
Chapter 9
On a Partially Sequential Ranked
Set Sampling Paradigm

Douglas A. Wolfe

Abstract In a two-sample setting it is important to design statistical procedures that
can take advantage of additional information to minimize the sample sizes required
to reach reliable inferences about possible differences between the two populations.
This is particularly true when it is difficult and/or costly to obtain sample observa-
tions from one or both of the populations. One class of procedures designed with this
goal in mind uses the partially sequential sampling (PS) approach, first introduced
by Wolfe (Journal of the American Statistical Association 72:202–205, 1977a).
The use of ranked set sampling (RSS), first introduced by McIntyre (Australian
Journal of Agricultural Research 3:385–390, 1952, reprinted in 2005), offers another
approach for minimizing required sample sizes through the mechanism of obtaining
more representative samples than can be achieved using simple random samples.
In this paper we provide a review of these two sampling techniques and discuss
options for melding the two methodologies to obtain partially sequential ranked
set sample (PSRSS) two-sample test procedures that take advantage of the sample
saving properties of both the PS and RSS approaches. To illustrate this combination,
we consider PSRSS procedures where the fixed (control) sample is obtained via
simple random sampling and the sequential (treatment) sample is obtained via
ranked set sampling. Properties of the associated tests are discussed, including the
limiting distributions as the fixed sample size tends to infinity.

Keywords Distribution free tests • Judgment ranked order statistics • Minimiz-
ing sample sizes • Negative binomial distribution • Using auxiliary sampling
information

9.1 Introduction

Minimizing the cost associated with collection of the sample data is a critical
feature of most statistical analyses. As a result, it is important to develop statistical
approaches to sampling that minimize the sample sizes necessary to achieve desired
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properties, whether it be precision of estimators, length of confidence intervals, or
power of statistical tests. One technique that has been shown to be useful in this
regard is ranked set sampling (RSS), first introduced by McIntyre (1952, reprinted
in 2005) in the context of sampling from pasture and crop plots. This sampling
approach uses readily available auxiliary information from individual units in a
population to aid in the selection of more representative units for measurement
than are typically generated by simple random sampling (SRS). Development of
statistical procedures using this RSS approach remains an active area of research.
[See, for example, the recent survey article by Wolfe (2012).] A second approach
to data collection designed to reduce the sample size in a treatment versus control
two-sample setting is the partially sequential (PS) paradigm introduced by Wolfe
(1977a,b). This approach uses a negative binomial sampling framework to minimize
the number of treatment observations necessary for reaching satisfactory statistical
conclusions regarding the treatment’s efficacy.

In this paper we review the basic tenets of both the RSS and PS methodologies
and discuss how to combine these approaches to develop partially sequential ranked
set sample (PSRSS) two-sample test procedures. In Sect. 9.2 we present the PS
two-sample framework and review previous work in this area. We describe the
basic RSS approach in Sect. 9.3 and discuss a number of options available within
this structure. We propose a class of melded PSRSS two-sample test procedures
in Sect. 9.4 and develop their basic small sample and asymptotic properties as the
control sample size becomes large. Section 9.5 is devoted to a general discussion
of the opportunities presented by this new methodology as well as extensions for
future research.

9.2 Partially Sequential Two-Sample Procedures

The partially sequential approach to data collection in the two-sample setting was
first introduced by Wolfe (1977a). It is particularly appropriate for data collection
settings such as the following:

1. A sample from the first population (e.g., control) has already been collected and
we do not wish to collect any more observations from the second population
(e.g., new treatment) than are necessary for reaching a decision.

2. Neither sample has been collected, but one of the samples (say the ‘stan-
dard’procedure observations) is relatively easy and inexpensive to collect, while
the other sample observations (corresponding to the ‘new treatment’) are costly
and/or difficult to collect. In such situations our goal would be to collect a
sample (usually large) of standard observations and then collect only enough
difficult-to-obtain new treatment observations necessary to reach statistically
valid conclusions about potential differences between the two populations.

We first describe a general PS procedure to test for differences between two
distributions. Let X1; � � � ; Xm be a random sample from a continuous probability
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distribution with p.d.f. f .x/ and c.d.f. F.x/, where m is a fixed positive integer, and
let G.y/ be a second continuous distribution function with associated p.d.f. g.y/.
Let .x1; � � � ; xm/ be an arbitrary m-tuple of real numbers and let A.x1; � � � ; xm/ be a
subset of the real line R depending on the m-tuple .x1; � � � ; xm/. For example, A.�/
could be the portion of R below the minimum x-value or the portion of R above the
maximum x-value. Define the indicator function �.�/ by

�.y/ D
(

1; if y 2 A.x1; � � � ; xm/;

0; if y 62 A.x1; � � � ; xm/:
(9.1)

Now let Y be a random variable (independent of X1; � � � ; Xm) from the second
distribution G.y/. Applying �.y/ to these random variables X1; � � � ; Xm and Y , we
obtain the following

�.Y/ D
(

1; if Y 2 A.X1; � � � ; Xm/;

0; if Y 62 A.X1; � � � ; Xm/:
(9.2)

Thus, �.Y/ is the random indicator variable for the random set A.X1; � � � ; Xm/.
With (9.2) in mind we sequentially sample mutually independent Y 0s from

the distribution G.y/ until a preset number, say r, of these Y 0s are in the set
A.x1; � � � ; xm/, where .x1; � � � ; xm/ is the observed value of the previously collected
random vector .X1; � � � ; Xm/. Define the statistic Nm (having random contributions
from both the X and Y samples) by

Nm D fnumber of Y observations required to get r Y 0s in A.x1; � � � ; xm/g: (9.3)

Wolfe (1977a) discussed how to use Nm to test the null hypothesis H0 W F.x/ � G.x/

against appropriate alternatives [depending on the nature of the set A.x1; � � � ; xm/].
The decision rule he proposed is to reject H0 when Nm � N0.˛; r; m; A/, where
N0.˛; r; m; A/ is the lower ˛th percentile point for the null (H0) distribution of Nm.
Note that with this approach we will never need to collect more than N0.˛; r; m; A/

Y observations. In fact, we would stop even sooner with an even smaller Y sample
size and (1) reject H0 as soon as we obtain r Y observations in A.x1; � � � ; xm/ or (2)
fail to reject H0 as soon as we obtain fN0.˛; r; m; A/ � r C 1g Y observations not in
A.x1; � � � ; xm/.

9.2.1 Properties of Partially Sequential Procedures

For given X1 D x1; � � � ; Xm D xm, let

pm D pm.x1; � � � ; xm/ D PGfY 2 A.x1; � � � ; xm/g: (9.4)
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Thus, pm is the conditional probability that an observation from the distribution
G falls in the set A.x1; � � � ; xm/ prescribed by the observed values from the F
distribution. Then, conditional on X1 D x1; � � � ; Xm D xm, Nm has a negative
binomial distribution with parameters r and pm; that is,

P.Nm D njX1 D x1; � � � ; Xm D xm/

D
 

n � 1

r � 1

!
Œpm.x1; � � � ; xm/�rŒ1 � pm.x1; � � � ; xm/�n�rIfr;rC1;rC2;��� g.n/:

(9.5)

The unconditional distribution of Nm is obtained from the result in (9.5) by
integrating over the distribution of the X0s, namely,

P.NmDn/DEFf
 

n � 1

r � 1

!
Œpm.X1; � � � ; Xm/�rŒ1�pm.X1; � � � ; Xm/�n�rgIfr;rC1;rC2;��� g.n/:

(9.6)

Since the investigator has flexibility in setting the sample size m for the X
observations, it is of interest to know how Nm behaves as m becomes large, that
is, as m ! 1. If, for given F and G, pm.X1; � � � ; Xm/ converges in probability to a
fixed number p D p.F; G/, 0 < p � 1, as m ! 1, then the limiting distribution
(m ! 1) of Nm is negative binomial with parameters r and p; that is, the asymptotic
distribution (m ! 1) of Nm is

P�.Nm D n/ D
 

n � 1

r � 1

!
pr.1 � p/n�rIfr;rC1;rC2;��� g.n/: (9.7)

(Note: A limiting value of p D p.F; G/ D 0 does not satisfy the conditions for this
result. If a pair .F; G/ produces a limiting value of p D 0, the statistic Nm does
not possess a limiting distribution as m ! 1, since in such cases Nm increases
stochastically without limit as m ! 1.)

When m is fixed and large we can use the limiting distribution in (9.7) to select r
to guarantee asymptotic (m ! 1) power against an alternative to H0 of interest. Let
Ha be an alternative to H0 against which we require an approximate power ˇ, where
0 < ˇ < 1 is arbitrary. Let p� be the value of p in (9.7) that corresponds to the
alternative Ha. Then from the definition of N0.˛; r; 1; A/ (i.e., the approximate ˛-
level critical value for the asymptotic, m ! 1, distribution of Nm), this approximate
power requirement corresponds to

N0.˛;r;1;A/X
nDr

 
n � 1

r � 1

!
.p�/r.1 � p�/n�r � ˇ: (9.8)

For many partially sequential procedures, the left side of the inequality in (9.8)
is a non-decreasing function of r. In this case, to satisfy our asymptotic power
requirements with the fewest Y observations, we can preset r to be r D r�, where
r� is the smallest integer for which (9.8) is satisfied.
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9.2.2 Examples

The PS approach can be used equally well in parametric or nonparametric settings.
We briefly discuss two such examples.

Example 1: Parametric Setting

Let F.x/ D ˚f x��1

�
g and G.y/ D ˚f y��2

�
g, where ˚.t/ is the standard normal

distribution function. The null hypothesis of interest is H0 W �1 D �2 and we
consider here the alternative Ha W �2 > �1.

One method for selecting the set A.x1; � � � ; xm/ would be to view the indicator
�.�/ in (9.1) as a critical function for testing H0 against Ha for random samples of
sizes m and 1 from the F and G distributions, respectively. For example, we know
that the uniformly most powerful level ˛� test of H0 against Ha for m X observations
and a single Y observation has critical region

C.y; x1; � � � ; xm/ D
�

.y; x1; � � � ; xm/ W m1=2

.m C 1/1=2

.y � Nx/

s
� t˛�.m � 1/

�
;

where Nx D
mP

iD1

xi=m, s2 D
mP

iD1

.xi � Nx/2=.m � 1/ and t˛�.m � 1/ is the upper ˛�

percentile point for the t distribution with m � 1 degrees of freedom.
Thus, in this setting it is natural to take the set A.x1; � � � ; xm/ to be

A.x1; � � � ; xm/ D fy W y � Nx C t˛�.m � 1/.fm C 1gs2=m/
1
2 g: (9.9)

In fact, Orban and Wolfe (1978) showed that this choice of A.x1; � � � ; xm/ leads to
the asymptotically (m ! 1) most powerful level ˛� partially sequential procedure
for testing H0 against Ha.

With A.x1; � � � ; xm/ given by (9.9), we have

pm D 1 � ˚.fNx C t˛�.m � 1/.fm C 1gs2=m/
1
2 � �2g=�/

and the limiting distribution of Nm as m ! 1 is negative binomial (9.7) with
parameters r and p D lim

m!1 pm D 1 � ˚
˚

�1��2

�
C z˛�

�
.

Example 2: Nonparametric Setting

Let F and G be arbitrary, continuous distribution functions. We wish to test
H0 W F � G against the alternative Ha W �2 > �1, where �1 and �2 are the medians
of the F and G distributions, respectively. Assume that m is an odd integer (more
complicated, but tractable for m even) and define A.x1; � � � ; xm/ by

A.x1; � � � ; xm/ D fy W y > mxg; (9.10)
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where mx D median.x1; � � � ; xm/. Then the PS two-sample median test associated
with Nm (9.3) has the following properties:

(a) pm D 1 � G.mx/ and the exact null (H0) distribution of Nm is given by

P0.Nm D n/ D
8<
:
�n�1

r�1

�
mŠ

Œf.m�1/=2gŠ�2

�
�

mC2n�2rC1
2

�
�
�

2rCmC1
2

�
.mCn/Š

; n D r; r C 1; � � �
0; elsewhere:

(9.11)

(b) The limiting distribution of Nm as m ! 1 is negative binomial (9.7) with
parameters r and p D lim

m!1 pm D 1 � G.�1/, with p D 1=2 or > 1=2 depending

on whether H0 or Ha is true, respectively.
Wolfe (1977b) initially proposed this PS two-sample median procedure and

Orban and Wolfe (1982) studied its properties, including the expected number
of Y observations required to conduct the test. They also provided the necessary
tables for selecting r so that the approximate power requirement in (9.8) can be
attained.

9.3 Ranked Set Sampling

The goal of RSS is to collect observations that are more likely to be representative
of the full range of values in a population than the same number of observations
obtained via SRS. To obtain a balanced RSS of k observations from a population, we
proceed as follows. First, an initial SRS of k units is selected from the population
and rank ordered on the attribute of interest. This ranking can be obtained through a
variety of mechanisms, including visual comparisons, expert opinion, or through the
use of correlated concomitant variables, but it cannot involve actual measurements
of the attribute of interest on the selected units. The unit that is judged to be the
smallest in this ranking is taken as the first item in the RSS and the attribute of
interest is formally measured for the unit and denoted by XŒ1�. Note that square
brackets are used instead of the usual round brackets for the smallest order statistic
since XŒ1� may or may not actually have the smallest attribute measurement among
the k units in the SRS, even though our ranking judged it to be the smallest. The
other remaining k � 1 units in our initial SRS are not considered further in making
inferences about the population—they were used solely to assist in the selection of
the smallest ordered ranked unit for measurement.

Following the selection of XŒ1�, a second SRS (independent of the first SRS) of
size k is selected from the population and ranked in the same manner as the first
SRS. From this second SRS we select the item ranked as the second smallest of the
k units (i.e., the second judgment order statistic) and add its attribute measurement,
XŒ2�, to the RSS. From a third SRS (independent of both previous SRS’s) of size k we
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select the unit ranked to be the third smallest (i.e., the third judgment order statistic)
and include its attribute measurement, XŒ3�, in the RSS. This process continues until
we have selected the unit ranked to be the largest of the k units in the kth independent
SRS and included its attribute measurement, XŒk�, in our RSS.

This process results in the k measured observations XŒ1�; XŒ2�; � � � ; XŒk� and is
called a cycle. The number of units, k, in each SRS is called the set size. To complete
a single ranked set cycle, we need to access a total of k2 units from the population to
separately rank k independent simple random samples of size k each. The measured
observations, XŒ1�; XŒ2�; � � � ; XŒk�, constitute a balanced ranked set sample of size
k, where the descriptor “balanced” refers to the fact that we have collected one
judgment order statistic for each of the ranks 1; 2; � � � ; k. To obtain a final balanced
RSS with a desired total number of measured observations n D qk, we repeat
the entire process for q independent cycles, yielding the balanced RSS of size n:
XŒ1�j ; XŒ2�j ; � � � ; XŒk�j , for j D 1; � � � ; q.

Note that a balanced RSS of size n differs from an SRS of size n in a number
of important ways. An SRS is designed so that the n observations in the sample are
mutually independent and identically distributed. This means that, probabilistically
speaking, each of the individual sample items can be viewed as representative
of a typical value from the underlying population. That is certainly not the case
for a balanced RSS of size n. While the individual observations in a balanced
RSS are also mutually independent, they are clearly not identically distributed. As
such, it is not the case that each of the individual observations in a balanced RSS
represents a typical value from the underlying population. On the contrary, the
individual judgment order statistics represent very distinctly different portions of
the underlying population. It is, however, precisely this additional structure on the
items in the balanced RSS that enables it to provide greater assurance that the entire
range of population values are represented in the sample data.

There have been numerous papers in the literature demonstrating the advantages
that balanced RSS provides relative to SRS, both in terms of precision accuracy and
in terms of reducing required sample sizes. Dell and Clutter (1972) showed that
the estimator of the population mean � based on a balanced RSS is unbiased and
it has a variance that is never larger than the variance of the estimator of � based
on a SRS of the same size. The remarkable thing is that this result is true even if
the judgment ranking for the balanced RSS is not perfect. The better the judgment
ranking, of course, the greater the improvement from using a balanced RSS instead
of a SRS. Stokes and Sager (1988) obtained similar results for the RSS estimator of
the distribution function of the population and Terpstra (2004) did the same for the
RSS maximum likelihood estimator for a population proportion.

While a balanced RSS is the most commonly occurring form of ranked set
sampling data, there are situations where it is not optimal to collect the same number
of measured observations for each of the judgment order statistics. For example,
suppose we are interested primarily in making inferences about the median � of a
distribution based on an odd number of observations k D 2d C 1. It is well known
that among all the order statistics the sample median, X.dC1/, contains the most
information about � when the underlying distribution is unimodal and symmetric.
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Thus, to make inferences about � , it is natural to measure the same judgment order
statistic, XŒdC1�, in each set so that it is measured all k times in each of the q
cycles. The resulting RSS consists of qk measured observations, each of which is
a judgment median from a set of size k. This is the most efficient RSS for making
inferences about the population median � for a distribution that is both unimodal and
symmetric, and it is clearly as unbalanced as possible. (A similar argument calls for
a distinctly different unbalanced RSS for estimating the median of an asymmetric
unimodal population or a multimodal population. See, for example, Ozturk and
Wolfe 2000, and Chen et al. 2006.) We should point out, however, that such a
median unbalanced RSS would not necessarily be a good idea if we wanted to make
inference about other features of the population, such as its distribution function or
the population variance.

RSS and related methodology has an active and rich literature. The interested
reader is referred to the recent survey and review articles in Wolfe (2004) and Wolfe
(2012) for more comprehensive discussions.

9.4 A Class of PSRSS Two-Sample Percentile Test
Procedures

There are three approaches that can be taken to incorporate RSS into partially
sequential procedures:

1. Use RSS for the X sample data and SRS for the sequentially obtained Y sample
data.

2. Use RSS for both the X sample and Y sample data.
3. Use SRS for the X sample data and RSS for the Y sample data.

All three of these options are worthy of consideration, although the first approach
is probably the least interesting in the context where partially sequential procedures
would be most useful. In this paper we concentrate on the most natural third option
to provide an illustration of how to introduce RSS into the partially sequential
process. To facilitate the discussion we consider the particular unbalanced RSS
corresponding to all of the observations being collected at a single judgment order
statistic and we assume that the judgment ranking is perfect, so that the various
judgment order statistics can be viewed as true order statistics.

As before, let X1; � � � ; Xm be a random sample from a probability distribution
with p.d.f. f .x/ and c.d.f. F.x/, where m is an odd integer, and let G.y/ be a second
distribution function with associated p.d.f. g.y/. Let MX be the X sample median
and let mx be the observed value of MX . Once again we wish to test H0 W F � G
against the alternative Ha W �2 > �1, where �1 and �2 are the medians of the F and G
distributions, respectively.

For illustrative purposes, we consider collecting unbalanced RSS data from G
using a single cycle (q D 1) with set size k and measuring the jth order statistic, Y.j/,
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at each step of the sequential sampling, for fixed j 2 f1; � � � ; kg. With this RSS Y-
sampling scheme and the indicator set A.x1; � � � ; xm/ D fy W y > mxg, the associated
PSRSS test of H0 W F � G against the alternative Ha W �2 > �1 has the following
properties:

(a) The unconditional exact distribution of Nm still has the form

P.Nm D n/ D EF

( 
n � 1

r � 1

!
Œpm.X1; � � � ; Xm/�rŒ1 � pm.X1; � � � ; Xm/�n�r

)
Ifr;rC1;rC2;��� g.n/;

(9.12)

but the parameter pm D pm.x1; � � � ; xm/ is now given by

pm D PfY.j/ > mxg D 1 � Qj.mx/;

where Qj.�/ is the c.d.f. for the jth order statistic for a random sample of size k
from G, given by

Qj.t/ D
kX

uDj

 
k

u

!
ŒG.t/�uŒ1 � G.t/�k�u: (9.13)

Combining (9.12) and (9.13), the unconditional distribution of Nm becomes

P.Nm D n/ D EFMX

( 
n � 1

r � 1

!
Œ1 � Qj.MX/�rŒQj.MX/�n�r

)
Ifr;rC1;rC2;��� g.n/;

(9.14)

where FMX is the c.d.f. of the sample median for a random sample of size
m from F. Using the standard form of FMX for an odd sample size m in
expression (9.14), it follows that

P.Nm D n/ D
Z 1

�1

 
n � 1

r � 1

!
Œ1 � Qj.t/�

rŒQj.t/�
n�r

� mŠ

Œ
�

m�1
2

�
Š�2

fF.t/Œ1 � F.t/�g m�1
2 f .t/dtIfr;rC1;rC2;��� g.n/;

(9.15)

Under H0 W F � G it follows from the change of variable v D F.t/ in (9.15)
that the null distribution for Nm “simplifies” to

P.Nm D n/ D
Z 1

0

 
n � 1

r � 1

!8<
:1 �

kX
uDj

 
k

u

!
Œv�uŒ1 � v�k�u

9=
;

r 2
4 kX

uDj

 
k

u

!
Œv�uŒ1 � v�k�u

3
5

n�r

� mŠ

Œ
�

m�1
2

�
Š�2

fv.1 � v/g m�1
2 dvIfr;rC1;rC2;��� g.n/;

(9.16)
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This expression clearly does not depend on the form of the continuous F, so that
the test based on Nm is distribution-free and the exact critical values for the test
can be evaluated from (9.16) without knowledge of F.

(b) The limiting distribution of Nm as m ! 1 is negative binomial with parameters
r and p�

j D lim
m!1 pm D 1 � Qj.�1/.

Using the expression for Qj.t/ in (9.13), we see that

p�
j D 1 � Qj.�1/ D 1 �

kX
uDj

 
k

u

!
ŒG.�1/�uŒ1 � G.�1/�k�u;

which simplifies under the null hypothesis to

p�

0j D 1�Qj.�1/ D 1�
kX

uDj

 
k

u

!
ŒF.�1/�uŒ1�F.�1/�k�u D 1�

kX
uDj

 
k

u

!
Œ0:5/�uŒ0:5�k�u;

(9.17)

9.4.1 Special Cases

1. j D k—here we are measuring the maximum judgment order statistic in each set
and

p�
0k D 1 �

kX
uDk

 
k

u

!
Œ0:5/�uŒ0:5�k�u D 1 �

 
k

k

!
Œ0:5/�kŒ0:5�k�k D 1 � .0:5/k;

(9.18)

which converges to 1 as k ! 1.
2. j D 1—here we are measuring the minimum judgment order statistic in each

set and

p�
01 D 1 �

kX
uD1

 
k

u

!
Œ0:5/�uŒ0:5�k�u

D 1 � Œ

kX
uD0

 
k

u

!
Œ0:5/�uŒ0:5�k�u �

 
k

0

!
Œ0:5/�0Œ0:5�k�0�

D 1 � Œ1 � .0:5/k� D .0:5/k; (9.19)

which converges to 0 as k ! 1. (Remember that this is not a viable option for
PSRSS.)

3. j D d C 1, where k D 2d C 1 is an odd integer—here we are measuring the
median judgment order statistic, Y.dC1/, in each set and
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p0.dC1/ D 1 �
2dC1X

uDdC1

 
2d C 1

u

!
Œ0:5/�uŒ0:5�.2dC1/�u

D
dX

uD0

 
2d C 1

u

!
Œ0:5/�uŒ0:5�.2dC1/�u

D 1

2

2dC1X
uD0

 
2d C 1

u

!
Œ0:5/�uŒ0:5�.2dC1/�u D 1

2
.1/ D 0:5: (9.20)

The fact that the limiting distribution under the general alternative F ¤ G
depends on both the negative binomial stopping parameter r and the set size k
provides us with even greater flexibility in designing a study with the idea of
guaranteeing prescribed power against specific alternatives. Both increasing r and
increasing k will lead to increased power for the PSRSS median procedure, but
increasing r will also lead to a larger number of measured observations from the
Y distribution, something that we are trying to avoid. Increasing k and/or increasing
the initial sample size m from the X distribution can be used as effective alternatives
for increasing the power without increasing the number of measured Y observations.

9.5 Discussion and Future Research

Small sample and asymptotic properties of the PSRSS two-sample median test
procedure (corresponding to special case 3) based on measuring the Y sample
median (for an odd set size k) in every ranked set have been investigated extensively
by Matthews et al. (2016). They found that taking the RSS approach for collection of
the Y sample observations leads to both increased power and decreased expected Y
sample size relative to the PSRSS version studied by Orban and Wolfe (1982). This
is due to both the intrinsic structure inherent in the partially sequential approach
to the two-sample problem and the ranked set sampling methodology employed in
obtaining the Y sample. As noted in Sect. 9.4, further improvements in both power
and reduced Y sample size can likely be obtained by utilizing RSS to collect both
the X and Y sample observations. The basic formulation of this dual RSS approach
would be analogous to what we utilized in this paper using SRS to collect the X
sample items, although the mathematical properties would be more complicated.
Another intriguing possibility would be to develop PSRSS methodology that utilized
a fully balanced RSS approach to the collection of the Y observations, rather than
relying solely on the use of the medians of the ranked sets. This could also include
a fully balanced RSS approach to collection of the initial X sample, leading to
natural partially sequential analogues to the two- sample balanced RSS procedures
considered by Bohn and Wolfe (1992) and Fligner and MacEachern (2006).
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