
Chapter 1
Rank-Based Analysis of Linear Models
and Beyond: A Review

Joseph W. McKean and Thomas P. Hettmansperger

Abstract In the 1940s Wilcoxon, Mann and Whitney, and others began the
development of rank based methods for basic one and two sample models. Over
the years a multitude of papers have been written extending the use of ranks to
more and more complex models. In the late 60s and early 70s Jurečková and
Jaeckel along with others provided the necessary asymptotic machinery to develop
rank based estimates in the linear model. Geometrically Jaeckel’s fit of linear
model is the minimization of the distance between the vector of responses and the
column space of the design matrix where the norm is not the squared-Euclidean
norm but a norm that leads to robust fitting. Beginning with his 1975 thesis,
Joe McKean has worked with many students and coauthors to develop a unified
approach to data analysis (model fitting, inference, diagnostics, and computing)
based on ranks. This approach includes the linear model and various extensions,
for example multivariate models and models with dependent error structure such
as mixed models, time series models, and longitudinal data models. Moreover,
McKean and Kloke have developed R libraries to implement this methodology. This
paper reviews the development of this methodology. Along the way we will illustrate
the surprising ubiquity of ranks throughout statistics.
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1.1 Introduction

Our intention in writing the following historical development is to provide our
perspective on the evolution of nonparametric methodology (both finite and asymp-
totic). We will focus on a particular development based on ranks. We will show
how beginning with simple rank tests in the 1940s, the area has grown into
a coherent group of contemporary statistical procedures that can handle data
from increasingly complex experimental designs. Two factors have been essential:
theoretical developments especially in asymptotic theory, see Hettmansperger and
McKean (2011), and in computational developments, see Kloke and McKean
(2014). Statistical inference based on ranks of the data has been shown to be
both statistically efficient relative to least squares methods as well as robust. Any
history is bound to be selective. We have chosen a line of development that is
consistent with the theme of this conference. There is a rich and extensive literature
on nonparametric methods. We will confine ourselves to references that directly
relate to the history as related to the topics of the conference.

When constructing tests for the median of a continuous population, the simplest
nonparametric test is the sign test which counts the number of observations greater
than the null hypothesized value of the median. The null and alternative distributions
of the sign test statistic are both binomial. In the case of the null hypothesis, the
binomial parameter is 0.5, and hence, the null distribution of the sign test statistic
does not depend on the population distribution. We call such a test nonparametric
or distribution free. The use of the sign test for dichotomous data was first proposed
by Arbuthnott (1710).

The modern era for nonparametric or distribution free tests began with the work
of Wilcoxon (1945) and Mann and Whitney (1947). Wilcoxon proposed the
nonparametric Wilcoxon signed rank test for the median of a symmetric population,
and the nonparametric Wilcoxon rank sum test for the difference in population
medians. Mann and Whitney (1947) showed that the rank sum test is equivalent
to the sign test applied to the pairwise differences across the two samples. Tukey
(1949) showed the signed rank test is equivalent to the sign test applied to the
pairwise averages from the sample (called the Walsh averages by Tukey). Hence,
from the earliest time, we have a connection between rank based methods and the
L1 norm expressed through its derivative, the sign statistic. In what follows we will
exploit this connection by considering a rank based norm and its relationship to the
L1 norm. In addition, we will need to include the L2 norm and least squares for
comparison in our discussion.

Noether (1955), based on earlier unpublished work by Pitman (1948), intro-
duced Pitman efficiency for hypothesis tests. Then Hodges and Lehmann (1956,
1960) analyzed the efficiency of various rank tests relative to least squares tests
(t- and F-tests) and proved the surprising result that the efficiency of the Wilcoxon
tests relative to the t-tests is never less than 0.864, is 0.955 at the normal model, and
can be arbitrarily large for heavy tailed model distributions. No longer was a rank
test considered quick and dirty with low power. Rank tests now provided a serious
alternative to least squares t tests.
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Hodges and Lehmann (1963) next developed estimators based on rank test
statistics (R-estimates) and showed that they inherit the efficiency of the rank tests
that they were derived from. Because of the connection between the Wilcoxon test
statistics and the L1 norm, the Hodges-Lehmann estimate of location is the median
of the pairwise averages and the estimate for the difference in locations is the median
of the pairwise differences across the two samples. By the mid-sixties rank tests and
estimates for location models, including the one-way layout, were available, and
they share the excellent efficiency properties. Robustness was introduced during
this time by Huber (1964) followed by the work of Hampel (1974). The basic
tools of robustness include the influence function and break down point. Ideally we
would like to have estimates that have bounded influence and positive breakdown.
Indeed, Wilcoxon R-estimates enjoy precisely these good robustness properties in
addition to the excellent efficiency properties mentioned above. For example the
breakdown value for the Hodges-Lehmann estimate of location, the median of the
pairwise averages, is 0.293 while the breakdown of the sample mean is 0.

Hájek and Šidák (1967) published a seminal work on the rigorous development
of rank tests. This was followed many years later by a second edition, Hájek et al.
(1999) which extends much of the theory and includes material on R-estimates.

Hence, during the 1960s nonparametric and distribution free rank tests and rank-
based estimates for location models were well understood and provided excellent
alternatives to least squares methods (means, t- and F-tests) from the point of view
of both efficiency and robustness. Unfortunately the rank methods did not extend in
a straight forward way to the two-way layout with interaction terms. For example,
a quick check of text books on nonparametrics written before the mid-seventies did
not reference a test for interaction in a two-way layout.

The next step involved the extension of rank methods to linear regression where
the two-way layout could be formulated in regression terms and natural rank tests
for regression parameters were easy to construct. The rank based statistical methods
which require the estimation of nuisance parameters will then be asymptotically
distribution free but no longer distribution free for finite samples. The tools for
the development of rank regression were provided by Jurečková (1969, 1971)
and Jaeckel (1972). Jurečková, in particular, provided the asymptotic theory and
Jaeckel provided a rank based dispersion function that when minimized produced
R-estimates. McKean (1975) developed corresponding rank tests along with the
necessary asymptotic distribution theory for the linear model. In the next several
sections we explicitly introduce the linear model and discuss the development of
rank based methods and their efficiency and robustness properties. In subsequent
sections, we discuss extensions of rank-based analyses to nonlinear models and
models with dependent errors.

There is R software available to compute these rank-based analyses. In the
examples presented, we discuss some of the R code for the computation of these
analyses. The rank-based package for linear models, Rfit, (see Kloke and McKean
2012), can be downloaded at CRAN (http://cran.us.r-project.org/). Supplemental
packages for the additional models discussed in the examples can be downloaded at
the site https://github.com/kloke/.

http://cran.us.r-project.org/
https://github.com/kloke/
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1.2 Rank-Based Fit and Inference for Linear Models

In this section we will review the univariate linear model and present the rank
based norm used to derive the rank based statistical methods along with the basic
asymptotic tools. Then we will present the efficiency and robustness results that we
mentioned in the introduction, but in more detail. We will also describe some of
the rank based methods for residual analysis. For details of this development see
Chaps. 3–5 of Hettmansperger and McKean (2011).

Let Y denote the n�1 vector of observations and assume that it follows the linear
model

Y D 1˛ C Xˇ C e; (1.1)

where X is an n � p full column rank matrix of explanatory variables, 1 is an n �
1 vector of ones, ˇ is p � 1 vector of regression coefficients, ˛ is the intercept
parameter, and e is the n � 1 vector of random errors. Letting x0

i denote the ith row
of X, we have yi D ˛ C x0

iˇ C ei. For the theory cited in this section, assume that
the random errors are iid with pdf f .x/ and cdf F.x/, respectively.

A score generating function is a nondecreasing square-integrable function '.u/
defined on the interval .0; 1/ which, without loss of generality, satisfies the
standardizing conditions

Z 1

0

'.u/ du D 0 and
Z 1

0

Œ'.u/�2 du D 1: (1.2)

We denote the scores by a.i/ D 'Œi=.n C 1/�.
The basis of traditional analysis of most models in practice is the least squares

(LS) fit of the model. This fit minimizes the squared-Euclidean distance between the
vector of responses and the estimating region, (subspace if it is a linear model). In
the same way, the basis for a rank-based analysis is the fit of the model except that
a different norm is used other that the Euclidean norm. This norm leads to a robust
fit. For a given score function '.u/, the norm is defined by

kvk' D
nX

iD1
a'ŒR.vi/�vi; v 2 Rn: (1.3)

Note that this is a pseudo-norm; i.e., it satisfies all properties of the norm except it is
invariant to constant shifts, i.e., kv C a1k' D kvk' for all a, where 1 is a vector of n
ones. The counterpart in LS is the squared-Euclidean pseudo-norm

Pn
iD1.vi � v/2.

For convenience, we define the dispersion function D.ˇ/ in terms of the pseudo
norm k � k' as

D.ˇ/ D ky � Xˇk' D
nX

iD1
aŒR.yi � x0

iˇ/�.yi � x0
iˇ/ D a0ŒR.y � Xˇ/�.y � Xˇ/;

(1.4)
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where R.yi � x0
iˇ/ denotes the rank of yi � x0

iˇ among y1 � x0
1ˇ; : : : ; yn � x0

nˇ and
aŒR.y � Xˇ/� is the vector with ith component aŒR.yi � x0

iˇ/�. Note that ranks are
invariant to constant shifts such as an intercept parameter. The rank-based estimator
of ˇ is the minimizer

Ǒ D Argmin D.ˇ/: (1.5)

Let Vf denote the full model subspace of Rn; i.e., Vf is the range (column space) of
X. Then D. Ǒ / is the minimum distance between the vector of responses Y and the
subspace Vf in terms of the norm k � k' . For reference, we have

D. Ǒ / D min
�2Vf

kY � �k' : (1.6)

Note that this minimum distance between Y and Vf is unique; i.e., the minimum
distance does not depend on the basis matrix of Vf .

Denote the negative of the gradient of D.ˇ/ by

S.ˇ/ D � 5 D.ˇ/ D X0aŒR.y � Xˇ/�: (1.7)

Then the estimator also satisfies S. Ǒ / PD0. Generally, the intercept parameter is
estimated by the median of the residuals; i.e.,

Ǫ D medifyi � x0
i
Ǒ g: (1.8)

Examples of scores functions include: '.u/ D p
12Œu � .1=2/�, for Wilcoxon

rank-based methods; '.u/ D sgnŒu � .1=2/�, for L1 methods; and '.u/ D ˚�1.u/,
where ˚.t/ is the standard normal cdf, for normal scores methods. In Sect. 1.1,
we pointed out that the nonparametric sign and Wilcoxon location estimators are
based on minimizers of L1-norms. This is true also in the regression case for the
Wilcoxon and sign scores. First, if sign scores are used then the rank-based estimator
of ˇ and ˛, as estimated by the median of the residuals, are the L1 (least absolute
deviations) estimators of ˛ and ˇ; see page 212 of Hettmansperger and McKean
(2011). Secondly, for Wilcoxon scores we have the identity

4.n C 1/p
12

nX
iD1

p
12

�
R.ui/

n C 1
� 1

2

�
ui D

nX
iD1

nX
jD1

jui � ujj; u 2 Rn: (1.9)

That is, the Wilcoxon estimator of the regression coefficients minimizes the absolute
deviations of the differences of the residuals.

In addition to the above defined rank-based estimator of ˇ, we can also construct
an hypothesis test of the general linear hypotheses

H0 W Mˇ D 0 versus HA W Mˇ 6D 0; (1.10)
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where M is a q � p matrix of full row rank. Let Vr denote the reduced model
subspace; i.e., the subspace of Vf subject to the null hypothesis. Let W be a n�.p�q/
basis matrix of Vr. Then we write the reduced model as Y D ˛1 C W� C e. Let O�
denote the rank-based estimator of this reduced model. Then the distance between
Y and the subspace Vr is D. O�/, which is the same for any basis matrix of Vr.

The test statistic of the hypotheses (1.10) is the normalized version of the
reduction in distance, D. O�/ � D. Ǒ /, given by:

F' D ŒD. O�/ � D. Ǒ /�=q

O�=2 ; (1.11)

where O� is an estimator of the scale parameter

��1 D
Z
' 0.F.t//f 2.t/ dt D

Z
f .t/ d.'.F.t//: (1.12)

Koul et al. (1987) developed a consistent estimator of � . Note that the reduction in
distance (dispersion) parallels the least squares reduction in sums of squares.

The approximating distributions of the estimator and the test statistic are
determined by a linear approximation of the negative gradient of the dispersion
and a quadratic approximation of the dispersion. Let ˇ0 denote the true parameter.
Then the following approximations can be made asymptotically rigorous under mild
regularity conditions:

1p
n

S.ˇ/ � 1p
n

X0'.F.y � Xˇ0//� ��1 1
n

X0X
p

n.ˇ � ˇ0/ (1.13)

D.ˇ/ � D.ˇ0/ � .ˇ � ˇ0/
0S.ˇ0/C 1

2�
.ˇ � ˇ0/

0 1
n

X0X.ˇ � ˇ0/:

Based on these results the following asymptotic distributions can be obtained:

S.ˇ0/ is approximately MVN.0;X0X/
Ǒ is approximately MVN.ˇ0; �

2.X0X/�1/ (1.14)

F' is approximately F.q; n � p � 1/, under H0I (1.15)

(qF' ! �2-distribution with q degrees of freedom, under H0).
Based on (1.14), an approximate .1� ˛/100 % confidence interval for the linear

function h0ˇ is

h0 Ǒ ˙ t˛;n�p O�
q

h0.X0X/�1h; (1.16)

where t˛;n�p is the upper ˛=2 quantile of a t-distribution with n � p degrees of
freedom. The use of t-critical values and F-critical values for tests and confidence
procedures is supported by numerous small sample simulation studies; see McKean
and Sheather (1991) for a review of such studies.
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1.2.1 Diagnostics

After fitting a model, a residual analysis is performed to check for quality of fit
and anomalies. A standard diagnostic tool for a LS fit is the scatterplot of residual
versus fitted values. A random scatter indicates a good fit, while patterns in the plot
indicate a poor fit and, often, lead to the subsequent fitting of more adequate models.
For example, suppose the true model is of the form

Y D 1˛ C Xˇ C Z� C e; (1.17)

where Z is an n � q matrix of constants and � D �=
p

n, � 6D 0. We fit, though,
Model (1.1) using LS; i.e., the model has been misspecified. A straight forward
calculation yields

OYLS D ˛1 C Xˇ C He C HZ� and OeLS D e � He C .I � H/Z�;

where H is the projection matrix onto the range of X. If range.Z/ 6� range.X/?
then both the fitted values and residuals are functions of Z� and, hence, there will
be information in the plot concerning the misspecified model. Note that the function
He is unbounded; so, based on this representation, outliers in the random errors are
diffused throughout the residuals and fitted values. This leads to distortions in the
residual plot which, for example, may even mask outliers.

For the rank-based fit of Model (1.1) when Model (1.17) is the true model, it
follows from the above linearity results that

OYrb D ˛1 C Xˇ C �'H'ŒF.e/�C HZ� and Oerb D e � �'H'ŒF.e/�C .I � H/Z� :

Thus, as with LS, there is information in the residual plot concerning misspecified
models. Note from the rank-based representation, the function H'ŒF.e/� is bounded.
Hence, the rank-based residual plot is less sensitive to outliers. This is why outliers
tend to standout more in residual plots based on robust fits than in residual
plots based on LS fits. Other diagnostic tools for rank-based fits are discussed
in Chaps. 3 and 5 of Hettmansperger and McKean (2011). Among them are
the Studentized residuals. Recall that the ith LS Studentized residual is Oe�

LS;i D
OeLS;i=Œ O�

p
1 � .1=n/� hi�, where hi is the ith diagonal entry of the projection matrix

H and O� is the square root of MSE. Note that Oe�
LS;i is corrected for both scale

and location. Rank-based Studentized residuals are discussed in Sect. 3.9.2 of
Hettmansperger and McKean (2011). As with LS Studentized residuals, they are
corrected for both location and scale. The usual outlier benchmark for Studentized
residuals is ˙2, which we use in the examples below.
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1.2.2 Computation

Kloke and McKean (2012, 2014) developed the R package Rfit for the rank-
based fitting and analysis of linear models. This package along with its auxiliary
package npsm can be downloaded from the site CRAN; see Sect. 1.1 for the url. The
Wilcoxon score function is the default score function of Rfit but many other score
functions are available in Rfit including the normal scores and the simple bent
scores (Winsorized Wilcoxons). Furthermore, users can easily implement scores of
their choice; see Chap. 3 of Kloke and McKean (2014) for discussion. In subsequent
examples we demonstrate how easy Rfit is to use.

Analogous to least squares, the rank-based analysis can be used to conduct
inference for general linear models, i.e., a robust ANOVA and ANCOVA; see
Chaps. 3–5 of Hettmansperger and McKean (2011). As an illustration, we end this
section with an example that demonstrates how easy the rank-based analysis can be
used to test for interaction in a two-way design.

1.2.3 Example

Hollander and Wolfe (1999) provide an example on light involving a 2� 5 factorial
design; see, also, Kloke and McKean (2014) for discussion. The two factors in the
design are the light regimes at two levels (constant light and intermittent light) and
five different dosage levels of luteinizing release factor (LRF). Sixty rats were put
on test under these ten treatments combinations (six repetitions per combination).
The measured response is the level of luteinizing hormone (LH), nanograms per ml
of serum in the resulting blood samples.

We chose Wilcoxon scores for our analysis. The full model is the usual two-
way model with main and interaction effects. The right panel in Fig. 1.1 shows the
mean profile plots based on the full model rank-based estimates. The profiles are
not parallel indicating that interaction between the factors is present. These data
comprise the serumLH data set in Rfit and hence is loaded with Rfit. The Rfit
function raov, (robust ANOVA), obtains the rank-based analysis with one line of
code as indicated below. The reduction in dispersion test, (1.11), of each effect is
adjusted for all other effects analogous to Type III sums of squares in SAS; see
Sect. 5.5 of Kloke and McKean (2014). Further, the design need not be balanced.
Here is the code and resulting (with some abbreviation) rank-based ANOVA table:

> raov(serum~light.regime+LRF.dose+
light.regime*LRF.dose, data=serumLH)

Robust ANOVA Table
DF RD F p-value

light.regime 1 1642.3332 58.03844 0.00000
LRF.dose 4 3027.6734 26.74875 0.00000
light.regime:LRF.dose 4 451.4559 3.98850 0.00694
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Fig. 1.1 Plots for the serum LH data

As the figure suggested, the factors light regime and LRF dose interact, p D
0:00694. In contrast, the LS analysis fails to reject interaction at the 5 % level,
p D 0:0729. For this example, at the 5 % level of significance, the rank-based
and LS analyses would lead to different interpretations. The left panel of Fig. 1.1
displays the q�q plot of the Wilcoxon Studentized residuals. This plot indicates that
the errors are drawn from a heavy tailed distribution with numerous outliers, which
impaired the LS analysis. The estimate of the ARE between the rank-based and least
squares analyses is the ratio

bARE D O�2
O�2'

(1.18)

where O�2 is the MSE of the full model LS fit. This is often thought of as a measure
of precision. For this example, this ratio is 1.88. So, the rank-based analysis cuts the
LS precision by a factor of 1=1:88 D 0:53.

In a two-way analysis when interaction is present often subsequent inference
involves contrasts of interest. To demonstrate how easy this is accomplished using
Rfit, suppose we consider the contrast between the expected response at the peak
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(factor LRF dose at 3, factor light at the intermittent level) minus the expected
response at the peak (factor LRF dose at 3, factor light at the constant level). Of
course this is after looking at the data, so we are using this in a confirmatory mode.
Our confidence interval is of the form (1.16). Using the following code, it computes
to 201:16˙ 65:63. The difference is significant.

# full model fit
fitmod <- rfit(serum~factor(light.regime)+

factor(LRF.dose)+ factor(light.regime)*
factor(LRF.dose), data=serumLH)

# hvec picks the contrast
hvec <- rep(0,60); hvec[27] <- -1; hvec[57] <- 1
# estimate of contrast
contr <- hvec%*%fitmod$fitted.values
# error in CI
se2 <- t(hvec)%*%mat%*%vc%*%t(mat)%*%hvec
# error term in the confidence interval.
err <- qt(.975,50)*sqrt(se2)

1.3 Efficiency and Optimality

In general, the relative efficiency of one statistical method to another, in estimating
or testing, is the squared ratio of the slopes in their respective linear approximations.
Restricting ourselves to the linear model, (1.1), and rank-based procedures, in light
of the asymptotic linearity results, (1.14), such ratios involve the scale parameter � .
In particular, suppose we consider two rank-based methods using the respective
score functions '1.u/ and '2.u/, and, hence, the norms k � k'1 and k � k'2 . Then the
aysmptotic efficiency of method 1 to method 2 is

e.k � k'1 ; k � k'2/ D �22
�21
: (1.19)

Note by (1.14) that this is the same as the ratio of the asymptotic variances
of the associated estimators of the regression coefficients. Values greater than 1
indicate that methods based on k � k'1are superior. The larger slope indicates a more
sensitive method, where the slope is ��1.

For LS, e.k � k'1 ;LS/ D �2=�21 , where �2 is the variance of the random
errors. For comparison with Wilcoxon methods, we already mentioned for location
models that e.Wilcoxon;LS/ is 0.955 when the error distribution is normal. Hence,
e.Wilcoxon;LS/ is the same for both linear and location models. Another striking
result, due to Hodges and Lehmann (1956), shows that this efficiency is never less
than 0.864 and may be arbitrarily large for heavy tailed distributions. In the case of
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the normal scores methods, the efficiency relative to least squares is 1 at the normal
model and never less than 1 at any other model!

An optimality goal is to select a score function to minimize �' ; i.e., maxi-
mize ��1

' . We can write expression (1.12) as

��1 D
Z 1

0

'.u/'f .u/ du; (1.20)

where

'f .u/ D � f 0ŒF�1.u/�
f ŒF�1.u/�

: (1.21)

Recall that the scores have been standardized so that
R
'2.u/ du D 1. Hence ��1

can be expressed as

��1 D
R 1
0
'.u/'f .u/ duqR 1

0 '
2.u/ du

qR 1
0 '

2
f .u/ du

8<
:

sZ 1

0

'2f .u/ du

9=
;

D �

8<
:

sZ 1

0

'2f .u/ du

9=
; : (1.22)

The first factor on the right in the first line is a correlation coefficient which we
have indicated by �. Thus ��1 is maximized if we select the score function to be
'f .u/, (standardized form). This makes the correlation coefficient 1 and ��1

' equal
to the term in the braces. This term, though, is the square-root of Fisher information.
Therefore, by the Rao-Cramér lower bound, the choice of 'f .u/ as the score function
leads to an asymptotically efficient (optimal) estimator. For the score functions
discussed in earlier sections, it follows that the optimal score function for normally
distributed errors is the normal score function, for logistically distributed errors is
the Wilcoxon score function, and for Laplace distributed errors is the sign score
function.

Of course this optimality only can be accomplished provided that the form of f
is known. Evidently, the closer the chosen score is to 'f , the more optimal the rank
based analysis is. A Hogg-type adaptive scheme where the score function is selected
based on initial (Wilcoxon) residuals has proven to be effective; see Sect. 7.6 of
Kloke and McKean (2014). McKean and Kloke (2014) successfully modified this
scheme for fitting a family of skewed normal distributions.
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1.3.1 Monte Carlo Study

To illustrate the optimality discussed above, we conducted a small simulation study
of a proportional hazards model. Consider a response variable T with a p � 1 vector
of covariates x. Assume T has a � .1; �/ distribution where � D expfx0ˇg and ˇ is
a p � 1 vector of parameters. It follows that

log T D x0ˇ C 	; (1.23)

where 	 has an extreme-valued distribution; see Chaps. 2 and 3 of Hettmansperger
and McKean (2011). The optimal scores for this model are the log-rank scores
generated by '.u/ D �1 � log.1 � u/.

We simulated this model for the following situation: sample size is n D 20; the
covariates are .1; xi/, where xi D i=21; and ˛ D �2 and ˇ D 5. The methods
involved are LS and the three rank-based methods: optimal scores (log-rank),
Wilcoxon scores, and normal scores. These scores are intrinsic to Rfit. The
simulation size is 10,000. To show how simple the coding is, here is the gist of
the program’s loop portion for a simulation:

mu <- exp(alpha + beta*x)
y <- rgamma(20,1,1/mu); ly <- log(y);
fitw <- rfit(ly~x) # Wil.
fitly <- rfit(ly~x,scores=logrankscores) # opt.
fitns <- rfit(ly~x,scores=nscores) # ns
fitls <- lm(ly~x) # LS

Table 1.1 presents the empirical relative efficiencies (ratios of mean square errors)
for the parameter ˇ. The efficiencies are relative to the optimal rank-based score
procedure. The log-rank score procedure is most efficient followed by the normal
scores procedure and then the Wilcoxon. Least squares (LS) performed the worst.

Table 1.1 Empirical AREs of estimators of the
slope parameter ˇ relative to the rank-based esti-
mator based on the optimal log-rank scores

Method

Optimal Wilcoxon Normal scores LS

1 1.215 1.175 1.380

The simulation size is 10,000
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1.4 Influence and High Breakdown

1.4.1 Robustness Properties

In the 1960s and 1970s new tools to assess robustness properties of estimators
were developed beginning with Huber (1964) and Hampel (1974). The breakdown
value of a location estimator is the (limiting) proportion of the data that must be
contaminated in order to carry the value of the estimator beyond any finite bound.
In the one sample location model with score function 'C.u/, the breakdown for the
rank based estimator is 	 where

Z 1�	

0

'C.u/ du D 1

2

Z 1

0

'C.u/ du:

A simple computation shows that the least squares estimate, the mean, has 0
breakdown point, worst possible. The median has breakdown 0.5, the best possible.
The median of the pairwise averages (Wilcoxon score) has breakdown 0.293, while
the normal scores estimate has breakdown 0.239.

Another robustness tool, the influence function, is a measure of how fast the
estimator changes when an outlier is moved out beyond the edges of the sample. It is
provided by the linear approximation of the negative gradient, S.ˇ/, (1.7). Consider
the linear model (1.1). For the rank-based estimator, using the score function '.u/,
the influence function is given by:

˝.x; y/ D �

�
1

n
X0X

��1
'.F.y//x;

where .x; y/ is the value at which we evaluate the influence. When the score function
is bounded the influence is bounded in the y-space. However, note that influence is
unbounded in factor space. In the case of the location model, the influence functions
for the median and the median of the pairwise averages are both bounded. Note also
that least squares estimators have unbounded influence functions in both the y- and
the X-spaces.

For most designed experiments and for designs with predictors which are well
behaved, the rank-based estimators offer a robust and highly efficient alternative to
LS for fitting and analyzing linear models. In the case of messy predictors, though, a
robust alternative with bounded influence in factor space and positive breakdown is
most useful. In fact a primary use of such fits is to highlight the difference between
its fit and that of a highly efficient robust fit and, thus, alerting the user to possible
anomalies in factor space. We next discuss a high breakdown rank-based (HBR) fit
and its accompanying diagnostics which serve this purpose.
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1.4.2 High-Breakdown and Bounded Influence
Rank-Based Estimates

For the linear model, Chang et al. (1999) developed a rank-based estimator that has
bounded influence and can achieve a 50 % breakdown point. It is a weighted version
rank-based Wilcoxon fit. By the identity (1.9), the Wilcoxon estimator minimizes
the least absolute deviations of the differences of the residuals. Let fbijg be a set of
nonnegative weights. Consider estimators which minimize

Ǒ D Argmin
X
i<j

bijj.yi � x0
iˇ/ � .yj � x0

jˇ/j: (1.24)

If the weights are all 1, then this is the Wilcoxon estimator.
Chang et al. (1999) proposed weights which are both functions of factor

space and residual space. For factor space, it uses robust distances based on the
high breakdown minimum covariance determinant (MCD) which is an ellipsoid
in p-space that covers about half the data. For residual space, it uses the high
breakdown least trim squares (LTS) fit for an initial fit. See Rousseeuw and Van
Driessen (1999).

A brief description of the weights are given next. These are the weights defined
for the R function hbrfit which are in the R package npsmReg2 and are
discussed in Sects. 7.2 and 7.3 of Kloke and McKean (2014). This package can
be downloaded at the github site indicated at the end of Sect. 1.1.

Let Oe0 denote the residuals from the initial LTS fit. Let V denote the MCD with
center vc. Define the function  .t/ by  .t/ D 1; t; or � 1 according as t � 1,
�1 < t < 1, or t � �1. Let � be estimated by the initial scaling estimate MAD D
1:483 medijOe.0/i � medjfOe.0/j gj . Letting Qi D .xi � vc/

0V�1.xi � vc/, define

mi D  

�
b

Qi

�
D min

�
1;

b

Qi

�
:

Consider the weights

Obij D min

(
1;

c O�
jOe.0/i j

O�
jOe.0/j j

min

�
1;

b
OQi

�
min

(
1;

b
OQj

) )
; (1.25)

where b and c are tuning constants. We set b at the upper �2:05.p/ quantile and c is
set as

c D Œmedfaig C 3MADfaig�2;

where ai D Oe.0/i =.MAD � Qi/. From this point-of-view, it is clear that these weights
downweight both outlying points in factor space and outlying responses. Note that
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the initial residual information is a multiplicative factor in the weight function.
Hence, a good leverage point will generally have a small (in absolute value) initial
residual which will offset its distance in factor space.

In general, the HBR estimator has a 50 % breakdown point, provided the initial
estimates used in forming the weights have 50 % breakdown. Further, its influence
function is a bounded function in both the Y and the x-spaces, is continuous
everywhere, and converges to zero as the point .x�;Y�/ gets large in any direction.
The asymptotic distribution of Ǒ

HBR is asymptotically normal. As with all high
breakdown estimates, Ǒ

HBR is less efficient than the Wilcoxon estimates but it
regains some of the efficiency if the weights depend only on factor space.

McKean et al. (1996) developed diagnostics to detect differences in highly
efficient and high breakdown robust fits. Their diagnostic TDBETA measures the
total difference in fits of the regression coefficients, standardized by the variance-
covariance of the Wilcoxon fit. The benchmark is similar to the classic diagnostic
DFFITS. A second diagnostic CFITS measures the difference of predicted values
at each case. This diagnostic is useful for data sets where TDBETA exceeds its
benchmark. Section 7.3 of Kloke and McKean (2014) give a full discussion of
these diagnostics with examples. McKean et al. (1999) extended these diagnostics
to differences between robust and LS fits. Next, we present an example which
illustrates HBR fits and these diagnostics.

1.4.2.1 Stars Data

This data set is drawn from an astronomy study on the star cluster CYG OB1
which contains 47 stars; see Chap. 3 of Hettmansperger and McKean (2011) for
discussion. The response is the logarithm of the light intensity of the star while the
predictor is the logarithm of the temperature of the star. The scatterplot of the data is
in the left panel of Fig. 1.2. Four of the stars, called giants, form a cluster of outliers
in factor space while the rest of the stars fall in a point cloud. The panel includes the
overlay plot of the Wilcoxon and HBR linear fits. The four giants form a cluster of
high leverage points, exerting a strong influence on the Wilcoxon fit while having a
minor influence on the HBR fit. The diagnostic TDBETAS between the Wilcoxon
and HBR fits has the value 67.92 which exceeds the benchmark of 0.340, indicating
a large difference in the fits. The right panel of Fig. 1.2 shows the values of the
diagnostic CFITS versus case. The benchmark for this diagnostic is 0.34. The four
largest values are the four giant stars. Hence, for this data set, the diagnostics work.
The diagnostic TDBETAS alerts the user to the large difference between the fits
and CFITS indicates the major points contributing to this difference. The next two
largest CFITS values are of interest to astronomers, also. These are stars between
the giants and the main sequence stars. Although not shown, the least squares fit
is similar to the Wilcoxon fit. The fits and diagnostics can be computed with the
following code:
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Fig. 1.2 The left panel displays the scatterplot of the log of light intensity versus the temperature
of the star, overlaid with the Wilcoxon and HBR fits. The right panel displays the values of CFITS
versus the case numbers. The horizontal line is the benchmark value

fitw <- rfit(lintensity ~ temp)
fith <- hbrfit(lintensity ~ temp)
fitls <- lm(y ~ x)
fitsdiag <- fitdiag(temp,lintensity,est=c("WIL",

"HBR"))

1.5 Extensions to Mixed and Nonlinear Models

In the past 20 years, there have been extensions of the rank-based analysis to many
other models. This includes nonlinear models and models with dependency among
the responses. In this section, we briefly discuss a few of these models, ending with
an example involving a mixed model.

For traditional least squares-based methods for these models, the geometry
essentially remains the same in that least squares estimation is based on minimizing
the squared-Euclidean distance between the vector of responses and the region of
estimation. This is true of the rank-based approach, also, except that the rank-based
norm, (1.3), replaces the squared-Euclidean norm.
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1.5.1 Multivariate Linear Models

Davis and McKean (1993) extended the linear model rank-based procedures for
general score functions to the multivariate linear model. They developed asymptotic
theory for the estimators and tests of linear hypotheses of the form AˇK for the
matrix of regression coefficients ˇ. See Sect. 6.6 in Hettmansperger and McKean
(2011) for discussion and examples. These are component wise estimators, so
computations can be based on the package Rfit; see the web site indicated at
the end of Sect. 1.1 to download a preversion of the package Rfitmult. These
methods are regression equivariant but they are not affine invariant. Oja (2010) and
his collaborators developed affine invariant rank-based procedures for Wilcoxon
scores using a transformation retransformation procedure. Nordhausen and Oja
(2011) developed the R package MNM, downloadable at CRAN, to compute these
affine procedures.

1.5.2 Nonlinear Linear Models

For responses yi, consider a nonlinear model of the form yi D g.�; xi/ C ei, i D
1; : : : ; n, where g is a specified nonlinear function, � is a k � 1 vector of unknown
parameters, and xi is a p � 1 vector of predictors. Let y and g.�; x/ denote the
corresponding n � 1 vectors. Given a rank score function '.u/, the associated rank-
based estimator of � is

O�' D Argminky � g.�; x/k';

where k � k' is the norm defined in expression (1.3). Abebe and McKean (2007)
obtained asymptotic theory for O�' for the case of Wilcoxon scores. The efficiency
properties of the Wilcoxon estimator are the same as in the linear model case; so,
the estimator is highly efficient for the nonlinear model. Abebe and McKean (2013)
extended this development to high breakdown rank-based nonlinear estimators of �

which have bounded influence in both the response and factor spaces. The R package
npsmReg2 contains the R function wilnl which computes these estimators; see
Chap. 7 of Kloke and McKean (2014) for further discussion.

1.5.3 Time Series Models

Consider the autoregressive model of order p, Ar.p/:

Xi D 
0 C 
1Xi�1 C 
2Xi�2 C � � � C 
pXi�p C ei

D 
0 C Y0
i�1� C ei; i D 1; 2; : : : ; n (1.26)
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where p � 1, Yi�1 D .Xi�1;Xi�2; : : : ;Xi�p/
0, � D .
1; 
2; : : : ; 
p/

0, and Y0 is an
observable random vector independent of e. Let X and Y denote the corresponding
n � 1 vector and the n � p matrix with components Xi and Y0

i�1, respectively. For the
score function '.u/, the rank-based estimator of � is given by

O�' D ArgminkX � Y0�k';

where Y is the matrix with rows Y0
i�1. Koul and Saleh (1993) developed the

asymptotic theory for these rank-based estimates. Because of the structure of the
AR.p/model, outliers in the random errors become ensuing points of high leverage.
As a solution to this problem, Terpstra et al. (2000, 2001) proposed estimating �

using the HBR estimators of Sect. 1.4. They obtained the corresponding asymptotic
theory for these HBR estimators and showed their validity and empirical efficiency
in several large simulation studies. Section 7.8 of Kloke and McKean (2014)
discusses the computation of these estimates using the R package Rfit.

1.5.4 Cluster Correlated Data

Frequently in practice data are collected in clusters. Common examples include:
repeated measures on subjects, experimental designs involving blocks, clinical
studies over multiple centers, and hierarchical (nested) designs. Generally, the
observations within a cluster are dependent.

For discussion, suppose we have m such clusters. Let yki denote the ith response
within the kth cluster, for i D 1; : : : ; nk and k D 1; : : : ;m, and let xki denote
the corresponding p � 1 vector of covariates. For cluster k stack the nk responses
in the vector yk and let Xk denote the nk � p matrix with rows x0

ki. Assume a linear
model of the form

yk D ˇ01nk C Xkˇ C ek; k D 1; : : : ;m; (1.27)

where ek follows a nk-multivariate distribution and the vectors e1; : : : ; em are
independent. We then stack the vectors yk and matrices Xk into the vector Y and
matrix X, respectively.

There are several rank-based analyses available for these models. Abebe et al.
(2016) develop a rank-based analysis for a general estimating equations (GEE)
model which includes models of the form (1.27). This allows for very general depen-
dency structure. For a general score function '.u/, Kloke et al. (2009) developed the
asymptotic theory for the rank-based estimator defined in expression (1.5), i.e., the
minimizer of the norm kY�Xˇk' . Their development includes consistent estimators
of standard errors and consistent test statistics of general linear hypotheses. The
theory requires the additional assumption that the univariate marginal distributions
of ek are the same. This is true for many of the usual models in practice such as
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simple mixed models (compound symmetry covariance structure) and stationary
times series models for the clusters.

The R package jrfit computes the analysis developed by Kloke et al. (2009);
see Chap. 8 of Kloke and McKean (2014) for discussion and examples. This
includes the fit and several options for the estimation of the covariance structure,
including compound symmetry and two general estimators, (a sandwich-type
estimator and a general nonparametric estimator). We conclude this discussion with
an example which illustrates the use of jrfit on cluster data.

1.5.4.1 Example

For an example, we consider the first base study presented in Hollander and Wolfe
(1999). This study investigated three methods of rounding first base for baseball
players who are running from home plate to second base. The response is the
player’s total running time. The three methods are narrow angle (NA), round out
(RP), and wide angle (WA); see Hollander and Wolfe for details. Twenty-two ball
players participated in the study and each ran six times, two repetitions for each
method. The average time of the two repetitions are the response times available.
The data can be found in the firstbase data set in the R package npsmReg2;
see Chap. 8 of Kloke and McKean (2014).

Let yij denote the running time for the jth player on method i and consider the
randomized block design given by

yij D �C ˛i C bj C 	ij; (1.28)

where ˛i denotes the ith treatment fixed effect; bj denotes the random effect for the
jth player; and eij denotes the random error. We assume that the random errors are
iid and the random effects are iid with different distributions. We further assume
that the random errors and the random effects are independent.

Although, finite variance is not required for the asymptotic theory, for the discus-
sion, we assume finite variances. The variance-covariance structure of Model (1.28)
is compound symmetric. Besides fixed effects analyses, we are interested in the
estimation of the variance components given by �2b the variance of bj, �2	 the
variance of 	ij, and the intraclass correlation coefficient � D �2b =.�

2
b C �2	 /. Kloke

et al. (2009) provided robust estimates of these components based on the rank-
based fit of Model (1.28). These estimates have been incorporated into the package
jrfit.

The null hypothesis for the fixed effects is H0 W ˛1 D ˛2 D ˛3 D 0.
The traditional nonparametric test of this hypothesis is based on Friedman’s test
statistic, which for this example results in the value of 11.14 with p-value 0:003.
The comparative rank-based analysis is the Wald-type test on the rank-based fit. As
shown below, the value of the test statistic is 19.31 with a p-value of 0.0001. As with
the Friedman test, the Wald-type test is highly significant. An experimenter, though,
wants a much more in depth analysis than just this test of the fixed effects. The left
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Table 1.2 Rank-based
estimates of fixed effects and
variance components,
firstbase data

Fixed effects Variance

Effect SE components

�RO � �NA 0.000 0.016 O�2B D 0:0124

�WA � �NA �0.053 0.012 O�2	 D 0:0049

�WA � �RO �0.057 0.023 O� D 0:715

panel of Fig. 1.3 displays the comparative boxplots of the methods. Note that, based
on this plot, it appears that the wide-angle method results in the quickest times.
Such a judgement is easily confirmed by considering the estimates and confidence
intervals for the three pairwise comparisons. These are shown in Table 1.2 based
on the rank-based fit. They do confirm that the wide-angle method results in
significantly faster times than the other two methods. Furthermore, the estimated
effects provide the experimenter with an estimate of how much faster the wide-angle
method is than the other two methods.

Table 1.2 also displays the robust estimates of the variance components. Note
that the estimate of the intraclass correlation coefficient is 0.715 indicating a strong
correlation among the times of a runner. The right panel of Fig. 1.3 shows the normal
q�q plot of the Studentized residuals of the rank-based fit. The horizontal lines at
˙2 are the usual benchmark for potential outliers. This plot confirms the outliers in
the boxplots and indicates a heavy tailed error structure. The three largest positive
outliers correspond to Runner 22 who had the slowest times in all three methods.

The results in Table 1.2 and Fig. 1.3 are based on computations using the package
jrfit. Some of the code for the computations is given by:

# The data are in the data set firstbase in the
# package npsmReg2. More discussion of the
# computations can be found in Chapter 8
# of Kloke McKean (2014).
#
# times is the vector of running times; player is
# the indicator of the player; method is the
# indicator of the method.

xmat <- model.matrix(~as.factor(method))[,2:3]
fit <- jrfit(xmat,times,player)
stud <- rstudent(fit) #Studentized residuals
vee(fit$resid,fit$block,method=’mm’) #Var comp.
h1 <-c(0,1,0); h2<-c(0,0,1); hmat<-rbind(h1,h2)
mid <- solve(hmat%*%fit$varhat%*%t(hmat))
tst <- t(hmat%*%fit$coef)%*%mid%*%hmat%*%fit$coef
19.31442
1-pchisq(tst,2)
6.396273e-05
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Fig. 1.3 The left panel displays the comparative boxplots for the three methods of rounding first
base, while the right panel shows the q�q plot of the rank-based Studentized residuals

1.6 Conclusion

As we indicated in Sect. 1.1, the rank tests for simple location problems were
initially used because of their quick calculation in the pre computer age. These meth-
ods were further found to be highly efficient and robust by Hodges and Lehmann
in the mid 1950s. The traditional t-tests for these problems, though, are based
on least squares (LS) fitting which easily generalizes to much more complicated
models, including linear, nonlinear, and models with dependent error structure.
For all such models, the LS fitting is based on minimizing the squared-Euclidean
distance between the vector (or matrix) of responses and the region (space) of
estimation. Further, LS testing of general linear hypotheses is based on a comparison
of distances between the vector of responses and full and reduced model subspaces.
Also, there are ample diagnostic procedures to check the quality of the LS fit of a
model. As in the location problems, though, LS procedures are not robust. Hence, a
generalization was needed for the robust nonparametric methods.
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As briefly outlined in Sect. 1.2, the extension of nonparametric methods to
linear models came about in the late 1960s and early 1970s, with the robust
estimation procedures developed by Jurečková and Jaeckel. In particular, as shown
by McKean and Schrader (1980), Jaekel’s estimation involves minimizing a
distance between the responses and the full model subspace. This distance is based
on the norm defined in expression (1.3). For general linear hypotheses, McKean
and Hettmansperger (1976) developed an accompanying analysis based on a
comparison of distances between the vector of responses and full and reduced model
spaces where distance is based on the norm (1.3). Diagnostics for this rank-based
analysis were developed by McKean et al. (1990). This rank-based analysis is as
general as the traditional LS analysis. As with LS, for any linear model, it offers
a complete procedure including fitting, diagnostic checking of the fit, confidence
regions, and tests of general linear hypotheses. Details of this analysis are discussed
in Chaps. 3–5 of Hettmansperger and McKean (2011).

As discussed in Sect. 1.3, the rank-based analysis is highly efficient. For example,
the rank-based procedure based on Wilcoxon scores has efficiency 0.955 relative
to LS procedures when the random errors are normally distributed and is much
more efficient when the distribution of the random errors has heavy tails. Further,
if the form of the error distribution is known, then optimal scores can be used
which results in fully asymptotically efficient procedures. Rank-based procedures
based on minimizing the norm (1.3) are robust in response space but, similar to LS
procedures, are not robust in factor space. A simple weighting scheme, based on
robust distances in factor space and residuals from an initial robust fit, leads to a
robust rank-based procedure which is robust in both response and factor space as
well as having a 50 % breakdown point.

As reviewed in Sect. 1.5, these rank-based procedures have been extended
to nonlinear models and models in which the errors have dependencies. For
these models, LS fitting is still based on minimizing squared-Euclidean distance
between the responses and the space of estimation. In the same way, the rank-
based fitting of these models is obtained by minimizing the distance based on the
norm (1.3). In recent years, asymptotic theory has been developed for these rank-
based procedures. Hence, besides linear models, robust rank-based procedures exist
for diverse models, including nonlinear models, autoregressive times series models,
multivariate regression models, mixed models, and hierarchical models.

The easy computation of rank-based analyses is performed with R software. For
linear models, the package Rfit offers a complete computation for the rank-based
analysis. A wide variety of scores functions are intrinsic to the package with an
option for user-supplied scores. For models other than linear there are accompanying
R packages for computations. We have discussed the computation based on these
packages throughout this paper. See Kloke and McKean (2014) for discussion of
these packages.
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