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Abstract Michael Ortiz and Gustavo Gioia showed in the 90s that the complex
patterns arising in compressed elastic films can be analyzed within the context of the
calculus of variations. Their initial work focused on films partially debonded from
the substrate, subject to isotropic compression arising from the difference in thermal
expansion coefficients between film and substrate. In the following two decades
different geometries have been studied, as for example anisotropic compression. We
review recent mathematical progress in this area, focusing on the rich phase diagram
of partially debonded films with a lateral boundary condition.

1 Introduction

Elastic films deposited on a substrate are often subject, after thermal expansion, to
compressive strains which are released by debonding and buckling, generating a
variety of microstructures. The work of Michael Ortiz and Gustavo Gioia in the 90s
[1, 2] opened the way for the use of the tools of calculus of variations in the study of
these structures. Their starting point was the Föppl-vonKármán plate theory, as given
in (4) below. One of their insights was that the key nonconvexity which gives rise
to the microstructure can be understood in terms of the out-of-plane displacement
alone, leading after some rescalings to the Eikonal functional, as given in (1) below.
This functional contains a term of the form (|Dw|2 − 1)2, where w is the normal
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displacement, which favours deformations with the property that the gradient of w
is approximately a unit vector, independently of the orientation. Since the film is
still bound to the substrate at the boundary of the debonded region, the appropriate
boundary condition isw = 0,which prescribes that the average overΩ of the gradient
of w vanishes. Therefore the resulting low-energy deformations have gradient Dw
oscillating between different values. As in many nonconvex variational problems,
oscillations on very small scales may be energetically convenient, see [3, 4]. Corre-
spondingly, the variational problem

∫
Ω

(|Dw|2 − 1)2dx is not lower semicontinuous,
and - depending on the boundary data and forcing - does not have minimizers. How-
ever, the curvature term σ 2|D2w|2 penalizes oscillations on an exceedingly fine scale
and thereby ensures existence of minimizers. The solutions then have oscillations
on an intermediate scale, which is determined by the competition between the two
terms. The analysis of the specific functional proposed byOrtiz andGioia is reviewed
in Sect. 2 below.

The approach of Ortiz an Gioia was later extended to the full vectorial Föppl-von
Kármán energy, and also to three-dimensional elasticity. These refinements explained
the appearance of oscillations on two different length scales, with coarse oscillations
in a direction normal to the boundary, and fine oscillations in the direction tangential
to the boundary, as discussed in Sect. 3 below.

Recently interest has been directed to controlling themicrostructures by designing
the geometry of the debonded region appropriately [5, 6]. The key idea is to introduce
a sacrificial layer between the film and the substrate, and then to selectively etch away
a part of it, so that the boundary of the debonded region is straight. The film then
partially rebonds to the surface, leading to complex patterns of tunnels. A study
of these patterns within the Ortiz-Gioia framework, with a variational functional
containing the Föppl-von Kármán energy and a fracture term proportional to the
debonded area, is presented in Sect. 4. Themathematical analysis leading to the upper
bounds of Theorem 6 suggests the presence of different types of patterns in different
parameter ranges. The picture is rather easy in the two extreme cases in which the
bonding energy per unit area is very small or very large. Indeed, in the first one the
patterns observed for completely debonded films give the optimal energy scaling,
in the second one the optimal state corresponds to the film completely bound to the
substrate. In the intermediate regime we expect a richer picture, with bonded areas
separated by thin debonded tunnels. For a certain regime, depending on the relation
between the bonding energy per unit area, the film thickness and the compression
ratio, a construction in which the tunnels branch and refine close to the boundary has
a lower energy than the one with straight tunnels, see discussion in Sect. 4 below.
The microstructure formation in thin films can be understood at a qualitative level
as a form of Euler buckling instability. The relevant experiments, however, are well
beyond the stability threshold, as discussed in Sect. 5 below.
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2 Scalar Modeling of Compressed Thin Films

Ortiz and Gioia showed that, if tangential displacements are neglected, the energy
of a compressed thin film can be characterized by the functional

Iσ [w] =
∫

Ω

((|Dw|2 − 1
)2 + σ 2|D2w|2

)
dx, (1)

subject to w = 0 on ∂Ω and w ≥ 0 in Ω . Here Ω ⊂ R
2 represents the debonded

region, w : Ω → [0,∞) the rescaled normal displacement, and σ is a small para-
meter related to the thickness of the film. This functional arises also naturally in the
study of liquid crystal configurations [7] and of magnetic structures in thin films [8].
Despite a large mathematical effort [7, 9–15] the problem (1) is not yet completely
understood; it has been shown that the minimal energy is proportional to σ but the
Γ -limit of σ−1 Iσ [w] has only been partially identified. The natural candidate is

I0[w] = 1

3

∫

JDw

|[Dw]|3dH 1 (2)

restricted to functions w : Ω → R which solve the Eikonal equation |Dw| = 1 and
are sufficiently regular. Here, JDw denotes the set of points (typically, a curve) where
the gradient Dw is not continuous, [Dw] denotes its jump across the interface, and
dH 1 the line integral along the interface. In particular, under the additional assump-
tion that Dw is a function of bounded variation, it has been shown that for σ → 0 the
scaled functionals σ−1 Iσ converge, in the sense of Γ -convergence, to I0, see [11–13]
for the lower bound and [14–16] for the upper bound. However, it is also clear that
finiteness of the energy does not imply that Dw has bounded variation, but only that
w belongs to a larger space, called AG(Ω), see [10, 11]. Therefore the result is still
incomplete.

The Eikonal equation |Dw| = 1 with the boundary dataw = 0 on ∂Ω is solved by
the distance to the boundary,w0(x) = dist(x, ∂Ω). For example, ifΩ is a square this
leads to the tent-shaped deformation illustrated in Fig. 1. The function w0 is however
only Lipschitz continuous, not twice differentiable, and makes the curvature term

Fig. 1 Sketch of a
deformation achieving the
optimal energy in (1). Here
the debonded region
Ω = (0, 1)2 is a square, and
the distance to the boundary
gives a “tent”-form. The
convolution in (3) makes the
folds have smooth transitions
on a small scale
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Fig. 2 Sketch of the effect of the mollification in (3) in a direction orthogonal to the fold. Left
panel: the distance from the boundary dist(x, ∂Ω) is a function with slope ±1 and sharp kinks.
Right panel: the mollification defined in (3) still has slope ±1 on large parts of the domain, but has
smooth transitions from one value to the other over a length of the order of σ , see Fig. 3

∫
Ω

σ 2|D2w|2dx infinite. ThereforeOrtiz andGioia [1, 2] proposed to use a smoothed
version of the distance function,

wσ (x) =
∫

Ω

dist(y, ∂Ω)ϕσ (x − y)dy (3)

where ϕσ is a mollifier on the scale σ , i.e., ϕσ ∈ C∞
c (Bσ ) with

∫
R2 ϕσ dx = 1 and

|Dϕσ | ≤ c/σ 3. Then the regularized gradient Dwσ has length close to 1onmost of the
domain Ω , but at boundaries between regions where Dw0 has different orientations
Dwσ changes smoothly over a length scaleσ fromone value to the other. The bending
energy is correspondingly localized in a stripe of thickness 2σ around the interfaces,
see Fig. 2. The prediction that minimizers of (1) are well represented bywσ is in good
agreement, at least for some geometries, with experimental observations [1, 2].

The work of Ortiz and Gioia was then extended to related problems, showing for
example that under anisotropic compression branching-type microstructures appear
close to the boundary [17, 18], or that in certain regimes telephone-cord blisters
develop [19–21] thanks to the interaction between the elastic deformation and the
fracture problem that determines the boundary of the debonded region.

3 Pattern Formation in Debonded Thin Films

A finer analysis of the nonlinear elasticity model that had led to (1) showed that, in
the case of isotropic compression, also the in-plane components exhibit fine-scale
oscillations which refine close to the boundary [22–25]. This analysis was based
on the Föppl-von Kármán model, which includes the tangential components of the
displacement u as well. After rescaling the energy takes the form (in the case of zero
Poisson’s ratio for simplicity)

Eσ [u,w] =
∫

Ω

(|Du + DuT + Dw ⊗ Dw − Id|2 + σ 2|D2w|2) dx . (4)
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Here Ω ⊂ R
2 is, as above, the debonded region, and the displacements u and w

vanish at the boundary of Ω , corresponding to the fact that the rest of the film is still
bound to the substrate. The isotropic compressive strain has been scaled to 1, and
one can check that Eσ [0,w] = 1 + Iσ [w]. The key result from [22, 23] was that the
minimum energy scales proportional to σ :

Theorem 1 (From [22, 23]) Let Ω ⊂ R
2 be a bounded domain with piecewise

smooth boundary. Then there are two constants cL , cU > 0 such that

cLσ ≤ min{Eσ [u,w] : u = 0,w = 0 on ∂Ω} ≤ cUσ. (5)

The argument used for proving the lower bound also proves that a finite fraction of
the energy is localized in a thin strip close to the boundary.

Similar statements hold if the plate theory in (4) is replaced by a fully three-
dimensional nonlinear elastic model. For v : Ω × (0, h) → R

3, h > 0, we define

E3D
h [v] = 1

h

∫

Ω×(0,h)

W (Dv)dx (6)

where W : R3×3 → [0,∞) is the elastic stored energy density, which vanishes on
the set of proper rotations SO(3) and has quadratic growth, in the sense that

c dist2(F,SO(3)) ≤ W (F) ≤ c′ dist2(F,SO(3)) (7)

for some positive constants c and c′. The factor 1/h is included explicitly in (6) to
obtain an energy per unit thickness, corresponding to (4).

In the nonlinear case the thickness h of the film and the compression δ enter the
problem separately, however to leading order and after scaling the optimal energy
only depends on the combination σ = h/δ1/2. In order to understand this expression
it is instructive to recall the relation between the three-dimensional problem E3D

h
and its two-dimensional counterpart Eσ . In particular, a given pair (u,w) in (4)
corresponds to a three-dimensional deformation vδ of the form

vδ(x1, x2, x3) = (1 − δ) [ψ(x1, x2) + x3n(x1, x2)] (8)

where

ψ(x1, x2) =
⎛

⎝
x1 + 2δu1(x1, x2)
x2 + 2δu2(x1, x2)
(2δ)1/2w(x1, x2)

⎞

⎠ (9)

represents the deformation of the x3 = 0 layer and

n(x1, x2) =
⎛

⎝
−(2δ)1/2∂1w(x1, x2)
−(2δ)1/2∂2w(x1, x2)

1

⎞

⎠ (10)



30 D. Bourne et al.

is, to leading order, the normal to the surface described by ψ and gives the out-of-
plane component of the strain. An expansion of E3D

h [vδ] for small δ shows that the
leading order contribution is proportional to δ2Eσ [u,w] if the Poisson’s ratio of the
material vanishes. See for example [22, App. A and App. B] for a more detailed
discussion of this point. A rigorous relation between Eσ and E3D

h was derived in
[26, 27] by means of Γ -convergence, these results however are appropriate for a
different regime, with much smaller energy, and therefore do not apply directly to
the situation of interest here.

Theorem 2 (From [25]) Let Ω ⊂ R
2 be a bounded domain with piecewise smooth

boundary, δ ∈ (0, 1), h ∈ (0, δ1/2). Then there are two constants cL , cU > 0 such
that

cLσ ≤ min{ 1
δ2

E3D
h [u] : u(x) = (1 − δ)x for (x1, x2) ∈ ∂Ω} ≤ cUσ (11)

where σ = h/δ1/2.

The significance of Theorems 1 and 2 is best understood by considering the key
ideas in the proofs. The upper bound in (5) and (11) is proven by explicitly construct-
ing a suitable deformation field (u,w). This is done in several steps. The first step is
the Ortiz-Gioia construction given in (3), which correctly describes the large-scale
behavior of the film and relaxes the compression in direction normal to the boundary,
as in Fig. 1. In the second step one adds fine-scale oscillations in the orthogonal direc-
tion, as illustrated in Fig. 3. This microstructure does not change the average shape
significantly but relaxes the strain component tangential to the boundary. Finally, one
realizes that optimal deformations have oscillations on a very fine scale close to the
boundary, to adequately match the boundary data, but much coarser oscillations in

Fig. 3 Sketch of a deformation achieving the optimal upper bound in (5). As in Fig. 1, the debonded
region Ω = (0, 1)2 is a square. The starting point, at a coarse scale, is the “tent”-form illustrated in
Fig. 1. At a finer scale, folds orthogonal to the boundary relax the tangential compression (left panel,
folds are only drawn in a small region). The period of the folds is of order h close to the boundary,
and via a sequence of period-doubling steps becomes coarser in the inside (right, blow-up of the
folds from the left panel)
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the interior, to minimize the bending energy. Therefore a number of period-doubling
steps are inserted, as illustrated in Fig. 3. Analogous self-similar branched patterns
had previously appeared in the study of microstructures in shape-memory alloys [28,
29], where for a simplified model it had been possible to show that minimizers are
indeed asymptotically self-similar [30]. The scaling in the presence of finite elastic-
ity, both of the martensite and in the surrounding austenite, was then studied in [31,
32]; vectorial variants of the model were considered in [33, 34]. A similar approach
has been useful also for a variety of other problems, ranging from magnetic patterns
in ferromagnets [35–37] to field penetration in superconductors [38, 39], dislocation
structures in crystal plasticity [40] and coarsening in thin film growth [41].

This variational approach to microstructure formation in thin elastic sheets is
much more general, and indeed it can be applied to a number of related problems.
One example is paper crumpling [42, 43] in which a thin plate, completely detached
from the substrate, is confined to a small volume. In this case it has been possible to
construct deformations with much smaller energy per unit volume. In particular one
can obtain an energy per unit thickness proportional to h5/3 [44, 45], and one can
approximate any compressive deformation with this energy.

Theorem 3 (From [45]) Let Ω ⊂ R
2 be a bounded domain, r > 0. Then there is a

map v : Ω × (0, h) → Br (0) such that

E3D
h [v] ≤ ch5/3 . (12)

The constant c may depend on Ω and r but not on h. Further, if v0 : Ω → R
3 is a

short map, i.e., a map which obeys |v0(x) − v0(y)| ≤ |x − y| for all x, y ∈ Ω , then
there is a sequence vh, converging to v0, such that

lim
h→0

1

hα
E3D
h [vh] = 0 (13)

for any α < 5/3. Convergence of vh is understood as uniform convergence of the
vertical averages.

The proof of this is based on the combination of three ingredients. The first one is
an approximation of short maps with Origami maps:

Theorem 4 (From [45]) Let v0 : Ω → R
3 be a short map, i.e., a map which obeys

|v0(x) − v0(y)| ≤ |x − y| for all x, y ∈ Ω . Then there is a sequence v j of Origami
maps converging uniformly to v0.

Here we say that a map v : R2 → R
3 is an Origami map if it is continuous and

piecewise isometric, i.e., if the domain can be subdivided into pieces such that v is
a linear isometry (a translation plus a rotation) in each piece. The number of pieces
is allowed to diverge only at infinity, in the sense that only finitely many pieces are
allowed in any bounded subset of R2.

The second step is to approximate any Origami maps with low-energy maps:
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Theorem 5 (From [45]) Let Ω ⊂ R
2 be a bounded domain, v0 : Ω × (0, h) →

Br (0) be an Origami map. Then for any Origami map v0 there is a sequence of
maps vh : Ω × (0, h) → R

3, converging to v0, such that

E3D
h [vh] ≤ Ch5/3 . (14)

The constant may depend on Ω and v0 but not on h.

This is proven by an explicit construction around each fold.
Another related problem of high current interest is the study of wrinkling patterns

in graphene sheets [46, 47]. This has been addressed by a similar model, in which
the boundary conditions are replaced by a viscous term describing the interaction
with a substrate [48–50]. It would be interesting to see if the methods discussed here
can be useful also for this variant of the problem.

4 Pattern Formation in Rebonded Thin Films

The microstructures spontaneously developed by compressed thin films can be con-
trolled if the geometry of the debonded region is designed appropriately [5, 6]. One
possibility is to introduce a sacrificial layer between the film and the substrate, and
then to selectively etch away a part of it, so that the boundary of the debonded region
is straight, see sketch in Fig. 4. The film then partially rebonds to the surface, leading
to complex patterns of tunnels, which in some cases refine close to the boundary, see
Fig. 5.

These patterns can be studied by coupling the von-Kármán energy with a fracture
term proportional to the debonded area,

Eσ,γ [u,w] =
∫

Ω

(
|Du + DuT + Dw ⊗ Dw − Id|2 + σ 2|D2w|2

)
dx + γ |{w > 0}|.

(15)

x1

x2

x3

Fig. 4 Geometry of the partially delaminated film. The intermediate sacrificial layer is removed
chemically only for x1 > 0. The free-standing film is subject to compression at the Dirichlet bound-
ary x1 = 0 and may rebond to the substrate
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Fig. 5 Experimental picture of tube branching in Si1−xGex film on a thick SiO2 substrate. Left
AFM image of the network near the etching front. Right autocorrelation pattern. Reprinted from
[5, Fig. 2] with permission from Wiley

The three terms represent stretching, bending and bonding energies respectively.
Here u : Ω → R

2 are the (scaled) tangential displacements and γ > 0 is the bonding
energy per unit area (related to Griffith’s fracture energy), |{w > 0}| represents the
area of the set where the vertical displacement w is nonzero. Equivalently one could
take the debonded state as reference and consider a negative term proportional to the
rebonded area,−γ |{w = 0}|; the two energies only differ by an additive constant. The
appropriate boundary conditions correspond to the film being bound to a substrate
on one side of the domain; for simplicity we shall focus on Ω = (0, 1)2 with u = 0
and w = 0 on the {x1 = 0} side of Ω . As above, we assume w ≥ 0 everywhere.

The mathematical analysis of the energy (15) leads to the rich phase diagram
sketched in Fig. 6, which contains four different regimes [51] that we now illustrate.

For large specific bonding energy γ the film is completely bound to the substrate.
In particular the film is flat, so that there is no bending energy, but the stretching
energy is not released. The total energy is then proportional to the area of Ω , and
one obtains Eσ,γ [0, 0] = 2. This is regime A in Fig. 6 and Theorem 6.

The opposite case of very small bonding energy γ is also easy to understand
after the foregoing discussion: here the bonding term plays no significant role and

σ

γ

D

C

B
A

Fig. 6 Phase diagram for Eσ,γ [u,w] in the (σ, γ ) plane
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w

x2

Fig. 7 Sketch of the laminate regime (B)

the film is completely detached from the substrate. One recovers the result of the
blistering problem of Theorem 1, Eσ,γ [u,w] 
 Eσ [u,w] ≤ cσ . The corresponding
deformations are those illustrated in Fig. 3. This is regime D in Fig. 6 and Theorem 6.

For intermediate values of γ the situation is more complex, in particular debonded
channels are formed, which separate wider bonded regions. In regime B the pattern
is periodic and, away from the Dirichlet boundary, depends only on the tangential
variable x2. A large part of the film is bonded to the substrate, but bonded regions
are separated by thin tubes, see Fig. 7. Denoting by h the period of the oscillations,
and by δ the width of a tube, the total volume fraction of the tubes is δ/h, therefore
the bonding energy is proportional to γ δ/h. Each tube has to release a compression
of h over a width δ, therefore the term |Dw|2 is of order h/δ inside the tubes (the
stretching energy is then completely relaxed). This gives |Dw| ∼ (h/δ)1/2 in the
tubes, and hence |D2w| ∼ (h/δ)1/2/δ. Therefore the total energy can be estimated
by

γ
δ

h
+ σ 2 δ

h

(
h1/2/δ1/2

δ

)2

= γ
δ

h
+ σ 2

δ2
. (16)

Optimizing in δ we obtain δ ∼ σ 2/3h1/3γ −1/3 (this is clearly only admissible if
δ ≤ h ≤ 1). The period h is fixed by the energetic cost of the interpolation region
close to the boundary. In this part of the domain there is no stretch-free construction,
and indeed an interpolation over a boundary layer of thickness ε results in a total
stretching energy of ε(1 + h2/ε2). Optimizing over ε we obtain ε ∼ h, and therefore
the total energy for the laminate construction is

h + γ
δ

h
+ σ 2

δ2
. (17)

Inserting the value of δ obtained above and minimizing in h we conclude that h
and E are proportional to (σγ )2/5. The width of each tube δ is then proportional to
σ 4/5γ −1/5. This is regime B in Fig. 6; a precise version of this construction proves
the second bound in Theorem 6.

If the bending term becomes more important, it is convenient to insert period-
doubling steps, just like in the discussion of the functional (4). The resulting pattern
is shown in Fig. 8. In comparison to the pattern of Fig. 3 the key difference is that the
bending is localized to a small region, whereas large parts of the film are bond to the
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Fig. 8 Sketch of the tube branching regime (C)

substrate. The period-doubling steps are only possible at the expense of stretching
energy; balancing the different terms one finds [51] that the resulting energy is pro-
portional to σ 1/2γ 5/8. The result of the construction is summarized in the following
statement.

Theorem 6 (From [51]) Let γ > 0, σ ∈ (0, 1). There are u, w which obey the stated
boundary conditions and

Eσ,γ [u,w] ≤ c

⎧
⎪⎪⎨

⎪⎪⎩

1 if σγ > 1 (regime A),
(σγ )2/5 if σ−4/9 ≤ γ ≤ σ−1 (regime B),
σ 1/2γ 5/8 if σ 4/5 ≤ γ ≤ σ−4/9 (regime C),
σ if γ < σ 4/5 (regime D).

(18)

The proof is based on making the constructions sketched above precise, details are
given in [22] for regime D and in [51] for regimes B and C. Regime A, as discussed
above, is immediate.

Optimality of the phase diagram just discussed can be at least partially proven
by providing matching lower bounds on the energy. In particular, one can show the
following.

Theorem 7 (From [51]) Let γ > 0, σ ∈ (0, 1). For any u, w which obey the stated
boundary conditions one has

Eγ,σ [u,w] ≥ c

⎧
⎨

⎩

1 if σγ > 1 (regime A),
(σγ )2/3 if σ 1/2 ≤ γ ≤ σ−1 (regime B′),
σ if γ < σ 1/2 (regime D′).

(19)

Whereas the statement in regime D′ follows from [22], the other two bounds are
proven in [51] using the Korn-Poincaré inequality for SBD2 functions obtained in
[52].
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Theorem 7 proves optimality in phases A and D. The bound in the intermediate
region does not, however, match the upper bounds stated in Theorem 6. Therefore it
is at this stage not clear if the branching patterns illustrated in Fig. 8 are optimal.

5 Linear Stability Analysis

The general form of the linearized Föppl-von Kármán plate theory under isotropic
compression is [53, 54]

EFvK[u,w] = 1

2
Yh

∫

Ω

[

(1 − ν)|ε|2 + ν(Trε)2 + h2

12

[
(1 − ν)|D2w|2 + ν(Δw)2

]
]

dx ,

(20)
see also [2, 22] for a discussion in the present context and [27] for a rigorous mathematical
derivation. Here ν ∈ [−1, 1/2] is the Poisson ratio, Y Young’smodulus, h the film thickness,
and the strain ε is defined by

ε = Du + (Du)T + Dw ⊗ Dw − 2δId , (21)

where δ is the eigenstrain (i.e., the compression enforced by the substrate). We recall
that we use |M |2 = TrMT M for the matrix norm. For ν = 0, after a rescaling (20)
reduces to (4).We recall that in [22, App. B] it was shown that the scaling behavior of
the functional EFvK is the same for all ν ∈ (−1, 1/2], hence our results hold also for
generic values of the Poisson ratio. Of course, the regime ν ≥ 0 is the most relevant.

For small δ one can linearize around the state u = 0,w = 0. After straightforward
computations this leads to

E lin
FvK[u,w] = 1

2
Yh

∫

Ω

[
(1 − ν)|Du + DuT − 2δId|2 − 4(1 − ν)δ|Dw|2

+ ν(2divu − 4δ)2 − 8δν|Dw|2 + h2

12

[
(1 − ν)|D2w|2 + ν(Δw)2

] ]
dx .

In this linearized functional u and w are decoupled. The dependence on u is convex,
hence u = 0 is the minimizer with the given boundary data. The dependence on w
is however not necessarily convex. Working for concreteness in a circle of radius R,
we can assume w to be radial, w(x) = ϕ(|x |), subject to ϕ(R) = 0, so that

Dw(x) = ϕ′(|x |) x

|x |
and

D2w(x) = ϕ′′(|x |) x

|x | ⊗ x

|x | + ϕ′(|x |)
(
Id

|x | − x ⊗ x

|x |3
)

.
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Inserting into the energy leads to the one-dimensional variational problem

1

2
Yh

∫ R

0

[

−4δ(1 + ν)(ϕ′(r))2

+h2

12

[

(ϕ′′(r))2 +
(

ϕ′(r)
r

)2

+ 2ν
ϕ′(r)ϕ′′(r)

r

]]

rdr .

This is positive definite if the first term, of order δ, is not larger then the second term,
of order h2/R2. Therefore the loss of stability, which corresponds to Euler buckling,
occurs at strains δ ∼ h2/R2. Inserting the experimental data from [5], namely, h ∼ 20
nm, R ∼ 10µm, ν ∼ 0.277, leads to δcrit ∼ 4 × 10−6, which corresponds to a strain
of 0.0004%. This is over three orders of magnitude smaller than the experimentally
applied strain δExp ∼ 0.011 = 1.1%. Therefore the experiments we discussed take
place well beyond the loss of linear stability, and a buckling-postbuckling analysis
does not seem appropriate to understand the deformations. Our variational approach
is instead constructed to deal with deformations and microstructures that appear in
the deeply nonlinear regime and is therefore more suitable to study the mentioned
experiments.
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