (Propositions 1 and 2
that with time progress assumption, unfolding N up to a sufficient depth guar-
antees that all constraints regarding events with θ(e) ≤ D are considered. This
allows to define symbolic processes representing the time processes of N that
are executable in less than D time units. Remark 2: unfoldings consider depth
of events, and not their dates. Hence, if a process contains an event e occurring
at some date greater than d, and another event e′ that belongs to the same pre-
process and becomes urgent before date d, then e′ must belong to the process,
even if it lays at a greater depth than e. Remark 3: Every pre-process 〈E,B〉 of
UK equipped with constraint ΦE,B is not necessarily a symbolic process. Indeed,
some events in a pre-process might be competing for the same resource. Consider
for instance the STPN of Fig. 3(a)). Its unfolding is represented in (b), and two
of its (symbolic) processes in (c) and (d). For readability, we have omitted con-
straints. One can however notice that there exists no symbolic process containing
two occurrences of transition t3, because conditions p14 and p24 are maximal and
represent the same place p4.

p0 p1

p2

t0 t1t2

p3

t3

p4

[0, 4] [0, 4][5, 7]

[0, 3]

a)

p1
0 p1

1

t10

p1
2 p2

2

t12

p1
3

t11

t13 t23

p1
4 p2

4

b)

p1
0 p1

1

t10

p1
2 p2

2

t11

t13

p1
4

c)

p1
0 p1

1

t10

p1
2 p2

2

t21

t23

p2
4

d)

Fig. 3. An STPN with conflicts and blockings (a), its symbolic unfolding (b), and two
of its symbolic processes (c) and (d).

Definition 10 (Prefixes of an Unfolding). Let SPP = 〈E,B〉 be a pre-
process of UK . A symbolic prefix of SPP is a triple 〈E′, B′, ΦE′,B′〉 where E′ ⊆ E
is a causally closed set of elements contained in E, and B′ = •E′ ∪ E′•.

Symbolic prefixes are causally closed parts of pre-processes, but their con-
straints inherited from the unfolding UK may not be satisfiable.
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Definition 11 (Symbolic Processes). A symbolic process of UK is a triple
Es = 〈E′, B′, ΦE′,B′〉 where 〈E′, B′, ΦE′,B′〉 is a symbolic prefix of some pre-
process PP = 〈E,B〉 of UK , ΦE′,B′ is satisfiable, and E′ is maximal w.r.t. urgent
events firing in PP, that is for every f ∈ B′•∩ E, and letting Cf = pl−1(f•) ∩ B′

denote the set of conditions whose place appears in the postset of e, the following
constraint is not satisfiable.

Φmax(f) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΦE′,B′

∧ θ(f) ≤ maxe′∈E′ θ(e′)
(
f fires before the last event in E’

)

∧ eft(f) + max
b∈•

f
dob(b) ≤ θ(f) (f is urgent)

∧ ∨
X∈2Cf maxx∈X dod(x) ≤ θ(f) ≤ minx∈Cf\X dob(x)

(f is not blocked for the whole duration of the process)

Intuitively, Φmax(f) means that f , that is not in the symbolic process,
becomes urgent, is not blocked by conditions in B′, and has to fire before the
execution of the last event in E′. If Φmax(f) is satisfiable, then f should appear
in the process. A crux in the construction of symbolic processes of UK is to
find appropriate maximal and causally closed sets of events with satisfiable con-
straints. This can be costly: as illustrated by the example of Fig. 3, satisfiability
of constraints is not monotonous: the constraints for processes in Fig. 3(c,d) are
satisfiable. However, adding one occurrence of transition t3 yields unsatisfiable
constraints. Satisfiability of a prefix of size n hence does not imply satisfiabil-
ity of a larger prefix of size n + 1. The converse implication is also false: if a
constraint of a prefix of size n is not satisfiable, appending a new event may
introduce, blockings, delay urgent transitions, yielding satisfiability of a con-
straint on a prefix of size n + 1. So, satisfiability of constraints is not a criterion
to stop unfolding.

Definition 12 (Executions of Symbolic Processes). Let Es = 〈E,B,Φ〉 be
a symbolic process of an unfolding UK . An execution of Es is a time process
TP = 〈E,B, θ〉 where θ is a solution for Φ. For a chosen θ, we denote by Es

θ =
〈E,B, θ〉 the time process obtained from Es. TP = 〈E,B, θ〉 is a time process
of UK if there exists a symbolic process Es = 〈E,B,Φ〉 of UK s.t. TP is an
execution of Es.

Informally, symbolic pre-processes select maximal conflict-free sets of events
in an unfolding. Symbolic processes extract executable prefixes from symbolic
pre-processes, and executions attach dates to events of symbolic processes to
obtain time processes. In the rest of the paper, we respectively denote by Es(UK)
and by E(UK) the set of symbolic processes and time processes of UK .

We can now show that upon time progress hypothesis, unfoldings and their
symbolic processes capture the semantics of STPNs with blockings. Given an
STPN that guarantees time progress with a minimal elapsing of δ time units
between successive occurrences of every transition, and given a maximal date D,
we want to build an unfolding UD of N that contains all events that might be
executed before D, but also all places and events which may impact firing dates
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of these events. We can show that UD is finite and its processes are of depth
H = �D−d0

δ � · |T | at most.
Let b = 〈e, p〉 be a condition of an unfolding Un obtained at step n. Let

block(b) be the set of conditions that may occur in the same process as b, repre-
sent the same place, and are not predecessors or successors of b in any unfolding
Un+k obtained from Un. Clearly, dates of birth and death of conditions in block(b)
may influence the date of birth and death of b, or even prevent b from appearing
in the same process as some conditions in block(b). However, in general, block(b)
need not be finite, and at step n, block(b) is not fully contained in a pre-process
of Un. Fortunately, upon time progress assumption, we can show that elements
of block(b) that can influence dob(b) appear in some bounded unfolding UK .

Proposition 1. Let N be a STPN guaranteeing time progress of δ time units
(between consecutive occurrences of each transition). For every date D ∈ R≥0

and condition b in an unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) |
dob(b′) ≤ D} is contained in UK .

This proposition means that if some event cannot occur at dof(e) due to
a blocking, then one can discover all conditions that prevent this firing from
occuring in a bounded extension of the current unfolding.

Proposition 2. Let N be a STPN guaranteeing time progress of δ time units.
The set of time processes executable by N in D time units are prefixes of time
processes of UK , with K = �D

δ � · |T |2 containing only events with date ≤ D.

4 Realizability of Schedules

We can now address realizability of a schedule S, i.e., a high-level description of
operations of a system and of their timing constraints can be realized by a system
represented as a STPN N depicting low-level operations and distributions over
possible delays between enabledness and firing of transitions. The connection
between operations in S and N is defined via a realization function.

Definition 13 (Realization Function). A realization function for a schedule
S and an STPN N is a map r : A → 2T that associates a subset of transitions
from T to each letter of A, and such that ∀a 
= a′ ∈ A, r(a) ∩ r(a′) = ∅.

A realization function describes which low-level actions implement a high-
level operation of a schedule. Each letter a from A can be interpreted as an
operation performed through the firing of any transition from the subset of
transitions r(a). Allowing r(a) to be a subset of T provides some flexibility in the
definition of schedules: in a production cell, for example, a manufacturing step
a for an item can be implemented by different processes on different machines.
Similarly, in a train network, a departure of a train from a particular station in
the schedule can correspond to several departures using different tracks, which
is encoded with several transitions in an STPN. Realization functions hence
relate actions in schedules to several transitions in an STPN. The condition on
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realization functions prevents ambiguity by enforcing each transition to appear
at most once in the image of r. Note that r(A) ⊆ T , that is the realization of
a schedule may need many intermediate steps that are depicted in the low-level
description of a system, but are not considered in the high-level view provided
by a schedule. We will call transitions that belong to r(A) realizations of A.

Definition 14 (Embedding, Realizability). Let S = 〈N,→, λ, C〉 be a
schedule, Es = 〈E,B,Φ〉 be a symbolic process of N and r : N → T be a
realization function. We say that S embeds into Es (w.r.t. r and d) and write
S ↪→ Es iff there exists an injective function ψ : N → E such that:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀n ∈ N, tr
(
ψ(n)

) ∈ r
(
λ(n)

)

∀〈n, n′〉 ∈→, ψ(n) � ψ(n′)
�f ≤ ψ(min(n)), tr(f) ∈ r(A)
∀e ≤ f ≤ g, e = ψ(n) ∧ g = ψ(n′′) ∧ tr(f) ∈ r(A)

⇒ ∃n′, f = ψ(n′) ∧ n →∗ n′ →∗ n′′

S embeds in Es iff there is a way to label every node n of S by a letter from
r
(
λ(n)

)
and obtain a structure that is contained in some restriction of a prefix of

Es to events that are realizations of actions from A and to a subset of its causal
ordering. Note that there can be several ways to embed S into a process of N .

Definition 15 ((Boolean) Realizability). Let d be a dating function for a
schedule S, r be a realization function. S is realizable by Es (w.r.t. r and d)
iff there exists an embedding ψ from S to Es, and furthermore, Φψ,S,d � Φ ∧∧

n∈N θ
(
ψ(n)

)
= d(n) is satisfiable. S is realizable by N (w.r.t. r and d) iff

there exists a symbolic process Es such that S is realizable by Es.

We write Es |= S when S is realizable by Es, and N |= S when S is realizable
by N . An algorithm to compute a set ΨS,Es of embeddings of a schedule S in a
process Es is provided in the extended version. Once ΨS,Es is obtained, it remains
to show that for at least one embedding ψ ∈ ΨS,Es , Φψ,S,d is satisfiable to prove
that S is realizable by Es. We can then compute the set of symbolic processes
ES � {Es

0 , Es
1 , . . . , Es

N−1} of UK that embed S and similarly for each Es
i ∈ ES the

set of possible embedding functions Ψi � {ψi,0, ψi,1, . . . , ψi,Ni−1} for which the
constraints Φψi,j ,S,d are satisfiable.

To illustrate the construction of unfoldings and of processes, let us consider
the example of Fig. 4. This toy example depicts two train carousels that serve
stations. Line 1 serves stations A, B and C, and line 2 serves stations D, B′ and
C ′. Both lines share a common track portion between stations B,C and B′, C ′,
and line 1 uses two trains. A possible required schedule (top left of the figure) is
that one train leaves every 10 time units from station A on line 1, starting from
date 10, and one train leaves station C ′ every 10 time units, but starting from
date 15. Departures from A are nodes labeled by dA and departures from C ′

are nodes labeled by dC′ . The bottom left picture shows the aspect of both lines
and stations. The center picture is an STPN model for this example, and we
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set r(dA) = {t5} and r(dC′) = {t9}. We do not precise distributions, and focus
on the structural unfolding, on the right of the figure. Note that the topmost
occurrence of place OK, that plays the role of a boolean flag in a critical section
can be both consumed by occurrences t11 and t21 of transition t1, which is a
standard conflict. However, as events t14 and t24 both output a token in place A,
their firing times may influence one another even though they are not in conflict.
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Fig. 4. A toy example: realizability of a partial schedule for two train carrousels with
shared track portions.

Let us now show that boolean realizability is not always a precise enough
notion to characterize feasability of a schedule. Consider the STPN of Fig. 5,
and the two symbolic processes: one in which transition t1 fires, and another
one in which t2 fires. The probability of the first process is the probability that
a value v1 sampled to assign a TTF for t1 is smaller or equal to another value
v2 sampled independently to assign a TTF for t2. Clearly, the probability that
v1 ≤ v2 is equal to the probabilty that v1 ∈ [0, 1]. The probability of the second
process is equal to the probability that v1 ≥ v2, but the set of values allowing this
inequality is restricted to a single point v1 = 1, v2 = 1. Conforming to continous
probability distribution semantics, the probability of this point is equal to zero.
A schedule composed of a single node n with date 1 such that r

(
λ(n)

)
= {t2} is

realizable according to Definition 14, but with null probability. A more accurate
notion of realizability is to require that schedules embed into symbolic processes
of UK with strictly positive probability.

This raises a second issue: requiring a schedule to be realized with an exact
timing also leads to realizations with null probabilities. Consider the former
example: a schedule composed of a single node n, a realization function r s.t.
r(λ(n)) = {t2}, and a dating function d s.t. d(n) = 2. Assign interval [0, 3]
to transition t1 in the STPN of Fig. 5(a) and interval [1, 4] to transition t2.



172 L. Hélouët and K. Kecir

The probability that t2 fires from the initial marking is equal to the probability
that v1 ≥ v2, which is not null (we will explain later how to compute the proba-
bility of such domain and the joint probability of v1, v2), and is equal to the prob-
ability of the domain for values of v1, v2 depicted by the colored zone in Fig. 5(b).
However, within this continuous domain of possible values, the probability to fire
t2 exactly at precise date 2 as required by dating function d is still null. We hence
consider realizability of a schedule up to some admissible imprecision α. Once an
injection ψ from a schedule S to a symbolic process Es is found, the constraint
to meet becomes: Φψ,S,d±α = Φ ∧ ∧

n∈N max(d(n) − α, 0) ≤ θ(ψ(n)) ≤ d(n) + α.

p1

t1

p2 p3

t2

[0, 1] [1, 2]

0 1 2 3 4
0

1

2

3

4

v1

v2

v1 = v2

Fig. 5. (a) An example STPN (b) A domain for τ(t1), τ(t2) allowing firing of t2.

Definition 16 (Probabilistic Realizability). A schedule with maximal date
D is realizable with non-null probability iff there exists an embedding ψ of S
into a symbolic process Es of UK s.t. P(Es ∧ Sol(Φψ,S,d±α)) > 0.

Intuitively, this definition requires that a symbolic process embeds S, and
that the probability that this process is executed and satisfies all timing con-
straints imposed by the STPN and by the dating function is non-null. This
probability can be evaluated using a transient execution tree, as proposed
in [13]. Roughly speaking, nodes of this tree are abstract representations of
time domains for sampled values attached to enabled transitions (this is the
usual notion of state class, already used in [3,15] to analyze time Petri nets).
In addition to state classes, transient tree nodes contain abstract representa-
tions of probability distributions. If the definition of distribution is appropri-
ately chosen, for instance, using truncated sums of exponentials of the form

f(x) =
{∑

ckxake−λkx if x ∈ [a, b]
0 otherwise

then the distributions obtained by projection, multiplication, or variable elim-
ination can still be encoded as sums of exponentials, and memorized using a
finite set of parameters. The probability to fire a particular transition from a
state and move to a successor node is computed as an integration over the time
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domains allowing this transition to fire first. The children of a node give a prob-
abilistic distribution on possible classes of successor states. As time progress is
guaranteeed in our model, a finite tree representing executions of an STPN or
of one of its processes up to some bounded duration can be built. As explained
in [13], the sum of probabilities attached to all paths of the tree can be used to
compute the probability of some properties. In our case, the sum of probabilities
of all paths that end with the execution of a chosen symbolic process gives the
probability to realize this process. Details on construction of a transient tree are
provided in the extended version.

5 Conclusion

Related Work: we have addressed realizability of partially ordered timed sched-
ules by timed and stochastic concurrent systems with blocking semantics. Real-
izability in a timed setting has been addressed as a timed game problem [11],
with a boolean answer. The objective in this work is to check whether a player
in a timed game has a strategy to ensure satisfaction of a formula written in a
timed logic called Metric Interval Temporal Logic. Brought back to the setting
of realizability of schedules, the work of [11] can be used to answer a boolean
realization question, by translating a schedule to a formula. However, the work
of [11] lies in an interleaved setting: a sequential formula cannot differentiate
interleaved and concurrent actions. It does not address randomness in systems
and hence cannot quantify realizability. Scheduling of train networks was already
addressed as a contraint satisfaction problems [8]. The input of the problem is
given as an alternative graph (that can be seen as some kind of unfolding of a
systems’s behavior, decorated with time constraints. The algorithms in [8] use
a branch and bound algorithm to return an optimal schedule for the next 2 h of
operation of a train network, but do not consider randomness.

Realizability is also close to diagnosis. Given a log (a partial observation
of a run of a system), and a model for this system, diagnosis aims at finding
all possible runs of the model of the system whose partial observation complies
with the log. Considering a log as a schedule, the ability to compute a diagnosis
implies realizability of this high-level log by the model. Diagnosis was addressed
for stochastic Petri nets in [1]. In this work, the likelihood of a process that com-
plies with an observation is evaluated, and time is seen as a sequence of discrete
instants. Diagnosis was addressed for timed Petri nets in [4], where unfolding
of a timed Petri net is built to explain an observed log. [10] proposes tempo-
ral patterns called chronicles that represent possible evolutions of an observed
system. A chronicle is a set of events, linked together by time constraints. The
diagnosis framework explains stream of time-stamped events as combinations
of chronicles. Assembling chronicles is some kind of timed unfolding. However,
event streams are not a concurrent model, and chronicles extraction does not
consider randomness.

Schedulability can also be seen as conformance of an expected behavior (the
schedule) to an implementation (the Petri net model). Conformance was defined
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as a timed input output conformance relation (tIOCO) relation between timed
input/output automata in [14]. More precisely, A1 tIOCO A2 iff after some timed
word, the set of outputs produced by A1 is included in the outputs produced by
A2. This relation cannot be verified in general (as inclusion of timed automata
languages is not decidable), but can be tested. Boolean realizability can be seen
as some kind of conformance test. Note however that tIOCO is defined for an
interleaved timed model without probabilization of transitions.

Assessment: The techniques described in this work first build an unfolding UK

up to a depth K that depends on the maximal date appearing in the schedule,
find symbolic processes of UK that embed the schedule, and then check that
at least one of them has non-null probability. So far, we did not consider com-
plexity issues. The size of an unfolding can grow exponentially w.r.t. its depth.
Checking satisfiability of a set of constraints with disjunctions can also be costly.
Satisfiability of constraints is not monotonous and hence cannot be used to stop
unfolding. However, embedding verification and unfolding can be done jointly:
one can stop a branch of unfolding as soon as a schedule does not embed in the
pre-process on this branch. Most of the constraints presented in this paper can
be simplified, and refer mainly to event variables. One can also notice that atoms
in constraints are rather simple inequalities, which could simplify their verifica-
tion. Computation of realization probability for processes can also be improved.
We use the transient tree construction of [13], that builds a symbolic but inter-
leaved representation of some processes. This is obviously very costly. We are
currently investigating ways to evaluate probabilities of symbolic processes in a
non-interleaved setting.

As future work, we would like to implement and improve this realizability ver-
ification framework, and use it as a basis to prove more properties. For instance,
it might be interesting to prove that a schedule can be realized while ensur-
ing that the overall sum of delays w.r.t the expected schedule does not exceed
some threshold. Another improvement would be to provide means to compute
an exact value for the realization probability. We are also interested in the design
of controllers that maximize the probability of realization.
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Abstract. This paper presents an algebra of coloured Petri nets called
the Asynchronous Box Calculus with Data, or abcd for short. abcd

allows to model complex systems using a user-friendly and high-level
syntax. In particular, parts of the model can be directly programmed
in Python [21], which allows to embed complex computation and data
values within a model. A compiler for abcd is shipped with the toolkit
snakes [16,18] and abcd has been used for years, which is quickly sur-
veyed. This paper is the first complete and formal presentation of the
language and its semantics. It also presents uses cases of abcd for the
modelling and analysis of various systems.

Keywords: Formal modelling · High-level models · Petri nets semantics

1 Introduction

The Asynchronous Box Calculus with Data, or abcd for short, is an algebra of
Petri net, i.e., a process algebra with a Petri net semantics [17]. With respect to
the other algebras of the family like the Petri Box Calculus [2,3], abcd is a high-
level modelling language: its semantics is based on high-level Python-coloured
Petri nets, that can be composed and transformed using various operations like
the terms of a process algebra. With respect to other members of the family,
abcd is asynchronous, i.e., does not have the transition synchronisation opera-
tion à la CCS; however, it could be added easily if needed. An important aspect
of abcd is that it uses Python as a concrete programming language to provide
data, expressions and computation. The syntax of abcd is inspired from that
of Python but separated even if it actually embeds the fragment for expressions
(Python expressions may be used in abcd). A compiler is distributed within the
snakes toolkit [16,18] and allows to build a Petri net from abcd source code.

This paper provides the first complete and formal definition of abcd, i.e., its
syntax and semantics. Only informal introductions though examples had been
published so far, the most complete of which being [17, pages 30–33]. Other
contributions of this paper are: a definition of Python-coloured Petri nets with
read/fill/flush-arcs, a presentation of the abcd compiler and simulator, and a
short survey of abcd use cases for research and teaching to showcase its usability.

c© Springer International Publishing Switzerland 2016
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The next section presents the syntax of abcd together with its intuitive
semantics. The formal semantics is defined in Sect. 3 as a translation of abcd

terms into Petri nets. Section 5 describes the compiler and the interactive sim-
ulator. Section 4 presents existing applications of abcd. Finally, the paper ends
on a conclusion with perspectives. This paper assumes no particular knowledge
about Python, however, a good Python tutorial is available online [20].

2 Modelling with ABCD

Figure 1 shows an abcd model of the dining philosophers problem with four
philosophers. We use it to introduce the main concepts of ABCD. Line 1, a
buffer called forks is declared, it is a typed container that will initially hold
the four integers 0 to 3 (whose type is int in Python), each of which models a
fork identifier. Line 3–4, a sub-process called philo is declared. It is parametrised
by the two values of the left and right fork that a particular philosopher has
to use. Line 4 is the process expression for a philosopher that consists of three
atomic actions enclosed between square brackets and connected with control-flow
operators. The first atomic action is “[forks-(left), forks-(right)]” and specifies
that value left is consumed (thus the “-”) from buffer forks and, at the same
time, value right is also consumed in the same buffer. This atomic action is
composed sequentially (operator “;”) with another atomic action that produces
(thus the “+”) the two same values into the same buffer. Then, the sequence
itself is composed in a loop (operator “∗”) with atomic action “[False]”, which
means that the sequence can be arbitrarily repeated until “[False]” is executed
to finish the loop (and here the whole process). However, “[False]” is an atomic
actions that can never be executed so we actually have an infinite loop. Finally,
Line 6 defines the main process of the model that composes in parallel (operator
“|”) four instances of sub-process philo with parameters chosen to arrange the
philosophers on a circle.

1 buffer forks : int = 0, 1, 2, 3
2

3 net philo ( left , right ):
4 ([ forks-( left ), forks-(right )] ; [ forks+( left ), forks+(right )]) ∗ [False]
5

6 philo(0, 1) | philo(1, 2) | philo(2, 3) | philo(3, 0)

Fig. 1. A model of four dining philosophers where a generic philosopher is specified as
a parametrised sub-process.

More generally, an abcd model consists of a process description comprising
optional declarations (in particular sub-processes and resources) and a main
process expression. Sub-process can themselves include declarations that are local
to them, i.e., cannot be used from outside the sub-process. The full grammar of
abcd is given in Fig. 2 and is commented in the rest of the section.
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〈spec〉 ::= 〈global〉 〈spec〉 global declaration
| 〈local〉 〈spec〉 local declaration
| 〈proc〉 process

〈global〉 ::= import stmt Python import statement
| symbol name {"," name} symbols declaration
| typedef name ":" 〈type〉 type declaration
| const name "=" expr constant declaration

〈local〉 ::= buffer name ":" 〈type〉 "=" expr buffer declaration
| net name "(" 〈params〉? "):" 〈sub〉 sub-process declaration

〈sub〉 ::= 〈local〉 〈sub〉 local declarations
| 〈proc〉 behaviour specification

〈type〉 ::= name native Python type
| 〈type〉 "&" 〈type〉 intersection
| 〈type〉 "|" 〈type〉 union
| 〈type〉 "*" 〈type〉 cross-product
| enum "(" expr {"," expr} ")" enumerated type
| 〈cont〉 "(" 〈type〉 {"," 〈type〉} ")" container type

〈cont〉 ::= name "(" 〈type〉 ")" collection type
| "dict(" 〈type〉 "," 〈type〉 ")" dictionary type

〈params〉 ::= name {"," 〈params〉} value parameter
| name ":" buffer {"," 〈params〉} buffer parameter

〈proc〉 ::= 〈proc〉 "|" 〈proc〉 parallel composition
| 〈proc〉 ";" 〈proc〉 sequential composition
| 〈proc〉 "+" 〈proc〉 choice composition
| 〈proc〉 "*" 〈proc〉 iteration
| "(" 〈proc〉 ")" nested process
| name "(" 〈args〉? ")" anonymous net instance
| name "::" name "(" 〈args〉? ")" named net instance
| "[True]" always possible action
| "[False]" always blocking action
| "[" 〈access〉 {"," 〈access〉} "]" unconditional action
| "[" 〈access〉 {"," 〈access〉} if expr "]" conditional action

〈access〉 ::= name "+(" expr ")" production
| name "-(" expr ")" consumption
| name "?(" expr ")" test
| name "<>(" expr "=" expr ")" swap
| name ">>(" name ")" flush
| name "<<(" expr ")" fill

〈args〉 ::= expr {"," 〈args〉} arguments

Fig. 2. The syntax of abcd, where: 〈· · ·〉 denotes non-terminals,

�

denotes a newline;
import stmt is a Python import statement; bold face denotes keywords; name is an
arbitrary Python name (i.e., an identifier); expr is an arbitrary Python expression;
"..." denotes literals; {· · · } denotes parts that can be repeated zero or more times;
. . .? denotes parts that can be omitted;

�

denotes a newline followed by an indented
block;

�

denotes a newline at the end of an indented block.
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2.1 Global Declarations

These are declarations that are only allowed at the top level of the specification,
i.e., not within a sub-process.

A Python import statement [20, Sect. 6] allows to make visible names defined
in an external Python module. For instance, using “import math” allows to use
function “math.factorial” in expressions; statement “from math import ∗” gives
a direct access to function “factorial” and others, without the prefix “math.”.

Defining symbols is a way to create unique named values in a model. For
instance, “symbol OPEN, CLOSE” defines names “OPEN” and “CLOSE” that
have opaque values, distinct from every other existing values.

It is also possible to define new types, i.e., give a name to a type, using the
“typedef” declaration. Types in abcd are sets of values and can be specified
using a rich type algebra, see 〈type〉 in the grammar. Basically, a type is a
Python class, for instance “int” or “str”, and corresponds to the set of all the
objects of this class. Two classes are worth mentioning: “object” is Python’s
universal class, i.e., any value an “object” instance; “BlackToken” is a class with
a single value “dot” that implements the Petri nets black token. Building more
complex types is possible using union, intersection and cross-product of types;
two more constructions deserve explanation. Enumerated types are defined as
sets of values, for instance “enum(1, 2,"hello")” defines a type with only the
three enumerated values. Container types are Python collections whose content
is constrained, for instance “tuple(int)” denotes the set of tuples of integers;
“list” and “set” are the two other supported simple containers. Finally, Python
dictionaries (i.e., mappings) are also supported containers, for instance “dict(int,
str)” denotes the set of dictionaries whose keys are integers and values are strings.

Other global declarations are constants. For instance, “const foo = 42”
defines the name “foo” whose value is 42. Contrasting with symbols, constants
have known values that can be exploited in the model, for instance, “foo+2” is
a correct expression when “foo” has been declared as above.

2.2 Buffers

Resources in abcd are stored in buffers, i.e., unbounded and unordered data
containers that can be accessed from the process that declares the buffer as well
as from any of its sub-processes. In the semantics, they correspond to (coloured)
places. A buffer is declared using keyword buffer and is given:

– a name that is an identifier that will be used in process expressions to access
the buffer;

– a type that restricts the values allowed in the buffer;
– an initial content given as an expression that is interpreted as a series of values

initially stored in by the buffer.

The following abcd code shows the declarations of two buffers:

1 buffer foo : int = ()
2 buffer bar : str ="hello", "world"
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The first line declares a buffer named “foo”, whose type is “int” the set of
integers and whose initial content is empty since “()” denotes the empty tuple
in Python. The second line declares a buffer named “bar” whose type is “str” the
set of strings and that initially contains the two strings "hello" and "world".

2.3 Sub-processes

An important feature of abcd is to provide parametrised sub-process that can be
instantiated later on. A sub-process is declared using keyword “net” followed by a
name and a list of parameters. For instance “net sub (a, b): �” introduces a sub-
process called sub that is parametrised by two values “a” and “b”. If a parameter
needs to be a buffer, this must be explicit, like in “net sub (a, b: buffer): �”
where “b” is now a buffer parameter. The specification of a sub-process is given
in an indented block after the first line, it comprises local declarations and a
process expression that specifies the behaviour. We will see later on how sub-
processes are instantiated within a process expression.

2.4 Process Expressions

These specify the behaviour of a (sub-)process. The most basic behaviours are
atomic actions and are enclosed in square brackets “[· · ·]”. In the semantics,
atomic actions correspond to Petri nets transitions. The simplest ones are
“[True]” that can always be executed and has no effect on buffers, and “[False]”
that can never be executed and is always blocking. We have seen and example
using “[False]” above and will see one with “[True]” later on.

More complex actions are formed as lists of buffer accesses and an optional
execution condition. Each buffer access is given as a buffer name, a symbol
to specify the access type and an expression to specify the data accessed. For
instance, “buf+(2∗n)” specifies that the atomic action, when executed, creates in
buffer “buf” a value that is the result of evaluation expression “2∗n”. “buf-(x)”
allows to consume from the buffer a value that is bound to variable “x”. An
actual value may be used instead of variable “x” to consume a known value. It is
also possible to use patterns, like in “buf-(x,y,0)” that consumes a triple whose
first and second elements are bound to x and y respectively and whose third
element must be 0. Currently, patterns may only be nested tuples, allowing
to decompose the consumed values. Note that it is not possible to specify an
arbitrary expression to be consumed because this would require to solve an
arbitrary equation, which is not possible in general. Two other access types are:
test “?” that behaves like consumption except that is does not actually consume
the value; and swap that is a shorthand for consumption plus production, for
instance, “buf<>(x=x+1)” can be replaced by “buf-(x), buf+(x+1)”.

Then come two accesses handling multiple tokens. First, the flush “buf>>(v)”
empties buffer “buf” and binds the multiset of its content to variable “v”. Note
that this is possible even if the buffer is empty in which case “v” is bound
to the empty multiset, this gives a possible implementation of a test for zero
using “[. . ., buf>>(v) if not v]” where “v” used as a Boolean expression is true
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if and only if it is not empty. Next, the fill operation produces values into a
buffer: using “buf<<(expr)”, expression “expr” is evaluated and iterated over
as a collection so that each of its value is added to “buf”. (Note that this
does not overwrite existing values in the buffer, it just adds new content.) For
instance, one may increment all the values within a buffer using a single atomic
action: “[buf>>(v), buf<<(x+1 for x in v)]” where expression “x+1 for x in v” is
a Python comprehension [20, Sect. 5.1.4].

A guard may be specified at the end of an atomic action, using keyword
“if” followed by an expression. This allows the execution only if the expression
evaluates to true. The scope of the variables used within an action is limited
to this action. Variables are bound thanks to buffer accesses that consume or
test values in buffers (i.e., “-”, “?”, “>>” and the left-hand side of “<>”), free
variables in other accesses and in the guard are forbidden.

Actions can be composed using four control-flow operators and parentheses:
“;” is the sequential composition allowing to execute first its left-hand side
process and then its right-hand side process; “|” is the parallel composition
allowing to execute two processes concurrently; “+” is the choice composition
allowing to execute only one of the two processes it composes; “*” is the iteration
allowing to execute repeatedly its left-hand side process (including zero times)
followed by exactly one execution of its right-hand side process. Action “[False]”
is often used at the right-hand side of an iteration to create an infinite loop, like
in “[buf-(x), buf-(y), buf+(x) if y % x == 0] ∗ [False]” which implements a sieve
of Eratosthenes.

Finally, a process may also include instances of previously declared sub-
processes (i.e., nets). A term composed of the net name followed by a list of
effective arguments is replaced by the whole sub-process in which all the parame-
ters have been substituted by the arguments. Such an instance may be named to
simplify the access to its places in the Petri net semantics. Imagine for example a
buffer “mybuf” declared inside a sub-process “mynet” parametrised by three val-
ues, when building instance “mynet(1,2,3)”, the resulting copy of “mybuf” is nor-
mally called “mynet(1,2,3).mybuff”. By using a named instance, one can simplify
this, for example, instance “foo::mynet(1,2,3)” gives rise to buffer “foo.mybuff”
and a place with the same name in the Petri net semantics.

Note that within a process expression, spaces and newlines are not significant,
only indentation must be respected. And within a process nested in parenthe-
ses, even indentation is not significant anymore. This allows to choose clearer
presentation for process expressions, as for instance in the example of Sect. 4.1.

3 Petri Net Semantics of ABCD

We define now the Petri nets semantics of abcd, and first the variant of Petri
nets we use: an algebra of Python-coloured Petri nets extended with read/fill/
flush-arcs, and supporting control-flow compositions. This class of Petri nets
corresponds to Petri nets with control-flow as defined in [17, Sects. 2.1 to 2.3] in
which the originally abstract colour domain has been concretized as the Python
language, and with an extension to support read/fill/flush-arcs.
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3.1 Python-Coloured Petri Nets

A Python-coloured Petri net (pcpn) involves values, variables and expressions.
These objects are defined by the Python programming language and, because
we do not want to defined them here, abstracted away as follows:

– D is the set of data values, i.e., all the possible Python objects, including “dot”
that implements “•”;

– D⊥
df= D � {⊥} is the set of data enriched with a special “undefined” value;

– V is the set of variables, i.e., all the possible Python identifiers;
– E is the set of expressions, involving values, variables and appropriate oper-

ators according the syntax of Python. Let e ∈ E, we denote by vars(e) the
set of variables from V involved in e. Moreover, variables or values are valid
(simple) expressions, i.e., we have D ∪ V ⊂ E.

We make no assumption about the typing or syntactical correctness of values
or expressions. Instead, we assume that any expression can be evaluated, possibly
to ⊥ (undefined). More precisely, a binding is a partial function β : V → D. Let
e ∈ E and β be a binding, we denote by β(e) the evaluation of e under β. For
instance, if β1

df= {x �→ 1, y �→ 2}, we have β1(x + y) = 3. With β2
df= {x �→

1, y �→ "2"}, Python raises an exception upon evaluation, which corresponds
in our setting to β2(x + y) = ⊥; similarly, if the domain of β does not include
vars(e) then β(e) df= ⊥. The application of a binding to evaluate an expression is
naturally extended to sets and multisets of expressions.

In the following, given a set X, we denote by X� the set of multisets over X.
We use the standard notations for multisets, + for sum, − for difference, ≤ for
inclusion, etc., as well as an extended set notation {· · · }.

Definition 1 (Python-Coloured Petri Nets). A Python-coloured Petri net
(pcpn ) is a tuple (S, T, �, α) where:

– S is the finite set of places;
– T , disjoint from S, is the finite set of transitions;
– � is a labelling function such that:

• for all s ∈ S, �(s) ⊆ D is the type of s, i.e., the set of values that s is
allowed to carry,

• for all t ∈ T , �(t) ∈ E is the guard of t, i.e., a condition for its execution,
• for all (x, y) ∈ (S × T ) ∪ (T × S), �(x, y) ∈ E

� is the arc from x to y.
Arcs from S × T (resp. T × S) are called input arcs (resp. output arcs);

– α is the arc type function that associates to each arc in (S × T ) ∪ (T × S) a
function D

� ×D
� → D⊥� that takes the marking of a place plus the evaluation

of an arc annotation and returns the actual multiset of consumed or produced
tokens. In particular we shall use four functions:

• α=
df= (m,a �→ a) for a regular arc;

• α?
df= (m,a �→ ∅ if a ≤ m else {⊥}) for a read arc;

• α>>
df= (m,a �→ a if a = m else {⊥}) for a flush arc;

• α<<
df= (m,a �→ ∑

x∈a iter(x)) for a fill arc, where iter is a function that
builds a multiset from the elements in collection x (set, list, . . . ). �
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As usual, Petri nets are depicted as graphs in which places are round nodes,
transitions are square nodes, and arcs are directed edges with arrow tips depend-
ing on the arc types: → for regular, — for read, � for flush (input arcs) or fill
(output arc). Empty arcs, i.e., arcs such that �(x, y) = ∅, are not depicted.

Definition 2 (Markings and Firing). Let N
df= (S, T, �, α) be a pcpn. A

marking M of N is a function on S that maps each place s to a finite multiset
over �(s) representing the tokens in s. A transition t ∈ T is enabled at a marking
M and a binding β, which is denoted by M [t, β〉, iff the following conditions hold:

– M has enough tokens, i.e., for all s ∈ S, α(s, t)(M(s), β(�(s, t))) ≤ M(s);
– the guard is satisfied, i.e., β(�(t)) = True;
– place types are respected, i.e., for all s ∈ S, α(t, s)(M(s), β(�(t, s))) is a mul-

tiset over �(s).

If t ∈ T is enabled at marking M and binding β, then t may fire and yield a
marking M ′ defined for all s ∈ S as M ′(s) df= M(s) − α(s, t)(M(s), β(�(s, t))) +
α(t, s)(M(s), β(�(t, s))). This is denoted by M [t, β〉M ′. �

We may observe how the various arc types are implemented:

– α= always returns the evaluation of the arc β(�(s, t)) or β(�(t, s)) so we fall
back to the definition given in [17, Definition 1];

– on an input arc, α? requires that the tokens from β(�(s, t)) are actually in
the marking of s but then it returns ∅ so no token is consumed. But if some
tokens are not in the place, returning {⊥} forbids the firing because ⊥ /∈ �(s)
by definition. Returning ∅ unconditionally would not work because it would
be like removing the arc;

– on an input arc also, α>> forces to find β such that β(�(s, t)) = M(s) so that
all the marking is consumed;

– finally, on an output arcs, α<< transforms a collection of multisets (or other
collection types) into the sum of these multisets which is how fill arcs are
expected to behave.

3.2 Petri Nets Compositions

To implement control-flow operations, pcpn are equipped with control-flow oper-
ations adapted from the Petri Box Calculus [2] and Petri Net Algebra [3]. We
refer to [17, Sect. 2.3] for a complete definition and give here a summary.

First, places of a pcpn are separated into control-flow and data places. To
do so, pcpn are equipped with an additional labelling function σ that returns
for each place its status which may be for control-flow places: e for an entry
place that is marked when the pcpn starts its execution; x for an exit place
that is marked when the pcpn has finished its execution; i for an internal place
when the pcpn is in an intermediary state. For data places, status may be ε for
an anonymous data place or an arbitrary label name /∈ {e, i, x, ε} for a named
data place. Control-flow places must have type {•} and data places may have
arbitrary types.



184 F. Pommereau

Fig. 3. The four operator nets [17, Fig. 3 in Sect. 2.3].

Then, control-flow operations are defined from the operator nets shown in
Fig. 3. Intuitively, each transition �i in an operator net is to be replaced with
the i-th operand net of the specified operation. To do so, we consider in turn
each place in the operator net and use its arcs to collect in the operand net
the places to be combined. For instance, take the internal place of the sequence
operator net to compute N1 �N2: it is an output of �1 so we collect the exit places
of N1; it is also an input place of �2 so we collect the entry places of N2. The
sets of collected places are then composed using a cross-product and become
internal places in the resulting net because we considered an internal place in
the operator net. The same principle is applied for every place of the operator
net which results in a composition of N1 and N2 whose control-flow places have
been combined to implement the required control-flow. To finish the control-flow
operation, we have to glue together (adding the markings) all the named data
places that have the same name (usually one such place comes from each operand
name), so that each named place is present only once. Anonymous data places
are left untouched because they are considered local to each operand net.

One more operation is needed for our purpose, this is name hiding N/name
that replaces the status of every place named name with ε, making it anonymous
and no more mergeable upon control-flow compositions.

3.3 From ABCD to Petri Nets

The translation of abcd to pcpn is defined through a recursive function net
that takes two arguments: an environment that is used to collect information
about abcd declarations encountered so far, and a fragment of abcd source
code that remains to be compiled. The environment is a mapping from declared
names to various information about the corresponding declarations. Look for
instance at the first rule in Fig. 4: when a symbol declaration is found, this is
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Fig. 4. Translation rules of the pcpn semantics of abcd.
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simply recorded in the environment and the translation proceeds with the rest
of the code. Type definition is treated similarly but the value of the type is
recorded also, it is computed using an auxiliary function type. We will not detail
it because it is both straightforward and an implementation detail (interested
readers may look at module snakes.typing that is used for this purpose [16]).
Buffer definition starts to build parts of the resulting Petri net: the net returned
by translating the rest of the code is composed in parallel with a net Nbuffer

that consists of a single data place, whose type, status and marking is exactly
the type, name and initial content of the buffer respectively. When applying the
composition, this will result in merging this place with another empty copy (see
the translations of actions below) in order to initialise the marking. The next
six rules are straightforward.

Fig. 5. Base nets for atomic actions.

Then come two rules to build simple actions: “[True]” (resp. “[False]”) is
translated to a net NTrue (resp NFalse) depicted in Fig. 5. Then, an unconditional
action is just a conditional action with a true guard. Conditional action itself is
implemented by a simple Petri net Naction as sketched in Fig. 5:

– it has one entry place and one exit place, connected by a single transition
whose guard is exactly the guard of the action;

– for each buffer access, there is a data place named and typed as the buffer
(which is known from the environment) to implement the buffer, and an arc
with the appropriate type:

• α= on an input arc for a consumption (“-”),
• α= on an output arc for production (“+”),
• α? on an input arc for a test (“?”),
• α>> on an input arc for a flush (“>>”),
• α<< on an output arc for a fill (“<<”),
• a swap (“<>”) is decomposed into the corresponding pair of consumption

and production;
– multiple regular arcs to (resp. from) the same buffer are merged, i.e., there

annotations is summed. Multiple read arcs and multiple fill arcs are merged
as well. Multiple arcs with the same direction but of one of the other types or
of mixed types are forbidden. For instance we cannot flush twice a place nor
we can flush it and at the same time consume one token from it.
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Finally, net instances are built as follows:

– function net is called recursively on the content sub of the net declaration
in which we substitute each parameter par i with the effective argument arg i,
which is denoted by �sub | par1 ← arg1, . . . , park ← argk�;

– the data places for all the buffer declared inside the net are hidden so that
they become private to the resulting Petri net and no more mergeable;

– if the net instance is named, its nodes are renamed by replacing the prefix
name(arg1, . . . , argk) with the name alias of the instance, which is denoted
by 〈〈· · · | name(arg1, . . . , argk) ← alias〉〉.

Definition 3 (Semantics of ABCD). Given function net as defined above,
the complete semantics of an abcd specification “spec” is the pcpn returned by
net({}, “spec”) in which all the entry places are marked with a single “•”. �

Note that we did not include import statement in the semantics because it
does not change the net itself. It is rather an implementation detail and just
consists in making the imported names available in the execution environment
of the Petri net. This is made also for constants and symbols.

4 Applications and Use Cases

This section presents uses of abcd for scientific applications and for teaching.
The first one is detailed to provide a complete example of an actual abcd model.
The next examples will be partly presented due to space limitation, so chosen
fragments will be showed to illustrate particular points we would like to discuss.

4.1 Critical Systems

A model of a railroad crossing system with multiple tracks has been developed
in abcd in order to generate Petri nets for the model-checking contest (mcc)
2012 [11,12]. The purpose of the mcc is to compare model-checkers on a variety
of models with a scaling parameter, i.e., a parameter allowing to tune the size
of the model and of its state space. For the railroad model, the idea was to
develop a model that is generic with respect to the number of tracks, each
track being a net instance. However, as one may have remarked with the dining
philosophers model of Fig. 1, abcd has no mechanism to instantiate a number
of processes that depends on a parameter: in the case of the philosophers, we
have to explicitly instantiate a statistically chosen number of nets. In the case
of the railroad model, this was solved using a template engine that allowed to
generate abcd source code for any number of tracks, each such abcd file was
then converted to a Petri net. Below, we show the model for two tracks, it is
easy to figure out how this can be parametrised (actually, only the first and last
lines need to be changed).

The model is based on three nets to model respectively: a pair of gates;
generic tracks with a green/red light to control the progression of trains; and a
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controller to count the trains and operate the gates. The model starts with var-
ious declarations: number of tracks, values and type for the state of the gates,
then all the global buffers. Note line 5 how a comment is inserted just like
in Python: “#this comment extends until the end of the line

�”. Note
also that in source code below, the omitted lines are all blank. Buffer “green”
stores the number of each track that has a green light, so that a red light is
modelled by the absence of the corresponding token. Other buffers are dedicated
to the communication between the components: “enter” receives the track num-
bers on which a trains approaches the gates; “leave” receives the track numbers
on which a train leaves the gates; “down” allows to ask the gates to go down;
“up” allows to ask the gates to go up; “done” is used by the gates to notify the
controller that they have finished a command.

1 const NUM = 2
2 symbol OPEN, MOVING, CLOSED
3 typedef gatestate : enum(OPEN, MOVING, CLOSED)
4

5 # green lights on tracks

6 buffer green : int = range(NUM)
7 # tracks -> controller

8 buffer enter : int = ()
9 buffer leave : int = ()

10 # controller -> gates

11 buffer down : BlackToken = ()
12 buffer up : BlackToken = ()
13 # gates -> controller

14 buffer done : gatestate = ()

The gates are modelled with a net that has a private buffer “state” reflecting
the current position of the gates. The associated process is a repeated sequence
of four actions: wait for the request to go down and start proceed it; arrive down
and notify the controller; wait for the request to go up and start proceed it;
arrive up and notify the controller.

16 net gates () :
17 buffer state : gatestate = OPEN
18 ([down-(dot), state<>(OPEN=MOVING)]
19 ; [state<>(MOVING=CLOSED), done+(CLOSED)]
20 ; [up-(dot), state<>(CLOSED=MOVING)]
21 ; [state<>(MOVING=OPEN), done+(OPEN)])
22 ∗ [False]

The model for the tracks has the same structure. A local buffer “crossing”
is marked when a train is crossing the road and a series of actions executed
repeatedly corresponds to the successive steps of the progression of a train:
approach the gates and switch the green light to red; start crossing the road
only on a green light and switch it back to red; leave the crossing zone.
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24 net track (this) :
25 buffer crossing : BlackToken = ()
26 ([enter+(this ), green-(this)]
27 ; [green-(this), crossing+(dot)]
28 ; [crossing-(dot), leave+(this )])
29 ∗ [False]

Then, the model for the controller is composed of one buffer “count” to count
the trains present in the supervised zone, one buffer “waiting” to record on which
track a train is waiting for the green light, and one process that can repeatedly
execute one of four behaviours: detect the first train approaching (“c == 0”
line 34) and ask the gates to go down, then wait until they arrive down and give
the green light to the train that triggered this behaviour; count another train
approaching (line 36) and give it the green light; count a train leaving the zone
while there are still other trains in the zone (“c > 1” line 37); detect that the last
train leaves the zone (“c == 1” line 37), ask the gates to go up and wait until
this order is executed. When a train leaves, the corresponding light is turned
green again so another train is allowed to approach on this track. Without this
mechanism, we could have an accumulation of tokens in buffer “leave”.

31 net controller () :
32 buffer count : int = 0
33 buffer waiting : int = ()
34 (([enter-(num), count<>(c=c+1), down+(dot), waiting+(num) if c == 0]
35 ; [done-(CLOSED), waiting-(num), green+(num)])
36 + [enter-(num), count<>(c=c+1), green+(num) if c > 0]
37 + [leave-(num), green+(num), count<>(c=c−1) if c > 1]
38 + ([leave-(num), green+(num), count<>(c=c−1), up+(dot) if c == 1]
39 ; [done-(OPEN)]))
40 ∗ [False]

The complete system is just a parallel composition of instances of these nets:
one pair of gates, one controller and several tracks.

42 # all components in parallel

43 gates() | controller () | track(0) | track(1)

On the Petri net obtained from this model, safety (1) and liveness (2) LTL
properties may be verified using Neco-spot model-checker [9]:

∀ 0 ≤ i ≤ 1 : G
(
track(i).crossing �= ∅ ⇒ gates().state = {CLOSED}) (1)

G
(
gates().state = {CLOSED} ⇒ F (gates().state = {OPEN})

)
(2)

where G and F are respectively the globally and eventually modalities. Note that
Neco actually requires slight changes to the model presented above because it
does not support dot or parentheses in place names (so buffers “crossing” and
“state” need to be replaced with global buffers), symbols (to be replaced with
constants) nor enumerated types (to be replaced with “int”), see [15].
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4.2 Security Protocols

A massively parallel ctl* model-checker for models of security protocols has
been developed in [10]; a side product of this work has been the actual modelling
of a bunch of security protocols, which has been made using abcd. We show here
two excerpts of a model of the Needham-Schroeder public key protocol [13], it
is not needed to present it to understand our purpose, it is enough to know that
some agents are exchanging encrypted messages in the presence of an attacker.

1 # implementation of a Dolev-Yao attacker

2 from dolev yao import ∗
First, a Python module called “dolev yao” is imported, it contains the def-

inition of various symbols (“CRYPT”, “PUB”, “PRIV” and “NONCE”) used to
make a symbolic treatment of cryptography (i.e., replace actual computation of
cryptographic operations with terms that express it, which is a classical treat-
ment of cryptography when modelling protocols) as well as a class “Spy” that
implements a Dolev-Yao attacker [8]. Such an attacker has an infinite memory
and computational power, however, it cannot break the cryptography that is
assumed perfect. So it can capture messages exchanged by the other agents,
gain knowledge (i.e., learn) by decomposing messages, decrypt messages when
it has the key to do so, recompose or encrypt messages, and inject new messages
on the network. Recomposition leads in practice to infinite computation because
just one object may be assembled into sequences of arbitrary sizes. The classical
solution to bound the computation is to restrict compositions of objects to pat-
terns that actually appear in the protocol: indeed, other sequences are useless
to produce because no other agent in the system would ever use them as a valid
message.

Modelling such an attacker is actually not difficult, but it requires to imple-
ment the learning actions discussed above, which immediately leads to state
space explosion because we expose in the model all the intermediate steps of a
fixed point computation (i.e., the attacker applies each learning action until it
cannot learn anything new). Instead of this, using abcd, we implement (i.e., pro-
gram) the Dolev-Yao attacker directly in Python and have an efficient execution
of this learning phase on a single transition. So, in the case of the Needham-
Schroeder protocol, we have a simple model of the attacker as follows:

25 net Mallory (this , agents) :
26 buffer knowledge : object = ([this, (NONCE, this), (PRIV, this)]
27 + [(PUB, a) for a in agents]
28 + agents)
29 # Dolev-Yao engine, bound by the protocol signature

30 buffer spy : object = Spy((CRYPT, (PUB, int), int, (NONCE, int)),
31 (CRYPT, (PUB, int), (NONCE, int), (NONCE, int)),
32 (CRYPT, (PUB, int), (NONCE, int)))
33 # capture on message and learn from it

34 ([spy?(s), nw-(m), knowledge>>(k), knowledge<<(s.learn(m, k))]
35 # loose message or inject another one (may be the same)

36 ; ([True] + [spy?(s), knowledge?(x), nw+(x) if s.message(x)]))
37 ∗ [False]
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Buffer “knowledge” stores all the information learnt by the attacker; initially,
this is information about itself, plus the public keys and identities of the other
agents. Buffer “spy” stores an instance of class “Spy” that implements the Dolev-
Yao learning mechanism. This class is instantiated with the signature of the
protocol, that is, the types of all the possible messages, here also presented in
a symbolic way (i.e., as terms). Then, the process executed by the attacker
is always the same for any protocol, it repeatedly execute a sequence of two
behaviours:

– line 34, capture a message on the network “nw-(m)”, learn from it and the
previous knowledge by calling method “Spy.learn”, and enrich the knowledge
with decomposed and recomposed messages;

– line 36, immediately loop with “[True]” which causes a message loss, or inject
a new message on the network using method “Spy.message” to check that a
syntactically correct message is actually injected (anything else would yield
additional states for nothing).

This example illustrates well how in abcd programming and modelling can
nicely complement each other. Not only this is simpler for the modeller, but also
it leads to more efficient verification because it reduces state spaces a lot. Of
course, the programmed part has to be correct but in this case, it is only 100 lines
of simple Python that can be carefully written and scrutinised as well as thor-
oughly tested. In particular, we have verified that known attacks are detected,
which shows that our Dolev-Yao attacker is at least as good as that implemented
by specialised tools like Avispa [1]. On the other hand, when functions of the
system are programmed and model-checking is applied, we can consider that
this code has a good level of certification because it has been intensely exercised
without triggering a bug nor producing an invalid run from the model-checking
point of view. In other word, this code is part of the model and is verified just
like the abcd part.

abcd has been initially developed for the purpose of modelling an industrial
peer-to-peer storage system whose security needed to be assessed [5,19]. The kind
of models we obtain for such a use case is similar to models of security protocols,
the main difference is that we model identical peers instead of distinct partners
with distinct roles. However, additionally to model-checking in the Dolev-Yao
perspective, we have used statistical analysis of large sets of random traces to
assess quantitative properties; in particular, we obtained the number of file loss
with respect to the number of malicious peers connected to the system (a typical
case where the yes/no answer of a model-checker is not enough).

4.3 Teaching Formal Modelling and Verification

The most recurring use of abcd is for teaching: it is used for years at the
university of Évry to teach formal modelling to master students in computer
science. They are presented models like those discussed above and they must
produce such models themselves.
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This experience has shown that abcd is not easier nor harder to understand
by such students than coloured Petri nets. However, when it comes to actually
produce models, students are much more successful and efficient using abcd. In
particular, sub-processes are naturally adopted and the models produced tend
to be clearly structured, contrasting with Petri net models that quickly become
random-looking and completely wrong. Clearly, the similarity of the syntax of
abcd with that of programming languages helps a lot to this respect. The inter-
active simulator is also very much appreciated because it allows an immediate
feedback during the process of modelling.

5 Implementation, Compilation and Simulation

abcd is implemented in snakes [16,18] as a compiler that takes abcd source
code as its input and has various possible outcomes: pictures, snakes’ vari-
ant of pnml,1 or an interactive simulator that allows to execute a model in a
user-friendly graphical user-interface. A naive reachability model-checker is also
implemented but we will not describe it, and actually we did not describe the
related parts in the syntax, because it is intended to be replaced with something
more general, robust and efficient. The compiler can be invoked from a command
line interface or from a Python program in which case the constructed Petri net
object is returned as an instance of snakes’ PetriNet class.

The compiler is a rather straightforward implementation of the rules pre-
sented in Fig. 4, extended with syntactic and semantic constraints checks.

The interactive simulator is an important feature of the abcd compiler, it
is often the main tool invoked by users during the design of a model, just like
a programmer invokes the compiler and make dry runs to exercise programs.
The simulator has been completely reworked recently and is now displayed as
a responsive Web user interface: when simulation is asked from the compiler, a
Web page opens in which all the interaction takes place. Figure 6 show the main
parts of this simulator (hiding a menu with a few auxiliary features):

– at the top is a player that allows to automatically run a chosen number of
actions randomly selected, with a controlled speed;

– in the left column, under the abcd label, the abcd source code is displayed
and enabled actions are highlighted. This is static information that will not
evolve with the execution (apart from the highlighting);

– in the right column, a dynamic tree view of the model allows the user to
observe and control the execution. Because a sub-process may have many
instances, it is necessary to display separately each instance so that it can
be controlled separately and its state (i.e., the content of its buffers) can be
displayed separately. In the example of Fig. 6 that shows a simulation of the
specification from Fig. 1 (restricted to two philosophers for readability), we
can see the instances of “net philo”, each with its actions in various enabling
states. For instance, among the two actions of the first instance, only the

1 Which is not valid pnml in the case of the coloured models obtained from abcd [18].
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Fig. 6. A screenshot of (part of) the Web user interface.

second one is enabled for only one possible mode that is {} here because there
is no variables;

– finally, at the bottom is the trace executed so far. Using the arrow in the
right-most column, it is possible to navigate into the trace in order to update
the tree view to the state it had just before the corresponding action has been
executed; it is also possible to restart a new trace from this point.

The architecture of the simulator is modular and flexible and it is possible to
adapt it to simulate Petri nets based formalisms others than abcd. For instance,
we have developed a similar simulator for models of biological regulatory net-
works [6,7] where the state is a plot of concentration levels of the regulated
products (on the y axe) with respect to time (on the x axe). To do so, it is
necessary to provide some HTML code that provides the presentation of the
model and its state, and some JavaScript code to translate the interactions with
them into appropriate calls to the simulation engine, as well as to implement the
updates requested by the engine.

6 Conclusion

We have presented abcd, a modelling language that is mixing the Python pro-
gramming language and a process algebras. We have defined the Petri nets
semantics of abcd, targeting a Python-coloured variant of Petri nets extended
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with read-, flush- and fill-arcs. All this is implemented and freely available with
the toolkit snakes. Use cases of abcd have showed its suitability to qualitative
analysis through model-checking as well as to quantitative analysis through sta-
tistics on large sets of traces. abcd is also suitable to teach formal modelling to
master students and is regularly used for this purpose.

Among the numerous languages or notations with a Petri net semantics,
apart from the pbc and pna family of which abcd is a member, essentially one
can be directly related to abcd: the Basic Petri Net Programming Notation,
b(pn)

2 [4], is also a process algebra and its semantics is expressed in terms
of coloured Petri nets. Data in b(pn)

2 is stored into variables which makes
necessary to distinguish the value of a variable before and after the execution
of an atomic action. So, a variable x is actually used as ′x and x′ within the
Boolean expressions that form the atomic actions. After having taught both
b(pn)

2 and abcd, it appears that abcd is easier to understand than b(pn)
2

because it is more explicit with respect to data storage through buffer accesses,
the latter being clearly distinguished from the guard when b(pn)

2 unifies both
aspects. Finally, b(pn)2 is implemented only in the pep toolkit [14] that is not
maintained anymore.

Future work about abcd will aim at implementing various extensions and
improving its connection with analysis tools.

Considered extensions include: buffer capacities to block actions that would
add (resp. remove) too much tokens to (resp. from) a buffer; arrays of buffers
to declare k identical buffers at the same time, where k is a constant; paramet-
ric composition to compose identical processes depending on a parameter, for
instance to compose the k tracks of the railroad example of Sect. 4.1 where k is a
constant; dynamic threads of executions like suggested in [17, Sect. 4.3] allowing
to create dynamic instances of sub-processes with abort/suspend/resume capa-
bilities and to emulate function calls (including recursive calls); syntax for raw
Petri nets allowing to include arbitrary Petri nets within an abcd model, which
is sometimes useful when control-flow is over-constraining; inhibitor access to
leverage the inhibitor arcs already implemented in snakes. These extensions
will be included in a demand driven fashion: they are identified to be potentially
useful but the actual need for them has not been too crucial so far to trigger the
effort of implementing them.

Two ways are envisaged to improve the usability of abcd for analysis. First,
we would like to ease the invocation of Neco-spot [9] to support direct model-
checking of ltl formulas on abcd models, this will require some work on Neco
itself that currently has a few blocking limitations as explained above. Then,
we are already working on a fast multi-core simulation engine coupled with
automatic execution-related data collection for statistical analysis. Currently,
this is a manual process with an inefficient execution of the traces, and so,
building even simple statistics is quite a tedious process.

Finally, we will continue to model systems using abcd in the context of
research projects as well as for teaching because it has proved to be a good tool
for these purposes.
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Abstract. This paper focuses on the application of a Petri Net-based
diagnosis method on a planetary rover prototype. The diagnosis is per-
formed by using a model-based method in the context of health man-
agement of hybrid systems. In system health management, the diagnosis
task aims at determining the current health state of a system and the
fault occurrences that lead to this state. The Hybrid Particle Petri Nets
(HPPN) formalism is used to model hybrid systems behavior and degra-
dation, and to define the generation of diagnosers to monitor the health
states of such systems under uncertainty. At any time, the HPPN-based
diagnoser provides the current diagnosis represented by a distribution
of beliefs over the health states. The health monitoring methodology is
demonstrated on the K11 rover. A hybrid model of the K11 is proposed
and experimental results show that the approach is robust to real system
data and constraints.

Keywords: Diagnosis · Hybrid systems · Model-based monitoring ·
Health management · Uncertainty · Petri Nets · Particle filter

1 Introduction

Real systems have become so complex that it is often impossible for humans to
capture and explain their behaviors as a whole, especially when they are exposed
to failures. System health management or prognostics and health management
(PHM) aims at developing tools that can support operator tasks, reducing the
global costs due to unavailability and repair actions, but also optimizing the
mission reward by replanning or reconfiguring the system [23].

An efficient health monitoring technique has to be adopted to determine the
health state of the system at any time by using diagnostics and prognostics
techniques. A diagnosis method is used to determine the current health state
and identify the possible causes of failures that lead to this state by reasoning
on observations. Prognosis is used to predict the future health states and the
dates of the occurrences of the faults that lead to these states.

c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 196–215, 2016.
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A system is considered as a hybrid system if it exhibits both discrete and con-
tinuous dynamics [13]. Sensor data and commands are designated as continuous
or discrete observations on the system. Hybrid systems are usually described as
a multi-mode system composed of an underlying discrete-event system (DES)
representing the mode changes and various underlying continuous dynamics asso-
ciated with each mode [3]. A discrete state of the DES coupled to a continuous
evolution (continuous dynamics) represents a mode (or operational condition) of
the system. The changes of modes are then associated with occurrences of events.
The system discrete state is the current discrete state of the DES. The evolution
of the system continuous state depends on continuous dynamics associated with
the current system mode.

In most industrial systems, if the degradation is not observable, it is estimated
as fault occurrence probabilities. The degradation thus depends on the stress
level of the current health mode of the system and, in some cases, also relies on
the current continuous state and also on the analysis of the events that occurred
on the system [11]. Because of these dependencies, we consider the degradation as
a hybrid characteristic. We thus defined the evolution of this hybrid characteristic
as hybrid dynamics and its current value as the hybrid state. We extend the multi-
mode system by associating underlying hybrid dynamics (e.g. degradation laws)
with each mode. The definition of a mode is thus enriched and is a combination
of a discrete state of the DES with continuous dynamics and hybrid dynamics [9].
The state of the hybrid system is the combination of its discrete, continuous and
hybrid states.

Our previous works introduced a framework called Hybrid Particle Petri
Nets (HPPN). [10] proposed to use HPPN to both model the system, which is
hybrid but also uncertain, and track its current health state with a diagnoser
representation. The methodology uses information about the system degradation
that is a significant advantage to compute a more accurate diagnosis and to
perform prognosis. In [11], we tested the proposed approach on a simulated
three-tank system.

The main contribution of this paper is to expose results of the implemented
HPPN-based health monitoring method on the K11 planetary rover prototype.
The K11 is a testbed developed by NASA Ames Research Center and is used
for diagnostics and prognostics purposes [1,7,8,23]. A hybrid model of the rover
is proposed, based on the discretization of its health evolution. Experimental
results are given, illustrating how the methodology is robust to real system data
and constraints. The method exposed in [11] have been improved. It is hence
recalled and new notions are precised, such as the definition of events, the mode
scores or the scale parameters for example.

This paper is organized as follows. Section 2 presents related works on diag-
nosis of hybrid systems. Section 3 recalls and deepens the health monitoring
methodology based on the modeling of the system and the generation of a
diagnoser by using HPPN. Section 4 focuses on the application of the proposed
methodology on the K11 planetary rover prototype. It provides the K11 hybrid
model and exposes the experimental results and performance metrics. Conclu-
sions and future works are discussed in the final section.
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2 Related Works

In [5], we extended the diagnosis approach proposed in [3] in order to integrate
diagnosis and prognosis for hybrid systems. The approach uses hybrid automata
and stochastic models for the system degradation. Diagnosis is performed using
a Discrete Event System (DES) approach. The DES-oriented diagnosis frame-
work, however, explodes in the number of states and it does not seem to be the
most suited for the incorporation of the prognosis task. Prognosis is indeed a
probabilistic prediction process and is highly subject to uncertainty. The health
monitoring task usually has to take into account the different sources of uncer-
tainty, such as model approximation, partial observability of the system and
measurement noise. Diagnosis should help the decision making process. In case
of ambiguity in diagnosis results, the traditional diagnoser fails at providing rel-
evant information. By taking all uncertainty sources into account, the method
we propose succeeds in quantifying each diagnosis result.

The diagnoser approach was introduced in [21]. The diagnoser is basically
a monitor that is able to process any possible observable event that occurs in
the system. It consists in recording these observations and providing the set
of possible faults whose occurrence is consistent with the observations. How-
ever, this approach is restricted to DES and does not manage uncertainty. Some
approaches extend the diagnoser to DES modelled by Petri Nets. A distributed
version of the diagnoser is proposed in [12]. In [4], the authors study the diag-
nosability of a system, inspired by the diagnosability approach for finite state
automata proposed by [21]. However, none of these approaches take into account
continuous aspects, nor consider uncertainty in the system. In [22], an approach
for the localization of intermittent faults by dealing with partial observability in
the discrete event framework is proposed. The method is based on Petri Nets
that model the normal functioning of the system observable behavior. A local-
ization mechanism, based on the diagnoser approach, points out the set of events
potentially responsible for the faults.

Some works try to take into account uncertainty. In [15], a particle filter-
ing technique is used to estimate the state of a hybrid system modeled as
a hybrid automaton. Uncertainty related to discrete events is not taken into
account and the system degradation is not considered. The authors of [20] use
partially observed Petri Nets. Partially observed Petri Nets are transformed into
an equivalent labelled Petri net and an online monitor is built to diagnose faults
and provide beliefs (degrees of confidence) regarding the occurrences of faults.
However, this approach is limited because it only takes into account uncertainty
in the diagnosis results, not about the model or the event observations. In [2],
the authors propose to reduce the explosion of the state space by introducing
generalized markings (negative tokens) to take into account uncertainty about
the firing of transitions. The stochastic Petri Nets are used in [14] to build a
formal model of each component of an integrated modular avionics architecture.
However, for all these approaches, no continuous aspect in the model is taken
into account.
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In [24], the Modified Particle Petri Nets (MPPN) formalism is used to get
a more compact representation and to capture all uncertainties related to the
system, the observations and the diagnosis results. MPPN are an extension of
particle Petri Nets [17] that combine a discrete event model (Petri Net) with
a continuous model (differential equations). The main advantage of MPPN is
that uncertainties about both discrete and continuous dynamics are taken into
account. A particle filter is used to integrate probabilities in the continuous
state estimation process. Tokens are duplicated during the online process to
model uncertainty on the event occurrences. The duplication, however, disturbs
the distribution over the continuous state. In addition, there is no mention of
the health state notion for the system. In [9], we apply the MPPN formalism to
health monitoring and highlight the inability to capture hybrid characteristics.
In [10], we extend MPPN into HPPN in order to monitor hybrid characteris-
tics and solve the continuous distribution issue. HPPN are used to monitor a
three-tank system, for which system degradation evolves according to the valves
configurations.

This paper focuses on the application of the health monitoring methodology
on the K11 rover, that is subject to the inherent uncertainty of real systems. In
previous works, health monitoring and diagnosis was applied to the K11 rover.
In [18], two diagnosis algorithms were applied, Qualitative Event-based Diag-
nosis (QED) [6], and the Hybrid Diagnosis Engine (HyDE) [19]. QED performs
diagnosis based on reasoning over symbols representing qualitative deviations
of the sensor signals with respect to model-predicted values. Sensor and process
noise are handled by using an observer to estimate the current system state, how-
ever no uncertainty in the symbols computed for diagnosis is considered, and all
diagnostic hypotheses are viewed as equally likely. HyDE is a consistency-based
diagnosis engine that uses hybrid and stochastic models and reasoning. Reason-
ing is performed by hypothesizing alternative system trajectories inferred from
the transition and behavior models of the system, and considers a priori fault
probabilities and mode transition probabilities. Both diagnosis algorithms were
used to diagnose parasitic load, motor friction, and voltage sensor faults in sim-
ulation. In [23], QED diagnosed parasitic load faults and voltage sensor faults
in real-world scenarios.

3 Hybrid System Health Monitoring

This section recalls the methodology proposed in [11] to perform model-based
health monitoring of hybrid systems.

We are interested in modeling changes in system dynamics when one or sev-
eral anticipated faults occur. The health modes are the hybrid system modes and
represent different health conditions. As long as the system does not encounter
any fault, it is in a nominal mode. Tracked faults are assumed to be permanent,
i.e. once a fault happens, the system moves from a nominal mode to a degraded
mode or faulty mode. Without repair, the system ends in a failure mode in which
it is not operational anymore.
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The proposed diagnosis solution is a two-step method. The first offline step
is to model the considered system using the HPPN framework (see Sect. 3.1) and
to generate the HPPN-based diagnoser (see Sect. 3.2). Then the online process
initializes the diagnoser marking and uses consecutive observations to update it
and compute the diagnosis at any time (see Sect. 3.2).

Example 1. Throughout Sect. 3, an example of a mobile robot, described in
Fig. 1, is used to illustrate the definitions and concepts.

Fig. 1. Mobile robot description.

The system is described with an oriented graph, in which the nodes represent
the health modes and the arcs represent the mode changes. Variables that can
be observed or estimated with observations are in bold.

The robot mission is to move without encountering an obstacle or failure,
until it reaches a specific area and is turned off. The initial mode is Nominal1 :
the robot is not degraded and is moving in a non-hostile zone. Its velocity v can
be estimated with continuous dynamics C1 and continuous observations, and is
positive. Two faults are expected and the robot degradation is estimated as fault
occurrence probabilities with hybrid dynamics H1, in which the probabilities
increase with time.

When the (discrete and observable) on-off command turn off occurs, the
robot stops and its velocity decreasing to 0. The robot enters in mode Nominal2 ,
where its motor is turned off and its velocity thus stays 0 (continuous dynamics
C2). Because the robot is turned off, the fault occurrence probabilities stagnate,
following hybrid dynamics H3.

Fault f2 represents the disconnection of the robot motor. Its occurrence leads
the system to the failure mode Failed1 . The occurrence of f2 implies the robot
stops, so its velocity decreases to 0. Once the motor is disconnected, the robot
has the same continuous and hybrid dynamics (C2 and H3) as if it was turned
off.

Fault f1 represents the entrance in a hostile zone and in mode Degraded1 . The
robot is still moving at the same velocity (C1). The physical conditions, however,
imply that the probability of occurrence of f2 increases more significantly than
in mode Nominal1 . This is defined with hybrid dynamics H2.

From mode Degraded1 , the robot can still enter in mode Failed1 with fault f2
occurrence but it does not match with any condition on the velocity in that case
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(see arc between Degraded1 and Failed1 ). The velocity estimation is considered
less accurate in the hostile zone than in the non-hostile zone, indeed.

Finally, the hostile zone contains obstacles. The robot can encounter a wall,
that stops the robot but not its motor. In that case, the mission fails and the
robot enters in failure mode Failed2 . This event wall is not predictable (not
estimated with probabilities) but is observable with an environmental on-off
sensor. Even if the mission is compromised and the robot is not moving anymore
(C2), its motor is still on so the degradation laws remain the same (H2).

3.1 Hybrid System Modeling

We propose to model the system by using the Hybrid Particle Petri Nets (HPPN)
formalism, introduced in [10].

Hybrid Particle Petri Nets. The HPPN formalism is an extension of Petri
Nets.

A HPPN is defined as a tuple 〈P, T,A,A, E,X,H,C,F , Ω,M0〉 where:

– P is the set of places, partitioned into numerical places PN , symbolic places
PS and hybrid places PH ,

– T is the set of transitions,
– A ⊂ P × T ∪ T × P is the set of arcs,
– A is the set of arc annotations,
– E is the set of event labels,
– X ⊂ R

n is the state space of the continuous state vector, with n ∈ N the
number of continuous state variables,

– H ⊂ R
m is the state space of the hybrid state vector, with m ∈ N the number

of hybrid state variables,
– C is the set of dynamic equation sets associated with numerical places, rep-

resenting continuous dynamics,
– F is the set of dynamic equation sets associated with hybrid places, repre-

senting hybrid dynamics,
– Ω is the set of conditions associated with transitions,
– M0 is the initial marking of the Petri net.

The marking Mk of the HPPN at time k is composed of tokens, that can be
symbolic, numerical or hybrid tokens:

Mk = {MS
k ,MN

k ,MH
k }. (1)

Symbolic places model the discrete states of the system and are marked
by configurations. Σ is the sets of events of the system. An event e ∈ Σ is a
couple (v, k) where v ∈ E is an event label and k the time of occurrence of
e. A configuration δi

k with i ∈ {1, ..., |MS
k |} is a symbolic token at time k and

represents a possible set of events bi
k that occurred on the system until time k.

bi
k = {ej} with j ∈ {1, ..., |bi

k|} and for any event ej = (v, κ), κ ≤ k.



202 Q. Gaudel et al.

A numerical place pN ∈ PN is associated with a set of dynamic equations
C(pN ) modeling system continuous dynamics and its corresponding model noise
and measurement noise. They are marked with particles. A particle πi

k, with i ∈
{1, ..., |MN

k |} is a numerical token at time k and represents a possible continuous
state xi

k ∈ X of the system at time k.
A hybrid place pH ∈ PH is associated with a set of dynamic equations

H(pH) modeling system hybrid dynamics. They are marked with hybrid tokens.
A hybrid token hi

k, with i ∈ {1, ..., |MH
k |} is linked with a configuration δj

k and
a particle πl

k, and represents a possible hybrid state di
k ∈ H of the system at

time k.
The initial marking M0 of a HPPN carries the system initial states b0, x0

and d0.
A condition Ω(t) associated with a transition t ∈ T is a Boolean function

that combines tests on the values of the tokens in the input places of t. Let ◦t
(t◦) designate the set of input (output) places of t. A condition must involves at
least one token in each place in ◦t. A condition involving more than one type of
tokens can be satisfied only if the tokens are linked with hybrid tokens. If Ω(t)
involves a configuration δk, it can deal with the occurrence of an event labeled
with v ∈ E (faults, mission events, interaction with the environment, ...). In that
case, it takes the form occ(bk, v), to test if the set of events bk of δk contains
the event (v, k). A condition Ω(t) that involves a particle πk can concern the
continuous state. For example, c(xk) < B tests if the constraint equation c on
the numerical state vector xk of πk is greater than a threshold B. In the same
way, a condition involving a hybrid token hk can deal with the hybrid state by
constraining the hybrid state vector dk of hk, e.g. ς(dk) ≥ β. Finally, a condition
that involves more than one token can be a Boolean expression combining two or
the three kinds of conditions above, e.g. Ω(t)(δk, πk, hk) = occ(bk, v) ∧ (c(xk) <
B) ∨ (ς(dk) ≥ β).

An annotation � ∈ A is associated with any arc a ∈ A that connects a
transition t to a symbolic place pS . It is an assignment function defined as
follows: if Ω(t) deals with the occurrence of an event labeled with v ∈ E, �(δi)
adds the event (v, k) to the event set bi of δi, when δi is moved to pS after the
firing of t at time k.

Health Modeling. With the definition of the HPPN above, it is possible
to build a health-oriented model of a hybrid system. We consider the system
modes as health modes (nominal, degraded and failure modes). Symbolic places
represent the different discrete health states of the system. Numerical (resp.
Hybrid) places represent various system continuous (resp. hybrid) dynamics.
Health modes are thus combinations of discrete states, continuous dynamics
and hybrid dynamics. Transitions model changes of health modes, so any tran-
sition t ∈ T must have three places (one of each type) in its sets of input places
and three places in its set of output places. Two transitions cannot have both
the same set of input places and the same set of output places.
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An anticipated fault is represented by an unobservable event f ∈ Σuo ⊂ Σ,
where Σuo is the set of unobservable events. Fault events are abstractions of
changes of health mode that might be unobservable or difficult to describe as
conditions on the continuous state.

Finally, we use conditions to model the change of health modes and then let
the degradation state affect the system evolution. For example, if the degradation
is modeled by a fault occurrence probability, a condition on the hybrid state can
be a Boolean function satisfied if the probability is higher than a given threshold.

Example 2. The HPPN-based model of the mobile robot is presented in Fig. 2.
Symbolic places are represented by places with regular thicknesses, while numer-
ical and hybrid places are represented by places with medium and large thick-
nesses, respectively. Arcs that connect transitions and symbolic (numerical and
hybrid) places are represented by solid (dashed and dotted) arrows.

pS
1 pS

2

pS
3

pS
4

pN
5

pN
6

pH
7

pH
8

pH
9

t2

t5

t3t4

t1

δ0

π0

h0

Fig. 2. Health-oriented model of the mobile robot using HPPN.

We decompose the five health modes of the robot into four symbolic places,
two numerical places and three hybrid places. Four discrete health states are
identified from the robot description (Fig. 1). One nominal state, one degraded
state, and two different failure states are represented by the four symbolic places
pS
1 , pS

2 , pS
3 and pS

4 , respectively. The two numerical places pN
5 and pN

6 represent
the continuous dynamics C1 and C2. The three hybrid places pH

7 , pH
8 and pH

9

represent the hybrid dynamics H1, H2 and H3, respectively. Five transitions
represent the health mode changes. For example, transition t4 represents the
change from mode Nominal1 to mode Nominal2 so ◦t4 = {pS

1 , pN
5 , pH

7 } and
t◦4 = {pS

1 , pN
6 , pH

9 }.
The initial mode is Nominal1 so δ0, π0 and h0 are in pS

1 , pN
5 and pH

7 , respec-
tively. At time k = 0, no event has occurred, so b0 = {}. The only estimated
state is the velocity, so x0 = [v0]T with v0 > 0 because the velocity is initially
positive. The initial fault occurrence probabilities ρf1

0 and ρf2
0 are very low. Thus,

d0 = [ρf1
0 , ρf2

0 ]T with ρf1
0 = 0.01 and ρf2

0 = 0.05.
The condition Ω(t4)(δk, πk, hk) = occ(bk, turn off) ∧ (x0

k ≤ 0) tests if an
event labeled with turn off occurred at time k and if vk is 0. We assume
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that a fault occurs if its probability of occurrence is greater than 0.9. Con-
sequently, the condition associated with transition t2 is Ω(t2)(δk, πk, hk) =
occ(bk, f1) ∨ (d0k > 0.9). With the same reasoning, we obtain Ω(t1)(δk, πk, hk) =
occ(bk, f2) ∨ (d1k > 0.9), Ω(t3)(δk, πk, hk) = occ(bk, f2) ∧ (x0

k ≤ 0) ∨ (d1k > 0.9)
and Ω(t5)(δk, πk, hk) = occ(bk, wall).

3.2 Hybrid System Diagnosis

In a health monitoring context, diagnosis aims at tracking the system current
health state. The system health state is the combination of its discrete, continu-
ous and hybrid states. In earlier work, we proposed to build a diagnoser from a
HPPN model [9]. The HPPN-based diagnoser is generated based on the HPPN
specifying the system model. It is a HPPN that monitors both the system behav-
ior and degradation under uncertainty. Its online process takes as inputs the set
of observations on the system. The output of the diagnoser at any time k is an
estimation of the system health state that takes the form of a marking of the
diagnoser Δk = M̂k.

Uncertainty. Several types of uncertainty are taken into account. Knowledge-
based uncertainty must be taken into account because the model does not reflect
perfectly reality, as for the symbolic part of the model than the numerical one.
Due to the inherent imprecision of sensors, we also consider uncertainty about
observations. Regarding the symbolic aspects, the possible observation of an
event that has not really occurred and the non observation of an observable
event that occurred are taken into account. Symbolic uncertainty is dealt with
using pseudo-firing (i.e. duplication) of tokens [17,24]. Numerical uncertainty
embodies the fact that the numerical values are imprecise. It is often dealt with
through an estimator, that aims at estimating the continuous state according
to model noise and measurement noise. We use particle filters to estimate the
continuous state through the set of particles of the HPPN. The links between
the configurations and the particles, provided by the hybrid tokens, are used to
prevent the particle distribution to be disturbed by pseudo-firing.

Diagnoser Generation. Let us suppose that the health-oriented system model
is a HPPN given by a tuple 〈P, T,A,A, E,X,H,C,F , Ω,M0〉 as defined in
Sect. 3.1.

The set of places of the diagnoser remains the same as the one of the model.
Concerning the conditions associated with transitions, two aspects have to be
taken into account. First, any Boolean function dealing with an event occur-
rence that is part of a condition Ω(t) is removed from it, in order to manage
symbolic uncertainty (see Sect. 3.2). Arc annotations, however, are conserved to
monitor event occurrences. Secondly, conditions on the hybrid state must also
be substituted because a diagnoser works with observations (the degradation is
estimated but not corrected with observations).
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To improve computational performance, transitions of the HPPN are trans-
formed following several rules defined in [11]. Basically, some transitions are
merged and other are created in a way that the HPPN is separated in two lev-
els. The behavioral level contains only the symbolic and numerical places, while
the hybrid level contains the hybrid places. New transitions (called hybrid tran-
sitions in previous works) connect hybrid places. A hybrid token hk ∈ M̂H

k

is moved from one hybrid place to another if it satisfies a condition associated
with hybrid transition. Theses conditions are called hybrid conditions in previous
work. The satisfaction of a hybrid condition depends on the places in which δk

and πk belong at time k, where δk and πk are the configuration and the particle
associated with hk.

Example 3. Figure 3 shows the two levels of the HPPN-based diagnoser of the
mobile robot example. The hybrid places are isolated and the hybrid transitions
{tHi } with i ∈ {6, ..., 11} are added to the net. The condition associated to t2
becomes Ω(t)(δk, πk) = �, a function returning true for any δk and πk, because
it does not depend on the continuous state. With the same reasoning, Ω(t1) and
Ω(t3) become also �, while Ω(t4) and Ω(t5) become x0

k ≤ 0. Then transitions
t1 and t3 (t4 and t5) have been merged because they were associated with the
same condition, they have the same input places {pS

2 , pN
5 } ({pS

1 , pN
5 }) and the

numerical place pN
6 in their set of output places. The merging of t4 and t5 into

t45 is useful to monitor at time k the possibilities to be in mode Failed1 (δ1k,
{πi

k} and {hj
k}) and the one to be in mode Failed2 (δ2k, {πi

k} and {hl
k}) with the

same set of particles {πi
k}. This is particularly convenient because the particle

filtering computation time increases with the number of particles.

Diagnoser Marking. In particle filtering, the number of particles defines the
precision of the filter. A possible mode of the system is represented by a set
of tokens composed of a configuration, nk particles, and the nk hybrid tokens
that link the configuration to the particles, where nk is representative of the

pS
1

pS
2

pS
3

pS
4

pN
5 pN

6

pH
7 pH

8
pH
9

t2

t13

t45

tH6

tH7

tH8

tH9

tH10
tH11

δ1
k

δ2
k{πi

k}

{hj
k}{hl

k}

Hybrid level

Behavioral level

Fig. 3. HPPN-based diagnoser of the mobile robot.
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precision associated to the monitoring of the mode at time k. The initial marking
M0 = {MS

0 ,MN
0 ,MH

0 } represents the system’s initial mode. It is composed
of one configuration with value b0, nN

0 particles with value x0 and nN
0 hybrid

tokens with value d0, where nN
0 is the initial number of particles. The estimated

marking at time k, M̂k = {M̂S
k , M̂N

k , M̂H
k } where M̂k = M̂k|k, represents all

the possible modes at time k. As long as only one mode is considered in the
initial marking, two possible modes cannot share the same configuration, at any
time k. However, two possible modes can share the same set of particles if they
have the same continuous dynamics but different discrete states (see Example 3).
As a consequence, the performance of the diagnoser regarding the uncertainty
management is improved, in a way that the number of calculations is reduced
where it can be. This is particularly true during the online process.

Diagnoser Process. The online process of the diagnoser is based on the evo-
lution of the marking and on particle filters. A prediction step and a correction
step are performed on the tokens to compute the marking of the diagnoser M̂k

at time k according to the observations Ok = OS
k ∪ ON

k , where OS and ON

respectively represent the observations corresponding to the symbolic part and
the numerical part.

The prediction step aims at determining all possible next states of the diag-
noser M̂k+1|k. It is based on the firing of the enabled transitions and on the
update of the token values. All the enabled transitions are fired according to
the rules described in [10]. This implies the assumption that a single event can
occur at time k. The event set bk of a configuration δk moved through an arc
a ∈ A during the transition firing, is updated according to the annotation A(a).
The value x of a particle π is updated according to the continuous dynamics
associated to the numerical place pN ∈ PN in which π belongs after the transi-
tion firing. Noise is added during the particle value update to take into account
uncertainty about model continuous dynamics. The value d of a hybrid token
h is updated according to the hybrid dynamics associated to the hybrid place
pH ∈ PH in which h belongs after the transition firing.

The correction step updates the predicted marking M̂k+1|k to the estimated
marking M̂k+1|k+1 according to new observations Ok+1. It is based on the com-
putation of the scores of all the possible modes represented by the marking and
on the resampling of the tokens depending on the scores of the possible modes
they represent. The scores of all possibles modes are computed with PrS and
PrN , the probability distributions over the symbolic and the continuous states,
respectively. PrS is the configuration weights. A configuration weight is com-
puted as the inverse of exponential of the distance between the configuration
event set and O−

k+1 = {Oκ|κ ≤ k + 1}, the set of symbolic observations until
k + 1. PrN is the normalized particle weights, calculated according to the dis-
tance between the particle values and numerical observations ON

k+1. Then, the
score of one possible mode is computed using a weighted function of the sum of
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its particle weights and its configuration weight:

Score(δi
k, {πj

k}, {hl
k}) = α × PrS(δi

k) + (1 − α) ×
nN
k∑

j=1

PrN (πj
k). (2)

where α ∈ [0, 1] is the coefficient indicating the global confidence of the symbolic
part relatively to the numerical part and nN

k = |{πj
k}| is the number of particles

considered for the given possible mode. The score of a possible mode is always
between 0 and 1. A decision making process associates a new number of parti-
cles nN

k+1 to each set of particles, according to the best score of all the possible
modes it belongs (see Sect. 3.2) and three scale parameters, denoted nN

min, nN
suff

and nN
max, of the HPPN. Each set of particles is then resampled with its asso-

ciated nN
k+1 particles, like in classical particle filter. Parameters nN

min and nN
suff

are respectively the minimum and the sufficient numbers of particles (but also
hybrid tokens) to monitor a possible mode. It means that any nN

k+1 is chosen to
satisfy the predicate nN

min ≤ nN
k+1 ≤ nN

suff . Parameter nN
max is the maximum

number of particles (hybrid tokens) available to monitor all possible modes. It
means the total number of particles after the resampling is always less than or
equal to nN

max. During the resampling, hybrid tokens linked to duplicated par-
ticles are duplicated while those linked to deleted particles are deleted. Finally,
configurations that are no longer linked with any hybrid tokens are deleted. The
correction mechanism highlights that the hybrid tokens, in addition to estimate
the hybrid state, prevent the particle distribution of one possible mode to be
disturbed by the particle distributions of the other possible modes. In particle
filtering, the number of particles defines the precision of the filter but is also a
computational performed factor. The HPPN scale parameters thus compromise
the number of possible modes to monitor and the precision granted to each one
of them, relative to the available computational power (nN

max can be set up to
fulfill performance constraints).

The diagnosis Δk is deduced from the marking of the diagnoser at time k:

Δk = M̂k = {M̂S
k , M̂N

k , M̂H
k }. (3)

It represents the distribution of beliefs over the current health mode and how
this mode has been reached. In other words, the marking M̂k indicates the belief
over the continuous state, the fault occurrences and the system degradation. The
HPPN-based diagnoser results include the results of a classical diagnoser in terms
of fault occurrences. In a classical diagnoser, however, every possible diagnosis
has the same belief degree. A HPPN-based diagnoser handles more uncertainty
and evaluates the ambiguity according to the tokens places and values.

4 Case Study

This section focuses on the application of the proposed methodology on the K11
planetary rover prototype. The K11 is a four-wheeled rover designed as a plat-
form for testing power-efficient rover architectures in Antarctic conditions [16].
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The K11 has then been redesigned by NASA Ames Research Center for diag-
nostics and Prognostics-enabled Decision Making research [1,7,23]. It has been
transformed into a testbed to simulate some fault occurrences and failures. In
this work, it is studied as a functional rover exposed to failures and executing
missions.

4.1 Rover Description

The K11 rover is powered by twenty-four 2.2 Ah lithium-ion single cell batter-
ies. A typical mission of the rover consists in visiting and performing desired
science functions at a set of waypoints, before joining its charging station. A
decision making module (DM) is responsible for determining the order in which
to visit the waypoints according to the terrain map, the waypoint positions and
rewards, and the rover conditions. The rover has four wheels, denominated by
their location: the front-left (FL) wheel, the front-right (FR) wheel, the back-left
(BL) wheel and the back-right (BR) wheel. Each wheel is driven by an indepen-
dent 250 W graphite-brush motor, with control performed by a single-axis digital
motion controller. An onboard laptop computer runs the control and data acqui-
sition software. The rover is a skid-steered vehicle, meaning that the wheels can-
not be steered and the rover is rotated by commanding the wheel speeds on the
left and right sides to different values. The battery management system provides
battery charging and load balancing capabilities. It also sends voltage and tem-
perature measurements for each of the individual cells to the onboard computer.
The data acquisition module collects current and motor temperature measure-
ments and sends them to the onboard computer. The motor controllers send
back motion data such as commanded speeds and actual speeds. More details
on the rover can be found in [1].

All the continuous observations on the rover and the list of faults we consider
in this study are presented in Table 1. Four signals command the wheels with
a proportional-integral-derivative controller and the set of sensors returns 61
measurement signals. Several fault types have been implemented on the testbed
and are related to the power system (battery), the electro-mechanical system
(motors, controller), and the sensors (drift, bias, scaling or failure).

The K11 rover has no discrete actuator or discrete sensor and thus has mostly
been studied as a continuous system, where faults were defined as constraints on
the continuous state. We propose to abstract anticipated faults into unobserv-
able events. The multi-mode system that describes the rover health evolution is
presented in Fig. 4. To simplify the description, only a part of the multi-mode
system is shown. The modes corresponding to consecutive fault occurrences are
not included and only the front-left motor is considered.

The rover is in mode Nominal1 with continuous dynamics C1 as long as no
fault has occurred. Fault f1 occurrence represents the end of discharge (EOD)
of the battery, i.e. the date when the battery is too discharged to power the
system. This is assumed to occur when the battery voltage is lower than 3.25 V
and it leads to the mission failure (mode Failed1 with continuous dynamics C5).
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Table 1. Continuous commands, continuous measurements, and fault types on the
K11

Command type Comments Units

Wheel speed Commanded speeds for wheels
on the same side are the same

rad/s

Measurement type Comments Units

Wheel speed One for each wheel rad/s

Total current A current sensor on the power
bus

A

Motor current One for each motor A

Motor temperature One for each motor ◦C

Battery temperature One for each battery cell ◦C

Battery voltage One for each battery cell V

Fault event labels Fault descriptions Effects

f1 Battery charge depletion Lead to failure

f2 Parasitic electric load Increase battery drain

f3, f4, f5, f6 Increased motor frictions Increase battery drain and
motor temperatures

f7, f8, f9, f10 Motor overheating Lead to failure

f11, f12, f13, f14 Failed motor temperature
sensors

Unable to estimate motor
temperatures

Fig. 4. Streamlined description of the rover health evolution.
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Fault f2 represents the emergence of a parasitic battery load arising from an elec-
trical submodule continuously engaged, for example. The parasitic load increases
the total current and thus the battery drain (mode Degraded1 with continuous
dynamics C2), which causes the system to reach the EOD prematurely. Fault
f3 (f4, f5 and f6) represents an increased friction of the FL (FR, BL and BR)
motor. The increased friction induces the need for a larger amount of current
to satisfy the same speed (mode Degraded2 with continuous dynamics C3). Fur-
thermore, the load demands will be higher, raising the motor temperature. The
most feared scenario for a motor is an overheating. In such case, the heat will
eventually destroy the insulation of the windings, causing electrical shorts and
leading to motor failure. The overheating of the FL (FR, BL and BR) motor
is represented by fault f7 (f8, f9 and f10). The occurrence of any one of these
faults leads to the rover failure (mode Failed2 with continuous dynamics C5)
and thus represents the rover end of life (EOL). A motor is assumed to overheat
when its temperature exceeds 70 ◦C. The motor temperatures are measured by
four sensors. These sensors, however, are known to fail unexpectedly, sending
inconsistent values. These failures are represented by faults f11 f12, f13 and f14.
We consider that the temperature model is not accurate enough without a cor-
rection step with observations. As a consequence, once f11 (f12, f13 and f14) has
occurred, the occurrence of fault f7 (f8, f9 and f10) does not match with any
condition on the FL (FR, BL and BR) motor temperature (see the arc between
Degraded3 and Failed2 ). In Fig. 4, mode Degraded3 with continuous dynamics C4

represents the mode where the temperature sensor of the FL motor has failed.
The rover has no hybrid state to monitor, so all modes have the same hybrid
dynamics H1, which corresponds to the identity dynamics.

4.2 Rover Modeling

Considering all the motors and the consecutive fault combinations, we identified
192 modes and 240 mode changes. The HPPN-based model of the rover has 241
places (192 symbolic, 48 numerical places, 1 hybrid place) and 240 transitions.
The HPPN-based diagnoser has the same number of places and transitions.
The merging step of the diagnoser generation does not reduce the number of
transitions (specific to the case study) but still the hybrid place is removed from
the transition inputs and outputs, reducing the complexity of the net. Because
there is only one hybrid place, there is no hybrid transition. The underlying
DES of the multi-mode system and HPPN-based model and diagnoser of the
K11 rover are available at https://homepages.laas.fr/echanthe/PetriNets2016.

The nominal continuous model is represented as a set of differential equations
that unifies the battery model with the rover motion model and the temperature
models. It can be converted to a discrete-time representation and solved with a
sample time of 1/20 s, while continuous observation sampling is about 1 s. We
consider 30 state variables for the rover, including the rover 3-dimensional posi-
tion, its relative angle position, the wheel control errors, the motor temperatures
and motor winding temperatures. The 24 batteries are lumped into a single one
to only consider 5 battery state variables (3 charges, the temperature and the

https://homepages.laas.fr/echanthe/PetriNets2016
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voltage) instead of 120. The battery model has been validated with experimen-
tal data in previous works [7,23]. Unifying the battery model with motion and
temperatures, however, increases uncertainty about the rover model.

Fault f2 occurrence and effect are modeled as a time varying parameter.
The parasitic battery load is captured as an additional current reaching a value
between 1.5 A and 4.5 A from value 0 A in a few seconds after the fault occur-
rence. First, two parameters are added to the continuous state vector to mon-
itor both the duration since the fault occurrence and the additional current
value. Then, the uncertain rise of the additional current is modeled by adding a
Gaussian noise, with a mean and standard deviation values starting respectively
at 3 and 0.3, and decreasing to 0 while the duration since the fault occurrence
increases.

Finally, the temperature model is quite uncertain so temperature measure-
ments are assumed to be reliable when sensors are not failed. We model fault
f11, f12, f13, f14 by increasing significantly the motor temperature sensor noise
because failed sensors only send inconsistent large values with no pattern. Fault
f3, f4, f5 and f6 and increased motor frictions can be modeled with time varying
parameters (as additional motor resistances) like f2 but are not monitored in
this study.

4.3 Results

The HPPN framework is implemented in Python 3.4. The tests were performed
on a 4 Intel(R) Core(TM) i5-4590 CPU at 3.30 GHz with 16 GB of RAM and
running GNU/Linux (Linux 3.13.0−74, x86 64). In order to reduce computation
time, the token value update step is multithreaded on the 4 physical cores. The
rest of this implementation only uses one core.

Two scenarios studied in [23] are considered in this work. The rover mission
is to visit a maximum of 12 waypoints and to go back to its starting position. All
waypoints have different associated rewards. In nominal conditions, the rover DM
system returns a 5-waypoints path, starting and finishing at the same position.
For all scenarios, the K11 rover starts at 0 s with batteries fully charged and
with all components at the ambient temperature. The K11 rover currently has,
however, 2 motor temperature sensors (FL and BL) failed. These faults do affect
the monitoring but not the physical system, so the DM returns the same path
as in nominal conditions.

The sensors faults are diagnosed in one sampling period by the diagnoser if
we consider the initial mode to be unknown. We assume to know the rover initial
degraded mode.

For the sake of clarity, in the rest of the paper, modes are designated with
representative keywords of the rover state. For example, the initial mode is des-
ignated as Sensor BL FL fault. The initial number of particles and hybrid tokens
is nN

0 = 100. Finally, due to the high uncertainty related to the unified model of
the rover, we set the scale parameters to (nN

min, nN
suff , nN

max) = (40, 80, 6000).
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Fig. 5. Scenario 1: mode belief at any time (Color figure online).

Scenario 1. In Scenario 1, no fault occurs. The rover successfully executes its
mission. Figure 5 presents the distribution of beliefs over the current health mode
at any time.

The belief degree of a possible mode is its score computed with Eq. 2 and α
set to 0.5. Any belief degree is between 0 and 1, but the sum of the belief degrees
of all possible modes is not 1. In Fig. 5, the maximum belief degree of a mode at
any time is represented by the thickness of the line and the highest belief degree
of all the modes is plotted in blue. The gap between 81 s and 281 s corresponds
to a break during the experiment. The figure shows that the diagnoser keeps
the real mode Sensor BL FL fault in its set of candidates and assigns it the
highest belief degree almost all along the scenario. Other modes are also highly
considered by the diagnoser at any time because of the model-based uncertainty.

Scenario 2. In Scenario 2, a battery parasitic load occurs between 660 s and
695 s, and the DM system cancels the visit of the farthest waypoint. Fault f2
occurrence is immediately detected by the diagnoser (Fig. 6). After 678 s, the
possibility of being in mode Sensor BL FL fault +Parasitic load is the highest
until the end of the mission. The fault load is estimated (most likely) at 1.39 A at
678 s, 1.73 A at 679 s, 2.16 A at 683 s and 2.16 A at 3906 s. A zoom between 570 s
and 760 s on the trajectories of the modes that are still possible at 3906 s (Fig. 7)
shows that fault f2 is believed to occur between 631 s and 694 s, and most likely
between 677 s and 689 s. These results are consistent with our analysis of the
measured total current.

Faults are always detected in one sampling period because the HPPN con-
siders all possibilities during the online process prediction step and keeps the
matching marking during the correction step. The results show that the diag-
noser grants most of the time but not always, the highest belief to the real
mode. The diagnosis, however, carries all the explanation of the observations as
a distribution of beliefs, and then the real mode is always considered in the set
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Fig. 6. Scenario 2: mode belief at any time.

Fig. 7. Scenario 2: trajectories of possible modes at time 3906 s.

of candidates. This illustrates the robustness of the HPPN-based diagnoser to
the rover model and data. The average diagnosis computation time and token
number are 13.3 s and 8801.4, respectively. These metrics point out the diagnosis
computation time remains acceptable compared to the system model computa-
tional complexity. The maximum RAM used by Scenarios 1 and 2 are 140.7 MB
and 141.8 MB.

The case study results show that HPPN-based diagnosis is robust to real sys-
tem data and constraints and adaptable to systems without discrete observations
nor degradation knowledge.

5 Conclusion

This work applies the approach of health monitoring based on Hybrid Parti-
cle Petri Nets to a real case study, the K11 planetary rover prototype. The
HPPN approach is particularly useful to take into account knowledge-based
and observation-based uncertainty. The HPPN-based diagnoser deals with event
occurrence possibility and knowledge imprecision. It monitors both discrete and
continuous dynamics, as well as hybrid characteristics, such as degradation, in
order to introduce concepts that will be useful to perform prognosis and health
management of hybrid systems under uncertainty. In addition, diagnosis results
can be used as probability distributions for decision making.
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Then, the methodology was applied on the K11 rover. A hybrid model of the
rover has been proposed by discretizing its health evolution and defining fault
events. The model and diagnoser have been generated and two scenarios have
been tested to illustrate the proposed method advantages. The diagnoser results
are consistent with the expected ones and show that HPPN-based diagnosis is
robust to real system data and constraints and adaptable to systems without
discrete observations nor degradation knowledge.

In future work, futher scenarios will be tested. We also aim at formalizing
and developing a prognosis process that will interleave diagnosis and prognosis
methods to obtain more accurate results. The HPPN-based prognostics method-
ology will be defined and tested on a three-tank system as well as on the K11
rover.
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Abstract. In the area of process mining, conformance checking aims
to find an optimal alignment between an event log (which captures the
activities that actually have happened) and a Petri net (which describes
expected or normative behavior). Optimal alignments highlight discrep-
ancies between observed and modeled behavior. To find an optimal align-
ment, a potentially challenging optimization problem needs to be solved
based on a predefined cost function for misalignments. Unfortunately,
this may be very time consuming for larger logs and models and often
intractable. A solution is to decompose the problem of finding an optimal
alignment in many smaller problems that are easier to solve. Decompo-
sition can be used to detect conformance problems in less time and pro-
vides a lower bound for the costs of an optimal alignment. Although the
existing approach is able to decide whether a trace fits or not, it does not
provide an overall alignment. In this paper, we provide an algorithm that
is able to provide such an optimal alignment from the decomposed align-
ments if this is possible. Otherwise, the algorithm produces a so-called
pseudo-alignment that can still be used to pinpoint non-conforming parts
of log and model. The approach has been implemented in ProM and
tested on various real-life event logs.

1 Introduction

The ultimate goal of process mining [2] is to gain process-related insights based
on an event log created by some system. Such an event log contains a sequence of
events for every case that was handled by the system. As an example, an event
could be as follows:

On October 1st, 2011, the resource 112 has completed the activity a1.

A sequence of events contained in an event log is commonly referred to as a trace.
From the data associated with the trace, we can derive for which particular case
the activity a1 was completed.

Within process mining, the field of process conformance [2,4,5,7–11,13,15,
17] deals with checking to what extent a process model (like a Petri net) and an
event log conform to each other, that is, how well they match. For this sake, the
event log is first replayed on the Petri net as best as possible, which results in
an optimal alignment between both. Such an optimal alignment relates events

c© Springer International Publishing Switzerland 2016
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in the event log to activities (transition labels) in the Petri net in the best-
possible way. Based on this optimal alignment, conclusions can then be drawn
on important metrics like fitness (how well does the event log conform to the
Petri net?), precision (how well does the Petri net conform to the event log?),
and generalization (how well does the Petri net conform to the system?).

A cutting-edge algorithm to compute an alignment is the cost-based
replayer [3], which finds a cost-minimal alignment between the event log and
the Petri net. Although this algorithm is very efficient and effective for smaller
logs and smaller nets, it has problems when dealing with larger logs and larger
nets. To speed up problematic replays, a decomposition technique has been pro-
posed in [1]. This decomposition technique decomposes an overall log and an
overall Petri net into a collection of decomposed logs and a collection of match-
ing decomposed Petri nets, and guarantees that the decomposed costs (the costs
of the replaying the decomposed logs on the decomposed nets) equal 0 if and only
if the non-decomposed costs (the costs of replaying the overall log on the over-
all net) equal 0. Hence, the approach is able to accurately identify deviating and
non-deviating traces, often in a fraction of the time. Furthermore, this technique
guarantees that the decomposed costs are a lower bound for the non-decomposed
costs.

An open issue for the decomposition approach is that it does not prescribe
how to merge the decomposed alignments into an overall alignment, if possible.
Whereas the replay of the overall log on the overall net results in an overall
alignment, replaying the decomposed logs on the decomposed nets results in a
collection of decomposed alignments. By merging these decomposed alignments
into an overall alignment, which may be much faster than computing the non-
decomposed alignment, one can also obtain diagnostic information on where the
event log and the Petri net do not match. This paper introduces an algorithm to
merge decomposed alignments into an overall alignment, again if possible. If not
possible, then the algorithm will result in a so-called pseudo-alignment, which is
a relaxation of the regular alignment. Such pseudo-alignments provide valuable
diagnostic information and help to diagnose the misalignments.

The core of this algorithm consists of 3 alignment rules and 2 pseudo-
alignment rules. Only applying the alignment rules will result in an alignment,
but might not be feasible as in certain situations no alignment rule can be applied
anymore. In such situations, we can apply a pseudo-alignment rule, but then the
result will be a pseudo-alignment.

The approach has been implemented in ProM and has been applied to a large
collection of logs and models showing that the constructed (pseudo-)alignments
indeed help to diagnose conformance problems.

The remainder of this paper is organized follows. First, Sect. 2 provides the
preliminaries, that is, logs, nets, alignments, and the decomposition. Second,
Sect. 3 introduces our alignment merge, that is, the 3 alignment rules and the
2 pseudo-alignment rules. Third, Sect. 4 introduces the implementation of the
merge. Fourth, Sect. 5 discusses the benefits of using the algorithm. Fifth, Sect. 6
concludes the paper.
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2 Preliminaries

2.1 Logs

In this paper, we consider activity logs, which are an abstraction of the event
logs as found in practice. An activity log is a collection of traces, where every
trace is a sequence of activities [2]. Table 1 shows the example activity log L1,
which contains information about 20 cases, for example, 4 cases followed the
trace 〈a1, a2, a4, a5, a8〉. In total, the log contains 13 + 17 + 9 + 2 × 9 + 9 + 4 ×
5 + 9 + 9 + 5 + 5 + 17 + 3 × 5 + 5 + 5 = 156 activities.

Definition 1 (Universe of Activities). The set A denotes the universe of
activities.

To capture an activity log, we use multi-sets. If S is a set of objects, then
B(S) is a multi-set of objects, that is, if B ∈ B(S) and o ∈ S, then object o
occurs B(o) times in multi-set B.

Definition 2 (Activity Log). Let A ⊆ A be a set of activities. An activity log
L over A is a multi-set of activity traces over A, that is, L ∈ B(A∗).

2.2 Nets

A Petri net is a modelling formalism that contains three different types of ele-
ments: places, transitions, and arcs [16]. Figure 1 shows an example Petri net
containing 10 places (p1 through p10), 11 transitions (t1 through t11), and 24
arcs.

Table 1. An example activity log L1 in tabular form.

Trace Frequency

〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a8〉 2

〈a1, a2, a4, a5, a6, a4, a3, a5, a7〉 1

〈a1, a2, a4, a5, a8〉 4

〈a1, a3, a4, a5, a6, a4, a3, a5, a7〉 1

〈a1, a3, a4, a5, a6, a4, a3, a5, a8〉 1

〈a1, a3, a4, a5, a8〉 1

〈a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8〉 1

〈a1, a4, a2, a5, a7〉 3

〈a1, a4, a2, a5, a8〉 1

〈a1, a4, a3, a5, a7〉 1

〈a1, a4, a3, a5, a8〉 1
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Fig. 1. A Petri net.
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Fig. 2. An accepting Petri net N1.

Definition 3 (Petri Net). A Petri net is a 3-tuple (P, T, F ) where P is a set
of places, T is a set of transitions such that P ∩T = ∅, and F ⊆ (P ×T )∪(T ×P )
is a set of arcs.

For our purposes, we extend Petri nets with labels, an initial marking, and a
set of final markings, yielding an accepting Petri net. Figure 2 shows an accepting
Petri net based on the example Petri net, with labels (like a1 and a8), an initial
marking ([p1]), and one final marking ([p10]).

The labels are used to link transitions in the Petri net to activities in an
activity log. As an example, transition t1 is linked to activity a1. Transitions
that are linked to log activities are called visible transitions. Transitions that
are not linked to a log activity, like transition t2, are called invisible transitions.
These invisible transitions are linked to a dummy activity named τ . Note that
τ 	∈ A.

Definition 4 (Accepting Petri Net). Let A ⊆ A be a set of activities. An
accepting Petri net over the set of activities A is a 6-tuple (P, T, F, l, I, O) where
(P, T, F ) is a Petri net, l ∈ T → (A ∪ {τ}) is a labeling function that links
every transition onto an activity (possibly the dummy activity τ), I ∈ B(P ) is
an initial marking, and O ⊆ B(P ) is a set of final markings.

As a result of the labeling, we can obtain an activity sequence from a transi-
tion sequence by removing all invisible transitions while replacing every visible
transition with its label. For example, the example transition sequence 〈t1, t2, t3〉
yields 〈a1, a2〉 as activity sequence.

The initial marking and final markings are included because process mining
considers complete traces and not a prefix-closed language. When replaying an
activity log on a Petri net, the Petri net needs to have an initial marking to start
with, and final markings to conclude whether the replay has reached a proper
final marking. In the example, a replay of some trace starts from marking [p1],
and the replay will be successful if and only if the marking [p10] is reached.

2.3 Alignments

A trace alignment [2,3] links activities in a trace onto transitions in a Petri
net. As an example, Fig. 3 shows a possible trace alignment for the trace
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t1 t2 t3 t5 t6 t7 t9 t10� �
a1 τ a2 a4 τ a5 τ a7a3 a6

�
a8

0 0 0 0 0 0 0 010 10 10

Fig. 3. A trace alignment extended with costs for the trace 〈a1, . . . , a8〉 and net N1.
Every column corresponds to a move, where the top row contains the activity, the
middle row the transitions, and the bottom row the costs of this activity-transition
pair.

〈a1, a2, a3, a4, a5, a6, a7, a8〉 and the accepting Petri net N1. We use � to denote
the lack of a visible transition in an alignment. For example, the occurrence of
activity a3 was not matched by a firing of transition t4 in the net. In such a
case, we use � to indicate that no corresponding transition was fired. Likewise,
although not present in this example, it is possible that transition t4 was fired
but that this was not matched by an occurrence of activity a3 in the log. In
such a case, we also use � but now to indicate that no corresponding activity
occurred.

The occurrence of a1 matches the firing of transition t1 (this is a so-called
synchronous move, as both the log and the net can advance), then we need to
fire the transition t2 in the net which has no counterpart in the log (a so-called
invisible model move), followed by another synchronous move for a2 and t3,
after which we need to skip the activity a3 (a so-called log move) as there is
no transition enabled in the net that matches this activity, etc. Note that we
require the transition sequence in the middle row of the alignment to lead from
the initial marking of the net to some final marking.

Definition 5 (Legal Moves). Let A ⊆ A be a set of activities, let σ ∈ A∗ be
an activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri net
over A. The set of legal moves of A and N is the union of the sets {(a, t)|a ∈
A ∧ t ∈ T ∧ l(t) = a} (synchronous moves), {(a,�)|a ∈ A} (log moves), {(�
, t)|t ∈ T ∧ l(t) ∈ A} (visible model moves), and {(τ, t)|t ∈ T ∧ l(t) = τ} (invisible
model moves).

Definition 6 (Trace Alignment). Let A ⊆ A be a set of activities, let σ ∈ A∗

be an activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri
net over A. A trace alignment h for trace σ on net N is a sequence of legal moves
(a, t) ∈ ((A ∪ {τ,�}) × (T ∪ {�})) such that:

– σ = h�1A and
– For some o ∈ O it holds that I[h�2T 〉o,
where

h�1A=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈a〉 · h�1A if h = 〈(a, t)〉 · h and a ∈ A;
h�1A if h = 〈(a, t)〉 · h and a 	∈ A;
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and

h�2T=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈t〉 · h�2T if h = 〈(a, t)〉 · h and t ∈ T ;
h�2T if h = 〈(a, t)〉 · h and t 	∈ T ;

The bottom row in Fig. 3 shows the possible costs of every move. In this
example, a synchronous move costs 0, a visible model move costs 4, an invisible
model move costs 0, and a log move costs 10. The total costs for the example
alignment is 30.

Definition 7 (Costs Structure). Let A ⊆ A be a set of activities, and let
N = (P, T, F, l, I, O) be an accepting Petri net over A. A cost structure $ for A
and N is a function that maps every legal move of A and N onto a (non-negative)
natural number.

Typically, the costs of all synchronous moves and all invisible model moves
are set to 0, as then a perfect match has costs 0. The user then only needs to
set the costs for the log moves and the visible model moves. If these costs would
be set to 10 and 4 for all transitions and activities, then we would have that
$(�, t3) = 4, $(a2,�) = 10, and $(a2, t3) = 0.

Definition 8 (Costs of Trace Alignment). Let A ⊆ A be a set of activities,
let σ ∈ A∗ be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting
Petri net over A, let h = 〈(a1, t1), . . . , (an, tn)〉 be a trace alignment (of length
n) for σ and N , and let $ be a cost structure for A and N . The costs of trace
alignment h, denoted $h, is defined as the sum of the costs of all legal moves in
the alignment, that is, $h =

∑
i∈{1,...,n} $(ai, ti).

If no other alignment results in lower costs, the alignment is called optimal.
There may exist multiple optimal alignments for a single trace. For example, the
alignment as shown in Fig. 3 is optimal, but the alignment as shown in Fig. 4 is
also optimal.

Definition 9 (Optimal Trace Alignment). Let A ⊆ A be a set of activities,
let σ ∈ A∗ be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting
Petri net over A, let h be a trace alignment for σ and N , and let $ be a cost
structure for A and N . The trace alignment h is called optimal if there exists no
other trace alignment h′ such that $h′ < $h.

t1 t2 t4 t5 t6 t7 t9 t11� �
a1 τ a2 a4 τ a5 τ a7a3 a6

�
a8

0 0 0 0 0 0 0 010 10 10

Fig. 4. Another optimal trace alignment for the trace 〈a1, a2, a3, a4, a5, a6, a7, a8〉 and
Petri net N1 (now t4 and t11 fire rather than t3 and t10).
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A log alignment is a trace alignment for every trace in the activity log,
an optimal log alignment is an optimal trace alignment for every trace in
the activity log. As a result of a log alignment, any trace in the log can be
mapped to the transition sequence that best matches this trace. As an exam-
ple, an optimal trace alignment for the trace 〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4,
a2, a5, a7〉 from log L1 could include the transition sequence 〈t1, t2, t3, t5, t6, t7,
t8, t2, t3, t5, t6, t7, t8, t5, t2, t3, t6, t7, t9, t10〉 in net N1, and the costs of this align-
ment would be 0.

Definition 10 ((Optimal) Log Alignment). Let A ⊆ A be a set of activities,
let L ∈ B(A∗) be an activity log over A, and let N = (P, T, F, l, I, O) be an
accepting Petri net over A. A log alignment H for log L and net N is a function
that maps every possible trace σ ∈ L to a trace alignment. A log alignment is
called optimal if and only if all its trace alignments are optimal.

Clearly, log L1 can be perfectly aligned to net N1, as there exists an alignment
where all trace alignments have costs 0. Using such a log alignment, it is possible
to project the date and information that is present in a log onto the net, and
obtain average durations between activities, an animation with the token replay,
etc.

2.4 Decomposition

The overall net and the overall log can be decomposed in a number of decom-
posed nets and decomposed logs, in such a way that (1) the costs of the opti-
mal overall alignment is 0 if and only if the costs of every optimal decomposed
alignment is 0, and (2) the accumulated costs of the decomposed alignments
are a lower bound for the costs of the overall alignment [1]. This allows us to
decompose an overall alignment problem into a number of decomposed align-
ment problems, which can possibly be solved much faster, while still providing
certain guarantees.

Figure 5 shows the five decomposed nets that result from decomposing the
net N1. For an in-depth description of such decompositions, we refer to [1]. For
this paper, it is sufficient to know that (1) every visible transition occurs in one
or more decomposed nets, (2) for every label all different transitions sharing

a1

a4a6

a2

a3

a4 a5

a2

a3

a5

a7

a8

a6

a1
a7

a8

N1a N1b N1c N1d N1e

Fig. 5. Decomposed nets obtained by decomposing the net N1. Nets N1b, N1c, N1d,
and N1e have the empty marking as initial marking, while the nets N1a, N1b, N1c, and
N1d have the empty marking as the only final marking.
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that label occur in a single decomposed net, and (3) that every place, invisible
transition, and arc occurs in only a single decomposed net. As such, a token can
only flow from one decomposed net to another decomposed net through firing
some visible transition, which is hence observable in the log.

Based on the activity sets as present in these decomposed nets, five decom-
posed logs will be created. Every decomposed log contains as many traces as the
overall log, but every trace in a decomposed log contains only those activities
that are present in the corresponding net. As an example, Table 2 shows the
decomposed log resulting from filtering log L1 using the decomposed net N1b,
that is, the net that corresponds to the set of activities {a1, a2, a3, a4, a6}.

Table 2. Decomposed log for activities {a1, a2, a3, a4, a6} in tabular form. This is the
log that would be replayed on the decomposed net N1b as shown in Fig. 5.

Trace Frequency

〈a1, a2, a4, a6, a2, a4, a6, a4, a2〉 1

〈a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4〉 1

〈a1, a2, a4, a6, a3, a4〉 3

〈a1, a2, a4, a6, a4, a3〉 1

〈a1, a2, a4〉 4

〈a1, a3, a4, a6, a4, a3〉 2

〈a1, a3, a4〉 1

〈a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4〉 1

〈a1, a4, a2〉 4

〈a1, a4, a3〉 2

By replaying every decomposed log on the corresponding decomposed net,
we obtain optimal decomposed alignments, say h1 to hn. From [1] we know that
the costs of these optimal decomposed alignments are guaranteed to be 0 if and
only if the costs of an optimal overall alignment (of the overall log on the overall
net) is 0. Furthermore, we know from [1] that we can use these decomposed
alignments to obtain a lower bound for the costs of the overall alignment.

Figure 6 shows the usefulness of the decomposition approach. It shows the
required computation times1 and numbers of activities for the DMKD 2006,
BPM 2013, and IS 2014 data sets [12,14,15]. These data sets contain in total 59
cases of varying size, ranging from 12 to 429 activities, from 500 to 2000 traces,
with varying numbers of mismatching traces (from 0 % to 50 %). Obviously,
the decomposed replay is more robust when it comes to computation times,
while it provides the same guarantee as mentioned earlier. For larger events
logs and models, computing optimal alignments can take days and is often

1 All tests are performed on a desktop computer with an Intel Core-i7-4770 CPU at
3.40 GHz, 16 GB of RAM, running Windows 7 Enterprise (64-bit), and using a 64-bit
version of Java 7 where 4 GB of RAM was allocated to the Java VM.
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Fig. 6. Computation times and numbers of activities for the replay on some data sets.
The non-decomposed replay did not finish in 10min for some cases, typically the cases
with many different activities.

intractable. For example, for some of the cases that did not finish in 10 min
it is known that they also do not finish within 12 h [15], or that they do not
finish because they run out of memory. If the net has a suitable decomposition,
replay time may thus be reduced from more than 12 h or infeasible to 10 s.

As a result of this replay, we will have a collection of decomposed alignments
and a lower bound for the costs. To be able to diagnose the mismatches between
the log and the net, we want to be able to merge the decomposed alignments
into an overall alignment, and project that overall alignment onto the log or the
net. Note that as a result of the guarantees of the decomposition, a trace has
no costs in the overall alignment if and only if it has costs in the decomposed
alignments.

3 Merging Alignments

This section introduces an algorithm to merge a coherent set of decomposed
alignments, that is, a set of alignments that result from replaying decomposed
logs on corresponding decomposed nets. Please note that the costs of the merged
alignment are simply the accumulation of the costs of the decomposed alignments
[1]. As a result, when merging the alignments we do not need to take the costs into
account. Instead, we can focus on the diagnostic value of the merged alignment.

To explain issues at hand for this step, we assume that we need to replay the
trace 〈a1, a2, a3, a4, a5, a6, a7, a8〉 on the net N1 (see Fig. 2). Figure 3 shows an
optimal overall alignment for this trace, which shows that the optimal costs for
replaying this trace are 30. Figure 7 shows a set of possible optimal decomposed
alignments, obtained by replaying the decomposed logs on the decomposed nets
(see Fig. 5). Accumulating the costs from these decomposed alignments yields
costs 27, which is caused by the fact that net h1d can do the model move (�, t7)
instead of the more expensive log move (a6,�).

The algorithm needs to merge these five decomposed alignments into one
overall alignment, if possible. To do so, the algorithm takes the trace, an empty
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Fig. 7. Possible optimal decomposed alignments. h1b is an optimal alignment for the
decomposed log shown in Table 2 and the decomposed net N1b, etc.

alignment, and the five decomposed alignments, and works its way through the
trace and the decomposed alignment while building up the overall alignment:

– The algorithm first encounters the activity a1 in the trace, which is covered
by two decomposed alignments (h1a and h1b). Fortunately, both decomposed
alignments agree on a synchronous move on a1 and transition t1, so the algo-
rithm adds the legal move (a1, t1) to the overall alignment and advances both
the trace and the decomposed alignments.

– The algorithm then encounters the activity a2, which is also covered by two
decomposed fragments (h1b and h1c). However, h1b is not yet ready to accept
a2 as it first needs to do an invisible model move on the transition t2. There-
fore, the algorithm first adds the invisible model move (�, t2) to the overall
alignment and advances the state of h1b. Then, unfortunately, the algorithm
notices that h1b and h1c disagree on the move on a2, as h1b suggests a syn-
chronous move (on transition t3) while h1c suggests a log move. In case of such
a conflict, we can either take an optimistic approach (by selecting the least
expensive move) or a pessimistic approach (by selecting the most expensive
move). In the remainder of this paper, we will use the pessimistic approach,
as the optimistic approach tends to mask mismatches by selecting, in case of a
conflict, moves without costs. Clearly, when diagnosis is the goal, one should
not mask possible problems, but one should stress them. So, the algorithm
adds the log move (a2,�) to the overall alignment and advances the state of
the trace and both h1b and h1c.

– Activity a3 is handled by the algorithm in a similar way as a2, as h1b and
h1c again disagree. Note that as a result, the algorithm now has added two
log moves for a2 and a3 to the overall alignment, which leads to a transition
sequence that is not executable in the overall net, and to an overall alignment
which is (by definition) not a proper alignment. For this reason, we introduce
so-called pseudo-alignments, which are alignments except for the fact that the
trace does not need to be executable in the net. The result of merging the
decomposed alignments at hand would then be a pseudo-alignment instead of
an alignment.

– Etc.

This result of this merging is visualized in Fig. 8. In this figure, the middle
row shows the alignment of alignments that results from merging the decom-
posed alignments. In this row, the legal moves that have been ignored (because
they were in conflict and were less expensive, like (a2, t3), or because they were
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Fig. 8. Alignment of the decomposed alignments for obtaining the overall pseudo-
alignment. The top row shows the trace that we need to align in the net. The middle
row shows the optimal decomposed alignments of Fig. 7 laid out in such a way that
the activities match in the vertical direction. Note that the ordering in the vertical
direction of these decomposed alignments is of no importance. The bottom row shows
the pseudo-alignment that results from merging these decomposed alignments.

missing, like a move on t7) are indicated with a grey background. The overall
pseudo-alignment (see the bottom row in Fig. 8) follows directly from this align-
ment of decomposed alignments by taking in every column a legal move that has
no grey background, and by accumulating the costs in every column.

To avoid the introduction of the same concepts in the formal definitions over
and over again, we first define a base setting for these formal definitions. This
definition is to be used as a preamble for all other definitions in this section.

Definition 11 (Base Setting). The base setting for this section is as follows:

– A ⊆ A denotes a set of activities,
– L denotes an activity log over A,
– σ denotes an activity trace from L,
– N = (P, T, F, l, I, O) denotes an accepting Petri net over A,
– $ denotes a cost structure for A and N ,
– h denotes an optimal trace alignment of σ for A and N , given $,
– n equals the number of decomposed nets obtained by decomposing N ,
– for every i ∈ {1, . . . , n}:

• Ai denotes the set of activities of the i-th decomposed net,
• Li denotes the log obtained from L by filtering out all activities not in Ai,
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• σi denotes the activity trace from Li obtained from L by filtering out all
activities not in Ai,

• N i = (P i, T i, F i, li, Ii, Oi) denotes the i-th decomposed net obtained by
decomposing N as explained in [1], where P i ⊆ P , T i ⊆ T , F i ⊆ F ,
∀t∈T i li(t) = l(t), Ii = I ∩ P i, and Oi = {o ∩ P i|o ∈ O},

• hi denotes an optimal trace alignment of σi for Li and N i.

First, we introduce the space of alignments that we are interested in, that is,
the collection of overall alignments that fit the decomposed alignments. Later
on, we introduce the algorithm that returns an alignment from this space.

Definition 12 (Merged Trace Alignment). The trace alignment h′ is a
merged trace alignment of h1, . . . , hn if and only if ∀i∈{1,...,n}h′↓Ai= hi, where
h′↓Ai is defined as follows:

h′↓Ai=

⎧
⎨

⎩

〈〉 if h′ = 〈〉;
〈(a, t)〉 · h′↓Ai if h′ = 〈(a, t)〉 · h′ and a ∈ Ai ∨ t ∈ T i;
h′↓Ai if h′ = 〈(a, t)〉 · h′ and a 	∈ Ai ∧ t 	∈ T i;

For decomposed alignments that conflict on some legal move no such merged
trace alignment exists.

Observation 1. (A merged trace alignment may not exist) For arbitrary decom-
posed alignments h1, . . . , hn, a merged trace alignment h′ may not exist.

See Fig. 8: Either we have the legal move (a2, t3) or the legal move (a2,�). In
the former case, the decomposed alignment that contains the legal move (a2,�)
cannot be matched. In the latter case, the decomposed alignment that contains
the legal move (a2, t3) cannot be matched.

In such cases, to get any result of merging the decomposed alignments, we
need to let go of the requirement that for some o ∈ O it holds that I[σ〉o, that
is, the result is not an alignment, but a pseudo-alignment.

Definition 13 (Trace Pseudo-Alignment). A trace pseudo-alignment h for
trace σ on net N is a sequence of legal moves (a, t) ∈ (A∪{τ,�})× (T ∪{�}))
such that σ = h�1A, where h�1A is defined as in Definition 6.

In a pseudo alignment we drop the second requirement in Definition 6. Using
these pseudo-alignments, the algorithm can handle conflicts between the decom-
posed alignments. A merged pseudo alignment has only legal moves for:

– Each activity in the log trace. In case of conflicts, the cheapest legal move is
selected for the overall pseudo-alignment.

– A model move that all agree on. Note that, by definition, for an invisible
model move all agree, as there is only one decomposed net that contains this
transition.

Definition 14 (Merged Trace Pseudo-Alignment). The trace pseudo-
alignment h′ is a merged trace pseudo-alignment of h1, . . . , hn if and only if
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∀i∈{1,...,n}h′↓Ai= hi, where h′↓Ai is defined as follows:

h′↓Ai=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈〉 if h′ = 〈〉;
〈(a, t′)〉 · h′↓Ai if h′ = 〈(a, t)〉 · h′ and a ∈ Ai,

for some t′ such that $(a, t′) ≥ $(a, t);
〈(x, t)〉 · h′↓Ai if h′ = 〈(x, t)〉 · h′, x ∈ {τ,�}, and t ∈ T i;
h′↓Ai if h′ = 〈(�, t)〉 · h′ and t ∈ T i;
h′↓Ai if h′ = 〈(a, t)〉 · h′ and a 	∈ Ai and t 	∈ T i;

As a result, in case of conflicting legal moves, the most expensive legal move
is selected to be included in the overall pseudo-alignment (see the second item).
Of course, this selected legal move will not match some unselected legal moves,
which most likely breaks the execution of the transition sequence in the net.
Furthermore, note that it is possible to ignore visible model moves (see the
fourth item). This is required for completeness as otherwise we cannot deal
with a conflict for such transitions. For example, observe that the decomposed
alignment h1d includes the legal move (�, t7), which is not matched in the
decomposed alignment h1c. Having (�, t7) in the corresponding position in h′

would work for h1d, but not for h1c. Likewise, not having it would work for h1c,
but not for h1d. To solve this problem, we decide to have (�, t) in h′ (for sake
of diagnosis) and to compensate for this using this fourth item.

Theorem 1 (A merged trace pseudo-alignment always exists). For arbi-
trary decomposed alignments h1, . . . , hn, a merged trace pseudo-alignment h′

always exists.

Proof. Assume that such an h′ does not exist, and assume that we could find
a prefix of h′ such that the projection of this prefix onto every Ai does result
in a prefix of hi. Obviously, the empty prefix satisfies this requirement. Now,
assume that we cannot extend this prefix anymore, that is, we cannot add a
new legal move, while a final marking has not been reached yet. This can obvi-
ously not involve an invisible transition, as there can be no conflict on such
transition. Likewise, this can also not involve a visible transition contained in
only one decomposed alignment. However, this can also not involve a shared
visible transition that is enabled by all sharing decomposed alignments, as then
we could simply take a most expensive of the legal moves proposed by these
alignments. As a result, this can only happen in case at least one of the sharing
alignments expects another shared visible transition first. Such a shared visible
transition cannot correspond to a model move, as otherwise we could use the
fourth item to continue, as explain above. As a result, there should be a conflict
with synchronous moves. But this clearly contradicts the fact that every decom-
posed alignment adheres to the order of these transitions in the original trace.
Therefore, it cannot be that we cannot extend the prefix, unless we have reached
a final marking.

Theorem 2 (A merged trace pseudo-alignment may not be an align-
ment). Let the trace pseudo-alignment h′ be a merged trace pseudo-alignment
of h1, . . . , hn. Then h′ may not be a trace alignment for L and N .
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Proof. See Fig. 8: We added the legal move (a2,�) as this is more expensive
than adding (a2, t3). In a similar fashion, we also added (a3,�). As a result,
neither t3 nor t4 is present in the transition sequence of the alignment. But,
clearly, net N1 requires either t3 to t4 to fire to reach the final marking. Hence
the resulting transition sequence σ does not satisfy the requirement that I[σ〉o,
for some o ∈ O.

Based on these definitions, we first introduce three alignment stitching rules,
followed by two pseudo-alignment stitching rules. The alignment stitching rules
construct a merged trace alignment, if possible. If this succeeds, we know that
the result is again an alignment, and that the reported costs are exact, and not
just a lower bound. Otherwise, we need a pseudo-alignment stitching rule to be
able to continue, but this will result in a pseudo-alignment, and the reported
costs will only be a lower bound.

Definition 15 (Stitching Function Y ). Let H be the set of all possible trace
pseudo-alignments of L and N , and let Hi be the set of all possible trace align-
ments of Li and N i. The function Y ∈ (H×A∗×H1×. . .×Hn) → H returns the
first argument concatenated by the merged trace pseudo-alignment of the third
and following arguments (h1, . . . , hn), where the second argument (σ) is used
to guide the stitching. As a result, Y (〈〉, σ, h1, . . . , hn) returns the merged trace
pseudo-alignment of h1, . . . , hn.

The first alignment stitching rule is a simple rule that detects when the
algorithm is done: If the trace and all decomposed alignments have been dealt
with completely.

Alignment Stitching Rule 1 (All Done)

Y (h′, 〈〉, 〈〉, . . . , 〈〉) = h′

The second alignment stitching rule is a rule that allows the algorithm to
continue if all relevant decomposed alignments agree on the first activity in the
trace. If so, this activity is now dealt with and so are the corresponding legal
moves in the relevant decomposed alignments. For the irrelevant decomposed
alignments, nothing changes.

Alignment Stitching Rule 2 (Activity w/o Conflict)

If σ = 〈a〉 · σ and t ∈ (T ∪ {�})
and ∀i∈{1,...,n}(a ∈ Ai) ⇒ (hi = 〈(a, t)〉 · hi)
and ∀i∈{1,...,n}(a 	∈ Ai) ⇒ (hi = hi)
then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(a, t)〉, σ, h1, . . . , hn)

The third alignment stitching rule is a rule that allows the algorithm to con-
tinue if all relevant decomposed alignments agree on a next model move. If so,
these legal moves are now dealt with. Note that the set of relevant decomposed
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alignments differs per model move, as this set comprises all decomposed align-
ments where the corresponding decomposed net contains the transition involved
in the selected legal move. As a result, multiple legal model moves could be
a candidate for applying this rule. Note that this indicates that the candidate
transitions are now all enabled, that is they are concurrent.

Alignment Stitching Rule 3 (Transition w/o Conflict)

If t ∈ T and x ∈ {τ,�}
and ∀i∈{1,...,n}(t ∈ T i) ⇒ (hi = 〈(x, t)〉 · hi)
and ∀i∈{1,...,n}(t 	∈ T i) ⇒ (hi = hi)
then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(τ, t)〉, σ, h1, . . . , hn)

As mentioned before, applying these rules will result in an alignment if the
algorithm ends and Rule 1 can be applied. However, it may be that no rule is
applicable before reaching the end of one or more decomposed alignments.

Theorem 3 (Alignment Stitching Rules Result in an Alignment). Pro-
vided that the application of the alignment stitching rules ends, that is, if at
the end Rule 1 is applied, then the result of applying these rules is an alignment
merged trace alignment, that is, a trace alignment.

Proof. By construction, the alignment stitching rules append h′ with a legal
move (a, t) if and only if all relevant decomposed alignments hi agree on this
legal move. See also [1].

If conflicts between activities and/or transitions do occur, the algorithm can
use one of the following rules to continue. However, by applying these rules, we
know that the end result will not be an alignment. As we favor alignments, over
pseudo-alignments, we only apply the following stitching rules if the previous
stitching rules can not be applied.

The first pseudo-alignment stitching rule is a rule that allows the algorithm to
continue if the relevant decomposed alignments disagree on the next legal move
containing the first activity in the trace, that is, a synchronous or log move. If
so, the most expensive of the conflicting legal moves is added to the resulting
pseudo alignment, the activity in the trace is now dealt with, and so are all the
conflicting moves in the relevant decomposed alignment.

Pseudo-Alignment Stitching Rule 1 (Activity w/ Conflict)

If σ = 〈a〉 · σ and R = {i ∈ {1, . . . , n}|a ∈ Ai} and m ∈ R

and ∀i∈R(ti ∈ (T i ∪ {�}) ∧ hi = 〈(a, ti)〉 · hi ∧ $(a, tm) ≥ $(a, ti))
and ∀i∈{1,...,n}\Rhi = hi

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(a, tm)〉, σ, h1, . . . , hn)

In this definition, R can be interpreted as the set of (indices of) relevant decom-
posed alignments, and m can be interpreted as the (index of the) relevant decom-
posed alignment with maximal costs.
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The second pseudo-alignment stitching rule is a rule that allows the algorithm
to continue if the relevant decomposed alignments disagree on a next model
move. If so, one of these model moves is selected, and added to the pseudo-
alignment, and all corresponding model moves are now dealt with.

Pseudo-Alignment Stitching Rule 2 (Transition w/ Conflict)

If t ∈ T and l(t) ∈ A
and R = {i ∈ {1, . . . , n}|hi = 〈(�, t)〉 · . . .} and R 	= ∅
and ∀i∈Rhi = 〈(�, t)〉 · hi

and ∀i∈{1,...,n}\Rhi = hi

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(�, t)〉, σ, h1, . . . , hn)

In this definition, again R can be interpreted as the set of (indices of) relevant
decomposed alignments.

Note that both rules are not deterministic, as there may be more activities
or multiple visible transitions that satisfy the preamble. In such a case, one can
select any of these activities or transitions, apply the rule using that activity or
transition, and continue.

Theorem 4 (Stitching Rules Are Complete). Applying all five rules ends,
and the result of applying them is a merged trace pseudo-alignment.

Proof. By construction, Pseudo-alignment Stitching Rule 1 appends h′ with a
legal move (a, t) if and only if it is the most expensive option, which corresponds
1-to-1 with the second item of the merged trace pseudo-alignment. As a result,
this rule deals effectively with conflicting synchronous moves and conflicting
log moves (as ti is allowed to be �). Also by construction, Pseudo-alignment
Stitching Rule 2 allows to add a conflicting model move, as it may add such a
model move to h′ while not adding it to some hi. This correspond 1-to-1 with
the fourth item of the conflicting merged trace alignment. As a result, the rule
deals effectively with conflicting model moves. What remains is the proof that
Alignment Stitching Rule 1 can be applied at some point in time (algorithm
ends). Assume that the stitching blocks at some point in time, while σ starts
with a. If all corresponding hi’s start with the same legal move, then Alignment
Stitching Rule 2 can be applied. If these hi’s start with conflicting legal moves,
then Pseudo-alignment Stitching Rule 1 can be applied. As a result, to have no
stitching rule applicable at this moment, some of these hi’s need to start with
a model move, that is, with some (τ, ti) or (�, ti). In case of (τ, ti), Alignment
Stitching Rule 3 can be applied, as ti only occurs in T i. Otherwise, in case of
(�, ti), Pseudo-alignment Stitching Rule 2 can be applied. Hence, the stitching
cannot block.

We now have everything in place for the merge algorithm, which simply
keeps on checking whether the rules as provided earlier (in the order given) can
be applied. As soon as it detects a rule that it can apply, it applies that rule and
starts over again by checking whether the rules can be applied. In the end, the
first rule is applied, which provides us with the result: either a pseudo-alignment
or a proper alignment.
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Fig. 9. Screenshot of the result of the decomposed replay (left-hand side) and of the
result of the non-decomposed replay (right-hand side). Both alignments are projected
onto the overall log.

4 Implementation

The alignment merge as described in the previous section has been implemented
in the “LogAlignment” package of ProM 6 [19]. This “LogAlignment” package2

is part of the “DivideAndConquer” framework [18] in ProM 6 that supports
decomposed discovery and decomposed replay.

In the framework, a single replay (that is, on overall alignment of every trace
in a log on a net) has a timeout of 10 min. In Fig. 6 we already noted that some
non-decomposed replays did not finish within this time. This timeout of 10 min is
set to prevent a single replay to take almost forever. Experiences indicated that
only rarely a replay finishes successfully after more than these 10 min [14,15].
In case of a decomposed replay, this timeout is enforced in a progressive way. If
one of the decomposed replays has failed, then the resulting pseudo-alignment
will be empty. For this reason, after one of the decomposed replays has exceeded
the timeout, the timeout will be set to 0 min. This effectively prevents time
being spent in decomposed replays that are not needed anyway as the resulting
pseudo-alignment is already known to be empty.

Figure 9 shows two screenshots: one of the result of the decomposed replay
and the alignment merge, and one of the result of the non-decomposed replay.
The resulting (pseudo-)alignments have both been projected onto the overall log.
This figure shows that the decomposed replay followed by the alignment merge
successfully matches all synchronous moves (the lighter and green chevrons), and
also most of the visible model moves (the darker and purple chevrons).

2 See https://svn.win.tue.nl/repos/prom/Packages/LogAlignment/Trunk.

https://svn.win.tue.nl/repos/prom/Packages/LogAlignment/Trunk
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Fig. 10. Computation times for the replay and the alignment merge on the data sets.

5 Discussion

Figure 10 shows the computation time needed for the decomposed replay
extended with the alignment merge for the three data sets introduced earlier.
For sake of reference, this figure also includes the computation time needed for
both the non-decomposed replay and the decomposed replay. Clearly, in many
cases, doing a decomposed replay followed by an alignment merge is faster than
doing a non-decomposed replay. As a result, a pseudo-alignment can be returned
in a fraction of the time it would take to return an alignment. Note that, for
every data set used, the computation of a pseudo-alignment would take up to
20 s, whereas the computation of an alignment might take more than 10 min,
that is, days [14,15].

If the decomposed alignments do no incur any costs, then there exists an
alignment that is the result of the merge [1]. For this alignment, it is guaranteed
that there are no conflicts when merging. As a result, in such cases, the algorithm
as introduced in this paper is guaranteed to return an alignment instead of only
a pseudo-alignment.

If the decomposed alignments do incur costs, then it is still possible that an
optimal alignment is returned by the stitching algorithm: If at every step during
the stitching all relevant decomposed alignments agree on a next legal move,
then the result will be an alignment. Note that this alignment may still incur
costs, as every relevant decomposed alignment may agree on the move to be a
log move, or in case all misalignments are local. As a result, in certain cases if
costs are incurred, the algorithm will return an alignment, and this alignment
will have the same costs as the non-decomposed alignment [1].

Figure 11 shows that in general it is not possible to obtain an alignment in every
case. The dashed line in this net indicates the only way this net can be decomposed
into nets: The first decomposed net (Na) contains all transitions labeled a and the
second net (Nd) contains all transitions labeled d. Now assume that the trace at
hand is the empty trace and that every model move costs 4. The optimal alignment
for Na contains only the legal move (�, tc) (with costs 2), whereas the optimal
alignment for Nd contains only (�, tb) (also with costs 2). Clearly, there is no
alignment in the overall net that has lower costs than the costs (4) of these two



Merging Alignments for Decomposed Replay 237

b
tb

a

d

ta1
td1

a
tak

c
tc

d
tdl

. . .

. . .

k transitions labeled a

l transitions labeled d

Fig. 11. An example net for which there is no proper alignment.

model moves: The upper branch would cost 4×k+2, the lower branch 2+4×l. This
example also shows that we cannot give an upper bound for an overall alignment
using the decomposed alignment, as k and l could be arbitrary high.

At the moment, the cost-based replay algorithm results in on overall optimal
alignment. As a result, it is conceivable that for two decomposed replays two opti-
mal decomposed alignments are returned which have conflicts, while there would
also be two optimal decomposed alignments that do not conflict. In case of the
conflicting decomposed alignments, the algorithm returns a pseudo-alignment,
whereas it would return an alignment if the alignments do not conflict. As such, it
would be beneficial for the merge algorithm if the replay algorithm would return
all optimal alignments instead of only one. If so, then the merge algorithm could
return an alignment in more cases, although of course this would take more time
as the algorithm would have to check possibly many combinations of decomposed
alignments.

6 Conclusions

This paper has introduced an algorithm to merge decomposed alignments. In
general, the result of the algorithm will be a pseudo-alignment, that is, an align-
ment except for the fact that it may not be executable in the net. However, if
the decomposed alignments agree with each other, then the algorithm returns a
proper optimal alignment. In case of a perfect match between the log and the
net, then these decomposed alignments will always agree with each other [1], and
hence the result of the algorithm will be an alignment. In case of mismatches
between the log and the net, the result many still be an alignment, but then all
decomposed alignments need to agree.

This paper has also shown that, especially for logs and nets that contain many
activities, the computation of a (non-decomposed) alignment takes longer than
the computations of the decomposed alignments and the time it takes to merge
them. As the pseudo-alignment that results from the decomposed approach can
still be used effectively to diagnose mismatches, it will often be more convenient
to use this approach.

In case the algorithm returns a proper alignment, then the costs of this align-
ment are exact, that is, it equals the costs obtained through a non-decomposed
replay. In case the algorithm does not return an alignment but a pseudo-
alignment, then the costs of this alignment are a lower bound for the costs
obtained through a non-decomposed replay.
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In the future, we want to see whether heuristics exist that help the merge into
obtaining better (pseudo-)alignments. As is, the current algorithm contains non-
determinism, in which case it has several alternatives to proceed. For example,
there could be multiple visible model moves to merge next. Possibly, using some
local heuristic, we can select a next merge action which most likely results in a
(pseudo-)alignment that better matches the overall alignment one would get by
doing a non-decomposed replay. Note that the better this match, the better the
gain of using the non-decomposed replay.

Also, we want to extend the stitching rules with rules that allow for differ-
ent ways of decomposing the net. The decomposition introduced in [1] takes
care that every invisible transition ends up in a single decomposed net. As a
result, there can be no conflict that involves invisible transitions. However, dif-
ferent decomposition approaches may not guarantee this. As an example take a
decomposition approach where a decomposed net is obtained by simply hiding
(that is, making invisible) those visible transitions that are not relevant for this
decomposed net. For such a decomposition approach, every transition occurs in
every decomposed net, only some visible transitions will be made invisible. Of
course, if some visible transition has been made invisible in some decomposed
net, then there will definitely be a conflict when merging the alignment. This gets
even more complicated if the decomposition approach first reduces the decom-
posed nets, for example, by using existing Petri net reduction rules [6,16]. Then
some invisible transitions will be present in only some decomposed nets, and
some of them might also have visible counterparts in other decomposed nets.

Finally, an interesting idea is to recompose decomposed nets and decomposed
logs in case their decomposed alignments have many conflicts. By recomposing
the nets and the logs, we remove these conflicts but obtain a slightly larger
recomposed net and recomposed log. As this recomposed net and recomposed log
might still be much smaller than the overall net and overall log, the decomposed
replay might still be much faster than the overall replay.
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Abstract. Conformance checking techniques asses the suitability of a
process model in representing an underlying process, observed through
a collection of real executions. These techniques suffer from the well-
known state space explosion problem, hence handling process models
exhibiting large or even infinite state spaces remains a challenge. One
important metric in conformance checking is to asses the precision of
the model with respect to the observed executions, i.e., characterize the
ability of the model to produce behavior unrelated to the one observed.
By avoiding the computation of the full state space of a model, current
techniques only provide estimations of the precision metric, which in
some situations tend to be very optimistic, thus hiding real problems a
process model may have. In this paper we present the notion of anti-
alignment as a concept to help unveiling traces in the model that may
deviate significantly from the observed behavior. Using anti-alignments,
current estimations can be improved, e.g., in precision checking. We show
how to express the problem of finding anti-alignments as the satisfiability
of a Boolean formula, and provide a tool which can deal with large models
efficiently.

1 Introduction

The use of process models has increased in the last decade due to the advent of
the process mining field. Process mining techniques aim at discovering, analyz-
ing and enhancing formal representations of the real processes executed in any
digital environment [1]. These processes can only be observed by the footprints
of their executions, stored in form of event logs. An event log is a collection of
traces and is the input of process mining techniques. The derivation of an accu-
rate formalization of an underlying process opens the door to the continuous
improvement and analysis of the processes within an information system.

Among the important challenges in process mining, conformance checking
is a crucial one: to assess the quality of a model (automatically discovered or
manually designed) in describing the observed behavior, i.e., the event log. Con-
formance checking techniques aim at characterizing four quality dimensions: fit-
ness, precision, generalization and simplicity [2]. For the first three dimensions,
c© Springer International Publishing Switzerland 2016
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the alignment between the process model and the event log is of paramount
importance, since it allows relating modeled and observed behavior [3].

Given a process model and a trace in the event log, an alignment provides the
run in the model which mostly resembles the observed trace. When alignments
are computed, the quality dimensions can be defined on top [3,4]. In a way,
alignments are optimistic: although observed behavior may deviate significantly
from modeled behavior, it is always assumed that the least deviations are the
best explanation (from the model’s perspective) for the observed behavior.

In this paper we present a somewhat symmetric notion to alignments, denoted
as anti-alignments. Given a process model and a log, an anti-alignment is a run of
the model that mostly deviates from any of the traces observed in the log. The
motivation for anti-alignments is precisely to compensate the optimistic view
provided by alignments, so that the model is queried to return highly deviating
behavior that has not been seen in the log. In contexts where the process model
should adhere to a certain behavior and not leave much exotic possibilities (e.g.,
banking, healthcare), the absence of highly deviating anti-alignments may be a
desired property to have in the process model.

We cast the problem of computing anti-alignments as the satisfiability of a
Boolean formula, and provide high-level techniques which can for instance com-
pute the most deviating anti-alignment for a certain run length, or the shortest
anti-alignment for a given number of deviations.

Using anti-alignments one cannot only catch deviating behavior, but also
use it to improve some of the current quality metrics considered in conformance
checking. For instance, a highly-deviating anti-alignment may be a sign of a loss
in precision, which can be missed by current metrics as they bound considerably
the exploration of model state space for the sake of efficiency [5].

Anti-alignments are related to the completeness of the log; a log is complete if
it contains all the behavior of the underlying process [1]. For incomplete logs, the
alternatives for computing anti-alignments grows, making it difficult to tell the
difference between behavior not observed but meant to be part of the process,
and behavior not observed which is not meant to be part of the process. Since
there exists already some metrics to evaluate the completeness of an event log
(e.g., [6]), we assume event logs have a high level of completeness before they
are used for computing anti-alignments.

To summarize, the contributions of the paper are now enumerated.

– We propose the notion of anti-alignment as an effective way to explore process
deviations with respect to observed behavior.

– We present an encoding of the problem of computing anti-alignments into
SAT, and have implemented it in the tool DarkSider.

– We show how anti-alignments can be used to provide an estimation of preci-
sion that uses a different perspective from the current ones.

The remainder of the paper is organized as follows: in the next section, a sim-
ple example is used to emphasize the importance of computing anti-alignments.
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Then in Sect. 3 the basic theory needed for the understanding of the paper is
introduced. Section 4 provides the formal definition of anti-alignments, whilst
Sect. 5 formalizes the encoding into SAT of the problem of computing anti-
alignments and Sect. 6 presents some adaptions of the notion of anti-alignments.
In Sect. 7, we define a new metric, based on anti-alignments, for estimating preci-
sion of process models. Experiments are reported in Sect. 8, and related work in
Sect. 9. Section 10 concludes the paper and gives some hints for future research
directions.

2 A Motivating Example

Let us use the example shown in Fig. 1 for illustrating the notion of anti-
alignment. The example was originally presented in [7]. The modeled process
describes a realistic transaction process within a banking context. The process
contains all sort of monetary checks, authority notifications, and logging mech-
anisms. The process is structured as follows (Fig. 1 (top) shows a high-level
overview of the complete process): it is initiated when a new transaction is
requested, opening a new instance in the system and registering all the compo-
nents involved. The second step is to run a check on the person (or entity) origin
of the monetary transaction. Then, the actual payment is processed differently,
depending of the payment modality chosen by the sender (cash, cheque and
payment). Later, the receiver is checked and the money is transferred. Finally,
the process ends registering the information, notifying it to the required actors
and authorities, and emitting the corresponding receipt. The detailed model,
formalized as a Petri net, is described in the bottom part of the figure.

Assume that a log which contains different transactions covering all the pos-
sibilities with respect of the model in Fig. 1 is given. For this pair of model and
log, no highly deviating anti-alignment will be obtained since the model is a
precise representation of the observed behavior. Now assume that we modify
a bit the model, adding a loop around the alternative stages for the payment.
Intuitively, this (malicious) modification in the process model may allow to pay
several times although only one transfer will be done. The modified high-level
overview is shown in Fig. 2. Current metrics for precision (e.g., [5]) will not con-
sider this modification as a severe one: the precision of the model with respect
to the log will be very similar before or after the modification.

Clearly, this modification in the process models comes with a new highly
deviating anti-alignment denoting a run of the model that contains more than
one iteration of the payment. This may be considered as a certification of the
existence of a problematic behavior allowed by the model.

3 Preliminaries

Definition 1 ((Labeled) Petri Net). A (labeled) Petri Net [8] is a tuple
N = 〈P, T,F ,m0, Σ, λ〉, where P is the set of places, T is the set of transitions
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Fig. 1. Running example (adapted from [7]). Overall structure (top), process model
(bottom).

(with P ∩ T = ∅), F : (P × T ) ∪ (T × P ) → {0, 1} is the flow relation, m0

is the initial marking, Σ is an alphabet of actions and λ : T → Σ labels every
transition by an action.

A marking is an assignment of a non-negative integer to each place. If k is
assigned to place p by marking m (denoted m(p) = k), we say that p is marked
with k tokens. Given a node x ∈ P ∪ T , we define its pre-set •x := {y ∈ P ∪ T |
(x, y) ∈ F} and its post-set x• := {y ∈ P ∪ T | (y, x) ∈ F}.

A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place
in •t and putting a token to each place in t•. A marking m′ is reachable from
m if there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted
by m[t1t2 . . . tn〉m′. A sequence of actions a1a2 . . . an is a feasible sequence (or
run, or model trace) if there exists a sequence of transitions t1t2 . . . tn firable
from m0 and such that for i = 1 . . . n, ai = λ(ti). Let L(N) be the set of
feasible sequences of Petri net N . A deadlock is a reachable marking for which
no transition is enabled. The set of reachable markings from m0 is denoted by
[m0〉, and form a graph called reachability graph. A Petri net is k-bounded if no
marking in [m0〉 assigns more than k tokens to any place. A Petri net is safe if
it is 1-bounded. In this paper we assume safe Petri nets.

An event log is a collection of traces, where a trace may appear more than
once. Formally:

Definition 2 (Event Log). An event log L (over an alphabet of actions Σ) is
a multiset of traces σ ∈ Σ∗.
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Fig. 2. Model containing a highly deviating anti-alignment for the log considered.

Quality Dimensions. Process mining techniques aim at extracting from a
log L a process model N (e.g., a Petri net) with the goal to elicit the process
underlying a system S. By relating the behaviors of L, L(N) and S, particular
concepts can be defined [9]. A log is incomplete if S\L 	= ∅. A model N fits log
L if L ⊆ L(N). A model is precise in describing a log L if L(N)\L is small. A
model N represents a generalization of log L with respect to system S if some
behavior in S\L exists in L(N). Finally, a model N is simple when it has the
minimal complexity in representing L(N), i.e., the well-known Occam’s razor
principle.

4 Anti-alignments

The idea of anti-alignments is to seek in the language of a model N what are
the runs which differ a lot with all the observed traces. For this we first need
a definition of distance between two traces (typically a model trace, i.e. a run
of the model, and an observed log trace). Relevant definitions about alignments
can be found in [3]. Let us start here with a simple definition. We will discuss
other definitions in Sect. 6.

Definition 3 (Hamming Distance dist). For two traces γ = γ1 . . . γn and
σ = σ1 . . . σn, of same length n, define dist(γ, σ) :=

∣∣{i ∈ {1 . . . n} | γi 	= σi

}∣∣.

Definition 4. In order to deal with traces of different length, we define for every
trace σ = σ1 . . . σp and n ∈ N, the trace σ|1...n as:

– σ|1...n := σ1 . . . σn, i.e. the trace σ truncated to length n, if |σ| ≥ n,
– σ|1...n := σ1 . . . σp · wn−p, i.e. the trace σ padded to length n with the special

symbol w 	∈ Σ (w for ‘wait’), if |σ| ≤ n.

Notice that the two definitions coincide when p = n and give σ|1...n := σ.

In the sequel, we write dist(γ, σ) for dist(γ, σ|1...|γ|).
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Fig. 3. The process model (taken from [10]) has the anti-alignment 〈a, b, c, f, i, k〉
for the log L = {〈a, b, c, f, g, h, k〉, 〈a, c, b, f, g, h, k〉, 〈a, c, b, f, h, g, k〉, 〈a, b, c, f, h, g, k〉,
〈a, e, f, i, k〉, 〈a, d, f, g, h, k〉, 〈a, e, f, h, g, k〉}.

Definition 5 (Anti-alignment). An (n,m)-anti-alignment of a model N
w.r.t. a log L is a run γ ∈ L(N) such that

– |γ| = n and
– for every σ ∈ L, dist(γ, σ) ≥ m.

Notice that, in this definition, only σ is truncated or padded. In particular this
means that γ is compared to the prefixes of the observed traces. The idea is that
a run γ which is close to a prefix of an observed trace is good, while a run γ
which is much longer than an observed trace σ cannot be considered close to σ
even if its prefix γ|1...|σ| is close to σ.

Example 1. For instance, for the Petri net shown in Fig. 3, and the log
L = {〈a, b, c, f, g, h, k〉, 〈a, c, b, f, g, h, k〉, 〈a, c, b, f, h, g, k〉, 〈a, b, c, f, h, g, k〉, 〈a, e,
f, i, k〉, 〈a, d, f, g, h, k〉, 〈a, e, f, h, g, k〉}, the run 〈a, b, c, f, i, k〉 denotes an (6, 2)-
anti-alignment. Notice that for m ≥ 3 there are no anti-alignments for this
example.

Lemma 1. If the model has no deadlock, then for every n ∈ N, for every m ∈ N,
if there exists a (n,m)-anti-alignment γ, then there exists a (n + 1,m)-anti-
alignment. Moreover, for n ≥ maxσ∈L |σ|, there exists a (n + 1,m + 1)-anti-
alignment.

Proof. It suffices to fire one transition t enabled in the marking reached after γ;
γ · t is a (n+1,m)-anti-alignment since for every σ ∈ L, dist(γ · t, σ) ≥ dist(γ, σ).
When n ≥ maxσ∈L |σ|, we have more: dist(γ · t, σ) ≥ 1 + dist(γ, σ) (because the
t is compared to the padding symbol w), which makes γ · t a (n+1,m+1)-anti-
alignment. 
�
Corollary 1. If the model has no deadlock, (and assuming that the log L is a
finite multiset of finite traces), then for every m ∈ N, there is a least n for which
a (n,m)-anti-alignment exists. This n is less than or equal to m + maxσ∈L |σ|.
Lemma 2. The problem of finding a (n,m)-anti-alignment is NP-complete.
(Since n and m are typically smaller than the length of the traces in the log,
we assume that they are represented in unary.)
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Proof. The problem is clearly in NP: checking that a run γ is a (n,m)-anti-
alignment for a net N and a log L takes polynomial time.

For NP-hardness, we propose a reduction from the problem of reachability
of a marking M in a 1-safe acyclic1 Petri net N , known to be NP-complete
[11,12]. The reduction is as follows: equip the 1-safe acyclic Petri net N with
complementary places2: a place p for each p ∈ P , with p initially marked iff p is
not, p ∈ •t iff p ∈ t• \ •t, and p ∈ t• iff p ∈ •t \ t•. Now M is reachable in the
original net iff M ∪ {p | p ∈ P \ M} is reachable in the complemented net (and
with the same firing sequence).

Notice that, since N is acyclic, each transition can fire only once; hence, the
length of the firing sequences of N is bounded by the number of transitions |T |.

Add now a new transition tf with •tf = tf
• = M∪{p | p ∈ P \M}. Transition

tf is firable if and only if M is reachable in the original net, and in this case, tf
may fire forever. As a consequence the new net (call it Nf ) has a firing sequence
of length |T | + 1 iff M is reachable in N .

It remains to observe that a firing sequence of length |T | + 1 is nothing but
a (|T | + 1, 0)-anti-alignment for Nf and the empty log. Then M is reachable in
N iff such anti-alignment exists. 
�

5 Computation of Anti-alignments

In order to compute a (n,m)-anti-alignment of a net N w.r.t. a log L, our
tool DarkSider constructs a SAT formula Φn

m(N,L) and calls a SAT solver
(currently minisat [13]) to solve it. Every solution to the formula is interpreted
as a run of N of length n which has at least m misalignments with every log in
L.

The formula Φn
m(N,L) characterizes a (n,m)-anti-alignment γ:

– γ = λ(t1) . . . λ(tn) ∈ L(N), and
– for every σ ∈ L, dist(γ, σ) ≥ m.

5.1 Coding Φn
m(N, L) Using Boolean Variables

The formula Φn
m(N,L) is coded using the following Boolean variables:

– τi,t for i = 1 . . . n, t ∈ T (remind that w is the special symbol used to pad
the logs, see Definition 4) means that transition ti = t.

– mi,p for i = 0 . . . n, p ∈ P means that place p is marked in marking Mi (remind
that we consider only safe nets, therefore the mi,p are Boolean variables).

– δi,σ,k for i = 1 . . . n, σ ∈ L, k = 1, . . . , m means that the kth mismatch with
the observed trace σ is at position i.

1 A Petri net is acyclic if the transitive closure F+ of its flow relation is irreflexive.
2 In general the net does not remain acyclic with the complementary places.
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The total number of variables is n × (|T | + |P | + |L| × m).
Let us decompose the formula Φn

m(N,L).

– The fact that γ = λ(t1) . . . λ(tn) ∈ L(N) is coded by the conjunction of the
following formulas:

• Initial marking:
⎛

⎝
∧

p∈M0

m0,p

⎞

⎠ ∧
⎛

⎝
∧

p∈P\M0

¬m0,p

⎞

⎠

• One and only one ti for each i:
n∧

i=1

∨

t∈T

(τi,t ∧
∧

t′∈T

¬τi,t′)

• The transitions are enabled when they fire:
n∧

i=1

∧

t∈T

(τi,t =⇒
∧

p∈•t

mi−1,p)

• Token game (for safe Petri nets):
n∧

i=1

∧

t∈T

∧

p∈t•
(τi,t =⇒ mi,p)

n∧

i=1

∧

t∈T

∧

p∈•t\t•
(τi,t =⇒ ¬mi,p)

n∧

i=1

∧

t∈T

∧

p∈P,p �∈•t,p�∈t•
(τi,t =⇒ (mi,p ⇐⇒ mi−1,p))

– Now, the constraint that γ deviates from the observed traces (for every σ ∈ L,
dist(γ, σ) ≥ m) is coded as:

∧

σ∈L

m∧

k=1

n∨

i=1

δi,σ,k

with the δi,σ,k correctly affected w.r.t. λ(ti) and σi:

∧

σ∈L

m∧

k=1

n∧

i=1

(
δi,σ,k ⇐⇒

∨

t∈T, λ(t)=σi

τi,t

)

and that for k 	= k′, the kth and k′th mismatch correspond to different i’s (i.e.
a given mismatch cannot serve twice):

∧

σ∈L

n∧

i=1

m−1∧

k=1

m∧

k′=k+1

¬(δi,σ,k ∧ δi,σ,k′)
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5.2 Size of the Formula

In the end, the first part of the formula (γ = λ(t1) . . . λ(tn) ∈ L(N)) is coded by
a Boolean formula of size O(n × |T | × |N |), with |N | := |T | + |P |.

The second part of the formula (for every σ ∈ L, dist(γ, σ) ≥ m) is coded by
a Boolean formula of size O(n × m2 × |L| × |T |).

The total size for the coding of the formula Φn
m(N,L) is

O
(
n × |T | × (|N | + m2 × |L|)) .

5.3 Solving the Formula in Practice

In practice, our tool DarkSider builds the coding of the formula Φn
m(N,L)

using the Boolean variables τi,t, mi,p and δi,σ,k.
Then we need to transform the formula in conjunctive normal form (CNF)

in order to pass it to the SAT solver minisat. We use Tseytin’s transformation
[14] to get a formula in conjunctive normal form (CNF) whose size is linear in
the size of the original formula. The idea of this transformation is to replace
recursively the disjunctions φ1 ∨ · · · ∨ φn (where the φi are not atoms) by the
following equivalent formula:

∃x1, . . . , xn

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∨ · · · ∨ xn

∧ x1 =⇒ φ1

∧ . . .
∧ xn =⇒ φn

where x1, . . . , xn are fresh variables.
In the end, the result of the call to minisat tells us if there exists a run

γ = λ(t1) . . . λ(tn) ∈ L(N) which has at least m misalignments with every
observed trace σ ∈ L. If a solution is found, we extract the run γ using the
values assigned by minisat to the Boolean variables τi,t.

5.4 Finding the Largest m for n

It follows directly from Definition 5 that, for a model N and a log L, every
(n,m + 1)-anti-alignment is also a (n,m)-anti-alignment.

Notice also that, by Definition 5, there cannot exist any (n, n + 1)-anti-
alignment and that, assuming that the model N has a run γ of length n, this
run is a (n, 0)-anti-alignment (otherwise there is no (n,m)-anti-alignment for
any m).

(Under the latter assumption), we are interested in finding, for a fixed n, the
largest m for which there exists a (n,m)-anti-alignment, i.e. the run of length n
of the model which deviates most from all the observed traces. Our tool Dark-
Sider computes it by dichotomy of the search interval for m: [0, n].
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5.5 Finding the Least n for m

If the model N has no deadlock, then by Corollary 1, for every m ∈ N, there is
a least n for which a (n,m)-anti-alignment exists.

Then it is relevant to find, for a fixed m, the least n for which there exists
a (n,m)-anti-alignment, i.e. (the length of) the shortest run of N which has at
least m mismatches with any observed trace.

Corollary 1 tells us that the least n belongs to the interval [m,m +
maxσ∈L |σ|]. Then it can be found simply by dichotomy over this interval. How-
ever, in practice, when maxσ∈L |σ| is much larger than m, the dichotomy would
require to check the satisfiability of Φn

m(N,L) for large values of n, which is
costly.

Therefore our tool DarkSider proceeds as follows: it checks the satisfiability
of the formulas Φm

m(N,L), then Φ2m
m (N,L), then Φ4m

m (N,L). . . until it finds a p
such that Φ2pm

m (N,L) is satisfiable. Then it starts the dichotomy over the interval
[m, 2pm].

6 Relaxations of Anti-alignments

6.1 Limiting the Use of Loops

A delicate issue with anti-alignments is to deal with loops in the model N :
inserting loops in a model is a relevant way of coding the fact that similar traces
were observed with a various number of iterations of a pattern. Typically, if the
log contains traces ac, abc, abbc, . . . , abbbbbbbc, it is fair to propose a model
whose language is ab∗c.

However a model with loops necessarily generate (n,m)-anti-alignments even
for large m: it suffices to take the loops sufficiently many more times than what
was observed in the log. Intuitively, these anti-alignments are cheated and one
does not want to blame the model for generating them, i.e., the model correctly
generalizes the behavior observed in the event log. Instead, it is interesting to
focus the priority on the anti-alignments which do not use the loops too often.

Our technique can easily be adapted so that it limits the use of loops when
finding anti-alignments. The simplest idea is to add a new input place (call it
bound t) to every transition t; the number of tokens present in bound t in the
initial marking determines how many times t is allowed to fire. The drawback of
this trick is that the model does not remain 1-safe, and our tool currently deals
only with 1-safe nets.

An alternative is to duplicate the transition t with t′, t′′. . . (all labeled λ(t))
and to allow only one firing per copy (using input places bound t, bound t′ . . . like
before, but now we need only one token per place).

Finally, another way to limit the use of loops is to introduce appropriate
constraints directly in the formula Φn

m(N,L).
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a b c f w

a c b f g w

a c b f h w

Fig. 4. The net NL for L = {〈a, b, c, f〉, 〈a, c, b, f, g〉, 〈a, c, b, f, h〉}.

6.2 Improving the Notion of Distance

A limitation of our technique as presented above, concerning the application to
process mining, is that it relies on a notion of distance between γ and σ which is
too rigid: indeed, every symbol of γi is compared only to the exact correspond-
ing symbol σi. This puts for instance the word ababababab at distance 10 from
bababababa. In process mining techniques often other distances are usually pre-
ferred (see for instance [3]), typically Levenshtein’s distance (or edit distance),
which counts how many deletions and insertions of symbols are needed to obtain
σ starting from γ.

We propose here an intermediate definition where every γi is compared to all
the σj for j sufficiently close to i.

Definition 6 (distd). Let d ∈ N. For two traces γ = γ1 . . . γn and σ = σ1 . . . σn,
of same length n, we define

distd(γ, σ) :=
∣∣{i ∈ {1 . . . n} | ∀ i − d ≤ j ≤ i + d γi 	= σj

}∣∣

Notice that dist0 corresponds to the Hamming distance.
This definition is sufficiently permissive for many applications, and we can

easily adapt our technique to it, simply by adapting the constraints relating the
δi,σ,k with the λ(ti) in the definition of Φn

m(N,L).

6.3 Anti-alignments Between Two Nets

Our notion of anti-alignments can be generalized as follows:

Definition 7. Given n,m ∈ N and two labeled Petri nets N and N ′ sharing the
same alphabet of labels Σ, we call (n,m)-anti-alignment of N w.r.t. N ′, a run
N of length n which is at least at distance m from every run of N ′.

Our problem of anti-alignment for a model N and a log L corresponds pre-
cisely to the problem of anti-alignment of N w.r.t. the net NL representing all
the traces in L as disjoint sequences, all starting at a common initial place end
ending by a loop labeled w, like in Fig. 4.

We show below that the problem of finding anti-alignments between two
nets can be reduced to solving a 2QBF formula, i.e. a Boolean formula with an
alternation of quantifiers, of the form ∃ . . . ∀ . . . φ.
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Solving 2QBF formulas is intrinsically more complex than SAT formulas
(ΣP

2 -complete [15] instead of NP-complete) and 2QBF solvers are usually far
from being as efficient as SAT solvers.

Anyway, the notion of anti-alignments between two nets allow us to modify
the net NL in order to code a better notion of distance, for instance inserting
optional wait loops at desired places in the logs. Possibly also, one can replace
NL by another net which represents a large set of runs very concisely.

2QBF solvers are usually far from being as efficient as SAT solvers. As a
matter of fact, we first did a few experiments with the 2QBF encoding, but for
efficiency reasons we moved to the SAT encoding. Anyway we plan to retry the
2QBF encoding in a near future, with a more efficient 2QBF solver and some
optimizations, in order to benefit from the flexibility offered by the generalization
of the anti-alignment problem.

2QBF Coding. Finding a (n,m)-anti-alignment of a net N w.r.t. a net N ′

corresponds to finding a run γ ∈ L(N) such that |γ| = n and for every σ ∈ L(N ′),
dist(γ, σ) ≥ m. This is encoded by the following 2QBF formula:

∃(τi,t)i=1...n
t∈T

, (mi,p)i=0...n
p∈P

∀(τ ′
i,t′)i=1...n

t′∈T ′
, (m′

i,p′)i=0...n
p′∈P ′

, (δi,k) i=1...n
k=1...m

⎧
⎨

⎩

λ(t1) . . . λ(tn) ∈ L(N)
∧ λ′(t′1) . . . λ′(t′n) ∈ L(N ′)
∧ Δ

⎫
⎬

⎭ =⇒ ∧m
k=1

∨n
i=1 δi,k

where:

– the variables τi,t and mi,p encode the execution of N like for the coding into
SAT (see Sect. 5.1); τ ′

i,t′ and m′
i,p′ represent the execution of N ′;

– δi,k means that the kth mismatch between the two executions is at position i;
– the constraints that λ(t1) . . . λ(tn) ∈ L(N) and λ′(t′1) . . . λ′(t′n) ∈ L(N ′) are

coded like in Sect. 5;
– Δ is a formula which says that the variables δi,k are correctly affected w.r.t.

the values of the τi,t and τ ′
i,t′ . Δ is the conjunction of:

• there is a mismatch at the ith position iff λ(ti) 	= λ′(t′i):

n∧

i=1

⎛

⎜⎜⎝(
m∨

k=1

δi,k) ⇐⇒
∨

t∈T,t′∈T ′

λ(t) �=λ′(t′)

(τi,t ∧ τ ′
i,t′)

⎞

⎟⎟⎠

• a mismatch cannot serve twice:

m−1∧

k=1

m∧

k′=k+1

¬(δi,k ∧ δi,k′)
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7 Using Anti-alignments to Estimate Precision

In this section we will provide two ways of using anti-alignments to estimate
precision of process models. First, a simple metric will be presented that is
based only on the information provided by anti-alignments. Second, a well-known
metric for precision is introduced and it is shown how the two metrics can be
combined to provide a better estimation for precision.

7.1 A New Metric for Estimating Precision

There are different ways of incorporating the information provided by anti-
alignments that can help into providing a metric for precision. One possibil-
ity is to focus on the number of misalignments for a given maximal length n,
i.e., find the anti-alignment with bounded length that maximizes the number of
mismatches, using the search techniques introduced in the previous section. For-
mally, let n be the maximal length for a trace in the log, and let maxn(N,L) be
the maximal number of mismatches for any anti-alignment of length n for model
N and log L. In practice, the length n will be set to the maximal length for a
trace in the log, i.e., only searching anti-alignments that are similar in length
with respect to the traces observed in the log. We can now define a simple
estimation metric for precision:

an(N,L) = 1 − maxn(N,L)
n

Clearly, maxn(N,L) ∈ [0 . . . n] which implies an ∈ [0 . . . 1].
For instance, let the model be the one in Fig. 5 (top-left), and the log

L = [σ1, σ2, σ3, σ4, σ5] also shown in the figure. Since maximal length n for L is 6,
max6(N,L) = 3, corresponding to the run 〈a, c, b, i, b, i〉. Hence, an = 1− 3

6 = 0.5.

Lemma 3 (Monotonicity of the Metric an). Observing a new trace which
happens to be already a run of the model, can only increase the precision measure.
Formally: for every N,L and for every σ ∈ L(N), an(N,L ∪ {σ}) ≥ an(N,L).

Proof. Clearly, every (n,m)-anti-alignment for (N,L ∪ {σ}) is also a (n,m)-
anti-alignment for (N,L). Consequently maxn(N,L ∪ {σ}) ≤ maxn(N,L) and
an(N,L ∪ {σ}) ≥ an(N,L). 
�

7.2 The Metric ap

In [4,5] the metric align precision (ap) was presented to estimate the precision a
process model N (a Petri net) has in characterizing observed behavior, described
by an event log L. Informally the computation of ap is as follows: for each trace σ
from the event log, a run γ of the model which has minimal number of deviations



Anti-alignments in Conformance Checking 253

trace one-optimal all-optimal
σ1 = 〈a〉 〈a, f, g, h〉 〈a, f, g, h〉

〈a, c, b, e〉
〈a, c, b, d〉
〈a, b, c, d〉
〈a, b, c, e〉

σ2 = 〈a, b, c, d〉 〈a, b, c, d〉 〈a, b, c, d〉
σ3 = 〈a, c, b, e〉 〈a, c, b, e〉 〈a, c, b, e〉
σ4 = 〈a, f, g, h〉 〈a, f, g, h〉 〈a, f, g, h〉

σ5 = 〈a, b, i, b, c, d〉 〈a, b, i, b, c, d〉 〈a, b, i, b, c, d〉

Fig. 5. Example taken from [5]. Initial process model N (top-left), optimal alignments
for the event log L = [σ1, σ2, σ3, σ4, σ5] (top-right), automaton AΓ(N,L) (bottom).

with respect to σ is computed (denoted by γ ∈ Γ(N,σ)), by using the techniques
from [3]3. Let

Γ(N,L) :=
⋃

σ∈L

Γ(N,σ)

be the set of model traces optimally aligned with traces in the log. An automaton
AΓ(N,L) can be constructed from this set, denoting the model’s representation
of the behavior observed in L. Figure 5 describes an example of this procedure.
Notice that each state in the automaton has a number denoting the weight,
directly related to the frequency of the corresponding prefix, e.g., in the automa-
ton of Fig. 5, w(ab) = 2 and w(acb) = 1.

For each state s in AΓ(N,L), let av(s) be the set of available actions, i.e.,
possible direct successor activities according to the model, and ex(s) be the
set of executed actions, i.e., activities really executed in the log. Note that, by
construction ex(s) ⊆ av(s), i.e., the set of executed actions of a given state is

3 Note that more than one run of the model may correspond to an optimal alignment
with log trace σ, i.e., |Γ(N, σ)| ≥ 1. For instance, in Fig. 5 five optimal alignments
exist for trace 〈a〉. For the ease of explanation, we assume that |Γ(N, σ)| = 1.



254 T. Chatain and J. Carmona

always a subset of all available actions according to the model. By comparing
these two sets in each state the metric ap can be computed:

ap(AΓ(N,L)) =

∑
s∈Q

ω(s) · |ex(s)|
∑

s∈Q

ω(s) · |av(s)|

where Q is the set of states in AΓ(N,L). This metric evaluates to 0.780 for the
automaton of Fig. 5.

Drawbacks of the Metric ap. A main drawback of metric ap relies in the fact
that it is “short-sighted”, i.e., only one step ahead of log behavior is considered
in order to estimate the precision of a model. Graphically, this is illustrated in
the automaton of Fig. 5 by the red states being successors of white states.

A second drawback is the lack of monotonicity, a feature that metric an has:
observing a new trace which happens to be described by the model may unveil
a model trace which has a large number of escaping arcs, thus lowering the
precision value computed by ap.

For instance, imagine that in the example of Fig. 5, the model has another
long branch starting as a successor of place p0 and allowing a large piece of
behaviour. Imagine that this happens to represent a possible behaviour of the
real system; simply, it has not been observed yet. This branch starting at p0

generates a new escaping arc from the initial state of AΓ(N,L), but the metric ap

does not blame a lot for this: only one more escaping point.
Now, when a trace σ corresponding to the new behaviour is observed (prov-

ing somehow that the model was right!): after this observation, the construction
AΓ(N,L∪{σ}) changes dramatically because it integrates the new observed trace.
In consequence, if the corresponding branch in the model enables other transi-
tions, then the model is going to be blamed for many new escaping points while,
before observing σ, only one escaping point was counted.

7.3 Combining the Two Metrics

In spite of the aforementioned problems, metric ap has proven to be a reasonable
metric for precision in practice. Therefore the combination of the two metrics
can lead to a better estimation of precision: whilst ap focuses globally to count
the number of escaping points from the log behavior, an focuses on searching
globally the maximal deviation one of those escaping points can lead to.

an
p (N,L) = α · ap(AΓ(N,L)) − β · an(N,L)

with α, β ∈ R≥0, α + β = 1. Let us revisit the example introduced at the
beginning of this section, which is a transformation of the model in Fig. 5
but that contains an arbitrary number of operations before the Post-chemo.
If β = 0.2, then an

p will evaluate to 0.508, a mid value that may explicit the
precision problem represented by the anti-alignment computed.
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8 Experiments

We have implemented a prototype tool called DarkSider which implements
the techniques described in this paper4 Given a Petri net N and a log L, the
tool is guided towards the computation of anti-alignments in different settings:

– Finding an anti-alignment of length n with at least m mismatches (Φn
m(N,L)).

– Finding the shortest anti-alignment necessary for having at least m mis-
matches (Φm(N,L)).

– Finding the anti-alignment of length n with maximal mismatches (Φn(N,L)).

Results are provided in Table 1. We have selected two considerably large
models, initially proposed in [7,16]. The table shows the size of the models
(number of places and transitions), the number of traces in the log and the size
of the alphabet of the log. Then the column labeled as n establishes the length
imposed for the derived anti-alignment. In this columns values always start with
the maximal length of a trace in the corresponding log e.g., for the first log of the
prAm6 benchmark the length of any trace is less or equal to 41. Then the column
m determines the minimal number of mismatches the computed anti-alignment
should have. Finally, the results on computing the three formulas described above
on these parameters are provided. For Φn

m(N,L), it is reported whereas the
formula holds. For Φm(N,L), it is provided the length of the shortest anti-
alignment found for the given number of mismatches (m). Finally, for Φn(N,L)
we provide the number of mismatches computed for the given length (n).

For each benchmark, two different logs were used: one containing most of
the behavior in the model, and the same log but where cases describing some
important branch in the process model are removed. The results clearly show
that using anti-alignments highly deviating behavior can be captured, e.g., for
the benchmark prAm6 a very deviating anti-alignment (39 mismatches out of 41)
is computed when the log does not contains that behavior in the model, whereas
less deviating anti-alignments can be found for the full log (19 mismatches out
of 41)5.

9 Related Work

The seminal work in [2] was the first one in relating observed behavior (in form
of a set of traces), and a process model. In order to asses how far can the model
deviate from the log, the follows and precedes relations for both model and log are
computed, storing for each relation whereas it always holds or only sometimes.
In case of the former, it means that there is more variability. Then, log and
model follows/precedes matrices are compared, and in those matrix cells where

4 The tool is available at http://www.lsv.ens-cachan.fr/∼chatain/darksider.
5 Since in the current implementation we do not incorporate techniques for dealing

with the improved distance as explained in Sect. 5, we still get a considerably devi-
ating anti-alignment for the original log.

http://www.lsv.ens-cachan.fr/~chatain/darksider
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Table 1. Experiments for different models and logs.

the model has a sometimes relation whilst the log has an always relation indicate
that the model allows for more behavior, i.e., a lack of precision. This technique
has important drawbacks: first, it is not general since in the presence of loops in
the model the characterization of the relations is not accurate [2]. Second, the
method requires a full state-space exploration of the model in order to compute
the relations, a stringent limitation for models with large or even infinite state
spaces.

In order to overcome the limitations of the aforementioned technique, a dif-
ferent approach was proposed in [4]. The idea is to find escaping arcs, denoting
those situations where the model starts to deviate from the log behavior, i.e.,
events allowed by the model not observed in the corresponding trace in the log.
The exploration of escaping arcs is restricted by the log behavior, and hence the
complexity of the method is always bounded. By counting how many escaping
arcs a pair (model, log) has, one can estimate the precision of a model. Although
being a sound estimation for the precision metric, it may hide the problems we
are considering in this paper, i.e., models containing escaping arcs that lead to
a large behavior.

Less related is the work in [17], where the introduction of weighted artificial
negative events from a log is proposed. Given a log L, an artificial negative event
is a trace σ′ = σ · a where σ ∈ L, but σ′ /∈ L. Algorithms are proposed to
weight the confidence of an artificial negative event, and they can be used to
estimate the precision and generalization of a process model [17]. Like in [4], by
only considering one step ahead of log/model’s behavior, this technique may not
catch serious precision/generalization problems.
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10 Conclusions and Future Work

In this paper the new concept of anti-alignments is introduced as a way to catch
deviations a process model may have with respect to observed behavior. We
show how the problem of computing anti-alignments can be casted as the satisfi-
ability of a Boolean formula, and have implemented a tool which automates this
encoding. Experimental results performed on large models show the usefulness
of the approach, being able to compute deviations when they exist.

This work starts a research direction based on anti-alignments. We consider
that further steps are needed to address properly some important extensions.
First, it would be interesting to put anti-alignments more in the context of
process mining; for that it may be required that models have also defined a clear
final state, and anti-alignments should be defined accordingly in this context.
Also, the distance metric may be adapted to incorporate the log frequencies,
and allow it to be less strict with respect to trace deviations concerning indi-
vidual positions, loops, etc. Alternatives for the computation of anti-alignments
will also be investigated. Finally, the use of anti-alignments for estimating the
generalization of process models will be explored.
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Abstract. We introduce a new model for the design of concurrent sto-
chastic real-time systems. Probabilistic time Petri nets (PTPN) are an
extension of time Petri nets in which the output of tokens is randomised.
Such a design allows us to elegantly solve the hard problem of combining
probabilities and concurrency. This model further benefits from the con-
cision and expressive power of Petri nets. Furthermore, the usual tools for
the analysis of time Petri nets can easily be adapted to our probabilistic
setting. More precisely, we show how a Markov decision process (MDP)
can be derived from the classic atomic state class graph construction.
We then establish that the schedulers of the PTPN and the adversaries
of the MDP induce the same Markov chains. As a result, this construc-
tion notably preserves the lower and upper bounds on the probability of
reaching a given target marking. We also prove that the simpler original
state class graph construction cannot be adapted in a similar manner for
this purpose.

Keywords: Time Petri nets · Probabilistic systems · State classes ·
Markov decision processes

1 Introduction

Many highly critical applications, like autonomous vehicles, require the use of
modelling tools that integrate concurrency, real-time constraints and probabil-
ities. Designing such models is challenging for they require the development
of new algorithms that combine both real-time and probabilistic verification
techniques. Continuous-time Markov chains [1], continuous-time Markov deci-
sion processes [2], probabilistic timed automata [3], Markov automata [4] and
stochastic timed automata [5] are but a few examples of models that were intro-
duced with the intention of formally verifying probabilistic real-time systems.
In particular, the product of probabilistic timed automata [6,7] provides the
medium for concurrency in a real-time constrained environment. Yet, none of
the aforementioned formalisms are adapted to the modelling of systems that
exhibit variables whose bounds cannot be inferred. In contrast, the blending of
concurrency and of such dynamical bounds is inherent to Petri net models.
c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 261–280, 2016.
DOI: 10.1007/978-3-319-39086-4 16
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Petri nets were enhanced through the use of stochastic temporal parameters
and exponential distributions of firing times in [8,9] for the modelling of con-
current probabilistic real-time systems. The time Petri net model was extended
by adding a probability density-function to the static firing interval of each non-
deterministic transition [10]. These stochastic time Petri nets generalise time
Petri nets [11] and involve the extension of the state class graph of [12] in order
to account for stochastic information in each state class.

While stochastic time Petri nets are a powerful formalism in terms of expres-
sivity and conciseness, we argue that the randomisation of transition rates is not
necessarily required, while a randomisation of tokens in subsequent places might
be needed. For example, a component failure in a gracefully degrading system
can be linked to the firing of a transition whose rate is not necessarily subject
to some random phenomenon, but whose outcome needs to be specified in terms
of token generation. The extended stochastic Petri nets introduced in [13] allow
firing times to belong to an arbitrary distribution and output places to be ran-
domised, but they still require stringent restrictions, including the randomisation
of transition rates.

In this paper, we introduce probabilistic time Petri nets (PTPN) as a new
modelling formalism. By enhancing the forward incidence mapping of a classic
time Petri net in such a way that transitions are mapped to a set of distributions
of markings, we are able to extend the class of time Petri nets to a wider class
of nets. The output arcs of a transition are effectively replaced with stacks of
probabilistic hyperarcs. Each hyperarc contributes to the generation of tokens
in output places of the transition. When a transition is fired in a PTPN, one
hyperarc is chosen in each stack according to some probability distribution. A
resulting marking emerges from this combination of choices. In fact, a time Petri
net is a probabilistic time Petri net if the firing of any given transition almost
surely leads to a certain marking.

The tools that are used for the analysis of time Petri nets can easily be
adapted to our probabilistic setting. Here, we conform the classic atomic state
class graph construction [14] to our class of nets in order to isolate the properties
of a PTPN into a finite Markov decision process (MDP). We prove that this
MDP induces the same Markov chains as the semantics of the PTPN, up to
isomorphism. As a result, this construction preserves the lower and upper bounds
on the probability of reaching a given marking. This allows us to make use of the
extensive set of tools that are used for the study of MDPs in order to thoroughly
study the probabilistic real-time reachability problem in the context of PTPNs.
The construction we put forward is quite complex, for it is based on the atomic
state class graph. Unfortunately, we prove that the simpler original state class
graph construction cannot be adapted to our setting as it does not preserve these
lower and upper probability bounds.

Outline. We introduce the syntax and the semantics of probabilistic time Petri
nets in Sect. 2 and consider the verification of PTPNs against reachability prop-
erties in Sect. 3. We conclude the present work in Sect. 4 and suggest directions
for future research.
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2 Probabilistic Time Petri Nets

2.1 Preliminaries

We denote the set of natural numbers by N, the set of rational numbers by Q

and the set of real numbers by R. We consider 0 to be an element of N and let
N

∗ = N \ {0}. For n ∈ N, we let �0, n� denote the set {i ∈ N | i ≤ n}. The set of
real intervals that have rational or infinite endpoints is denoted I (Q+). A clock
valuation over a set T is a mapping v : T → R+, where R+ denotes the set of
non-negative real numbers. We let 0T denote the clock valuation that assigns 0
to every clock in T . For d ∈ R+, we let v +d be the clock valuation that satisfies
(v + d)(t) = v(t) + d for every clock t in the domain of v.

For a given set X, let P(X) denote the power set of X. The characteristic
(or indicator) function of A ∈ P(X), denoted χA : X → {0, 1}, is defined as

χA(x) =

{
1 if x ∈ A,

0 if x /∈ A.

Given two arbitrary sets E and F , let FE denote the set of functions from E
to F . When F is an ordered set, we define a partial order � on FE by f � g if
f(x) ≤ g(x) for all x ∈ E.

A discrete probability distribution over a countable set X is a function μ :
X → [0, 1] such that

∑
x∈X μ(x) = 1. The support of a discrete probability

distribution μ, denoted Supp(μ), is the preimage of the interval ]0, 1] under μ.
For an arbitrary set X, we define DistX to be the set of functions μ : X → [0, 1]
such that Supp(μ) is a countable set and μ restricted to Supp(μ) is a discrete
probability distribution. For x0 ∈ X, let the discrete probability distribution
denoted δx0 be the Dirac measure which assigns probability 1 to x0:

δx0(x) = χ{x0}(x) =

{
1 if x = x0,

0 if x �= x0.

2.2 Probabilistic Time Petri Nets

This section introduces the syntax and the semantics of probabilistic time Petri
nets. Intuitively, a probabilistic time Petri net is a time Petri net in which every
non-deterministic choice involves the resolution of a probabilistic experiment.
Such experiments are described explicitly by means of discrete probability dis-
tributions. In a typical time Petri net, these probability distributions are Dirac
measures. In other words, any given state of a time Petri net has a successor
that is uniquely determined by a chosen course of action. This is generally not
the case for probabilistic time Petri nets, which extend the class of time Petri
nets as a result.
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Syntax of a Probabilistic Time Petri Net.

Definition 1 (Probabilistic Time Petri Net (PTPN)). A probabilistic
time Petri net is a quintuple N = (P, T, Pre, Post, I) where

– P is a finite, non-empty set of places,
– T is a finite set of transitions such that T ∩ P = φ,
– Pre : T → N

P is the backward incidence mapping,
– Post : T → P(DistNP ) is the forward incidence mapping, and
– I : T → I (Q+) is a function assigning a firing interval to each transition.

An element of NP is called a marking of the net. A marking denotes a distri-
bution of tokens in the places of the net. The forward incidence mapping Post
specifies a finite set of probability distributions of markings for every transition
of the net. For a given transition t, we assume that the probability distributions
in Post(t) are associated with independent random variables. These random
variables each contribute to the production of tokens in subsequent places when
that transition is fired. Moreover, we assume that the support of each discrete
probability distribution in Post(t) is finite.

A distribution in Post(t) is represented graphically by a stack of hyperarcs.
A hyperarc is labelled with a probability before it is split into a set of arcs that
lead to a set of output places. These arcs contain information about the number
of tokens that are generated in each one of these places when that hyperarc is
selected.

Definition 2 (Marked Probabilistic Time Petri Net). A marked proba-
bilistic time Petri net is a sextuple N = (P, T, Pre, Post, I, ρN ) where

– (P, T, Pre, Post, I) is a probabilistic time Petri net, and
– ρN ∈ DistNP is the distribution of initial markings of the net.

The experiment that yields the initial marking of the net is only conducted
once. Any marking belonging to the support of ρN is an initial marking of the
net. The value ρN (M) specifies the probability that the initial marking of the
net is indeed M .

Example 1. In order to grasp the intuition behind the proposed model, let us
consider the probabilistic time Petri net depicted in Fig. 1. Transition T2 of the
net displays two probability distributions. The first distribution either generates
one token in P1, three tokens in P3 and one token in P4 with probability a,
or two tokens in P4, one token in P5 and one token in P6 with probability b.
No token is generated with probability c = 1 − a − b. The second distribution
generates one or two tokens in P6 with probability p and 1−p respectively. Since
these distributions are associated with independent random variables, it follows
that the firing of T2 leads to the consumption of one token in P1 and two tokens
in P2, and the generation of two tokens in P4, one token in P5 and three tokens
in P6 with probability b(1 − p).
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P1 P2

P3

P4

P5

P6

P7

P8

P9

T1 [1 ; 3[

1 − r r

5

T2 [0 ; 4]

2

a

b

c
p

1 − p

3

2
2

T3 [1 ; ∞[

1 − q q

7

2

T4 ]0 ; 1[

s

1 − s

2

T5 [2 ; 2]
2

Fig. 1. A marked probabilistic time Petri net in its initial state, given by ρN =
δ(1,2,3,1,0,2,1,1,1)

The following paragraph introduces the terminology of probabilistic time
Petri nets as well as important notations that are used throughout this paper.
Let N = (P, T, Pre, Post, I) be a probabilistic time Petri net. A state of the net
N is described by an ordered pair (M,v) in N

P × R
T
+, where M is a marking

of N and v is a clock valuation over the set of transitions T . In practice, clock
valuations are only defined for transitions that are enabled.

– A transition t ∈ T is said to be enabled by a given marking M ∈ N
P if M

supplies t with at least as many tokens as required by the backward incidence
mapping Pre. We define the set E (M) of transitions that are enabled by the
marking M as

E (M) = {t ∈ T | M � Pre(t)}.

– A transition t ∈ T is said to be firable from a given state (M,v) if the transition
t is enabled by M and if its clock is assigned a value that lies within its firing
interval. We define the set F (M,v) of transitions that are firable from the
state (M,v) as

F (M,v) = {t ∈ E (M) | v(t) ∈ I(t)}.

– A time delay d ∈ R+ is said to be compliant with a given state (M,v) if every
transition that is firable from (M,v + d′) for some time delay d′ ∈ [0, d] stays
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firable until (M,v + d). We define the set C (M,v) of time delays that are
compliant with the state (M,v) as

C (M,v) = {d ∈ R+ | ∀t ∈ T, t /∈ F (M,v+d) ⇒ ∀d′ ∈ [0, d], t /∈ F (M,v+d′)}.

– An action (d, t) ∈ R+ × T is said to be feasible from a given state (M,v) if
the time delay d leads the net to a state from which t is firable. We define the
set Φ(M,v) of actions that are feasible from the state (M,v) as

Φ(M,v) = {(d, t) ∈ R+ × T | d ∈ C (M,v) and t ∈ F (M,v + d)}.

When adopting a purely semantical standpoint, an element of the set T is
best referred to as a trial, through the medium of an underlying probability
distribution μt. Informally, a trial t induces the production of tokens in the net
each time it is conducted, by providing alternatives that lead to one marking or
another.

– Let t ∈ T be a transition of N . The discrete probability distributions in
Post(t) are associated with random variables that can take one of many val-
ues. By definition, these values are endowed with a non-zero probability. An
alternative is a function f that chooses a value for each one of these random
variables. Formally, we define the set A (t) of alternatives provided by the
transition t as follows:

A (t) =
{
f : Post(t) → N

P | ∀μ ∈ Post(t), f(μ) ∈ Supp(μ)
}

.

– An outcome of a given trial t is a marking ω of N which results from the
choices of some alternative in A (t). This marking ω accounts for the tokens
that are to be generated in each output place of t. We define the set Ω(t) of
outcomes of the trial t as

Ω(t) =

⎧
⎨

⎩ω ∈ N
P | ∃f ∈ A (t), ω =

∑

μ∈Post(t)

f(μ)

⎫
⎬

⎭ .

– For a given outcome ω ∈ Ω(t), we define the non-empty set A (ω)(t) ⊆ A (t)
of alternatives that lead to it as

A (ω)(t) =

⎧
⎨

⎩f ∈ A (t) | ω =
∑

μ∈Post(t)

f(μ)

⎫
⎬

⎭ .

Let us now provide the formal definition of the probability distribution μt

that governs a trial t ∈ T . Intuitively, the probability of reaching a given outcome
ω ∈ Ω(t) is the sum of the probabilities of all the alternatives leading to ω.
Since the probability distributions in Post(t) are assumed to be independent,
the probability that an alternative is chosen is the product of the probabilities
of all the independent choices it makes. Formally, μt is defined as follows:
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Definition 3. Let (P, T, Pre, Post, I) be a probabilistic time Petri net. The dis-
crete probability distribution that governs a trial t ∈ T is a function μt : Ω(t) →
[0, 1] that assigns probabilities to the outcomes of t as follows:

μt : ω →
∑

f∈A (ω)(t)

⎛

⎝
∏

μ∈Post(t)

μ
(
f(μ)

)
⎞

⎠.

Lemma 1. Let (P, T, Pre, Post, I) be a probabilistic time Petri net. For a given
trial t ∈ T , the function μt is a discrete probability distribution over Ω(t).

The probabilistic time Petri nets depicted in Fig. 2 have different structures.
Yet they are equivalent from a semantical standpoint, since the discrete prob-
ability distribution μT1 is the same in both nets. In fact, every probabilistic
time Petri net can be canonicalised into a probabilistic time Petri net such that
Post(t) is a singleton for every transition t.

P1 P2

P3

P4

P5

T1 [0 ; 2]

2

1 − p

p q

1 − q

P1 P2

P3

P4

P5

T1 [0 ; 2]

2

p(1 − q) + q(1 − p)
pq

2

2

2

(1 − p)(1 − q)

Fig. 2. Two syntactically different probabilistic time Petri nets that are equivalent
from a semantical standpoint

It is worth noting that a probabilistic time Petri net is equivalent to a time
Petri net if Supp(μt) is a singleton for all trials t. A time Petri net can therefore
be interpreted as a probabilistic time Petri net whose transitions yield a single
combination of hyperarcs, or similarly, whose trials each lead to a single outcome.

Semantics of a Probabilistic Time Petri Net. A probabilistic time Petri
net N has the following operational behaviour. The distribution ρN yields the
initial marking M0 of the net N and subsequently, the initial state (M0, 0T )
of N . When in a given state, the net can either fire an enabled transition or
let time flow. Doing so changes the state of the net. An enabled transition is
firable if and only if its clock value lies within its firing interval. Furthermore,
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a time delay must always be compliant with the current state of the net. In other
words, time can flow as long as otherwise enabled transitions are not disabled
in the process. This behaviour is typical in the context of strong time semantics
and conveys the notion of urgency. As such, the behaviour of a probabilistic
time Petri net is similar to that of a classic time Petri net. Once a choice has
been made, however, the next state is selected in a probabilistic manner. The
difference therefore lies in the way the subsequent state of the net is computed
once the non-determinism has been resolved.

– If the net chooses to let a certain amount of time d to elapse, then the mark-
ing remains the same while the clock values of the enabled transitions are
increased by that particular amount.

– If the net chooses to fire a certain transition t, tokens are removed from the
current marking according to the mapping Pre(t) while the outcome of the
trial t generates additional ones. Moreover, the clocks associated with the
transition t and with any transition that has been disabled by the removal of
the

∑
p∈P Pre(t)(p) tokens are reset and disabled. Finally, the clocks associ-

ated with newly enabled transitions are activated. This includes those that
were previously disabled.

The semantics of a probabilistic time Petri net is defined as a probabilistic timed
transition system. Probabilistic timed transition systems can be considered an
extension of Markov decision processes that account for the flow of time, leading
to a potentially uncountable set of states. Formally:

Definition 4 (Probabilistic Timed Transition System (PTTS)). A prob-
abilistic timed transition system is a quadruple (Q, ρ, T,W ) where

– Q is a set of states,
– ρ ∈ DistQ is the distribution of initial states,
– T is a set of trials, and
– W : Q × (T ∪ R+) → DistQ is a (partial) probabilistic transition function.

We now formally introduce the semantics of marked probabilistic time Petri
nets in terms of probabilistic timed transition systems.

Definition 5 (Semantics of a Marked Probabilistic Time Petri Net).
The semantics of a marked probabilistic time Petri net N = (P, T, Pre,

Post, I, ρN ) is a probabilistic timed transition system SN = (Q, ρSN , T,W ) where

– Q ⊆ N
P × R

T
+ is the set of states of the net N ,

– ρSN : Q → [0, 1] is the distribution of initial states, defined for (M,v) ∈ Q by

ρSN (M,v) = ρN (M) × χ{0T }(v) , and

– W : Q × (T ∪ R+) → DistQ is the (partial) piecewise probabilistic transition
function that defines continuous time transition relations over Q × R+ and
discrete transition relations over Q × T .
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1. W is defined for ((M,v), d) ∈ Q×R+ if and only if the delay d is compliant
with the state (M,v). In that case, let W ((M,v), d) be the Dirac measure
δ(M,v′), where the clock valuation v′ is defined for all transitions t′ enabled
by the marking M by

v′(t′) = v(t′) + d.

2. W is defined for ((M,v), t) ∈ Q × T if and only if the transition t is
firable from the state (M,v). In that case, let W ((M,v), t) = μ̃t, where
μ̃t ∈ DistQ is defined as follows:
• Let (M ′, v′) ∈ Q. The state (M ′, v′) lies in Supp(μ̃t) if and only if the

two following conditions are met:
* there exists an outcome ωM ′ ∈ Ω(t) such that

M ′ = (M − Pre(t)) + ωM ′ (1)

* the clock valuation v′ is defined for all transitions t′ enabled by
the marking M ′ by

v′(t′) = v(t′) × (1 − χt(t′)) × χE (M−Pre(t))(t′) (2)

• Suppose that (M ′, v′) ∈ Supp(μ̃t). We define the image of (M ′, v′) by
the formula

μ̃t(M ′, v′) = μt(ωM ′).

Figure 3 depicts a probabilistic time Petri net and a fragment of its semantics.
Clock valuations are not represented.

P1 P2

P3

P4

P5

T1 [0 ; 2]

2

1 − p

p q

1 − q

2

2,1,0,0,0

0,0,0,3,1

0,0,0,1,0

1,0,1,3,1

1,0,1,1,0

µ̃
T1

pq

p(1 − q)

(1 − p)q

(1 − p)(1 − q)

Fig. 3. Correspondence between the transitions of a probabilistic time Petri net and
the trials of its semantics
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3 The Probabilistic Real-Time Reachability Problem

A state is said to be reachable if there exists a sequence of transition relations
that leads a probabilistic time Petri net from one of its initial states to that
particular one. When considering a given system, one might want to express the
fact that certain unwanted events are unlikely to happen when it operates. If
that system is modelled as a probabilistic time Petri net, those unwanted events
are formally represented by a certain set of states. Proving whether a given
set of states can be reached with a certain probability or not is at the core of
the probabilistic real-time reachability problem for probabilistic time Petri nets.
Quantitative reachability properties enable us to assert that the probability of
reaching certain unwanted states is sufficiently small and that the probability of
achieving a certain desired system behaviour is above a given threshold.

We artificially introduce (dN , tN ) as an action that the probabilistic time
Petri net N performs when it decides that it will never fire a transition again.
We let dN be a real number that is strictly greater than the greatest real endpoint
of any firing interval in {I(t) | t ∈ T} and let tN be a fictitious trial that does
not belong to the set T . Intuitively, we want (dN , tN ) to be a feasible action
whenever the firing intervals of the transitions enabled in the current state of
the net have no upper bound.

Subsequently, we define the extended set Φ̃(M,v) of actions that are feasi-
ble from a given state (M,v) by setting Φ̃(M,v) = Φ(M,v) ∪ {(dN , tN )} if
C (M,v) = R+, and Φ̃(M,v) = Φ(M,v) otherwise. We let T̃ = T ∪ {tN } denote
the extended set of trials and extend the domain of the partial piecewise proba-
bilistic transition function W to take (dN , tN ) into account as follows:

W ((M,v + dN ), tN ) = δ(M,v+dN ).

3.1 Paths and Schedulers

The possible evolution of a probabilistic time Petri net is described formally by
a path. Reasoning about probabilities of sets of paths relies on the resolution
of non-determinism, which is performed by a scheduler. The paths describe the
potential computations that are obtained by resolving both the non-deterministic
and probabilistic choices in the underlying probabilistic timed transition system.
In other words, a path is a sequence of trials that are performed at certain dates.
These trials carry the net over a set of states.

Definition 6 (Path in a Probabilistic Timed Transition System). Let
SN = (Q, ρSN , T,W ) be the semantics of a marked probabilistic time Petri net
N = (P, T, Pre, Post, I, ρN ).

– A finite path in the probabilistic timed transition system SN is a finite
sequence

q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn
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where q0 ∈ Supp(ρSN ), n ∈ N and for all i ∈ �0, n − 1�,
⎧
⎪⎨

⎪⎩

qi = (Mi, vi) ∈ Q,

(di+1, ti+1) ∈ Φ̃(Mi, vi),
qi+1 ∈ Supp(W ((Mi, vi + di+1), ti+1)).

The integer n is called the length of the path. A finite path in SN is an
element of Supp(ρSN ) × ((R+ × T ) × Q)∗. We denote by Path∗

(SN ) the set of
finite paths in the probabilistic timed transition system SN .

– An infinite path in the probabilistic timed transition system SN is an infinite
sequence

q0
d1,t1−−−→ q1

d2,t2−−−→ q2
d3,t3−−−→ . . .

such that q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn ∈ Path∗

(SN ) for all n ∈ N.
An infinite path in SN is an element of (Q × (R+ × T ))∞. We denote by
Path∞

(SN ) the set of infinite paths in the probabilistic timed transition system
SN .

The resolution of all non-deterministic choices in a probabilistic time Petri
net is described formally by a scheduler. A scheduler chooses a feasible action
Φ̃(M,v) in any state (M,v) of the net, but does not have any influence on the
probability that one marking or another will be reached once that action has
been chosen.

Definition 7 (Scheduler for a Probabilistic Timed Transition System).
Let SN = (Q, ρSN , T,W ) be the semantics of a marked probabilistic timed tran-
sition system N = (P, T, Pre, Post, I, ρN ).

For a given finite path π = q0
d1,t1−−−→ q1

d2,t2−−−→ . . .
dn,tn−−−→ qn in SN , let last(π)

denote the state qn.

– A scheduler for the probabilistic timed transition system SN is a (total) func-
tion S : Path∗

(SN ) → (R+ × T ) ∪ {
(dN , tN )

}
such that for all finite paths π

in SN {
C (last(π)) �= R+ ⇒ S(π) ∈ Φ(last(π)),
C (last(π)) = R+ ⇒ S(π) ∈ Φ̃(last(π)).

A finite or infinite path π = q0
d1,t1−−−→ q1

d2,t2−−−→ . . . of SN is called a S-path if
S(π|i) = (di+1, ti+1) for all prefixes π|i (the path π|i denotes the finite prefix of
π of length i). We let Path∗

S denote the (countable) set of finite S-paths.

The behaviour of a probabilistic time Petri net that is subject to a scheduler
S can be formalised by a Markov chain [15]. Intuitively, this Markov chain
unfolds the net into as many trees as there are elements in Supp(ρN ).

Definition 8 (Markov Chain of a PTPN Induced by a Scheduler). Let
SN = (Q, ρSN , T,W ) be the semantics of a marked probabilistic time Petri net
N = (P, T, Pre, Post, I, ρN ).
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A scheduler S of SN induces a Markov chain MS = (Path∗
S, ρS,PS) where

– ρS ∈ DistPath∗
S

is the distribution of initial paths of the chain. Its support
is equal to the finite paths in SN of length 0 that are also initial states of the
probabilistic timed transition system SN . For all (M0, 0T ) ∈ Supp(ρS),

ρS((M0, 0T )) = ρSN (M0, 0T ) = ρN (M0).

– PS : Path∗
S → DistPath∗

S
is the (total) probabilistic transition function of

MS. For λ ∈ Path∗
S, the support of PS(λ) is the set of S-paths of the form

π
S(d,t)−−−−→ q. For (π, q) ∈ Path∗

S × Q,

PS(π)(π
S(d,t)−−−−→ q) = μ̃t(q).

Example 2. Let us consider the marked probabilistic time Petri net depicted in
Fig. 4, whose initial marking is given by ρN = δ(1,0,0,1,0,0,0). Since the enabled
transition T4 is not firable before date 2, all paths in N1 start with the resolution
of the trial T1, which either generates a token in P2 or in P3. Every scheduler
must first choose when to fire that transition. Depending on the outcome of
the trial T1, a scheduler is not presented with the same opportunities. Let us
consider a scheduler S1 that chooses to fire T1 immediately. If a token ends up
in P2, then S1 is constrained by the deterministic trial T3 which ends up being
performed at date 1. If a token ends up in P3, then S1 must let time flow before
performing either T2 or T4.

P1

P2

P3

P4

P5

P6

P7

T1 [0 ; 1] p

1 − p

T2 [2 ; 2]

T3 [1 ; 1]

T4 [2 ; 2] T5 [0 ; 0]

T6 [0 ; 0]

T7 [0 ; 0]

Fig. 4. The probabilistic time Petri net N1

Suppose that we are interested in reaching the place P7. Our target set con-
sists of every marking M for which M(P7) > 0. Figure 5 depicts the choices
scheduler S1 makes as it resolves all non-determinism before reaching P7 with
probability p. While scheduler S1 does exhibit a path leading to a target mark-
ing, we would like to thoroughly study the likelihood of reaching those particular
markings.
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Fig. 5. Abridged representation of the scheduler S1

Intuitively, the deterministic trials T3 and T5 must be avoided at all costs
if P7 is to be reached. This stems from the fact that these trials eliminate the
tokens that are needed to fire T6 or T7. To avoid T3, the trial T1 must necessarily
be resolved at date 1 and no sooner than that. To avoid T5, the trial T1 must
necessarily be resolved at date 0, without delay. Schedulers that do not fire T1

at date 0 or at date 1 never reach P7. Therefore, the minimum probability of
reaching P7 is 0. Since a scheduler has no influence over the outcome of T1, it
has no way of knowing if firing T1 at date 0 or at date 1 is best. As a result, the
probability of reaching P7 can be no greater than max(p, 1 − p).

The probabilistic real-time reachability problem consists in the establishment
of these lower and upper probability bounds. The whole set of schedulers of a
probabilistic time Petri net is considered in order to compute these bounds, as
they cover every possible resolution of non-determinism. This corresponds to a
worst-case analysis.

3.2 Markov Decision Processes

Since a probabilistic time Petri net evolves in a dense-time environment, there
are usually infinitely many schedulers as soon as a single firing interval is a
proper interval. To compute the lower and upper probability bounds by ranging
over all schedulers, we proceed to a natural grouping of states that leads to the
formation of state classes. This enables us to capture the information we need
in a finite graph, called a state class graph, which can then be used to apply
formal verification techniques. The state space of the net thus takes the form of
a Markov decision process. Formally:

Definition 9 (Markov Decision Process (MDP)). A Markov decision
process is a quadruple (C, ρ,A,P) where

– C is the (countable) set of states of the process,
– ρ ∈ DistC is the distribution of initial states of the process,
– A is the set of actions of the process, and
– P : C × A → DistC is the (partial) probabilistic transition function.

For a given state c of a Markov decision process, we define the set Σ(c) of actions
that are enabled in the state c as

Σ(c) = {α ∈ A | P(c, α)is defined}.
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The assumption that Σ(c) �= φ for all c ∈ C is a conventional requirement in the
literature that is not specific to our setting [15].

As for probabilistic time Petri nets, the paths in a Markov decision process
resolve both probabilistic and non-deterministic choices.

Definition 10 (Path in a Markov Decision Process). Let M = (C, ρ,A,P)
be a Markov decision process.

– A finite path in the Markov decision process M is a finite sequence

c0
α1−→ c1

α2−→ . . .
αn−−→ cn

where for all i ∈ �0, n − 1�,
⎧
⎪⎨

⎪⎩

ci ∈ C,

αi+1 ∈ Σ(ci),
ci+1 ∈ Supp(P(ci, αi+1)).

The integer n is called the length of the path. A finite path in M is an element
of Supp(ρ) × (A × C)∗. We denote by Path∗

(M ) the set of finite paths in the
Markov decision process M .

– An infinite path in the Markov decision process M is an infinite sequence

c0
α1−→ c1

α2−→ c2
α3−→ . . .

where c0
α1−→ c1

α2−→ . . .
αn−−→ cn ∈ Path∗

(M ) for all n ∈ N.
An infinite path in M is an element of (C × A)∞. We denote by Path∞

(M )

the set of infinite paths in the Markov decision process M .

An adversary of a Markov decision process fulfils the same function a sched-
uler does for a probabilistic time Petri net.

Definition 11 (Adversary of a Markov Decision Process). Let M =
(C, ρ, A,P) be a Markov decision process.

For a given finite path σ = c0
α1−→ c1

α2−→ . . .
αn−−→ cn in M , let last(σ) denote

the state cn.

– An adversary of the Markov decision process M is a (total) function Λ :
Path∗

(M ) → A such that for all finite paths σ = c0
α1−→ c1

α2−→ . . .
αn−−→ cn in

Path∗
(M )

Λ(σ) ∈ Σ(last(σ)).

A finite or infinite path σ = c0
α1−→ c1

α2−→ . . .
αn−−→ cn of M is called a Λ-path

if Λ(σ|i) = αi+1 for all prefixes σ|i of σ (the path σ|i denotes the finite prefix
of σ of length i). We let Path∗

Λ denote the (countable) set of finite Λ-paths.
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– An adversary Λ of the Markov decision process M induces a Markov chain
MΛ = (Path∗

Λ, ρΛ,PΛ) where
• ρΛ is the distribution of initial paths of the chain. Its support is equal to
the finite paths in M of length 0 that are also initial states of the process.
For all c ∈ Supp(ρΛ),

ρΛ(c) = ρ(c).

• PΛ : Path∗
Λ → DistPath∗

Λ
is the (total) probabilistic transition function

of MΛ. For σ ∈ Path∗
Λ, the support of PΛ(σ) is the set of Λ-paths of the

form σ
Λ(σ)−−−→ c. For (σ, c) ∈ Path∗

Λ × C,

PΛ(σ)(σ
Λ(σ)−−−→ c) = P(last(σ), Λ(σ))(c).

3.3 The Probabilistic Strong State Class Graph

Time Petri nets typically generate an infinite state space. The linear state class
graph was introduced in [11] and [12] in order to capture linear time temporal
properties of time Petri nets in a finite graph. Intuitively, each class is an element
of NP × P(RT ) which captures all the states that are reachable from an initial
state class by firing schedules of a given support. Since there are generally infi-
nitely many supports, state classes are then considered modulo some equivalence
relation. The graph thus becomes finite if the net is bounded.

The probabilistic strong state class graph extends the construction methods
that are proposed in the literature to account for the probabilistic nature of
PTPNs. The following definition introduces strong state classes for probabilistic
time Petri nets and details how the successor of a class is obtained when firing
a given transition.

Definition 12 (Strong State Classes). Let SN = (Q, ρSN , T,W ) be the
semantics of a marked probabilistic time Petri net N = (P, T, Pre, Post, I, ρN ).
The set of strong state classes is defined as follows:

1. For a given transition t of the net N, we define the set Δ(t) of decoupled
trials of t as Δ(t) =

{
tω ∈ DistNP | ∃ω ∈ Supp(μt), tω = δω

}
and denote by

TΔ =
⋃

t∈T

Δ(t) the set of decoupled trials in SN .

2. For a given initial state q0 ∈ Supp(ρSN ), we define a cover Cq0 =
⋃

τ∈T ∗
Δ

cτ

of Q inductively by cε = {q0} and

cτtω
=

{
(M ′, v′) ∈ N

P × R
T
+ | ∃(M,v) ∈ cτ ,∃(d, t) ∈ Φ(M,v),

tω ∈ Δ(t) and v′ = v + d and M ′ = (M − Pre(t)) + ω

}

The classes cτtω
are the successors of the state class cτ .

3. The cover Cq0 denotes the set of nodes of the tree that is generated by q0. We
must account for all the trees that are generated by an initial state of the net
and thus let

C =
⋃

q0∈Supp(ρSN )

Cq0 .
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Let c ∈ C be a state class in which the shared marking is M . We say that a
transition t ∈ E (M) is firable from the state class c if there exists a state q ∈ c
such that t is firable from q. The probabilistic strong state class graph (which
remains finite if the net is bounded) is defined as follows:

Definition 13 (Probabilistic Strong State Class Graph). Let SN =
(Q, ρSN , T,W ) be the semantics of a marked probabilistic time Petri net N =
(P, T, Pre, Post, I, ρN ).

The probabilistic strong state class graph of the net N is a Markov decision
process M = (C, ρ, T̃ ,P) where

– C is the set of strong state classes,
– ρ : C → [0, 1] is the distribution of initial classes of the graph.

The support of ρ is equal to the set of singletons {q0}, where q0 ∈ Supp(ρSN ).
For all (M0, 0T ) ∈ Supp(ρSN ),

ρ
({

(M0, 0T )
})

= ρSN (M0, 0T ) = ρN (M0).

– P : C × T̃ → DistC is the (partial) transition probability function.
1. P is defined for (c, t) ∈ C × T if and only if the transition t is firable

from the state class c. In that case, let P(c, t) = μ̂t, where μ̂t ∈ DistC is
defined as follows:
• Let c′ ∈ C. The class c′ lies in Supp(μ̂t) if and only if c′ is the suc-
cessor of c for some decoupled transition tω ∈ Δ(t).

• Suppose that c′ ∈ Supp(μ̂t). We define the image of c′ by the formula

μ̂t(c′) = μt(ω).

2. P is defined for (c, t) ∈ C × {tN } if and only if C (q) = R+ for some
q ∈ c. In that case, C (q) = R+ for all q ∈ c since all the states in c have
the same marking. We define the image of (c, tN ) by the formula

P(c, tN ) = δc.

The probabilistic strong state class graph of the probabilistic time Petri net
N1 is represented in Fig. 6. Each class is represented by a node, which is labelled
with the marking that all states share in that particular class. Here, strong state
classes are considered modulo an equivalence relation ≡ that asserts that two
classes are equivalent if they denote the same set of states. For the sake of clarity,
time domains are not represented.

Let us now consider the adversary Λ1 of the probabilistic state class graph of
N1, depicted in Fig. 7. Depending on the outcome of the trial T1, it either per-
forms the untimed sequence of actions T1 → T4 → T7 or the untimed sequence
T1 → T2 → T4 → T6 before reaching a target state. However, there is no sched-
uler for N1 that can perform both of these paths since the path T1 → T4 → T7

can only be performed when T1 is fired at date 1 while the path T1 → T2 → T4

→ T6 can only be performed when T1 is fired at date 0. As a result, the prob-
abilistic strong state class graph potentially generates duplicitous adversaries,
which display a probability of reaching target states greater than that of any
scheduler.
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Fig. 6. The probabilistic strong state class graph of the probabilistic time Petri net N1

Fig. 7. Abridged representation of the duplicitous adversary Λ1

3.4 The Probabilistic Atomic State Class Graph

The reason why the probabilistic strong state class graph fails to produce proper
adversaries lies in the way time and probabilities are intertwined in probabilistic
time Petri nets. A graph that better captures the effect the firing date of prob-
abilistic trials has on future actions is needed in order to solve the probabilistic
real-time reachability problem.

Berthomieu and Vernadat introduced the atomic state class graph for time
Petri nets in order to preserve their branching time temporal properties in a
finite graph [14]. The construction of this graph can be adapted for probabilistic
time Petri nets to preserve the adversaries we need. Let us consider the following
properties of interest for state class graphs:

– (EE) For all classes c, c′ ∈ N
P × P(RT ) and for all t ∈ Σ(c),

c
t−→ c′ ∈ Path∗

(M ) ⇐⇒ ∃q ∈ c,∃q′ ∈ c′,∃d ∈ R+,

{
(d, t) ∈ Φ(q)

q
(d,t)−−−→ q′ ∈ Path∗

(SN )
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– (AE) For all classes c, c′ ∈ N
P × P(RT ) and for all t ∈ Σ(c),

c
t−→ c′ ∈ Path∗

(M ) =⇒ ∀q ∈ c,∃q′ ∈ c′,∃d ∈ R+,

{
(d, t) ∈ Φ(q)

q
(d,t)−−−→ q′ ∈ Path∗

(SN )

State class graphs typically satisfy property (EE) and so does the proba-
bilistic strong state class graph. The probabilistic atomic state class graph we
introduce in this section is built from the probabilistic strong state class graph,
by refining its classes into atomic ones. An atomic class is a state class in which
each state has a successor in each of the successors of that class. Intuitively, each
atomic class captures all the states that are reachable from an initial state by
firing schedules of a given support during certain time windows.

The algorithm that details how to split strong state classes into atomic ones
can be found in [14]. Splitting a class c replaces it with a pair of classes which
both inherit the predecessors of c and the successors of c that they can still reach.
This technically causes multiple hyperarcs leaving the predecessors of c to have
the same label. However, each one of these hyperarcs is implicitly augmented
with a time interval. This time window corresponds to the set of delays that
enforce property (EE) in each one of the states it leads to. Since no time delay
is shared among those hyperarcs, any ambiguity is lifted.

This stable refinement enforces property (AE) in the probabilistic atomic
state class graph, which once again takes the form of a Markov decision process
MA = (CA, ρA, T̃ ,PA). However, this graph is usually significantly bigger than
the probabilistic state class graph from which is it built. The probabilistic atomic
state class graph of the probabilistic time Petri net N1 is represented in Fig. 8.

The proof of the following theorem is omitted due to lack of space.

Theorem 1. Let N = (P, T, Pre, Post, I, ρN ) be a bounded marked probabilis-
tic time Petri net, let SN = (Q, ρSN , T,W ) be its semantics and let MA =
(CA, ρA, T̃ ,PA) be the probabilistic atomic state class graph of N .

1. Let Λ be an adversary of the Markov decision process MA. There exists a
scheduler for the probabilistic timed transition system SN that induces the
same Markov chain as Λ up to isomorphism.

2. Conversely, let S be a scheduler for the probabilistic timed transition sys-
tem SN . There exists an adversary of the Markov decision process MA that
induces the same Markov chain as S up to isomorphism.

As a result of theorem 1, the probabilistic real-time reachability problem
can be solved by computing the probability of reaching a target state for every
adversary of the probabilistic atomic state class graph (with the tools commonly
used for Markov decision processes). For example, it can easily be shown that
the sought probability bounds for reaching P7 in the net N1 (Fig. 4) are indeed
0 and max(p, 1−p), by considering all the adversaries of its probabilistic atomic
state class graph (Fig. 8). In fact, an array of algorithms can now be used to
prove that the net verifies the following properties:
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Fig. 8. The probabilistic atomic state class graph of the PTPN N1

– reachability: the net N1 can reach P7 with probability (at least) 0.5,
– inevitability: the net N1 inevitably leaves P1 with probability 1,
– time bounded reachability: the net N1 can reach P7 within two time units

with probability 0.5,
– bounded response: the net N1 inevitably reaches P5 or P7 within two time

units with probability 1 after reaching the marking (0, 0, 1, 1, 0, 0, 0).

4 Conclusion

We have introduced a new formalism for the modelling of concurrent probabilis-
tic real-time systems. This new model extends time Petri nets by enhancing the
forward incidence mapping with sets of probability distributions. Probabilistic
time Petri nets natively integrate time, concurrency and probabilities. In the
spirit of probabilistic timed automata [16], we have restricted all random phe-
nomena to the discrete behaviour of a time Petri net. Time and concurrency
are still resolved in a non-deterministic manner. We have shown how the atomic
state class graph construction of TPNs can be adapted to our model and how this
enables us to recover a Markov decision process that induces the same Markov
chains as the semantics of the PTPN. Therefore, the use of a wide range of tools
for the analysis of PTPN is made available to us. We have also proved that the
simpler non-atomic state class graph construction cannot be adapted in a similar
manner.
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Future work includes the addition of timing and probability parameters in
probabilistic time Petri nets, the implementation of the proposed method in our
tool Roméo and the application of this model to the automotive industry.
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Abstract. Stochastic Petri nets are widely used for the modeling and
analysis of non-functional properties of critical systems. The state space
explosion problem often inhibits the numerical analysis of such mod-
els. Symbolic techniques exist to explore the discrete behavior of even
complex models, while block Kronecker decomposition provides memory-
efficient representation of the stochastic behavior. However, the com-
bination of these techniques into a stochastic analysis approach is
not straightforward. In this paper we integrate saturation-based sym-
bolic techniques and decomposition-based stochastic analysis methods.
Saturation-based exploration is used to build the state space repre-
sentation and a new algorithm is introduced to efficiently build block
Kronecker matrix representation to be used by the stochastic analysis
algorithms. Measurements confirm that the presented combination of
the two representations can expand the limits of previous approaches.

Keywords: Stochastic Petri nets · Stationary analysis · Block kronecker
decomposition · Numerical algorithms · Symbolic methods

1 Introduction

Stochastic analysis provides information about the quantitative aspects of mod-
els and is used for the analysis of non-functional properties of critical systems.
Stochastic Petri nets are widely used in reliability, availability and performabil-
ity modelling to capture the stochastic behaviours and the analysis questions
are answered with the help of Markovian analysis. However, successful stochas-
tic analysis is often prevented by the state space explosion problem: in addition
to the complexity of traditional qualitative analysis, stochastic computations
require more involved data structures and numerical algorithms. To successfully
tackle these problems, efficient algorithms are needed.
c© Springer International Publishing Switzerland 2016
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Many efficient techniques exist in the literature for the exploration and stor-
age of the state space of Petri net models. One of the most efficient is the so-
called saturation algorithm which uses a special iteration strategy for the state
space traversal and stores the state space representation symbolically in decision
diagrams [13]. On the other hand, numerical algorithms for Markovian analysis
neccesitates the representation of the stochastic behaviours.

The infinitesimal generator matrix describes the behaviours of stochastic Petri
nets and the underlying Markov chains. The size of the matrix is quadratic in the
number of reachable states of the system. This implies a quadratic storage com-
plexity in case the matrix is directly represented in a dense form. Sparse matrix
formats, such as Compressed Column Storage (CCS) [3, Sect. 4.3.1], reduce mem-
ory requirements to be proportional to the transitions in the system. However, even
sparse storage techniques tend to fail quickly due to state space explosion.

Potential Kronecker methods [8] divide the large matrix representation into
smaller matrices using only local information. Computations are then performed
with the local matrices and vectors. Unfortunately, using local information leads
to storing probabilities for unreachable states. This may cause problems in some
numerical solver algorithms as well as increases storage requirements.

In contrast, actual Kronecker methods [5,8,18] apply additional conversions
and computations to handle unreachable states in the encoding. This yields
higher implementation complexities and computational overhead.

The basis of our work is block Kronecker decomposition which imposes a hier-
archical structure on the reachable state space to solve the issue of unreachable
potential states [4,7,9].

Several algorithms have been developed that use variations of decision
diagrams to represent the infinitesimal generator. Matrix diagrams [12,21]
generalize the Kronecker representation to arbitrary matrices and not nec-
essarily Kronecker consistent model partitions. Multi-Terminal Decision Dia-
grams (MTDDs) can store both the generator matrix [20] and the vector of
state probabilities [19] by extending decision diagrams with terminal nodes cor-
responding to real numbers. Multiplicative Edge-valued Multilabel Decision Dia-
grams (EV∗MDDs) [25] can provide up to exponential space savings compared
to MTDDs by storing matrix and vector entries as edge labels instead of terminal
nodes.

While vector-matrix products can be handled with symbolic approaches eas-
ily, more elaborate matrix access becomes difficult. For example, efficient access
of a single column of the symbolic descriptor requires the introduction of caching
strategies [26].

As it turns out from the literature, the combination of efficient state space
traversal and matrix representation techniques into a stochastic analysis app-
roach is not straightforward. In this paper we elaborate an idea of Buchholz [10]
to construct the matrix representation of the stochastic behaviour from symbolic
state space representation. In addition to the initial idea of Buchholz [10], we fur-
ther extended the method by employing partition refinement instead of hashing
and we also proved correctness of the algorithm formally. The stochastic analysis
framework uses saturation-based exploration to build the state space represen-
tation and the new algorithm builds the block Kronecker matrix representation
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to be used by the stochastic analysis algorithms. Measurements confirm that
the presented combination of the two representations can expand the limits of
previous approaches.

2 Background

In this section, we overview the basic formalisms and scope of our work. At
first, a stochastic Petri net based formalism is introduced. Kronecker algebra
and multivalued decision diagrams are also discussed.

2.1 Stochastic Petri Nets

Stochastic Petri Nets extend Petri nets by assigning exponentially distributed
random delays to transitions [1]. After the delay associated with an enabled
transition is elapsed the transition fires and transition delays are reset.

Definition 1. A Stochastic Petri Net is a pair SPN = 〈PN, Λ〉, where PN is a
Petri net and Λ : T → IR+ maps the set of transitions to transition rates. PN
may contain inhibitor arcs but no priority specifications.

The stochastic behaviours of a stochastic Petri net are defined by an underly-
ing continuous-time Markov chain (CTMC). The Markov chain associated with
an SPN is a stochastic process X(τ) ∈ RS, τ ≥ 0, where RS is the set of reachable
markings of the underlying Petri net.

We will only consider the case when the Petri net is bounded, hence n =
|RS| < ∞. In order to establish the transformation between the Petri net and its
underlying Markov chain, we have to define a mapping from states to indices. A
bijection ι : RS → {0, 1, . . . , n − 1} exists between the reachable markings and a
set of indices. This allows representing the distribution of X(τ) as a vector

π(τ) ∈ IRn, π(τ)[x] = Pr(X(τ) = ι−1(x)),

i.e. π(τ)[ι(M)] is the probability that the SPN is in the marking M at time τ .
The time evolution of the X(τ) is described by the differential equation

∂π(τ)
∂τ

= π(τ)Q, (1)

where Q ∈ IRn×n is the infinitesimal generator matrix of the CTMC associated
with the stochastic Petri net.

Off-diagonal elements q[x, y] of Q (0 ≤ x, y < n and x 	= y) contain the
rate of exponentially distributed transitions from the marking ι−1(x) to ι−1(y).
Diagonal elements q[x, x] are calculated such that Q1T = 0T, where 1 and
0 ∈ IRn are vectors with every element equal to 1 and 0, respectively. That is,

q[x, y] =

{
−∑n−1

z=0,z �=x q[x, z] if x = y,∑t∈T
ι−1(x)[t〉ι−1(y) Λ(t) if x 	= y.

(2)
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The notation ι−1(x) [t〉 ι−1(y) indicates that the transition t can be fired in the
marking ι−1(x) to assume the marking ι−1(y).

Fig. 1. Example stochastic Petri net with superposed partitions.

Example 1. In Fig. 1 we introduce the SharedResource model which will serve as
a running example throughout this paper.

The model consists of a single shared resource S and two consumers. Each
consumer can be in one of the following states: Ci (calculating locally), Wi

(waiting for resource) and Si (using shared resource). The transitions ri (request
resource), ai (acquire resource) and di (done) correspond to behaviors of the
consumers. The net has 8 reachable states, which are also shown in Fig. 1. As
the net is 1-bounded, only the marked places are listed for each state.

The net is annotated with exponentially distributed transition rates. The
clients have different request (1.6 and 0.8) and completion (0.5 and 1.1, respec-
tively) rates, while both clients have an acquire rate of 1.0.

2.2 Superposed Stochastic Petri Nets

As the decomposition method in our approach fits the concept of superposed
Petri nets, we use it in the rest of the paper.

Definition 2. A Superposed Stochastic Petri Net (SSPN) is a pair SSPN =
〈SPN,P〉, where P = {P (0), P (1), . . . , P (J−1)} is the partitioning of the set of
places P in the underlying Petri net of SPN such that P = P (0)
· · ·
P (J−1) [15].

The partition P (j) is called the jth local net or component of SSPN. A local
marking M (j) : P (j) → IN is obtained from a global marking M : P → IN by
restricting the domain to P (j), i.e. M (j) = M |P (j) .

The local reachable state space of the jth local net contains the restrictions
of the globally reachable markings RS(j) = {M (j) : M ∈ RS}.

We will assume a bijection ι(j) : RS(j) → {0, 1, . . . , nj} from local markings
to an index set, where nj = |RS(j)|. Let the notation x(j) refer to the local
marking

(
ι(j)

)−1(x).
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If x = 〈x[0], x[1], . . . , x[J − 1]〉 is a vector of indices, then let the notation

M = 〈〈x〉〉 = 〈〈(x[0])(0), (x[1])(1), . . . , (x[J − 1])(J−1)〉〉

refer to the marking M with the property M (j) = (x[j])(j) for all j, i.e. M is the
marking obtained by joining the local markings indexed by x. We extend this
notation to take sets of local states and yield a set of markings.

The potential state space

PS = 〈〈RS(0),RS(1), . . . ,RS(J−1)〉〉

is isomorphic to the Cartesian product of local state spaces. More concretely,
each M ∈ PS can be identified with a vector of indices x such that M = 〈〈x〉〉,
i.e. M can be obtained by joining some local states for each component. This
vector is the state coding of M expressed by the function ι(M) : PS → INJ ,
ι(〈〈x〉〉) = x.

Let us write x(j) [t〉 y(j) if there is a reachable marking Mx ∈ RS such that

Mx|P (j) = x(j), Mx [t〉 My, My|P (j) = y(j),

i.e. there is a global state transition that takes the jth local net from the state
x(j) to y(j). It is important to note that superposed stochastic Petri nets are
Kronecker consistent : if x(j) [t〉 y(j) and x(j) [t〉 z(j), then y(j) = z(j).

Example 2. The SharedResource SPN in Fig. 1 contains three partitions. The
local nets P (0) and P (1) correspond to the two clients, while P (2) contains the
shared resource. The local state spaces of the components are

RS(0) =

⎧
⎨

⎩

0(0) = {C1}
1(0) = {W1}
2(0) = {S1}

, RS(1) =

⎧
⎨

⎩

0(1) = {C2}
1(1) = {W2}
2(1) = {S2}

, RS(2) =
{
0(2) = {S}
1(2) = ∅ .

The reachable states can be factored over the local state spaces, e.g. the
marking M4 = {S1, C2} = 〈〈2(0), 0(1), 1(2)〉〉. However, the potential state space
PS contains |RS(0)| · |RS(1)| · |RS(2)| = 3 ·3 ·2 = 18 states, 10 more than the reach-
able state space RS. For example, the marking 〈〈2(0), 2(1), 0(2)〉〉 = {S1, S2, S},
which violates mutual exclusion, is not reachable, although it is in PS.

2.3 Decision Diagrams

Multivalued decision diagrams (MDDs) [13] provide a compact, graph-based
representation for boolean functions defined over Cartesian products of domains.

Definition 3. A quasi-reduced ordered multivalued decision diagram (MDD)
encoding the function f(x[0], x[1], . . . , x[J−1]) ∈ {0, 1}, where the domain of each
variable x[j] is D(j) = {0, 1, . . . , nj −1}, is a tuple MDD = 〈V, r, 0, 1, level, child〉,
where
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– V =
⋃J

i=0 Vi is a finite set of nodes, where V0 = {0, 1} are the terminal
nodes, the rest of the nodes VN = V \ V0 are nonterminal nodes;

– level : V → {0, 1, . . . , J} assigns nonnegative level numbers to each node, i.e.
Vi = {v ∈ V : level(v) = i};

– r ∈ VJ is the root node;
– 0, 1 ∈ V0 are the zero and one terminal nodes;
– child :

(⋃J
i=1 Vi × D(i−1)

) → V is a function defining edges between nodes
labeled by the items of the domains, such that either child(v, x) = 0 or
level(child(v, x)) = level(v) − 1 for all v ∈ V , x ∈ D(level(v)−1);

– if n,m ∈ Vj , j > 0 then the subgraphs formed by the nodes reachable from n
and m are either non-isomorphic, or n = m.

According to the semantics of MDDs, f(x) = 1 if the node 1 is reachable
from r through the edges labeled with x[0], x[1], . . . , x[J − 1],

f(x[0], x[1], . . . , x[J − 1]) = 1 ⇐⇒
child(child(. . . child(r, x[J − 1]) . . . , x[1]), x[0]) = 1.

Definition 4. A quasi-reduced ordered edge-valued multivalued decision dia-
gram (EDD) [22] encoding the function g(x(0), x(1), . . . , x(J−1)) ∈ IN is a tuple
EDD = 〈V, r, 0, 1, level, child, label〉, where
– MDD = (V, r, 0, 1, level, child) is a quasi-reduced ordered MDD;
– label :

(⋃J
i=1 Vi × D(i−1)

) → IN is an edge label function.

According to the semantics of EDDs, the function g is evaluated by summing
edge labels along the path from r to 1. Formally,

g(x) =

{
undefined if f(x) = 0,∑J−1

j=0 label(n(j), x[j]) if f(x) = 1,

where f is the function associated with the underlying MDD and n(j) are the
nodes along the path to 1, i.e. n(J−1) = r, n(j) = child(n(j+1), x[j + 1]).

Symbolic State Spaces. Symbolic techniques involving MDDs can efficiently
store large reachable state spaces of superposed Petri nets. Reachable states M ∈
RS are associated with state codings ι(M) = x. The function f : PS → {0, 1}
can be stored as an MDD where f(x) = 1 if and only if 〈〈x〉〉 ∈ RS. The domains
of the MDD are the local state spaces D(j) = RS(j).

Similarly, EDDs can efficiently store the mapping between symbolic state
encodings x and reachable state indices x = ι(〈〈x〉〉) as the function g(x) = x.
This mapping is used to refer to elements of state probability vectors and the
sparse generator matrix Q when these objects are created and accessed [12].

Some iteration strategies for MDD state space exploration are breath-first
search and saturation [13].
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Fig. 2. EDD state space mapping of the SharedResource model.

Example 3. The EDD displayed in Fig. 2 describes the reachable state space of
the SharedResource model from Example 2. Edges to 0 were omitted for clarity.

The edge labels allow computation of the indexing function ι for a given
state. For example, to find the index of the marking M4 = 〈〈2(0), 0(1), 1(2)〉〉, we
can follow the edges corresponding to the local states to 1 and sum their labels
to find ι(M4) = 4 + 0 + 0 = 4. In contrast, if we follow the edges corresponding
to the unreachable state 〈〈2(0), 2(1), 0(2)〉〉, 0 is reached instead of 1.

2.4 Kronecker Algebra

In linear algebra, the Kronecker product operation may be used to build large
matrices from smaller ones. It therefore plays an important role in the stochastic
analysis of Markovian systems, where Kronecker products of matrices may help
reducing the memory requirements of the infinitesimal generator matrix Q.

Definition 5. The Kronecker product A ⊗ B of matrices A ∈ IRn1×m1 and
B ∈ IRn2×m2 is the matrix C ∈ IRn1n2×m1m2 , where

c[i1n1 + i2, j1m1 + j2] = a[i1, j1]b[i2, j2].

The Shuffle family of algorithms [5] allows efficient evaluation of vector-
matrix products of the form

v · (A(0) ⊗ A(1) ⊗ . . . ⊗ A(J−1)).

The factors A(j) ∈ IRnj×mj together represent an n0n1 · · · nJ−1×m0m1 · · · mJ−1

matrix in the J-way Kronecker product.
Recent developments include the Slice [16] and Split [14] algorithms for

vector-descriptor products, which allow parallel implementation while retaining
the beneficial properties of the Shuffle algorithm.
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3 Stochastic Petri Net Stationary Analysis

In this section the used stochastic analysis approach is introduced.

3.1 Analysis Workflow

The tasks performed by stochastic analysis tools that operate on stochastic Petri
nets, can be often structured as follows (Fig. 3).

1. State space exploration. The reachable state space of the Petri net is explored
to enumerate the possible behaviors of the model. For superposed stochastic
Petri nets, this step includes the exploration of the local state spaces of the
component as well as the possible global combinations of states.

2. Descriptor generation. The infinitesimal generator matrix Q is built in order
to describe the Markov chain X(t) over the reachable states of the stochastic
Petri net.

3. Numerical solution. Numerical algorithms obtain probability vectors π from
the matrix Q.

4. Engineering measure calculation. The studied performance measures are cal-
culated from the output of the previous step. The expected values of most
measures of interest can be obtained as weighted sums of state probabilities.

In stochastic model checking, where the desired system behaviors are
expressed in stochastic temporal logics [2,6], these analytic steps are called
as subrouties to evaluate propositions.

In the steady-state analysis of continuous-time Markovian stochastic systems,
the steady state solution

π(0) = π0,
∂π(τ)

∂τ
= π(τ)Q, π = lim

τ→∞ π(τ) (3)

of Eq. 1 is sought, where π0 describes the initial probability distribution and
π is the stationary solution. If the CMTC is irreducible, i.e. there is a nonzero
probability of transitioning from any state to any other, π is independent from
π0 and is the initial solution of the system of linear equations

π Q = 0, π1T = 1. (4)

Example 4. The utilization of the shared resource in the SharedResource SPN,
presented in Fig. 1, can be calculated as the sum

U = π[ι(M4)] + π[ι(M5)] + π[ι(M6)] + π[ι(M7)]

State space
exploration

Descriptor
generation

Numerical
solution

Engineering
measure

calculation

Fig. 3. Stochastic analysis workflow.
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after obtaining π from Eq. (4). Notice that the resource is in use in the reachable
markings M4, M5, M6 and M7.

To solve Eq. (4), the matrix Q and the vector π must be stored. Additionally,
the numerical algorithm may reserve additional vectors for intermediate storage.

3.2 Infinitesimal Generator Matrix Storage

In this section the basic complexity issues behind our developments are summa-
rized. Traditional methods use sparse or dense matrix storage methods.

Dense and Sparse Matrices. The infinitesimal generator matrix Q of a
stochastic Petri net is an n × n matrix of real numbers, where n is the number
of reachable states. The storage of Q thus requires memory proportional to the
square of the state space size if a dense matrix form is used.

Sparse matrix representation [3, Sect. 4.3.1], reduces memory requirements
to O(NZ), where NZ is the number of nonzero elements in Q.

Kronecker Decomposition. To alleviate the high memory requirements of Q,
the Kronecker decomposition for a superposed SPN expresses the infinitesimal
generator matrix as a sum of Kronecker products. Let

Q = QO + QD, QD = diag{−Q1T}, (5)

where QO and QD are the off-diagonal and diagonal parts of Q, respectively.
The off-diagonal part may be written as

QO =
∑

t∈T

Λ(t)
J−1⊗

j=0

Q
(j)
t . (6)

The matrix Q
(j)
t ∈ IRnj×nj describes the effects of the transition t on the jth

local net. If t ∈ p• ∪ •p ∪ p◦ for some p ∈ P (j), i.e. t is connected to a place in
the jth local net with an input, output or inhibitor arc,

q
(j)
t [x, y] =

{
1 if x(j) [t〉 y(j),

0 otherwise.
(7)

If t is not adjacent to the jth local net, Q
(j)
t is set to an nj ×nj identity matrix.

3.3 Block Kronecker Decomposition

In this section, we review the concept of block Kronecker decomposition and
hierarchical structuring of the state space from [7], which divides big monolithic
matrices into smaller pieces by the use of macro states.
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Let R̃S(j) denote the local macro states of the jth local net of an SSPN.
Elements of R̃S(j) form a partition of the local state space RS(j) of the jth
component, i.e. RS(j) =

⊔
R̃S(j).

The macro state indexing function ι̃(j) : R̃S(j) → {0, 1, . . . , ñj − 1} assigns a
unique index to every macro state, where ñj = |R̃S(j)|. We use the notation m̃(j)

to refer to
(
ι̃(j)

)−1(m) ⊆ RS(j).
A vector m = 〈m[0],m[1], . . . ,m[J − 1]〉 is a global macro state index if

〈〈m̃[0](0), m̃[1](1), . . . , m̃[J − 1](J−1)〉〉 ⊆ RS,

i.e. a subset of reachable markings is isomorphic to a Cartesian product of local
macro states. Such subset is called a global macro state.

Hierarchical structuring of the reachable state space expresses RS as a disjoint
union of global macro states R̃S = {0̃, 1̃, . . . , ˜̃n − 1}.

The bijection ι̃ : R̃S → {0, 1, . . . , ñ−1} assigns indices to global macro states
such that ι̃−1(m) = m̃, while the function ι̃ : R̃S → INJ assings their respective
global macro state index vectors.

Since each global macro state has the structure of a Cartesian product of
local macro states, the Kronecker product may be used to construct a matrix of
state transitions between two global macro states.

Let m and k be two reachable global macro state indices. The matrix
Q

(j)
t [m[j], k[j]] is obtained from Q

(j)
t in Eq. (7) by only keeping the rows that

correspond to m[j](j) and the columns that correspond to k[j](j). The matrix

QO[m, k] =
∑

t∈T

Λ(t)
J−1⊗

j=0

Q
(j)
t [m[j], k[j]] (8)

describes the states transitions from the macro state ι̃−1(m) to ι̃−1(k), where
m and k are the indices of global macro states with index vectors m and k,
respectively.

We can finally express the infinitesimal generator matrix Q as a block matrix
with ñ×ñ blocks. Let the 〈m, k〉th block of the off-diagonal part QO be QO[m, k]
as defined in Eq. (8) above. Then it can be seen that the matrix

Q = QO + QD, QD = diag{−Q1T} (9)

is equivalent to the matrix Q in Eq. (2).

Example 5. The state space of the SharedResource model in Fig. 1 may be hier-
archically structured as follows.

Recall from Example 2 that the model has three local nets, two corresponding
to the clients with three local states each and a local net with two local states
corresponding to the shared resource. We may partition the local state spaces
into local macro states as

R̃S(0)=
{

0̃(0)={0(0), 1(0)}
1̃(0)={2(0)} , R̃S(1)=

{
0̃(1)={0(1), 1(1)}
1̃(1)={2(1)} , R̃S(2)=

{
0̃(2)={0(2)}
1̃(2)={1(2)}.



Efficient Decomposition Algorithm 291

Observe that, for each component j, the macro state 0̃(j) contains local states
that are reachable when the shared resource is not in use, while 1̃(j) corresponds
to the allocation of the resource.

The global reachable state space is then partitioned into global macro states
as

R̃S = {〈〈0̃(0), 0̃(1), 0̃(2)〉〉, 〈〈0̃(0), 1̃(1), 1̃(2)〉〉, 〈〈1̃(0), 0̃(1), 1̃(2)〉〉},

i.e. any state that does not require use of the shared resource is reachable when
the shared resource is available, while if one of the clients allocates the resource,
the other cannot simultaneously acquire it.

Macro State Construction. Let us introduce the notation

x̂(j) = 〈x[0], x[1], . . . , x[j − 1], x[j + 1], . . . , x[J − 1]〉.
Suppose that the reachable marking M is coded by the vector of local state
indices x = ι(M), i.e. M = 〈〈x〉〉. Then the vector x̂(j) contains the local state
indices of all components except the jth.

The environment of a local state x(j) is the set of vectors

env x(j) = {ẑ(j) : M ∈ RS, z = ι(M), z[j] = x}, (10)

i.e. the local state combinations of other local nets that result in reachable mark-
ings together with x(j). We define the equivalence relation ∼(j) ⊆ RS(j) ×RS(j),

x(j) ∼(j) y(j) ⇐⇒ env x(j) = env y(j). (11)

The equivalence classes RS(j)/∼(j) define the local macro states R̃S(j). Now
we can construct the equivalence relation ∼ ⊆ RS × RS,

M ∼ K ⇐⇒ M (j) ∼(j) K(j) for all j = 0, 1, . . . , J − 1,

i.e. two markings are equivalent if all their local nets belong to the same local
macro states. The set of global macro states is the partition R̃S = RS/∼.

Explicit Macro State Algorithm. The original hierarchical structuring algo-
rithm proposed by Buchholz is based on a bit array representation of the poten-
tial state space PS [7].

Algorithm 1 shows local and global macro state generation. The environment
env x(j) is represented explicitly as a row of the reshaped bit array B. Nonzero
elements correspond to reachable states.

Lexicographic ordering is used to make local states with equal environments
adjacent. After extracting local macro states from the bit array, only a single
representant of every local macro state is kept. This both accelerates further
iterations of the algorithm and results in reduced bit array at the end that has
a nonzero element for every combination of local states that is reachable. Note
that the permutations used to reorder local states must be stored in order to
recover the global macro state indices.

Note that storage of the bit array requires O(|PS|) memory, therefore the bit
array based macro state generation is unsuitable for extremely large potential
state spaces due to memory requirements.
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Algorithm 1: Bit array based macro state construction.
Input: Reachable state space RS, reachable local states RS(j)

Output: Local macro states R̃S(j), global macro states R̃S
1 Allocate an array of bits B ∈ {0, 1}n0×n1×···×nJ−1

2 foreach M ∈ RS do x ← ι(M); B[x[0], x[1], . . . , x[J − 1]] ← 1
3 for j ← 0 to J − 1 do
4 Reshape B into a matrix with nj , where the xth row corresponds to the

local state x(j) ∈ RS(j) and its environment env x(j)

5 Sort the rows of the matrix lexicographically

6 Partition the rows such that equal rows form local macro states R̃S(j)

7 Discard all but one representant row for each local macro state m̃(j)

8 Nonzero elements of the resulting bit array B are correspond to the reachable

global macro states R̃S

4 Symbolic Decomposition Algorithm

In this section, we present our symbolic decomposition algorithm that allows the
construction of macro state spaces without explicit enumeration and storage of
the potential state space PS.

4.1 Description

The memory requirements and run time of bit array based macro state decom-
position may be significantly improved by the use of symbolic state space storage

Algorithm 2: Local macro state construction by partition refinement.
Input: Symbolic state space MDD
Output: Local macro states R̃S(j)

1 for j ← 0 to J − 1 do

2 Initialize the empty queue Q and Done ← {RS(j)}
3 foreach n ∈ Vj+1 do
4 foreach S ∈ Done do Enqueue(Q,S)
5 Done ← ∅
6 while ¬Empty(Q) do
7 S ← Dequeue(Q); S1 ← ∅; S2 ← ∅
8 Let x0 be any element of S and m ← child(n, x0)
9 foreach x ∈ S \ {x0} do

10 if m = child(n, x) then S1 ← S1 ∪ {x}
11 S2 ← S2 ∪ {x}
12 if S2 �= ∅ then Enqueue(Q,S2)
13 Done ← Done ∪ {S1}

14 ñj ← |Done|; R̃S(j) ← Done
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instead of a bit vector. Algorithm 2 constructs the local macro states from the
MDD representation of the state space.

The algorithm partitions the local states RS(j) of every component of the
stochastic Petri net into local macro states. In order to perform this operation,
the nodes in the levels V1, V2, . . . , VJ of the MDD corresponding to the state space
RS must be provided. While symbolic techniques often share nodes between
multiple MDDs, in Algorithm 2 the sets Vj should contain only nodes reachable
from the root r corresponding to RS. These sets can be extracted from a shared
MDD container by e.g. depth first search starting at r.

The lines 2–13 implement partition refinement for RS(j) based on the local
states associated with the edges between nodes in Vj+1 and Vj , i.e. the jth level
of the MDD.

The candidate macro state partition Done is initialized to contain only RS(j).
Then, the lines 5–12 refine the candidate macro states for each node n ∈ Vj+1

according to the associated local states of the arcs starting at n. After moving
the sets from Done to the queue Q, every candidate macro state S ∈ Q is split
into S1 and S2. Arcs from n with local states x ∈ S1 all go to some node m ∈ Vj .
The candidate macro state S1 is added to the new Done partition. Arcs from n
with local states y ∈ S2 may not be all parallel, therefore S2 is placed back to
Q if it is nonempty.

After Q becomes empty and no new S2 is enqueued, edges starting at n which
correspond to x ∈ S all go to the same mS ∈ Vj for all candidate macro states
S ∈ Done. No two candidate macro states S 	= S′ have mS = mS′ due to the
construction of the partition refinement. Moreover, this property also holds for
nodes n′ ∈ Vj+1 processed in lines 5–12 before n. Hence macro states in the
final partition Done constructed in lines 2–13 are all parallel in the sense that
child(n, x) = child(n, y) for all n ∈ Vj+1 and x, y ∈ S ∈ Done.

In Subsect. 4.2 we will prove that the final partition Done is indeed the set
of local macro states R̃S(j).

Algorithm 2, unlike Algorithm 1, does not output the global macro state
space R̃S. An MDD representation of R̃S may be obtained by replacing every
arc x with the index m of the local macro state such that x(j) ∈ m̃(j). The
original state space MDD can be recovered by the opposite operation, which
replaces m with parallel arcs x0, x1, . . . having m̃(j) = {x

(j)
0 , x

(j)
1 , . . .}.

Example 6. Figure 4 shows the MDD state space of the SharedResource model,
its local macro state decomposition and the MDD representation of the global
macro states.

The edges corresponding to local states that belong to the same local macro
state are parallel for all parent nodes on a level. This is represented in the figure
with ellipses connecting the edges. In the global macro state MDD, these parallel
edge sets collapse to a single edge, as every edge from the original MDD is replace
with its macro state.

Block Kronecked decomposition of the infinitesimal generator Q can be per-
formed based on the sets of macro states R̃S(j) obtained by the partition refine-
ment. By enumerating paths in the macro state MDD, global macro states R̃S
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0 1 0̃ 1̃

0 1 2 0 1 2 0̃ 1̃ 0̃ 1̃

0 1 2 0 1 2 0̃ 1̃ 0̃ 1̃

0 1 0 1

0̃(0) = {0(0)}
1̃(0) = {1(0)}

0̃(1) = {0(1), 1(1)}
1̃(1) = {2(1)}

0̃(2) = {0(2), 1(2)}
1̃(2) = {2(2)}

⇒ ⇒

Fig. 4. Symbolic macro state construction for the SharedResource model.

can be listed. Moreover, the macro state MDD can be turned into an EDD for
mapping indices between block Kronecker and sparse representations, which is
described in Subsect. 4.3.

4.2 Proof of Correctness

To show the correctness of the partition of the local states RS(j) into macro
states R̃S(j), we will use the notations of above and below substates from [13]:

Definition 6. The set of above substates coded by the node n is

A(n) ⊆ {〈x[j + 1], x[j + 2], . . . , x[J − 1]〉 ∈ D(j+1) × D(j+2) × · · · × D(J−1)},
x ∈ A(n) ⇐⇒ child(child(. . . child(r, x[J − 1]) . . . , x[j + 2]), x[j + 1]) = n,

where j = level(n) − 1, i.e. A(n) is the set of all paths in the MDD from r to n.

Definition 7. The set of below substates coded by the node n is

B(n) ⊆ {〈x[0], x[1], . . . , x[j]〉 ∈ D(0) × D(1) × · · · × D(j)},
x ∈ B(n) ⇐⇒ child(child(. . . child(n, x[j]) . . . , x[1]), x[0]) = 1,

where j = level(n) − 1, i.e. B(n) is the set of all paths in the MDD from n to 1.

Proposition 1. If n and m are distinct nonterminal nodes of a quasi-reduced
ordered MDD, A(n) ∩ A(m) = ∅ and B(n) 	= B(m).

Proof. We prove the statements by contradiction. Let a ∈ A(n) ∩ A(m). If we
follow the path a from r we arrive at n because a ∈ A(n). However, we also
arrive at m, because a ∈ A(m). Since n 	= m, such a cannot exist. A(n) and
A(m) must be disjoint.

Now suppose that there are n,m ∈ VN such that B(n) = B(m). Because the
set of paths B(n) fully describes the subgraph reachable from n, this means the
subgraphs reachable from n and m are isomorphic. This is impossible since the
MDD is quasi-reduced. B(n) and B(m) must be distinct. �
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Proposition 2. The environment of the local state x(j), defined in Eq. (10),
may be written as

env x(j) = {〈〈b,a〉〉 : n ∈ Vj+1, a ∈ A(n), b ∈ B(child(n, x(j)))}.

Proof. Any reachable state 〈〈z〉〉 ∈ RS that has z[j] = x is represented by a path
from r to 1 in the MDD that passes through a pair of nodes n ∈ Vj+1 and
k = child(n, x(j)). Therefore, some path a ∈ A(n) must be followed from r to
reach n, then after traversing the edge between n and k, some path b ∈ B(k)
must be followed from k to 1.

This means all paths from r to 1 containing x(j) are of the form z = (b, x,a)
and the converse also holds. Thus, ẑ(j) = 〈a,b〉 holds for some a and b defined
as above for all reachable states z. �


The relation ∼(j) over RS(j) can be expressed with A(n) and B(n) in a way
that can be handled with symbolic techniques.

Proposition 3. The relation x(j) ∼(j) y(j) can be formulated as

x(j) ∼(j) y(j) ⇐⇒ edges(x, j) = edges(y, j),
where edges(z, j) = {〈n, child(n, z)〉 : n ∈ Vj+1}.

Proof. Recall that x(j) ∼(j) y(j) is defined as env x(j) = env y(j) in Eq. (11). Let
X and Y be the environments of x(j) and y(j), respectively, so that x(j) ∼(j) y(j)

holds if and only if X = Y . Define

X(n) = {b : 〈b,a〉 ∈ X,a ∈ A(n)}, Y (n) = {b : 〈b,a〉 ∈ Y,a ∈ A(n)}.

Observe that X = Y if and only if X(n) = Y (n) for all n ∈ Vj+1, because the
sets {X(n) × A(n)}n∈Vj+1 and {Y (n) × A(n)}n∈Vj+1 are partitions of X and Y .

According to Proposition 2,

X(n) = B(child(n, x)), Y (n) = B(child(n, y)).

Thus, X(n) = Y (n) if and only if child(n, x) = child(n, y), because the B-sets
are distinct for each node. Hence X(n) = Y (n) for all n ∈ Vj+1 is equivalent to
the statement edges(x, j) = edges(y, j). �


Proposition 3 can be interpreted as the statement that x(j) ∼(j) y(j) if and
only if the MDD edges corresponding to x(j) are always parallel, i.e. from the
node n they all go to the same node m(n), which only depends on n, for all
n ∈ Vj+1.

4.3 Symbolic State Indexing

The last step of the stochastic analysis workflow is the calculation of engineer-
ing measures by weighted sums of state probabilities, which were obtained by
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Fig. 5. Index manipulations for EDD-based state spaces.
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⇑
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Fig. 6. Index manipulations for EDD-based macro state spaces.

the numerical solution algorithm. This requires iteration over all states and the
corresponding indices of the probability vector.

In this section, we review techniques for state-index mapping in superposed
stochastic Petri nets. An implementation of the mapping is presented for macro
state decompositions in symbolic form.

The EDD-based state-index mapping is depicted in Fig. 5. A vector of local
macro state indices is formed by observing the local states of the components.
Both forward and reverse mapping between linear indices ι(M) of the probability
vector and index vectors x is possible [12].

In block Kronecker decompositions, the generator matrix, as well as the vec-
tor π is partitioned according to the global macro states R̃S. Within a partition,
markings are ordered lexicographically by their local state indices. Although it
is possible to construct an EDD representing this ordering, it can easily grow
large, due to the intertwined ordering.

To efficiently store the index mapping (Fig. 6), a macro state offset vector
o of length ñ is populated with the starting offsets of the global states by enu-
meration of the global macro state space. The ith marking in the lexicographic
ordering within the global macro state m̃ has the linear index x = o[m] + i.
Conversion between linear macro state indices m and macro state index vectors
m is performed by an EDD, analogously to the mapping in Fig. 5.
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5 Evaluation

The decomposition algorithms were implemented in the PetriDotNet modelling
framework, which supports structural analysis of Petri nets, saturation-based
CTL and LTL model checking and reachability checking as well as Markovian
stochastic analysis. The algorithms may be used in Markovian transient, sensi-
tivity and time-to-first-failure analysis in addition to steady state analysis.

Our symbolic block Kroncker decomposition approach is compared with
sparse generator matrices and the explicit block Kronecker decomposition algo-
rithm by Buchholz [7]. The explicit decomposition algorithm was executed on
an explicit representation of the state space as a hash table, while symbolic algo-
rithms used saturation and MDDs. Steady-state analysis was performed using
the BiCGSTAB [24] numerical linear equation solver with a tolerance of 10−10.

Running time was limited to 1 h on virtual machines with 8 execution threads
and 30 GiB memory.

Three scalable families of models were used in the evaluation:

– The SR family of models are upscaled variants of the SharedResource
model that served as a running example throughout this paper. The model
was extended with additional clients, moreover, the number of tokens was
increased. In SR-Sym, each transition rate is set to 1.0, while in SR-Asym,
different rates were chosen for the transitions.

– The KanBan SPN models from [11] describe the kanban manufacturing system
with various resource pool sizes.

– Members of the Cloud family are SPN performability models of a cloud archi-
tecture [17]. Scaling of the state space is achieved by changing the number
of physical and virtual machines. Some aspects of the models from [17] were
modified, as our tool currently does not support the GPSN formalism.

The models in several SPN formats and the PetriDotNet 1.5 tool are available
at our website1

Table 1 shows the measured execution times and memory usages. The execu-
tion time of the decomposition algorithm tmacro, the construction of the genera-
tor matrix tgen and the BiCGSTAB solver tsolve is displayed, as well as the peak
memory usage Mpeak. Minimum values of every measure are emphasised in bold
for each model.

The symbolic decomposition algorithm was executed under 100 ms for all
the studied models, even in cases when the BiCGSTAB algorithm timed out.
Block Kronecker based analysis with symbolic state space also consumed the
least amount of memory, except in a single variation of the KanBan model.

Matrix construction was also fastest with symbolic decomposition. While the
same matrices are constructed after explicit decomposition, the matrices were
built slower based on the explicit state space than on MDDs due to fast access
to the decision diagram data structures.

1 https://inf.mit.bme.hu/en/petridotnet/stochasticanalysis.

https://inf.mit.bme.hu/en/petridotnet/stochasticanalysis


298 K. Marussy et al.

Table 1. Measurement results.

The state space data structure must be kept in memory throughout the
numerical solution, because it is needed in the phase of engineering measure
evaluation. Thus, BiCGSTAB ran slower after explicit decomposition due to the
pressure on the garbage collector (GC) caused by the larger size of the state space
data structures. For smaller models, numerical solution with sparse matrices
was faster than with block Kronecker matrices. However, for larger models the
decomposed matrix utilized the memory bandwidth and caches more efficiently.

The sole difference between the Sym and Asym versions of the SR models
are the transition rates, which only affected the numerical solution time. The
structure of the state space remained identical.

Failures of BiCGSTAB included exhaustion of the time limit and the avail-
able memory. In the largest SR-Asym model, a numerical breakdown condition
occurred. This condition may be handled by switching to a more stable solver,
such as Jacobi or Gauss–Seidel iteration [23, Sect. 2.2]. These solvers are also
implemented in the PetriDotNet framework.

6 Conclusion and Future Work

In this paper we introduced an efficient stochastic analysis approach using
symbolic algorithms to explore the possible behaviours of the system and
decomposition-based stochastic analysis algorithms to efficiently compute sta-
tionary measures of stochastic Petri nets. In our work we established an efficient
mapping technique which can bridge the gap between the encoded state space
representation and the decomposition-based numerical algorithms. This algo-
rithm supports the analysis of Petri net models with huge state spaces and
complex behaviours. Measurements on models with various sizes and character-
istics showed the effectiveness of the introduced approach and the benefits of the
new mapping algorithm.
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In the future, we plan to further extend our stochastic analysis framework
with other numerical solution algorithms such as the Split algorithm for Kro-
necker products. In addition, we will also investigate GPU and distributed imple-
mentation of the available algorithms.
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Abstract. Adding real time information to Petri net models often leads
to undecidability of classical verification problems such as reachability
and boundedness. For instance, models such as Timed-Transition Petri
nets (TPNs) [22] are intractable except in a bounded setting. On the
other hand, the model of Timed-Arc Petri nets [26] enjoys decidability
results for boundedness and control-state reachability problems at the
cost of disallowing urgency (the ability to enforce actions within a time
delay). Our goal is to investigate decidable classes of Petri nets with time
that capture some urgency and still allow unbounded behaviors, which
go beyond finite state systems.

We present, up to our knowledge, the first decidability results
on reachability and boundedness for Petri net variants that combine
unbounded places, time, and urgency. For this, we introduce the class
of Timed-Arc Petri nets with restricted Urgency, where urgency can be
used only on transitions consuming tokens from bounded places. We
show that control-state reachability and boundedness are decidable for
this new class, by extending results from Timed-Arc Petri nets (without
urgency) [2]. Our main result concerns (marking) reachability, which is
undecidable for both TPNs (because of unrestricted urgency) [20] and
Timed-Arc Petri Nets (because of infinite number of “clocks”) [25]. We
obtain decidability of reachability for unbounded TPNs with restricted
urgency under a new, yet natural, timed-arc semantics presenting them
as Timed-Arc Petri Nets with restricted urgency. Decidability of reach-
ability under the intermediate marking semantics is also obtained for a
restricted subclass.

1 Introduction

Petri nets are a simple yet powerful formalism modeling distributed systems.
Several extensions have been proposed to enrich them with timing constraints,
and allow specification of real-time behaviors. We first discuss the decidability
and expressivity of two main variants: Timed-Transition Petri Nets (TPNs) [22]
and Timed-Arc Petri Nets [26].
c© Springer International Publishing Switzerland 2016
F. Kordon and D. Moldt (Eds.): PETRI NETS 2016, LNCS 9698, pp. 301–322, 2016.
DOI: 10.1007/978-3-319-39086-4 18
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TPNs can constrain each transition with a timing interval. To be fireable, a
transition needs to have been enabled for an amount of time in the given interval
[22]. Further, when a transition has been enabled for the maximal amount of time
according to its associated interval, it must fire. This is called urgency. Formally,
a (continuous, positive valued) clock is associated to each transition. Hence the
number of such clocks is bounded by the number of transitions. Although the
number of clocks is bounded, most problems (reachability, control-state reach-
ability, boundedness) are undecidable for TPNs [20], as two counter machines
can easily be encoded. To obtain decidability, usually one has to either restrict
to bounded TPNs [7], where the number of tokens in any place is bounded, or
give up urgency [24]. In the latter case, the untimed language of a TPN without
urgency, also known as its weak-time semantics, is the language of the associated
Petri net without timing constraints, weakening the interest of TPNs.

Timed-Arc Petri Nets, also called Timed Petri Nets, associate a (continuous,
positive valued) age to each token [2,26]. The number of continuous values is
thus a priori unbounded. Each arc from a place to a transition can be constrained
by a timing interval, meaning that only tokens with age in the interval can be
consumed by this transition. Timed-Arc Petri Nets as explained in [2,18] cannot
encode urgency. Although the number of token ages is unbounded, the theory of
well structured transition systems [17] can be applied because of monotonicity
(a token is allowed to stay forever at a place). Thus, control-state reachability
(whether a place can be filled with at least one token) and boundedness (whether
the number of tokens in places are always bounded) are decidable for Timed-
Arc Petri Nets [2]. However, the (marking) reachability problem (whether a
particular marking is ever reachable) is undecidable [25].

The two models have incomparable expressive power. TPNs can produce a
token exactly every unit of time using urgency, while Timed-Arc Petri Nets can-
not. On the other hand, Timed-Arc Petri Nets can express latency requirements,
while TPNs cannot: indeed, TPNs (under the intermediate marking semantics)
cannot track [6,9] the ages of an unbounded number of tokens (having slightly
different ages) and consume each of them with a delay or latency of at least two
time units after their creation.

Our goal in this paper is to examine the trade-off between expressivity and
decidability in this setting of unbounded Petri nets with time. We start by con-
sidering a framework which is expressive enough to specify both these character-
istics of latency and urgency. We aim to identify subclasses which are decidable
while retaining at least a restricted form of this expressivity. To do this, we
introduce Timed-Arc Petri Nets with Urgency, extending Timed-Arc Petri Nets
with explicit urgency requirements, à la Merlin [22], forcing transitions to fire if
they remains enabled for long enough.

Unsurprisingly, most problems are undecidable as soon as urgency is used on
unbounded places (Proposition 1, and [19]). In earlier works, decidability results
have been obtained by either imposing a bound on the number of tokens (e.g.,
[7,15]) or removing urgency completely (e.g., [21,24]). Here, we consider classes of
Timed-Arc Petri Nets and of TPNs with restricted Urgency to obtain decidability.
More specifically, transitions consuming tokens exclusively from bounded places
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can use urgency; other transitions consuming tokens from at least one unbounded
place do not have urgency constraints. Using restricted urgency does not make
the untimed language of a TPN with restricted Urgency the same as the language
of the associated untimed Petri Net. Thus, these classes with restricted Urgency
differ from TPNs with weak-time semantics [24], where all urgency constraints
are ignored.

We present to our knowledge the first decidability results for a Petri net
variant combining time, urgency and unbounded places. First, for the general
class of Timed-Arc Petri Nets with restricted Urgency, we obtain decidability
of control-state reachability (Theorem 1), i.e., whether a given place can ever
be filled, and of boundedness. This extends decidability results [2] on Timed-
Arc Petri Nets (without urgency). Our main result concerns the decidability
of (marking) reachability. Reachability is undecidable for Timed-Arc Petri Nets
(without any urgency), due to the presence of unboundedly many “clocks” (timed
tokens) [25], and also for TPNs (because of unrestricted urgency) [20]. This leads
us to consider TPNs with restricted urgency, which inherently use a bounded
number of “clocks”. We define a new timed-arc semantics for TPNs, presenting
them as a subclass of Timed-Arc Petri Nets with Urgency, in the spirit of the
time on token semantics of [11]. We then obtain our main result: reachability is
decidable for TPNs with restricted Urgency under our new timed-arc semantics
(Theorem 2). This allows us to decide reachability for channel systems with
specified latency assuming that there is a bound on the throughput of the channel
(i.e., on the number of messages transfered per unit of time). While our proof for
deciding reachability does not adapt to the intermediate marking semantics, we
obtain decidability of reachability under the intermediate marking semantics for
the subclass of TPNs with restricted constraints (Theorem 3). This class forbids
specifying upper and lower bounds on transitions leaving unbounded places. We
summarize the decidability and expressivity results in the table below.

Table 1. Classes of systems and their associated decidability and expressivity. The
italicized rows are new results in this paper. R stands for restricted form of expressivity.

Related Work. In [19], Timed-Arc Petri Nets were extended with urgent transi-
tions and place invariants. In contrast to our model where a timed or discrete
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move is always allowed in any configuration, deadlocked configurations can be
reached in [19], where no discrete move is possible, and elapsing time is forbid-
den. Further, urgent transitions of [19] must fire as soon as they are enabled,
which corresponds to the special case of having urgency 0 in our model. Urgency
has also been modeled using Black transitions in generalized stochastic nets [4]
and priorities in [8], but these nets cannot model latency constraints. For TPNs,
the alternative multiple server semantics [9] has been proposed to model latency,
but this makes the number of clocks unbounded.

Our focus in this paper is to address decidability issues. We obtain decid-
ability for systems with (restricted) urgency and unbounded places. As far as
we know, in all earlier results and in particular in [4,8,19,21,24], decidabil-
ity is ensured only when urgency is completely disallowed, or places are all
bounded. Further, our framework is powerful enough to capture systems of timed
finite state machines communicating through bag channels [12,13], with urgency,
throughput and latency characteristics of channels, and still yields decidability
results.

Structure of the Paper. Section 2 introduces Timed-Arc Petri Nets with Urgency
(Timed-Arc PNU), their semantics, and gives examples of communication chan-
nels that can be represented with this new model. Section 3 examines decidability
issues for Timed-Arc PNU and introduces restrictions for decidability of control-
state reachability and boundedness. Section 4 addresses the reachability problem
for Timed-Arc Petri Nets and TPNs with restricted urgency and gives the main
decidability results. Section 5 provides a proof of the main theorem followed by
discussion and the conclusion.

2 Timed-Arc Petri Nets with Urgency

We will denote by Q≥0 the set of positive rational numbers, and by I(Q≥0) the
set of intervals over Q≥0 ∪ {∞}. These intervals can be of the form (a, b), (a, b],
[a, b), or [a, b]. We will denote by MR the set of multisets of positive real numbers.
For two multisets A and B, we denote by A � B the disjoint union of A and B,
i.e., the multiset that gathers elements of multisets A and B without deleting
identical elements. Similarly, we define A\B as the operation that removes from
A exactly one occurrence of each element of B (if it exists).

We introduce our main model, Timed-Arc Petri Nets with urgency con-
straints. The model is based on a semantics using timed markings m : P → MR

which associate to each place a multiset describing the ages of all the tokens in
this place.

Definition 1. A Timed-Arc Petri Net with Urgency, denoted Timed-Arc PNU,
is a tuple N = (P, T, •(), ()•

,m0, γ, U) where

– P is a set of places, T is a set of transitions, m0 is the initial timed marking,
– •() : T → P and ()• : T → P are respectively, the backward and forward flow

relations indicating tokens consumed/produced by each transition.
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– γ : P × T → I(Q≥0) is a set of token-age constraints on arcs and
– U : T → Q≥0 ∪ {∞} is a set of urgency constraints on transitions.

For a given arc constraint γ(p, t) = [α(p, t), β(p, t)] we will call α(p, t) the
lower bound and β(p, t) the upper bound of γ(p, t). Such constraints mean that
the transition t is enabled when for each place p of its preset •t, there is a token
in p of age in γ(p, t), i.e., between α(p, t) and β(p, t). The urgency constraint U(t)
means that a transition must fire if t has been enabled (by its preset of tokens)
for U(t) units of time. A Timed-Arc Petri Net [2] can be seen as a Timed-Arc
PNU with U(t) = ∞ for all t ∈ T . Note that we do not label transitions, hence
each transition can be seen as labeled by its unique name.

As an example, consider the Timed-Arc PNU N1 of Fig. 1. Places are rep-
resented by circles, transitions by narrow rectangles, and flow relations by arcs
between places and transitions. Urgency of a transtion is represented below the
transition (in the example, transition t3 has urgency 3). Arc constraints γ are
represented as intervals below arcs. When unspecified, an arc constraint is set
to [0,∞) and an urgency constraint to ∞ (e.g. U(t2) = ∞). Intuitively, Fig. 1
depicts a process p1 that sends an unbounded number of messages to a process p2
through a channel. A message is sent at least every five time units (t.u.) because
of the urgency constraint on t1. Latency (or delay) for each message is at least 2
t.u. before being received, and the maximal throughput (or rate) of the channel
is between 1 message every t.u. and 1 message every 4 t.u. Changing constraint
[2,∞) into [2, 100] models message loss, i.e., messages not received after 100 t.u.
are considered lost. Formal Semantics of Timed-Arc PNU: We now define the
semantics of a Timed-Arc PNU N = (P, T, •(), ()•

,m0, γ, U) in terms of timed
markings and discrete and timed moves. For a given place p and timed marking
m, we will let agep denote real values from m(p) depicting the age of one token
in place p. Note that as m(p) is a multiset, two tokens in a place p may have
identical ages.

We say that a transition t is enabled from a timed marking m if, for each
p ∈ •t, there exists agep ∈ m(p) such that agep ∈ γ(p, t). A transition t is
said to be urgent from a timed marking m if ∀p ∈ •t,∃agep ∈ m(p) such that
α(p, t) + U(t) ≤ agep ≤ β(p, t), i.e., if the preset of t has tokens at least U(t)

Fig. 1. Timed-Arc Petri net with urgency N1.
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time units older than required by γ(p, t). Let t be an urgent transition from m.
This implies that t is enabled. Further, as formally defined below, presence of
urgent transitions disallows time from elapsing. Thus, there will exist a place
p ∈ •t such that the oldest token agep ∈ m(p) with agep ≤ β(p, t) will satisfy
agep = α(p, t) + U(t). An urgent transition t will force occurrence of a discrete
move, but not necessarily of this transition t as several transitions can be enabled
(or even urgent) at the same time. Formally, the semantics of Timed-Arc PNU
is decomposed into timed moves and discrete moves.

Timed moves symbolize elapsing of δ time units from a timed marking
in the following way: for a given timed marking m, we denote by m + δ the
timed marking obtained by adding δ to the age of every token: if m(p) =
{age1, . . . , agek}, then (m + δ)(p) = {age1 + δ, . . . , agek + δ}. A timed move
of δ > 0 time units is allowed from m if for every 0 ≤ δ′ < δ, the timed marking
m + δ′ has no urgent transition, and we denote m

δ−→ m + δ such timed moves.
Discrete moves represent firings of transitions from a marking m. One can

fire transition t from marking m and reach marking m′, denoted m
t−→ m′ iff t is

enabled and for each place p, we have m′(p) = (m(p) \ Sp) � S′
p, where

– Sp = {agep} where agep ∈ m(p) ∩ γ(p, t) if p ∈ •t, and Sp = ∅ otherwise.
– S′

p = {0} if p ∈ t•, and S′
p = ∅ otherwise.

A Timed-Arc PNU N defines a timed transition system �N � whose states
are timed markings and transitions are discrete and timed moves. A run of N is
a sequence m1a1m2 · · · mn where, for all i ∈ {1, . . . , n}, mi is a timed marking of
N and ai ∈ (R>0 ∪ T ), such that mi

ai−→ mi+1 is a timed (ai ∈ R>0) or discrete
(ai ∈ T ) move. We will denote by Reach(N ) the set of reachable timed markings
of N (starting from m0). An (untimed) marking is a function from P to N. For
a timed marking m, we will denote by m� : P → N the untimed marking that
associates to every place p ∈ P the number of tokens in m(p). A place p ∈ P
of a Timed-Arc PNU is called bounded if there exists an integer K such that
for every timed marking m ∈ Reach(N ), m�(p) ≤ K and N is bounded if all its
places are bounded.

3 Undecidable and Decidable Problems
for Timed-Arc PNU

In this paper we will tackle the decidability of the following problems:

– Reachability: given a Timed-Arc PNU N , given an (untimed) marking m,
does there exists a timed marking m′ ∈ Reach(N ) with m′� = m?

– Control State reachability (also called place-reachability): given a Timed-Arc
PNU N and a place p, does there exist m ∈ Reach(N ) with m�(p) ≥ 1?

– Boundedness: given a Timed-Arc PNU N , does there exist K such that for
all m ∈ Reach(N ), we have m�(p) ≤ K for all places p?

Proposition 1. Control State reachability, Reachability and Boundedness are
undecidable for Timed-Arc PNU.
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Proof (sketch). Reachability is undecidable for Timed-Arc PNU since it is
already undecidable for Timed-Arc Petri nets [25]. Because of urgency, control
state reachability and boundedness are also undecidable for Timed-Arc PNU.
As the proofs closely follow the proofs of undecidability for TPNs [20], we do
not detail them here (see also [19] for the proof for Timed-Arc Petri Nets with
age invariants). 
�

To obtain decidability, two main approaches have been explored. The first
involves dropping all urgency requirements. For Timed-Arc PNU, doing so we
get back Timed-Arc Petri Nets and their decidability results. For TPNs, this
corresponds to the weak semantics [24], under which the reachable (untimed)
markings are the markings reachable by the associated (untimed) Petri net. The
second approach considers only bounded nets [15] (see also bounded TPNs [7]).
Our goal in this paper is to define restrictions for Timed-Arc PNU that ensure
decidability for models combining urgency and unbounded nets. This allows us
to verify networks of timed systems communicating via unbounded channels with
specified latency and throughput such as the one shown in Fig. 1.

3.1 Restricted Urgency

We now define our subclass of Timed-Arc PNU. Let N = (P, T, •(), ()•
,m0, γ, U)

be a Timed-Arc PNU. We start by defining the untimed Petri net associated
with N as N = (P, T, •(), ()•

,m0), by just dropping the timing constraints. We
also define the restriction of N to a subset of places Pb ⊆ P as the Timed-Arc
PNU NPb

= (Pb, T, �()Pb
, ()�

Pb
,m′

0Pb
, γPb

, U), where �()Pb
, ()�

Pb
,m′

0Pb
, γPb

are
respectively restriction of •(), ()•

,m0, γ to Pb × T, T × Pb and Pb. For a timed
marking m of N , we define the timed marking mPb

of NPb with mPb
(p) = m(p)

for all p ∈ Pb. We observe that if the places that are projected away do not use
urgency then every run of N is also a run in the projected net NPb

. Formally,

Lemma 1. Assume that for each transition t ∈ T with U(t) < ∞, we have
•t ⊆ Pb. Then for every run m0a1 · · · anmn of N , m0,Pb

a1 · · · anmn,Pb
is a run

of NPb
.

Proof. Let ρ = m0a1 . . . anmn be a run of N . Consider, for the sake of contradic-
tion, the smallest i for which, we do not have mi−1,Pb

ai−→ mi,Pb
. The only possi-

bility is to contradict urgency because discrete moves satisfy mi−1,Pb

ai−→ mi,Pb
.

Hence we must have ai = δ and for some δ′ < δ, there exists a transition t with
urgency U(t) = k < ∞ and for all input places p ∈ Pb of t, there is at least one
token of age at least k in (mPb,i + δ′)(p). Now, by assumption, •t ⊆ Pb. That
is, there are no other places (from Pu) that can be in the preset of t. Hence, by
definition of urgency, mi

δ−→ mi+1 is not a valid timed move in N either, which
is a contradiction. 
�
Note that the converse is not true in general: a run of NPb

needs not be a run of
N . We can now define our decidable subclass of Timed-Arc PNU. It is mainly
based on the notion of restricted urgency, which intuitively means that urgency
can be enforced only on the bounded part of the system.
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Definition 2. A Timed-Arc Petri Net with restricted Urgency (denoted Timed-
Arc PNrU) is a triple (N , Pu, Pb), where N = (P, T, •(), ()•

,m0, γ, U) is a
Timed-Arc PNU, and Pu � Pb = P is a partition of places of N such that:

– for each transition t ∈ T with U(t) < ∞, we have •t ⊆ Pb and,
– the (untimed) Petri Net NPb

associated with NPb
is bounded.

Intuitively, in a Timed-Arc PNrU (N , Pu, Pb), urgency can only be used by
transitions consuming tokens from structurally bounded places. As an example,
consider the net N1 from Fig. 1. Let Pb = {p1,wait, throughput} and Pu =
{latency, p2} be a partition of places in P . The (unbounded) places in Pu do not
use urgency and the (untimed) Petri Net NPb

is a 1-bounded Petri Net. Hence
N1 is a Timed-Arc PNrU.

Checking membership in Timed-Arc PNrU, i.e., checking whether a Timed-
Arc PNU is with restricted Urgency, is decidable. This immediately follows from
the fact that it is decidable whether a place of a Petri Net is bounded. Given
N , it suffices to define Pb =

⋃
U(t)<∞

•t, and to check that NPb
is a bounded

(untimed) Petri Net. Though we will often refer to places in Pu as “unbounded
places”, this only means the contents of these places can be unbounded, not that
they must be. On the other hand, places of Pb are bounded in N :

Lemma 2. Let (N , Pu, Pb) be a Timed-Arc PNrU. Then every p ∈ Pb is bounded
in N .

Proof. Let K be the bound on the number of tokens in NPb
. For the sake of

contradiction, if p ∈ Pb was not bounded in N , there would exist a reachable
marking m with more than K tokens in p. Let m0a1 · · · anmn be a run reaching
mn = m. Then by Lemma 1, m0,Pb

a1 · · · anmn,Pb
is a run of NPb

, and thus of
NPb

, and mn,Pb
has more than K tokens in p, a contradiction with NPb

being
K bounded. 
�

We next turn to the (un)decidable properties for this subclass of Timed-Arc
PNrU.

Theorem 1. Control-State reachability and Boundedness are decidable for
Timed-Arc PNrU. However, reachability is undecidable for Timed-Arc PNrU.

Proof (sketch). The decidability of control-state reachability and boundedness
for Timed-Arc PNU is adapted from [1,2], by defining a well-quasi order over
the markings and using the theory of well structured transition systems [17].
The well quasi order � is defined in the following way. First, we define a region
abstraction for markings of Timed-Arc PNrU. This abstraction is a combina-
tion of regions of a finite timed automaton representing the behavior of the net
on its bounded part, and regions representing symbolically the markings of the
unbounded places of the net. This set of regions is equipped with a comparison
relation � that requires equality on the region bounded part, and compara-
ble contents on the unbounded part. This relation is compatible with markings
comparison and is a well-quasi order. We can then define a successor relation



Decidable Classes of Unbounded Petri Nets with Time and Urgency 309

among regions that is an abstract representation of moves of a Timed-Arc PNrU.
Regions equipped with their ordering and this successor relation form a well-
structured transition system and hence control-state reachability and bounded-
ness are decidable. Details are omitted as the construction is rather similar to
[1,2]. The undecidability of reachability for Timed-arc PNrUs follows directly
from the undecidability of reachability for Timed-Arc Petri nets [1,25]. 
�
We remark that the results of the above Theorem 1 can easily be extended to
a strictly larger class of Timed-Arc PNUs, where NPb

is bounded instead of
NPb

. However, checking membership in this extended class is not decidable as
boundedness is not decidable for Timed-Arc PNU.

4 Decidability of the Reachability Problem

In this section we tackle the decidability of the reachability problem. On one
hand, reachability is undecidable for Timed-Arc Petri Nets [25], and thus for
Timed-Arc PN(r)Us, because an unbounded number of clocks can be encoded,
one for each token. On the other hand, Timed-transition Petri Nets (TPNs) [22]
only use a bounded number of clocks (one per transition), even if the places have
unboundedly many tokens. Nevertheless, (unrestricted) urgency makes reacha-
bility undecidable for TPNs [20]. To obtain decidability of reachability, we thus
consider classes of TPNs with restricted urgency.

4.1 Timed-Transition Petri Nets (TPNs)

Timed-transition Petri Nets (TPNs for short), also called Time Petri Nets, intro-
duced in [22], associate time intervals to transitions of a Petri net. Formally,
a TPN N is a tuple (P, T, •(), ()•

,m0, I) where P is a finite set of places,
T is a finite set of transitions, •(), ()• : P → T are the backward and for-
ward flow relations respectively, m0 ∈ N

P is the initial (untimed) marking, and
I : T �→ I(Q≥0) maps each transition to a firing interval. We denote by A(t)
(resp. B(t)) the lower bound (resp. the upper bound) of interval I(t). A configu-
ration of a TPN is a pair (m, ν), where m is an untimed marking (recall that in
untimed markings, m(p) is the number of tokens in p), and ν : T → R≥0 asso-
ciates a real value to each transition. A transition t is enabled in a marking m if
m ≥ •t. We denote by En(m) the set of enabled transitions in m. The valuation
ν associates to each enabled transition t ∈ En(m) the amount of time that has
elapsed since this transition was last newly enabled. An enabled transition t is
urgent if ν(t) ≥ B(t), with B(t) the upper bound of I(t). An example of a TPN
is depicted in Fig. 2 below.

We first recall the intermediate marking semantics [5,7] for TPNs defined
using timed and discrete moves between configurations. A timed move consists
of letting time elapse in a configuration. For (m, ν), ν +δ is defined by ν +δ(t) =
ν(t) + δ, for all t ∈ En(m). A timed move from (m, ν) to (m, ν + δ), denoted
(m, ν) δ−→ (m, ν+δ), is allowed if for every 0 ≤ δ′ < δ, the configuration (m, ν+δ′)
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Fig. 2. A TPN N2.

has no urgent transition. A discrete move consists of firing an enabled transition
t that has been enabled for a duration that fulfills the time constraint attached
to t. We have (m, ν) t−→ (m′, ν′) if t ∈ En(m), ν(t) ∈ I(t) and m′ = m − •t + t•,
for ν′ defined below. We call intermediate marking the marking m − •t which
is obtained after t consumes tokens from its preset but did not create new ones
yet. We will say that a transition t′ ∈ En(m′) is newly enabled by firing of t if
either t′ = t, or t′ /∈ En(m − •t), i.e. is not enabled in the intermediate marking
m− •t. Now, we define ν′(tt) = 0 if tt is newly enabled, and ν′(tt) = ν(tt) for all
tt ∈ En(m) but not newly enabled. That is, for a transition t both consuming
and producing a token in p having a single token, a transition t′ with p ∈ •t′ is
disabled then newly enabled when t is fired.

This classical semantics of TPN is somewhat similar to that of Timed-Arc
PNU, but is based on configurations instead of timed markings. The only contin-
uous values kept in the configuration of a TPN are in ν. Hence, only |T | “clock”
values are kept, and configurations cannot keep track of the exact time elapsed
since their creation for arbitrary number of tokens. In particular, a TPN under
the intermediate marking semantics cannot encode latency for an unbounded
number of tokens [9] (for instance, the property that tokens are consumed at
least 2 units of time after each of them is created). More generally, it is not
simple to model a channel with specified latency and throughput with the inter-
mediate marking semantics of TPNs. For instance, TPN N2 in Fig. 2 seems to
model a channel with a latency of 2 time units and throughput (rate) of at most
1 message per time unit. However, if a token reaches place ch at date 0 and
another at date 1.9, then both can be consumed at time 2, though only one
of them has spent two time units at ch, hence it does not faithfully encode a
latency of 2.

4.2 A New Timed-Arc Semantics for TPNs

We now introduce a new timed-arc semantics in order to model channels with
latency and throughput, presenting TPNs as Timed-arc PNUs. The core idea
is that the timed-arc semantics takes into account the age of tokens in input
places. Formally, we define Timed(N ), the Timed-Arc PNU associated with
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Fig. 3. A TPN N3 (left) which is timed bisimilar to Timed(N3) (right).
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Fig. 4. A TPN N4 (left) which is not bisimilar to Timed(N4) (right).

the TPN N = (P, T, •(), ()•
,m0, I). Intuitively, Timed(N ) preserves all places

and transitions of N , adds one place pt per transition t, adds pt to the pre
and post flow of t, and adapts the timing constraints. Figures 3 and 4 display
TPNs N3,N4 on the left and Timed(N3),Timed(N4) on the right. We define
Timed(N ) = (P ′, T, �(), ()�

,m′
0, γ, U) where:

– P ′ = P ∪ PT with PT = {pt | t ∈ T}.
– �(), ()� extend respectively •(), ()• in the following way: p ∈ �t iff p = pt or

p ∈ •t and p ∈ t� iff p = pt or p ∈ t•.
– For all t, for I(t) = [A(t), B(t)], we let U(t) = B(t)−A(t) and for all p ∈ �t, we

set γ(p, t) = [A(t),+∞) (for I(t) = (A(t), B(t)] we let γ(p, t) = (A(t),+∞)),
– We let m′

0(p) = 0m0(p) for all p ∈ P and m′
0(pt) = {0} for all transitions t.

TPN N2 under the timed-arc semantics, i.e., Timed(N2), represents the channel
with latency 2 and maximal throughput of 1 message per time unit, which is
also modeled by the Timed-arc PNU of Fig. 1. Indeed, a token can be sent from
place ch to place latency by either transition only when it is at least 2 time units
old, preserving the latency requirement.

The new timed-arc semantics is close in spirit to the time-on-token semantics
of [11], which was defined for 1-safe TPNs. In case of 1-safe TPNs as well as in
examples such as net N3, this semantics is bisimilar to the classical intermediate
marking semantics [11]. However, in general, the behaviors of N and Timed(N )
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differ. Consider for instance the TPN N4 in Fig. 4. Consider the execution of N4

where t0 fires twice: first at date 0 and then at date 1. At date 2, both t1 and t2
have been enabled for 2 time units (ν(t1) = ν(t2) = 2), hence any one of them
can fire. Let t1 fire. Now, t1 cannot fire again immediately as it is newly enabled
(hence ν′(t1) = 0), but t2 can fire immediately after t1, because ν′(t2) = 2 (in
particular, it is not newly enabled by firing t1 as there are two tokens in the
input place p, i.e., m(p) − •t(p) = 2 − 1 = 1).

In contrast, in Timed(N4), if t0 is fired at date 0 and again at date 1, then at
date 2, m(p) = {1, 2}, and any one of t1 or t2 can fire. Just as in the execution of
N4, let t1 fire. After this firing of t1, the other transition t2 cannot fire because
m′(p) = {1} and 1 < 2. It is only at date 3 that t2 can fire. At date 3, transition t1
cannot fire because m′′(pt1) = {1}, and 1 < 2. This illustrates that the behaviors
of N4 and Timed(N4) can indeed differ in general. In the following, we will use
the timed-marking semantics in the general case, where it does not coincide with
the intermediate marking semantics.

4.3 Reachability for TPNs Under the Timed-Arc Semantics

Reachability is undecidable for general TPNs because of unrestricted
urgency [20], under the timed-arc or the intermediate marking semantics. We
now introduce two natural restrictions to urgency to allow decidability.

Definition 3. Let N = (P, T, •(), ()•
,m0, I) be a TPN and P = Pu � Pb be a

partition of its places such that the (untimed) Petri Net NPb
associated with NPb

is bounded.

– N is called a TPN with restricted urgency if for each transition t ∈ T with
an upper bound B(t) < ∞ on its firing interval, we have •t ⊆ Pb.

– N is called a TPN with restricted constraints if for each transition t ∈ T with
a non trivial firing interval I(t) �= [0,∞) we have •t ⊆ Pb.

The class of TPNs with restricted constraints is strictly contained in the class of
TPNs with restricted urgency. As an example, the TPN N2 on Fig. 2 is a TPN
with restricted urgency but not a TPN with restricted constraints, since there
is an arc from the unbounded place ch to transition t2 with constraints [2,∞),
i.e., a constraint with non-trivial lower bound and no upper (urgency) bound.
As for Timed-Arc PNU, checking whether a TPN is with restricted urgency or
with restricted constraints is decidable, since checking boundedness of (untimed)
Petri Nets is decidable.

Now, if N is a TPN with restricted Urgency, then Timed(N ) is a Timed-Arc
PNrU, ensuring that boundedness and control-state reachability are decidable.
We can now state our main result, namely Theorem 2: reachability is decidable
for TPNs with restricted urgency under timed-arc semantics (e.g. Timed(N2)
from Fig. 2 is in this class). TPNs with restricted urgency under timed-arc seman-
tics can model networks of (finite-state) timed systems with unrestricted urgency,
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communicating through bag channels [12,13], specifying maximal throughput
and minimal latency, assuming that the throughput is not infinite. Indeed, it
suffices to modify the TPN in Fig. 2 with

⌈
x
δ

⌉
transitions from ch to latency

in order to model a channel with latency at least x and throughput at most δ
messages per unit of time.

Theorem 2. Let N be a TPN with restricted urgency. Then the reachability,
boundedness and control-state reachability problems are decidable for Timed(N ).

The next section is devoted to the proof of Theorem 2. In essence, we show
that although the timed-arc semantics of TPNs “formally” uses an unbounded
number of clocks, a complex reduction allows to consider only a bounded number
of clocks. This step is crucial in the proof of Theorem 2, and we believe that this
technique can be generalized and re-used for other problems in related contexts.

5 Proof of Theorem 2

Let (N , P,Q), with N = (P ∪ Q,T, •(), ()•
,m0, I) be a TPN with restricted

Urgency, P (resp. Q) the set of bounded (resp. unbounded) places. In this section,
we show how to check if a given (untimed) marking is reachable in Timed(N ).
The intuitive idea is that, under restricted urgency, a transition t which has an
unbounded place from Q in its preset, has no urgency/upper constraint. Hence
to fire t, it suffices to check the lower bound constraint, i.e., to check that some
tokens (among an unbounded number) in its pre-places are old enough. Now,
the crucial point is that to check this lower-bound, we need the ages of only a
bounded number of tokens, as there are a finite number of transitions, and for
each transition t, its associated “clock” pt is reset after it is fired.

Formally, the proof (of Theorem 2) is in two steps: we first convert the TPN
with restricted urgency N to a TPN with restricted constraints N ′ such that
Timed(N ) and Timed(N ′) have the same set of reachable markings. In the
second step, we obtain a Petri Net that is bisimilar to Timed(N ′), which implies
the decidability of reachability.

Step 1: Construction of the TPN with Restricted Constraints N ′. In
order to obtain a TPN with restricted constraints N ′ from N , we will keep
(an overapproximation of) ages for a bounded number of tokens from each
unbounded place p ∈ Q. For that, we will use |T | × |Q| gadgets (Ct

p)t∈T,p∈Q.
Gadget Ct

p, associated with place p ∈ Q and transition t ∈ T (with p ∈ •t), is
a TPN with restricted constraints. Each gadget is similar: it has 2 places, 0t

p and
1t

p, and in the initial marking the token is at 0t
p. There is an associated transition

starttp: we have �starttp = {p, 0t
p} and starttp

� = {1t
p}, with the timing constraint

I ′(starttp) = [0,∞). That is, N ′ will non-deterministically guess the transition
that will fire. The gadget for a fixed transition t and place p is shown in Fig. 5.
Every transition t reading from an (unbounded) place p ∈ Q is transformed to
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Fig. 5. Step 1 of proof: converting (part of) TPN with restricted urgency N to
restricted constraints N ′

read from (bounded) place 1t
p of gadget Ct

p instead. That is, if a transition t
reads from unbounded places {p1, · · · , pk} = •t ∩ Q, then we have �t = •t \
{p1, · · · , pk} ∪ {1t

pj
| j ≤ k} and t� = t• ∪ {0t

pj
| j ≤ k}. The timing constraint

is left unchanged: I ′(t) = I(t). We obtain N ′ = (P ′, T ′, �(), ()�
,m′

0, I
′):

– P ′ = P ∪ Q ∪ {0t
p, 1

t
p | p ∈ P, t ∈ T},

– T ′ = T ∪ {starttp | t ∈ T, p ∈ Q},
– �(), ()�

, I ′ as defined above, and
– m′

0(p) = m0(p) for p ∈ P , and m′
0(0

t
p) = 1, m′

0(1
t
p) = 0 for all t, p.

It is clear that N ′ is a TPN with restricted constraints, with the same set
Q′ = Q of unbounded places as for all t′ with �t′ ∩ Q′ �= ∅, we have t′ = starttp
for some t ∈ T , and thus I(t′) = [0,∞).

The idea of the gadget is the following. Let m ∈ Reach(Timed(N )), t be a
transition with I(t) = [a,∞) and p ∈ Q∩•t be an unbounded place. m(pt) is the
time elapsed since the last firing of t. For firing t, we need to have both m(pt) ≥ a
and agep ≥ a, i.e., we need min(m(pt), agep) ≥ a. In other words, keeping
min(m(pt), agep) instead of agep is sufficient to know whether t is enabled. This
is implemented in Timed(N ′), as there can be only one token in 1t′

p , and its age
m′(1t′

p ) is never older than m′(pt), as starttp can happen only after t fired (0t
p

filled when t fired).
We now show that Timed(N ′) preserves the set of reachable untimed mark-

ings of Timed(N ). We start by defining a map f from untimed markings of
Timed(N ′) to untimed markings of Timed(N ). Recall that for a timed mark-
ing m, m� refers to the untimed marking obtained by counting the number of
tokens in each place. Let m′ ∈ Reach(Timed(N ′)). For each place p ∈ P ∪ Q of
Timed(N ), we define:

f(m′�)(p) =

{
m′�(p) +

∑
t∈T m′�(1t

p) if p ∈ Q

m′�(p) otherwise



Decidable Classes of Unbounded Petri Nets with Time and Urgency 315

First, we show that Timed(N ′) can reach only untimed markings correspond-
ing to untimed markings of Timed(N ):

Lemma 3. Let m′ be a timed marking in Reach(Timed(N ′)). Then there exists
a timed marking m ∈ Reach(Timed(N )) with f(m′�) = m�.

Proof. We will prove by induction on the length of a path that if one can reach
m′ in Timed(N ′), then one can reach m in Timed(N ) such that:

1. for all p ∈ P ∪ {pt | t ∈ T}, m(p) = m′(p),
2. for all q ∈ Q, letting Tq be the set of t ∈ T such that m′(1t

q) �= ∅, we have
m(q) = m′(q) � {age1, · · · agek} and there exists a bijection g : Tq �→ [1, k]
with m′(1t

q) ≤ ageg(t) for all t ∈ Tq.

When these two conditions are met, we say that m satisfies the hypothesis
wrt m′. It is easy to see that f(m′�) = m� whenever m satisfies the hypothesis
wrt m′.

For m′ = m′
0, we have trivially that m0 satisfies the hypothesis wrt m′

0. We
can now proceed by induction on the length of run needed to reach m′. Let m′

be a reachable marking of Timed(N ′). A path reaching m′ ends with a move
m′′ e−→ m′, where e can be a timed move, a firing of a transition starttp, or a
firing of a transition t of the original net. Hence, m′′ is reached in less steps
than m′. We can hence apply the induction hypothesis, i.e., one can reach m in
Timed(N ) with:

1. for all p ∈ P ∪ {pt | t ∈ T}, m(p) = m′′(p),
2. for all q ∈ Q, letting Tq be the set of t ∈ T such that m′′(1t

q) �= ∅, we have
m(q) = m′′(q) � {age1, · · · agek} and there exists a bijection g : Tq �→ [1, k]
with m′′(1t

q) ≤ ageg(t) for all t ∈ Tq.

For a given bijection g, we denote by g′′(1t
q) = ageg(t) the function that

relates tokens in places of the form 1t
q with token ageg(t) in m.

Case e = starttq: We know that m satisfies the hypothesis wrt m′′ by hypoth-
esis and want to show that m satisfies the hypothesis wrt m′ as well. The con-
ditions are true for all p /∈ {q, 0t

q, 1
t
q}, as for these places, m′(p) = m′′(p). Last,

m(q) = m′′(q) � {age1, . . . , agek} and we have a bijection g : Tq �→ [1, k]. Now,
we have m′(q) = m′′(q) � {age0} for the token age0 which is consumed by
starttq from q. Hence m(q) = m′(q)�{age0, age1, . . . , agek}, and one can extend
g : Tq �→ [1, k] to g′ : Tq ∪ {tq} �→ [0, k] by setting g′(t) = 0. As m′(1t

q) = 0, we
indeed have age0 ≥ m′(1t

q). Hence m satisfies the hypothesis wrt m′.
Case e = δ (time elapses by δ units): We note that urgency is not violated in

m′′ by elapsing δ units of time. Now, since for all p ∈ P we have m(p) = m′′(p),
and transitions leaving (unbounded) places of Q have no urgency, urgency is
not violated in m either by elapsing δ units of time. Thus m + δ is reachable
in Timed(N ). Finally, it is easy to see that m + δ satisfies the hypothesis wrt
m′ = m′′ + δ.

Case e = t for some t ∈ T : If •t has only bounded places, since m(p) = m′′(p)
for all bounded places p, one can fire t from m to obtain a marking m+ which
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satisfies the hypothesis wrt m′ and we are done. Else, •t ∩ Q �= ∅ and I(t) =
[a,+∞) for some a ∈ R≥0. For all q ∈ •t ∩ Q, we have m′′(1t

q) ≥ a as t can be
fired from m′′. Taking the token g′′(1t

q) of m(q), we have g′′(1t
q) ≥ m′′(1t

q) ≥ a for
each q ∈ •t ∩ Q. Further, since m(p) = m′′(p) for all p ∈ P ∪{pt | t ∈ T}, we have
that t is enabled from m. We now carefully define a particular marking m+ of
Timed(N ) which can be obtained from m by firing t. First, for every q ∈ •t ∩ Q,
we delete the token g′′(1t

q) of m(q). Then for all p ∈ •t ∩ (P ∪ {pt | t ∈ T}), we
define agep the age of token removed from m′′(p) to m′(p), and remove it from
m(p) as well. Finally, for every place p of t•, we create a token of age 0 in m(p).
It is now easy to check that m+ satisfies the hypothesis wrt m′. 
�
Next, we show that every untimed marking of Timed(N ) can be simulated in
Timed(N ′):

Lemma 4. Let m be a timed marking in Reach(Timed(N )). Then one can reach
in Timed(N ′) any timed marking m′ with:

(1) for all p ∈ P ∪ {pt | t ∈ T}, we have m′(p) = m(p) and
(2) for all t ∈ T , p ∈ Q, we have either m′(0t

p) = ∅ or m′(0t
p) = m′(pt), and

(3) for all q ∈ Q, letting T ′
q = {t ∈ T | m′(1t

q) �= ∅}, we have m(q) = m′(q) �
{aget | t ∈ T ′

q} with m′(1t
q) = min(m(pt), aget) for all t ∈ T ′

q.

Proof (sketch). We proceed by induction on the length of run reaching m in N .
For a run of length 0, this is trivial. Assume that m is reached after a move
m− e−→ m. Let m′ be any marking satisfying the conditions (1–3) above wrt m.
We will show that we can reach m′ in Timed(N ′).

Assume that e is a timed move that lets δ > 0 units of time elapse. Hence,
for every place p ∈ P ∪ Q, and every token agep ∈ m(p), agep ≥ δ. We have
m− = m − δ. We first show that for all p′ ∈ P ′ and all age′

p ∈ m′(p′), age′
p ≥ δ.

This is easy to see for p′ ∈ P ∪ {pt | t ∈ T} as m(p′) = m′(p′), and hence also
for p′ ∈ {0t

p | t ∈ T, p ∈ Q}. For p ∈ Q, we have m′(q) � m(q). Further, for
all t ∈ T, p ∈ Q with m′(1t

p) �= ∅, we have m′(1t
p) = {min(m(pt), agep)} with

agep ∈ m(p). As m(pt) ≥ δ and agep ≥ δ, we have m′(1t
p) ≥ δ. Thus, age′ ≥ δ

for all p′ ∈ P ′ and all age′ ∈ m′(p′). We can now define the timed marking
m′′ = m′ − δ. It is then easy to check that m′′ satisfies the conditions (1–3)
above wrt to m−, and so, we can apply the induction hypothesis and conclude
that m′′ is reachable in Timed(N ′).

Now, we show that waiting δ units of time from m′′ is allowed in Timed(N ′).
That is, we show that it does not violate any urgency: Suppose not, i.e., suppose
the urgency of some transition t was violated. Then, this would imply that I(t) =
[a, b] and thus •t ⊆ P contains only bounded places. As m− and m′′ coincide on
bounded places, this would also violate urgency on m−, a contradiction with a δ
timed move being allowed from m−. Hence δ units of time can elapse from m′′,
reaching marking m′. Thus m′ is reachable in Timed(N ′).

Finally, the case of a discrete move e firing a transition t can be handled by
a similar analysis, which completes the proof of this lemma. 
�
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Now observe that for all places p, we have
∑

t∈T m′�(1t
p) ≤ |T |. Thus fixing

an untimed marking c, there exist only a finite number of untimed markings m′�

such that f(m′�) = c. Combining Lemmas 3 and 4, we obtain:

Proposition 2. Let c be an untimed marking of Timed(N ). Let c′ be any
untimed marking of Timed(N ′) with f(c′) = c. Then c is reachable in Timed(N )
iff c′ is reachable in Timed(N ′).

This completes the first step of the proof of Theorem 2.

Step 2: From the TPN with Restricted Constraints N ′ to a Petri Net
N ′′. Now we show that for a TPN with restricted constraints N ′, it is decidable
whether a marking c′ is reachable in Timed(N ′), by reducing N ′ to an equivalent
(untimed) Petri net. As marking reachability is decidable for Petri nets, this
completes the proof of Theorem 2.

Proposition 3. For any TPN with restricted constraints N ′, one can construct
a Petri Net N ′′ such that N ′′ and Timed(N ′) are (untimed) bisimilar.

Proof. Given a TPN with restricted constraints N ′, we first construct a 1-
bounded (untimed) Petri Net N1 which is bisimilar to Timed(N ′

B), where NB is
the bounded part of N . Formally, we have the following lemma.

Lemma 5. If NB is a K-bounded TPN, for some positive integer K, we can
construct a 1-bounded Petri Net N1 such that N1 and Timed(NB) are (untimed)
bisimilar.

Proof (sketch). The proof of this lemma is easily obtained by building a timed
automaton bisimilar to Timed(NB) and interpreting its regions as places of a
1-safe Petri Net [19], adapting a result for the intermediate semantics of TPNs
[14].

After building the Petri net N1 = (P1, T1,
•(), ()•

,m0
1) we add the unbounded

places of N ′. Formally, we build the Petri net N2 = (P2, T1,
�(), ()�

,m0
2) with:

– The set P2 of places of N2 is P2 = P1 ∪ Pu, for Pu the unbounded places of
Timed(N ′).

– Initial marking m0
2 is the union of m0

1 and of the restriction of the initial
marking of Timed(N ′) to its set Pu of unbounded places.

– The set of transitions of N2 is the set T1 of transitions of N1. Concerning
the flow relations, for t1 ∈ T1 and its corresponding transition t ∈ T in the
original net Timed(N ′), we have p ∈ �t1 if:

• p ∈ P1 and p ∈ •t1 (arc from p to t1 in N1), or
• p ∈ Pu and there is an arc from p to t in Timed(N ′).

We have p ∈ t1
� if p ∈ P1 and p ∈ t1

•, or if p ∈ Pu and there is an arc from t
to p in Timed(N ′).

With this, we have the following lemma:

Lemma 6. Timed(N ′) and N2 are (untimed) bisimilar.
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Proof. A timed marking m of Timed(N ′) can be decomposed as m = mb ∪ mu,
where mb is the restriction of m to bounded places, and mu the restriction
to unbounded places. Similarly, a marking of N2 can be decomposed as m2 =
m1 ∪ m′

u by restriction to bounded and unbounded places respectively. From
Lemma 5 and from the construction of N ′, we know that Timed(NB) is bisimilar
to N ′. Let RB,1 be the unique largest bisimulation between timed markings of
Timed(NB) and markings of N ′.

We denote by R a relation from timed markings of Timed(N ) to markings
of N2 defined as follows. Let m = mb ∪ mu be a marking of Timed(N ) and
m2 = m1 ∪ m′

u be a marking of N2. Then, (m,m2) ∈ R iff (mb,m1) ∈ RB,1,
and m′

u = m�
u. Obviously, we have (m0,m

0
2) ∈ R. We can now prove that R is a

bisimulation.
Let (m,m2) ∈ R. Assume that m

δ−→ m+δ
t−→ m′ in N . Thus mb

δ−→ mb +δ
t−→

m′
b in Nb with m′

b the bounded part of m′. Furthermore, m�
u ≥ •t∩Pu. Thus we

have m1
t−→ m′

1 in N1, and furthermore, (m′
1,m

′
b) ∈ RB,1. By definition of N2,

firing t results in a flow of tokens among places of Pu that is identical (regardless
of ages) in N and in N2, so we indeed have m1 ∪ m�

u
t−→ m′

1 ∪ m′�
u. Furthermore

m′�
u = m′

u, so (m′,m′
1 ∪ m′�

u) ∈ R.
Conversely, assume that m2

t−→ m′
2. We denote m2 = m1 ∪ m3 and m′

2 =
m′

1 ∪ m′
3 where m3,m

′
3 denote respectively the projections of m2 and m′

2 on
Pu. In particular, as t can fire, we have m1

t−→ m′
1. So, there exists a reachable

marking m′
b of Timed(NB) such that (m′

b,m
′
1) ∈ RB,1 and there exists δ such

that mb
δ−→ mb+δ

t−→ m′
b. In particular, δ does not violate any urgency constraints

in the bounded part of the net.
Now, N ′ is a TPN with restricted constraints. This means that all urgency

constraints are in the bounded part of N . Hence, m
δ−→ m + δ does not violate

any urgency constraints. Now, to show that R is a bisimulation, we want to
show that m + δ

t−→ m′ is possible in N ′, for some m′
u with m′ = m′

b ∪ m′
u

and (m′
u)� = m′

3. To see this, we start by noting that, since (m,m2) ∈ R, with
m2 = m1 ∪ m3, we have m�(p) = m3(p) ≥ 1 for all p ∈ Pu ∩ •t. Also, we have
trivially that m�(p) = m�

b(p) ≥ 1 for all p ∈ PB ∩ •t as t is enabled from m1,
and (mb,m1) ∈ RB,1. Thus t is enabled. Now, m + δ respects all the timings
constraints of t: as N ′ is a TPN with restricted constraints, all constraints apply
to the bounded part. Transition t is enabled from m1, thus t can fire from
m + δ. For the unbounded part, firing of t can consume any token in places
of Pu ∩ •t and we easily get (m′

u)� = m′
3. For the bounded part, we choose to

consume the tokens consumed during the transition mb + δ
t−→ m′

b. We thus
obtain m′ = m′

b + m′
u, and (m′,m′

2) ∈ R. Hence R is a bisimulation relation. 
�
We can then conclude that the net N2, as constructed above, is bisimilar to

Timed(N ′) and hence satisfies the properties required by the proposition. Thus,
setting N2 to be the net N ′′, we obtain the proof of Proposition 3. 
�

From Proposition 2, we have that for every TPN N with restricted urgency,
one can build (Step 1) a TPN N ′ with restricted constraints that has the same
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set of reachable markings. Then Proposition 3 shows that one can design (Step 2)
a Petri net that is bisimilar to N ′. As reachability is decidable for Petri nets,
this allows to conclude the proof of Theorem 2.

5.1 Discussion

Let us now observe some salient points regarding the proof of Theorem 2 and in
particular, how it relies on several features of the considered nets. First, the proof
works only for nets with restricted urgency. If urgency is not restricted, one can
easily model unbounded counters with places, and zeros tests with urgency, which
yields undecidability of reachability, control-state reachability and boundedness.
Second, Step 1 of the proof of Theorem 2 works only with a timed-arc semantics.
The main idea in this step was to simulate clocks with gadgets as in Fig. 5,
that need to be assembled to obtain nets with restricted constraints, which
are equivalent (i.e., have the same set of behaviors). However, for TPNs under
the intermediate semantics, assembling the gadgets leads to nets that are not
equivalent.

Step 2 of the proof works for both the intermediate and the timed-arc seman-
tics. Thus, starting from a TPN with restricted constraints, we get decidability
of reachability for TPNs with intermediate semantics as stated in the following
Theorem 3. However, as seen earlier, this class does not allow to model channels
with latency constraints.

Theorem 3. Let N be a TPN with restricted constraints. Then the reachability,
boundedness and control-state reachability problems are decidable for N .

Proof (sketch). The proof of Theorem 3 is obtained by a simple adaptation
of Proposition 3 from Sect. 5, which shows that for any TPN with restricted
constraints N , one can construct a Petri Net N ′ that is (untimed) bisimilar. 
�

Finally, our proof works only when the considered systems can be imple-
mented with a bounded number of clocks (in order to get a bounded number
of gadgets in the proof). This approach would not work for systems modeling
channels with latency and unbounded throughput, which require nets with an
unbounded number of clocks to be specified. Decidability of reachability for such
classes is left open.

6 Conclusion

In this paper, we considered extensions of Timed-Arc Petri Nets and subclasses
of TPNs to express urgency and latency constraints, while obtaining decidability
results for unbounded systems. Decidability is obtained when urgency is used
only in the bounded part of the system. This led us to consider a timed-arc
semantics for general TPNs, defined via a Timed-Arc Petri Nets with Urgency.
This new timed-arc semantics allows TPNs to model restricted forms of latency,
namely, unbounded latency in a channel can be modeled when the throughput of
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Fig. 6. Inclusion of classes of time/Timed-Arc Petri Nets with urgency w.r.t. timed
bisimilarity.

this channel is bounded, as well as urgency requirements. Further, the new timed-
arc semantics is also interesting as decidability of reachability can be proved for
a class of TPNs larger with the timed-arc semantics than with the intermedi-
ate marking semantics. Table 1 in the Introduction summarizes the decidability
results as well as expressiveness in terms of which (subclasses of) models allow
latency and urgency. The relative expressiveness of classes (wrt timed bisimi-
larity) is summarized in Fig. 6, where we also emphasize their decidability sta-
tus. While Timed-Arc Petri nets are contained in Timed-Arc Petri nets with
restricted Urgency, Timed Arc Petri nets (with restricted Urgency) and TPNs
are disjoint classes of models. For the entire subclass of Timed-Arc Petri nets
with restricted Urgency, reachability is decidable. However, outside this class, i.e.
without restriction on the use of urgency, control-state reachability and bound-
edness are undecidable. Further, with a timed-arc semantics, TPNs fall back
into the class of Timed-Arcs PNs with Urgency. And by restricting urgency and
under this timed-arc semantics, we obtain decidability of reachability. Further,
as a subclass of Timed-Arcs PNs with restricted Urgency, control-state reach-
ability and boundedness are decidable. Finally, the class of TPNs under their
intermediate marking semantics does not enjoy decidability results. However, by
restricting to the class of TPNs with restricted constraints, one gets decidability
of reachability and control-state reachability. The decidability of reachability for
TPNs with restricted urgency under intermediate marking semantics remains
open.

As future work, we plan to study robustness properties, i.e., whether the
system can withstand infinitesimal timing errors, as has been extensively studied
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for timed automata [10,16,23], etc. We would like to extend the study started
for TPNs (e.g. [3]) to Timed-Arc Petri Nets with restricted Urgency.
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Abstract. Nested Petri nets (NP-nets) is an extension of the Petri nets
formalism within the “nets-within-nets” approach. Due to tokens with
individual behavior and the mechanism of synchronization NP-nets are
convenient for modeling multi-agent and adaptive systems, flexible work-
flow nets, and other systems with mobile interacting components and
dynamic structure.

In contrast to classical Petri nets, there is still a lack of analysis meth-
ods for NP-nets. In this paper we show, that the classical Petri nets analy-
sis technique based on place invariants can be extended to NP-nets. This
paper defines place invariants of NP-nets, which link several NP-net com-
ponents and allow to prove crucial behavioral properties directly from
the NP-net structure. An algorithm for computing NP-net invariants is
presented and illustrated with an example of EJB system verification.

Keywords: Nested Petri nets · Place invariants · Behavioral
properties · Structural analysis methods

1 Introduction

Nested Petri nets (NP-nets) [18] is an extension of high-level Petri nets according
to the “nets-within-nets” approach. Nets within nets are extensively studied in
the Petri net literature, as a formalism for modeling active objects, mobility and
dynamics in distributed systems [1,11,15,26].

NP-nets is a convenient formalism for modeling systems of dynamic interact-
ing agents: an agent is represented by a net token, while agents are distributed
in a system net. Levels in NP-nets are coordinated via synchronized transitions
(simultaneous firing of transitions in adjacent levels of the model). Because of a
loosely-coupled multilevel structure, NP-nets can be used for effective modeling
of adaptive distributed systems [9,10,17,19,25], systems of mobile robots [22],
sensor networks of mobile agents [3], innovative space systems architecture [4],
productive and reconfigurable manufacturing systems [14,23,28]. To make this
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formalism not only convenient for modeling and simulation, but applicable for
securing correctness of complex systems, analysis methods should be developed.

In contrast with classical Petri nets, there is still lack of analysis methods
for NP-nets, though some efforts were done in this direction. In the work [6]
the approach to checking properties of NP-nets by translating them into colored
Petri nets was developed. The practical value of the translation is determined by
the comprehensive tool support for analysis of colored Petri nets. In [27] a verifi-
cation method based on translating recursive nested Petri nets into PROMELA
language and applying SPIN model checker is described. The compositional app-
roach to inferring liveness and boundedness of NP-nets from liveness and bound-
edness of NP-nets separate components was introduced in [7].

One of the essential tools to analyze Petri nets behavior is based on place
invariants (P-invariants), i.e. the properties of a Petri net that are invariant under
transitions firings. Such invariant properties are crucial for reasoning about dif-
ferent behavioral properties of Petri nets such as boundedness, deadlock-freeness,
reachability, and domain specific properties. First definitions of invariants were
introduced for the standard interpretations of Petri nets — place/transition-nets
(P/T-nets) [16], predicate/transition-nets (Pr/T-nets) [8], colored Petri nets [12].
In the last of these works the organization scheme of a duplicate database sys-
tem was modeled with Pr/T-nets and colored Petri nets and several crucial for
correctness properties were proven using invariant analysis.

As for NP-nets, a bounded NP-net can be translated into a classical Petri net
(P/T-net) with the same behavior. So we can apply place invariant technique for
classical Petri nets to find invariants of NP-nets. But the size of the obtained P/T-
net can be exponentially larger than the size of the NP-net. If the original NP-net
is unbounded, then such reduction is just impossible, since it has been proven [21]
that NP-nets are strictly more expressive than P/T-nets. This determines the need
for new analysis means that exploit the structure of NP-nets instead of reducing
them to P/T-nets.

Classical place invariants for separate NP-net components (a system net, net
tokens) can be used for deducing properties describing their autonomous behav-
ior, but for properties concerning coordinated behavior of the whole system we
need a new definition of place invariants, as well as a new method for computing
these invariants, and heuristics for deducing meaningful properties from them.

In classical Petri nets invariants assign weights to places. For NP-nets we
need a more complex framework of weights. In the definition we propose each
place in a system net gets two weights: a weight for token counting and a weight
for net token markings. For net tokens a weight is ascribed to a pair of places:
a place in a net token and a place in the system net, in which it is located. Due
to this the invariants capture the relationship between the components.

In this paper we introduce a definition of NP-nets place invariants, an algo-
rithm to compute them, and give an example of using invariants for inferring a
crucial property of system behavior.
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2 Motivating Example

Enterprise JavaBeans (EJB) is a widely used powerful framework that address
the concerns of persistence, transaction integrity, object-relation mapping, inter-
process communication in distributed systems. EJB technology allows to build
complex multi-agent systems, where agents are represented as enterprise beans
In this section we model an EJB system with nested Petri nets formalism.

The modeled system is a multi-agent financial forecasting system (Fig. 4), i.e.
it is a set of agents making financial forecasts at client’s requests. The agents col-
lect and analyze data relevant to the client request, update values of corresponding
financial indices, and provide a final forecast to the client. Agents obtain domain
specific data from a huge database of analytical information. Indices are updated
by requests to the external index service. There are three kinds of agents — fore-
casters, data agents, and index update agents. Their behavior is modeled by the
element nets E1, E2, E3 respectively (Figs. 1, 2 and 3). For brevity, by N :pl (N :tr)
we will denote the place pl (the transition tr) of the net N .

Forecasting agents (tokens of type E1) are the main agents of the fore-
casting system. In the initial state they residue in the forecasting agents
pool (SN:forecasters). The agents are waiting (E1:waiting) for client requests
(SN:requests). When client requests evolve (SN:client req), they are placed into
the requests pool (SN:requests). If there are available agents in the agents pool
then the system allocates (SN:allocate) an agent to serve a request.

Data mining that precedes forecasting usually demands processing huge
amounts of data. The database with the comprehensive collection of analytical
data is stored on a dedicated server (SN:DB server, SN:DB agents, SN:DB query-
ing, SN:DB data retrieved). The allocated agent (SN:allocated agents) moves
(SN:move to DB) to the database server (SN:DB server). The internal state
of the forecasting agent (E1) changes correspondingly (from E1:allocated to
E1:DB server by E1:move to DB). Since large data queries are served locally on
the dedicated DB server, the net traffic and time for data mining are reduced.
When a forecasting agent reaches the DB server, it requests (E1:query DB
agent) data by making a local call (SN:local call) to a database agent (DB
agent). DB agents take care of database routine procedures. They are modeled
roughly, since we focus on the forecasting agents behavior. In the initial state DB
agents are located in the pool for DB agents (SN :DB agents). When a forecast-
ing agent requests data, the DB agent responding to the request (E2:request)
starts querying the underlying database (SN:DB querying, E2:querying). When
the database has returned the information (E2:DB return, SN:retrieve) a
DB agent sends the result (E2:result) to the forecasting agent (SN :local ret,
E2:transfer) that retrieves and analyzes data (E1:retrieve data). After that,
the database agent moves to the initial pool and waits for other requests.

Then, the forecasting agent starts to update financial indices (E1:updating
indices), that are needed for precise forecasting. The indices are updated by
sending asynchronous requests to index agents (SN:index agents). The agent
has three different financial indices. Each index can be in the up-to-date state
(E1:up-to-date1, E1:up-to-date2, E1:up-to-date3) or outdated (E1:outdated1,
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E1:outdated2, E1:outdated3). The agent’s value of index can become out of date
(E1:outdate1, E1:outdate2, E1:outdate3), when the agent is waiting in the
pool (SN:forecasters, SN:outdate). While the second and the third indices are
free and public, the first requires a paid subscription to the financial index web
services. The index service provider provides license tokens for the fixed number
of simultaneous requests. The system keeps license tokens in a license tokens
pool (SN:license tokens). To start indices update the agent gets a license token
(SN:get license, E1:get license) or skips the step (SN:license not needed,
E1:license not needed), if the first index value is up-to-date.

When the agent has obtained a license token (E1:license obtained), it puts
an asynchronous request (SN:req1-3, E1:req1-3) for each outdated index to the
input queues (SN:queue1-3) of index agents (SN:index agents). In the initial state
index agents are waiting (E3:waiting) for index requests. An index agent receives
requests (SN:recv1-3, E3:recv1-3) from the system queues (SN :queue1-3) and
passes them to its internal buffers (E3:buffer1-3). When there is a request
in an internal buffer, the index agent starts to proceed (E3:proceed1-3) the
request. The agent queries (E3:WS querying1-3) external web-services that pro-
vide financial indices. The returned (E3:return1-3) index value is stored in the
output buffers (E3:index1-3). From the output buffers the index value is sent
(E3:send1-3, SN:send1-3) to the corresponding system queue (SN:result1-3). The
forecasting agent updates its internal index values (SN:upd1-3, E1:upd1-3) from
the result queues. For the first index the procedure is a bit different. The license
tokens are paid resources. Since only three simultaneous requests can be issued,
they form the bottleneck of the system. The forecasting agent should release the
license token (SN:put license, E1:release license) immediately after receiv-
ing an answer (E1:received1) from an index agent. When all indices are in
the up-to-date states, the agent moves directly (SN:updated, E1:updated)
to the forecasting phase (SN:forecasting agents, E1:forecasting). After the fore-
cast is completed, (E1:transferring) the transferring of results starts. When the
results are transferred (SN:send result, E1:transferred) to the client, the agent
returns back to the initial pool and waits for another client request.

The agents represent major types of EJB components — stateless (DB agents),
stateful (forecasting agents), and message-driven beans (index agents). The
described model is an example of modeling enterprise software architecture con-
cepts by means of NP-nets. The system behavior should possess some good proper-
ties, such as deadlock freeness, boundedness, reversibility, etc. Otherwise we need
to fix the system and rebuild the model. For our example one of such behavioral
properties is the restriction on the number of simultaneous requests sent to the
subscribed index service. It is a crucial property, since violation of the agreement
with the service provider may lead to extra charges or to the abrogation of the con-
tract. The important aspect here is that this property concerns different levels of
the system. Initially a license token resides in the system net in SN:license tokens
pool. A forecaster agent removes the license token from the pool and puts it into
the internal place license obtained. Then the license token is passed back and forth
to an index agent through the system net queue, and returned back to the pool.



Structural Place Invariants for Analyzing the Behavioral Properties 329

waiting

allocated

DB server waiting data

updating
indices

up-to-dateforecasting

allocateλ0

move to DBη0

query
DB agent

λ2

retrive
data

η2

updated
η7

start

λ8

transfer

η8

up-to-date1

outdated1

up-to-date2

outdated2

up-to-date3

outdated3

outdate1

λ6

req1

λ1

upd1

η1

outdate2

λ6

req2

λ2

upd2

η2

outdate3

λ6

req3

λ3

upd3

η3

license
not needed

η4

get
license

λ5

license
obtained

releasing
license

updated1 release
license

η5updating1E1 — Forecasting agent:

Fig. 1. The element net of a forecasting agent.

waiting

querying

result
request

λ2

DB return

η9

transfer

η2

E2 — Database midlet :

Fig. 2. The element net of a DB agent.

So, the invariant for proving the preservation of license tokens should involve the
system net, forecaster and index agent elementary nets. Another important aspect
is that these license tokens should be used efficiently. So we have to prove that
forecasters do not leave dangling requests and return license tokens to the license
pool as soon as possible. Another quite different important characteristic of the
system is the ratio of the number of forecasters to the number of database agents
querying the database. This characteristic helps to predict the number of needed
database agents and the load of the database. These and some other properties
can be proven by NP-nets invariants. In the Sect. 6 we show how NP-net invari-
ants can be used for proving such properties.
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3 Preliminaries

By N we denote the set of natural numbers including zero. For a set S, a bag
(multiset) m over S is a mapping m : S → N. The set of all bags over S is also
denoted by N

S . We use + and − for the sum and the difference of two bags,
‖m‖ for the number of all elements in m taking into account the multiplicity,
and =, <,>,≤,≥ for comparisons of bags, which are defined in the standard
way. We overload the set notation writing ∅ for the empty bag and ∈ for the
element inclusion.

Petri nets is a well-known formalism for concurrent systems modeling. In
this section we give the definition of colored Petri nets (CP-nets) parameterized
with a value universe U . We slightly adapted the classical definition of colored
Petri nets [13] by addition of transition labels. As well a colored function for
places is defined using the notion of types, and a colored function for transitions
is defined using expressions over the simple additive language Expr. So, each
place is mapped to a type, which is a subset of U . We assume a language Expr for
arcs expressions over a set Var of variables and a set Con of constants with some
fixed interpretation I, such that for any type-consistent evaluation ν : Var → U
the value I(e, ν) ∈ N

U of an expression e ∈ Expr is defined. We also assume a
set Lab of labels for transitions such that τ �∈ Lab. The label τ is the special
“silent” label, while labels from Lab mark externally observable firings.

Definition 1 (Colored Petri net). A colored net over the universe U is a
6-tuple (P, T, F, υ, γ, Λ), where

– P and T are disjoint finite sets of places, respectively transitions;
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs;
– υ : P → 2U is a place typing function, mapping P to the subsets of U ;
– γ : F → Expr is an arc labelling function;
– Λ : T → Lab ∪ {τ} is a transition labelling function.

For an element x ∈ P ∪T an arc (y, x) is called an input arc, and an arc (x, y)
an output arc; a preset •x and a postset x• are subsets of P ∪ T such that •x =
{y|(y, x) ∈ F} and x• = {y|(x, y) ∈ F}. Given a CP-net N = (P, T, F, υ, γ, Λ)
over the universe U , a marking in N is a function m : P → N

U , s.t. m(p) ∈ N
υ(p)

for p ∈ P . A pair 〈N,m〉 of a CP-net and a marking is called a marked net.
Let N = (P, T, F, υ, γ, Λ) be a CP-net. A transition t ∈ T is enabled in a

marking m iff ∃ν∀p ∈ P : (p, t) ∈ F ⇒ m(p) ≥ I(γ(p, t), ν). Here ν : Var → U
is a variable evaluation, called also a binding. An enabled transition t may f ire
yielding a new marking m′(p) = m(p)−I(γ(p, t), ν)+I(γ(t, p), ν) for each p ∈ P

(denoted m
t→ m′). The set of all markings reachable from a marking m (via a

sequence of firings) is denoted by R(m).
As usual, a marked colored net defines a transition system which represents

the observable behavior of the net.



332 L.W. Dworzanski and I.A. Lomazova

4 Nested Petri Nets

In this section we give the definition of nested Petri nets (NP-nets).
Nested Petri nets (NP-nets) are colored Petri nets over a special universe

[18,19]. This universe consists of elements of some finite set S (called atomic
tokens) and marked Petri nets (called net tokens). For simplicity we consider here
only two-level NP-nets, where net tokens are classical place-transition nets.

Let S be a finite set of atomic objects. For a colored PN N by M(N,S) we
denote the set of all marked nets, obtained from N by adding markings over
the universe S. Let then N1, . . . , Nk be colored PNs over the universe S. Define
a universe U(N1, . . . , Nk) = S ∪ M(N1, S) ∪ · · · ∪ M(Nk, S) with types
S,M(N1, S), . . . ,M(Nk, S). We denote Ω(N1, . . . , Nk) = {S,M(N1, S), . . . ,
M(Nk, S)}. By abuse of notation we say, that a place p with a type M(N,S) is
typed by N .

Definition 2 (Nested Petri net). Let Lab be a set of transition labels and let
N1, . . . , Nk be colored PNs over the universe S, where all transitions are labeled
with labels from Lab ∪ {τ}.

An NP-net is a tuple NP = 〈N1, . . . , Nk, SN〉, where N1, . . . , Nk are
called element nets, and SN is called a system net. A system net SN =
〈PSN , TSN , FSN , υ, γ, Λ〉 is a colored PN over the universe U = U(N1, . . . , Nk),
where places are typed by elements of Ω = Ω(N1, . . . , Nk), transition labels are
from Lab ∪ {τ}, and an arc expression language Expr is defined as follows.

Let Con be a set of constants interpreted over U and Var – a set of variables,
typed with Ω-types. Then an expression in Expr is a multiset of elements over
Con ∪ Var of the same type with two additional restrictions for each transition
t ∈ TSN :

1. constants or multiple instances of the same variable are not allowed in input
arc expressions of t;

2. each variable in an output arc expression for t occurs in one of the input arc
expressions of t.

Note that removing the first restriction on system net arc expressions makes
NP-nets Turing-powerful [18], since without this restriction there would be a
possibility to check, whether inner markings of two tokens in a current marking
are equal, and hence to make a zero-test. The second restriction excludes infinite
branching in a transition system, representing a behavior of an NP-net.

The interpretation of constants from Con is extended to the interpretation
I of expressions under a given binding of variables in the standard way.

We call a marked element net a net token, and an element from S an atomic
token. A marking in an NP-net is defined as a marking in its system net. So, a
marking m : PSN → N

U in an NP-net maps each place in its system net to a
multiset of atomic tokens or net tokens of appropriate type.

A behavior of an NP-net is composed of three kinds of steps (firings). An
element-autonomous step is the firing of a transition t, labeled with τ , in one of
the net tokens of the current marking according to the usual firing rule for colored
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Petri nets. Formally, let m be a marking in an NP-net NP, α = (N,μ) ∈ m(p) —
a net token residing in the place p ∈ PSN in m. Let also t be enabled in α

and μ
t→ μ′ in α. Then the element-autonomous step s = {t[α]} is enabled in

m and the result of s-firing is the new marking m′, s.t. for all p′ ∈ PSN \ p:
m′(p′) = m(p′), and m′(p) = m(p) − α + (N,μ′). Note, that such a step changes
only the inner marking in one of the net tokens.

A system-autonomous step is the firing of a transition t ∈ TSN, labeled with
τ , in the system net according to the firing rule for colored Petri nets, as if net
tokens were just colored tokens without an inner marking. Formally, the system-
autonomous step s = {t} is enabled in a marking m iff there exists a binding
ν : Var → U , such that ∀p ∈ PSN : (p, t) ∈ FSN ⇒ m(p) ≥ I(γ(p, t), ν).

The result of s-firing is the new marking m′(p) = m(p) − I(γ(p, t), ν) +
I(γ(t, p), ν) for each p ∈ PSN (denoted m

s→ m′).
An autonomous step in a system net can move, copy, generate, or remove

tokens involved in the step, but doesn’t change their inner markings.
A (vertical) synchronization step is the simultaneous firing of a transition

t ∈ TSN, labeled with some λ ∈ Lab, in the system net together with firings of
transitions t1, . . . , tq (q ≥ 1) also labeled with λ, in all net tokens involved in
(i.e. consumed by) this system net transition firing.

Formally, let m be a marking in an NP-net NP, a transition t ∈ TSN be
labeled with λ and enabled in m via binding ν as a system-autonomous step.
We say that a net token α is involved in t-firing via binding ν iff α ∈ I(γ(p, t), ν)
for some p ∈ •t. Let then α1 = (Ni1, μ1), . . . , αq = (Niq, μq) be all net tokens
involved in the firing of t via binding ν, and for each 1 ≤ j ≤ q there is a
transition tj , labeled with λ in Nij , such that tj is enabled in μj , and μj

tj→ μ′
j

in Nij . Then the synchronization step s = {t, t1[α1], . . . , tq[αq]} is enabled in m
for NP, and the result of s-firing is the new marking m′ defined as follows. For
each p ∈ PSN: m′(p) = m(p) − I(γ(p, t), ν) + I(γ(t, p), ν′), where for a variable
x: ν(x) = (N,μ) implies ν′(x) = (N,μ′).

Figure 5 gives an example of a synchronization step. The left part of this
picture shows a marked fragment of a system net. Here a transition t has two
input places p1 and p2, and two output places p3 and p4. In the current marking
the place p1 contains three net tokens, two of them, α1 and α3, are explicitly
depicted. The place p2 contains two net tokens, the structure and the marking of
one of them are shown in the picture. Only the synchronization step is allowed
here, since all transitions are labeled with the synchronization label λ. A possible
binding of variables x, y, z in the input arc expressions is x = α1, y = α2 and
z = α3. Then the transitions t in the system net, t1 in α1, t1 in α3, and t2 in α2

fire simultaneously. The resulting marking m′ is shown on the right side of the
picture. According to the output arc expressions after t-firing two copies of α1

appear in p3, the net token α3 disappears, α2 with a new marking is transported
into the place p4, and a new net token αc appears in p4 being a value of the net
constant c.

A transition labeled with λ ∈ Lab in a system net consumes net tokens with
enabled transitions labeled with λ. To exclude obviously dead transitions we add
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Fig. 5. An example of a synchronization step.

to our definition of NP-nets the following syntactical restriction: for each system
net transition t labeled with λ �= τ , and for each p ∈ •t, p is typed by an element
net with at least one transition labeled with λ.

Thus a step is a set of transitions (a one-element set in the case of an
autonomous step). We write m

s→ m′ for a step s converting the marking m into
the marking m′. By Steps(NP) we denote the set of all (potential) steps in NP.

A run in an NP-net NP is a sequence ρ = m0
s1→ m1

s2→ . . . , where m0,m1, . . .
are markings, m0 is an initial marking, and s1, s2, . . . are steps in NP. For a
sequence of steps σ = s1, . . . sn we write m

σ→ m′, and say that m′ is reachable
from m, if m = m0

s1→ m1 . . .
sn→ mn = m′. By R(NP,m) we denote the set of all

markings reachable from m in NP, and by abuse of notations we write R(NP)
for the set of all markings reachable in NP from its initial marking.

Note that net tokens of the same type (i.e., with the same net structure) are
not distinguished in a system net autonomous firing. This follows from the first
input arc expressions restriction for NP-nets, which eliminates comparing inner
markings of net tokens. Moreover, since all tokens in a system net place are of
the same type, enabledness of an autonomous transition in a system net depends
only on the numbers of tokens in its input places, and a system net considered
as a separate component is actually similar to a p/t-net.

For further details on NP-nets see [18,20]. Note, however, that here we con-
sider a typed variant of NP-nets, where a type is instantiated to each place.
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5 Place Invariants of Nested Petri Nets

Invariant analysis is considered as one of the very basic analysis tools for different
kinds of Petri nets. Invariants were introduced for place/transition-nets (P/T-
nets) as linear weight functions on P/T-nets markings [16]. The values of such
functions are invariant under marking transformations induced by transitions
firings. Later on invariants were generalized to predicate/transition-nets (Pr/T-
nets) [8]. This required substituting integer weights with integer polynomials
over tokens values to capture invariants of Pr/T-nets with individual tokens.
In [12] it was suggested to use linear functions over set of colors as invariant
functions for colored Petri nets.

To define the invariant weight function for an NP-net we take into account
its structure. Element nets are classical Petri nets with transitions labeled by
synchronization labels. An element-autonomous step produces a new net token
marking according to the classical Petri net firing rules, but the effect of this
firing for the behavior of the whole system may depend on the system net place,
in which the net token resides. So, for an element net 〈PN , TN , FN 〉 residing in
the place p in the system net we define a weight function W(p) just as for a
classical Petri nets [16]:

W(p) : PN → Z

A system net in an NP-net should be treated in a different way, since we are
to take into account net tokens markings. Hence, for each place we introduce two
weights: wt and wm, where wt is the weight of black tokens or net tokens without
taking into account their internal markings, and wm is the coefficient for a net
token internal marking weight. Thus the presence and the internal marking of a
net token are weighed with different coefficients. The overall weight function for
an NP-net is defined as follows:

Definition 3 (NP-net weight function). Let NP = 〈N1, . . . , Nk, SN〉 be an
NP-net. Let wt : PSN → Z and wm : PSN → Z be weight functions that take
each system net place p ∈ PSN to an integer number.

To each place p ∈ PSN typed with the element net N = 〈PN , TN , FN 〉, the
function W assigns a weight function that maps PN into Z. Let Ŵ(p) : M(N) →
Z be the linear extension of W(p) to the markings of N defined in the standard
way

∀μ ∈ M(N) : Ŵ(p)(μ) =
∑

q∈PN

μ(q) · W(p)(q)

The weight function of NP is

W (m) =
∑

p∈PSN

⎛

⎝‖m(p)‖ · wt(p) +
∑

α∈m(p)

wm(p) · Ŵ(p)(μα)

⎞

⎠ (1)

where μα is the internal marking of the net token α.
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An NP-net weight function W is parameterized by the functions wt, wm, and
W. A weight function W is an invariant for an NP-net iff the value of W is not
changed by any transition firing (any step). So, to define invariants for NP-nets
we consider all three kinds of NP-net steps and infer constraints that guarantee
the invariance of W under NP-net steps.

Let NP = 〈N1, . . . , Nk, SN,m0〉 be an NP-net. An element autonomous
step {t} consists of a single transition t in a net-token α = (N,μ) from a system
net place pSN. While firing m0

t→ m, the transition t consumes γ(p, t) tokens
from each p ∈ •t and produces γ(t, p) tokens into each p ∈ t•. The difference
between the weighted sums W (m0) and W (m) consists of the changed elements
that correspond to these tokens. As the net token α wasn’t moved to another
system place, W (m0) and W (m) differ only in the part wm(pSN)Ŵ(pSN)(μα) of
(1). By canceling wm(pSN) we obtain the next equation:

∑

p∈•t

Ŵ(pSN)(p) · γ(p, t) =
∑

p∈t•
Ŵ(pSN)(p) · γ(t, p) (2)

The left part of this equation corresponds to the consumed tokens, the right
part to the produced tokens. The equation represents the equality of the weight
subtracted from and added to the overall weight W (m0). The residue part of
W (m0) is not affected; hence, the equation ensures the invariance of W relative
to the element autonomous step firing.

A system autonomous step consists of a single system net transition tSN. The
transition tSN consumes γ(p, tSN) black or net tokens from each p ∈ •tSN and
produces γ(tSN, p) black tokens, net tokens, or net constants to each p ∈ tSN

•. Let
us consider the internal weights of consumed and produced net tokens. System
autonomous step produces net tokens in output places by cloning net tokens
with their internal markings consumed from the input places with respect to
the arc inscriptions variables. The internal weight of a net token consumed by
the variable x on an input arc of tSN can be compensated only by the weight of
net tokens produced by entries of x on output arcs of tSN. This becomes clear
if we consider the step {t} in the Fig. 5 and assume that t is labeled by τ and
the variables z, y are assigned to zero marked net tokens. Then the internal
weight of the consumed net token bound to x can be compensated only by the
sum of internal weights of two net tokens produced by two x entries in the arc
〈t, p3〉 expression. Moreover, the sum elements corresponding to different internal
places of the net tokens are linearly independent. If we suppose that the marking
of a consumed net token α with all empty places except a fixed place p, and the
markings of net tokens produced by x entries are the same as the marking of
α (i.e. all places except p are empty), then the weight of tokens in the place p
of α can be compensated only by the weight of the tokens in the place p of the
produced net tokens. So, for each variable x on the input arc 〈pSN, tSN〉 and for
each place p of the x’s element net it should be:

wm(pSN) · W(pSN)(p) =
∑

q∈tSN•
wm(q) · ‖γ(〈tSN, q〉)‖x · W(q)(p), (3)
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where ‖γ(〈tSN, q〉)‖x is the number of x entries in the expression γ(〈tSN, q〉). The
sum elements with wt coefficients of the weight function W do not depend on
the internal markings of the consumed tokens. The weight of a net constant on
an outgoing arc of tSN does depend on its own internal marking, but has the
same value for each firing and doesn’t depend on the internal marking of any
consumed net token. To ensure the invariance of the weight of the elements that
do not depend on the internal markings of the consumed tokens, we obtain the
next equation:
∑

p∈•tSN

wt(p) · ‖γ(〈p, tSN〉)‖

=
∑

p∈tSN•

⎛

⎝wt(p) · ‖γ(〈tSN, p〉)‖ + wm(p) ·
∑

c∈Con(〈tSN,p〉)
Ŵ(p)(c)

⎞

⎠ ,

(4)

where ‖γ(〈p, tSN〉)‖ is the overall number of all variables and constants entries
in the expression γ(〈p, tSN〉).

Vertical synchronization step s = {tSN, t1[α1], . . . , tq[αq]} consists of a system
net transition tSN and the transitions t1, ..., tq of consumed net tokens α1, ..., αq.
We start from the internal weights of the consumed net tokens places. Due to
the same argument as for a system autonomous step, we have the same equation
for the weights of consumed and produced net tokens places; for each variable x
on the input arc 〈pSN, tSN〉 and for each place p of the x’s element net:

wm(pSN) · W(pSN)(p) =
∑

q∈tSN•
wm(q) · ‖γ(〈tSN, q〉)‖x · W(q)(p) (5)

The case of other weights is more interesting. The number of tokens consumed
from an internal place p by an internal transition ti does not depend on m0, but
depends only on the multiplicity of the input arc 〈p, t〉. Therefore, the weights
of consumed and produced internal tokens are included into the equation for
internal marking-independent weights. Together with weights wt, they form the
following equation:

∑

p∈•tSN

wt(p) · ‖γ(〈p, tSN〉)‖ +
∑

ti∈{t1,...,tq}

∑

p∈•ti

wm(pαi
) · W(pαi

)(p) · γ(p, ti)

=
∑

p∈tSN•

⎛

⎝wt(p) · ‖γ(〈tSN, p〉)‖ + wm(p) ·
∑

c∈Con(〈tSN,p〉)
Ŵ(p)(c)

⎞

⎠

+
∑

ti∈{t1,...,tq}

∑

p∈ti•
wm(pαi

) · W(pαi
)(p) · γ(ti, p) (6)

Since all possible steps in NP-net are considered, by exhaustion, (2)–(6) equa-
tions guarantee the invariance of the weight function (1).
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Definition 4 (NP-net place invariant). The tuple I = 〈wt, wm,W〉 is a place
invariant of an NP-net NP, if it satisfies the equations (2)–(6).

Theorem 1 (Fundamental property of place invariants). Let I =
〈wt, wm,W〉 be a place invariant of an NP-net NP. Then the weight function WI

is an invariant on the reachability sets of NP, i.e. ∀m ∈ R NP (m0) : WI(m) =
WI(m0).

Proof. Let m ∈ RNP(m0), then m0
σ→ m, where σ is a sequence of steps

s1,m1, s2,m2, ..., sn,m. If si is an elementary autonomous step, then the equa-
tion (2) ensures W(mi−1) =W(mi); the equations (4),(3) ensure invariance of
the weight function under system autonomous steps; (5),(6) ensure invariance
under vertical synchronization steps. Then, by induction on the number of steps,
we prove the invariance of the weight function for all intermediate markings mi.

The fundamental property provides the opportunity to infer non-reachability of
markings, i.e. if two markings do not agree on the invariant weight function,
then either of them is not reachable from another one [5]. We use this in the
next section for proving some behavioral properties of the financial predicting
system.

We would like to note, that the weights of consumed tokens that do not
depend on the internal marking can be balanced only with weights of produced
token that do not depend on the internal marking. The consumed weights that
depend on the marking of an internal place can be balanced only with cor-
responding weights that depend on the marking of the place. For example, if a
transition tSN removes net tokens, i.e. there is a variable x on an input arc (p, tSN)
of the transition, but no entries of x on output arcs, then by the equation (4)
the weights of internal places W of the element net Ep are all equal to 0. This
is not so obvious, because it might seem that it is possible to compensate the
weight of the consumed net token with the weights of the net tokens produced
by other variables, net constants, or even black tokens.

6 Invariant Analysis of NP-nets

In this section we demonstrate application of introduced invariants for analysis
of behavioral properties important for our NP-net model example (Sect. 2).

We consider in details the property, which concerns a restriction on the num-
ber of simultaneous requests sent to the subscribed index service. This is a crucial
restriction, as a violation of the agreement with the service provider may lead
to extra charges or to an abrogation of the contract. Requests are sent by index
agents. The property can be formulated as follows:

The index agents can simultaneously send not more than 3 requests to the
external index service.

The place WS querying1 of the E3 elementary net models the index agent
state in which the agent is waiting for the response to a sent request. The sum
of tokens in the internal places WS querying1 of all index agents net-tokens
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represents the number of requests currently sent to the subscribed index service.
According to the contract this number should be not greater than 3.

License tokens are stored in the place license tokens of the SN system net of
the model. License tokens are carried from the license tokens pool to an index
agent by a forecasting agent (E1). A forecasting agent receives a license token
via a firing of SN:get license transition. Then the forecasting agent can send a
request to an index agent by firing E1 : req1, but only if it has a license token.

If we find the intrinsic dependence between the number of tokens in
WS querying1 places of all index agents on the initial number of tokens in license
tokens, then we can use this dependence to prove the property. Formally, we need
to prove ∀m ∈ R(m0) : (

∑
α∈m(p0)

mα(p1)) ≤ m0(p2), where p0, p1, and p2 denote

index agents, WS querying1, and license tokens places, correspondingly. Since
the initial marking contains 3 tokens in SN:license tokens there will be at most
3 tokens in WS querying1 places. It should be noted that this sum consists of
weighted tokens in all index agent tokens, not the sum of tokens of one index
agent. Intuitively, since the tokens flow between SN, E1, and E3 nets, the needed
invariant should be distributed among all these nets.

The property can be proven with the invariant I1 specified by the following
weights 〈wt, wm,W = {wE1 , wE3}〉:
– wt maps places {license tokens, queue1, result1 to 1, and other places to 0;
– wm maps places {check license,updating,index agents, forecasting agents, fore-

casters, allocated agents, DB server} to 1, and others to 0;
– the weight function wE1 for the system net places {check license, updat-

ing, forecasting agents, forecasters, allocated agents, DB server} maps places
{releasing license,license obtained} of the element net E1 to 1, others to 0;

– the weight functions wE3 for the system net place index agents maps places
{buffer1,WS querying1, index1} of the element net E3 to 1, and others to 0.

The initial marking m0 of the example NP-net is depicted in the Fig. 4. For
all net tokens in m0 their initial markings are shown in the Figs. 1, 2 and 3. The
number of simultaneous requests to the index service is the sum of all tokens in
the place WS querying1 in all index agents net tokens. But this sum is the part of
the positive sum WI1 determined by I1. Hence, since all elements are positive, the
subsum is always not greater than the sum WI1(m) for each reachable marking
m. Since WI1(m0) equals 3 and is invariant, the number of simultaneously sent
requests is always not greater than 3, what we wanted to prove.

The property says that the number of sent requests is not greater than some
given number. We also need to check if the number of DB agents querying the
database is precisely equal to the number of forecasting agents requesting analyt-
ical datum. The subtle difference from the previous property is that the former
concerns the upper bound on the number of simultaneous requests, while this
property requires precise equality between the numbers of querying and waiting
agents. We want to ensure that there are no redundant processing DB agents
and no waiting agents that won’t receive response. The invariant, that proves
this is 〈wm, wt,W = {wE1 , wE2}〉, where wt = 0; wm maps places {DB server,
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DB querying, DB data retrieved} to 1; maps the place waiting data to 1; wE2

maps the places querying and result to −1.
The following properties have been also proven for our NP-net model example

with the help of invariants:

1. A forecasting agent does not leave dangling tokens, when it moves from the
updating to the forecasting phase.

2. The number of DB agents querying the database is equal to the number of
forecasters waiting for the response.

3. An updating process can be only in one of the following states:
E1:up-to-date1, E1:outdated1, E1:license obtained, SN :queue1, E3:buffer1,
E3:WS querying1, E3:index1, SN:result1, E1:releasing license, E1:updating1
(such properties are called “metamorphosis” of tokens in [8].

4. The number of asynchronous requests to external web services is not greater
than 3 times the number of forecasters in the initial marking.

5. The system is bounded except the client requests queue.
6. If the paid financial index is outdated, then forecasting agent may enter

updating state only with a license token.

The common general approach to proving a behavioral property of a system
with invariants is as follows: first obtain a collection of invariants sufficient to
prove the property, check that the property is valid in the initial marking of the
system, and then by invariance infer that it is valid in all reachable markings.
The common heuristic to find such collection of invariants is that the collection
should cover the places involved in the property statement.

The main advantage of the invariant method is that we prove a property for
arbitrary amount of agents with the only assumption that in the initial marking
they reside in the initial pools and the markings of agents tokens are the same as
in the given example. We cannot prove the property for all such initial markings
with classical model checking technique as it proves the property only for a given
finite combination of agents. To scale the results obtained with model checking
to arbitrary amount of agents we need to apply semi-automatic techniques —
parameterized model checking or k-induction based techniques [2].

7 Algorithm for Computing NP-nets Place Invariants

Place-invariants of different kinds of Petri nets are usually computed as solutions
of matrix equations defined as C · x = 0, where C is the incidence matrix of the
Petri net, 0 is zero vector, and x is the decision solution of the equation. An
incidence matrix can be in different forms for different kinds of Petri nets, i.e. it
is just a matrix over integers for classical place-transition nets, or a matrix over
functions or algebraical terms for colored or algebraic Petri nets [12,24].

The method suggested in this paper is a variation of the method of indeter-
minate coefficients, where the solution of the equations induced by transitions is
assumed in a form of weight function containing a number of unknown weights.
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Algorithm 1. Algorithm for computing NP-nets place invariants equations
Input : NP = 〈N1, . . . , Nk, SN〉, SN = 〈PSN , TSN , FSN , υ, γ, Λ〉
Output: E = {e1, e2...en} — set of equations

/* we shortcut W(p)(q) by wp
q, wt(p) by wt

p, wm(p) by wm
p */

1 begin
2 E ← ∅;
3 /* Autonomous elementary steps equations (2) */

4 foreach p ∈ {p | p ∈ PSN & υ(p) = 〈P, T, F 〉} do
5 foreach t ∈ {t | t ∈ T & Λ(t) = τ} do
6 left ← ∅; right ← ∅;
7 foreach 〈q, t〉 ∈ F do insert ‖γ(〈q, t〉)‖ · wp

q into left ;
8 foreach 〈t, q〉 ∈ F do insert ‖γ(〈t, q〉)‖ · wp

q into right ;
9 insert

∑

l∈left

l =
∑

r∈right

r into E

10 /* Elementary nets places weights equations (5),(3) */

11 foreach t ∈ TSN do
12 left ← ∅; right ← ∅;
13 foreach 〈p, t〉 ∈ FSN do
14 foreach x ∈ γ(〈p, t〉) do
15 foreach q ∈ {q | υ(p) = 〈P, T, F 〉 & q ∈ P} do
16 left ← wm

p · wp
q ; right ← ∅;

17 foreach 〈t, p′〉 ∈ {〈t, p′〉 ∈ FSN | |γ(〈t, p′〉)|x > 0} do

18 insert wm
p′ · wp′

q · |γ(〈t, p′〉)|x into right;

19 insert
∑

l∈left

l =
∑

r∈right

r into E

20 /* Synchronization (6) and sys. autonomous (4) steps equations */

21 foreach t ∈ TSN do
22 leftSN ← ∅; rightSN ← ∅;
23 foreach 〈p, t〉 ∈ FSN do insert wt

p · |γ(〈p, t〉)| into leftSN ;
24 foreach 〈t, p〉 ∈ FSN do
25 insert wt

p · |γ(〈t, p〉)| into rightSN ;
26 foreach c ∈ {c | c ∈ Con(〈t, p〉) & c = 〈〈P, T, F 〉, m0〉} do
27 foreach q ∈ P do insert wm

p · wp
q · m0(p) into rightSN ;

28 if Λ(t) = τ then insert
∑

l∈leftSN

l =
∑

r∈rightSN

r into E ;

29 else foreach {〈t11 . . . t1n1tk1 . . . tknk
〉 ∈ (T1)

n1 × · · · × (Tk)nk |
{p1, . . . , pk} = •t & ∀j ∈ 1, k : nj = |γ(〈pj , t〉)|
& υ(pj) = 〈Pj , Tj , Fj〉 & ∀l ∈ 1, nj : Λ(tjl ) = Λ(t)} do

30 left ← leftSN ; right ← rightSN ;

31 foreach tjl ∈ 〈t11 . . . t1n1tk1 . . . tknk
〉 do

32 foreach q ∈ •tjl do insert wm
pj · w

pj
q · |γ(〈q, tjl 〉)| into left ;

33 foreach q ∈ tjl
• do insert wm

pj · w
pj
q · |γ(〈tjl , q〉)| into right ;

34 insert
∑

l∈left

l =
∑

r∈right

r into E

35 ;
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The algorithm consists of 4 steps. The result of the first 3 steps is a set of
equations that correspond to all possible steps in a given NP-net. By substituting
a new variable for each product term containing wm we obtain a system of linear
equations. Now the solutions can be obtained by the well-known methods of
linear algebra.
Algorithm (Computing place invariants). The algorithm computes weights of
the place invariant function for a given NP-net NP = 〈N1, . . . , Nk, SN〉. For
each transition of the NP-net, it extracts the corresponding (2)–(6) equations
from the NP-net structure. The solutions of the extracted system of equations
E are weight tuples, which determine all possible invariants. The more detailed
pseudo-code of the algorithm is given in Algorithm 1.

Step 1. For each elementary autonomous transition of every element net, build
a firing equation (2) and add it to E (lines 4–9).

Step 2. For each variable of every system autonomous transition, extract a firing
Eq. 4 or 5 and add it to E (lines 11–19).

Step 3. For each variable of every system autonomous transition, extract a firing
Eq. 3 and add it to E . For each possible vertical synchronization step of
every vertical synchronization transition extract a firing Eq. 6 and add
it to E (lines 21–35).

Step 4. Find the solutions of the system of equations E . Each solution of E
corresponds to an invariant of NP.

Thus, similar to the classical case place invariants for NP-nets can be effec-
tively represented and computed with the help of standard linear algebraic meth-
ods. Inferring properties from place invariants requires informal model analysis
and even some insight. However, heuristic approaches can be developed for some
classes of properties. This is a subject for further research.

8 Conclusion

In this paper we have defined place invariants of NP-nets, provided an algorithm
for computing invariants, and demonstrated how they can be used for analysis
of NP-nets by the example of a financial forecasting system.

The main contribution is that despite of the dynamic structure of NP-nets,
i.e. the components of an NP-net move within the system, it is still possible to
find structural invariants capturing informational/material flows between differ-
ent levels of NP-nets.

The authors would like to thank the anonymous referees for valuable and
very helpful comments.
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J.L.M., Skobelev, P. (eds.) HoloMAS 2013. LNCS, vol. 8062, pp. 106–117. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40090-2 10
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