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Abstract. Dynamic configuration management brings challenge for the
distributed file systems while keeping the normal service. In this paper,
we describe a robust election algorithm based on ZooKeeper, we realize
the dynamic addition and deletion of servers without service interruption.
There is only one clustered mode for servers without switching between
prior two modes, it also speeds up the leader election. The leader main-
tains an active server list which speeds up handling of the transaction.
The algorithm also ensures the data consistency and system stability
against all possible issues. Through the evaluation, it takes not much
overhead to realize the addition and deletion of servers and the recovery
of crashed servers under various complex network circumstances, and it
takes little more election time and initialization time of service to obtain
the greater scalability.
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1 Introduction

The clustered file system with multivariate metadata servers is an inevitable
trend for the growing needs of performance, capacity and scale. It is critical
for the clustered file system to guarantee the data consistency when providing
normal service, it usually takes the coordination service to harmonize the nodes
in cluster and ensures data consistency.

The difficult of designing distributed file system is handling the partial failure,
it means the network may happen failure when message transfers from one node
to another. The message sender cannot ensure whether the receiver has received
the message or not. The receiver may receive the message before the network
failure or not, and the receiver thread may have been broken down.

ZooKeeper [1] is an architecture to resolve this partial failure, it is an open
source distributed coordination services. It is a centralized service that encapsu-
lates public services, such as naming, configuration management, synchroniza-
tion and cluster service into a simple interface. All of these kinds of services
are widely used in many distributed applications such as Hadoop, KafkaMQ [2],
Storm [3], etc.
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ZooKeeper keeps data consistency through a set of guarantees, such as
sequential consistency, atomicity, single system image, reliability and timeliness.
It provides transparent services for outside distributed system through a cluster
that consists of 2n + 1 servers who know the existence of each other. Its service
mechanism is summarized as following.

(1) Servers in ZooKeeper can communicate with each other. They maintain the
server’s status, save the operations’ logs and generate periodic snapshots in
memory. The ZooKeeper can work only if more than half servers are correct
(i.e., with 2n+1 servers we can tolerate n but not n+1 failures). All proposals
should be subject to approval by the leader, the followers then are informed
of the changes by using Zab protocol [4].

(2) Client can choose anyone of cluster servers to read or write data. Opera-
tions will be synced to all servers, and each server maintains the memory
state image, snapshots, and transaction logs of persistent storage. Once con-
nected to a server, client maintains a TCP connection to submit requests,
get response, get monitoring events and send heartbeats. If the TCP con-
nection gets broken, client will connect to another server to ensure service
continuity.

This paper designs a robust leader election algorithm that can adapt to arbi-
trary topological changes in complex environments such as network partitions,
servers crashed, etc. There is only one clustered mode for servers.

The rest of this paper is organized as follows. Section 2 presents the related
works. Section 3 describes the robust consistent election protocol. Section 4 ana-
lyzes its data consistency guarantee under various complex situations and then
proves correctness of the robust algorithm. In Sect. 5, we demonstrate the effec-
tiveness of robust election algorithm versus Zookeeper through experiments. And
the last section concludes the paper.

2 Related Works

For ensuring the high availability of ZooKeeper service, it needs to do the mul-
tiple redundant backups, the write operations to these multiple backups bring
the consistent problem. It is critical to guarantee the data consistency between
these redundant backups.

Eric Brewer proposed the CAP theorem [5,6] that there is a fundamental
trade-off between consistency, availability, and partition tolerance when design-
ing the distributed file system. According to the degree of consistency, the paper
[7] divided it into three parts: strong consistency, weak consistency and eventual
consistency. The consensus problem existed in the multiple backups can be dived
into two parts: the consistency of any updates and multiple updates.

The cluster needs to reach a consensus by leader election so as to coordinate
the servers. The existing studies of the leader election algorithm have proved that
it cannot keep the consistency about the leader election without any assump-
tion on the premise of the network environment [8]. Considering the speed of
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message delivery during the network communication, the current leader election
algorithms can be divided into the following three sorts.

(1) The election algorithm of strong consistency. These election algorithms aim
at the consistency of any updates. The election algorithm proposed in paper
[9] ensures the voters can finish the updaing operation in a limited time.
The paper [10] uses heap tree method to elect the leader with the lesser
complexity. The Raft election algorithm [11] and the Ark algorithm [12]
both guarantee the consistency of any updates.

(2) The election algorithm of weak consistency. These algorithms improve the
high concurrency of single update and guarantee the consistency of multiple
updates. The algorithm in paper [13] allows the network partition has its own
leader when network partition occurs, it will elect the unique leader finally
after system merges these partitions. The algorithm in paper [14] based
on TORA guarantees the system can elect the unique leader finally after
the partitions restore the connection. The algorithm in paper [15] tolerates
frequent topology changes and finally elects the unique leader, but it cannot
guarantee a unique leader at all times.

(3) The election algorithm of eventual consistency. It only needs to ensure the
updates keep consistent finally. The paper [16] gives a complete network
with N nodes, it tolerates up to N/2− 1 links incident failure on each node,
so the system tolerates up to N2/4 − N/2 links failure. The algorithm in
paper [17] eventually uses only n links to carry message and it ensures that a
leader is elected in constant time when the system is stable. The Fast Leader
Election algorithm [18] that used in ZooKeeper architecture set a half bound
variable-quorum, only the number of active nodes are more than quorum
can the network partition elects the leader.

The reconfiguration protocol for Primary/Backup replication systems
exploits primary order [19], it needs to persist information about new config-
uration S′ on stable storage at a quorum of current system S, deactivate the
current configuration, then identify and transfer all committed state from S to
S′. As this algorithm needs to write new configuration S′ to a quorum of S at
least, a quorum of S should execute these operations at least, it has low efficiency.

We analyze the Release 3.4.5 of ZooKeeper and we find it simplifies the con-
figuration management strategy by using a static configuration to deploy both
clients and servers. It needs to restart cluster multiple times to reconfigure the
system, this leads to service interruptions unavoidably. Its scalability is limited
and its weakness can be summarized as follows.

(1) Zookeeper uses two deployment modes: standalone mode and distributed
mode. The standalone mode is usually used for test or demos. It is not
flexible to switch between two modes.

(2) It limits the number of servers in cluster, only more than three servers can
form the cluster to provide the service outside.

(3) It cannot add or delete any servers dynamically during runtime of the clus-
ter, the multiple servers need to be shut down and restarted if it needs to
reconfigure the cluster.
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(4) The leader sends commands and broadcasts to the ensemble when handling
transactions, the messages send to the crashed servers are unnecessary.

Based on the above weakness of ZooKeeper, we propose a robust consistent
election algorithm with the following contributions.

(1) It takes the unique clustered mode to replace the original standalone and
distributed modes. It avoids the overhead brought by the conversion between
the prior two modes.

(2) The cluster scale is unrestricted, one or two servers can also elect the leader
through election algorithm. It can speed up the leader election through con-
figuring a single participant and multiple observes at startup.

(3) It realized the dynamic server addition and deletion when the cluster pro-
vides the normal service. It reduces the service interruptions brought by the
restart operations, it also reduces the redundancy of the persistent server
list.

(4) The proposals and commands are only send to the servers in the active server
list which is maintained by the leader. It improves the efficiency by reducing
the overhead that is send to the inactive servers.

For the complex environment that may have the split brain, data corruption
and crashed servers, the algorithm guarantees the data consistency during the
proceeding of server addition, deletion and recovery, and it improves the effi-
ciency of handling transactions. The algorithm obtains better performance and
gains greater availability and scalability.

3 The Consistent Election Algorithm

Specific implementation details are given in this section, such as the design of
start mode, server addition and deletion, and how to ensure the consistency of
the data during the ensemble dynamic changing procedure.

(1) The cluster’s initial startup
(1-1) If the administrator needs to start up n servers with initial mode, he

should configure n servers’ information in each server’ persistent list
so that all servers can keep consistent at startup.

(1-2) Each server initializes its persistent server list version and zxid to 0,
and sets quorum to �n/2�.

(1-3) Each server starts with the initial mode, and executes the leader elec-
tion step 2.

(2) Leader election
(2-1) Set each participant’s status as Looking.
(2-2) Each participant sends votes to those participants in its persistent

server list one by one.
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(2-3) It judges whether its own version of the persistent server list is bigger
than the submitter’s version and is the maximum among the known
version when a participant receives one vote message. It will put self’s
server list, version and zxid into the next vote if the judgments above
are true. The server will update self’s persistent server list and restart
a new vote according to the updated server list if self’s version of the
persistent server list is smaller than the version of the received votes
and these received votes contain the information about the persistent
server list.

(2-4) It judges whether more than �n/2� participant’s version are the
biggest and the same once it finishes traversing the n participant of
the latest persistent server list. Execute the next step if it meets the
conditions, otherwise jump to step (2-2).

(2-5) Every participant votes the server whose zxid is the biggest among all
survived participants as the leader. It chooses the server with biggest
ID number as the leader if all the zxid are the same. Then leader’s
epoch plus 1 and updates the quorum to the �n/2�. The leader election
finishes and then turns to the registration procedure (3).

(3) Server registration
(3-1) Learner sends registration request that includes information about the

zxid and version to leader.
(3-2) Leader receives the registration request from learner and replies its

own zxid to the learner.
(3-3) Learner replies the data synchronization type including OK, SNAP ,

TRUNC, and DIFF to leader after comparing its own zxid with
leader’s zxid.

(3-4) Leader sends the necessary UpToDate data according to the data
synchronization and judges whether its own persistent server list to
be sent according to learner’s version information.

(3-5) Learner updates the UpToDate data, persistent servers’ list, version,
and zxid, then it returns an ack back to leader, and finally turns to
heartbeat procedure (4).

(3-6) After receiving more than quorum participants’ acks, Leader generates
active server list and then turns to heartbeat procedure (4).

(3-7) When a learner recovers from failure, it executes leader election proce-
dure (2) first, then sends registration request to leader, who will add
the learner to its active server list after leader and learner execute
the procedures from (3-1) to (3-5), and returns a registered success
message to the learner, thus finishing the crashed servers’ recovering
procedure.

(4) Server heartbeat
(4-1) Leader sends ping message to all learners in the active server list

every tickTime, it will delete the learner from the active list if no ack
returns of successive three times. Once it finds that the quantity of
participants in the active server list is less than the quorum, it will
turn to the leader election procedure (2).
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(4-2) Learner detects the ping message from leader and returns ack. If it
hasnot received leader’s ping message in three tickT imes, it will turn
to the leader election procedure (2).

(4-3) Particularly, leader sends the detecting message which comes with its
own server information (ID number, IP address, client port, role) to
all inactive learners every two T times. When inactive learner recov-
ers from the crash, it begins to register to leader once it received
the detecting message from leader. This procedure guarantees special
crashed servers’ recovery, such as server that stays in failed section
for a long time and other servers in its own server list have all been
deleted.

(5) Data synchronization
Just like the original ZooKeeper system, learner sends request to leader,
leader uses two-phase protocol which is similar to the Paxos algorithm. The
adding and deleting operation of our algorithm do not impact on the data
synchronization. It should be noted that because of the active server list
is to be used once leader launches data synchronization proposal, so cou-
pling between data synchronization and servers’ addition and deletion is
the change of the active server list. The new active server list can be used
for synchronization at the next time to commit the proposal after changing
active server list.

(6) Server addition
(6-1) The administrator needs to configure a latest persistent server list for

NS (new server) when a new server wants to add into the cluster.
(6-2) The NS starts up with the adding mode.
(6-3) NS sends the participants in its persistent server list the message

about whether it exists in the others’ persistence server list and which
server is the leader successively. It will execute the leader election
procedure (2-2) if more than quorum of the participants returns the
certain answer, otherwise turn to (6-4) if it just know the leader infor-
mation.

(6-4) NS sends an add request to the leader.
(6-5) Leader broadcasts the proposal about adding a server to the active

participant after receiving the add request from the NS, each partic-
ipant returns an ack after receiving the proposal broadcast.

(6-6) If the leader receives more than quorum participants’ ack, it will
update itself persistent server list and plus 1 to its version, then sends
performing operations to all the active participant.

(6-7) Participants update their persistent server list and version according
to the information of NS in the proposal after receiving the commit
message, then each returns an ack.

(6-8) The leader sends a successful message about addition to the NS after
receiving more than quorum participants’ acks.

(6-9) NS executes the registering procedure (3-7) after receiving the suc-
cessful message about addition from the leader, or restarts executing
the procedure (6-3).



48 X. Zhang et al.

(6-10) Leader updates the quorum number to the �n/2+1� according to the
latest participants’ number after receiving the NS’s registering mes-
sage at procedure (3-7).

(7) Server deletion
(7-1) Administrator just needs to call the deleting interface from any server

(operation server, hereinafter referred to as the OS) in the cluster
when he wants to delete one server from the current system.

(7-2) OS sends request about deleting DS (the server to be deleted) to the
leader.

(7-3) Leader checks whether DS existed in its server list after receiving the
deleting request, it returns ’X may be not existing’ if DS does not exist
in its server list, otherwise sends message of stopping service of DS,
removes the DS from its own server list and updates quorum number
to �n/2-1� and version. If the DS is an active server, it will shut down
itself directly after receiving the message of stopping service from the
leader, it will also turn to election procedure if it has not received
the ping message from leader, then shut down itself through knowing
itself do not exist in the current system from other servers’ feedback;
if DS is a crashed server, leader will delete it from its own persistent
server list and stop send detecting message, which in order to prevent
the crashed server recovering and adding in the cluster.

(7-4) Leader broadcasts the proposal to active participants, participants
delete the DS and update its persistent server list, and then each
returns an ack to leader.

(7-5) Leader sends message about deleting successfully to the OS if it
receives more than quorum participants’ acks.

(7-6) The delete operation is completed after the OS receiving the successful
message about deletion from leader, otherwise OS restarts executing
the procedure (7-2) if it receives the message about deleting failed or
waits for a timeout.

Fig. 1. Reconfiguration with server addition and deletion

Here is an example about the reconfiguration with the server addition and
deletion which is shown in the Fig. 1. The current configuration S contains server
A, B and C, A is the leader, B and C are followers.

A new server D begins to add into the cluster at a time and its persistent
server list is [A,B,C,D], it firstly sends messages whether it exists in the current
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cluster and the leader information to the server A, B and C, all of them returns
leader information. Then it sends adding request to Leader A, Leader A broad-
casts the proposal about adding D to the active server B and C, B and C return
ACK back to leader A, Leader A updates its persistent list to [A,B,C,D] after
receiving more than quorum ACK, and sends committing message to server B
and C, the server B and C updates to the latest persistent list [A,B,C,D] and
return ACK back, the leader A sends the addition success message to server D
after receiving more than quorum ACK, server D turns to registers to leader
A and leader A updates its quorum number from 2 to 3. Server D successfully
adds into cluster.

The leader A sends message about stopping service to server C after receiving
request to delete server C from server B. Server C shuts down itself directly after
receiving the command to stop service from the leader A. Leader A removes
server C from its own persistent list, updates quorum from 3 to 2 and changes
the version, then broadcasts proposal about deleting server C to the active server
B and D. Server B and D keep it in the local disk by the transaction log mode
and return an ACK back after receiving the proposal broadcast, the leader A
receives the ACK messages from server B and D, then sends commit commands
to server B and D. The server B and D update their persistent list to [A,B,D]
after receiving the commit commands and plus 1 to their version, then return
an ACK back. The leader A sends deletion successful message to server B after
it receives more than quorum ACK.

4 Algorithm Analysis and Proof

4.1 Guarantee of Consistency

The algorithm in this paper will modify and synchronize the persistent server list
when add and delete servers. The consistency of persistent server list is affected
by the complex network circumstance (message loss, server crashes, and network
partitions). We should know how consistency problem of the persistent server
list happened before proving the correctness of algorithm, because it directly
influences the motive and principle of the algorithm.

Fig. 2. The custom icons

The consistency problem that may occur during the execution of the algo-
rithm, it can be boiled down to the following two categories:

(1) As servers in normal partition may enter into crashed partition at any times
and servers in crashed partition cannot contact with the servers in normal
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partition, the crashed partition cannot check the change of persistence server
list in normal section, which leads to the disaccord between the crashed
partition and normal partition.

(2) In normal partition, if the message losses or the leader exits during the
process of synchronization about persistent server list when the leader exe-
cutes the adding or deleting operations, the normal partition’s inner persis-
tent server list will not keep consistency.

There are three extreme cases of the consistency problem in the running
process of cluster. First, we give the custom icons used in following steps in Fig. 2.

Consistency Guarantee in Server Addition. The following Fig. 3 shows
how it keeps consistency of server list in server addition step when the leader
goes down.

Fig. 3. Consistency guarantee in server addition

Step 1: There are three servers at startup of cluster, server 1, 2 are followers and
server 3 is leader. All the persistent server lists are [1, 2, 3].

Step 2: Server 4 begins to add into cluster, it polls its persistent server list to look
for the leader, then it sends adding request to server 3, server 3 updates
its server list to [1, 2, 3, 4] and executes two-phase commit protocol after
receiving adding request from 4. Server 2 updates its server list to the
latest while server 1 does not update for some reasons such as unreliable
network or dropped packets, etc.

Step 3: Leader server 3 crashes before it returns successful message back to
server 4, server 1 and 2 restart leader election.

Step 4: For server 4, it waits for timeout and restarts to add into cluster, but it
finds cluster is electing the leader, the server 1 and 2 have updated their
server list to the latest [1, 2, 3, 4], server 4 joins into leader election.

Step 5: Server 4 is elected as the leader because of the biggest zxid, server 4
adds successfully.
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Consistency Guarantee in Server Deletion. The following Fig. 4 expounds
how it keeps consistency of server list in servers’ deletion when leader fails.

Step 1: There are 3 servers in cluster, and 3 is leader, now server 4 adds into
the cluster successfully.

Step 2: Leader 3 receives the request of deleting server 4, and sends message
of stopping service to server 4. The message loses because of network
malfunction or dropped packets, but server 3 updates its server list to
[1, 2, 3].

Step 3: Leader server 3 sends deletion proposal to active servers, only server
2 responses and updates its server list to [1, 2, 3]. Server 4 restarts to
leader election as losing heartbeat from leader 3.

Step 4: If server 3 crashes now, server 1, 2 will restart to leader election.
Step 5: Server 1, 2, 4 send votes to each other and update to the latest server list

([1, 2, 3]), server 4 finds itself is not in the latest server list and will shut
down. Server 2 becomes the leader because of the bigger zxid among the
active servers.

Fig. 4. Consistency guarantee in server addition

Consistency Guarantee in Server Recovery. The following Fig. 5 exposits
how it keeps consistency of server list in servers’ recovery when leader goes down.

Step 1: there are three servers in the cluster, server 1 was isolated due to network
partition and it is in state of leader election, server 3 is elected as the
leader.

Step 2: server 4, 5, 6 add into cluster successfully some time later.
Step 3: server 3 failed after deleting server 2 successfully, the rest servers restart

to leader election.
Step 4: server 6 is elected as the leader, then cluster deletes server 3 successfully.
Step 5: server 1 recoveries from the crash as network partition disappears, it

sends votes to server 2 and 3 but gets no reply. Server 1 receives the
exploring message from leader 6, gets the latest server list and registers
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to server 6, and then it adds into cluster successfully. (For crashed server,
leader sends exploring message to them every 3 T times for detecting
their recovery).

Fig. 5. Consistency guarantee in server addition

4.2 Algorithm Proof

The algorithm in this paper supports adding and deleting server dynamically
when the system is running, and ensures the correct operation of the system
under the complex network circumstance (message loss, server crashes, network
partitions) at the same time. The algorithm meets the following two characters:

Property 1. For any two servers (A,B) of the cluster, if their versions of per-
sistent list meet V ersion(A) > V ersion(B), then the persistent server list of A
must contain server B.

Illustration: Property 1 makes sure that any two participants can exchange their
persistent server list according the election step (2-2) -(2-4) when partition con-
tains any number of servers. So it will not happen that servers cannot commu-
nicate with each other because of the inconsistency of the persistent list, thus
providing the safeguard for subsequent algorithm.

Proof.

(1) In procedure (1-1), all servers’ persistent list keep consistency at startup,
the version is 0, and each server’s persistent list concludes all servers’ infor-
mation, so Property 1 is corrected.

(2) In procedure (6-1), before adding a new server, the new server should know
all servers’ information and obtain the biggest version of persistent server list
from the leader after the success of the addition, thus Property 1 is corrected.
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(3) In procedure (7), the service of the DS needs to be stopped first, leader then
deletes it from its persistent list. It will not recover for a deleted server, so it
will never happen that the deleted server is still working but not existing in
other servers’ persistent list, thus proving the correctness of the Property 1. ��

Property 2. Let n denotes the number of participants in the system (including
active and crashed servers), then the system will elect a unique leader eventu-
ally and provide the service in a network partition that its numbers of active
participant are not less than �n/2+1�.
Illustration: Property 2 guarantees that the algorithm can elect a unique leader
to provide service when more than quorum of participants are active and they
can communicate with each other inner one partition, so the consistency problem
caused by multiple leaders that run concurrently.

Proof.

(1) The persistent list of all servers is consistent at the startup, so it can ensure
the correctness of Property 2 by the quorum principle in the electing proce-
dure (2).

(2) Only more than quorum of participants’ persistent list keep consensus can
the leader provide service in procedure (3).

(3) Only leader ensures that more than quorum of participants’ persistent list
keep consensus can it returns the successful message about server addition
or deletion in procedure (6) or (7) of algorithm steps.

(4) There are more than quorum of participants inner current system have
updated to the latest persistent list when the system returns the success-
ful message about adding or deleting server, these participants make up set
A, and because more than quorum of participants in current system are
survival, these servers make up set B, so set A and set B have an intersec-
tion and set B must have some servers that own the latest persistent list,
then participants inner set B will finally update to the latest persistent list
according to procedure (2), this guarantees the correctness of the Property 2.

(5) There are two cases when system returns failed message about adding or
deleting server:
(5-1) Only less than quorum of ensemble inner system update to the latest

persistent list;
(5-2) There are more than quorum of participants updating to the latest

persistent list, but the successful messages about adding or deleting
server are lost in the procedure (6-8) or (7-5) of algorithm steps. The
servers submitted request wait to time out.

So it can be concluded from the executor: successful addition or deletion
is certain, but failed addition or deletion maybe not. If one sends message to
the other when any two servers communicate with each other inner unreliable
network circumstance, only one receives the reply message can we make sure the
other have received the sending message, otherwise it is not sure whether the
other receives the sending message.
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Starting from this logic, when the system returns the failed message about
server addition or deletion, the algorithm will retry constantly and not execute
the next addition or deletion operations until it succeeds. This can finally make
up system’s consensus problem and provide guaranty for the Property 1 and 2.
From the sight of the system, the system is problematic if it returns failed mes-
sage about server addition or deletion, it makes no sense to execute the follow-up
operation of addition and deletion. ��
Property 3. Let n denotes the number of participants in the current system
(including active and crashed servers), it will not elect a leader inner one partition
that its active participants are less than the �n/2+1�.
Illustration: The Property 3 avoids more than one leader appearing in the system,
it will not elect a leader when less than quorum of participants constitutes a
partition because of the inconsistent problem of persistent list (It may reduce
the quorum requirements because the server list in this partition may be old and
participants in its persistent list are limited).

Proof.

(1) There is a set A consists of m active participants in a partition that has less
than quorum of participants, 2 ∗ m <= n;

(2) Let a denotes the participant whose version of persistent list is the biggest
in set A.

(3) According to the electing procedure (2), the persistent server list of active
participants in set A will keep consistent with server a.

(4) By reduction to absurdity, assumes that the Property 3 is false: set A can
elect a leader, then if persistent list of server a contains k servers, it must
satisfy this conditions: k < 2 ∗ m.

(5) Because k < 2 ∗ m and 2 ∗ m <= n, so k < n, which means that server
a malfunctions at some point during the system running and it have not
updated to the latest version that contains n servers’ information.

(6) According to the Property 1, server a has the biggest version in the set A,
so its persistent list inevitably contains all participants of set A, this means
set A has m participants at least.

(7) There must contain serval servers’ addition and deletion from the former
system that it contains k participants when server a fails to the current
system contained n participants, and only more than quorum of participants’
update to the latest persistent list successfully can the leader returns the
successful message. Let set B denotes the quorum of participants before
server a fails, so only make sure more than servers in set B are survival at
least before server a malfunctions can we ensure the successful execution of
the follow-up servers’ addition or deletion.

(8) As participants in set B execute servers’ addition or deletion successfully
after server a fails, so the versions of all the participants’ persistent list in
set B are certain bigger than the versions in set A. So the set A and set B
must be no intersection.
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(9) Combined with the above procedures (6), (7), (8), we have the following
conclusions:
(9-1) Set A has m participants at least.
(9-2) Set B should have more participants than set A, so set B has m + 1

participants at least.
(9-3) The persistent server list of server a must contains set A and B, and

set A and B must be no intersection.

It can conclude that k ≥ 2 ∗ m + 1, while this is the contradiction with the
assumption about k < 2m in procedure (4). Thus proving the correctness of
Property 3. ��

5 Evaluation

In this part, we mainly evaluate the robust election algorithm supporting dynam-
ical reconfiguration from the following two parts: function test and performance.
We used 9 servers to build a ZooKeeper cluster for the evaluation, each server
has one Inter Xeon dualcore 2.4 GHz processor, 4 GB of RAM, 1 Gigabit Ether-
net, and two SATA drives. The operating system is Red Hat Enterprise Linux
Server release 5.4 (Tikanga), Linux Kernel version is 2.6.18 and the java version
is 1.7.0 51.

5.1 Function Test

The function test aims at ensuring the cluster can work normally under vari-
ous complex situations, we devided it into three parts: test for server addition,
deletion and recovery. The cluster scale consists of three cases: single participant
(P ), two participants (P2, PO) and multiple followers and observers (PmOn).
The moment for the server addition, deletion and recovery should consider the
current cluster status (normal, electing, crashed). The operated server status
includes follower and observer.

It needs to be considered for server addition and deletion is whether servers
can be successfully added or deleted or not when the crashed servers happen to
recover from the crash at the moment of server addition and deletion. And for
the sever recovery, after multiple servers’ addition and deletion, some crashed
server may no longer have any current cluster’s configuration information, but
more than quorum active servers still keep the crashed server’s information, the
crashed server can add into the cluster by leader’s exploring message when it is
recovered from crash. In an extreme case, the persistent server list of crashed
server contains [1, . . .m] while the current cluster is [m, . . . n]. The crashed server
is m. It can register to the leader and successfully add into the cluster after it
recovers from the crash and receives the leader’s exploring message.
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Fig. 6. The comparison on operations

5.2 Performance Test

We used the ZooKeeper Benchmark tool provided by the Computer Science
department of Brown University which measures the perrequest latency of a
ZooKeeper ensemble for a predetermined length of time [20] to the throughput.

The benchmark exercises the ensemble performance by handling znode reads,
repeating writes to a single znode, znode creation, repeating writes to multiple
znodes, and znode deletion. These tests can be performed with either synchro-
nous or asynchronous operations. The benchmark connects to each server in
the ZooKeeper ensemble using one thread per server. In synchronous operation,
each client makes a new request upon receiving the result of the previous one. In
asynchronous operation, each client thread has a globally configurable target for
the number of outstanding asynchronous requests. If the number of outstanding
requests falls below a configurable lower bound, then new asynchronous requests
are made to return to the target level.

Fig. 7. Workload for ZK servers with znode read and creation

We use 9 machines to evaluate its performance, the server ID is from 65
to 73, 68 is used for running benchmark, we configure the cluster with three
participants, five observers and one client server. The server 65, 66, 67 are con-
figured as the participants, the rest are set as observers. We named the robust
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election algorithm ZooKeeper+ to facilitate the comparison test. We use the
Release 3.4.5 of ZooKeeper as the comparison. We donot run benchmark on the
leader. During the benchmark, the current rate of request processing is recorded
at a configurable intermediate interval to one file per operation: READ.dat,
SETSINGLE.dat, CREATE.dat, SETMULTI.dat, and DELETE.dat. the oper-
ation time is 600 s, and the request frequency is 800,000 requests per second
for each client. We analyze the *.dat and count the number of operations per
node. Meanwhile, we analyze the ZooKeeper.out under the bin directory of each
node and calculate the election time and initialization time. We mainly make
the comparison about znode reads and creation. We run each cluster for 10 min,
and make the comparison between ZooKeeper and our robust algorithm.

Fig. 8. Comparison between two versions on znode creation

The above Fig. 6 shows comparison on operations in *.dat, num represents
the total number of operations, >10 represents the number of outliers that are
more than 0.01, and tim represents the arithmetic average of the time. It can be
not hard to see the operations in ten minutes between two versions do not have
much difference, and the number of outliers are nearly the same compared with
the huge number of operands. Meanwhile, there is little variation among these
two version on the numbers of total operations.

The Fig. 7 shows the read and write traffic for the cluster during one hour,
each point corresponds to the number of operations in that second. We observe
that the read traffic is much higher compared to the write traffic, that because
the read operations in this workload are getData(), getchildren(), and exists(),
in increasing order of prevalence.

The Figs. 8 and 9 show the comparison between ZooKeeper+ and ZooKeeper
on znode writes and reads during the cluster working normally in one hour, the
ensemble operations are all in the same range, it is nearly the same with the
ZooKeeper, which means ZooKeeper+ works stably as well as the ZooKeeper.

As shown in Fig. 10, it provides the leader election time and initialization
time of two versions. The election and initialization time of ZooKeeper is little
less than the ZooKeeper+, the reasons are as follows. Firstly, server needs to



58 X. Zhang et al.

Fig. 9. Comparison between two versions on znode read

choose the different startup mode according the variable startType, and leader
needs to monitor the adding request from the new server. In addition, servers
need to judge value of the vote information of persistent server list contained
in the votes, they may need to update the persistent server list if its vision is
old. But the above all realize the dynamical server addition and deletion without
restarting the cluster and causing the current service interruption, it gains the
greater scalability.

This section mainly evaluates the robust algorithm from the function and
performance parts. Through the function test, it concludes that the robust con-
sistent election algorithm greatly realizes the expansion of cluster from the sin-
gle node to the multiple nodes. It can add new server and delete the servers
successfully, and it guarantees the recovery of the crashed servers, ensures the
availability and improves the scalability of the cluster. Through the performance
test, compared with the ZooKeeper, the number of operations of two versions in
the same time have no difference nearly, the traffic of the reading and writing
operations are essentially flat, the election and initialization time is little more
than ZooKeeper, but it is acceptable as it gains greater scalability.

Fig. 10. Comparison for the election and initialization time
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6 Conclusion

This paper is focus on the leader election problem in distributed file systems.
Based on the architecture of ZooKeeper, a robust election algorithm supporting
dynamic reconfiguration is proposed. The original standalone mode and distrib-
uted mode are replaced by the unique cluster mode without switching between
prior two modes. The cluster scale is unrestricted, one or two servers can also
elect the leader, it can speed up the leader election through configuring a sin-
gle participant and multiple observers at startup. It realized the dynamic server
addition and deletion without the service interruptions. It speeds up handling
of the transaction as the release of proposals and commands is only send to the
servers in the active server list which maintained by the leader. Then the robust
algorithm and traditional ZooKeeper are fully implemented and tested under
different circumstances. Test results demonstrate that the consistent election
algorithm supporting dynamical reconfiguration has the same performance with
the traditional model and gains greater availability and scalability. In conclusion,
the robust algorithm is meaningful and it makes ZooKeeper more practicable and
flexible.
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