
An Efficient Dynamic Provable Data Possession
Scheme in Cloud Storage

Ge Yao1, Yong Li1,2(B), Linan Lei1, Huaqun Wang3, and Changlu Lin2,4

1 School of Electronic and Information Engineering, Beijing Jiaotong University,
Beijing 100044, People’s Republic of China

liyong@bjtu.edu.cn
2 Fujian Provincial Key Laboratory of Network Security and Cryptology,

Fujian Normal University, Fuzhou 350007, People’s Republic of China
3 Dalian Ocean University, Dalian 116023, People’s Republic of China

4 College of Mathematics and Computer Science, Fujian Normal University,
Fuzhou 350117, People’s Republic of China

Abstract. Cloud storage provides clients with flexible, dynamic and
cost effective data storage service. This new paradigm of data storage
service, however, introduces new security challenges. Since clients can
no longer control the remote data, they need to be convinced that their
data are correctly stored in the cloud. Moreover, supporting dynamic
data updates is a practical requirement of cloud storage. It is imper-
ative to provide an efficient and secure dynamic auditing protocol to
check the data integrity in the cloud. In this paper, we first analyze the
dynamic performance of some prior works and propose a new Dynamic
Provable Data Possession (DPDP) scheme. We introduce a secure sig-
nature scheme and the Large Branching Tree (LBT) data structure in
our scheme. LBT structure simplifies the process of updates and the sig-
nature scheme is used to authenticate both the value and the position
of data blocks, which greatly improves the efficiency in communication.
The security and performance analysis show that our DPDP scheme is
provably secure and efficient.

Keywords: Cloud storage · Provable data possession · Large branching
tree · Dynamic update

1 Introduction

Cloud computing has been envisioned as the next-generation architecture of
IT enterprise [1]. It enables users to access to the infrastructure and applica-
tion services on a subscription basis. This computing service can be catego-
rized into Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and
Software-as-a-Service (SaaS) [2]. Due to the advantage characteristics including
large scale computation and data storage, virtualization, high scalability and
elasticity, cloud computing technologies have been developing fast, of which the

c© Springer International Publishing Switzerland 2016
X. Huang et al. (Eds.): GPC 2016, LNCS 9663, pp. 63–81, 2016.
DOI: 10.1007/978-3-319-39077-2 5

64 G. Yao et al.

important branch is cloud storage system. Cloud storage service is a new para-
digm for delivering storage on demand, over a network and billed for just what
is used. Many international IT corporations now offer cloud storage service on a
scale from individual to enterprise, such as Amazon Simple Storage Service (S3)
and EMC Atoms Cloud Storage.

Although cloud storage is growing in popularity, data security is still one of
the major concerns in the adoption of this new paradigm of data hosting. For
example, the cloud service providers may discard the data which has not been
accessed or rarely accessed to save the storage space or keep fewer replicas than
promised [3]. And the storage service provider, which experiences Byzantine
failures occasionally, may decide to hide the data errors from the client for the
benefit of their own [1]. Furthermore, disputes occasionally suffer from the lack
of trust on cloud service provider (CSP) because the data change may not be
timely known by the cloud client, even if these disputes may result from the users
own improper operations [4]. Therefore, clients would like to check the integrity
and availability of their stored data. However, the large size of the outsourced
data and the limited resource capability present an additional restriction: the
client should perform the integrity check without downloading all stored data.

To date, extensive researches are carried out to address this problem [5–
14,18–20]. Early work concentrated on enabling data owners to check the
integrity of remote data, which can be denoted as private verifiability. Although
schemes with private verifiability can achieve higher scheme efficiency, public ver-
ifiability (or public auditability) allows anyone not just the client (data owner),
to challenge the cloud server for correctness of data storage while keeping no
private information [1]. In cloud computing, data owners are able to delegate
the verification of data integrity to a trusted third party auditor (TPA), who
has expertise and capabilities to audit the outsourced data on demand. This is
because the client themselves are not willing to perform frequent integrity checks
due to the heavy overhead and cost.

Recently, public auditability has become one of the basic requirement of
proposing a data storage auditing scheme. However, there are still some major
concerns need to be solved before put the auditing schemes into practical use.
Many big data applications keep clients’ data on the cloud and offer frequently
update operations. A most typical example is Twitter. Data stored in cloud may
not only be accessed but also updated by the clients through either modify an
existing data block, or insert a new block, or delete any block. To support the
most general forms of update operation is important to broaden the scope of
practical application of cloud storage. Therefore, it is imperative to extend the
auditing scheme to support provable updates to outsourced data. Unfortunately,
traditional data integrity verification schemes are mainly designed for static data
storage. The direct extension of these schemes may lead to functional defect or
security vulnerability. In this paper, we will focus on better support for dynamic
data operation for cloud storage applications. We employ a secure signature
scheme from bilinear maps [15] and the Large Branching Tree (LBT) to achieve
that aim. Our contribution can be summarized as follows:

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 65

(1) We formally define the framework of dynamic provable data possession
scheme and provide an efficient construction, which supports fully dynamic
updates including modification, insertion and deletion.

(2) We analyze the existing schemes and point out the disadvantages of the
Merkle Hash Tree (MHT) used as the data structure for dynamic updates.
For better efficiency, we replace MHT with LBT. This multiple branching
data structure enables reduction in size of auxiliary information, thereby
causes less communication cost compared to MHT-based schemes.

(3) We employ a secure signature algorithm for LBT data structure. The char-
acteristics of bilinear pairings in the signature algorithm only cause O(1)
computation cost on CSP for each dynamic update. Besides, the client no
longer needs to construct LBT structure to support dynamic operation. Con-
sequently, this algorithm greatly reduces computation cost both on CSP and
client as well as simplifies the update process.

(4) We prove the security of our proposed construction and justify the per-
formance of our scheme through comparisons with existing data integrity
verification schemes [1,5–7,11,12].

The rest of this paper is organized as follows. Section 2 discusses related
works. In Sect. 3, we introduce main techniques, system model and security
model. Then, Sect. 4 presents the specific description of our proposed scheme.
Section 5 provides security analysis. We further analyze the experimental results
in Sect. 6. Section 7 concludes the paper.

2 Related Works

Recently, the integrity verification for data outsourced in cloud has attracted
extensive attention. The existing provable data integrity schemes can be clas-
sified into two categories: proof of retrievability (POR) and provable data pos-
session (PDP). POR scheme was first proposed by Juels et al. in 2007 [5]. In
their scheme, the client can not only check their remote data integrity, but also
recover outsourced data in its entirety by employing erasure-correcting code.
The following researches of POR focused on providing security analysis [7] and
improving the construction. However, most of existing POR schemes can only
be used to the static archive storage system, e.g., libraries and scientific data
sets [5,7–9]. The reason is that the erasure-correcting codes using in POR sys-
tem bring a problem: the whole outsourced data is required to perform a small
update. This is the main issue towards making POR dynamic.

In cloud computing, the dynamic update is a significant issue for various
applications which means that the outsourced data can be dynamically updated
by the clients such as: modification, deletion and insertion. Therefore, an efficient
dynamic auditing protocol is essential in practical cloud storage systems [10].

In 2007, Ateniese et al. [6] proposed PDP framework. Compared to POR
scheme, PDP did not use erasure-correcting codes, and hence was more effi-
cient. Although PDP did not provide the retrievability guarantee, the dynamic
techniques of PDP are developed well in follow-up studies. Ateniese et al. [11]

66 G. Yao et al.

gave a dynamic PDP scheme based on their prior work [6], in which the client
pre-computes and stores at the server a limited number of random challenges
with the corresponding answers. This scheme cannot perform insertion since that
would affect all remaining answers.

The first fully dynamic PDP protocol was proposed by Erway et al. [12] in
2009. They considered using dynamic data structure to support data updates, so
they constructed the rank-based authenticated dictionaries based on the skip list.
However, the skip list requires a long authentication path and large amount of
auxiliary information during the verification process. Wang et al. [1] employed
homomorphic signature and MHT data structure to achieve supporting fully
dynamic updates. Zhu et al. [4] proposed a dynamic auditing system based on
fragment, random sampling and Index-Hash Tree (IHT) that supports provable
updates and timely anomaly detection. Later on, researches are focus on supply-
ing additional properties [16], distribute and replicate [13] or enhance efficiency
and using other data structure [17]. For instance, Wang et al. [18] firstly pro-
posed a proxy provable data possession (PPDP) system. Their protocol supports
the general access structure so that only authorized clients are able to store data
to public cloud servers. Lin et al. [19] proposed a novel provable data possession
scheme, in which data of different values are integrated into a data hierarchy, and
clients are classified and authorized different access permissions. Their scheme
also allows the data owner to efficiently enroll and revoke clients which make it
more practical in cloud environment.

Recently, Gritti et al. proposed an efficient and practical PDP system
by adopting asymmetric pairings [20]. Their scheme outperforms other exist-
ing schemes because there are no exponentiation and only three pairings are
required. However, this scheme is vulnerable to three attacks as they later
pointed out [21]. Several solutions are proposed by Gritti et al. corresponding
to all the vulnerabilities of scheme [20]. They used IHT and MHT techniques to
resist the replace attack and replay attack. They also employed a weaker security
model to achieve data privacy. Although system security can be guaranteed, the
performance of the system still needs improvement.

To solve the above problems, we employ a new data structure Large Branch-
ing Tree (LBT) into PDP system. The difference between LBT and MHT is that
each none-leaf node yields out multiple children, taking q as an example. This
multiple branching data structure enables the client to increase the number of
a node’s children and decrease the depth of the tree without inflating the signa-
ture length. For further improving the system efficiency, we introduce a secure
signature scheme to verify the value of the data blocks. In fact, the improvement
is achieved by the difference of the way the sibling nodes are authenticated. We
will discuss this in detail in Sect. 4.

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 67

3 Preliminaries

3.1 Large Branching Tree

Compared to MHT, LBT is concise in structure. Each node of the tree except
leaves has more than 2 children nodes. For concreteness, we take the outdegree of
the node to be q, and the height of the tree is l. An authentication LBT scheme
produces signatures that represent paths connecting data blocks to the root of
the tree. The authentication mechanism works inductively: the root authenti-
cates its children nodes, these nodes authenticate their children nodes, and the
authentication proceeds recursively down to the data blocks authenticated by its
parent [15]. In our scheme, the way the sibling nodes are authenticated is differ-
ent. Since every node has multiple brother nodes, we label them with a number
to denote its position among siblings. And an unique authentication value that
can be verified independently has been generated for the verification.

3.2 Dynamic PDP System

The dynamic PDP system for outsourced data in cloud consists of three entities:
Client, who has limited storage resource and computational ability but large
amount of data to be stored in the cloud; Cloud Storage Server (CSS), an entity
which has huge storage space and is able to provide data maintenance and com-
putation; Third Party Auditor (TPA), who specializes in verifying the integrity
of outsourced data in cloud when received a request from the client. The system
model is shown in Fig. 1.

We assume the communication between any two of these three entities is
reliable. The whole auditing scheme is on a challenge-response protocol, which
contains three phases: first, the client completes initializing work and then hosts
his/her data files in cloud; second, the client makes an update operation by
communication with CSS; third, TPA and CSS work together to provide data
auditing service through exchanging the challenge and proof messages. TPA
would report the audit results to the client.

Definition 1. In a DPDP system, the client, CSS and TPA cooperate with each
other to accomplish the challenge-response procedure. A DPDP scheme consists
of the following algorithms:

– KeyGen(1k) → {sk, pk}. This probabilistic algorithm is run by the client. It
takes as input security parameter 1k, and returns private key sk and public
key pk.

– TagGen(F, sk) → {T}. This algorithm is run by the client to generate the
metadata. It takes as input the data file F and private key sk and outputs the
tag sets T, which is a collection of signatures {τi} on {mi}.

– Update(F, Info,Ω, pk) → {F ′
, Pupdate}. This algorithm is run by CSS in

response to an update request from TPA. As input, it takes the data file F,
update information Info, the previous auxiliary information Ω and the public
key pk. The output is the new version of the data file F

′
along with its proof

Pupdate. CSS sends the proof to TPA.

68 G. Yao et al.

Fig. 1. System model

– V erifyUpdate(Pupdate, sk, pk) → {accept, reject}. This algorithm is run by
TPA to verify CSS updated the data correctly. The input contains the proof
Pupdate from CSS, the new file F

′
with its corresponding metadata T

′
, and

the private and public keys. The output is accept if the proof is valid or reject
otherwise.

– Challenge(·) → {chal}. TPA runs this algorithm to start a challenge and send
the challenge information chal to CSS.

– GenProof(F, T, chal, pk) → {P}. This algorithm is run by CSS. It takes data
file F, metadata T, the challenge information chal and the public key as inputs,
and outputs the proof for the verification.

– V erifyProof(P, pk) → {accept, reject}. TPA run this algorithm to verify the
response P from CSS. It outputs “accept” if the proof is correct, or “reject”
otherwise.

3.3 Security of Dynamic PDP

Following the security model defined in [12,20], we define the security model
for our proposed DPDP scheme by a data possession game between a chal-
lenger C and a adversary A. The detailed data possession game is described in
Appendix A.

Definition 2. We say that a DPDP scheme is secure if for any probabilistic
polynomial time (PPT) adversary A (i.e., malicious CSS), the probability that
A wins the data possession game is negligible.

4 Construction

The main building blocks of our scheme include LBT, a secure signature scheme
proposed by Boneh et al. [15] and Homomorphic Verifiable Tags (HTVs) [6]. LBT
data structure is an expansion of MHT, which is intended to prove that a set

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 69

of elements are undamaged and unaltered [1]. Naturally, we consider employing
the hash algorithm used in MHT structure to authenticate the values of nodes in
LBT, but this algorithm brings undesirable effects on the performance. During
the update process, that the client modify, insert, or delete the data if only
for one block will affect the whole data structure, causing O(n) computation
overhead for both the client and CSS. Therefore, it is imperative to find a better
method to authenticate LBT data structure. Instead of using hash functions,
we employ the signature scheme [15] to improve the efficiency of verifying the
elements in LBT. The computation complexity decreases to O(1) in the update
process. As for the public auditability, we resort to the homomorphic verifiable
tags. The reason is that HVTs make it possible to verify the integrity of the data
blocklessly.

The procedure of our scheme is summarized in three phase: Setup, Dynamic
Operation and Periodical Auditing. The details are as follows:

4.1 Setup

In this phase, we assume the data file F is segmented into {m1,m2, ...,mn},
where n = ql and q, l are arbitrary positive integers. Bilinear map e : G ×
G → GT is secure. Group G has a prime order p. Let g be the generator of G.
H : {0, 1}∗ → G is a family of collision-resistant hash functions. Note that all
exponentiations in following algorithms are performed modulo p on G, and for
simplicity we omit writing “(mod p)” explicitly.

KeyGen (1k). The client runs this algorithm to generate a pair of private
and public keys. Choose a random x ← Zp and compute y = gx. Pick
α1, α2, ..., αq ← Zp and λ ← G. Compute λ1 ← λ1/α1 , λ2 ← λ1/α2 , ..., λq ←
λ1/αq ∈ G. Pick μ ← G, β0 ← Zp, then compute ν = e(μ, λ) and
η0 = e(μ, λ)β0 where η0 denotes the root of LBT (the root of MHT is the
hashes of all the nodes). And for every node in LBT tree, the client chooses
{βj}1≤j≤n. The client also generates a random signing key pair (spk, ssk).
The public key is pk = {y, λ, ν, μ, {αi}1≤i≤q, {βi}1≤i≤n, spk} and the private
key is sk = {x, β0, ssk}.

TagGen (F, sk). For each data block mi (i = 1, 2, ..., n), the client chooses a
random element ω ← G, and computes a signature tag τi ← (H(mi) · ωmi)x.
The set of all the tags is denoted by T = {τi}, 1 ≤ i ≤ n. Then the client
computes γ = Sigx(η0) and sends Ini = {F, T, t, γ} to CSS. Let t = name ‖
n ‖ ω ‖ Sigssk(name ‖ n ‖ ω) be the tag for file F . The client will then
compute sig = Sigssk(t) and sends sig along with the auditing delegation
request to TPA for it to compose a challenge later on.

Upon receiving the initialize information Ini, CSS first stores all the data
blocks, and then construct a LBT as follows: for the ith data block mi (i =
1, 2, ..., n), CSS generates the i-th leaf of LBT together with a path from the leaf
to the root. We denote the leaf by ηl ∈ G, where l is the layer of the leaf and the
nodes on its path to the root are (ηl, il, ηl−1, il−1, ..., η1, i1), where ηj is the ij-th

70 G. Yao et al.

child of ηj−1, 1 ≤ j ≤ l. The authentication values for these nodes are computed
as follow steps:

– Step 1: For every node on the path from leaf ηl to the root, CSS generates
ηj ← e(μ, λij

)βj .
– Step 2: The authentication value of node ηj , the ijth child of ηj−1, is fj ←

μαij
(βj−1+H(ηj)).

– Step 3: The authentication value of H(mi), the child of the leaf node ηl, is
f ← μβl+H(mi).

Therefore, the signature on data block mi is Ωi = (f, fl, il, ..., f1, i1), which is
also the auxiliary information for authentication in the dynamic update process.
The construction of LBT is illustrated in Fig. 2.

Fig. 2. Construction of LBT

4.2 Dynamic Operation

(1) Modification. The client composes an update request Info =
(m, i,m

′
i, τ

′
i), it denotes that the client wants to modify mi to m

′
i, and

τ
′
i = (H(m

′
i) · ωm

′
i)x is the signature of m

′
i. Then he/she sends the update

information Info to CSS.

Update (F, Info,Ω, pk). Upon receiving the update request, CSS first mod-
ifies the data block mi to m

′
i, and replaces the H(mi) wth H(m

′
i) in

LBT. As shown in the Fig. 3, CSS generates the new authentication value

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 71

Fig. 3. LBT update under modifica-
tion

Fig. 4. LBT update under insertion

f
′ ← μβl+H(m

′
i) and update the signature Ω into Ω

′
. Note that, CSS only

consumes O(1) computation overhead. Finally, CSS responds

Pupdate = (H(m
′
i), Ω

′
, γ),

to TPA.
VerifyUpdate (Pupdate, sk, pk). TPA generates root η

′
0 based on (H(m

′
i), Ω

′
i)

as follows:

– Step 1: Compute η
′
l ← e(f ′, λ) · ν−H(m

′
i).

– Step 2: Computes η
′
j−1 ← e(f

′
j , λij) · ν−H(η

′
j) for j = l, ..., 1.

– Step 3: The proof is accepted if e(γ, g) = e(η
′
0, y) or otherwise rejected.

(2) Insertion. As the insert operation would change the structure of LBT. This
process is different from data modification. We assume the client wants to
insert block m∗ after the ith block mi. First, the client generates a tag
τ∗ ← (H(m∗) · ωm∗

)x. Then the client chooses two parameters βl+1, β
∗
l+1

and sends an update request Info = (i,m∗, τ∗, βl+1, β
∗
l+1) to CSS.

Update (F, Info,Ω, pk). Upon receiving the update information, CSS updates
data files and turns the leaf node ηl into a father node whose first child node
is ηl+1 and the second one is η∗

l+1. Data blocks ml and m∗ are authenticated
with respect to the leaves ηl+1 and η∗

l+1. As shown in the Fig. 3, CSS computes

72 G. Yao et al.

the authentication values fl+1 and f∗
l+1 by ηl+1 and η∗

l+1 respectively. The
authentication values of the two blocks are computed as f ← μβl+1+H(mi)

and f∗ ← μβ∗
l+1+H(m∗). Finally, CSS responses TPA with a proof Pupdate =

{(Ω
′
i ,H(mi)), (Ω∗,H(m∗)), γ}. The process is shown in Fig. 4.

VerifyUpdate (Pupdate, sk, pk). This process is similar to the update verifica-
tion process in modification operation except that the data blocks and the
auxiliary information are different.

(3) Deletion. Suppose the client wants to delete the block mi. The update
process is very simple. The only thing CSS needs to do is deleting mi from
its storage space and taking out the H(mi) from LBT structure.

4.3 Auditing

After the Setup process, no mater whether the update operation is executed or
not, the integrity verification is available for TPA to perform his/her duty as
an auditor. The integrity verification process is a challenge-response protocol,
TPA generates a challenge information chal and sends it to CSS. CSS responds
with a proof P . Then TPA verifies the correctness of the proof and outputs
accept/reject.

Challenge (·). Before challenging, TPA first use ssk to verify the signature on t
to recover ω. Suppose TPA wants to challenge c blocks. The indexes of these
blocks are randomly selected from [1, n]. Namely, let I = {i1, i2, ..., ic} be
the indexes of the challenged blocks. For each i ∈ I, TPA chooses a random
element πi ← Zp. TPA then sends chal = {(i, πi)i∈I} to CSS.

GenProof (F, T, chal, pk). Upon receiving the challenge, CSS takes the data F,
tags T and challenge information chal as inputs, and outputs: ϕ =

∑

i∈I

πimi

and τ =
∏

i∈I

τπi
i .

Moreover, CSS also provides TPA with the auxiliary information {Ωi}i∈I ,
which denotes the authentication path from the challenged data blocks to the
root. CSS sends proof P = {ϕ, τ, {H(mi), Ωi}i∈I , γ} to TPA.

VerifyProof (P, pk). For each challenged block mi, i ∈ I, TPA first use the
auxiliary information to reconstruct the nodes ηl, ηl−1, ..., η0 in a bottom-up
order by the following steps:

– Step 1: Compute ηl ← e(f, λ) · ν−H(mi).
– Step 2: For j = l, l − 1, ..., 1, compute ηj−1 ← e(fj , λij

) · ν−H(ηj).
– Step 3: Verify e(γ, g) = e(η0, y).

If the equality in step 3 holds, TPA continues to verify e(τ, g) =
e(

∏

i∈I

H(mi)πi · ωϕ, y).

If so, the proof is accepted, otherwise rejected.

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 73

5 Correctness and Security

Correctness. The correctness of our scheme is that both the proof generated
for dynamic auditing and integrity checking passes the verification algorithm.
The correctness of the proof for dynamic auditing is easy to prove. Indeed, Step
1 of the verification algorithm results in

e(f, λ) · ν−H(mi) = e(μβl+H(mi), λ) · e(μ, λ)−H(mi) = (μβl , λ) = ηl.

For any j ∈ {l, l − 1, . . . , 1}, the result of computation in step 2 of the
verification algorithm is

e(fj , λij
) · ν−H(ηj) = e(μαij

(βj−1+H(ηj)), λ1/αij) · e(μ, λ)−H(ηj)

= e(μβj−1+H(ηj), λ) · e(μ−H(ηj), λ) = e(μβj−1 , λ) = ηj−1.

The proof for integrity checking is also based on the properties of bilinear
maps.

e(τ, g) = e(
∏

i∈I

(H(mi)·ωmi)xπi , g) = e(
∏

i∈I

(H(mi)
πi ·ωmiπi), gx) =e(

∏

i∈I

H(mi)
πi ·ωϕ, y).

Now we show that our proposed scheme is secure in the random oracle model.
The security of our scheme is depending on responding correctly generated proof.
We divide the security analysis of our scheme into two parts:

(1) Prove that if the challenger accepts the proof P = {ϕ, τ, {H(mi), Ωi}i∈I , γ},
where τ denotes the tag proof which aggregates some forged tags for all
the challenged blocks, the Computational Diffie-Hellman (CDH) problem is
tractable within non-negligible probability.

(2) Prove that if the challenger accepts the proof P = {ϕ, τ, {H(mi), Ωi}i∈I , γ},
where ϕ denotes the data proof generated by the adversary with all the
challenged blocks {mi}i∈I , the Discrete Logarithm (DL) problem is tractable
within non-negligible probability.

Security . During the analysis of existing schemes, we found that different
schemes have different security levels. We classify some typical schemes’ secu-
rity level by their key techniques. Most of MAC-based schemes are semantically
secure. RSA-based schemes and BLS-based schemes are both provably secure
since they rely on public keys. Like most homomorphic tag-based schemes, our
scheme is provably secure in the random oracle model.

Theorem 1. If the tag generation scheme we use is existentially unforgeable,
CDH problem and DL problem is intractable in bilinear groups in the random ora-
cle model, there exist no adversary against our provable data possession scheme
could cause the verifier to accept a corrupted proof in the challenge-verify process,
within non-negligible probability, except by responding the correctly computed
proof.

Proof. The full proof of this theorem can be found in Appendix B.

74 G. Yao et al.

6 Performance

In this section, we analyze the performance of our scheme in the terms of storage
overhead, computation cost and communication complexity.

6.1 Storage Overhead

Through analysis of the state-of-the-art, we find that what affects the storage
overhead most is the metadata. For example, in [5], the verifier (the client) has
to store the sentinels for verification. In [14], the verifier (the client) needs to
store MACs.

In our scheme, the metadata is stored in CSS instead of the verifier (TPA).
The client sends the metadata together with data to CSS during the setup phase.
For each challenge, CSS responds both the data proof and the tag proof to TPA.

Table 1 shows the comparison of the storage overhead of different schemes.
In the table, k denotes the total number of the sentinels, n denotes the total
number of the data blocks, λ is the security parameter, p denotes the order of
the group G and N is RSA modulus.

Table 1. Comparison of the storage overhead

Schemes Storage overhead

CSS Verifier

[5] k· | sentinel | k· | sentinel |
[6] O(λ) n· | N |
[12] O(λ) n· | N |
[7](BLS) O(λ) n· | p |
[1] O(λ) n· | p |
Our scheme O(λ) n· | p |

6.2 Computation Complexity

There are three entities in our scheme: the client, CSS and TPA. We discuss
their computation cost respectively in different phase. In the setup phase, the
client needs to compute 2 pairings, 2n+2 exponentiations and n multiplications
on G.

For better comparison, we implemented both our scheme and MHT-based
scheme [1] in Linux. All experiments are conducted on a system with an Intel
Core i5 processor running at 2.6 GHz, 750 MB RAM. Algorithms such as paring
and SHA1 are employed by installing the Paring-Based Cryptography (PBC)
library and the crypto library of OpenSSL. All experimental results represent the
mean of 10 trials. Figure 5 shows the pre-processing time as a function of block

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 75

Fig. 5. Comparison of pre-processing time

numbers for client. The MHT-based scheme [1] exhibits slower pre-processing
performance. Our scheme only performs an exponentiation on every data block
in order to create the metadata. However, in scheme [1], client needs to perform
the exponentiation as well as constructing a MHT to generate the root.

Besides, in the dynamic update phase, TPA only needs to compute 1 expo-
nentiation in modification, 2 exponentiations in insertion and causes no compu-
tation in deletion. Note that the computation complexity of CSS in scheme [1]
is O(n) in all three update operations, where n is the number of data blocks.
Therefore, the secure signature scheme based on bilinear maps [15] introduced in
our scheme has greatly reduced the computation overhead during the dynamic
update phase. In the auditing phase, TPA needs to do 2c summations and 2c
multiplications, where c is the number of challenged data blocks. The computa-
tion complexity of TPA is O(n).

6.3 Communication Cost

The main communication cost we concern is the communication cost between
CSS and TPA during each challenge-response query. Since the metadata is stored

Fig. 6. Comparison of communication cost

76 G. Yao et al.

in CSS, the proof sended from CSS to TPA is increased. There is a trade-off
between the storage overhead and the communication cost. The major compo-
nent of the communication cost is the proof sent to TPA by CSS. We compare
our scheme with MHT scheme [1]. Figure 6 shows the proof size as a function of
the number of challenged blocks. Apparently, our scheme causes less communi-
cation cost between CSS and TPA. The auxiliary information accounts for that
gap. In our scheme, the size of auxiliary information grows linearly as the num-
ber of challenged blocks increase, while it grows exponentially as the number of
challenged blocks increase in the MHT scheme [1].

7 Conclusion

In this paper, we propose an efficient dynamic auditing scheme based on a secure
signature scheme [15] and LBT data structure. We formally give the system
model and security model. Then, we present the concrete process of the pro-
posed scheme. LBT data structure enables reduction in size of auxiliary informa-
tion, thereby causes less communication cost compared to MHT-based schemes.
Moreover, the characteristics of bilinear pairings in the signature algorithm only
cause computation cost on CSP for each dynamic update. And the client no
longer needs to construct LBT structure to support dynamic operation. There-
fore, our scheme greatly reduce computation cost both on CSP and client as
well as simplify the update process. Through security analysis and performance
analysis, our scheme is provably secure and efficient.

Acknowledgements. The authors would like to thank the anonymous referees for
useful comments. This research is supported in part by “the Fundamental Research
Funds for the Central Universities” (No. 2015YJS005), National Natural Science Foun-
dation of China under Grant Nos. 61472032, 61272522, 61572132 and Fujian Provincial
Key Laboratory of Network Security and Cryptology Research Fund (Fujian Normal
University)(No. 15007).

Appendix A. Data Possession Game

The security of a data possession game between a challenger C and a adversary A
is presented as follows. The challenger plays the role of verifier and the adversary
acts as a malicious CSS.

KeyGen : The challenger runs (pk, sk) ← KeyGen(1k), then sends pk to the
adversary.

ACF Queries: The adversary can make adaptively chosen file (ACF) queries
as follows. First, the adversary interact with the tag generation oracle OTG.
For each query, A chooses a data block mi and sends it to OTG. Then
the oracle responds each query with a corresponding verification metadata
τi ← (H(mi) · ωmi)x. The adversary keeps making n times queries. Then, it
enables to create an ordered collection of metadata T = {τi}1≤i≤n for all the

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 77

selected data blocks F = {m1,m2, ...,mn}. Second, the adversary is given
access to a data update oracle OUP . Achooses a data block mi (i=1,2,...,n)
and generates corresponding update information Infoi indicating what oper-
ation the adversary wants to perform. Then the adversary runs Update algo-
rithm and outputs a new version of data file F’ and an update proof Pupdate.
After receiving these information submitted by the adversary, the oracle OUP

verifies the proof Pupdate by running algorithm VerifyUpdate. The output is
accept or reject. The adversary can repeat the above interaction in polynomial
times.

Setup: The adversary decides on data block m∗
i and corresponding update infor-

mation Info∗
i for all i ∈ I ∈ [0, n+1]. The ACF Queries are performed again

by the adversary, with the first Info∗
i specifying a full re-write (this corre-

sponds to the first time the client sends a file to CSS). The challenger verifies
the update information and update his local metadata.

Challenge : The final version of data file F is created according to the data
update requested by A, and verified then accepted by the challenger. Now
the challenger generates a challenge chal and sends it to the adversary.

Forge : The adversary computes a data possession proof P based on chal. Then
the challenger runs algorithm VerifyProof and outputs the result belonging
to accept/reject . If the output is accept, then the adversary wins.

Appendix B. Proof of Theorem 1

Theorem 1. If the tag generation scheme we use is existentially unforgeable,
CDH problem and DL problem is intractable in bilinear groups in the random ora-
cle model, there exist no adversary against our provable data possession scheme
could cause the verifier to accept a corrupted proof in the challenge-verify process,
within non-negligible probability, except by responding the correctly computed
proof.

Proof. We firstly prove that the tag generation scheme is existentially unforge-
able with the assumption that BLS short signature scheme is secure. We prove
this by reduction. Assume BLS signature scheme is secure and its public key
is pk = gx. If there exists an adversary who can win the challenge game with
non-negligible probability, then the adversary must be able to forge a signa-
ture in BLS scheme. Pick x ← Zp, and compute u = gx. When the adversary
queries about a data block mi, he/she sends the block to BLS signature ora-
cle, and the oracle responds with the signature si = H(mi)x. The adversary
queries the oracle about the same block in our scheme, and be replied with the
tag τi = (H(mi) · ωmi)x. Let ω = gα, then τi = si · μαmi . Suppose that the
adversary can forge a new tag τj = (H(mj) · ωmj)x for the block mj that has
never been queried. Therefore, the adversary can compute BLS signature on mj

as sj = τj/μαmj . This completes the proof of the security of the tag generation
scheme.

Now we prove the Theorem 1 by using a sequence of games.

78 G. Yao et al.

Game 1. The first game is the data possession game we defined in Appendix A.
Game 2. Game 2 is the same as Game 1, with one difference. When the chal-

lenger responds the ACF Queries made by the adversary, he/she keeps a list
of all his/her responses. Then the challenger observes each instance of the
challenge-response process with the adversary. If in any of these instances
the adversary responds a valid proof which can make the challenger accept,
but the adversary’s tag proof is not equal to the τ =

∏

i∈I

τπi
i , which is the

expected response that would have been obtained from an honest prover, the
challenger declares reject and aborts.

Analysis. Before we analyzing the difference in probabilities between Game 1
and Game 2, we firstly describe the notion and draw a few conclusions. Suppose
the data file that causes the abort is divided into n blocks, and the tags of
data blocks are τi = (H(mi) · ωmi)x for i ∈ [1, n]. Assume chal = {i, πi}i∈I is
the query that causes the challenger to abort, and the adversarys response to
that query was P ′ = {ϕ

′
, τ

′
, {H(mi), Ωi}i∈I , γ}. Let the expected response be

P = {ϕ, τ, {H(mi), Ωi}i∈I , γ}. The correctness of H(mi) can be verified through
{H(mi), Ωi}i∈I and γ. Because of the correctness of the scheme, the expected
response can pass the verification equation, that is

e(τ, g) = e(
∏

i∈I

H(mi)πi · ωϕ, y).

Because the challenger aborted, we know that τ �= τ
′
and that τ

′
passes the

verification equation e(τ
′
, g) = e(

∏

i∈I

H(mi)πi · ωϕ
′
, y). Observe that if ϕ

′
= ϕ,

it follows from the verification equation that τ
′

= τ , which contradicts our
assumption above. Therefore, it must be the case that Δϕ is nonzero, here we
define Δϕ = ϕ

′ − ϕ.
With this in mind, we show that if the adversary win Game 2 and causes the

challenger to abort, we can construct a simulator to solve CDH problem.
Given the values g, gx, h ∈ G as inputs, the goal of the simulator is to output

hx. The simulator behaves like the challenger in Game 2 and interacts with the
adversary as follows:

(1) To generate a tag key, the simulator sets the public key y to gx, and then
forwards y to the adversary.

(2) The simulator programs the random oracle H and keeps a list of queries to
respond consistently. Upon receiving the adversarys queries, the simulator
chooses a random r ← Zp and responds with gr ∈ G. It also responds queries
of the form H(mi) in a special way, as we will see below.

(3) When requested to store the data file which is divided into n blocks
{mi}1≤i≤n, the simulator responds as follows. It firstly chooses a random
block mi. For each 1 ≤ i ≤ n, the simulator chooses a random value ri ← Zp

and sets ω = gahb for a, b ← Zp, then it outputs H(mi) = grih−mi .
Therefore, the simulator can compute the tag τi = (H(mi) · ωmi)x =
(grih−mi · (gahb)mi)x.

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 79

(4) The simulator continues interacting with the adversary until the adversary
succeeds in responding with a tag τ

′
that is not equal to the expected tag τ .

After receiving the valid proof P
′
from the adversary, the simulator is able

to compute e(τ
′
/τ, g) = e(ωΔϕ, g) = e((gahb)Δϕ, g).

Rearranging terms yields e(τ
′
τ−1y−aΔϕ, g) = e(h, y)bΔϕ.

Since y = gx, we obtain hx = (τ
′
τ−1yaΔϕ)

1
bΔϕ . To analyze the probability

that the challenger aborts in the game, we only need to compute the probability
that bΔϕ = 0 (mod p). Because b is chosen by the challenger and hidden from
the adversary, the probability that bΔϕ = 0 (mod p) will be only 1/p, which is
negligible.

Therefore, if there is a non-negligible difference between the adversarys prob-
abilities of success in Game 1 and Game 2, we can construct a simulator that
solves CDH problem by interacting with the adversary.

Game 3. Game 3 is the same as Game 2, with one difference. When the chal-
lenger responds the ACF Queries made by the adversary, he keeps a list of
all his responses. Then the challenger observes each instance of the challenge-
response process with the adversary. If in any of these instances the adver-
sary responds a valid proof which can make the challenger accept, but the
adversary’s data proof is not equal to the ϕ =

∏

i∈I

πimi, which is the expected

response that would have been obtained from an honest prover, the challenger
declares reject and aborts.

Analysis. Again, let us describe some notation. Suppose the data file that causes
the abort is divided into n blocks. Assume chal = {i, πi}i∈I is the query that
causes the challenger to abort, and the adversary’s response to that query was

P ′ = {ϕ
′
, τ

′
, {H(mi), Ωi}i∈I , γ}.

Let the expected response be P = {ϕ, τ, {H(mi), Ωi}i∈I , γ}, among which the
data proof should be ϕ =

∏

i∈I

πimi,. Game 2 already guarantees that we have

τ
′

= τ . It is only the values of ϕ
′

and ϕ that can differ. Define Δϕ = ϕ
′ − ϕ,

again, it must be the case that Δϕ is nonzero.
We now show that if the adversary causes the challenger in Game 3 to abort

with non-negligible probability, we can construct a simulator to solve DL prob-
lem.

Given the values g, h ∈ G as inputs, the goal of the simulator is to output
α such that h = gα. The simulator behaves like the challenger in Game 2 and
interacts with the adversary as follows:

(1) When requested to store the data file which is divided into n blocks
{mi}1≤i≤n, the simulator first sets ω = gahb for a, b ∈ Zp. Then, it responds
to the adversary according to the TagGen algorithm.

80 G. Yao et al.

(2) The simulator continues interacting with the adversary until the adversary
succeeds in responding with a data proof ϕ

′
that is not equal to the expected

ϕ. After receiving the valid proof P
′

from the adversary, the simulator is
able to compute

e(
∏

i∈I

H(mi)πi · ωϕ
′
, y) = e(τ

′
, g) = e(τ, g) = e(

∏

i∈I

H(mi)πi · ωϕ, y).

From this equation, we have 1 = ωΔϕs = (gahb)Δϕ.
Thus, the solution to DL problem has been found, that is h = g− aΔϕ

bΔϕ , unless
the denominator is zero. However, Δϕ is not equal to zero, and the value of b
is chosen by the challenger and hidden from the adversary, the probability that
bΔϕ = 0 (mod p) will be only 1/p, which is negligible.

Therefore, if there is a non-negligible difference between the adversary’s prob-
abilities of success in Game 2 and Game 3, we can construct a simulator that
solves DL problem by interacting with the adversary.

Wrapping Up. As we analyzed above, there is only negligible difference prob-
ability of the adversary between game sequences Game i (i = 1, 2, 3), if the tag
generation scheme is existentially unforgeable, CDH problem and DL problem
are hard in bilinear groups. This completes the proof of Theorem1. �	

References

1. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

2. Liu, C., Chen, J., Zhang, X., Yang, C., Ranjan, R., Kotagiri, R.: Authorized public
auditing of dynamic big data storage on cloud with efficient verifiable fine-grained
updates. IEEE Trans. Parallel Distrib. Syst. 25(9), 2234–2244 (2014)

3. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

4. Zhu, Y., Ahn, G.-J., Hu, H., Yau, S.S., An, H.G., Chen, S.: Dynamic audit services
for outsourced storages in clouds. IEEE Trans. Serv. Comput. 6(2), 227–238 (2013)

5. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: Proceedings
of CCS 2007, pp. 584–597. ACM (2007)

6. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of CCS 2007,
pp. 598–609. ACM (2007)

7. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

8. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

9. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic iden-
tification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 319–333. Springer, Heidelberg (2009)

An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage 81

10. Yang, K., Jia, X.: Data storage auditing service in cloud computing: challenges,
methods and opportunities. Proc. WWW 2012 15(4), 409–428 (2012). Springer,
Heidelberg

11. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of SecureComm 2008, pp. 1–10. ACM (2008)

12. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceedings of CCS 2009, pp. 13–222. ACM (2009)

13. Wang, H.: Identity-based distributed provable data possession in multicloud stor-
age. IEEE Trans. Serv. Comput. 8(2), 328–340 (2015)

14. Shah, M.A., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction
of digital contents. Cryptology ePrint Archive, 2008/186 (2008). http://eprint.iacr.
org/2008/186

15. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg
(2003)

16. Barsoum, A., Hasan, A.: Enabling dynamic data and indirect mutual trust for cloud
computing storage systems. IEEE Trans. Parallel Distrib. Syst. 24(12), 2375–2385
(2013)

17. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable
storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232
(2012)

18. Wang, H., He, D.: Proxy provable data possession with general access structure in
public clouds. In: Proceedings of Inscrypt 2015. Springer, Heidelberg (2015)

19. Lin, C., Luo, F., Wang, H., Zhu, Y.: A provable data possession scheme with data
hierarchy in cloud. In: Proceedings of Inscrypt 2015. Springer, Heidelberg (2015)

20. Gritti, C., Susilo, W., Plantard, T.: Efficient dynamic provable data possession
with public verifiability and data privacy. In: Foo, E., Stebila, D. (eds.) ACISP
2015. LNCS, vol. 9144, pp. 395–412. Springer, Heidelberg (2015)

21. Gritti, C., Susilo, W., Plantard, T., Chen, R.: Improvements on efficient dynamic
provable data possession protocols with public verifiability and data privacy. Cryp-
tology ePrint Archive, 2015/645 (2015). http://eprint.iacr.org/2015/645

http://eprint.iacr.org/2008/186
http://eprint.iacr.org/2008/186
http://eprint.iacr.org/2015/645

	An Efficient Dynamic Provable Data Possession Scheme in Cloud Storage
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Large Branching Tree
	3.2 Dynamic PDP System
	3.3 Security of Dynamic PDP

	4 Construction
	4.1 Setup
	4.2 Dynamic Operation
	4.3 Auditing

	5 Correctness and Security
	6 Performance
	6.1 Storage Overhead
	6.2 Computation Complexity
	6.3 Communication Cost

	7 Conclusion
	References

