
Minimizing Confident Information Coverage
Breach in Rechargeable Wireless Sensor
Networks with Uneven Recharging Rates

Zehui Xiong and Bang Wang(B)

The School of Electronic, Information and Communications,
Huazhong University of Science and Technology (HUST), Wuhan, China

wangbang@hust.edu.cn

Abstract. In this paper, we study the problem of minimizing the net-
work coverage breach in a rechargeable wireless sensor network (RWSN).
Due to the node density and charging capability constraint, it may hap-
pen that a RWSN cannot provide required area coverage some time, yet
it may recover later on after obtaining enough recharged energy. To min-
imize the coverage breach, we propose a family of sensor scheduling algo-
rithms, each of which uses an utility function to greedily choose an active
node in each step. Furthermore, we consider a new confident information
coverage model that is more efficient for environment monitoring appli-
cations. Since this new coverage model takes into consideration of the
collaborations in between sensors, it may still exist coverage-redundant
active sensors after the scheduling. We then propose another redundancy
removal algorithm to further optimize the selected active nodes. Simu-
lation results show that our algorithm with both coverage and energy
capability considerations can outperform the traditional coverage-based
scheduling algorithm in terms of much smaller breach rate.

1 Introduction

Wireless Sensor Networks (WSN) have many applications in precision agricul-
ture [1], where sensors are deployed to monitor the soil temperature, humidity
and salinity. Network coverage which can reflect the monitoring performance
has been widely used to evaluate the quality of service of a WSN [15]. The sen-
sors’ sensing capability and quality can be abstracted by the coverage model,
which, however, can be defined in different ways due to the wide range of sensor
types and functionalities [15]. Although the simplistic disk coverage has been
widely used, it may not be the most appropriate one for such monitoring appli-
cations. In this paper, we consider a novel confident information coverage (CIC)
model [16], which is based on the theory of field reconstruction and can be used
for many physical phenomenon monitoring applications. In Sect. 2, we will briefly
introduce the CIC model.

Network lifetime is another important performance metric. In traditional
non-rechargeable WSNs, network lifetime is often defined as the maximum time
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duration till the required network coverage cannot be assured by all available
sensor nodes. As such non-rechargeable battery-powered have only limited oper-
ation time, therefore the whole network lifetime is not infinite. In order to extend
network lifetime, sensor activity scheduling can be used to organize sensors into
a series of set covers and then work alternatively, each satisfying the network
coverage requirement.

Recently, rechargeable sensor nodes that can harvest energy from environ-
ment have been proposed to be used in WSNs to improve network lifetime
[3–5,10,11,13,14,18–21]. A good survey on how energy harvesting sensor nodes
can be used to improve WSN performance can be found in [14]. Most existing
works have studied the problem of scheduling rechargeable sensor nodes for tar-
get coverage based on the simplistic disk model [4,5,11–13,18–20]. They assume
an energy harvesting sensor network is with limited lifetime and they consider
the continuous coverage similar as in the non-rechargeable WSNs. Their com-
mon objective is to schedule sensor activity efficiently to prolong the lifetime
while ensuring the coverage requirement continuously. Furthermore, in most of
these studies [3,4,11,12,17,20], a centralized controller is assumed to know the
exact battery level information and locations of all nodes. However, most of these
studies have not considered the different charging capabilities for sensors located
at different geographic locations.

A WSN consisting of all rechargeable nodes can achieve infinite lifetime in
theory. However, due to the node density and charging capability constraint, it
may happen that a RWSN cannot provide required area coverage some time, yet
it may recover later on after obtaining enough recharged energy. We call this
temporarily loss of coverage requirement as coverage breach, which was previ-
ously termed for traditional non-chargeable WSNs for target coverage yet with
feedback bandwidth constraint [2,17]. In [2], sensor activity scheduling based
on coverage contribution has been proposed to minimize coverage breach; While
in [17], both coverage contribution and residual energy have been considered.
But both of them have not considered the charging capability in rechargeable
WSNs, yet applying the simplistic disk model for target coverage.

In this paper, we study the minimum coverage breach problem in a recharge-
able WSN based on the CIC model. To solve this problem, we propose a family
of greedy heuristic active sensor selection algorithms for constructing set cov-
ers each satisfying the application coverage requirement. In the set coverage
construction, the algorithms greedily select one active sensor node with the maxi-
mum utility at each step. We design several utility functions, which take into con-
sideration of the coverage contribution, remaining energy and predicted charging
energy. Since this new CIC model considers the collaborations in between sen-
sors, it may still exist coverage-redundant active sensors after the scheduling.
We then propose another redundancy removal algorithm to further optimize
the selected active nodes. Simulation results show that our algorithm with both
coverage and energy capability considerations can outperform the traditional
coverage-based scheduling algorithm in terms of much smaller breach rate.
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The rest of the paper is structured as follows. The system model is intro-
duced in Sect. 2 and we precisely define our problem in Sect. 3, Sect. 4 presents
a family of greedy heuristic solutions. Simulation results are provided in Sect. 5,
and Sect. 6 concludes the paper.

2 Preliminaries

2.1 Confident Information Coverage

The CIC model [16] is based on the theory of field reconstruction. We assume
that a specific physical phenomenon within the sensing field needs to be moni-
tored. Let zt(x) denote the true value of the physical attribute at a reconstruc-
tion point x, and ẑt(x) denote its estimated value. We use the time-average
root mean square error (RMSE) to evaluate the reconstruction quality for each
reconstruction location, that is,

Φ(x) ≡
√
√
√
√ 1

T

T∑

t=1

(zt(x) − ẑt(x))2). (1)

Given a reconstruction function and reconstruction requirement ε, a space point
x is called being Φ-covered, if Φ(x) ≤ ε. A sensor field is said being completely
Φ-covered, if all the space points within the field are Φ-covered.

In many applications, the physical phenomenon can be modeled as a second-
order stationary stochastic process. We can adopt the widely used ordinary
Kriging [6,7] as a reconstruction function. Furthermore, we use only those sensor
nodes located within the correlation range of a space point for its attribute recon-
struction. This is due to that the spatial correlation of a physical phenomenon
is often within a limited range. We note that after some further mathematical
transformations, whether a point is Φ-covered can be determined by the geomet-
ric relations among the point and the sensors within its correlation range.

2.2 Energy Charging Model

Each rechargeable sensor node can harvest energy by its solar panel, but it can
only be charged in the sleep state, since in many cases each node is equipped
with only one rechargeable battery with a simple switch circuitry [9,20]. We
adopt an approximate one-day energy charging model for each solar panel [8],
which uses a quadratic curve to model the solar energy harvested in the daytime;
While in the night, the harvested energy is zero:

Ec(k) = Emax × (− 1
36

κ2 +
2
3
κ − 3), κ = mod (k, 24), k = 1, 2, ... (2)

where Emax is the maximum charging rate and κ = mod(k, 24) is to obtain
the remainder after k is divided by 24 h of a day.
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Table 1. Symbols and notations

Symbol Notation

S The set of all rechargeable nodes

N(k) The number of the nodes (slots)

i(k) The index of the nodes (slots)

Smax
i The maximum energy storage of the node i

Einit
i The initial energy of the node i

Emax
i The maximum charging rage of the node i

Er
i (k) The remaining energy of the node i at the beginning of the slot k

Es
i (k) The consumed energy of the node i in the slot k

Ec
i (k) The charged energy of the node i in the slot k

Ck The set cover in the slot k

ε The CIC RMSE threshold

Φ(Ck) The Φ-coverage ratio of the set cover Ck

Φth The network Φ-coverage requirement

In practice, since the solar panel and recharge battery are not cheap, the solar
panel size and battery storage capacity are generally not made very large. The
charging rate is determined by the size of a solar panel. So the maximum battery
capacity can be set to store the maximal chargeable energy in a whole day. On
the other hand, it is possible that different nodes are equipped with different sizes
of solar panel. Furthermore, solar power generation depends on the intensity of
solar radiation, and obstruction of sunlight can impact on the charging rate. In
a large sensor field, sensor nodes are widely distributed at different locations,
and it is not uncommon that some sensor nodes may be within the shadow of
foliage and crops for different times. Therefore, the charging rates are uneven
across sensor nodes.

3 Problem Statement

We consider a randomly deployed WSN consisting of rechargeable sensor nodes,
each equipped with a solar panel and a rechargeable battery. We assume that
each sensor node can be in one of two states: active and sleep. In the active
state, a sensor node samples the physical phenomenon and consumes an amount
of the energy stored in its battery. Furthermore, a sensor node in the active state
cannot charge its battery. In the sleep state, a sensor node consumes negligible
energy, but it can charge its battery.

In traditional non-rechargeable WSNs, the battery of each sensor node is
with limited capacity and is not rechargeable. Therefore, the operational time of
a sensor node is not infinite, and so is a non-rechargeable WSN. Sensor activity
scheduling is a common approach to extend the network operational time by
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alternatively activating only a subset of sensors at a time. The scheduled active
sensors need to meet the network coverage requirement. The network lifetime is
often defined as the maximum time duration till the network coverage cannot
be guaranteed by all available sensors.

In rechargeable WSNs, a sensor node can be recharged after its battery deple-
tion. In theory, the operational time of a rechargeable node can be infinite, and
so is a rechargeable WSN. However, as a sensor node cannot charge all the
time, like in the night and in the active state, the totally available sensors with
enough battery energy may not be enough at sometimes, which can lead to cov-
erage breach, i.e., the network coverage requirement cannot be achieved even
with all sensors being active sometimes. In this paper, we study the coverage
breach problem in such a rechargeable WSN.

Coverage breach can be avoided by deploying more nodes and/or equipping
larger solar panel and rechargeable battery, but this approach is too expensive.
In a rechargeable WSN, coverage breach is not permanent, but can be self-
recovered after sensor nodes are recharged. We can adopt the sensor scheduling
approach to alternatively activate sensors, such that the coverage requirement
can be satisfied by active sensors, yet the network breach can be minimized.

In this paper, we divide the continuous time line into consecutive slots with
equal length. In one slot, a sensor can be in either active or sleep state. In
the beginning of each slot, a sensor node is called a candidate if its remaining
energy can support the whole slot. In the beginning of each slot, we select active
sensors from all candidates to form a set cover by which the network coverage
requirement can be achieved. The worst case is that a coverage breach occurs,
even if all the candidates are active. If this happens, we have two options: One
is still to activate all candidates to only fulfill partial coverage requirement; The
other is to deactivate all nodes such that they can have chances to recharge. In
this paper, we choose the latter option, as our main objective is to minimize the
average breach rate in a long term viewpoint, other than differentiating breaches.

Table 1 summarizes the symbols and notations. We next provide the problem
formulation as follows. Consider a long term duration consisting of K slots, the
breach rate is defined as

BR =
1
K

K∑

k=1

(Φ(Ck) < Φth), (3)

where I(·) is an indicator function. I(Φ(Ck) < Φth) = 1, if Φ(Ck) < Φth; Other-
wise, it equals to 0. Note that a set cover can be an empty set, which means no
rechargeable nodes been selected to be active.

The problem of minimizing coverage breach rate can be formulated as:

Minimize
K

BR =
1
K

K∑

k=1

I(Φ(Ck) < Φth)

Subject to 0 ≤ Er
i (k) ≤ Smax

i , ∀k = 1, 2, ..,K,∀i ∈ S;
Er

i (k) > Es
i (k), ∀k = 1, 2, ..,K,∀i ∈ Ck;
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Fig. 1. Illustration of breach schemes.

Where

Einit
i = Smax

i ,∀i ∈ S;
Er

i (k + 1) = min{Er
i (k) + Ec

i (k), Smax
i },

∀k = 1, 2, ..,K,∀i �∈ Ck;
Er

i (k + 1) = max{Er
i (k) − Es

i (k), 0},

∀k = 1, 2, ..,K,∀i ∈ Ck;
I(Φ(Ck) < Φth) ∈ {0, 1},∀k = 1, 2, ..,K;

Remarks:

• The first constraint guarantees that the remaining energy does not exceed
the maximum storing energy of each sensor si across the lifetime and it is
non-negative.

• The second constraint guarantees that the remaining energy of each selected
active sensor is not smaller than consumed energy in a time slot.

We further illustrate our problem in Fig. 1. We consider a long duration of
K slots. There may exist coverage breach in some time slots. For example in
Fig. 1, C3 is a breach slot. In a breach slot, all the rechargeable sensor nodes will
switch to the sleep state. Note from Fig. 1, the required Φ-coverage can still be
guaranteed in the 5th slot, if some nodes have recharged enough energy in the 4th
slot. Therefore, although a RWSN can in theory work infinitely, coverage breach
may happen due to the lack of sensor density and charging capability. For this
new characteristic of RWSNs, few work have been done before for minimizing
coverage breach. Although an optimum solution to the minimum breach rate
problem may be found through exhaustive search for all possible set covers in
all slots, its computation complexity is very prohibitive. In the next section, we
propose a family of greedy selection algorithms to approach this problem.

4 Heuristic Solutions for Breach Minimization

In the beginning of each slot, the proposed algorithm constructs a set cover to
satisfy the network coverage requirement. The set cover is initiated as an empty
set. The basic idea of these algorithms is the same: A set cover is constructed by
greedily selecting the sensor with the largest utility to be included into the set
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Table 2. Pseudo-codes for set cover construction

Algorithm 1. Energy-efficient Greedy Scheduling Algorithm

Input: S: all the rechargeable sensors; Φth: required Φ-coverage;
Define: SC : set of selected sensors; Φ(SC): current Φ-coverage;
I: candidate sensor nodes set;

01: SC = I = ∅; Φ(SC) = 0;
02: For each si ∈ S in the kth slot
03: if Er

i (k) > Es
i (k)

04: I = I ∪ {si};
05: EndFor

/* Until the coverage requirement is satisfied
or no candidate can be found */

06: While Φ(SC) < Φth or I �= ∅
/* Greedy select a sensor with the largest utility */

07: si = arg max
i∈I

U(si);

08: SC = {si} ∪ SC ;
09: Compute Φ(SC);
10: EndWhile
11: If Φ(SC) < Φth

12: SC = ∅;
13: else
14: SC = RR(SC);
15: EndIf
16: return SC ;

cover in each step, until the coverage requirement is satisfied or all the candidates
are included into the set cover.

Table 2 provides the core pseudo-codes of the proposed algorithms. In the
beginning of each iteration, we first obtain the candidate sensor sets I (line 4).
In each iteration of the While loop, it constructs one set cover until the required
Φ-coverage is guaranteed or the candidate set is empty (line 6). In each iteration
for sensor selection, we choose the one with the largest utility (line 7). When
it cannot find a set cover to provide required Φ-coverage, a coverage breach
happens and all selected sensor nodes switch to sleep state (line 12); Otherwise,
we implement the redundancy removal algorithm to optimize the constructed set
cover (line 14). We next present our proposed utility functions and redundancy
removal algorithms.

4.1 Utility Function

Coverage Contribution: The first utility function is purely based on the Φ-
coverage contribution. For a sensor si, its Φ-coverage contribution is defined as
the newly increased Φ-coverage ratio, if it is included into the set cover Ck:

ΔΦ(si) = Φ(Ck ∪ {si}) − Φ(Ck) (4)
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Fig. 2. Illustration of scheduling scheme. (Color figure online)

According to the CIC property, if a single sensor is used for Φ-coverage, its
covered area is actually the disk coverage model, i.e., a disk centered at itself
with a radius r. However, when two sensors within the correlation range are
used for Φ-coverage, their covered area is in general more than the union of their
respective coverage disks. For example, in Fig. 2, we use a disk to illustrate the
coverage of a single sensor; yet the yellow region surrounding the sensors s1 and
s2 is the Φ-covered area by the two sensors. Clearly, the concept of Φ-coverage
expands the disk coverage, yet it can still maintain the same coverage quality in
terms of the RMSE of Φ-covered area being larger than the same threshold.

Therefore, when computing the Φ-coverage of Φ(Ck ∪{si}), not only the area
within the sensing radius si should be considered, but also the area that could be
covered by the collaboration of si and some sensors in Ck within the correlation
range of si. For example, in Fig. 2(a)–(d), the blue, green, magenta and cyan
area represents the coverage contribution ΔΦ(s3), ΔΦ(s4), ΔΦ(s5), and ΔΦ(s6),
respectively. Among them, the sensor s3 has the largest coverage contribution.
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The first utility function is hence defined as:

U(si) = ΔΦ(si). (5)

The above utility function is efficient in selecting the least number of sensors.
However, it may happen that a sensor could be selected into multiple consecutive
set covers, which leads to its loss of recharging opportunities and even renders
its temporarily shutdown. Coverage breach may happen due to such tempo-
rary death of some sensor nodes, which might become even more prominent in
a rechargeable WSN with uneven charging rate. Therefore, a utility function
should also take energy into consideration.

Coverage Contribution and Remaining Energy: The storage capacity of
the rechargeable battery is limited due to its high cost. Therefore, for a fully
charged sensor node, if the scheduling algorithm puts it into the sleep sate, it is
a waist of its recharging opportunity; Whereas other sensor nodes in the active
state with less residual energy could miss the opportunity for harvesting energy.
Therefore, we include the remaining energy into the utility function as follows:

U(si) =
Er

i (k)
Smax

i

× ΔΦ(si). (6)

Here we compute the battery level of sensor i by its remaining energy divided by
its maximum battery storage. Compared with Eq. (5), the above utility function
takes the remaining energy into consideration, which may help to improve the
energy balance across all sensors. For example in Fig. 2, among s3, ..., s6, the
sensor s6 has the largest utility. Its selection may help to reduce the risk that
some other sensor losses of charging opportunity.

Coverage Contribution and Predicted Energy: Considering the fact of
uneven charging rates, the prospective energy level may be different in the spatial
domain, which is another critical factor we should consider. We assume that
the amount of energy harvested by the sensor in a certain future time period
is estimable [8]. Here we denote the prospective energy level as the predicted
energy divided by the maximum battery storage. We thus consider to increase
the likelihood for a sensor with high prospective energy level to charge its energy
such that from the whole network perspective, more environment energy can be
exploited. Hence we define the next utility function:

U(si) =
Smax

i

Ec
i (k)

× ΔΦ(si). (7)

With the above utility the sensor nodes which cannot harvest plenty of energy,
for example s4, should give the charging opportunity to those sensors with high
perspective energy level, such s3, s5 or s6, in order to increase the energy inflow
to the whole network.
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Table 3. Redundancy removal algorithm

Sub-algorithm: The Redundancy Removal Algorithm

Input: a set cover SC ;
Output: the optimized set cover SC ;

/* A eligibility test to eliminate redundant nodes */
01: C = ∅;
02: For ∀si ∈ SC

/* Remove the sensors from the set cover one by one */
03: SC = SC − {si};
04: Compute Φ(SC);

/* If the remaining sensors cannot Φ-cover the target field */
05: if Φ(SC) < Φth

06: SC = SC ∪ {si}; /*restore it */
07: else
08: C = C ∪ {si};
09: SC = SC ∪ {si};
10: endif
11: EndFor
12: if C = ∅ /* there are no redundant nodes */
13: return SC ;
14: else

15: si = arg min
si∈C

U(si)
ΔΦ(si)

;

/* delete one with lowest utility function */
16: SC = SC − {si};
17: SC = RR(SC);
18: endif

Coverage Contribution, Remaining Energy and Predicted Energy:
Based on the above discussions, we know that there are three main factors
impacting on the selection of a sensor node, namely, coverage contribution,
remaining energy and predicted energy. Therefore, we propose another utility
function to combine all the three factors as follows:

U(si) =
Er

i (k)
Ec

i (k)
× ΔΦ(si). (8)

Compared with Eqs. (6) and (7), the above utility function assigns a higher pri-
ority to a sensor node with higher remaining energy as well as lower recharging
potential. As it makes some balance in between of using abundant remaining
energy and charging more environment energy, it can increase the likelihood of
more charging energy for the whole network for future usage while without dra-
matically depleting a single sensor. For example from Fig. 2, we should compare
the battery level, perspective energy level and coverage contribution to compute
the utility of candidate sensors s3, ..., s6, and then select s5 for its highest utility.
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4.2 Redundancy Removal

The greedy nature of the proposed algorithms implicitly imposes a constraint
of nonreversible selection. That is, once a sensor node is selected, it will not be
removed from the set cover. The only exception is that the set cover cannot fulfill
the network Φ-coverage requirement, and all the sensor nodes in the set cover
are dismissed and converted back into the sleep state.

This irreversibility of the greedy algorithms needs to be considered in our
Φ-coverage model. Note that in the Φ-coverage model, the area covered by a
set of sensors is also dependant on the geometric relations in between these
sensors. Therefore, after a sensor has been newly included, it not only covers
some previously uncovered area, but also changes the geometric relations among
the sensors being selected. Therefore, this inclusion of a new sensor may change
the Φ-coverage structure of the whole field. So we need to recheck the coverage
redundancy after the set cover construction.

We next propose a redundancy removal (RR) algorithm. A redundant node is
defined as such a node that its deletion from the set cover does not compromise
the network coverage requirement. The basic idea of the proposed RR algorithm
is to iteratively remove one redundant node with the smallest utility at a step,
until the network coverage cannot be satisfied if further deletion is performed.

Table 3 presents the pseudo-codes of the proposed RR algorithm. In each
iteration of the For loop, the algorithm checks the coverage redundancy of con-
structed set cover. If redundancy does not exist, return the set cover (line 13).
Otherwise, we will remove the redundant sensor in terms of its utility step by
step (line 15–17). Note that a redundant sensor has its coverage contribution
equal to zero. Therefore, we redefine the utility for redundant sensor node as
U(si)

ΔΦ(si)
(line 15). Ties are broken randomly. After deleting one redundant sensor

nodes, we should recheck the redundancy (line 17).

5 Simulation Results

Our simulations are written in MATLAB 7.10.0 (2012a). We simulate a recharge-
able WSN randomly deployed in a 1 km× 1 km sensor field. For the CIC model,
the correlation range is set to 0.4 km, and the reconstruction RMSE requirement
ε is set to 0.2. For each rechargeable node, we use Eq. (2) as its charging model
and set one hour as a slot. We also normalize the energy charging and consump-
tion with respect to a slot. The initial energy or the maximum energy storage
of all sensor nodes is set to 1 slot and the energy consumed in each slot is set to
0.2 slot.

We call the algorithms using different utility functions as CC using Eq. (5),
CC-RE using Eq. (6), CC-PE using Eq. (7), and CC-REPE using Eq. (8). We
use a uniform distribution to model the uneven charging rates across sensors.
The maximum charging rate Emax of each node is set to be uniformly distrib-
uted within [0.1,K]. Therefore, we change the value of K to change the uneven
charging degree. We simulate a long period of 500 slots and all results are average
over 20 different network deployments.
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Fig. 3. Comparison of the breach rate against the number of sensor nodes. The maxi-
mum charging rate is uniformly distributed within [0.1, 0.6] or K = 0.6.

Fig. 4. Comparison of breach rate against uneven recharging degree. The number of
deployed nodes is 40.
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Fig. 5. Comparison of breach rate against different RMSE thresholds. The number of
deployed nodes is 40; K = 0.6.

Figures 3 and 4 compare the breach rate for the four algorithms against
the number of deployed nodes and the uneven charging degree, respectively. It
is not unexpected that the breach rate decreases with the increase of number
of sensors, and with the increase of uneven charging degree on the whole. It
can also be observed that the proposed algorithms with energy consideration
outperform the CC algorithm without energy consideration. Furthermore, the
CC-REPE algorithm achieves the smallest breach rate. This indicates that our
greedy selection algorithms can maximally reduce the coverage breach when the
utility function takes both the remaining energy and predicted energy charging
into the scheduling consideration.

Figure 5 plots the breach rate against different network RMSE thresholds. It
is observed that the breach rate decreases with the increase of the RMSE thresh-
old. Again the CC-REPE algorithm achieves the smallest breach rate among the
algorithms. In the CIC model, the network RMSE determines the reconstruc-
tion quality requirement. When the RMSE requirement is relaxed, the number
of sensors which can collaborate to provide CIC coverage for a same field can
be generally reduced. Hence more sensor nodes could have more time to harvest
energy and the breach rate can be reduced.

We further use the Fig. 6 to illustrate the breach distribution of four proposed
utility functions among the simulation of the 500 time slots. A burst breach is
defined as a coverage breach spanning two or more consecutive breach slots. Here
we define the number of breach slots in each burst breach as burst value, namely,
the degree of burst breach. In the Fig. 6, the burst value can be reflected by the
thickness and the shade of bar. Figure 7 compares the number of total breached



226 Z. Xiong and B. Wang

Fig. 6. Illustration of breach distribution in terms of four utility functions. The number
of deployed nodes is 40; K = 0.6.

slots and the number of different predefined burst breach for the four utility
functions. It is clearly seen that the utility functions taking energy into account
can improve the performance of network compared with the purely coverage-
based CC algorithm. Moreover, CC-REPE outperforms the other two in terms
of both of the number of breach slot and burst breach. This is because that the
CC-REPE considers both of remaining energy and charging potential, which
might help to balance the energy distribution not only in the temporal domain
for individual sensors, but also in the spatial domain for the whole network.
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Fig. 7. Comparison of burst breach and breach time slots of different score functions.
(Color figure online)

6 Conclusion

In this study, we have studied the problem of minimizing breach rate in recharge-
able sensor networks and proposed a family of greedy selection algorithms to
organize sensor nodes into a series of set covers which work alternatively based
on the novel CIC model, each satisfying applications coverage requirement.
Moreover we implement the redundancy removal algorithms (RR) to optimize
the constructed set cover. Simulation results demonstrate that the utility func-
tion CC-REPE which consider the coverage benefit, remaining energy and pre-
dicted energy outperforms the others in terms of the smallest breach rate. Our
future work will further consider the connectivity and design efficient distributed
scheduling algorithms.
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