Improved Survey Propagation on Graphics
Processing Units

Yang Zhao®™), Jingfei Jiang, and Pengbo Wu

National University of Defense Technology, Changsha, Hunan, China
{zhaoyang10nudt,pengbo026}0@163.com, jingfeijiang@126.com

Abstract. The development of graphic processing units (GPUs) ensures
a significant improvement in parallel computing performance. How-
ever, it also leads to an unprecedented level of complexity in algorithm
design because of its physical architecture. In this paper, we propose an
improved survey propagation (SP) algorithm to solve the Boolean sat-
isfiability problem on GPUs. SP is a CPU-based incomplete algorithm
that can solve hard instances of k-CNF problems with large numbers of
variables. In accordance with the analysis on NVIDIA Kepler GPU archi-
tecture, a more efficient algorithm is designed with methods of changing
data flow, parallel computing, and hiding communication. For NVIDIA
K20c and Intel Xeon CPU E5-2650, our proposed algorithm can obtain
speed 4.76 times faster than its CPU counterpart.

1 Introduction

Boolean satisfiability problem (SAT) plays an important role across a broad spec-
trum of computer science areas, including computational complexity theory [5],
coding theory [8], and artificial intelligence [6,13]. Obtaining substantial assign-
ments is an important problem in this field. The well-known k-SAT problem is
a classical NP complete problem [5] for all & > 3. The problem is challenging
because of the difficulty in deciding if a random formula can obtain a satis-
factory assignment for a random formula [9,15]. In statistical physics, Mézard,
Parisi and Zecchina proposed a new algorithm Survey Propagation (SP) to solve
k-SAT problems [12]. SP effectively solves large-scale random k-SAT problems.
Based on this advantage, many studies have been proposed in statistical physics
and computer science communities [1-4].

With the development of graphic processing units (GPUs), parallel comput-
ing on GPUs have promoted all kinds of algorithms in recent years [14,16]. For
SAT problems, meaningful works have been proposed. In pSATO, Zhang et al.
[18] proposed a parallel and distributed solver based on their previous serial
solver SATO [17]. This solver uses a master-slave model where the master aims
to balance the work of the slaves to achieve acceleration. Fujii and Fujimoto [7]
used GPU to speedup clause analysis. Luo and Liu [10] implemented cellular
genetic algorithm and local search for 3-SAT problem based on GPU. The per-
formance of an appropriately-designed algorithm based on GPU can be ensured.
However, not all works on SP can perform effectively even in serial computing.

© Springer International Publishing Switzerland 2016
X. Huang et al. (Eds.): GPC 2016, LNCS 9663, pp. 30-41, 2016.
DOI: 10.1007/978-3-319-39077-2_3

Improved Survey Propagation on Graphics Processing Units 31

Most well-known studies involve parallelized SP from the LonestarGPU bench-
mark suite, which is automatically parallelized by Galois. Obviously, this version
has not adequately considered GPU architecture. Manolios and Zhang [11] imple-
mented SP on GPU; however, their work was performed on an NVIDIA GTX
7900 GPU and parallel computation was considered while the time-consuming
part of data transfer was ignored.

Considering the lack of research in this area, we propose an improved SP
based on GPU. We focus not only on parallel computation but also on hidden
communication. We first design an appropriate data structure to store propa-
gation information based on GPU, then divide tasks for the multicore GPU to
balance the load. Furthermore, stream technology is used in hiding communica-
tion, which evidently improves performance.

The rest of this paper is organized as follows. We review the k-SAT problem
and SP in Sect. 2. Then, we describe our proposed algorithm in Sect. 3. Section 4
shows the results of our experiments, and the last section is conclusion.

2 Background and Problem Set-Up

In this section, we introduce notation and terminologies required in the k-SAT
problem and explain SP in detail.

2.1 The k-SAT Problem and Factor Graphs

We define C as index sets for the clauses, V as index sets for variables; they
satisfy |C| = m and |V| = n. We denote variables as letters i, j, k, and so on,
and clauses as a, b, ¢, and so on. z; denotes the subset of variables {z; : i € S}.
In the k-SAT problem, the clause indexed by a € C is specified by the pair
(V(a),J,), where V(a) C V consists of k elements, and J, := (J,; : i € V(a))
is a k-tuple of {0, 1}-valued weights. The clause indexed by a is satisfied by the
assignment z if and only if zy(4) # J,. Equivalently, d(y, z) denotes an indicator
function for the event {y = z}, if we define the function

Wja H 5 aul‘z (1)

i€V (a)

then the clause a is satisfied by z if and only if ¥; (z) = 1. The overall formula
consists of the AND of all the individual clauses, and is satisfied by z if and only
if [[oec W, (z) = 1.

We call the graphical representation of any k-SAT problem provided by the
formalism of constraints as factor graphs. As illustrated in Fig. 1, we use circular
nodes to describe variables, square nodes to describe clauses. If variable ¢ is in
clause a, there is an edge (a, 7). If variable i in clause a is a positive presentation,
the edge (a, 1) is a solid line, while for negative presentation, the edge is a dotted
line.

For each i € V, we define the set C(i) := {a € C : i € V(a)}, which
corresponds to clauses that impose constraints on variable z;. This set of clauses

32 Y. Zhao et al.

Fig. 1. An example of a factor graph with 4 variable nodes ¢ = 1,...,4, 3 function nodes
a, b, c. The formula which is encoded is : F' = (z1Vz2Va3)A(z1 Ve Ve A(x1 VI3V Ta).

can be decomposed into two disjoint subsets, according to whether the clause is
satisfied by x; = 0 or x; = 1 respectively.

C(i):={a€C@i): Ju; =1} (2)
Ct(i):={a€C(i): Js; =0} (3)

Moreover, for each pair (a,i) € E, the set C(i)\a can be divided into two
(disjoint) subsets, depending on whether their preferred assignment of x; agrees
(in which case b € C2(i)) or disagrees (in which case b € C¥(i)) with the preferred
assignment of x; corresponding to clause a. More formally, we define

Ca(i) = {be C)\{a} : Joi = o} (4)
Cu(i) = {be C(i)\{a} : Ja; # Joi}- (5)

2.2 Survey Propagation

In contrast to the naive BP approach, a marginalization-decimation approach
based on SP appears to be effective in solving random k-SAT problems even close
to the threshold. In this case, we provide an explicit description of what we refer
to as the SP(p) family of algorithms, where setting the parameter p = 1 yields
the pure form of survey propagation. For any given p € [0,1], the algorithm
involves updating messages from clauses to variables, as well as from variables
to clauses. Each clause a € C passes a real number 7,_.; € [0,1] to each of its
variable neighbors ¢ € V' (a). In the other direction, each variable i € V passes
three real numbers [], ., = (IT;.,.I1; ... [[;_,) to each of its clause neighbors
a € C(i) (that is the set of clauses that impose constraints on variable z;). The
precise form of the updates is given as follow:
Message from clause a to variable i:

H?—)a
Na—i = H [m s * } (6)
jeV(a)\i H]—)Q+H]—)G+H]—)a

Message from variable i to clause a:

H:Ha - [1 - H (1 - T’b—)z)] H (1 - nb—)z) (7)

beCu (i) beCs (i)

a

Improved Survey Propagation on Graphics Processing Units 33

[T =0-o IT =m0l T =) (8)

beCy (i) beCu (i)
HHQ =[I =m0l J] —m—) (9)
beC; (i) beCu (1)

The following are comments on these SP(p) updates:

1. Although the time-step index was omitted for simplicity, Egs. (6-9) should
be interpreted as defining a recursion on (7, []). The initial values for p are
chosen randomly in the interval (0, 1).

2. The idea of the p parameter is to provide a smooth transition from the original
naive belief propagation algorithm to the SP algorithm. In Eq. (6), setting p =
0 yields the belief propagation updates applied to the probability distribution
[3], whereas setting p = 1 yields the pure version of SP.

Intuitive “Warning” Interpretation. To gain insight into these updates,
the pure SP setting of p = 1 must be considered. As described by Braunstein
et al. [3], the messages in this case have a natural interpretation in terms of
probabilities of warnings. In particular, at time ¢ = 0, we suppose that clause
a sends a warning message to variable i with probability n0_,, and a message
without a warning with probability 1 —n,,_,,. After receiving all messages from
clauses in C'(7)\a, variable i sends a particular symbol to clause a, which indicates
that it cannot satisfy (“u”), that it can satisfy (“s”), or that it is indifferent (“*”)
depending on what messages it received from the other clauses. The following
are the four cases:
1. If variable i receives a warning from C¥(i) and no warning from C2(7), then
it cannot satisfy a and sends a “u” message.
2. If variable ¢ receives a warning from CZ (i) but no warning from C¥(7), then
it sends an “s” message to indicate that it is inclined to satisfy the clause a.
3. If variable ¢ receives no warnings from either C% (i) or C? (%), then it is indif-
ferent and sends a “*” message.
4. TIf variable i receives warning from both C¥(i) or C%(i), a contradiction has
occurred.

Updates from clauses to variables are simple; in particular, any given clause sends
a warning if and only if it receives “u” symbols from all the other variables.

In this context, real-valued messages involved in pure SP(1) all have natural
probabilistic interpretations. In particular, the message 7,_.; corresponds to the
probability that clause a sends a warning to variable i. The quantity [i—a and
Hjﬁa. Normalization by the sum []; , +[1; ., + Hjﬂa reflects the fact that
the fourth case is a failure, and therefore is excluded a priori from the probabil-
ity distribution. We suppose that all possible warning events were independent.
In this case, the SP message update Eqgs. (6-9) would be the correct estimates
for the probabilities. This independence assumption is valid on a graph without
cycles, and in which case the SP updates have a rigorous probabilistic interpre-
tation. Whether or not the equations have a simple interpretation in the case
p # 1 is not clear.

34 Y. Zhao et al.

Decimation Based on SP. We suppose that these SP updates are applied and
converged, and the overall conviction of a value at a given variable is computed
from the incoming set of equilibrium messages as

pioc(l=p [T Q=m-p)] [] @=m—y).

beC+(j) beC=(4)
pi(0) o [L—p H —m-) I] A=mey).
beC—(j) beC+ ()
pi) oo I A=m—y) T[(0 —=m—y)
beC+(j) beC~(4)

To be consistent with their interpretation as (approximate) marginals, the three
variables 1;(0), u;(*), pn; (1) at each node i € V' are normalized to obtain a sum
of one. We define the bias of a variable node as B(i) := |u;(0) — pi(1)].

The marginalization-decimation algorithm based on SP [3] consists of the
following steps:

1. Run SP(1) on the SAT problem. Extract fraction 3 of variables with the
largest biases, and set them to their preferred values.
2. Simplify the SAT formula, and return to Step 1.

Once the maximum bias over all the variables falls below a pre-specified tol-
erance, the Walk-SAT algorithm is applied to the formula to find the remainder
of assignment (if possible). Intuitively, the goal of the initial phases of decimation
is to locate a cluster; once inside the cluster, the induced problem has a sim-
ple solution, which means that any “local” algorithm should perform effectively
within a given cluster.

Algorithm Analysis. The algorithm is described as follow Algorithm 1:

The calculation in line [10] is irrelevant among different variables. The same
condition applies that the calculation in line [7] is irrelevant among different
clauses. However, the second part has a large number of iterations (from line [5]
to line [19] except [17]), which consumes most of the execution time. All of the
iterations are included in the total iteration procedure seeking for convergence.
The execution time of different scales of datasets is shown in Table 1:

Optimization Target. As shown by Amdahl’s law, given n € N, the number
of threads of execution, B € [0, 1], the fraction of the algorithm that we optimize.
T'(n) is the time that an algorithm takes to finish execution of n threads, which
corresponds to:

T(n) = T()(1 - B + %B) (10)

Therefore, the theoretical speedup S(n) that can be obtained by executing a
given algorithm on a system capable of executing n threads of execution is:
T(1) T(1) 1

Sn) = T(n) T(1)1-B+1B) 1-B+1iB (11)

Improved Survey Propagation on Graphics Processing Units 35

Algorithm 1. Survey Propagation

procedure SURVEY PROPAGATION(n variables v, m clauses ¢, maximum iteration
number maxIteration, stripe per cycle stripe, bias threshold biasThreshold)
Initialize all messages variables received randomly
iterationNum «— 0
while not converge and
iterationNum < maxlIteration do
for all v do
calculate the message mc.—.
end for
for all ¢ do
update messages Mmy—.c
end for
iterationNum < iterationNum + 1
fix the stripe most-biased variables
sofb < sum of the bias of all unfixed variables
sofv < sum of the number of all unfixed variables
if sofb/sofv < biasThreshold then
use local algorithm and exit
end if
end while
end procedure

Table 1. Percentage of iteration time in execution time

Input variables | 360 | 560 900 2000 | 4000 |6000
Total time (s) 0.37 1081 |7.75 |530 [32.13 |60.93
Iteration time (s) | 0.36 |[0.78 |7.02 [4.94 |29.86 |56.20
(%) of iteration |97.3 |95.3 [90.5 [93.2 [92.9 |92.2
Input variables | 8000 | 10000 | 12000 | 14000 | 16000 | 18000
Total time (s) 86.20 | 142.81 | 196.13 | 283.58 | 346.67 | 422.59
Iteration time (s) | 79.49 | 131.34 | 180.26 | 259.05 | 315.14 | 386.70
(%) of iteration |92.2 |91.9 91.9 91.3 90.9 91.5

Speedup is directly proportional to the percentage rate of total execution
time. According to the Table 1, taking the iteration procedure as the optimization
target would produce the best speedup time. Thus, our group converted the two
procedures to calculate messages into GPU.

3 Improved SP on GPU

In SP, iteration execution time is more than 90 % of total execution time, while
iteration operations have the potential to run in parallel. Based on the analysis
in Sects. 2.2 and 2.2, we present a framework of the improved SP on GPU.

36 Y. Zhao et al.

3.1 Data Structure

In SP, each variable v; may exist in several clauses, while each clause ¢, may
have many variables. For every v;, its bias (i.e., true or false) needs to be cal-
culated in all the clauses it exists in. Therefore, data correlation exists between
different clauses. To avoid this problem, we use a method to make a copy of
every variable in every clause and gather the messages after message collection.
In the meantime, to quickly find the clauses that a certain variable exists in, we
add the index of clauses to every variable.
In factor graph, we use two edges to present the indirected edge e;.4:

1. €;_4 : edge from v; to ¢, also provides the index of variables in clause ¢;.
2. eq—; : edge from ¢, to v; also provides the index of clauses that variable v,
exists in.

Every pair of edges in opposite directions creates a one-to-one mapping
in massage-passing edges. By storing messages in edges, we can achieve the
message-passing with no correlation using no extra memory and calculation as
illustrated in Fig. 2.

3.2 Memory Hierarchy Optimization

Memory access latency is also a problem in high-performance calculation. Mem-
ory hierarchy can be classified as register, shared memory, local memory, texture
and surface memory, constant memory, and global memory.

Global memory resides in device memory, which is the slowest memory on GPU.

Local memory space resides in device memory; thus, local memory access has
the same high latency and low bandwidth as the global memory access and is
subject to the same requirements for memory coalescence.

Texture and surface memory spaces reside in the device memory and are
cached in the texture cache. Thus, a texture fetch or surface read costs one

Messages from clauses to variables

Messages from variables to clauses

Fig. 2. In factor graph, for the indirected edge, we use two edges to present it with
two directions: one is from variables to clauses, the other is from clauses to variables.

Improved Survey Propagation on Graphics Processing Units 37

memory read from the device memory only on a cache miss. Otherwise, it only
costs one read from the texture cache and is an alternative optimization option.

Shared memory is on-chip; therefore, it has significantly higher bandwidth
and significantly lower latency than the local or global memory. Shared memory
appears to be the best option to optimize our program. However, its disadvantage
is its 48 KB capacity, which is insufficient for this program.

Consequently, we focus on maximizing the use of the register. A main dif-
ference between CPU and GPU is the method of mapping registers. CPU uses
register renaming and stack to execute multiple threads. The context switch pro-
cedure must save data in registers and load new data. By contrast, GPU aims
to allocate all registers to every thread. It only needs to change the pointer of
the register group, which involves no cost.

3.3 Data Communication and Calculation

Communication influences parallel computing. Although communication is nec-
essary to ensure the correctness of the program, it always consumes part of the
speedup gained using multi-threads. Our group reduced communication costs by
hiding communication, which clearly improves performance.

Cutting Down Communication. Transferring all data between CPU and
GPU is not necessary when using GPU. We need all information on variables,
clauses, and their copies in the optimization procedure, while we only need part
of the information in other parts of the algorithm. Therefore, we can initialize
the data of copies of clauses and transfer them to GPU only once and then leave
it in GPU to reduce communication time.

Communication Hidden. After the messages from clauses to variable opti-
mization procedure, the calculation of messages for every variable is performed.
No change in this procedure in GPU occurs, while calculation is performed there-
after, which is needed in CPU. Copies of variables need to be transferred from
GPU to CPU. Thus, we can perform parallel communication and GPU calcula-
tion as illustrated in Fig. 3.

4 Experiment

We applied our proposed methods to the data set of SAT2009. We evaluated
the optimizing method using different data set sizes and achieved performance
improvement. Specifically, hidden communication is different from preceding work
and shows improvement, which leads to a new way of optimizing the algorithm.

4.1 Experimental Platform

We implement our improved survey propagation on an Intel Xeon CPU E5-
26500 @ 2.00GHz 2.00GHz(double core) with a NVIDIA Tesla K20c GPU. The
operating system consists of 64-bit Windows 7 with a total memory of 64 GB
RAM. Both CPU and GPU run at high speed.

38 Y. Zhao et al.

Stream 1 Stream 2
Calculating Transfering
Time Transfering Calculating
axis
Calculating Transfering
~=

Fig. 3. Two streams can execute in parallel using one when one is calculating while
the other is transfering data.

4.2 Data Structure Optimization Results

We use the data structure we previously defined to make the algorithm execute
concurrently. Using parameters BLOKS = 2, THREADS = 1024, we obtain
satisfactory results, as shown in Figs.4 and 5.

Fig. 4. The x-axis represents the number of variables, the y-axis represents the execu-
tion time(ms). The blue ones stand for CPU, the others stand for GPU only with data
structure optimization. (Color figure online)

From the figures, the algorithm using our data structure running in GPU is
faster than that in CPU using the entire data set. This task is only the begin-
ning of our optimization process; speedup is highly significant because of the
availability of high-speed CPU today.

Improved Survey Propagation on Graphics Processing Units 39

25

201
2 193

164 165 169 qp4 168

158

05

Fig. 5. The x-axis represents the number of variables, the y-axis represents the speedup
of GPU to CPU.

Table 2. This table gives the influence of allocation of register by changing the com-
bination of BLOCKS and THREADS.

Number of variables 2000 4000 6000 8000
Initial THREADS x BLOCKS |2 x 1024 |2 x 1024 |2 x 1024 | 2 x 1024
Execution time of GPU (ms) 3736 15983 31539 | 52627

Best THREADS x BLOCKS 64 x 128 | 64 x 256 | 256 x 64 | 128 x 128
Best execution time of GPU (ms) | 1999 7686 14778 24971

Speedup to initial GPU 1.87 2.08 2.13 2.11
Number of variables 10000 12000 14000 18000
Initial THREADS x BLOCKS |2 x1024 |2 x 1024 |2 x 1024 | 2 x 1024
Execution time of GPU (ms) 86597 116021 | 172914 | 267539

Best THREADS x BLOCKS 64 x 128 |64 x 64 |16 x 512 | 32 x 256
Best execution time of GPU (ms) | 42097 | 60635 89458 127950
Speedup to initial GPU 2.06 1.91 1.93 2.09

4.3 Memory Hierarchy Optimization Results

We try different combinations of BLOCKS and THREADS, in which GPU
would change the allocation of registers to different threads.

The best performance is more surprising than the initial ones. Detailed data
are reported in Table 2.

By choosing the proper allocation of registers, the entire data set performed
faster, which means that memory hierarchy is necessary in optimization. The
speedup to the initial combination (BLOCKS « THREADS = 2 % 1024) can
reach up to 2.13, which cuts processing time in half, enabling the speed of our
program to run at a new level.

40 Y. Zhao et al.

Table 3. This is the speedup using stream method hiding communication to without
using stream method when number of variables is 8000. It includes different BLOCKS
and THREADS combinations. Almost all conditions are improving the performance.

THREADS

BLOCKS 8 |16 |32 |64 [128 256 |512 (1024
4 1.11
8 1.05 |0.93
16 1.25(1.169(0.94
32 1.11{0.92(1.04 |1.12
64 1.30(1.27|1.08|1.09 [1.15
128 1.27(1.20|1.06{1.08|1.21

256 1.22{1.27|1.13|1.02

512 1.09(1.13|1.05|1.14{1.03

4.4 Data Communication Optimization Results

When the stream method on hidden communication is used as described in
Sect. 3.3, the algorithm executes faster. Data communication optimization con-
tributes to the data set as shown in Table 3.

Speed gain is not obvious as in other optimization methods. First, we have
yet to investigate certain parallelism on data transfer and calculation. Second,
hidden data transfer does not take a large amount of time. However, reducing
data transfer time enables our program to run faster.

4.5 Final Optimization Results

By using all the methods we previously mentioned, we obtain satisfactory results.
All the methods can be applied in one program, which improves SP to enable
GPU to run faster than CPU. The final optimization results are shown in Table 4.
The highest speed can reach 4.76 times faster on Intel Xeon CPU 5-2650.

Table 4. Speedup to CPU in final optimization

Number of variables | 2000 | 4000 | 6000 | 8000 | 10000 | 12000 | 14000
Speedup to CPU 2.85 14.76 |4.45 |3.77 |3.70 |3.83 |3.40

5 Conclusion

In this paper, we propose an improved SP-based GPU. According to the analysis
of GPU architecture, a new data structure is defined to adapt the calculation.
Then, we equally divide the tasks for every processor and use stream technology
to save time on calculation and data transfer. As the experiments demonstrate,
our proposed algorithm can achieve 4.76x speedup in NVIDIA K20c to Intel
Xeon E5-2650.

Improved Survey Propagation on Graphics Processing Units 41

Acknowledgements. This work is funded by National Science Foundation of China
(number 61303070). Dr. Jingfei Jiang was an academic visitor at University of
Manchester. We acknowledge TianHe-1A supercomputing system service.

References

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp
threshold. STAM J. Comput. 36(3), 740-762 (2006)

Braunstein, A., Mézard, M., Weigt, M., Zecchina, R.: Constraint satisfaction by
survey propagation. In: Computational Complexity and Statistical Physics, p. 107
(2005)

Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Struct. Algorithms 27(2), 201-226 (2005)

Braunstein, A., Zecchina, R.: Survey propagation as local equilibrium equations.
J. Stat. Mech. Theory Exp. 2004(06), P06007 (2004)

Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151-158. ACM
(1971)

Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)

Fujii, H., Fujimoto, N.: GPU acceleration of BCP procedure for SAT algorithms.
IPSJ SIG Notes 8, 1-6 (2012)

Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21-28
(1962)

Levin, L.A.: Average case complete problems. SIAM J. Comput. 15(1), 285-286
(1986)

Luo, Z., Liu, H.: Cellular genetic algorithms and local search for 3-SAT problem on
graphic hardware. In: IEEE Congress on Evolutionary Computation, CEC 2006,
pp. 2988-2992. IEEE (2006)

Manolios, P., Zhang, Y.: Implementing survey propagation on graphics processing
units. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 311-324.
Springer, Heidelberg (2006)

Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random
satisfiability problems. Science 297(5582), 812-815 (2002)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Burlington (2014)

Tao, T., Xuejun, Y., Yisong, L.: Locality analysis and optimization for stream
programs based on iteration sequence. J. Comput. Res. Dev. 6, 027 (2012)
Wang, J.: Average-case computational complexity theory. In: Complexity Theory
Retrospective 11, pp. 295-328 (1997)

Wen, M., Su, H., Wei, W., Wu, N., Cai, X., Zhang, C.: High efficient sedimentary
basin simulations on hybrid CPU-GPU clusters. Cluster Comput. 17(2), 359-369
(2014)

Zhang, H.: SATO: an efficient prepositional prover. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249, pp. 272-275. Springer, Heidelberg (1997)

Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symbolic Comput. 21(4), 543-560
(1996)

	Improved Survey Propagation on Graphics Processing Units
	1 Introduction
	2 Background and Problem Set-Up
	2.1 The k-SAT Problem and Factor Graphs
	2.2 Survey Propagation

	3 Improved SP on GPU
	3.1 Data Structure
	3.2 Memory Hierarchy Optimization
	3.3 Data Communication and Calculation

	4 Experiment
	4.1 Experimental Platform
	4.2 Data Structure Optimization Results
	4.3 Memory Hierarchy Optimization Results
	4.4 Data Communication Optimization Results
	4.5 Final Optimization Results

	5 Conclusion
	References

