
Chapter 7
Rank-Based Inference for Multivariate
Data in Factorial Designs

Arne C. Bathke and Solomon W. Harrar

Abstract We introduce fully nonparametric, rank-based test statistics for inference
on multivariate data in factorial designs, and derive their asymptotic sampling
distribution. The focus here is on the asymptotic setting where the number of levels
of one factor tends to infinity, while the number of levels of the other factor, as
well as the replication size per factor level combination, are fixed. The resulting test
statistics can be calculated directly, they don’t involve any iterative computational
procedures. To our knowledge, they provide the first viable approach to a fully
nonparametric analysis of, for example, multivariate ordinal responses, or a mix
of ordinal with other response variables, in a factorial design setting.

Keywords Asymptotics • Multivariate statistics • Nonparametric method
• Ordinal data • Rank test

7.1 Introduction

Multivariate data in factorial designs with few replications arise in agricultural,
behavioral and biomedical studies, just to mention a few. However, due to the
lack of appropriate inference procedures, such data are often analyzed using
simplistic univariate methods or questionable model assumptions (e.g., multivariate
normality). In this article, we develop fully nonparametric methods for the analysis
of such data. These nonparametric methods allow for the analysis of data with
ordinal responses, and they contain desirable invariance properties, as each variable
(endpoint) can be monotonically transformed without changing the outcome of
the analysis. Furthermore, the proposed methods represent the first nonparametric
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approach that is asymptotically valid when the number (a) of different samples or
treatment groups (more generally, the number of levels of one of the factors) is
large. In order to illustrate application of the procedure, we use the following data
example.

7.1.1 Agricultural Field Trial

In an agricultural experiment that stands here exemplary for many similarly
conducted field trials, several varieties of crabapples are examined with regard to
their disease resistance (Chatfield et al. 2000). The response variable is a rating of
tree health, on an ordinal scale from 0 to 5. Trees are evaluated at different times
during the growing season, generating a multivariate observation vector per tree.
When the experiment is repeated in a different year or at a different location, a
second treatment factor is introduced whose main effect and interaction with the
plant variety need to be considered, in addition to the variety effect. In Chatfield
et al. (2000), the number of crabapple varieties was a D 63, justifying the use of
methods derived for the asymptotic situation of a ! 1. The number nij of replicates
per variety were between 3 and 5. If we assume that the same study is performed at
two different agricultural experiment stations or in two different years, we would be
in the situations with b D 2.

7.1.2 Model

We describe the model using a two-factor layout corresponding to the data example.
Generalization to higher-way layouts can be done using the techniques described
here. On each experimental unit, a p-dimensional response vector is observed. These
vectors are described by

Xijr D .X.1/ijr ;X
.2/
ijr ; : : : ;X

.p/
ijr /

0:

Here, the first two indices, i D 1; : : : ; a, and j D 1; : : : ; b, denote the levels
of the two explanatory factors considered (in the example, year or location and
variety, respectively). The index r D 1; : : : ; nij stands for the replication or
experimental unit within a factor level combination, and the super-index d D
1; : : : ; p denotes the respective variable, among the total of p response variables
considered (p-dimensional response). A possible multivariate additive linear model
for Xijr could be:

Xijr D � C � i C �j C � ij C "ijr;
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where �, �, � are the effects due to experimental condition, variety, and interaction
between experimental condition and variety, and " is the random variation assumed
to be independently distributed with mean vector 0 and covariance matrix ˙ij.

Some drawbacks of the linear model approach are that the results depend on
the type of transformation used and can be heavily influenced by outliers. In this
manuscript, we are proposing a completely nonparametric alternative to the linear
model approach. This nonparametric model can be written as

Xijr � Fij; (7.1)

where Fij is the multivariate p-dimensional distribution of the response vector for
factor level combination .i; j/. This model imposes no restriction on distributions or
correlations of error terms or random effects. The dependence in the data, induced
by observing several outcome variables on the same subject, is entirely absorbed
by modeling them as multivariate observation vectors, allowing for arbitrary,
unspecified dependence structures among the response variables. The vectors Xijr

are independent for different indices i, j, or r, but the components of the vectors are
possibly dependent.

In this manuscript, we are proposing a completely nonparametric model for the
analysis of multivariate data from factorial experiments, applicable in a variety
of situations. Inferential methods for the two-factor heteroscedastic model have
relatively been well developed in the univariate case in the parametric as well as
nonparametric contexts (for the latter, see for example, the monograph Brunner
et al. (2002), and the references therein). There is some recent work for the
semiparametric multivariate counterpart (Harrar and Bathke 2012; Konietschke
et al. 2015; Van Aelst and Willems 2011), and several procedures have been
proposed under the assumption of multivariate normality (Belloni and Didier 2008;
Girón and del Castillo 2010; Kawasaki and Seo 2012; Krishnamoorthy and Lu
2010; Krishnamoorthy and Yu 2004, 2012; Nel and Van der Merwe 1986; Zhang
2011, 2012; Zhang and Liu 2013). However, not much has been done under
the nonparametric paradigm, in particular under the asymptotic framework of a
large number of factor levels. This asymptotic setup is becoming increasingly
popular due to high throughput diagnostics and other bioinformatics tools which
generate massive amounts of data. More motivations for this type of asymptotics in
agriculture, health sciences, and other disciplines are found in Boos and Brownie
(1995), Akritas and Arnold (2000), Bathke (2002), Bathke (2004) and Harrar and
Gupta (2007) in univariate settings, and Gupta et al. (2006), Gupta et al. (2008),
Bathke and Harrar (2008) and Harrar and Bathke (2008) in the multivariate setting.
Whereas the work of Gupta et al. (2006, 2008) is restricted to the equal covariance
matrix case, Bathke and Harrar (2008) and Harrar and Bathke (2008) consider the
single factor nonparametric situation.

In the following sections, hypotheses and corresponding test statistics are
introduced, and their asymptotic properties are derived. A section is devoted to the
cumbersome task of consistent estimation of the variance-covariance matrix, and
one section shows empirical evidence regarding the performance of the proposed
tests, based on a simulation study.



124 A.C. Bathke and S.W. Harrar

Regarding the notation, a block diagonal matrix with blocks A and B will be
written as A ˚ B, and the Kronecker product of matrices will be denoted as A ˝ B.
See, for example, Schott (2005, Sect. 8.2) or Harville (2008, Sect. 16.1) for the
definition and basic properties of the Kronecker product.

7.2 Hypotheses and Test Statistics

In general notation, the two experimental factors are denoted as factor A and factor
B, respectively. Based on the nonparametric model (7.1), we will test hypotheses
pertaining to these factors. The hypotheses are formulated in terms of the distribu-
tion functions Fij. To this end, define the vector F D .F11; : : : ;F1b;F21; : : : ;Fab/

of cumulative distribution functions. Here, we assume the normalized versions of
the distribution functions, allowing naturally for ties (Kruskal 1952; Lévy 1925;
Ruymgaart 1980) and thus not restricting the methodology to absolutely continuous
distributions.

Particular hypotheses of interest will be of the form H  W D F D 0, postulating
absence of the effect  . More specifically,

D D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

Pa ˝ 1
b Jb; for  D A;

Pa ˝ Ib for  D AjB;
1
a Ja ˝ Pb for  D B;

Ia ˝ Pb for  D BjA;
Pa ˝ Pb for  D AB;

where Id is the d � d identity matrix, Jd is the d � d unity matrix (matrix of ones),
and Pd D Id � d�1Jd.

These nonparametric hypotheses imply their corresponding parametric counter-
parts (see, e.g., Brunner et al. 2002; Harrar and Bathke 2008). As an illustration
in the univariate context, the interaction effect in a parametric linear model can be
expressed as .Pa ˝ Pb/�, where � is the lexicographically arranged vector of cell
means, � D .�11; : : : ; �1b; �21; : : : ; �ab/

0. The implication between nonparametric
and parametric hypotheses is immediately clear when expressing .Pa ˝ Pb/� in
terms of the distribution functions as .Pa ˝ Pb/

R
xdF.x/. The same relation holds

between the multivariate nonparametric and parametric analogs. The converse of
this relation is not true: the parametric hypotheses do not imply their nonparametric
counterparts.

In order to define nonparametric (rank-based) test statistics, let Rij D .Rij1;

Rij2; : : : ; Rijnij/ where Rijk D .R.1/ijk ; : : : ;R
.p/
ijk /

0 and R.l/ijk is the (mid-)rank of X.l/ijk

among all N D Pa
iD1

Pb
jD1 nij random variables X.l/111; : : : ;X

.l/
abnab

. Use of mid-
ranks follows naturally from the normalized version of the cumulative distribution
function (see above). Arranging these mid-ranks R.l/ijk into a p � N matrix, put
R D .R1;R2; : : : ;Ra/ where Ri D .Ri1;Ri2; : : : ;Rib/. Then, denote the p � p
hypothesis and error sum of squares and cross product matrices based on the ranks
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as H.A/.R/, H.AjB/.R/, H.AB/.R/ and G.R/. The corresponding matrices for testing
main and simple effects of factor B can be written analogously to those of factor A.
However, due to the large a asymptotics considered in this manuscript, we will not
consider tests for the main effect of factor B in detail here.

H.A/ D 1

a � 1

aX

iD1

bX

jD1

. QRi:: � QR:::/. QRi:: � QR:::/0

D 1

a � 1
R

2

4

0

@
aM

iD1

bM

jD1

1

nij
1nij

1

A .Pa ˝ 1

b
Jb/

0

@
aM

iD1

bM

jD1

1

nij
10nij

1

A

3

5 R0;

H.AjB/ D 1

.a � 1/b

aX

iD1

bX

jD1

. NRij: � QR:j:/. NRij: � QR:j:/0

D 1

.a � 1/b
R

2

4

0

@
aM

iD1

bM

jD1

1

nij
1nij

1

A .Pa ˝ Ib/

0

@
aM

iD1

bM

jD1

1

nij
10nij

1

A

3

5 R0;

H.B/ D 1

b � 1

aX

iD1

bX

jD1

. QR:j: � QR:::/. QR:j: � QR:::/0

D 1

b � 1
R

2

4

0

@
aM

iD1

bM

jD1

1

nij
1nij

1

A .
1

a
Ja ˝ Pb/

0

@
aM

iD1

bM

jD1

1

nij
10nij

1

A

3

5 R0;

H.BjA/ D 1

a.b � 1/

aX

iD1

bX

jD1

. NRij: � QRi::/. NRij: � QRi::/
0

D 1

a.b � 1/
R

2

4

0

@
aM

iD1

bM

jD1

1

nij
1nij

1

A .Ia ˝ Pb/

0

@
aM

iD1

bM

jD1

1

nij
10nij

1

A

3

5 R0;

H.AB/ D 1

.a � 1/.b � 1/

aX

iD1

bX

jD1

. NRij: � QRi:: � QR:j: C QR:::/. NRij: � QRi:: � QR:j: C QR:::/

D 1

.a � 1/.b � 1/
R

2

4

0

@
aM

iD1

bM

jD1

1

nij
1nij

1

A .Pa ˝ Pb/

0

@
aM

iD1

bM

jD1

1

nij
10nij

1

A

3

5 R0; and

G D 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/

nijX

kD1

.Rijk � NRij:/.Rijk � NRij:/
0 D 1

ab

aX

iD1

bX

jD1

1

nij
Sij

D 1

ab
R

0

@
aM

iD1

bM

jD1

1

nij.1� nij/
Pnij

1

A R0;
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where NRij: D 1
nij

nijP

kD1
Rijk, QRi:: D 1

b

bP

jD1
NRij:, QR:j: D 1

a

aP

iD1
NRij:, QR::: D 1

ab

aP

iD1

bP

jD1
NRij:, and

Sij D 1
.nij�1/

nijP

kD1
.Rijk � NRij:/.Rijk � NRij:/

0.

These sum of squares and cross product matrices constitute essentially a
nonparametric multivariate unweighted means analysis. The matrix notation above
shows the pattern after which they can also be defined in higher-way layouts. To
keep this manuscript concise, this extension to higher-way layouts is not carried out
in detail here. Under the hypothesis H  , the expectation of H. / is equal to the
expectation of G, thus allowing for the following way to construct multivariate test
statistics.

Let  be one of the effects under consideration: AB, AjB, A, B, or BjA. We
propose the following multivariate test statistics for testing H  .

(a) Dempster’s ANOVA Type criterion: T. /D D tr.H. //=tr.G/.
(b) Wilks’ � criterion: T. /LR D log jI C H. /G�j.
(c) The Lawley-Hotelling criterion: T. /LH D tr.H. /G�/.
(d) The Bartlett-Nanda-Pillai criterion: T. /BNP D tr

�
H. /G�.I C H. /G�/

�
.

These test statistics are similar to the four test statistics considered in Harrar and
Bathke (2012) in the context of a two-factor semiparametric MANOVA under
heteroscedasticity. Their use in this manuscript is distinct in two important ways. In
the present article, the sums of squares and cross products H. / and G are computed
from the ranks which can not be assumed to be independent across subjects. Due to
the discreteness of the rankings, it may not be reasonable to assume non-singularity
of the matrices G and H. / C G. Thus we use here Moore-Penrose generalized
inverses in defining the test statistics. The Moore-Penrose generalized inverse has
the useful continuity property (Schott 2005, Sect. 5.7; for a proof see, e.g., Penrose
1955).

7.3 Asymptotic Results

For the asymptotic derivations in this section, we will assume that a ! 1, b
bounded, and 8i; j W nij bounded. The asymptotics are somewhat involved as the
quadratic forms H. / and G are based on a matrix of ranks R which has both row-
wise and column-wise dependence.

For the mathematical derivations in the technical proofs of this manuscript, it
is convenient to use the so-called “asymptotic rank transforms” (ART) and “rank
transforms” (RT). They are formally introduced in the following definition. For the
concept of ART, see also Brunner et al. (2002, p. 77).
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Definition 7.1. Let Xijk D .X.1/ijk ; : : : ;X
.p/
ijk /

0; i D 1; : : : ; a; j D 1; : : : ; b, and k D
1; : : : ; nij, be independent random vectors with possibly dependent components X.l/ijk

whose marginal distribution is F.l/ij ; l D 1; : : : ; p. Let N D Pa
iD1

Pb
jD1 nij. Further

let

H.l/.x/ D 1

N

aX

iD1

bX

jD1
nijF

.l/
ij .x/

denote the average cdf for variable (l),

OH.l/.x/ D 1

N

aX

iD1

bX

jD1

nijX

kD1
c.x � X.l/ijk /;

where c.t/ D 0; 1=2; 1 if t < 0; t D 0; t > 0, respectively, denotes the
average empirical cdf, and Y D .Y1; : : : ;Ya/ where Yi D .Yi1; : : : ;Yib/, Yij D
.Yij1; : : : ;Yijnij/ and Yijk D .Y.1/ijk ; : : : ;Y

.p/
ijk /

0 where Y.l/ijk D H.l/.X.l/ijk / is known as the

asymptotic rank transform (ART) of X.l/ijk . The matrix of rank transforms (RT), OY, is

defined analogously, with elements OY.l/ijk D OH.l/.X.l/ijk /.

The expression “rank transform” pays tribute to the fact that OY.l/ijk is related to the

(mid-)rank R.l/ijk by OY.l/ijk D N�1.R.l/ijk � 1
2
/. However, the “asymptotic rank transforms”

are technically more tractable than the “rank transforms”, due to the simpler
covariance structure of Y as compared to OY. Note that the ART of independent
random variables are independent, but the RT are not.

Denote Var.Yij1/ D ˙ ij and assume that the following limit exists:

lim
a!1

1

ab

aX

iD1

bX

jD1
˙ ij D ˙ :

For later use, we also introduce the notation M D .�1;�2; : : : ;�a/, �i D .�i1;

: : : ; �ib/, �ij D .�ij1; : : : ;�ijnij
/, where �ijk D .�

.1/
ijk ; : : : ; �

.p/
ijk /

0 is the vector of

expectations of the ART vector Yijk, that is �.l/ijk D E.Y.l/ijk /, and Y� D Y �M; OY� D
OY � M.

For  2 fA;B;AjB;BjA;ABg, we denote the ART analogs of the matrices H. /

and G defined in Sect. 7.2 by QH. / and QG, respectively. In order to prove asymptotic
normality results for the rank-based test statistics considered in this paper, we need
to first establish the asymptotic equivalence of certain quadratic forms defined in
terms of .H. /;G/ (based on “rank transforms”) and the corresponding quadratic
forms defined in terms of . QH. /; QG/ (based on “asymptotic rank transforms”).

We begin this task by showing the asymptotic equivalence between certain
matrix differences in “rank transforms’ and the corresponding ones in “asymptotic
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rank transforms”. Recall that the ranks R.l/ijk take values in Œ1;N�, while the “rank

transforms” OY.l/ijk D N�1.R.l/ijk � 1
2
/ and the “asymptotic rank transforms” Y.l/ijk take

values within the unit interval, making it necessary to divide the rank matrices by
N2 in order to be able to establish asymptotic equivalence.

Proposition 7.1. Assume b, p and n are bounded. Then

(i) Under the hypothesis H  for  2 fA;AjB;ABg
p

a

�
1

N2
.H. / � G/ � . QH. / � QG/

�

D op.1/ as a ! 1 :

(ii) Under the hypothesis H  for  2 fB;BjAg
1

N2
H. / � QH. / D op.1/ as a ! 1 :

and
(iii) N�2G � QG D op.1/ as a ! 1.

Proof. The proof can be established using the same techniques as in the proof of
Theorem 4 in Harrar and Bathke (2008).

The following proposition asserts that the difference N�2G�˙ is asymptotically
(a ! 1) stochastically negligible.

Proposition 7.2. Assume that the nij are bounded. Then N�2G�˙
p! 0 as a ! 1.

Proof. Since N�2G � QG D op.1/ by (iii) of Proposition 7.1, it suffices to show that
QG � ˙

p! 0. This follows from Theorem 1 of Harrar and Bathke (2012) if we show
that

Pa
iD1

Pb
jD1 n�2

ij .nij � 1/�1˙ ij ˝ ˙ ij D o.a2/ and
Pa

iD1
Pb

jD1 n�3
ij K4.Yij1/ D

o.a2/ as a ! 1. These two follow from the fact that the components of Yij1 are
uniformly bounded random variables.

Next, we obtain the asymptotic null distributions of the four test statistics for
testing the main, simple, and interaction effects. Since the results for testing H .AB/,
H .A/, H .AjB/ and H .BjA/ are similar in form and their derivations proceed along
the same lines, we consider them together.

We know from Proposition 7.2 that N�2G � ˙ D op.1/ as a ! 1, and it is
established in Theorem 7.1 below that

p
a.H. / � G/˝ D Op.1/ as a ! 1, for

any matrix of constants ˝ . All four test statistics, scaled and centered suitably, can
be expressed as

p
a .`T. /G � h/ D p

a tr.H. / � G/˝ C op.1/; (7.2)

where ` D 1; 2; 1; 4, h D 1, 2p log 2, p, 2p and ˝ D .1=tr˙ /Ip;˙
�;˙ �;˙ �

for G D D;LR;LH;BNP, respectively (see Harrar and Bathke 2012, for more
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details). Therefore, the null distributions of the four test statistics can be derived
in a unified manner by obtaining the null distribution of

p
a tr.H. / � G/˝ for any

fixed matrix ˝ . The null distribution of this latter quantity is given in Theorem 7.1.

Theorem 7.1. Let  D AB;A;AjB, or BjA. Under the hypothesis H
. /
0 ,

p
a tr.H. / � G/˝

L! N
�
0; �2 .˝/

�
as a ! 1 and nij and b bounded, where

�2 .˝/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

2
b

n
v1.˝/C v2.˝/

.b�1/2
o

when  D AB;

2
b fv1.˝/C v2.˝/g when  D A;
2
bv1.˝/ when  D AjB;
2
b2

n
v1.˝/C v2.˝/

.b�1/2
o

when  D BjA:

Here,

v1.˝/ D lim
a!1

1

ab

aX

iD1

bX

jD1

tr.˝˙ ij/
2

nij.nij � 1/ ;

and

v2 D lim
a!1

1

ab

aX

iD1

bX

j¤j0

tr.˝˙ ij˝˙ ij0/

nijnij0
;

assuming the limits exist.

Proof. Considering Proposition 7.1, it is enough to show that N�2pa tr.H. / �
G/˝

L! N
�
0; �2 .˝/

�
as a ! 1 and nij and b bounded. This follows from

Theorem 2 of Harrar and Bathke (2012) if for some ı > 0, Ej.Yij1� 1
2
1/0˙ �1

ij .Yij1�
1
2
1/j2Cı < 1 and

lim
a!1

1

a

aX

iD1

bX

jD1

1

n1Cı=2ij .nij � 1/1Cı=2
tr.˝˙ ij/

2Cı < 1 and

lim
a!1

1

a

aX

iD1

bX

j¤j0

1

n1Cı=2ij n1Cı=2ij0

tr.˝˙ ij˝˙ ij0/
1Cı=2 < 1:

Recalling again that the components of Yij1 are bounded random variables com-
pletes the proof.
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Under the assumptions and notations of Theorem 7.1, the asymptotic distribution of
Dempster’s ANOVA type criterion can be obtained by setting ˝ D .1=tr˙ /Ip. For
the other three criteria, we set ˝ D ˙ �1 to get the asymptotic null distributions.

Needless to say, the asymptotic null distributions of TLR, TLH and TBNP, scaled
and centered as in (7.2), are the same up to the order O.a�1=2/. A comparison
of the asymptotic variances in Theorem 7.1 reveals that the test statistic for the
interaction effect has smaller variance than that of the main effect. Also we see
from the asymptotic variances in Theorem 7.1 that the test statistic for the simple
effect of A has smaller variance compared to that of either the interaction or main
effects.

7.4 Consistent Variance and Covariance Matrix Estimation

Multivariate data in factorial designs present a major technical difficulty considering
the derivation of valid nonparametric test statistics: Unlike in the multivariate one-
way design discussed in Harrar and Bathke (2008), the covariance matrices do not
simplify under the null hypotheses that are considered here. Therefore, it is more
complicated to devise consistent variance estimators.

The following theorem provides an asymptotic result formulated in terms
of the unobservable “asymptotic rank transforms”. The expression is analogous
to the variance estimator defined in Theorem 2.3 of Harrar and Bathke (2012) in
the semiparametric context. However, due to the fact that the “asymptotic rank
transforms” are per definition bounded between 0 and 1, it is not necessary to require
a moment condition as in Harrar and Bathke (2012).

Theorem 7.2. Let the model and assumptions be as in Theorem 7.1. Define

e� ij.˝/ D 1

4cij

nijX

.k1;k2;k3;k4/2K
˝.Yijk1 � Yijk2 /.Yijk1 � Yijk2 /

0

� ˝.Yijk3 � Yijk4 /.Yijk3 � Yijk4 /
0;

where K is the set of all quadruples � D .k1; k2; k3; k4/ where no element in � is
equal to any other element in �, and cij D nij.nij � 1/.nij � 2/.nij � 3/. Also, define

QSij D 1

.nij � 1/
nijX

kD1
.Yijk � NYij:/.Yijk � NYij:/

0:

Then,

1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/ tr.e� ij.˝// � 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/ tr.˝˙ ij/
2 D op.1/;
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and

1

ab

aX

iD1

bX

j¤j0

1

nijnij0
tr.˝ QSij˝ QSij0/ � 1

ab

aX

iD1

bX

j¤j0

1

nijnij0
tr.˝˙ ij˝˙ ij0/ D op.1/;

as a ! 1.

The proof follows similar to that of Theorem 2.3 in Harrar and Bathke (2012), or
rather from the theory of U-statistics (see, e.g., Serfling 1980).

Since the “variance estimator” presented in the previous theorem is not observ-
able and therefore can not be used in practice, in the next two theorems we
are introducing observable rank-based estimators and establish their asymptotic
equivalence to corresponding expressions formulated in terms of the “asymptotic
rank transforms”.

Theorem 7.3. Let e� ij.˝/ be defined as in Theorem 7.2. Define b� ij.˝/ anal-
ogously, but using rank transforms instead of asymptotic rank transforms (see
Definition 7.1). Then,

D D 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/ tr.b� ij.˝//� 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/ tr.e� ij.˝// D op.1/;

as a ! 1.

Proof. Without loss of generality, assume that ˝ D I. Define

QD D 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/
1

4cij

nijX

.k1;k2;k3;k4/2K

�
. OYijk1 � OYijk2 /.

OYijk1 � OYijk2 /
0 ˝ . OYijk3 � OYijk4 /.

OYijk3 � OYijk4 /
0

� .Yijk1 � Yijk2 /.Yijk1 � Yijk2 /
0 ˝ .Yijk3 � Yijk4 /.Yijk3 � Yijk4 /

0	;

where the cij are as defined in Theorem 7.2, and consider an arbitrary element of this
p2� p2 matrix. Each element QDq1;q2;q3;q4 is uniquely determined by a combination of
four indices q1; q2; q3; q4, where qr D 1; : : : ; p, r D 1; : : : ; 4. Then, we have

QDq1;q2;q3;q4 D 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/
1

4cij

nijX

.k1;k2;k3;k4/2K
�
. OY.q1/ijk1

� OY.q1/ijk2
/. OY.q2/ijk1

� OY.q2/ijk2
/. OY.q3/ijk3

� OY.q3/ijk4
/. OY.q4/ijk3

� OY.q4/ijk4
/

� .Y.q1/ijk1
� Y.q1/ijk2

/.Y.q2/ijk1
� Y.q2/ijk2

/.Y.q3/ijk3
� Y.q3/ijk4

/.Y.q4/ijk3
� Y.q4/ijk4

/
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D 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/4cij

nijX

.k1;k2;k3;k4/2K
�
. OH.q1/.X.q1/ijk1

/ � OH.q1/.X.q1/ijk2
//. OH.q2/.X.q2/ijk1

/ � OH.q2/.X.q2/ijk2
//

� . OH.q3/.X.q3/ijk3
/ � OH.q3/.X.q3/ijk4

//. OH.q4/.X.q4/ijk3
/ � OH.q4/.X.q4/ijk4

//

� .H.q1/.X.q1/ijk1
/ � H.q1/.X.q1/ijk2

//.H.q2/.X.q2/ijk1
/ � H.q2/.X.q2/ijk2

//

� .H.q3/.X.q3/ijk3
/ � H.q3/.X.q3/ijk4

//.H.q4/.X.q4/ijk3
/ � H.q4/.X.q4/ijk4

//
	

D 1

ab

aX

iD1

bX

jD1

1

nij.nij � 1/4cij

nijX

.k1;k2;k3;k4/2K

1

N4

NX

s1D1

NX

s2D1

NX

s3D1

NX

s4D1

�.X.q1/ijk1
;X.q1/ijk2

;X.q2/ijk1
;X.q2/ijk2

;X.q3/ijk3
;X.q3/ijk4

;X.q4/ijk3
;X.q4/ijk4

;Xs1 ;Xs2 ;Xs3 ;Xs4 /;

where �.X.q1/ijk1
;X.q1/ijk2

;X.q2/ijk1
;X.q2/ijk2

;X.q3/ijk3
;X.q3/ijk4

;X.q4/ijk3
;X.q4/ijk4

;Xs1 ;Xs2 ;Xs3 ;Xs4 /

D
�
Œc.X.q1/ijk1

� Xs1 / � c.X.q1/ijk2
� Xs1 /�Œc.X

.q2/
ijk1

� Xs2 / � c.X.q2/ijk2
� Xs2 /�

� Œc.X.q3/ijk3
� Xs3 / � c.X.q3/ijk4

� Xs3 /�Œc.X
.q4/
ijk3

� Xs4 / � c.X.q4/ijk4
� Xs4 /�

� ŒFs1 .X
.q1/
ijk1
/ � Fs1 .X

.q1/
ijk2
/�ŒFs2 .X

.q2/
ijk1
/ � Fs2 .X

.q2/
ijk2
/�

� ŒFs3 .X
.q3/
ijk3
/ � Fs3 .X

.q3/
ijk4
/�ŒFs4 .X

.q4/
ijk3
/ � Fs4 .X

.q4/
ijk4
/�

�
;

c.�/ denotes the normalized counting function c.x/ D .Ifx > 0g C Ifx � 0g/;
and Ft denotes the cdf of Xt:

Note that E.�/ D 0 if all indices s1; s2; s3; s4 are different from each other, and the
corresponding random variables independent of the other eight random variables.
This holds because the first part of �, integrated over .Xs1 ;Xs2 ;Xs3 ;Xs4 /, equals
the second part. Therefore, E. QD/ ! 0 since the number of .s1; s2; s3; s4/ index
combinations resulting in nonzero expectation is of order N3, but the sum is divided
by N4. Consider now

QD2
q1;q2;q3;q4 D 1

a2b2

aX

i1D1

aX

i2D1

bX

j1D1

bX

j2D1

1

ni1j1ni2j2 .ni1j1 � 1/.ni2j2 � 1/16ci1j1ci2j2

ni1 j1X

.k1;k2;k3;k4/2K

ni2 j2X

.l1;l2;l3;l4/2K

1

N8

NX

s1D1

NX

s2D1

NX

s3D1

NX

s4D1

NX

t1D1

NX

t2D1

NX

t3D1

NX

t4D1

�.X.q1/i1j1k1
;X.q1/i1j1k2

;X.q2/i1j1k1
;X.q2/i1j1k2

;X.q3/i1j1k3
;X.q3/i1j1k4

;X.q4/i1j1k3
;X.q4/i1j1k4

;Xs1 ;Xs2 ;Xs3 ;Xs4 /

� �.X.q1/i2j2l1
;X.q1/i2j2l2

;X.q2/i2j2l1
;X.q2/i2j2l2

;X.q3/i2j2l3
;X.q3/i2j2l4

;X.q4/i2j2l3
;X.q4/i2j2l4

;Xt1 ;Xt2 ;Xt3 ;Xt4 /:
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Again, when all involved random variables with indices s1; s2; s3; s4; t1; t2; t3; t4 are
independent of each other, and of the remaining random variables, the expectation
of each �-function is zero, and therefore also the expectation of the product. Similar
to above, this can be seen by first integrating over the random variables with indices
.s1; s2; s3; s4/, conditional on those with indices .k1; k2; k3; k4/. The number of cases
with nonzero expectation is again of smaller order, in this case N7, while division is
by N8. It follows that E. QD2

q1;q2;q3;q4 / ! 0 and therefore QDq1;q2;q3;q4 D op.1/ for each

element of QD, which proves QD D op.1/.

Theorem 7.4. Let QSij be defined as in Theorem 7.2, and define bSij analogously, but
using rank transforms instead of asymptotic rank transforms. Then,

K D 1

ab

aX

iD1

bX

j¤j0

1

nijnij0
tr.˝bSij˝bSij0/ � 1

ab

aX

iD1

bX

j¤j0

1

nijnij0
tr.˝eSij˝eSij0/ D op.1/;

as a ! 1.

Proof. As in the proof of Theorem 7.3, assume without loss of generality that
˝ D I, and define

QK D 1

ab

aX

iD1

bX

j¤j0

1

nij.1 � nij/nij0.1 � nij0/

nijX

kD1

nij0X

k0D1
�
. OYijk � ONYij�/. OYijk � ONYij�/0 ˝ . OYij0k0 � ONYij0�/. OYij0k0 � ONYij0�/0

� .Yijk � NYij�/.Yijk � NYij�/0 ˝ .Yij0k0 � NYij0�/.Yij0k0 � NYij0�/0
	
;

and consider again an arbitrary element QKq1;q2;q3;q4 of this p2 � p2 matrix that is
determined by a combination of four indices q1; q2; q3; q4, where qr D 1; : : : ; p,
r D 1; : : : ; 4.

QKq1;q2;q3;q4 D 1

ab

aX

iD1

bX

j¤j0

1

nij.1 � nij/nij0.1 � nij0/

nijX

kD1

nij0X

k0D1
�
. OY.q1/ijk � ONY.q1/ij� / OY.q2/ijk .

OY.q3/ij0k0 � ONY.q3/ij0� / OY.q4/ij0k0 � .Y.q1/ijk � NY.q1/ij� /Y.q2/ijk .Y.q3/ij0k0 � NY.q3/ij0� /Y
.q4/
ij0k0

	

D 1

ab

aX

iD1

bX

j¤j0

1

nij.1 � nij/nij0.1 � nij0/

nijX

kD1

nij0X

k0D1
n� OY.q1/ijk

OY.q2/ijk
OY.q3/ij0k0

OY.q4/ij0k0 � Y.q1/ijk Y.q2/ijk Y.q3/ij0k0 Y
.q4/
ij0k0

	

� � ONY.q1/ij� OY.q2/ijk .
OY.q3/ij0k0 � ONY.q3/ij0� / OY.q4/ij0k0 � NY.q1/ij� Y.q2/ijk .Y.q3/ij0k0 � NY.q3/ij0� /Y

.q4/
ij0k0

	

� � OY.q1/ijk
OY.q2/ijk

ONY.q3/ij0� OY.q4/ij0k0 � Y.q1/ijk Y.q2/ijk
NY.q3/ij0� Y.q4/ij0k0

	o
:
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The terms in each of the three square brackets can be considered separately, using
basically the same techniques for each. We show details of the proof for the first
term.

OY.q1/ijk
OY.q2/ijk

OY.q3/ij0k0
OY.q4/ij0k0 � Y.q1/ijk Y.q2/ijk Y.q3/ij0k0 Y

.q4/
ij0k0

D OH.q1/.X.q1/ijk /
OH.q2/.X.q2/ijk /

OH.q3/.X.q3/ij0k0 /
OH.q4/.X.q4/ij0k0 /

� H.q1/.X.q1/ijk /H
.q2/.X.q2/ijk /H

.q3/.X.q3/ij0k0 /H
.q4/.X.q4/ij0k0 /

D 1

N4

NX

s1D1

NX

s2D1

NX

s3D1

NX

s4D1

�
c.X.q1/ijk � Xs1 /c.X

.q2/
ijk � Xs2 /c.X

.q3/
ij0k0 � Xs3 /c.X

.q4/
ij0k0 � Xs4 /

� Fs1 .X
.q1/
ijk /Fs2 .X

.q2/
ijk /Fs3 .X

.q3/
ij0k0 /Fs4 .X

.q4/
ij0k0 /

	
:

Clearly, the expected value of this expression is 0 when all indices s1; s2; s3; s4
are different from each other, and the corresponding random variables indepen-
dent of the other four random variables. This can be seen by integrating over
.Xs1 ;Xs2 ;Xs3 ;Xs4 / first. The number of .s1; s2; s3; s4/ index combinations resulting
in nonzero expectation is of order N3, while the sum is divided by N4. Using
similar techniques for the remaining components of QKq1;q2;q3;q4 , it follows that
E. QKq1;q2;q3;q4 / ! 0. Consider next

QK2
q1;q2;q3;q4 D 1

a2b2

aX

i1D1

aX

i2D1

bX

j1¤j01

bX

j2¤j02

1

ni1j1ni2j2 .1 � ni1j1 /.1 � ni2j2 /ni1j01
ni2j02

.1 � ni1j01
/.1 � ni2j02

/

ni1 j1X

k1D1

ni2 j2X

k2D1

ni1 j01X

k0D1

ni2 j02X

k02D1

�
. OY.q1/i1j1k1

� ONY.q1/i1j1�/ OY.q2/i1j1k1
. OY.q3/

i1j01k01
� ONY.q3/

i1j01�/
OY.q4/

i1j01k01

� .Y.q1/i1j1k1
� NY.q1/i1j1�/Y

.q2/
i1j1k1

.Y.q3/
i1j01k01

� NY.q3/
i1j01�/Y

.q4/
i1j01k01

	

�
. OY.q1/i2j2k2

� ONY.q1/i2j2�/ OY.q2/i2j2k2
. OY.q3/

i2j02k02
� ONY.q3/

i2j02�/
OY.q4/

i2j02k02

� .Y.q1/i2j2k2
� NY.q1/i2j� /Y

.q2/
i2j2k2

.Y.q3/
i2j02k02

� NY.q3/
i2j02�/Y

.q4/
i2j02k02

	
:

The product of the square brackets can be decomposed into the following and similar
terms, using the same decomposition as in the first part of this proof.
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1

N8

NX

s1D1

NX

s2D1

NX

s3D1

NX

s4D1

NX

t1D1

NX

t2D1

NX

t3D1

NX

t4D1
�
c.X.q1/i1j1k1

� Xs1 /c.X
.q2/
i1j1k1

� Xs2 /c.X
.q3/
i1j01k01

� Xs3 /c.X
.q4/
i1j01k01

� Xs4 /

� Fs1 .X
.q1/
i1j1k1

/Fs2 .X
.q2/
i1j1k1

/Fs3 .X
.q3/
i1j01k01

/Fs4 .X
.q4/
i1j01k01

/
	

�
c.X.q1/i2j2k2

� Xt1 /c.X
.q2/
i2j2k2

� Xt2 /c.X
.q3/
i2j02k02

� Xt3 /c.X
.q4/
i2j02k02

� Xt4 /

� Ft1 .X
.q1/
i2j2k2

/Ft2 .X
.q2/
i2j2k2

/Ft3 .X
.q3/
i2j02k02

/Ft4 .X
.q4/
i2j02k02

/
	
:

As above, it can be seen that when all involved random variables with indices
s1; s2; s3; s4; t1; t2; t3; t4 are independent of each other, and of the remaining random
variables, the expectation of this expression is zero. The number of cases with
nonzero expectation is of order N7, while division is by N8. A tedious calculation
verifies that this is also the case for the remaining components of QK2

q1;q2;q3;q4 .

Thus, E. QK2
q1;q2;q3;q4 / ! 0 and QKq1;q2;q3;q4 D op.1/ for each element of QK, proving

QK D op.1/.

The three previous theorems together establish the consistency of a rank-based
estimator of the asymptotic variances. Aggregating the results so far, we can take
advantage of the results from Harrar and Bathke (2012) and formulate Theorem 7.5.

Theorem 7.5. Let  D AB;A;AjB, or BjA. Under the hypothesis H
. /
0 ,

p
a tr.H. / � G/ Ő O��1

 . Ő / L! N .0; 1/ as a ! 1 and nij and b bounded, where
Ő is the consistent estimator of ˝ obtained by replacing �˙ with N�2G (see

Proposition 7.2), and where

O�2 . Ő / D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

2
b

n
Ov1. Ő /C Ov2. Ő /

.b�1/2
o

when  D AB;

2
b

n
Ov1. Ő /C Ov2. Ő /

o
when  D A;

2
b Ov1. Ő / when  D AjB;
2
b2

n
Ov1. Ő /C Ov2. Ő /

.b�1/2
o

when  D BjA:

Here, Ov1. Ő / D 1
ab

Pa
iD1

Pb
jD1

tr.b� ij. Ő //
nij.nij�1/ and Ov2. Ő / D 1

ab

Pa
iD1

Pb
j¤j0

tr. Ő OSij Ő OSij0 /

nijnij0
.

7.5 Simulation Study

In order to investigate the finite sample performance of the proposed inference
methods under the exemplary setting of dimension p D 3, number of levels of factor
A between a D 6 and a D 50, number of levels of factor B set to b D 3, sample sizes
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Fig. 7.1 Simulated ˛ under null hypothesis for p D 3, b D 3, a D 6 to 50, nij D 4; 5; 6. Normal
and skew normal underlying data distributions, nominal ˛ 5 %. Main effect of A and interaction
between A and B

per cell between nij D 4, 5, and 6. Underlying distributions chosen were normal
and skew normal. The multivariate skew normal data were generated according to
Proposition 6 in Azzalini and Dalla Valle (1996) where we used (in their notation)

ı D
p
2p

p.pC1/C2 .1; : : : ; p/
0 and ˝ D Ip C 1

2�
ıı0.

The results under null hypothesis are shown in Fig. 7.1. As expected from a fully
nonparametric rank-based approach, the underlying distribution does not have a
major effect on the performance. In all cases considered, Wilks’ � type statistic
performed best, in the sense of the simulated level being closest to the nominal
level, while not exceeding it.

Due to its best performance under null hypothesis, Wilks’ � type test statistic
was selected for a power simulation. Here, the statistic based on variablewise ranks,
as proposed in the present article, was compared to the power of the analogous
procedure using the original observations instead of the ranks (justified by Harrar
and Bathke 2012). While there were no visible differences for underlying normal
distributions, the power gain of the nonparametric rank-based method became quite
pronounced when the underlying distribution was chosen as contaminated normal.
Figure 7.2 shows simulation results for an exemplary situation with heteroscedastic
contaminated multivariate normal distributions 0:9N3.0;˙ ij/ C 0:1N3.10 � 1;˙ ij/.
Here, ˙ ij were different compound symmetric variance-covariance matrices with
off-diagonal elements 	ij D p

ij=.1C ij/ and diagonal elements 1 � 	ij.
Alternatives were modeled by location shifts. Specifically, in the main effects

power simulation, expected values were shifted up by ı units for levels 10–20 of
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Fig. 7.2 Simulated power of Wilks’ � type test statistic using ranks, and using raw data, p D 3,
a D 20, b D 3, nij D 4; 5; 6. Contaminated normal underlying data distributions, nominal ˛ 5 %.
Main effect of A and interaction between A and B. Location shifts for main and interaction effects
as described in the text

factor A, for all variables, while they were shifted down by ı units for the other
levels 1–9. In the interaction effects power simulation, the upwards shift was for the
factor level combinations .i; j/ with i � 10; j � 2, whereas the downwards shift was
for i < 10; j < 2. In both cases, a D 20, b D 3, p D 3.

The results show the rather striking advantages of a nonparametric rank-based
approach over its semiparametric competitor using the original observations instead
of ranks.

7.6 Discussions and Conclusions

In this somewhat theoretical manuscript, we have introduced fully nonparametric,
rank-based test statistics for inference on multivariate data in factorial designs. To
our knowledge, no comparable results in such general applicability (for example
for fully ordinal data) have been established yet. Due to the rather cumbersome
technicalities, the work has only been carried out here for a design with two factors,
but it can be extended in a straightforward way to higher-way layouts. Also, we
have focused here on large (a) asymptotics (number of factor levels of factor A tends
to infinity) and only considered those test statistics in detail that yield asymptotic
normality under this type of asymptotic setting. The asymptotic distribution of the
test for main effect of factor B will be that of a weighted sum of 
2 random variables.

It should be pointed out that the test statistics can be calculated directly, they
don’t involve any iterative computational procedures. The test statistics presented
here can be taken as a basis for small sample approximations based on moment
estimators or expansions. In future work, it would be interesting to compare their
performance with resampling based methods such as those from Konietschke et al.
(2015), or with other robust procedures based on semiparametric models.
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