
Optimizing I/O Intensive Domain Handling in Xen
Hypervisor for Consolidated Server Environments

Venkataramanan Venkatesh and Amiya Nayak(✉)

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
{vvenk090,nayak}@uottawa.ca

Abstract. Consolidation of servers through virtualization, facilitated by the use
of hypervisors, allows multiple servers to share a single hardware platform. Xen
is a widely preferred hypervisor, mainly, due to its dual virtualization modes,
virtual machine migration support and scalability. This paper involves an analysis
of the virtual CPU (vCPU) scheduling algorithms in Xen, on the basis of their
performance while handling compute intensive or I/O intensive domains in
virtualized server environments. Based on this knowledge, the selection of CPU
scheduler in a hypervisor can be aligned with the requirements of the hosted
applications. We introduce a new credit-based vCPU scheduling strategy, which
allows the vCPUs of I/O intensive domains to supersede other vCPUs, in order
to favor the reduction of I/O bound domain response times and the subsequent
bottleneck in the CPU run queue. The results indicate substantial improvement
of I/O handling and fair resource allocation between the host and guest domains.

Keywords: Xen hypervisor · Server consolidation · Virtual machine monitor
(VMM) · CPU scheduling

1 Introduction

According to a report [1] by Natural Resources Defense Council (NRDC), the overall
data centre efficiency is still at 12 %–18 % with most of the servers remaining idle while
drawing precious energy. Proliferation of data stored in the cloud has sprung the
construction of a high number of server farms by organizations. This ‘server sprawl’
problem has been many years in the making, thus serving as the root cause for induction
of virtualization into the server environment. Hussain and Habib in [2] have addressed
the ‘server sprawl’ problem by using virtualization-based server consolidation and
storage unification through storage area network (SAN). But, the risks that come with
virtualization must also be considered to avert a crisis when an unprecedented event
occurs, since consolidating servers also means introducing a single point of failure for
all the applications running on the hosted virtual machines. Additionally, there is the
problem of virtualized legacy applications not being able to deliver near-native perform‐
ance as that of a dedicated application server.

While the Xen hypervisor [3] addresses some of the post-virtualization issues like
security by providing isolation among virtual machines and provisions for adapting
different resource allocation schemes to cater to the needs of the hosted applications, a

© Springer International Publishing Switzerland 2016
X. Huang et al. (Eds.): GPC 2016, LNCS 9663, pp. 180–195, 2016.
DOI: 10.1007/978-3-319-39077-2_12



near-native performance for every hosted application remains the ultimate goal of the
developers in the Xen open source community. The motivation for this work originates
from the reasoning that, since CPU scheduling algorithms are accounted for majority of
the factors affecting a hypervisor’s performance, this component of the hypervisor’s
architecture must be subjected to intensive research, so as to arrive at sustainable solu‐
tions to performance issues. Understanding the limits of a scheduling algorithm is of
paramount importance when consolidating server hardware and this work provides an
essential insight into the CPU scheduling characteristics and their impact on VM
performance.

1.1 Xen Hypervisor Architecture

The architecture of Xen consists of two elements, namely the hypervisor and the driver
domain. The function of the hypervisor layer is to provide abstraction between the guest
operating systems and the actual hardware by creating virtual counterparts of the phys‐
ical hardware components. The driver domain or host domain or Domain 0 (“dom0”) is
a privileged VM which manages other guest VMs or unprivileged domains or user
domains (“domU”), enumerated as Domain 1, Domain 2 and so on. The term driver
domain for dom0 is mainly due to its responsibility of coordinating the I/O operations
on behalf of the user domains, since the guest domains do not have direct access to the
I/O hardware. In initial versions of Xen, the hypervisor managed the I/O operations by
creating simple device abstractions for the guest domains to access. This functionality
has been transferred to the dom0 and the current methodology of I/O management by
Xen works more efficiently, as the host domain handles all of the virtual I/O interrupts.
In addition, this delegation of responsibility to dom0, allows the hypervisor to focus
more on virtualizing other hardware components such as CPU, disk drives and network
interfaces.

1.2 Domain States in Xen

Analogous to processes in operating systems, a domain in Xen can be present in, and
transition into or out of, any of the following states:

Paused. The domain’s execution is paused and it still consumes allocated resources
like memory, but remains ineligible for scheduling.
Saved. A running domain is saved to a state file for it to be restored later, but TCP
timeouts can severe live network connections; memory allocated for the domain will
be released for other domains to use.
Running. Domain is running or runnable on the CPU.
Blocked. Domain is waiting on an I/O or in idle mode. It is currently neither running
nor runnable.
Shutdown. Domain enters this state on a hard shutdown or shutdown command, termi‐
nating all the processes of the guest OS.
Terminated. The domain’s processes are killed instantly and the domain id is deleted
(Fig. 1).

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 181



Fig. 1. Domain states in Xen hypervisor showing the five states a running domain can transition
into, either manually using ‘xm’ commands or as part of an I/O cycle.

2 CPU Scheduling in Xen

The Xen hypervisor, since its inception, has employed a number of scheduling algo‐
rithms namely Borrowed Virtual Time [4], Atropos [5], Simple Earliest Deadline First
[6], ARINC 653 [7], Credit and Credit2 [8]. Scheduling parameters of individual
domains can be adjusted by management software running in Domain0. After the archi‐
tectural change brought by Xen 3.0, the new model of I/O operations increased the
complexity of CPU resource usage. The earlier algorithms such as Borrowed Virtual
Time and Atropos have been phased out due to the I/O structural change and the lack
of non-work-conserving mode (NWC) [11], which means that the running domain is
able to exceed its CPU share in the absence of competition from other domains.

Borrowed Virtual Time. BVT is a weighted or proportional fair-share scheduler based
on the concept of virtual time, dispatching the runnable VM with the earliest effective
virtual time first. This concept of virtual time allows latency-sensitive or I/O intensive
domains to “warp” [4] back in virtual time by temporarily promoting themselves a higher
scheduling priority. The amount of virtual time equivalent which was spent for warping
is compensated by depleting the domain’s CPU allocation in the future. Minimum
Charging Unit (MCU) [4], which is derived from the frequency of clock interrupts, is
used as basic unit of accounting for a running domain. The decision for a context switch

182 V. Venkatesh and A. Nayak



is made based on the parameter context switch allowance ‘C’, a multiple of MCU, which
denotes the actual time comparable with another VM competing for the CPU. The
proportional fair-sharing is implemented by allocating each domain, a share of the CPU
based on the weights configured in the domains. Optimal fairness is ensured by BVT in
allocation of CPU since the error value cannot exceed the sum of context switch allow‐
ance ‘C’ and one ‘MCU’. BVT can operate only in work conserving (WC) mode which
means that a domain cannot exceed its CPU share even if a portion of the CPU remains
unused by other domains. This is one of the major draw-backs of BVT scheduler which
severely restricts CPU utilization and hence, BVT was gradually phased out in the later
stages of Xen development.

Atropos. The Atropos scheduler allocates shares on the basis of an application
dependent period, determined by the slice ‘s’ and period ‘p’, which together represent
the processor bandwidth of that particular domain. Each domain is guaranteed to receive
a minimum of ‘s’ ticks of CPU time and if available, several slices of CPU time in each
period of length ‘p’. A domain is allocated a slack CPU time, only if it is configured to
receive that extra time as indicated by the Boolean parameter ‘x’. To ensure timely
servicing of I/O from domains, a latency hint ‘l’ is specified as one of the parameters
for differentiating I/O intensive or latency-sensitive domains [5].

The Atropos scheduler provides an additional degree of freedom by enabling the
user to control both the absolute share of the domains and the frequency at which they
are to be scheduled. Say if the domain’s present state is on a scheduler queue, then based
on the deadline ‘d’, which denotes the end of current period ‘p’ for the domain, a value
‘r’ is calculated in real-time and passed to the scheduler as the time remaining for the
domain in that current period. Queues ‘Qr’ and ‘Qw’ [5], representing the list of ready-
to-run and waiting domains respectively, are sorted according to deadline ‘d’, in addition
to another queue of blocked domains. The values dx and px denote the deadline and
period of the domains at the head of the respective queues. The Atropos scheduler due
to its significant overhead and inability to balance loads in a SMP has been replaced by
more sophisticated load-balancing algorithms.

ARINC 653. It is based on the standard Real Time Operating System (RTOS) interface
for partitioning of computer resources in the time and space domains. The resulting
software environment is capable of handling isolated domains of applications, executing
independently of each other. The partitioning of memory into sub-ranges for creating
multiple application levels also leads to a spatial and temporal isolation of the domains,
thus maintaining them under the impression of complete possession of the underlying
hardware.

This methodology of domain isolation, wherein each independent block is called a
‘partition’ [7], provides ARINC 653 with the capacity to deterministically schedule the
Xen domains. The CPU time is allocated in the form of ‘credits’ in frames which are
consumed by the domains. When the domains have reached their credit limit for a given
frame they are considered as ‘out of credits’ or ‘expired’ and correspondingly placed in

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 183



a wait queue called ‘expiry list’. When the credits are available via the next frame the
domains can resume executing again. In case, a domain is made to yield the CPU or if
a domain is blocked, prior to consumption of the allocated credits in a given major frame,
execution for these domains is resumed later in the major frame.

On the event of completion of a major frame, the domains in the expired list are
restored to their preset credit allocations. These preset values and other parameters of
the ARINC 653 are configurable from within the dom0 or the driver domain. The
parameters to be set include run time for each domain and the major frame for the
schedule. Calculation of the length of the major frame depends on the condition that all
the domains must be able to expend all of their configured credits. Current implemen‐
tation of the ARINC 653 lacks support for multi-processor environments and hence,
preferred mostly for special case usage.

Simple Earliest Deadline First. The SEDF scheduler is a proportional or weighted
sharing algorithm which employs real-time information feedback to guarantee CPU time
and deal with latency-sensitive domains. The SEDF scheduler may be considered to
inherit its structure from the Atropos schedule, from the perspective of parameters and
specifications. For example, a combination of the CPU bandwidth parameters denoted
by a tuple <Slice (si), Period (pi), Extra-time (xi)> is used to specify the amount of CPU
time requested by the domain. Like Atropos, there is a minimum guarantee of si time
slices in every period of length pi and a domain is allocated extra-time, if the Boolean
flag xi is set. This tendency of allowing domains to exceed their CPU limits forms the
non-work conserving property of SEDF. More importantly, this slack time which is re-
distributed as extra-time on demand, follows a best-effort and fair approach. The slack
time is a by-product of under-utilized timeslices and is not borrowed from other
domains’ CPU time.

The optimization of fair allocation is impacted to a great extent by the granularity
used in defining the tuple of a domain. Deadline di and remaining time ri of a domain in
the current period pi are passed to the scheduler in real-time [6], thereby, facilitating the
scheduler to make real-time decisions based on the status of the domains. The feature
where SEDF differs from Atropos is that the SEDF scheduler chooses the domain with
the earliest di, from the waiting queue, to be scheduled next.

Though the response time to latency-sensitive domains is better in SEDF, the lack
of load balancing on SMPs proves to be a major drawback. This paper focuses on
improving scheduling scheme to support soft real-time workloads in virtualization
systems. Some of the latest research in Xen has been focussed towards adapting the
hypervisor for deployment in real-time workload environments. In [14], Cheng et al.
have proposed an enhanced scheduler named SRT-Xen which focuses on improving the
Xen scheduling framework for handling domains with soft real-time tasks. In the paper
they have also discussed about a scheduling mechanism which ensures fair and non-
detrimental handling of both real-time and non-real-time tasks.

Credit. Credit is a proportional share scheduler in which the automation of global load
balancing of virtual CPUs among the physical cores was introduced to Xen Hypervisor.

184 V. Venkatesh and A. Nayak



When a CPU completes execution of the domains assigned to it, the queues of other
CPUs are surveyed for any ready-to-run vCPUs. This load balancing, to an extent,
prevents CPUs from being overwhelmed and promotes optimized CPU utilization. The
queue maintained by each physical CPU is sorted based on the priority of the vCPU and
the priority may either be OVER or UNDER [8].

OVER: the initial allocation of the vCPU, based on proportional share scheduling, has
been exceeded;
UNDER: the initial allocation for the vCPU is yet to be consumed completely.

Every 10 ms, or for every scheduler tick, the credits of the domain are decremented
and when a vCPU has consumed all of its allocated credits, the value of the credit crosses
the zero mark and the state of its priority is converted from UNDER to OVER, and
prevented from being scheduled. A vCPU or VM has 30 ms before it is pre-empted by
another VM, unless it has enough credits to stay UNDER. At the end of every 30 ms,
the credit for each domain is replenished and the domains which were in OVER state
are allowed to execute again.

In addition to the two priority states, an additional BOOST priority ensures that
domains which are awoken after an idle I/O wait are placed ahead in the run queue to
reduce latency. The scheduler is triggered when an I/O event occurs in the event channel
and the domains with the BOOST priority are fast tracked to the head of the queue. Two
parameters govern the credit allocation of a domain: Weight denotes proportion or
percentage of CPU to be allocated; Cap denotes limit of extra credit which cannot be
exceeded. Value of Cap set at ‘0’, means there is no limit to the amount of CPU time
that a domain can exceed. Non-zero value for Cap limits the amount of CPU a domain
receives by restricting the extra credits to that particular percentage.

Credit2. The Credit scheduler, besides its favourable characteristics, has a few prob‐
lems like below average performance in handling I/O intensive domains, lack of fairness
in scheduling latency-sensitive or interactive domains (multiuser applications) and
hyper-thread dependency issues. The revamped version of the Credit scheduler is
Credit2, designed to overcome some of the shortcomings of its predecessor. The Credit
scheduler implements fair scheduling based solely on the OVER, UNDER or BOOST
priorities and organizing the run queue in a round-robin fashion for domains with equal
priority state. The domains which burn through their allocated credits in a single
schedule are more likely to be positioned ahead in the queue than those domains which
yield the CPU every so often, only to consume a small portion of their credits before
pre-emption. This inherent nature of round-robin scheduling combined with a credit
based allocation policy, results in the unintentional, but preferential treatment towards
compute heavy domains. The Credit2 attempts to solve these issues by removing the
three priority states altogether and sorting the CPU run queue based on the credit balance
of the domains.

From Xen 4.2 onwards, an option for scheduling rate limit has been added which
sets the minimum amount of time, in microseconds, a domain is made to run before
being preempted. This value limit ensures that the domains are performing some

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 185



minimum amount of work rather than waking up only to be scheduled off without
burning any credits. Based on the nature of the workload, for instance, a value of 10 ms
for compute intensive workloads and a value of 500us or lower for latency sensitive
workloads are advised. In addition, a timeslice parameter for varying the vCPU run time,
in milliseconds, has also been introduced to meet the latency needs of the domains being
executed.

3 Equalizer Scheduler for I/O Intensive Workloads

In case of virtualized high definition video streaming and compute servers, the CPU-
intensive domains will occupy the CPU for longer periods since they require more
computational time on the processor, ergo starving I/O bound domains. While the I/O
bound vCPUs wait for the allocation of CPU the onset of the next accounting period
replenishes the credits, thus further enriching the compute intensive vCPUs. Further,
the option of scheduler rate limiting to reduce the time quanta to address this problem
requires manual intervention at every instance a different workload is received and does
not bode well for a consolidated workload environment. In [15], the authors Hongshan
Qu et al. have discussed about the importance of analyzing the resource requirements
of individual domains to perform predictive scheduling and have proposed a work-load
aware scheduling method for heterogeneous VM environments.

With the purpose of enhancing I/O intensive domain performance in a multi-faceted
workload setting, we propose a new credit-based vCPU scheduling scheme, where in,
the credit remaining for each vCPU after every accounting plays an important role in
making the scheduling decision. The starved vCPUs with the most remaining credits are
allowed to supersede others to favor the reduction of the I/O bottleneck in the processor
run queue. Since most I/O bound vCPUs need only 1 ms to 10 ms to complete their short
CPU burst cycles, there will be no adverse effects in CPU-bound domain performance.
The priority states of OVER and UNDER are used to determine if the domain is eligible
to be scheduled and the scheduling decision is performed based on a combination of
scheduling eligibility and credit availability of the domains.

The vCPU scheduling scheme proposed here has the potential to introduce context
switch overhead because of additional validations in the scheduling decision path of
code. Though some context switch overhead will exist, the benefits of rapid response-
time scheduling for I/O bound domains are observed to outweigh the negative aspects
of the Equalizer scheduler.

186 V. Venkatesh and A. Nayak



4 Simulation and Performance Analysis

In this section, we describe the benchmarking environment and parameter setting estab‐
lished for comparison between the scheduling algorithms in Xen. The version of Xen
hypervisor under study is Xen 4.4.1 which employs Credit, SEDF and Credit2 as the
main scheduling algorithms. The hardware specifications of the system, used for
conducting the experiments, are as follows: Intel Core i3-370 M processor with two
cores of 2.4 GHz each, 64-bit architecture, 3 GB RAM and 320 GB hard disk.

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 187



The driver domain ran Ubuntu 13.04 with linux kernel 3.8.0-19 and the user domain
ran Ubuntu 12.04 with linux kernel 3.5.0-23 on Xen 4.4.1 stable release. The test suites
used to simulate VM workloads in this experiment are as follows:

IBS. The Isolation benchmark suite [9] which incorporates a CPU intensive test is
capable of creating simulated workloads by performing a series of integer and floating
point calculations. The intense computational operations performed on the CPU
resemble compute-intensive applications such as HD video playback or 3D graphics
rendering.

IOzone. A file system benchmark [10] which allows performing of multiple Disk-I/O
operations and monitor the rate of read/write operations. The sequential and random
read/write operations collectively induce stress on the file system.

Netperf. A network monitoring tool [11], aids in measuring low-level network
performance by exchanging bulk files with a remote host.

Sysbench. A performance benchmark tool [12], includes an OLTP test for simulating
database server transactions from a Mysql database.

4.1 Disk I/O Benchmarking Using IOzone

We employ IOzone test suite, which performs a series [10] of sequential read/write (S-
Read/S-Write) and random read/write (R-Read/R-Write) operations, followed by the
measurement of the read/write rate in KBytes per second. We choose a combination of
512 Mb file size with 1 Mb record length for avoiding a system freeze, when hosting
multiple guests while also keeping in mind, the cumulative operation time of the experi‐
ment. In order to avoid files being written or read from the cache memory or RAM,
IOzone is set to perform only Direct I/O operations, which ensures that only the physical
disk is used in the file operations. Figure 2a shows credit scheduler’s dom0 disk I/O
performance when dom0 is idle and when dom0 is performing heavy CPU operations
facilitated by IBS’s CPU intensive test. In the first case, the domU is able to achieve
93 % of dom0’s I/O performance and when dom0 is under stress, domU’s I/O execution
rate degrades by 4 %–5 % of its earlier performance when dom0 was idle.

In Fig. 2b, the disk I/O performance of SEDF scheduler’s domU (dom0 idle) is
shown. Under the SEDF’s scheduling the domU was able to run I/O operations at 97 %
of dom0’s I/O execution rate. This might seem better than the Credit scheduler’s near-
native performance but there is a tradeoff in overall I/O performance, where the Credit
scheduler has an edge, as the SEDF scheduler lags due to the overhead induced by its
real-time processes.

When the dom0 is subjected to heavy CPU operations in the SEDF scheduler, the
domU’s disk I/O performance is found to be drastically affected. As illustrated in Fig. 2b,
the disk I/O performance of domU degrades by 41 %–45 % of its performance when
dom0 was idle. Figure 3a shows the disk I/O performance of the Credit2 scheduler;
domU, when the other domain is executing compute operations. With Credit2 scheduler
the domU was able to achieve from 94 % up to 99 % of dom0’s I/O execution rate. These

188 V. Venkatesh and A. Nayak



readings show a marked improvement in handling guest domain I/O requests from Credit
scheduler and the overall I/O execution rate is also justifiably better.

Fig. 3. Evaluation of Disk I/O performance of the Credit2 and Equalizer schedulers

The handling of I/O from domU by dom0 when under stress in Credit2 scheduler is
better when compared to Credit and SEDF. As shown by Fig. 3a, the disk I/O perform‐
ance by domU when dom0 is performing CPU intensive operations, produces results
which show that Credit2 scheduler is capable of providing near-native I/O support in a
compute intensive environment too. The results show that the domU is capable of
restricting the throughput degradation to only 4 %–6 % and given the superior overall
I/O execution rate, this fall in read/write rate is only of negligible magnitude. Figure 3b
shows that Equalizer scheduler’s domU reaches 98 %–99 % near-native disk I/O
performance when Dom0 is idle, which exhibits the scheduling fairness among the
vCPUs promoted by the new scheduling scheme. A clear improvement is seen over the
Credit scheduler that could only reach a maximum of 93 % of near-native disk I/O
performance.

The comparison shown in Fig. 4 shows that the Equalizer scheduler has a near- native
performance index, which means performance of guest domain as a percentage of the

Fig. 2. Evaluation of Disk I/O performance of the Credit and SEDF schedulers using IOzone
depicting the guest domain’s throughput when host is idle and under computational stress

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 189



host’s performance, is on par with Credit2 and evidently better than the Credit and SEDF
scheduler.

Fig. 4. Comparison of the proposed scheduler with Credit, SEDF and Credit2 schedulers

The Equalizer Scheduler suffers 2 %–4 % degradation in disk I/O performance when
dom0 is performing a compute-intensive workload as shown in Fig. 3b. The comparative
display of degradation in S-write performance is shown in Fig. 4, wherein the Equalizer
scheduler is the least to deviate from its optimal performance followed by Credit2, Credit
and finally SEDF.

4.2 Network Performance Benchmarking Using Netperf

The following experiments are conducted by allowing Netperf to run a client on the
domU and perform TCP stream tests via bulk file transfers with a remote host connected
by a 100 Mbps Ethernet link. The file transfer is done in increments of message size
from 1 MB up to 4 MB and the throughput is measured in Mbits per second. The send
socket size is 16384 bytes and receive socket size is 87380 bytes.

Figure 5 shows the network performance of domU when dom0 is kept idle and
when dom0 is made to perform CPU intensive operations facilitated by IBS CPU
stress tests. The results exhibit a clear drop in throughput from an average of
87.85 Mb/s to 72.71 Mb/s. The Credit scheduler has an average performance when
the CPU is under contention and an above average performance when CPU is not
performing any compute intensive tasks.

When SEDF is put under the same test, the results show that the real-time scheduler
fails to handle I/O tasks promptly when the CPU is placed under stress. Figure 5 shows
the performance of SEDF’s bandwidth intensive test and we can observe a fall in
throughput from an average of 89.30 Mb/s to 63.55 Mb/s when CPU is under contention.

The Credit2 scheduler exhibits significant improvement from Credit scheduler in
network performance tests. As shown in Fig. 5, the average throughput of 91.05 Mb/s,
when dom0 was idle, dropped to an average of 79.15 Mb/s, when CPU is under stress,
which is better than the Credit scheduler’s 72.71 Mb/s.

The comparative chart for network intensive benchmarking of the four schedulers
indicates that the Equalizer scheduler has the minimal performance drop when a network

190 V. Venkatesh and A. Nayak



I/O intensive domain is competing with a compute-intensive domain or an I/O intensive
domain.

4.3 OLTP Database Server Performance Benchmarking Using Sysbench

The performance of the schedulers when hosting database server applications can be
measured using Sysbench. As a prelude to simulating the database server we create a
Mysql test table with rows of data starting 1000 rows and continue scaling up to 1000000
rows. As illustrated in Fig. 6a, the Credit scheduler’s number of transactions/second,
which is an important merit for seamless database querying, suffers a performance drop
when a user Domain is hosting the database server. And when the host domain is placed
under computing stress the OLTP transaction rate further degrades due to the unavail‐
ability of the CPU for the server’s I/O requests.

Fig. 6. Rate of transaction in dom0 and domU when simulating OLTP server using Sysbench-
Credit and SEDF

Fig. 5. Comparison of the network throughput of domU measured using Netperf, under different
workload states of dom0

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 191



Figures 6b and 7a exhibit the database server performance of SEDF and Credit2
schedulers respectively. The SEDF scheduler’s domU reduces to almost one-fifth of its
native domain’s performance and when CPU is in contention an average of 75 % drop
in domU’s performance is inferred from the benchmarking results. On the other hand
the Credit2 scheduler once again comes on top among the three schedulers, by show‐
casing only minimal loss in the number of transactions executed per second when hosted
by the user domain.

Fig. 7. Rate of transaction in dom0 and domU when simulating OLTP server using Sysbench-
Credit2 and Equalizer

The Equalizer scheduler exhibits superior handling of database server requests,
shown in Fig. 7b, with the native domain performance similar to that of Credit and
Credit2. The loss of number of Transactions per second when domU is handling is lower
than Credit2 exhibiting the high I/O throughput rate which is characteristic of the design.

4.4 Consolidated Server Environment

One of the solutions for server sprawl in data centers is the consolidation [13] of hard‐
ware, thus promoting resource optimization, while masking the shared server architec‐
ture from the users by ensuring negligible or unnoticeable deterioration in QoS. Any
hypervisor which is claimed to be a candidate for server virtualization has to be qualified
to host multiple and multi-faceted server workloads. While the scale of number of VMs
hosted is tied to the hardware’s capacity, other aspects such as I/O latency and fairness
towards domains can be optimized by choosing the apt scheduler for a given combination
of applications.

The consolidated server environment is simulated by hosting two user domains and
one of the above discussed performance benchmarks in each of the domains. The
experiment is conducted by running IOzone on dom0, Netperf on dom1 and Sysbench
Mysql benchmark on dom2, with the same parameter settings as mentioned earlier. The
compute intensive benchmark is not preferred for a consolidated environment as there
exists ample compute stress on the dom0 because of hosting three VMs and the associ‐
ated back-end driver processes for virtual interrupt management. Additional compute
stress resulted in erratic behavior of the VMs and benchmarking results turned out to be
inconsistent and unreliable.

192 V. Venkatesh and A. Nayak



The extent to which the virtual counterpart of a dedicated server has performed can
be gauged by using the Domain0 or host’s native performance. As shown in Fig. 8, the
performance indexing based on dom0 gives a comprehensive picture of the schedulers
in a typical server environment.

Fig. 8. Consolidated server environment, simulated by hosting two user domains and running
IOzone on dom0, Netperf on dom1 and Sysbench Mysql benchmark on dom2

The consolidated workloads generate I/O requests on a frequent basis thus causing
an I/O bottleneck, which has evidently caused the setback in the schedulers. The results
obtained are not far from the observations made, when the CPU as a resource was under
contention. This shows that servicing of I/O requests or interrupts is just as important
as CPU allocation. The servicing of Disk I/O has not been interfered by the I/O bottle‐
neck and this suggests the consolidation of disk intensive domains with I/O heavy
workload servers such as a webserver.

The experiments provide a glimpse of the Credit2 scheduler’s exceptional perform‐
ance in a high frequency I/O environment and the adept I/O handling capacity which
was lacking in Credit scheduler. The results obtained collectively form substantial
evidence to the assertion that choice of CPU scheduling algorithm used by Xen hyper‐
visor impacts the performance of the applications hosted on the server. The Equalizer
scheduler’s handling of I/O heavy domains marginally surpasses the Credit2 scheduler
in a consolidated workload experimental setup. As shown in Fig. 8, the proposed sched‐
uler has a slight edge over the Credit2 while performing database transactions and
Network intensive I/O handling.

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 193



5 Conclusion and Future Work

We have discussed about the server sprawl problem and examined consolidation as a
solution, which has shed light on the VM manageability and migration troubles which
can rise in the control plane. Xen hypervisor’s architecture has been looked upon briefly
following the challenges in the VM environment to be expected by a VMM.

The choice of CPU scheduling algorithm used by Xen hypervisor evidently impacts
the performance of the applications hosted on the machine. We analysed the CPU
scheduling algorithms incorporated into Xen so far, since its earliest version and
conducted exhaustive experiments using simulated workloads on the latest batch of
schedulers released by the Xen developers’ community.

The most significant inference from the experiments is that servicing of I/O by the
driver domain depends heavily on Xen’s scheduling capacity. By focussing on the I/O
handling tendency of each scheduler provided an insight into the right usage of the
hypervisor for workload specific applications. Though varying the scheduler parameters
could even out some odds in the scheduler’s functionality, true scheduling fairness is
achieved by optimal performance across all domains without disproportionate usage of
resources.

The behaviour of the hypervisor when faced with heavy workloads was discussed
and the challenge it poses to the resource usage by the scheduler in charge. Credit and
Credit2 have proven to be robust in their handling of heavy I/O workloads such as disk,
bandwidth intensive network and database server. Credit2, though in experimental phase
has been observed to exhibit and deliver the promised improvement in I/O handling over
the Credit scheduler. The older SEDF scheduler has been observed to fall behind in
contention with both the Credit scheduler versions. ARINC 653 is a special case sched‐
uler built for uniprocessor architectures and hence cannot be compared with the other
schedulers in this version of Xen.

The Equalizer scheduler designed and implemented has been put under different
scenarios and benchmarked. The results indicate that the motives of design which are
improved handling of compute-intensive domains and to improve effective I/O
throughput have been realized although overlooking a small percentage of context
switch overhead. Though the performance of the scheduler in idle conditions is not on
par with the credit scheduler due to the overhead accumulated because of context
switching, the behavior of the scheduler indicates that when competing with compute
intensive or I/O intensive domains, every domain is ensured scheduling fairness.

Our future work involves further study on the capabilities of Xen’s scheduling algo‐
rithms when employed as a hypervisor in collaboration with an open standard cloud
computing platform such as Openstack. The live VM migration features of Xen and
efficient VM management in a cloud environment seem to be the logical and viable step
forward.

Furthermore, the application potentials of Xen as a Network Function Virtualization
(NFV) solution for current SDN based networks are to be explored. Another focus area
for supplementing the efforts of this research, in terms of green computing, is the study
of VM migration strategies for energy efficient data center management.

194 V. Venkatesh and A. Nayak



Acknowledgement. The authors would like to thank the anonymous reviewers for their
comments and suggestions. This work is partly supported by NSERC Grant CRDPJ 445731-12.

References

1. Natural Resources Defense Council (NRDC). Data Center Energy Assessment Report (2014).
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf

2. Hussain, T., Habib, S.: A redesign methodology for storage management virtualization. In:
IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 676–679
(2013)

3. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the art of virtualization. In: 19th ACM
Symposium on Operating Systems Principles, pp. 164–177 (2003)

4. Duda, K.J., Cheriton, D.R.: Borrowed-virtual-time (BVT) scheduling: supporting latency-
sensitive threads in a general-purpose scheduler. In: 17th ACM SIGOPS Symposium on
Operating Systems Principles, pp. 261–276 (1999)

5. Leslie, I.M., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers, D., Fairbairns, R.,
Hyden, E.: The design and implementation of an operating system to support distributed
multimedia applications. IEEE J. Sel. Areas Commun. 14(7), 1280–1297 (1996)

6. Jansen, P.G., Mullender, S.J., Havinga, P.J., Scholten, H.: Lightweight EDF scheduling with
deadline inheritance. University of Twente (2003). http://doc.utwente.nl/41399/

7. VanderLeest, S.H.: ARINC 653 hypervisor. In: 29th IEEE/AIAA Digital Avionics Systems
Conference (DASC), pp. 5.E.2-1–5.E.2-20 (2010)

8. Credit Scheduler. http://wiki.xensource.com/xenwiki/CreditScheduler
9. Isolation Benchmark Suite. http://web2.clarkson.edu/class/cs644/isolation/index.html

10. IOzone Filesystem Benchmark. http://www.iozone.org/
11. IOzone Documentation. http://www.iozone.org/docs/IOzone_msword_98.pdf
12. Netperf. http://www.netperf.org/netperf/training/Netperf.html
13. Sysbench Benchmark Tool. https://dev.mysql.com/downloads/benchmarks.html
14. Uddin, M., Rahman, A.: Energy efficiency and low carbon enabler green IT framework for

data centers considering green metrics. Renew. Sustain. Energy Rev. 16(6), 4078–4094
(2012)

15. Cheng, K., Bai, Y., Wang, R., Ma, Y.: Optimizing Soft real-time scheduling performance for
virtual machines with SRT-Xen. In: 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 169–178 (2015)

16. Qu, H., Liu, X., Xu, H.: A workload-aware resources scheduling method for virtual machine.
Int. J. Grid Distrib. Comput. 8(1), 247–258 (2015)

Optimizing I/O Intensive Domain Handling in Xen Hypervisor 195

https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://doc.utwente.nl/41399/
http://wiki.xensource.com/xenwiki/CreditScheduler
http://web2.clarkson.edu/class/cs644/isolation/index.html
http://www.iozone.org/
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://www.netperf.org/netperf/training/Netperf.html
https://dev.mysql.com/downloads/benchmarks.html

	Optimizing I/O Intensive Domain Handling in Xen Hypervisor for Consolidated Server Environments
	Abstract
	1 Introduction
	1.1 Xen Hypervisor Architecture
	1.2 Domain States in Xen

	2 CPU Scheduling in Xen
	3 Equalizer Scheduler for I/O Intensive Workloads
	4 Simulation and Performance Analysis
	4.1 Disk I/O Benchmarking Using IOzone
	4.2 Network Performance Benchmarking Using Netperf
	4.3 OLTP Database Server Performance Benchmarking Using Sysbench
	4.4 Consolidated Server Environment

	5 Conclusion and Future Work
	Acknowledgement
	References


