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Abstract A meshfree numerical model, based on the principle of Local Maximum
Entropy, with a B-Bar based algorithm to avoid instabilities, is applied to solve con-
solidation problems in saturated soils. This numerical scheme has been previously
validated for purely elasticity problems without water (mono phase), as well as for
steady seepage in elastic porous media. Hereinafter, the model is validated for well
known consolidation theoretical problems, both static and dynamic, with known ana-
lytical solutions. For several examples, the solutions obtained with the new code are
compared to PLAXIS (commercial software). Finally, after validated, solutions for
dynamic radial consolidation and sinks, which have not been found in the litera-
ture, are presented as a novelty. This new numerical approach is demonstrated to be
feasible for this kind of problems in porous media.

1 Introduction

The settlement of saturated soils under loading is caused by a gradual interchange
between pore pressure and effective stress. Immediately after external loadings are
applied to a saturated soil domain, all the external pressure transfers to water, and
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some time is required for drainage to take place. When this drainage (i.e. dissipa-
tion of excess pore pressures) is complete, the solid phases totally takes the external
pressure. This process is known as soil consolidation [1]. The implementation of
the Biot’s equations [2] is a well-known way to solve problems in porous media
from a macro-scale point of view. The advantage of this method is the possibility of
accounting for coupling between the fluid phase and the solid skeleton. The u − pw

formulations, where u denotes the solid phase displacement, and pw is the pore fluid
pressure [3], have traditionally been employed for simulating coupled problems in
saturated porous media since the final equations work with less degrees of freedom
(three in 2D, four in 3Dproblems) comparedwith that of a complete formulation. The
recent u − w formulation, where w represents the relative fluid displacement with
respect to the solid phase,which is usually referred as the displacement-based or com-
plete formulation, has been employed in several numerical schemes (López-Querol
et al. [4], and recently adopted by Cividini and Gioda [5]). Such a methodology is
assumed in this work, first for its simplicity in imposing impervious boundary con-
ditions compared to the u − pw approaches; second, as the free surface comes out
naturally as the zero-pressure contour, no detection algorithm is necessary; third, it
facilities the modelling of large and/or nonlinear deformations of the solid phase as
well as the possible separation between the solid and fluid phases in the case of local
failure (liquefaction or slope instability). Since meshfree numerical schemes have
been known to perform particularly well in the regime of large deformations, we
endeavour to apply such schemes to coupled problems in saturated porous media,
using the u − w formulation.

There are many different flavours of meshfree methods available. The present
research has been carried out using the principle of maximum entropy [6], the shape
functions developed by Arroyo and Ortiz [7], in particular, the OTM framework [8],
for its numerous advantages in comparison with its alternatives. For example, the
exact mass transport, the satisfaction of the continuity equation, exact linear and
angular momentum conservation in order to solve different problems as spurious
modes, tensile instabilities and unknown convergence or stability properties. Since
the deformation and velocity fields are interpolated from nodal values using max-
ent shape functions, the Kronecker-delta property at the boundary makes it possible
for the direct imposition of essential boundary conditions. In the current work, an
Eulerian framework is employed to solve the Biot’s equations for porous media. In
addition, the parameters pertinent to the local maximum entropy are obtained effi-
ciently and independent of the support size through the Nelder-Mead algorithm [9].

Locking in near-incompressible materials is not unusual for the numerical meth-
ods based on either finite elements approaches [10–17] or meshfree approximation
schemes [18]. In the case of flow through saturated media, in a displacement formu-
lation, since both the undrained soil phase and the fluid phase are nearly incompress-
ible, locking may also occur. The recent approach developed by Ortiz and Suku-
mar [18], avoids locking by averaging the volumetric part of the strain tensor with
the value of the pressure. However, since the pressure term is part of the constitutive
model employed, the constitutive model is necessarily modified. As an alternative,
we implement a volumetric-strain average instead of a pressure average approach.
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The proposed algorithm is independent of the constitutive model employed and it is
generically applicable to solve other locking problems. The idea behind is inspired by
that of Hughes [10] and the posterior developments of the B-Bar method [16]. The
specific strategy is analogous to that of the diamond elements of Hauret, Kuhl and
Ortiz [15] and it is the first B-Bar implementation for a pure displacement approach
within the framework of meshfree methods. It is also straightforward to be extended
for finite deformations and nonlinear applications. Extension of the formulation by
the authors in [19] to axisymmetric framework is presented in the current work.

The rest of the paper is organised as follows. Themathematical framework, includ-
ing the B-Bar based algorithm is presented next. Applications to various consolida-
tion problems are illustrated in Sect. 3. Relevant conclusions are drawn in Sect. 4.

2 Mathematical Framework

In this section, we first summarise the governing equations for unconfined seep-
age problems, in particular, the Biot’s equations, formulated in a u − w framework,
which have been successfully utilised by López-Querol et al. [20, 21], Cividini and
Gioda [5]; next, the B-bar implementation in axisymmetric framework for elastic
and porous media are given in detail.

2.1 The Biot’s Equations: A u − w Formulation

The Biot’s equations [22] are based on formulating the mechanical behaviour of a
solid-fluid mixture, the coupling between different phases, and the continuity of flux
through a differential domain of saturated porous media. For clarity, bold symbols
for notation of vectors and matrices, and regular letters to denote scalar variables, are
used. Let ρ and ρf respectively represent the mixture and fluid phase densities; b and
κ stand for the external acceleration vector and the permeability coefficient in [m3·
s/kg] (in civil engineering, however, the notionof hydraulic conductivity, k = κρf g, in
[m/s], is often used instead), the three equations of Biot, which represent the mixture
equilibrium, the fluid phase equilibrium and the continuity equation respectively, are
expressed as follows:

STdσ − ρdü − ρf dẅ + ρdb = 0, (1)

−∇dpw − κ−1dẇ − ρf dü − ρf

n
dẅ + ρf db = 0, (2)

∇ · dẇ + m · dε̇s + dṗw

Q
= 0, (3)



244 P. Navas et al.

where S is a differential operator, u is the displacement vector of the solid skeleton
and w is the relative displacement of the fluid phase with respect to the solid one.
By denoting U as the absolute displacement of the fluid phase, w is related with U
through the soil porosity, n, as follows:

w = n(U − u). (4)

Additionally in Eq. (3),m represents the unitmatrix expressed inVoigt form,whereas
Q stands for the mixture compressibility, which is calculated as

Q =
[
K−1

s (1 − n) + nK−1
f

]−1
, (5)

whereKs andKf are the bulkmodulus of the solid grains and the compressivemodulus
of the fluid phase.

A 2D approach is considered in the derivations presented hereinafter, therefore
the differential operator, S, and the unit matrix m are written as

S =
⎛
⎝

∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

⎞
⎠ , m =

⎛
⎝
1
1
0

⎞
⎠ . (6)

Assuming tensile stresses (except pore pressure pw, which is positive for com-
pression) and strains as positive, the Terzaghi’s effective stress [23] is defined as
follows

σ = σ ′ − pwm, (7)

where σ ′ and σ are the respective vectorial form in Voigt notation for the effective
and total stress tensor. For the case of linear elasticity, the incremental relationship
between stresses and strains is governed by:

dσ ′ = Dedεs, (8)

where De denotes the elastic tensor, which under plane strain conditions, it is given
by:

De = λ

ν

⎛
⎝
1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎞
⎠ (9)

where ν is the Poisson’s ratio, λ, the first constant of Lamé.
Rearranging the above equations, Eq. (1) can be re-written as

STDeSdu − ∇dpw − ρdü − ρf dẅ + ρdb = 0. (10)
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In the u − w approach, also known as the complete formulation (no additional
assumption is required under plane strain conditions), each node has four degrees of
freedom, u and w (two components each in 2D problems) and the scalar pw, the pore
pressure, is obtained afterwards. By comparison, in the traditional u − pw formula-
tion, each node has only three degrees of freedom in 2D, but results in complications
in imposing impervious boundary conditions.

Integrating Eq. (3) in time, and substituting dpw in Eqs. (10) and (2), it yields:

STDeSdu + Q∇
(
∇Tdu

)
+ Q∇

(
∇Tdw

)
− ρdü − ρf dẅ + ρdb = 0, (11)

Q∇
(
∇Tdu

)
+ Q∇

(
∇Tdw

)
− k−1dẇ − ρf dü − ρf

n
dẅ + ρf db = 0. (12)

Note that an isotropic medium is assumed in the above equations. The final system
of equations, once the elementary matrices have been assembled, can be expressed
as:

Kdu + Cdu̇ + Mdü = df , (13)

where K, C and M respectively denote stiffness, damping and mass matrices, du
represents the vector of unknowns (containing both the solid phase and fluid dis-
placements, u and w), expressed incrementally, and df is the increment of the exter-
nal forces vector, containing gravity acceleration, as well as boundary conditions for
nodal forces.

2.2 B-Bar Formulation in Elastic Axisymmetric Problems

In axisymmetric problems, x direction is changed by r, y changes to z. Due to this
fact, the shape function based on the principle of Local Maximum Entropy is similar
to that of the 2D case. Consequently, the new displacement vector is calculated with
the following equation:

[
ur

uz

]
=

[
N1 0 N2 0 · · ·
0 N1 0 N2 · · ·

]
⎡
⎢⎢⎢⎢⎢⎣

uh
r1

uh
z1

uh
r2

uh
z2
...

⎤
⎥⎥⎥⎥⎥⎦

, (14)

where the superscript h denotes discrete nodal values. In an axisymmetric problem,
a different ε matrix is obtained according to [24]:
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⎡
⎢⎢⎣

εr

εz

εθ

γrz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂
∂r 0
0 ∂

∂z
1
r 0
∂
∂z

∂
∂r

⎤
⎥⎥⎦

[
ur

uz

]
. (15)

Voigt notation is assumed in order to obtain the final B-bar matrix. The process to
obtain B matrix in index notation is:

εl = Sljuj = SljNjkuh
k = Blkuh

k .

Thereby, the B matrix is the following one:

B =

⎡
⎢⎢⎣

∂N1
∂r 0 ∂N2

∂r 0
0 ∂N1

∂z 0 ∂N2
∂z · · ·

N1
r 0 N2

r 0
∂N1
∂z

∂N1
∂r

∂N2
∂z

∂N2
∂r

⎤
⎥⎥⎦ . (16)

If σ is required, the following equation should be employed:

σ =

⎡
⎢⎢⎣

σr

σz

σθ

τrz

⎤
⎥⎥⎦ = Dε, (17)

where

D = λ

ν

⎡
⎢⎢⎣
1 − ν ν ν 0

ν 1 − ν ν 0
ν ν 1 − ν 0
0 0 0 1−2ν

2

⎤
⎥⎥⎦ . (18)

Stiffness matrix is calculated by taking into account that the volume integral is
extended around the whole ring of material as follows:

Kp = 2π
∫

BTDB r dr dz, (19)

where the superscript p represents the fact that the matrix is calculated for each
material point within a patch. The final expression is written as:

Kp = 2πB
T
DB r A, (20)

where A is the associated area of the material point.
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The external forces in Eq. (13) are calculated in the same way:

f =
[
2πrfr
2πrfz

]
, (21)

where fr and fz respectively denote radial and vertical components of the external
force.

If a B-Bar based algorithm is implemented in this problem, the starting point is
similar to the plane strain one, which is based on the transformation of the ε tensor
to the ε tensor, a tensor where the volumetric part is obtained as an average of the
neighbour integration points, as we can see in the following equation:

ε = ε − 1

d
tr(ε)I + 1

d
[tr(ε)]p

I, (22)

where d is the dimension of the problem, in this case 3; and [tr(ε)]p
is the average

trace of ε of the neighbour integration points in a chosen patch, calculated by:

[tr(ε)]p =
Nb∑
i=1

tr[ε(i)] wi. (23)

In addition, the trace could be obtained from the strain vector as:

εx + εy = [
1 1 1 0

]
⎡
⎢⎢⎣

εr

εz

εθ

γrz

⎤
⎥⎥⎦ = εkk = mkεk . (24)

Rearranging the above equation using the B-matrix,

εll = mlεl = mlBlkuh
k = Tk uh

k , (25)

where
T = [

∂N1
∂r + N1

r
∂N1
∂z

∂N2
∂r + N2

r
∂N2
∂z · · · ] . (26)

Thus, the final lth-component of the tensor ε (in Voigt form) for a single integration
point i is calculated in the same way as in 2D problems:

ε
(i)
l =

⎡
⎣B(i)

lk − 1

d
ml

⎛
⎝T (i)

k −
Nb∑
j=1

[T (j)
k w(j)]

⎞
⎠

⎤
⎦ uh

k

= B
(i)
lk uh

k .
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2.3 B-Bar Implementation in u − w Axisymmetric Problems

In order to apply the B-Bar method in a multiphase problem, we need to define a
constitutive matrix first to relate stress with strain or displacements of the different
phases. The proposed problem is the u − w problem with soil and water phases. The
effective stress tensor is calculated the same way as Eq. (7), if linear elasticity is
assumed, the relationship between stresses and strains, expressed in its incremental
form, is governed by Eq. (8), and pw is obtained with the third Biot’s equation:

∇ · dẇ + mTdε̇s + dṗw

Q
= 0

dṗw = −Q [∇ · dẇ + mTdε̇s]

The final stress equation will be:

σ = De εs + Q [tr(εs) + tr(εw)] I.

If:

ε =
⎡
⎣

εs

εw

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs
r

εs
z

εs
θ

γ s
rz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S u

where S is the derivative matrix operator and u is a vector of displacements of both
phases: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs
r

εs
z

εs
θ

γ s
rz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂r 0 0 0
0 ∂

∂z 0 0
1
r 0 0 0
∂
∂z

∂
∂r 0 0

0 0 ∂
∂r 0

0 0 0 ∂
∂z

0 0 1
r 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

ur

uz

wr

wz

⎤
⎥⎥⎦ .

In addition, the summation of traces of strain could be done with a m∗ operator:
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tr(εs) + tr(εw) = mTε = [
1 1 1 0 1 1 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs
r

εs
z

εs
θ

γ s
rz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, in Voigt notation:

σ = De∗ ε + Q mTε m = (De∗ + Q mTm) ε = Du−w ε

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ(1−ν)

ν
+ Q λ + Q λ + Q 0 Q Q Q

λ + Q λ(1−ν)

ν
+ Q λ + Q 0 Q Q Q

λ + Q λ + Q λ(1−ν)

ν
+ Q 0 Q Q Q

0 0 0 μ 0 0 0
Q Q Q 0 Q Q Q
Q Q Q 0 Q Q Q
Q Q Q 0 Q Q Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs
r

εs
z

εs
θ

γ s
rz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the problem needs a B-Bar based algorithm, it is necessary to calculate the average
value of ε. Thus, the main equation yields:

ε = ε − 1

d
tr(εs)I + 1

d
[tr(εs)]pI − 1

d
tr(εw)I + 1

d
[tr(εw)]pI.

In Voigt notation the equation, the lth-component of the strain tensor is:

εl = εl + 1

d

⎛
⎝−εkk ms

l +
Nb∑
j=1

[ε(j)
kk w(j)] ms

l − εw
kk mw

l +
Nb∑
j=1

[εw(j)
kk w(j)] mw

l

⎞
⎠ ,

where

εs
kk = ms

k εk = [
1 1 1 0 0 0 0

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs
r

εs
z

εs
θ

γ s
rz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, εw
kk = mw

k εk = [
0 0 0 0 1 1 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εs
r

εs
z

εs
θ

γ s
rz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Additionally, we know that the strain tensor in Voigt notation is:

εl = Sljuj = SljNjkuh
k = Blkuh

k
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where, in this case, yields:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εr

εz

εθ

γrz

εw
r

εw
z

εw
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1
∂r 0 0 0 ∂N2

∂r 0 0 0
0 ∂N1

∂z 0 0 0 ∂N2
∂z 0 0

N1
r 0 0 0 N2

r 0 0 0
∂N1
∂z

∂N1
∂r 0 0 ∂N2

∂z
∂N2
∂r 0 0 · · ·

0 0 ∂N1
∂r 0 0 0 ∂N2

∂r 0
0 0 0 ∂N1

∂z 0 0 0 ∂N2
∂z

0 0 N1
r 0 0 0 N2

r 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(1)
r

u(1)
z

w(1)
r

w(1)
z

u(2)
r

u(2)
z

w(2)
r

w(2)
z
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to calculate εll, the above equation can be rearranged as follows:

εs
ll = ms

l εl = mlBlk uh
k = Ts

k uh
k ,

εw
ll = mw

l εl = mlBlk uh
k = Tw

k uh
k

where
Ts = [

∂N1
∂r + N1

r
∂N1
∂z 0 0 ∂N2

∂r + N2
r

∂N2
∂z 0 0 · · · ] ,

Tw = [
0 0 ∂N1

∂r + N1
r

∂N1
∂z 0 0 ∂N2

∂r + N2
r

∂N2
∂z · · · ] .

Thus, the final lth-component for the new strain tensor ε at a single integration point i
in Voigt notation is calculated as:

εl
(i) = B(i)

lk uh
k − 1

d
ms

l

⎛
⎝Ts(i)

k uh
k −

Nb∑
j=1

[Ts(j)
k w(j)]uh

k

⎞
⎠

− 1

d
mw

l

⎛
⎝Tw(i)

k uh
k −

Nb∑
j=1

[Tw(j)
k w(j)]uh

k

⎞
⎠

=
⎡
⎣B(i)

lk − 1

d
ms

l

⎛
⎝Ts(i)

k −
Nb∑
j=1

[Ts(j)
k w(j)]

⎞
⎠

− 1

d
mw

i

⎛
⎝Tw(i)

k −
Nb∑
j=1

[Tw(j)
k w(j)]

⎞
⎠

⎤
⎦ uh

k

≡ Blk uh
k .
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3 Application to Consolidation of Soils

As mentioned before, the settlement of saturated soils under loading is caused by a
gradual interchange between pore pressure and effective stress. In this Section, we
apply the above developed methodology for consolidation of soils at three different
configurations: one dimensional case, radial consolidation and consolidation with
sinks. Both static and dynamic scenarios are studied. The obtained solutions are
compared with analytical or available numerical solutions.

3.1 Consolidation of a Column of Soil: Static, One
Dimensional Case

In this case, the analytical solution for this problem is available, and thus it is com-
pared with the solution proposed by the present method. Although the analytical
solution is presented in non-dimensional terms, the geometry of the problem carried
out is shown in Fig. 1. It consists of a column of 30m of soil resting on an imperme-
able rigid base layer and loaded by a vertical, homogeneous loading at the top. The
lateral displacements are restricted for both the solid and fluid phase. At the base
layer, the solid phase is fixed, whereas the vertical movement of the fluid phase is

0 1

0

5

1 m

Base layer, impermeable

P=P·e

HT=30 m

P

x (m)

y (m)x

y

Nodes

Material Points

Fig. 1 Geometry, loading condition of the consolidation column, and the discretised nodes and
material points (shown for the first 5m only). The same geometry has been employed for both static
and dynamic simulations
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Fig. 2 Loading history in a
monotonic problem

100 kPa

0.1 s

P

t

prevented. The column is discretised into 240 nodes and 183 material points. The
external loading, in this case, is static at the end, but gradually applied as depicted
in Fig. 2. The behaviour of the consolidation is led by the vertical consolidation
coefficient, cv, which is function of the vertical permeability coefficient, kv:

cv = kv(1 + e)

ρwgav
= kv

ρwg
Em = kv

ρwgmv
(27)

where av is the compressibility coefficient and mv is the volumetric compressibility
coefficient. The porous index, e, a measure of the porosity is expressed as follows:

e = n

1 − n
. (28)

In Eq. (27), Em is the oedometric modulus, related with the Young’s modulus E
according to the following equation:

E = Em

(
1 − 2ν2

1 − ν

)
. (29)

Typical values adopted for clays are 2 MPa for the Young’s modulus and 0.33 for
the Poisson’s ratio.

The basic equation for one-dimensional consolidation derived by Terzaghi in
1923 [23] is

cv
∂2u

∂z2
= ∂u

∂t
. (30)

The solution searched is a measure of the consolidation of the soil. It depends on the
vertical time factor, Tv, defined by:

Tv = cvt

H2
. (31)
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Adopting the degree of interstitial pressure dissipation, Uv, we can compare the
analytical solution, given by the following equation, with the results obtained with
the present research:

Uv(z) = 1 − ue(z)

u0e
= 1 −

m=∞∑
m=0

2

M
sin

[
M

(
1 − z

H

)]
exp(−M2Tv) (32)

where
M = π

2
(2m + 1), m = 0, 1, 2, . . . ,∞. (33)

In Fig. 3, it is given the comparison between the analytical and the numerical solution
along the depth of the column of soil for different values of Tv. As it is seen, all the
values for Tv are dimensionless.With this comparison, we consider the current model
employed is sufficiently validated.

This solution has been also comparedwith PLAXIS, in order to have an idea on the
accuracy of this commercial software, since it is going to be employed hereinafter
for several other theoretical examples. The direct conclusion obtained in Fig. 4 is
that the accuracy decreases at the final stages of the consolidation. For low values
of Tv PLAXIS solution of Uv along the column of soil is similar to the calculated
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Fig. 3 Analytical and computational solution of Uv for different values of Tv
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Fig. 4 Solutions of Uv for several values of Tv obtained in the current work compared with the
analytical ones and those obtained with PLAXIS software

in this research, but is getting noticebly different for higher values of Tv. Therefore,
PLAXIS solutions will provide a good approach of the trend of the pressure along the
consolidation without an accurate degree of precision, at least, for one dimensional,
static problems.

The solution for the monotonic loading at the upper side of the column shows
the dissipation of the pore pressure along time. Figure5 provides the comparison
between the solution obtained with the present methodology, the u − w solution
obtained with a quadratic FEM model, and the one calculated using the software
GeHoMadrid [25]. Hardly any perceptible difference can be noticed from these
three solutions.

3.2 Consolidation of a Column of Soil: Dynamic, 1D Case

In this example, using the same geometry for the soil column, the consolidation of a
soil column vertically subjected to harmonic pressure is obtained. This problem was
first analytically solved by Zienkiewicz et al. [3] in 1980s, and recently by López-
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Fig. 5 Pore pressure evolution solutions at the top of the consolidation column

Table 1 Material parameters employed for the dynamic consolidation problem of a soil column

G (MPa) ν (–) n (–) ρ (kg/m3) ρf (kg/m3) Kf (MPa) ω (rad/s) Ks (MPa)

312.5 0.2 0.333 3003 1000 103 3.379 1034

Querol [26], among others, through employing quadratic finite element method. The
parameters for the material are those presented in Table1, where ω, is the applied
loading frequency.Aperiodic surface loadwith the amplitude of 100 kPa, a frequency
of 3.379 rad/s, is imposed. This dynamic load as well as all the material properties
in Table1 are chosen to be the same as those of Zienkiewicz et al. [3].

The variation of the pore pressure with depth is illustrated for different values of
π1, a dimensionless parameter defined as follows,

π1 = k
V 2

c

g ρf

ρ
ω H2

T

, (34)

where HT is the column height and Vc is the compressive wave velocity calculated
as:

Vc =
√[

D + Kf

n

]
1

ρ
, D = 2G(1 − ν)

1 − 2ν
, (35)

where D the bulk modulus of the soil skeleton (dry mixture). Note that, for the
given material properties and loading frequency, π1 is proportional to the hydraulic
conductivity k. Once k (thus π1) is known, transient calculations can be carried out to
obtain the envelop of the pore pressure history for different points along the column
depth, or the isochrone.
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Fig. 6 Isochrones of the pressure in the whole column for different π1 values: comparison for
solutions taken from Zienkiewicz et al. [3], López-Querol [26] and those obtained in the present
research. The depth is normalised by the column height, HT , whereas the pore pressure is made
non-dimensional by PT , 100 kPa

After performing six different calculations for six different levels ofπ1, from 10−2

to 103, we obtain the isochrones of the pore pressure depicted in Fig. 6. Additionally
plotted are the results obtained by López-Querol [26] using quadratic finite elements
formulating the problem in displacements as well, along with the analytical solutions
provided by Zienkiewicz et al. [3]. It is noteworthy that the three different approaches
achieve quite similar isochrone maps; nevertheless, whenever more scattering is
observed, the current meshfree solution is closer to the analytical one.

3.3 Radial Consolidation: Static Axisymmetric Problems

The second problem carried out in this research is about radial consolidation. The
physical equation which governs this problem is different from the Terzaghi’s equa-
tion [23] shown in the previous section, i.e.:

ch

(
∂2ur

∂r2
+ 1

r

∂ur

∂r

)
= ∂ur

∂t
, (36)

where ch is the horizontal consolidation coefficient, equivalent to the cv coefficient
in vertical consolidation:

ch = kh(1 + e)

ρwgav
. (37)
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Fig. 7 Scheme of section of
set of drains

r

z

rw

re

q

Impervious layer

In Fig. 7, a scheme of drains with induced radial flux is shown, where r and z
directions are defined as depicted. There is an analytical solution for this problem
given byBarron in 1948 [27]whodefined the radial consolidation degree as a function
of the non-dimensional time Tr :

Ur(Tr) = 1 − exp

[
− 2Tr

F(nr)

]
, (38)

where

F(nr) = n2
r

n2
r − 1

log(nr) − 3n2
r − 1

4n2
r

. (39)

The coefficient nr depends on the relative extension of the drain in a particular
geometry, for the section defined in Fig. 7, it is calculated as

nr = re

rw
. (40)

where rw is the drain radius and re is the radius of influence for each type of problem.
In this case a quadrangular net of drains shown in the scheme of Fig. 8 is studied.

Fig. 8 Quadrangular net of
drains (re = 0.564 S)

Drains

S

re
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Since radial consolidation equation involves a second term (tangential flow), it is
not possible to solve within a plane strain formulation, as the one employed for verti-
cal, one dimensional consolidation. Therefore, the axisymmetric framework, shown
in previous sections, is employed instead and excellent results are obtained. In Fig. 9,
several solutions of the radial consolidation degree, Ur , along the non-dimensional
time Tr are shown. In addition, a comparison with a commercial software, PLAXIS,
is given, even though this program does not allow us to implement a perfect radial
consolidation due to the impossibility to neglect the vertical displacement throughout
the domain. Two alternatives are proposed instead of the original problem, allowing
for the vertical displacement: one assumes an impervious boundary condition on the
top layer; the other one allows the flux of water through this boundary. Results in
Fig. 10 offer a good trend in both cases but not the accuracy expected, as it occurs in
the vertical consolidation too.

Fig. 9 Analytical and
computational solutions of
Ur along the
non-dimensional time Tr
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Fig. 10 Comparison
between PLAXIS and
present research solutions of
Ut = Ur + Uv along the
non-dimensional time Tr for
case A (permeable boundary)
and B (impervious boundary)
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3.4 Radial Consolidation: Dynamic Axisymmetric Problems

Adynamic loading on the surface has been applied, aiming to simulate its effect on the
development of excess pore water pressure in the domain. The frequency of loading
is the same as for the case of the soil column, while the amplitude is 50 kN. The
geometry is the same as represented in Fig. 7. Vertical displacements of water in the
entire domain have been prevented. Figure11 represents the evolution of pore water
pressure at the lateral, lowest corner, which clearly demonstrates the cyclic response
of this result as well. From this figure it can be concluded that the generation and
dissipation of excess pore water pressure are balanced in every cycle, and steady state
is achieved from the very beginning of the loading. Additionally, Fig. 12 represents
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Fig. 11 Evolution of normalised excess pore water pressure during external cyclic loading (for the
dynamic, radial consolidation problem)
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maximum and minimum values of excess pore water pressure in the entire domain
during the cyclic loading. This figure demonstrates the 2D nature of the problem, the
drain being clearly displayed on the left hand side of the domain. Higher excess pore
water pressures can be seen at the lower, left corner for both maximum andminimum
cases. Moreover, the figure demonstrates the alternate positive and negative values
for the pressures in the domain, as in Fig. 11.

3.5 Static Consolidation in a Soil with a Singular Point: Sink

The insertion of singular points inside the domain may vary the consolidation behav-
iour. The existence of a sink in the middle of horizontal soil layer is expected to
accelerate the consolidation of the porous media, since this means an output of water
at the permeable top boundary. To reproduce the sink, excess pore water pressure
is not allowed to develop in several nodes in the centre of the domain (see Fig. 13).
A square with one meter edge length is proposed for the study of this problem.
Material properties are given in Table2. Figures14 and 15 show the comparison of
results obtained with the present model as well as with PLAXIS for point (0, 0).
Figure14 provides the evolution in time of the degree of consolidation, U, at one of
the corners at the bottom of the domain, whereas Fig. 15 represents the solutions in
the whole domain after two seconds. In spite of slight differences in the final part of
the evolution, it can be concluded that both results are fairly similar, demonstrating
the good performance of the present formulation for this kind of problems.

Fig. 13 Geometry for the
problem of the sink

q=100 kN/m

1 m.

1 
m

.

0.
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m
.

0.5 m.
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Table 2 Material parameters employed for the consolidation problem of a soil with a sink

E (MPa) ν (–) n (–) ρ

(kg/m3)
ρf

(kg/m3)
Kf
(MPa)

Ks
(MPa)

k (m/s) ksink
(m/s)

100 0.0 0.333 3003 1000 103 1034 10−3 10
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Fig. 14 Evolution of consolidation degree at the bottom corner for the sink problem. Present model
versus PLAXIS
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Fig. 15 Field of consolidation degrees in the domain after 2 s. Present model versus PLAXIS

3.6 Dynamic Consolidation in a Soil
with a Singular Point: Sink

As for the case of radial consolidation, a dynamic simulation has been carried out. The
geometry is the same as in Fig. 13. Figure16 represents the evolution of normalised
excess pore water pressure at a bottom corner, clearly showing the cyclic nature of
the solution, which is steady from the beginning. Moreover, Fig. 17 shows maximum
and minimum values in the whole domain. This figure clearly demonstrates the
location of the sink, with zero water pressures in the centre of the domain for both
cases. The alternate positive and negative values are also clear from the plot. Once
again, these results demonstrate the suitability of the present formulation for dynamic
consolidation problems in saturated soils.
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Fig. 16 Evolution of normalised excess porewater pressure during external cyclic loading (dynamic
consolidation in a soil with a sink)
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Fig. 17 Maximum and minimum normalised excess pore water pressures for dynamic soil consol-
idation with a sink

4 Conclusions

We have extended the previously developed B-bar based algorithm to meshfree
numerical schemes in axisymmetric framework for both elastic and porous media.
The methodology is applied to both static and dynamic consolidation problems in
saturated soils. In particular, static and dynamic consolidation of a soil column, sta-
tic and dynamic radial consolidation, static and dynamic consolidation with singular
points (sinks), are carried out and compared with analytical solutions (whenever
exist) or available finite element solutions. The feasibility of the current formulation
in solving consolidation problems in saturated soils has been clearly demonstrated.
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