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Abstract. In past decades, the development of mobile applications was limited
due to lack of enough computational power. To resolve this problem, the frame-
work of mobile cloud computing (MCC) was proposed for offloading the massive
computation tasks of mobile applications onto cloud centers for execution.
However, the computational power of mobile devices recently has received a
great promotion, and the bandwidth and reliability of wireless networks has been
significantly improved. These development advances make it practical for mobile
devices to share the computational tasks of cloud centers. In other words, the
direction of resource supply chain can be from clouds to mobile devices but also
from mobile devices to clouds. This is useful for integrating the computational
power of mobile devices and cloud resources to serve mobile or cloud users. To
achieve this goal, this paper is aimed at the development of an efficient scheme
of computation migration based on LLVM for addressing the problem of resource
heterogeneity and dynamicity in MCC. With the support of the proposed scheme,
user programs can dynamically move between mobile devices and cloud servers
for the load balance, QoS and reliability of MCC.

Keywords: Mobile cloud computing - Mobile devices - Computation migration -
LLVM - Reliability

1 Introduction

Nowadays, mobile devices such as smart phones and tablets have replaced PCs and
laptops to become the main equipment for users to handle their daily staffs including
communication, information searching, shopping, working, learning and gaming under
the support of an enormous number of devise APPs. However, because of lack of enough
computational capability and electrical power, the past application development of
mobile devices was not effectively extended to the area of high performance computing.
To address this issue, the framework of mobile cloud computing was proposed to support
mobile devices for performing high performance computing applications.

The basic idea of MCC is to offload the massive computation tasks of applications
from mobile devices to cloud servers for execution. This solution indeed successfully
releases the application development of mobile devices from the problem of lacking
enough computational power. Many mobile applications such as M-learning [1] and
M-healthcare [2] have been developed based on the MCC framework. In these appli-
cations, mobile devices usually are resource consumers while clouds play resource
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providers. Nonetheless, this relationship of resource demand and supply has become not
always one directional because the computational capability and electrical power of
mobile devices have been greatly promoted.

Generally speaking, most of modern mobile devices have 1-4 GB RAM, quad core
ARM CPU, and many-core GPU such as Adreno, PowerVR, and NVIDIA Tegra. They
become comparable with common PCs in computational capability, and can continu-
ously work for more than a dozen hours by the support of long-termed battery and mobile
power supply. On the other hand, the bandwidth of wireless network technology has
reached to hundreds Mbps through LTE. Consequently, many mobile APPs has been
proposed for resolving research problems by using the computational power of mobile
devices. For example, BOINC [3] allows users to donate the spare time of their mobile
devices for different science research projects. Addi [4] and Octave [5] allows users to
perform mathematical computation and plotting by means of MATLAB instructions and
scripts in mobile devices. CCTools [6] and C4droid [7] supports a C/C++ programming
for users to develop and execute scientific-computing applications on mobile devices.
This development trend shows that mobile devices have drawn high attention from
researchers. It also implies that mobile devices can play not only resource consumers
but also providers in the architecture of MCC. Since the number of mobile devices has
reached to billions, the computation power hidden in mobile devices is amazing and
waiting for exploration. For clouds, they can offload tasks to mobile devices for reducing
load pressure in rush hours. For mobile devices, they can share their own resources with
others, and thereby do not always rely on the assistance of clouds any more.

To achieve this goal, the first challenge is to overcome the problem of resource
heterogeneity in task migration. For this issue, many past studies [8, 9] were focused on
JVM since Java is frequently used for developing portable applications, and Java bytec-
odes are executable on heterogeneous resources through JVM. However, Java programs
cannot directly access system information and hardware through JVM. Consequently,
Java is not as good as C/C++ in the performance of I/O. Although Java Native Interface
(IND) is effective for resolving this problem, it increases the programming complexity
and execution cost of user applications. On the other hand, most of scientific and high
performance computing (HPC) applications are developed by C/C++ instead of Java
because of execution performance consideration. Even they are developed by Java. They
are not always executable on any mobile devices because of different Java or JVM
versions.

By contrast, Low Level Virtual Machine (LLVM) [10] has not the above problems
existing in JVM. LLVM is a lightweight virtual machine. It can be divided into front-
end compiler and backend executor. The front-end compiler, i.e., Clang is responsible
to translate user programs into LLVM IRs while the backend executor converts and
LLVM IRs into optimized native codes at runtime according to the architecture of target
processor first and then executes the native codes by the target processor by means of
MCIJIT. Because the native codes generated by LLVM are easily linked with external
libraries and able to directly access hardware, LLVM does not degrade the performance
of CUDA and OpenCL API while JVM does. This advantage is very important for cloud
and mobile computing because more and more clouds and mobile devices has supported
GPU for HPC and big data applications.
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As previously discussed, this paper is aimed at design and implementation of an
efficient heterogeneous computation migration (simply called HCM) scheme based on
LLVM. With the support of this scheme, the programs of mobile and cloud users can
roam around the MCC architecture according to network bandwidth, electrical power,
or computational capability for obtaining a good execution performance and fault toler-
ance. We have evaluated the efficiency of proposed scheme in this paper. Our experi-
mental results have shown that the cost of proposed scheme is acceptable or negligible
for the performance of tested applications.

The rest of this paper is organized as follows. Section 2 discusses related work.
Sections 3 and 4 describe the framework and implementation of HCM, respectively.
Section 5 evaluates and discusses the efficiency of HCM. Section 6 gives a number of
conclusions for this paper and our future work.

2 Related Work

In 1980s, process migration [11-13] was a hot research topic for addressing the issues
of load balance and reliability of distributed systems. The main advantage of process
migration is transparent for user applications since it is implemented at the system level
[14, 15]. However, this approach suffers from the problem of residual dependencies that
is a migrated process relies on a host for data structures or functional supports such as
opened file descriptors and shared memory segments after this process moves away from
the host. Consequently, it is difficultly applied to real applications.

By contrast, virtual machine (VM) migration [16, 17] can avoid the problems of
process migration because it moves an entire OS, and all of its applications as one unit
from one physical machine to another. It is frequently applied for the resource and energy
management of cloud computing since VM software such as Xen, KVM and VMware
is the main solution used for resource virtualization and sharing in data centers. None-
theless, the time cost of virtual migration is so long as to degrade the performance of
applications especially when the number of memory pages copied to the new VM is
large or network speed is extremely slow. For this problem, live VM migration [18] is
an effective solution for reducing the negative impact of migration cost because it allows
applications to continue running during migration process.

The process of live VM migration can be classified into three phases: push, stop-
and-copy and pull [19]. In the push phase, the original virtual machine continues to run
on source node while simultaneously copies the recently used pages to the new virtual
machine on destination node. For data consistency, the pages modified during migration
process must be sent to the new virtual machine. In the stop-and-copy phase, the original
virtual machine stops to copy the remaining dirty pages to the new virtual machine, and
then the new virtual machine starts. In the pull phase, the new virtual machine executes
and fetches necessary pages from the old one when it accesses the pages and the pages
are not present in local memory. Most of proposed VM migration algorithms consist of
one or two of these phases to reduce down time and total migration time. For example,
the Pre-copy algorithm [20] mixes the push phase and the stop-and-copy phase. It adds
a threshold condition to limit the time cost of sending data pages and estimates the cost
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of data consistency maintenance and the update rate of dirty pages to decide when to
stop the original virtual machine for sending all the dirty pages to the new virtual
machine. It resolves the problem of frequent page re-transmission in the push phase, and
reduces down time and total migration time. In contrast, the Post-copy algorithm [21]
mixes the pull phase and the stop-and-copy phase in order to delay the copy of memory
pages until they are accessed. Compared to the Pre-copy algorithm, the advantage of the
Post-copy algorithm is to avoid page re-transmission. Each page is transmitted at most
once while the performance of user applications suffers from a large amount of page
faults as the new virtual machine frequently is faulty on accessing the absent memory
pages.

On the other hand, a stack-on-demand solution based on JVM [22] was proposed for
offloading massive computation tasks from mobile devices to clouds to speed up the
completion of these tasks. This solution only sends the top stack frame and the currently
called object method to clouds for execution. Consequently, it can reduce the commu-
nication cost of task migration to the minimal. However, it requires the client keeps
connection with the server for exchanging the parameter data and execution result of
the migrated object method.

Apparently, VM migration is not suitable for task migration between mobile devices
and clouds because the migration cost is too expensive to be compensated in wireless
networks. The worse is the memory space of mobile devices is not big enough for storing
the image of VM. Although the Pre-copy and Post-copy algorithms can effectively
reduce downtime or/and total migration time, they are not realistic for task migration
between mobile devices and clouds because the operating system of mobile devices does
not allow users to define the page-fault handler. On the other hand, the requirement of
the stack-on-demand approach is difficult to be satisfied because the connection between
client and server is easily broken due to the movement of mobile devices in wireless
networks. In addition, it produces a lot of data communication when user applications
are implemented by iteratively calling object methods.

By contrast, the proposed scheme is a lightweight process migration while it is inde-
pendent to hardware or operating system because it is implemented based on LLVM.
Although pure stop-and-copy migration increases down time as well as the number of
copied memory pages, it is easy to be implemented without data-consistency mainte-
nance. In addition, the number of memory pages transmitted for task migration on
LLVM is much less than that of VM migration. Therefore, the proposed migration
scheme adopts the pure stop-and-copy algorithm. For reducing migration cost, the
proposed scheme compresses transferred data to minimize the amount of data transferred
over wireless networks.

3 Framework

The framework of HCM is as shown in Fig. 1. This framework is mainly composed of
sensor, server, and broker. The HCM sensor aims at monitoring resources, cyclically
reporting resource states such as load or remaining electrical-power capability to the
HCM broker, and sending a migration semaphore to the HCM server when it finds the
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local resource states has satisfied the migration condition set by resource owner or
administrator. The HCM server is mainly used to execute user programs, and backup or
restore the runtime contexts of user programs on LLVM for task migration. Since mobile
devices and cloud servers are regarded as the same in the framework of HCM, both of
these two different resources can play source or destination nodes in task migration. The
registered information mainly consists of their network location, and condition of
accepting migrated tasks. On the other hand, the HCM broker is responsible to allocate
resources for task migration and play an agent for mobile devices or cloud servers to
migrate their tasks to new resources for execution, and cache the execution results of
migrated tasks.
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Fig. 1. Framework of HCM

In the HCM framework, any user program is compiled into an executable file of
LLVM IRs. When the program is executed, the executable file of this program is loaded
and executed by LLVM by means of MCJIT. All the HCM servers and the HCM broker
are connected with a virtual private network for secure and communication across
different network domains. The direction of task migration can be mobile device to cloud
(M2C), cloud to mobile device (C2M) and mobile device to mobile device (M2M) no
matter where source and destination node are located in networks. Because HCM
currently supports only batch but interactive tasks, the I/O of user programs is redirected
into file accesses. The user scenario and the process of task migration in the HCM
framework are described as follows.

As shown in Fig. 2, when a HCM server is initialized at a mobile device or cloud
server, it joins into the virtual private network of HCM first, and then collects and regis-
ters local resource information to the HCM broker. After the resource registration is
finished, the HCM server waits for executing local tasks or remote tasks migrated from
other cloud servers or mobile devices. On the other hand, it creates a background thread
to perform the HCM sensor in order to cyclically detect local load state or electrical
power capability. If the HCM sensor finds the resource state satisfies the migration
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condition set by resource owner or administrator, it will set a migration flag as true;
otherwise, it will set the flag as false. When the HCM server accepts a task of executing
a program submitted by the local node, it automatically modifies the executable of the
program by inserting a number of checkpoints into the entry and departure points of
basic blocks or function calls in the program first, and then dispatches the user program
onto LLVM for execution. When LLVM executes the user program, it checks the
migration flag at the checkpoints inserted by the HCM server. If it finds the migration
flag is set as true, it will immediately invoke the HCM server to retrieve and backup the
context of the execution stack and memory segments including data and heap of the
program from local memory into an image file. Then, it sends the image, executable and
/O files of the user program to the HCM broker for task migration. After receiving a
migration request and the files of the migrated program, the HCM broker selects a new
execution node from the pool of registered resources according to the task-acceptance
conditions and the current states of resources. Next, it relays the files of the migrated
program to the HCM server of the new execution node, and then the new HCM server
rebuilds the context of execution stack and memory segments in the local memory and
resumes the execution of the user program on LLVM. After the execution of the migrated
program is finished, the new HCM server sends the output file of the user program to
the HCM broker. Finally, the HCM broker caches the output file in the local file system
until the old HCM server on the original execution node fetches the output file of the
program.

Step O: LLVM run on Node A
llvm running . | When LLVM starts to run, it will create a background thread for
detectingif the flag of job migrationis set by the HCM sensor to
be true.
When the signal is detected.
R S T N
When llvm Step 1-1: backup image Step 1-2: callback to
is paused, Pause LLVM. Record the resource broker
do backup LLVM IR, Execution context, Send a message to broker.
function. and Memory mapping into a Request a new llvm resource
image file. for llvm migration.
= |
=]
x .
< Migrate Step 2: Migration llvm image to Node B
the llvm Receive the llvm image form Node A
Image. l
Restore Step 3: Create a new llvm, and Import the image
the llvm First, extract the llvm IR, and re-build the llvm module.
status. Second, Restore the execution context, And re-map the memory
data.
S l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Restart llvm. Step 4: Restart the original llvm on Node B

Fig. 2. Flow of task migration in the HCM framework

It is worthy to say that this study adds three command parameters into LLVM LLI
for the HCM scheme as shown in Table 1. “—remote-mode” is used to set the local node
as HCM server. The “~broker-ip” and “~broker-port” parameters is used to set up the
network location of HCM broker for the HCM server. The HCM broker must have a
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public IP for connection with the HCM servers and sensors on mobile devices and cloud
servers.

Table 1. Commands of HCM

Command parameter Description
—remote-mode="? Maybe CLIENT or
SERVER
—broker-ip="? HCM broker public IP
—broker-port=? HCM broker binding port

4 Implementation

The main jobs of implementing the proposed scheme consists of resource monitoring,
program recompilation and standard I/O redirection. The details of these things are
described as follows.

4.1 Resource Monitoring

Currently, the proposed scheme allows resource owners to set the conditions of
performing task migration according to remaining power capability, CPU/Memory
usages. When the percentage of remaining power capability or CPU/Memory usages is
below or above a threshold, the HCM sensor will set the migration flag as TRUE, and
then the process of task migration will be performed. To simplify our work, we made
use of the Linux system primitives and files such as mpstat and /proc/meminfo to obtain
the usages of current CPU and memory of user programs. On the other hand, we
exploited the acpi function to get the remaining power capability of mobile devices.
Since the information of these resource states is represented by means of strings, it is
easy to implement the HCM sensor by Shell script. However, Android does not support
bash, mpstat, acpi and the string tools such as head, tail, awk and wc. To overcome this
problem, we ported these functions and tools with Android SDK for the implementation
of resource monitoring.

4.2 Program Recompilation

In this paper, we developed a LLVM-IR re-compiler for HCM to automatically rewrite
the LLVM executable files of user programs by inserting checkpoints, backup and
restore functions. This re-compiler makes use of the toolkit of LLVM to operate the
syntax trees of user programs. The process of executing a user program on LLVM is
divided into five phases as shown in Fig. 3. The first phase is to load the executable of
the user program, which is compiled by Clang into LLVM IRs. The second phase is to
create a module, and then pass the LLVM IRs of the user program to the module. The
third is to translate the LLVM IRs of the user programs into native codes based on the
architecture of execution processor. The last two phases are to build a MCJIT execution
engine and execute the native code with the MCJIT engine. Accordingly, the proposed
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LLVM-IR re-compiler is used to rewrite the executable of the user program between
the second phase and the third one.

?

Load LLVM IR
+

Create a new module, Then
pass LLVM IR to module
|

Recompile LLVM IR form module

!
Dynamic translated module into
native machine code
+
Build MCJIT Execution Engine
+
Run MQJIT

&

Fig. 3. Modified execution flow of user programs on LLVM

The recompilation flow of a user program is as shown in Fig. 4. First, the re-compiler
register the functions and symbols of HCM to the LLVM parser in order for making
these functions and symbols linkable with user programs. Second, it partitions the user
program into a number of basic blocks, which are insert by checkpoints. Third, it collects
the all of local variables including static or dynamic in each function, and inserts a log
function for storing these local variable in a stack. Forth, it scans and stores all the
function pointers and global variables of the user program into a symbol table. Finally,
it inserts a backup and store function for basic blocks to back up and restore the context
of the program in task migration.

\ Register HCM symbol |
‘ Split BasicBlock ‘

‘ Record Runtime Stack ‘

Record Function pointer & Global
Variable

Insert HCM module & modify
LLVM IR

Fig. 4. Flow of program recompilation

Although the proposed re-compiler is to rewrite the LLVM IRs of user programs,
here we use an example program presented by means of C but LLVM IRs in order to
make it easy to understand the process of program recompilation, as shown in Fig. 5.
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The first step of program recompilation is to insert the functions of storing the infor-
mation of the memory image of the user program executed on LLVM. For live migra-
tion on LLVM, it is necessary to back up the content of heap, global variables,
function points and the runtime stacks of user programs. For the backup of heap, the
HCM server replaces the dynamic allocation functions such as malloc(), calloc() and
realloc() with the HCM functions such as HCM_malloc(), HCM_calloc() and
HCM_realloc() to keep track of the sizes and start addresses of memory spaces
dynamically allocated. For the backup of global variables and function pointers, the
HCM server makes use of the function such as RegGlobal Var() or RegFuncPoint() to
track the mapping between the symbol name of global variables or functions and
their memory addresses. Because the runtime stack of a user program is inside LLVM,
the HCM server cannot directly control the location of local variables or parameters
in the runtime stack. To overcome this problem, the HCM server maintain a shadow
stack to track the names and memory of local variables in each user function by
inserting PushCurStack() and PopCurStack(). It is worth noting that LLVM declares
a local variable for each parameter of a user function, and replaces the parameter in
any statement with the declared local variable, as shown in the ALLOC label. In
general cases, LLVM cannot keep the memory addresses of global and local varia-
bles in the destination node as same as in the source node of task migration. There-
fore, it is necessary to copy out the data of global and local variables from the
memory of the source node before migration and copy the data values into the
memory of the destination node after migration based on the mapping of names and
memory addresses of variables.

intSIZE=5; int SIZE 5;
void VectorAdd(lnt a, int *b, int *c) { void VectorAdd(mt *a, int *b, int *c) {
ALLOC: int *A, *B, *C, i ALLOC: | int *A, *B, *C,
BB: A=a; B=b; C=c PushCurrStack(4 &A,4,8B,4,&C,4,&i,4);
for (| 0; |<SIZE i++) { BB: A=a; B=b; C=c;
clil = Ali] + Bfi]; for (i = 0; I<SIZE; i++) {
} Cli] = Afi] + B[il;
RET: return; }
RET: PopCurrStack ();
void main() { return; }
ALLOC: | int A[SIZE], B[SIZE], *C, i;
BB: C = (int*)malloc(20); void main(){
for (i = 0; i<SIZE; i++) { RegGlobalVar(1,&SIZE,4);
Ali] = rand(); B[i] = rand(); RegFuncPointer(1,(void*)VectorAdd);
} USER_MAIN();
VectorAdd(A, B, C); RET: return; }
for (i = 0; i<SIZE; i++) {
printf("C[i]=%d\n", i, C[i]); void USER_MAIN() {
} ALLOC: int A[SIZE], B[SIZE], *
RET: return; } PushCurrStack(4,&A, 20 &B 20,&C,4,&i,4);
BB: C = (int*)HCMM_| malloc(ZO)
for (i = 0; i<SIZE; i++) {
Ali] = rand(); B[i] = rand();
VectorAdd(A, B, C);
for (i = 0; i<SIZE; i++) {
prlntf(”C[l]-°/d\n" i, C[i]);
RET: PopCurrStack();
return; }

Fig. 5. Step 1 of program recompilation

The second step of program recompilation is to insert checkpoints in user programs for
checking if the migration flag, i.e., MigrationFlag, is set by the HCM sensor to be “BAC”.
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If it is true, LLVM jumps to invoke the backup routines added in user functions by looking
back upon the calling sequence of user functions, as shown in Fig. 6. For reducing backup
cost, the HCM server currently insert checkpoints only in front and rear of function calls,
and the most outer layer of nest loops in any function. If a user program has no function
call and loops, the HCM server add a checkpoint for each basic block in the user program.
On the other hand, the backup routine is aimed at recording which pointer variable must
be redirected to a new memory address after migration process, and storing the stack frame
of each user function in the calling sequence into the image file. For example, assume the
execution flow of the example program arrives at the CP1 label of VectorAdd(), and the
migration flag is set as “BAC”. LLVM jumps to the BACKUP label to call BackupCurr-
Stack() for storing the stack frame of the VectorAdd() first. Next, it returns to the CP3 label
of USER_MAIN(), and then jumps to the BACKUP label for calling BackupCurrStack()
for storing the stack frame of USER_MAIN(). Finally, it returns to main() and then jumps
to the BACKUP label for invoking BackCurrStack() to store the content of heap and global
variables into the image file.

//0:NML 1:BAC 2:RES void USER_MAIN() {
extern int MigrateFlag; ALLOC: Int A[SIZE], B[SIZE], *C, I, Jump;
int SIZE = 5; PushCurrStack(4,&A,20, &B 20 &C 4,&i,4);
void VectorAdd(lnt*a |nt *b, int *c) { BB: C = (int*)HCM_| malloc(ZO)
ALLOC: int *A, *B, *C, I, Jum for (i = 0; i<SIZE; i++) {
PushCurrStack(4, &A 4 &B,4,&C,4,&i,4); Jump=1;
BB: A=a; B= b, C=c; CP1: if(MigrateFlag=="BAC") goto BACKUP;
fur(l = 0; i<SIZE; i++) { Ali] = rand(); B[i] = rand();
Jump=1; }
CP1: if(MigrateFlag=="BAC") goto BACKUP; Jump =2;
C[i] = A[i] + BIi]; CP2: if(MigrateFlag=="BAC") goto BACKUP;
VectorAdd(A, B, C);
RET: PopCurrStack(); Jump =3;
return; CP3: if(MigrateFlag=="BAC") goto BACKUP;
BACKUP:| BackupCurrStack(3,&A,&B,&C); for (i = 0; i<SIZE; i++) {
gotoRET; } Jump = 4;
CP4: if(MigrateFlag=="BAC") goto BACKUP;
void main(){ printf("C[i]=%d\n", i, C[i]);
RegGlobalVar(1,&SIZE,4);
RegFuncPointer(1,(void*)VectorAdd); : RET: PopCurrStack();
USER_MAIN(); return;
if(MigrateFlag=="BAC") goto BACKUP; | BACKUP:| BackupCurrStack(1,&C);
RET: return; goto RET; }
BACKUP:| BackupCurrStack();
gotoRET; }

Fig. 6. Step 2 of program recompilation

It is worth noting there is a local variable called Jump in VectorAdd() and
USER_MAIN(). This variable is used to control the flow of recovery process later. When
LLVM performs BackupCurrStack(), it also stores the value of the Jump variable in the
image file. For our example, the values of the Jump variables in VectorAdd() and
USER_MAIN() are 1 and 2, respectively.

The third step of program recompilation is to insert restore routines for recovering
the context of the migrated program on destination node, and resuming the execution of
the program from the checkpoint starting the migrated process. As shown in Fig. 7, the
HCM server adds a RestoreCurrStack() in each user function for rebuilding the stack
frame of the user function. The Jump parameter of RestoreCurrStack() is used to guide
LLVM jump to which statement in the user function after finishing RestoreCurrStack().
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After receiving the image file of the migrated program, the HCM server on destination
node sets MigrateFlag as “RES”, and then recovers the content of heap, global variable
and stack in the local memory of the destination node from the image file by invoking
each RestoreCurrStack() based on the calling sequence of the migrated program.

//0:NML 1:BAC 2:RES | void USER_MAIN() {
extern int MigrateFlag; | ALLOC: int A[SIZE], B[SIZE], *C, i, Jump;
intSIZE=5; PushCurrStack(4,&A, 20 &B 20,&C,4,&i,4);
void VectorAdd(lnt a, int *b, int *c) { if(MigrateFlag=="RES”) goto RESTORE;
ALLOC: int *A, *B, *C, i, Jump JUMP: switch(Jump){
PushCurrStack(4 &A,4,8B,4,&C,4,&i,4); case 1: gotoCP1;
if(MigrateFlag=="RES") goto RESTORE; case 2: goto CP2;
JUMP: switch(Jump){ case 3: gotoCP3
case 1: gotoCP1; } case 4: goto CP4; }
BB: A=a; B=b; C=c; BB: C= (|nt )HCMM maIIoc(ZO)
for (i = 0; i<SIZE; i++) { for (i = |<SIZE i++) {
Jump 1 Jump
CP1: |f(M|grateFIag=="BAC")goto BACKUP;; CP1: |f(M\grateFIag=="BAC")goto BACKUP;
Cl[i] = A[i] + BIi]; Ali] = rand(); B[i] = rand();
}
RET: PopCurrStack(); Jump=2;
return; CP2: |f(M|grateFIag ="BAC") goto BACKUP;
BACKUP: | BackupCurrStack(3,&A,&B,&C); VectorAdd(A, B, C);
goto RET; Jump =3;
RESTORE:| RestoreCurrStack(&Jump); CP3: |f(M|grateFIa ="BAC") goto BACKUP;
goto JUMP; } for (i = 0; i<SIZE; i++) {
Jump = 4;
void main(){ CP4: if(MigrateFlag=="BAR") goto BACKUP;
RegGlobalVar(1,&SIZE,4); printf("C[i]=%d\n", i, C[i]);
RegFuncPointer(1,(void*)VectorAdd);
if(MigrateFlag=="RES") goto RESTORE; ! RET: PopCurrStack();
USER_MAIN(); return;
if(MigrateFlag=="BAC") goto BACKUP; | BACKUP: BackupCurrStack(l &C);
RET: return; goto RET;
BACKUP: BackupCurrStack() RESTORE: RestoreCurrStack(&Jump);
goto RET; goto JUMP; }
RESTORE: RestoreCurrStack(),
goto JUMP; }

Fig. 7. Step 3 of program recompilation

For the previous assumed case, the recovery process is described as follows. First,
LLVM re-executes the program from main() while it only invokes RegGlobalVar(),
RegFunctionPointer() and RestoreCurrStack() to obtain the new memory addresses of
global variables and VectorAdd(), and to restore the content of heap and global variables
from the image file to the memory of the destination node, respectively. Second, LLVM
jumps to USER_MAIN() while it only calls PushCurrStack() and RestoreCurrStack()
to get the new memory locations of local variables in this function, and to copy the values
of the local variables from the image file to the new memory locations of these variables,
respectively.

Finally, LLVM jumps to the CP2 label of invoking VectorAdd(). After it jumps to
VectorAdd(), it calls PushCurrStack() and RestoreCurremStack() to do the same things
as done in the USER_MAIN(), and then jumps to the CP1 label to continue the execution
of the for loop.
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4.3 Redirection of Standard I/0

In the HCM framework, the standard I/O of user programs is redirected to files. Because
of security consideration, we developed an adapter library for HCM to direct any file
functions called by user programs into a dedicated file directory in order for preventing
the programs from accessing other file directories. Whenever user programs access files
out of this dedicated file directory, HCM will catch the file accesses and terminate the
execution of the programs right away. In addition to user files, HCM automatically open
a file in the same directory for the standard output such of each user program before it
starts to run. However, users must direct the standard input of their programs to the files
specified by themselves. Before a user program is moved from one node to another, the
descriptors of the files opened by the user program will be logged, and the opened files
will be automatically closed. Then, the HCM server will send the files with the image
file of the user program to the destination node. After receiving the files, the new HCM
server will write these files into disks with the same file path, and will automatically
open these files, and seek the access headers of the files to the logged positions according
to the file descriptors.

4.4 Optimization

Although the cost of task migration on LLVM is much less than that of VM migration,
in order to further reduce migration cost, the proposed scheme compress any files trans-
mitted from source nodes to destination nodes for task migration, and then decompress
the files in destination nodes for rebuilding the context of user programs. Since the
computational power of mobile devices recently has been greatly improved, the benefit
from saving communication cost usually is larger than the loss from compressing and
decompressing file data because the bandwidth of wireless networks is not stable espe-
cially in outdoors.

5 Performance Evaluation

We have primarily evaluated the performance of proposed scheme in this paper. We
implemented an application called Matrix Multiplication for this performance evalua-
tion. For building our test bed, we used two Xiaomi MiPAD to play mobile client and
server, and two PCs to play broker and cloud server, respectively. The specification of
these mobile devices and PCs is depicted in Table 2. On the other hand, the broker and
the cloud server are connected with a 100 Mbps Ethernet. The gateway between PCs
and mobile devices was ZyXEL USG20W, i.e., an access point supporting 802.11n. The
mobile devices communicated with the PCs through Wi-Fi or 4G.

We have finished three experiments in the test bed. The first experiment is to estimate
the cost of checkpoints in HCM. The second and the third ones are to measure the costs
of task migration under three different paths including mobile device to cloud server
(M2C), cloud server to mobile device (C2M) and mobile device to mobile device (M2M)
through Wi-Fi and 4G, respectively. In fact, the task migration between mobile device
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and cloud server is delegated to the HCM broker (denoted as B). Therefore, the three
different paths of task migration physically are M-B-C, C-B-M and M-B-M.

Table 2. Device specification

Device CPU RAM Network oS Amount
Xiaomi Mipad | NVIDIA Tergra | 2G-LPDDR3 Wi-Fi 802.11n | Android 2
K1 4.4.2
X86 Server AMD 8G-DDR3 Ethernet Ubuntu 1
A10-5800 k 100 Mbps 14.04
Broker Intel i5-760 4G-DDR3 Ethernet Ubuntu 1
100 Mbps 14.04

5.1 Checkpoint Cost of HCM

In this experiment, we aimed at evaluating the impact of checkpoint cost on the execution
performance of the test application executed on the mobile client. To achieve this goal,
we recompiled the LLVM executable of the test application, and evaluated the execution
performance of the test applications with and without program recompilation. In addi-
tion, we also recompiled the test program by inserting a checkpoint in each LLVM IR
to compare this exhaustive checkpoint way with the lazy checkpoint way of HCM in
terms of time cost. Our experimental result is depicted in Fig. 8.
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Fig. 8. Checkpoint cost of the test applications

In this figure, HCM-C1 and HCM-C2 represent the exhaustive checkpoint way and
the lazy checkpoint way of HCM, respectively. In contrast, MCJIT denotes no check-
point in the test application. The performance comparison between the HCM-C2 case
and the MCIJIT case shows that the checkpoint cost of HCM is negligible for the execu-
tion performance of the test application. Conversely, the cost of exhaustive checkpoint
way is significant for the execution performance of the test application. The applications
must spent extra 20~33 % execution time for checkpoints. Although performing check-
point for each instruction is useful to reduce the delay of activating the mechanism of
task migration, the overhead apparently is too expensive to be tolerated.
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5.2 Cost of Task Migration Through Wi-Fi

This experiment is to evaluate the efficiency of task migration under Wi-Fi. We
performed task migration for the MM application in three different migration paths (i.e.,
M2C, C2M and M2M) with or without compressing transferred data, and then evaluated
and the cost of task migration. In addition, we estimated the transmission rate of these
three paths in advance for different data sizes as depicted in Fig. 9. It shows that the
transmission rate increases as well as the size of each transmitted data. The C-B-M path
has the largest transmission rate while the M-B-M path has the smallest one no matter
what size of transmitted data.
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15

10 -
5 f
o Him

10K im 10M

Problem Size ( Byte )

Mbps

Fig. 9. Transmission rates of different migration paths.

Figure 10 is the cost of task migration for the MM application under three different
migration paths. The breakdown of task migration cost includes backup, transmit and
restore. The backup and restore costs are the time used to save and restore memory data,
program codes and execution context to/from the image file of the test application,
respectively. In contrast, the transmit cost is the time spent on transmitting the image,
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Fig. 10. Migration cost of MM through Wi-Fi
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executable, I/O files from the source node of task migration to the destination node. The
total cost of task migration is increased with the size of the files no matter what migration
path is. Both of the transmit cost and the backup cost are obvious while the restore cost
is negligible. In addition, the transmit cost is effectively reduced after applying data
compression. This result makes it confirmed that compressing the image files of migrated
programs is useful and necessary for reducing the cost of live migration especially when
the migration path is M2M because the transmission rate of the M2M path is much
smaller than those of the other two paths.

5.3 Cost of Task Migration Through 4G

In this experiment, we aimed at evaluating the cost of task migration through 4G. We
also estimated the transmission rates of different migration paths through 4G in advance
as shown in Fig. 11. Basically, the estimated result physically is only from 8~15.8 Mbps
which is as same as shown in Fig. 10 although the maximal transmission rate of 4G is
announced to be 1 Gbps. That is because the physical transmission rate of 4G is affected
by many environmental factors such as signal strength, sender/receiver location, and
outdoor/indoor.
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Fig. 11. Transmission rates of different migration paths.

The result of this experiment is shown in Fig. 12. Most of the situations observed
from the previous experiment also occurs in this experiment. A different situation is
that the transmission rate of the C2M path is less than that of the M2C path under
4G. Consequently, the transmit cost the C2M path is more than that of the M2C path.
On the other hand, the impact of compressing transfer data under 4G becomes more
obvious than that under Wi-Fi.
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HCM 4G test
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Fig. 12. Migration cost of MM through 4G

6 Conclusions and Future Work

In this paper, we have successfully developed an efficient heterogeneous computation
migration scheme for mobile cloud computing. With the proposed scheme, user
programs can dynamically move among mobile devices and cloud servers while they
can obtains an execution performance as good as native code on any execution node.
Consequently, the proposed scheme is effective for integrating the computational power
of mobile and cloud resources to serve mobile and cloud users as well as possible. In
this paper, we only focused on the development of live migration mechanism on LLVM.
We will develop an advance scheduling algorithm based on the proposed migration
scheme for mobile cloud computing.
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