
A Scalable Cloud-Based Android App
Repackaging Detection Framework

Jinghua Li(&), Xiaoyan Liu, Huixiang Zhang, and Dejun Mu

School of Automation, Northwestern Polytechnical University, Xi’an, China
jovistar@gmail.com, liuxyleo@163.com,

{zhanghuixiang,mudejun}@nwpu.edu.cn

Abstract. The problem of app repackaging has become a huge threat to the
security of Android ecosystem. The massive amount of existing and developing
apps makes a high demand on scalability of app repackaging detectors. In this
paper, we propose a cloud-based app repackaging detection framework. It is
designed to analyze and detect repacked Android apps in a large-scale way. The
framework consists of three primary components: market monitor, app feature
extractor and app similarity computer. Market monitor crawls all new and
updated apps in specific alternative app markets periodically. Then, the
multi-level features of apps are extracted by app feature extractor. App similarity
computer computes the similarity score of two apps based on these features.
A prototype system is implemented. The evaluation results demonstrate that the
proposed cloud-based framework is highly scalable and effective for large-scale
Android app repackaging detection.

Keywords: Android � App markets � Repackaging detection � Cloud
computing

1 Introduction

In recent years, the industry of mobile device grows rapidly. Android has become the
most popular mobile operating system in the world after years of developing. The
emerging of millions of apps have changed the way people use their mobile devices.

However, it’s easy to decompile and repack Android apps with existing decom-
piling tools. Taking advantage of this feature, hackers can easily decompile and inject
malicious codes into existing popular apps. Those apps will be repacked and submitted
to alternative app markets. Contrast to iOS ecosystem in which apps can be down-
loaded only from the official “App Store” [1], Android apps can be downloaded
anywhere, including the official “Google Play” [2] and countless alternative app
markets. Lots of users (especially those from China) install apps downloaded from
various alternative markets on their Android devices. Thus, the repacked popular (yet
malicious) apps will be downloaded and installed on users’ devices. This situation
results in lots of economic losses and privacy leaks. The problem of app repackaging
has become a huge threat to the Android ecosystem.

A number of Android security researchers have flung themselves into the field of
app repackaging detection. Some detection approaches [17, 18, 20] have been proposed

© Springer International Publishing Switzerland 2016
X. Huang et al. (Eds.): GPC 2016, LNCS 9663, pp. 113–125, 2016.
DOI: 10.1007/978-3-319-39077-2_8



and claimed to be effective. But few of them take consideration into the problem of
scalability. As the number of Android apps in markets grows rapidly, the practicality of
those approaches are questionable.

In this paper, a scalable cloud-based detection framework is presented, which
utilizes a hierarchical similarity-based app repackaging detection approach. The
framework monitors specific alternative app markets and searches for new or updated
apps. Then, the metadata and binary apk (application package) files of those matched
apps will be crawled for multi-level feature extraction. A hierarchical multi-level based
approach will be applied to generate a similarity score for two apps. Firstly, the
similarity scores of apps is applied to smali [3] files in packages. Then, the similarities
of packages will be computed according to the files similarity scores. Finally, the
similarity score of apps will be calculated based on the packages similarity and
app-level metadata. The presented approach takes consideration of similarities of files,
packages and app-level metadata.

Upon the proposed framework and detection approach, we implemented a sim-
plified prototype system. All components run in containers. The implemented system
was deployed in the Aliyun cloud [4] on purpose of performance evaluation. The
experiment results demonstrate that the proposed app repackaging detection framework
is able to analyze and detect large-scale apps in an effective, efficient and flexible way.

The main contributions of this paper are summarized in the following:

– A scalable cloud-based Android app repackaging detection framework is presented.
It takes the power of flexible cloud computing to monitor alternative app markets,
extracting app features and compute similarities of apps in a large-scale way.

– A hierarchical similarity-based repacked app detection approach is proposed. It
computes the similarity of apps with app-level metadata, packages similarity and
smali files similarity results.

– A prototype system is implemented and deployed in a real cloud computing
environment with all components running in containers. The evaluation results
prove the effectiveness and efficiency of the proposed framework.

The rest of this paper is structured as follows. In Sect. 2, the proposed framework and
its components are introduced. In Sect. 3, the implementation of prototype system is
described. In Sect. 4, we evaluate the prototype system. In Sect. 5, we discuss the
limitations of our work and the future improvement. In Sect. 6, we introduced the
related work on Android app repackaging detection. Finally, we conclude our work in
Sect. 7.

2 Design

2.1 Architecture Overview

As the market share of Android grows, the number of Android apps newly released every
day also increases. Moreover, lots of existing apps update periodically. Thus, the total
number of Android apps in official and alternative markets is quite considerable. Under
this circumstances, the scalability is rather important for Android repacked app detection.

114 J. Li et al.



The architecture overview of the proposed cloud-based framework for large-scale
Android app repackaging detection is shown in Fig. 1. The market monitor checks the
alternative app markets in watch list. When an app is added or updated in those
markets, the market monitor crawls the app’s metadata and downloads the corre-
sponding apk file from the market. The app feature extractor takes the metadata and apk
file as inputs for multi-level app features extraction. The app similarity computer
computes the similarity scores of apps with these extracted features. The dispatcher
distributes tasks to corresponding components. Besides, it monitors running load of the
framework. The app metadata and extracted features are stored in a database engine. As
the framework is designed to be event driven, there exists an event engine for events
producing and consuming.

All components in the proposed framework are low-coupled, as all inter-components
communications are accomplished through the event engine. Each component runs in
respective computing instances in cloud.

2.2 Market Monitor

The key to fast app similarity computing is effective feature extraction in advance. To
achieve this goal, all newly emerged or recently updated apps should be found and
processed in time. Thus, the market monitor is constructed to monitor alternative app
markets in the framework. Thinking of the resource limitation and spider politeness,
currently, the market monitor scans all app markets only once a day. This frequency
can be changed dynamically to meet different demands. As shown in Fig. 2, the
workflow of market monitor consists of category monitoring, app metadata crawling
and apk file downloading.

Category Monitoring. Category is defined as an app list in app markets. Market
monitor is category-based, not market-based. This means each monitor just scans one
app category in one market in the same time. With this mechanism, market monitor is
able to scan different categories in the same market simultaneously without interference.

Fig. 1. The architecture overview of proposed framework.

A Scalable Cloud-Based Android App Repackaging 115



Every monitoring result will be kept as a screenshot of the category. When the
screenshot changes, it means there are some newly uploaded apps in this category.
After comparing with the previous screenshot, market monitor will mark these new
apps as “NEW”.

App Metadata Crawling. After scanning the app category, market monitor crawls
each app’s metadata (name, version, description, etc.) as an app screenshot to judge
whether it is updated. Once the screenshot is found to be changed, the app will be
marked as “UPDATED”.

Apk File Downloading. In this step, the apk files of all apps marked as “NEW” and
“UPDATED” will be downloaded from app markets. After that, all these binary files
with all metadata will be sent to app feature extractor.

2.3 App Feature Extractor

A hierarchical similarity-based app repackaging detection approach is proposed. It
consists of two steps: feature extracting and similarity computing. App feature extractor
is used to extract multi-level features: app-level features, package-level features and
file-level features in six steps as illustrated in Fig. 3.

Decompiling. All downloaded apk files will be decompiled to get the file of
“AndroidManifest.xml” and the file of author’s signature certification. “Classes.dex”
will be decompiled into smali files.

Fig. 2. The workflow of market monitor.

Fig. 3. The workflow of app feature extractor.

116 J. Li et al.



App Level Feature Extracting. App level feature includes app name, main activity,
author signature and some other necessary elements.

Package Level Feature Extracting and Third Party Packages Pre-Filtering.
Package-level feature consists of the name of package used in the app. The existing of
third party packages may interfere the similarity computing result. Thus, we build a
whitelist with a number of known third party packages. All those packages will be
filtered during the pre-filtering step.

File Level Feature Extracting. There are three kinds of file-level features including
the counts of specific methods, the counts of fields and the counts of opcodes in each
smali file. Table 1 lists the main elements of file feature.

Third Party Packages Post-Filtering. We construct a post-filter to filter unknown
third party packages according to the compound of some elements in file-level features.

2.4 App Similarity Computer

In the app repackaging detection approach, there are three thresholds: app similarity
threshold, package similarity threshold and file similarity threshold. Once the similarity
score of two apps/packages/files exceeds the corresponding threshold, the apps/
packages/files are deemed to be similar. As shown in Fig. 4, there are three steps in app
similarity computing.

Table 1. Main elements of file-level features.

Method
related

private, public, static, final, Z, B, S, C, I, J, F, D, L, [

Field
related

private, public, static, final, Z, B, S, C, I, J, F, D, L, [, V

Opcode
related

goto, packed-switch, sparse-switch, if-eq, if-ne, if-lt, if-ge, if-gt, if-le, if-eqz,
if-nez, if-ltz, if-gez, if-gtz, if-lez, cmpl-float, cmpg-float, cmpl-double,
cmpg-double, cmp-long, add-type, sub-type, mul-type, div-type

Fig. 4. The workflow of app similarity computer.

A Scalable Cloud-Based Android App Repackaging 117



File Level Similarity Computing. All elements in the file feature will be transformed
into integral values. These values make up of a file feature vector. The similarity score
of two files is the cosine distance of the vectors:

SimFðFilea;FilebÞ ¼ cosineðFile Veca;File VecbÞ ð1Þ

Here, File Veca and File Vecb represent the file feature vector. If the score exceeds
the file similarity threshold, the two files are similar.

Package Level Similarity Computing. The package similarity score is computed
based on all the similarity scores of files in two packages:

SimPðPackagea;PackagebÞ ¼ File NumP;sim

minðFile NumP;a;File NumP;bÞ ð2Þ

Here, File NumP;sim is the number of similar files in two packages, while
File NumP;a and File NumP;b are the number of files in respective packages. Two
packages with a similarity score of exceeding the package similarity threshold are
similar.

App Level Similarity Computing. After all packages similarity in two apps have
been computed, the final similarity score of two apps are:

SimA Appa;Appbð Þ ¼ File NumA;sim

min File NumA;a;File NumA;b
� � þ a ð3Þ

Here, File NumA;sim is the number of actual similar files (only those similar files in
similar packages) in two apps. File NumA;a and File NumA;b are the total file numbers
in each app (not considering those files in packages filtered as third party packages). a
is the weighted similarity result of app metadata. If the similarity score exceeds the app
similarity threshold, the two apps are similar. Currently, the app similarity threshold is
just for reference.

3 Prototype Implementation

We have implemented a simplified prototype of the proposed Android app repackaging
detection framework. Redis [5] is used as an event engine for events producing and
consuming. By utilizing the container technology, the prototype system can be easily
and quickly deployed on any kind of cloud computing infrastructures. For evaluation
purpose, we have deployed the whole prototype system in the Aliyun cloud. The
architecture of the prototype system is illustrated in Fig. 5.

Database Engine and Event Engine. Redis, an in-memory data structure store, is
used both as database engine and event engine.

118 J. Li et al.



Dispatcher. All tasks are partitioned and distributed to the corresponding components.
Celery [6], the distributed task queue, is the foundation of dispatcher. It also monitors
running load of the prototype.

Market Monitor. This component crawls specific markets’ web pages to search for
newly added or updated apps periodically (like a day). All metadata and apk files of the
qualified apps will be downloaded and stored. Currently, this component builds upon
the outstanding open source spider: Scrapy [7].

App Feature Extractor. Once added or updated apps are crawled and downloaded,
this component decompiles the corresponding apk files to extract metadata and smali
files’ features.

App Similarity Computer. Unlike other components, this component is external
event-driven. It provides a simple interface for apps similarity computing demands.

Containerization. In consideration of simplicity and speed of system deployment,
container technology is applied in the prototype implementation. More specifically,
Docker [8], the most popular container is used. All system components: Redis, market
monitor, app feature extractor and app similarity computer run in respective containers.

Scalability. Once the dispatcher finds the system has been under high load for a period
of time, more computing instances of primary components will be started to accelerate
the processing. Vice versa, some instances will be shut down while the load is con-
tinuously low.

Deployment. We have deployed our prototype system in the Aliyun cloud. While
Aliyun Container Service [9] is still testing, several computing instances of
Aliyun ECS [10] are used to host all containers running system components. To ease
the sharing of apk files and decompiled files, Aliyun OSS [11] is used to host all files.

Fig. 5. The architecture of implemented prototype.

A Scalable Cloud-Based Android App Repackaging 119



4 Evaluation

4.1 Experiment Setup

Two implemented prototype system (with scalability disabled and enabled) were
deployed in the Aliyun cloud. For comparison, we also ran a prototype system in a
local laptop. The three experiment environments are illustrated in Table 2.

The watch list of market monitor contains eight app markets shown in Table 3.
Considering the purpose of evaluating, only three categories were monitored and
crawled: entertainment, finance and shopping.

During the experiment, there were a total number of 42063 apps crawled by the
system as shown in Table 4.

4.2 Results

Table 5 lists the average time consuming of several operations of the prototype system
in cloud and at local. Actually, the performances of one CPU core in both environments
are close, which is proven by the result of operation No.3. Only one CPU core will be
used when app level feature is being extracted. However, since the other operations are
all CPU-bound, the systems deployed in cloud are much faster.

Furthermore, Table 5 shows that the implemented framework is quite scalable.
While the system with scalability enabled is working hard on time-consuming tasks

Table 2. The cloud and local experiment environments.

Aliyun cloud Local laptop

Region Qingdao CPU Intel i5 2.7 GHz
ECS number 7 (scalability disabled) Memory 8 GB

7–12 (scalability enabled)
ECS CPU 2 Cores Hard drive 1 TB
ECS memory 2 GB
ECS hard drive 20 GB
OS Ubuntu 14.04 64Bit OS Ubuntu 14.04 64Bit
Docker number 8 (scalability disabled) Docker number 5

8–13 (scalability enabled)

Table 3. The app markets in the watch list.

App markets Gfan, Appchina,
Anzhi, Pc6,
3310, Hiapk,
Liqu, Cnmo

Table 4. The number of apps crawled.

Category Number of apps

Entertainment 14204
Finance 13986
Shopping 13873

120 J. Li et al.



(like operation No.2 and No.5), more computing instances are activated. With more
computing resources, the total time of processing decreases a lot.

We manually analyzed hundreds of crawled apps crawled and collected 100 groups
of highly similar (same or repacked with minor modifications) to evaluate the hierar-
chical similarity-based app repackaging detection approach. Another 100 groups were
also selected, each of which consists of eight totally different apps.

Since the app similarity threshold is just for reference, we use a two-tuples:
<package similarity threshold, file similarity threshold> in the experiment. Currently,
the default app similarity threshold is set to be 0.8. As shown in Fig. 6, with <0.8, 0.9>,

Table 5. The average time consuming of several operations.

No Operation Aliyun
cloud
(Scalability
disabled)

Aliyun
cloud
(Scalability
enabled)

Local
laptop

1 Crawling all three app categories in all
eight markets

59.38 s 60.13 s 300.21 s

2 Crawling metadata of all 42063 apps in all
eight markets

1634.59 s 1038.30 s 12030.43 s

3 Extracting app level feature of one app 0.32 s 0.30 s 0.34 s
4 Extracting package level features of all

packages in one app
1.42 s 1.20 s 11.34 s

5 Extracting file level features of all files in
one app

28.98 s 19.32 s 160.39 s

6 Computing the similarity score of two
apps

4.95 s 3.44 s 21.89 s

Fig. 6. The true positive ratios and false positive ratios of the proposed approach with different
thresholds.

A Scalable Cloud-Based Android App Repackaging 121



the proposed approach achieved true positive ratio of 94.8 % and false positive ratio of
1.4 %. Actually, the false positive ratio is rather stable.

For comparing purpose, Fig. 7 shows the detection rates of “Androguard” [12],
“DroidMOSS” [13] (implemented by ourselves) and our approach (with <0.8, 0.9>)
called “ReDroid”. As seen in Fig. 7, “ReDroid” outperforms the other approaches.

Obfuscation resiliency is a key measurement for app repackaging detection
approach. To evaluate the robustness of the proposed approach against obfuscation, 50
different apps were selected and obfuscated. Then, the similarity scores of the original
apps and obfuscated apps were computed. If the score exceeds the default app simi-
larity threshold (0.8), the two apps are thought of being similar. As shown in Table 6,
the proposed approach can detect repacked apps in an obfuscation resilient way.
Moreover, the average similarity score indicates that there is still room for improve-
ment against obfuscation.

5 Limitations and Future Work

Benefiting from the cloud-based architecture, the proposed framework is able to crawl
and process Android apps in time on a large-scale. Constructed on the container
cloud-based platform, all components can be deployed with flexibility. The proposed
hierarchical similarity based approach is effective and efficient for app repackaging
detection.

Fig. 7. The contrasting detection rates.

Table 6. The result of obfuscation resilient measurement.

Number of original apps 50

Number of obfuscated apps 50
Number of similar app pairs 47
Average similarity score 0.8349

122 J. Li et al.



Nevertheless, during evaluation of the implemented prototype, a few limitations
have come up which may influence the practicality of the framework. Thus, here lists
some future work to avoid those limitations.

Under specific occasions, our framework fails to recognize some third-party
packages which interfere the result of similarity computing. To solve this problem, an
optimized third-party package self-learning and recognizing method is under devel-
oping. With the help of machine learning, the method is able to learn and recognize
unknown third-party packages.

Currently, the similarity computing result comes just with similarity score, which is
not intuitive for researchers. Thus, we are trying to present the result in a visual way
with full details of computing procedure.

The biggest limitation is that the current implemented prototype is unsuitable for
real-time app similarity computing. With the massive amount of existing apps in
markets and in consideration of the explosion growth of new apps, the current simi-
larity computing method requires too many computing resources. Though it can be
achieved with continuous cloud resources investment, the cost is too high. A real-time
cluster-based similarity computing method with proper cost is the key to solve this
cloud resources black hole problem.

6 Related Work

ANDRUBIS [14] is an automated Android apps analysis system with both static and
dynamic analysis. It is designed to provide Android security researchers a large-scale
platform to analyze Android malwares. Users can submit Android apps through web
site and mobile app provided by ANDRUBIS. ANDRUBIS has analyzed more than 1
million Android apps. A lot of details including network behavior of Android malwares
are also presented.

A lightweight real-time Android malware detection framework: AndRadar [15] is
proposed and implemented to identify potential malware in alternative Android app
markets. It takes advantage of the metadata of apps (including the package name and
developer’s certificate fingerprint) to build a powerful app tracking framework. With
AndRadar, the researchers are able to monitor the third-party markets efficiently in a
real-time way.

DNADroid [16] is a large-scale Android clone apps searching tool against app
cloning in app markets. Based on specific app attributes, suspicious cloned app can-
didates are selected and grouped for next robust clone code searching. The results
claimed that the false positive rate of DNADroid is very low with a relatively high
detection performance.

PiggyApp [17] is a fast and scalable system intended to find repacked apps in app
markets. A module decoupling approach with semantic features extraction is intro-
duced to decouple the primary modules of apps. The search approach for apps with
similar modules is fast and efficient. However, the extracted feature fingerprint is not
quite representative. Thus, the accuracy of detection system may be interfered.

ViewDroid [18] is also an app repackaging detection system. It extracts birthmarks
as features from user interface components of apps. With these features, view graphs

A Scalable Cloud-Based Android App Repackaging 123



are constructed for next repackaging detection. The evaluation results show that
ViewDroid is robust, effective and highly resilient to code obfuscation. However, the
graph comparison time grows much with the increment of the number of graph pairs..

DIVILAR [19] is a virtualization-based approach for Android app’s self-protection.
By hooking into the Dalvik VM, DIVILAR is able to composite the virtual instruction
and Dalvik bytecode execution. DIVILAR is robust enough for both static and dynamic
analysis, thus, effective for preventing app repackaging. However, the hooking
mechanism severely limits the usage of DIVILAR since it requires a huge change in the
underlying system.

DroidSim [20] is mainly designed to detect code reuse in Android Apps, especially
for repackaged apps and malware variants detection. Compared to the other approa-
ches, it’s more accurate and robust. Component-based control flow graph (CB-CFG) is
extracted to compute similarity score by DroidSim. An App can be uniquely repre-
sented with CB-CFG and author information. The evaluation results show that
DroidSim is effective and robust for both repacked apps and malware variants detec-
tion. Yet, as it is claimed to be effective, the efficiency of DroidSim is almost not
mentioned. The consuming time of construction of CB-CFG and graph-based pair-wise
comparison is unclear.

As so many app repackaging detection and analysis approaches have been pro-
posed, a framework for evaluating those algorithms [21] was presented. It is mainly
designed to evaluate the performance of anti-obfuscation of detection algorithms. The
experiment results show that the framework is able to evaluate detection algorithms
broadly and deeply. The framework will present a full view about the strength and
weakness of the evaluated algorithm after the evaluation.

7 Conclusion

In this paper we present a scalable cloud-based Android app repackaging detection
framework. It is composed of three primary components: market monitor, app feature
extractor and app similarity computer. Market monitor observes specific alternative app
markets. Once there are apps newly added or updated in these markets, the metadata of
apps will be crawled with the downloading of corresponding apk file for feature
extraction and similar apps searching. App feature extractor extracts multi-level fea-
tures. App similarity computer computes the similarities of apps as demanded.

Taking the advantages of cloud computing, the proposed framework is appropriate
for large-scale app markets monitoring, features extracting and similarity computing.
By using the cloud-based container technology, the implemented prototype is built to
be scalable. The evaluation results demonstrate that this framework is able to detect
repacked apps in a scalable, fast and effective way.

References

1. Apple App Store, December 2015. https://itunes.apple.com/us/genre/ios/
2. Google Play, December 2015. https://play.google.com/store/

124 J. Li et al.

https://itunes.apple.com/us/genre/ios/
https://play.google.com/store/


3. Smali, December 2015. https://github.com/JesusFreke/smali/
4. Aliyun, December 2015. http://www.aliyun.com/
5. Redis, December 2015. http://redis.io/
6. Celery, December 2015. http://www.celeryproject.org/
7. Scrapy, December 2015. http://scrapy.org/
8. Docker, December 2015. http://docker.com/
9. Aliyun Container Service, December 2015. http://www.aliyun.com/product/containerservice/
10. Aliyun ECS, December 2015. http://www.aliyun.com/product/ecs/
11. Aliyun OSS, December 2015. http://www.aliyun.com/product/oss/
12. Androguard December 2015. https://github.com/androguard/androguardd
13. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applications in

third-party Android marketplaces. In: Proceedings of the 2nd ACM Conference on Data and
Application Security and Privacy (CODASPY), pp. 317–326. ACM (2012)

14. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., van der Veen, V.,
Platzer, C.: ANDRUBIS-1,000,000 apps later: a view on current Android malware behaviors.
In: Proceedings of 3rd International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS) (2014)

15. Lindorfer, M., et al.: AndRadar: fast discovery of Android applications in alternative
markets. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 51–71. Springer,
Heidelberg (2014)

16. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applications on
Android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

17. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of “Piggybacked”
mobile applications. In: Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 185–196. ACM (2013)

18. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: ViewDroid: towards obfuscation-resilient
mobile application repackaging detection. In: Proceedings of the 2014 ACM Conference on
Security and Privacy in Wireless and Mobile Networks (ACM WiSec), pp. 25–36. ACM
(2014)

19. Zhou, W., Wang, Z., Zhou, Y., Jiang, X.: DIVILAR: diversifying intermediate language for
anti-repackaging on Android platform. In: Proceedings of the 4th ACM Conference on Data
and Application Security and Privacy (CODASPY), pp. 199–210. ACM (2014)

20. Sun, X., Zhongyang, Y., Xin, Z., Mao, B., Xie, L.: Detecting code reuse in Android
applications using component-based control flow graph. In: Cuppens-Boulahia, N.,
Cuppens, F., Jajodia, S., Kalam, A.A.E., Sans, T. (eds.) SEC 2014. IFIP AICT, vol. 428,
pp. 142–155. Springer, Heidelberg (2014)

21. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app repackaging
detection algorithms. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L.
(eds.) TRUST 2013. LNCS, vol. 7904, pp. 169–186. Springer, Heidelberg (2013)

A Scalable Cloud-Based Android App Repackaging 125

https://github.com/JesusFreke/smali/
http://www.aliyun.com/
http://redis.io/
http://www.celeryproject.org/
http://scrapy.org/
http://docker.com/
http://www.aliyun.com/product/containerservice/
http://www.aliyun.com/product/ecs/
http://www.aliyun.com/product/oss/
https://github.com/androguard/androguardd

	A Scalable Cloud-Based Android App Repackaging Detection Framework
	Abstract
	1 Introduction
	2 Design
	2.1 Architecture Overview
	2.2 Market Monitor
	2.3 App Feature Extractor
	2.4 App Similarity Computer

	3 Prototype Implementation
	4 Evaluation
	4.1 Experiment Setup
	4.2 Results

	5 Limitations and Future Work
	6 Related Work
	7 Conclusion
	References


