
Chapter 7
Using Enhanced Patent Data
for Future-Oriented Technology Analysis

Christopher L. Benson and Christopher L. Magee

Abstract Patents represent one of the most complete sources of information
related to technological change, and they also contain much detailed information
not available anywhere else. Thus, patents are the ‘big data’ source most closely
related to future-oriented technology analysis (FTA). Not surprisingly, therefore,
there is very significant practical and academic use of the patent database for
understanding past technical change and attempting to forecast future change. This
paper summarizes several new methods and demonstrates their combined effec-
tiveness in establishing a cutting-edge capability for patent study not previously
available. This capability can be stated as a link between the information in patents
and the dynamics of technological change. The demonstrated capability relies upon
the use of a database containing the rates of improvement for various technologies.
We also specify the term we use for the analysed units of technology: a techno-
logical domain is a set of artefacts that meets a specific generic function while
utilizing a specific set of engineering and scientific knowledge. This definition is
unambiguous enough so technological domains can be linked with progress rates
and are sufficiently flexible to accommodate the large scale and complexity of the
patent database. The existence of an improvement rate database and its quality is a
critical foundation for this paper. Establishing the overall capability also involves
relating the rate of improvement of a technological domain to the patents in that
domain. We show that a recently developed method called the classification overlap
method (COM) provides a reliable and largely automated way to break the patent
database into understandable technological domains where progress can be mea-
sured. In this paper, we show how this method overcomes the third limitation of the
patent database. The major conclusion of the paper is that there is now an overall
objective method named Patent Technology Rate Indicator (PTRI) for using just
patent data to reliably estimate the rate of technological progress in a technological
domain. Thus, the first link between the patent database information and the
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dynamics of technological change is now firmly established; robustness and
back-casting tests have shown that the assertion of reliability is meaningful and that
the estimate has predictive value. We demonstrate the key methodology of new
elements (use of COM and rate estimation from the selected patent sets) for 15
technologies that some have thought have possible future importance. The 15 cases
also demonstrate the usefulness of the overall method by estimating technological
improvement rates that are significantly different for this group of technologies.

Keywords Future-oriented technology analysis � Patent analysis � Comparing
emerging technologies

7.1 Introduction

This paper introduces the results of a new forecasting method called the Patent
Technology Rate Indicator (PTRI) method that uses patent data to better predict
time-based performance improvement rates of technologies whose performance
trend is otherwise unknown. While the focus of the research is on quantitative
performance trends, we do not want to suggest that such results will be all one
desires for technological forecasting. Haegeman et al. (2013) explain the various
focuses of several different disciplines within the FTA community:

It is acknowledged that, within the FTA community (which comprises Foresight,
Forecasting and Technology Assessment),1 foresight practitioners have traditionally con-
centrated on participatory methods based on qualitative data, on the grounds that quanti-
tative extrapolation from past data is not sufficient to address the uncertainties of the future
and that emerging changes in the socio-economic and technological landscapes need to be
taken into account. Another part of the FTA community, constituted by Forecasting and
Technology Assessment practitioners, holds an opposite standpoint, considering qualitative
and participatory approaches as a second best option, to which we are somehow compelled
to refer until adequate quantitative methods arise. (Haegeman et al. 2013).

Our viewpoint is that both qualitative and quantitative approaches are needed for
this complex issue and improvement of both is needed. Rosenberg’s analysis done
more than 20 years ago (Rosenberg 1982) categorized four areas of difficulty in any
technological forecasting which includes the socio-economic aspect; these are as
follows:

1. At emergence, the focal (or new technology) is not very capable;
2. Vital complementary technologies are potentially underdeveloped;
3. System design/evolution that may be necessary for large impact has not

occurred;
4. The human user ingenuity that will greatly impact the technology and its impact

has great diversity and is unknown at the early stages.

While we believe that a focus on quantitative performance improvement pre-
diction can contribute to items (1) and (2) in Rosenberg’s analysis, we believe that
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qualitative approaches will also be valuable not only in items (3) and (4) but also in
(1) and (2).

Gao et al. (2013) introduced an important aspect of the quantitative approach by
exploring technological performance over time using FTA techniques. In our
analysis, we predict time-based technological improvements rates similar to the
type made famous by Moore’s law, where a specific technical metric
(transistors/die) is measured over a period of time and is found to improve at a
relatively constant percentage per year. This is not the first attempt at using tech-
nological improvement rates as part of forecasting, but most predecessors have done
so by attempting to utilize learning rates, which compare the improvement of a
technical metric with production (Nemet 2006) rather than with time. In particular,
we are interested in estimating the yearly technical improvement rate of a tech-
nology, represented by the variable ‘k’ in Eq. 7.1.

q ¼ q0 expðkðt � t0ÞÞ ð7:1Þ

While Sahal (1979) and Nagy et al. (2013) showed that the actual practical
implications of the time-based and production-based improvement rates are very
similar, this paper will focus solely on the time-based rates due to the evidence that
they are more fundamental (Magee et al. 2014). Additionally, in performing this
analysis we are building off of the strongly established results that show long-term
time-based technical improvement rate stability (Magee et al. 2014), that is, that the
improvement rate of a technology does not change considerably over time or at the
very least changes considerably less between times than the rates change between
technologies. This same argument is appropriate for the different complete technical
metrics that can be used to measure the performance of a technology (i.e. Wp/$ or
kW hr/$ for measuring solar PV output) (Benson and Magee 2014). Thus, we will
focus almost entirely on the rate differences between technologies and not the
differences within a technological domain between metrics.

The PTRI can estimate nearly any time-based technological improvement rate using
a set of patents that represents each technological domain. The use of patents in FTA is
given precedence by Gao et al. (2013) when they used patent indicators to estimate the
level of technological maturity for a given domain. In a very similar way, the PTRI uses
patent indicators as correlation factors for forecasting technological improvement rates
of a domain and is based upon an extensive study reported in Benson and Magee
(2015b). The results of the PTRI method can project relative improvement rates of
technologies—which may be useful for investment decisions by private parties or
governments. Additionally, the data can be used to aid in uncertainty analyses for future
technological capabilities of a specific domain, which is often used in long-term pro-
duct planning by large companies and the military. Both of these uses can aid in
influencing both private and public policies, which has been the outcome of several
FTA techniques in the past (Schaper-Rinkel 2013).
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7.2 Methodology

The PTRI is based upon the finding by Benson and Magee (2015b) that the
information contained in patents is sufficient for understanding differences in
technical improvement rates between different domains. A number of patent metrics
were studied by Benson and Magee (2015b) and were combined with multivariate
regression tools to create a model for forecasting technological improvement rates.
The resulting regression was found to be accurate for 12 years into the future.
The PTRI method is summarized in Fig. 7.1.

The PTRI method begins with the identification of a technology of interest, and
then, a technology needs to be converted to an appropriate technological domain. In
order to convert from a technology to a technological domain, it is useful to think
not just about the embodiment of an invention, but rather the use it fulfils and the
underlying scientific principles that it makes use of. The intention behind this is to
specifically clarify the unit of analysis by using a standardized definition of tech-
nological domain:

A technological domain can be defined as follows: the set of artefacts that fulfil a
specific generic function utilizing a particular, recognizable body of knowledge.

Once a technological domain has been defined, the next step is the selection of a
set of patents that represent the domain, and this step is very important because the
set of patents that are selected will be the input data source for the method. The sets
of patents can be selected by using a methodology called the classification overlap
method (COM) that relies upon the different types of patent classification systems
used by the US and International Patent Offices (UPC and IPC) (Benson and Magee
2013, 2015a). The input to the COM is a set of keywords related to the techno-
logical domain as well as potentially some supporting information such as key
companies or inventors in the domain. These inputs can then be used to select a set

Fig. 7.1 PTRI Method
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of patents contained within the overlap between the most appropriate UPC and IPC
based upon the COM. All of the patent set searches for this paper were done using
Patsnap (www.patsnap.com) and included only issues US patents from 1 January
1976 to 1 July 2013, and these dates were chosen so they could be compared with
prior results from Benson and Magee (2015b).

Due to the importance of the patent sets for the PTRI method, it is important to
ensure that the patents in the data set accurately represent the technological domain
of interest. This is done manually by reading representative sampling of the data
sets and qualitatively assigning each read patent a value of ‘1’ for ‘relevant or ‘0’
for ‘not relevant’ to the domain of interest. The average relevancy score can then be
added by summing the total relevant determinations and dividing by the number of
total patents in the data set. In general, an acceptable value for relevance is greater
than 0.65; however, a good patent set will have relevancy above 0.8.

Once the data set has been verified for relevancy, the patent indicators can be
calculated using the metadata included in the patents. The PTRI uses two indicators
for calculating the estimated technological improvement rate: average publication
data and average number of forward citations within 3 years of publication as
described in Benson and Magee (2015b).

The average number of forward citations within 3 years of publication is the
average number of forward citations that each patent received within 3 years of
publication for patents in a technological domain. The metric is calculated using
Eq. 7.2 where SPC is the simple patent count, FCi is the number of forward
citations for patent i; tijpub is the publication year of patent i, tijpub is the publication
date of forward citation j of patent i, and the function IF(arg) only counts the values
if the argument is satisfied.

XSPC

i¼1

XFC

j¼1

IF tijpub � tipub � 3
� � ð7:2Þ

The average publication year for the patents in a domain includes patents that
were published between 1 January 1976 and 1 July 2013. This measure is calcu-
lated using Eq. 7.3 where SPC is the simple patent count and tipub is the publication
year of patent i.

PSPC
i¼1 tipub
SPC

ð7:3Þ

After these two values are calculated for the domain of interest, they can be
plugged into the regression model developed in Benson and Magee (2015b):

k ¼ �31:1285þ 0:0155 � AvePubYearþ 0:1406 � Cite 3 ð7:4Þ
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The result is a simple number that represents the time-based technological
improvement rate for the domain of interest.

7.3 Results, Discussion and Implications

The aim of this paper was to explore the results of the PTRI methodology applied to
a number of potentially important technologies in the future. To act as a basis of
what technologies would be important in the future, we used a premade list of the
‘10 breakthrough technologies of 2014’ as noted by the MIT Technology Review
(2014) as a basis for a list of potential transformational technologies that would be
of interest to know an estimated technological improvement rate.

This section illustrates all elements of the PTRI Methodology described in the
previous section using as cases the 10 technologies listed in the MIT Technology
Review and additional five others. All 15 technologies will be translated into
technological domains, representative patent sets will be selected using the COM
methodology, and then, patent indicators will be calculated and technological
improvement rates will be determined. The end result will be estimated techno-
logical improvement rates for 15 technological domains.

7.4 Defining the Domains

The first step is to illustrate the translation of the ten technologies into a list of
technological domains. Table 7.1 shows the 10 technologies from the MIT
Technology Review along with the 10 domains and a short description of the
domain. The final 4 rows are additional technologies that the authors decided to
include based upon their subjective potential importance in the upcoming near
future and the academic and media interest paid to the domains.

The translation process to technological domains is illustrated by the technology
‘Agricultural Drones’ from the MIT Technology Review list that was determined to
be slightly narrow in its scope as it was only focusing on one potential use for the
automated air vehicles that they were intended to represent. Focusing first on the
broad function, we arrive at remote flight control. Following this path further, while
‘drones’ themselves are a rather broad category, they do not represent a particularly
specific technological domain in that the term drone could be interpreted in a
number of ways (Wikipedia lists 11 possible interpretations for the term ‘drone’ not
including the entertainment or music categories such as the movie Star Wars:
Attack of the Drones). Thus, we added further clarity to the definition by referring to
the technological domain as remote flight control technologies, with the specific
generic purpose being remote flight control, and the underlying set of knowledge
being a unique overlap of aeronautics, control theory, and signal transmission
methods. Note that this new domain does not necessarily preclude manned aircraft,
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as there are plenty of reasons to control a vehicle remotely even when a pilot is
sitting in the cockpit.

Other illustrations of translation are the transformation from ultraprivate
smartphone to information security—as the smartphone form factor seems an
unnecessary constraint for the analysis of the improvement rate of information
security technologies. Admittedly, the most liberty was taken in translating mobile
collaboration to online learning—this was done partially due to the lack of clarity
over what exactly constitutes mobile collaboration and the recent intense emphasis
on online learning and MOOCs; therefore. this ‘translation’ illustrates what could
be termed a ‘substitution’ of near neighbour technologies.

Table 7.1 Technical domains as inputs into PTRI

Technology candidate
(from MIT Technology
Review)

Derived
technological
domain

Description of domain

Agricultural drones Remote flight
control
technologies

Controlling flying vehicles from afar,
including drones and advanced flight
controls

Ultraprivate smartphones Information
security

Information security across all form factors

Brain mapping Brain scanning Determining brain features and structure
using a number of tools (CT, MRI…)

Neuromorphic chips Artificial neural
network
Computing

Computing architectures that resemble that
of the human brain

Genome editing Genome
sequencing

Determining the genomes of specific strands
of DNA

Microscale 3D printing SLA 3D
printing

Additive manufacturing using light to cure
resins

Mobile collaboration Online learning Education in digital classrooms

Oculus rift Digital
representation

Digital modelling of reality (includes virtual
reality as well as less immersive forms of
digital representation of the physical world)

Agile robots Robotics Performance of physical functions by
Automatic mechanical devices

Smart wind and solar
power

Wind turbines Energy generation from moving air.

Solar PV Energy generation using the photoelectric
effect

– Nuclear fusion Energy generation relying directly on atomic
fusion

– Water
purification

Removing salt from water using reverse
osmosis

– Food
engineering

Chemical and genetic modifications for
enhanced food production

– Gaseous
purification

More broad term for one enabling
technology behind climate geo-engineering
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7.5 Patent Sets Selected Using the COM

The next innovative aspect of the PTRI (Fig. 7.1) is to find relevant patent sets for
each of the technological domains using the COM, as described at the top of page 4.
Column 2 of Table 7.2 shows the patent classes that were used to define each
domain, Column 3 the size of the overall patent set and column 4 the relevancy as
determined by subjective reading of a sampling of 200 patents from each domain.

As noted earlier, each technological domain is represented by a set of patents
that are defined by a combination of overlapping US and international patent codes.
As an example, the ‘remote flight control technologies’ domain is defined by the
overlap of either of the US codes 701/2 or 701/3 (data processing: vehicles, nav-
igation, and relative location/2 remote control system/3 aeronautical vehicle) and
the international patent code B64C (airplanes, helicopters). This overlap results in
328 patents that were qualitatively determined to be *85 % relevant. This same
process was repeated for all 15 technological domains, and the results are shown in
Table 7.2.

7.6 Calculating the Patent Indicators and Using the PTRI
Regression Model to Estimate Technological
Improvement Rates

The next innovative aspect from Fig. 7.1 is digesting the patent information in order
to calculate the patent indicators required by the PTRI regression model: average
year of publication and number of citations received within 3 years of publication
(Cite 3). These values for each of the domains are shown in columns 5 and 6 of
Table 7.2. It is interesting to note the extremes of each patent indicator. In this
study, the oldest average date of publication is 1992 (food engineering and nuclear
fusion), while the newest average publication date is 2010 for information security.
The large size of the information security patent set (13,607) and the very high
relevance ratio (0.985) give credibility to this very recent average publication date
and indicate that this is likely a very dynamic domain and that the recency is
unlikely an artefact of the data. These numbers are in line with the oldest and
newest average publication date of the 29 technological sets used to construct the
PTRI regression model with 1992 and 2006, respectively (Benson and Magee
2015b).

The smallest Cite 3 technological domain had just 1.5 forward citations within
the first 3 years of publication on average (food engineering), while the largest
belongs to digital representation with 5.85 citations within 3 years, which is a
higher value than any of the original 29 domains used to create the PTRI
(4.62-MRI).
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These patent indicators can now be plugged into Eq. 7.4 to calculate the esti-
mated technological improvement rates for each of the 15 domains as shown in the
final column of Table 7.2.

7.7 Discussion and Conclusions

The 15 cases presented here clearly illustrate all aspects of the newly created PTRI
methodology. We briefly note here some areas for even further improvement while
discussing the novel information provided by the PTRI. We first note that some of
the k values are negative, which would seem to indicate that the particular tech-
nological domain is getting worse with time. Obviously, this explanation is logi-
cally inconsistent, and the more correct interpretation is that the PTRI model does a
poor job of distinguishing among very slowly improving technologies and that any
technology that is estimated as a negative improvement rate is simply a very slowly
improving domain (<5 %). Additionally, the PTRI model as shown in Benson and
Magee (2015b) tends to give estimates that fall within ±0.10 of the measured
technological improvement rates. In the future, more accurate confidence intervals
should be developed to accompany the estimated k. To demonstrate this further,
some of the technologies that were predicted in this study have been measured
before, and the comparison between the empirically measured values and the
estimated values is shown in Table 7.3.

The agreement between the predicted values and the empirically measured
values lends credibility to the predicted values shown above and is consistent with
the relatively close correlation between the PTIR model and previously measured
empirical values.

The highest technological improvement rate is digital representation with an
estimated k of 0.7, which would indicate that its capabilities would more than
double every year. An interesting finding of the 15 tests of the PTIR method
illustrated here is that it is rather difficult to imagine a way to objectively measure
the improvement rate for how well the digital world represents the real world;
however, this high rate is not inconsistent with the subjective experiences of the

Table 7.3 Estimated and measured ks

Technical domain Technical measure Estimated
k

Empirically
measured k

Genome sequencing (base pairs/$) 0.21 0.29

SLA 3D printing (1/s*$(including build
volume/machine size)))

0.39 0.38

Solar photovoltaic
energy generation

(Wp/$) 0.17 0.09

Wind turbine energy
generation

(Wp/$) 0.15 0.09
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rapidly changing digital world and the ever-increasing ways that people spend on a
digital version of what used to be physical (i.e. social networking, talking, banking
and watching entertainment). Thus, the cases show that the PTIR allows us to map
technological improvement rates to technologies that may be improving but are
hard to measure due to lack of metrics or data or other reasons.

These improvement rate estimates should be used, however, in conjunction with
increased knowledge about the measures by which the technical domains improve.
Table 7.3 shows a few examples of technical measures by which the domains
improved, including more simple measures such as Wp/$ for solar PV and wind
turbines and more complex measures for 3D printing, which includes metrics for
speed of printing (mm/s), resolution (1/mm) of the machine, cost ($, machine size)
and flexibility (build volume), which when combined result in the ‘highly com-
plete’ measure in Table 7.3 for 3D printing.

When evaluating technologies using the PTIR model, the measures can be
estimated and can be somewhat more abstract, but must always include a benefit
and a cost. For example, when considering water purification, the benefit of the
process is clean water and the cost is energy or price. Thus, an appropriate measure
for the improvement rate of water purification could be gallons of clean water per
kWhr or per dollar.

The methodology described in this paper (PTRI) is novel in allowing compar-
ison of improvement rates of a broad set of 15 technologies. The second highest
k values are grouped into a clump around 0.4 with information security, brain
mapping, artificial neural networks, 3D printing and purification all within 0.06 of
one another. These rather disparate technologies are predicted to improve at rela-
tively rapid rates similar to those of Moore’s law (k = 0.36). While some may not be
surprised to see information security and neural networks improving at this rate due
to their relation to information technology, the estimated rapid rate of growth for
brain mapping, 3D printing and purification has less to do with the rapid rate of
improvement in information technology yet is still estimated to be improving at a
high rate.

Remote flight control, robotics, genome sequencing, solar PV and wind turbines
make up the next grouping of technologies that have estimated improvement
rates between 0.15 and 0.3, corresponding with a doubling of capability every
2.5–5 years. These technologies also seem to be rather disparate, yet all seem to
have less of a pure reliance on information technology than does the top group.

The bottom dwellers, with estimated rates ranging from −0.1 to 0.03, include
gaseous engineering, nuclear fusion and food engineering. As was mentioned
previously, it is unlikely that these particular domains are decreasing in capability
over time, and it is much more likely that all three of these domains have been
improving at a very slow rate.

While the topic was touched upon briefly in the results section, the intent of this
paper is not to look at commonalities between domains with high (or low) estimated
technological improvement rates, as that topic is covered in depth in Benson and
Magee (2015b); rather, the goal of this paper was to introduce the PTRI method-
ology into the FTA world as a tool that can be used to combine qualitative and
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quantitative data to provide numeric estimates of technological potential for the
future. This tool can be especially useful for technical domains which are hard to
measure or have scarce data such as may become more common as technology
improves accelerates.

While this paper is mainly focused on demonstrating the potential of the PTRI
for estimating quantitative technological growth rates, it will be important in
practical use to include qualitative analysis to complement the quantitative esti-
mates. For example, information security is estimated to be a fast-growing tech-
nological domain with a k value of 0.45; likewise, purification is estimated to
improve at a k value of 0.39. These two values fall well within the rough confidence
interval of +/−0.1, and therefore, it is reasonable to assume that they will improve at
similar rates. Despite this fact, however, the results of the improvements could well
be rather different.

Information security, while it may be improving quickly, is constantly having to
compete with other people who are looking to break through that security, which
relies on similar principles and may improve at a similar rate, leading to an arms
race in information protection; therefore, while we would expect the capabilities of
information security to increase drastically, we might not expect the number of
information security breaches to decrease at the same rate due to the concurrent
increasing capabilities of hackers and electronic thieves.

A different story can be told about water purification, and as was mentioned
earlier, increases in purification capabilities should rapidly increase the capability to
create drinking water using fewer resources. Thus, the high k for purification could
indicate that the problem of water scarcity should not be a high risk if the purifi-
cation technologies continue to improve at their estimated rates, which is a rela-
tively safe bet considering the long-term stability of k for most technological
domains.

The PTRI method, when combined with appropriate qualitative analysis, can be
a powerful tool for policymakers, technological strategists and investors of many
kinds. The development of more powerful patent analysis techniques to produce
quantitative estimates of technological change can help decrease technological
uncertainty for current and future technologies.
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