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Abstract In this paper, a graph-theoretic formulation is presented that can be used
to generate governing equations for dynamic systems in a flexible, automated and
efficient fashion. Furthermore, a modified formulation is presented to demonstrate
the applicability of graph-theoretic methods to generate the sensitivity equations for
dynamic systems. An example is provided, in which the new graph-theoretic for-
mulation is used to generate the governing and sensitivity equations simultaneously
from the linear graph representation of the systems.
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1 Introduction

One of the first uses of a linear graph was done by the famous mathematician
Leonhard Euler in 1736 [1]. Later, researchers like Koenig et al. [2] extended the
use of a linear-graph as a unified system modelling theory. Subsequently,
graph-theoretic formulations have been successfully applied to model electrical
circuits [3], mechanical/mechatronics systems [4], hydro-mechanical [5] and
electro-chemical systems [6]. In this paper, a graph-theoretic formulation will be
presented for automated generation of governing and sensitivity equations. First,
basics of graph-theoretic modelling methods and analytical sensitivity studies will
be introduced. Next, the process of graph-theoretic generation of governing equa-
tions and sensitivity equations will be presented. Finally, the theory presented in
this paper will be further clarified using an example problem.
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1.1 Graph-Theoretic Modelling of Dynamic Systems

To present the process of graph-theoretic modelling and sensitivity analysis, it is
necessary to define certain key concepts. Figure 1 shows a simple spring-mass-
damper system and the corresponding linear graph representation. The linear graph
is comprised of nodes (G and A) and edges (k, c, m, F, and s). For multibody
systems, nodes represent frames of reference. In Fig. 1, the node G represents the
frame of reference fixed to the ground, whereas the node A refers to the frame of
reference fixed to the center of the mass of the body. For other systems, (e.g.
electrical circuits, hydraulic circuits), the nodes represent specific points in the
system where measurements are made.

The edges of a linear graph represent various measurements, and their arrow
directions denote the positive directions for those measurements. Depending on the
nature of these quantities they are divided into two broad categories called through
variables (e.g. current, flow rate, force, and torque) and the across variables (e.g.
voltage difference, pressure difference, position, velocity, acceleration etc.).
Functionally, these measurements are often associated with various components
that constitute the system. In the linear graph shown above, the edge k corresponds
to the spring, the edge m corresponds to inertia, c refers to the damper, F refers to
the applied force, and the edge s corresponds to the slider joint.

In multibody systems, the edges are associated with through and across variables
from both translational and rotational domains. On the other hand, for scalar sys-
tems (e.g. electrical circuits), the edges are usually associated with one through
variable (current) and one across variable (voltage difference).

To continue this presentation, a few key terms need to be introduced. In the
linear graph G shown in Fig. 1, which has e = 5 edges and n = 2 nodes, the
following terms are defined.

A tree of a linear graph G is a connected sub-graph of G that contains all the
nodes of G and has only one unique path between any two nodes. Edges of the tree
are known as branches. A tree in G can have w = n − 1 branches. In Fig. 1, one
possible tree selection could be the edge m. A cotree is the part of the graph G
which remains after removing the tree. The edges of a cotree are called chords. In
Fig. 1, if edge m is selected as the tree, the edges k, c, F, and s will become chords.
In any graph, there can be u = e – n + 1 chords in the cotree.
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Fig. 1 Spring-mass-damper system and the corresponding linear graph
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A cutset is a subset of the graph G, which when removed from G, divides it into
two parts in such a way that no subset of it can exist. An f-cutset is a cutset that
contains exactly one branch and a unique set of chords. In any graph G, there can be
‘w’ f-cutsets.

A circuit is a sub-graph of G where every pair of nodes has exactly two distinct
paths between them. In Fig. 1, the edges m and c form a circuit. An f-circuit is a
circuit in G, which contains exactly one chord and a unique set of branches. In any
graph G, there can be ‘u’ f-circuits.

The f-cutsets and the f-circuits are dependent on the choice of the tree branches.
In the tree structure shown in Fig. 1 in bold lines, there is one f-cutset (the edges
[m, k, c, F, s]) and four f-circuits (the edges [k, m], [c, m], [F, m], [s, m]).

Using these properties of a linear graph, a graph-theoretic method can be for-
mulated to capture the topology of any dynamic system and derive both the gov-
erning and sensitivity equations for it.

1.2 Sensitivity Analysis of Dynamic Systems

Sensitivity analysis refers to the study of changes in system behavior brought in by
the changes in entities inherent to the system. Mathematically, it is a problem of
finding the derivatives of the state variables of a system with respect to the system
parameters. It is routinely used in many engineering applications like design and
optimization of physical systems, model simplification, and optimal control. For
complex and/or large scale systems, however, this process can become complicated.

For models where symbolic equations are available, sensitivity analysis can be
performed by the direct differentiation method. In this method a set of sensitivity
equations are derived from the governing equations by symbolic differentiation. By
solving these sensitivity equations, the corresponding sensitivity information is
obtained as functions of time.

Direct differentiation sensitivity analysis is portable, easy to implement, stable,
and produces results that are numerically exact. This method has been used to
perform sensitivity analysis for systems governed by kinematic equations [7],
differential equations [8–10] and also differential-algebraic equations [11].

Since it requires the solution of an increased number of equations, this method
can become intractable for systems with a large number of parameters, especially if
the size of the system is also large. To address this drawback, a graph-theoretic
framework has been developed by Banerjee and McPhee [12]. In this formulation,
the sensitivity equations are generated directly from the linear graph of the system
using the very procedure used to generate the governing equations.

The graph-theoretic formulation uses direct differentiation as the underlying
method, but instead of symbolically differentiating the governing equations after the
fact, it stores the pre-formed expressions of the derivatives as sensitivity constitu-
tive equations and evaluates them as needed. Figures 2 and 3 summarize the dif-
ference between direct differentiation and the proposed graph-theoretic sensitivity
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analysis. The following sections will illustrate the process of generation of the
governing equations and the sensitivity equations.

2 Generation of Governing and Sensitivity Equations

The graph-theoretic formulation presented by Banerjee and McPhee [12] uses two
topologically identical linear graphs G1 and G2 (vide Fig. 1) to generate the
required equations. The through variables associated with the edges of the graph G1

are the forces/torques acting between the two frames of reference (G and A)
whereas the associated across variables are the position, velocity, and acceleration
(both translational and rotational) of frame A with respect to frame G. The through
and across variables associated with the edges of graph G2 (sensitivity graph) are
defined to be the derivatives of the variables associated with G1 with respect to the
desired model parameter. A complete list of translational through and across
variables are given in Table 1, where the subscripts used in the variable names
denote the differentiation with respect to the model parameter appearing as a
subscript.

In any dynamic system, two types of equations govern these through and across
variables. These can be either topological equations, which are equations that
describe how through variables (or across variables) of different edges are related to

Fig. 2 Direct differentiation
method

Fig. 3 Graph-theoretic
method
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each other, or constitutive equations, which are equations that describe how the
through variables are related to the across variables. Functionally, the topological
equations describe the connectivity of the different components of the system and
can be readily derived from the linear graph of the system, whereas the constitutive
equations describe the physical nature of the components and must be specified
prior to the derivation.

To derive a compact form of equations, this paper will use a branch-chord
formulation, where the first step is the selection of two trees for the graphs G1 and
G2. For this demonstration, the edge m is selected as the tree for both trees and for
both translational and rotational domains (bold line). This formulation uses a par-
ticular form of topological equations known as the f-cutset equations (for through
variables) and f-circuit equations (for across variables). For the graph shown in
Fig. 1, the translational f-cutset equations for the graphs G1 and G2 are shown in
Eq. (1).

G1: �Fm þ �Fk þ �Fc þ �FF þ �Fs ¼ 0;
G2: �Fm

k þ �Fk
k þ �Fc

k þ �FF
k þ �Fs

k ¼ 0:
ð1Þ

These equations describe how the different through variables are related to each
other, as constrained by the topology of the system. Similar equations governing the
across variables are known as f-circuit equations. The translational f-circuit equa-
tions are shown in Eq. (2).

G1: ��rm þ�ri ¼ 0f g �_�rm þ _�ri ¼ 0f g �€�rm þ€�ri ¼ 0f g i ¼ k; c; F; s;
G2: ��rmk þ�rkk ¼ 0

� � �_�rmk þ _�rkk ¼ 0
� � �€�rmk þ€�rkk ¼ 0

� �
i ¼ k; c; F; s:

ð2Þ

The main benefit of using a branch-chord formulation is that it makes it possible
to express the branch through variables in terms of the chord through variables
(using f-cutset equations) and to express the chord across variables in terms of the
branch across variables (using f-circuit equations). This opens up the possibility of
reducing, by substitution, the number of unknowns in the generated equations.
Further details are provided by Banerjee [13].

As mentioned before, the constitutive equations for the system must be specified
prior to the derivation process. These equations govern how the through variables
are related to the across variables depending on the nature of the associated com-
ponents. For multibody systems, it is necessary to define these equations for both
translational and rotational domains. A list of the translational constitutive equa-
tions for the graph G1 is given in Eq. (3).

Table 1 Translational through and across variables for G1 and G2

Through variables Across variables

G1 s ¼ �Fm �Fk �Fc �FF �Fs
� �T

a ¼ �rm �rk �rc �rF �rs
� �T

G2 sb ¼ �Fm
k

�Fk
k

�Fc
k

�FF
k

�Fs
k

� �T
ab ¼ �rmk �rkk �rck �rFk �rsk

� �T
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�Fm ¼ �m€�rm �FF ¼ FðtÞ î �rm ¼ x tð Þ̂i;
�Fc ¼ �c_�rc �Fk ¼ �k �rk � l0̂i

� �
�Fs ¼ 0:

ð3Þ

For graph-theoretic sensitivity analysis the equations associated with G2 is
defined as the derivatives of those from G1 with respect to the model parameter.
Assuming the spring constant k as the model parameter the constitutive equations
can be written down as shown in Eq. (4), (subscripts refer to derivatives).

�Fm
k ¼ �m€�rmk �FF

k ¼ 0 �rmk ¼ xk tð Þ̂i;
�Fc
k ¼ �c_�rck �Fk

k ¼ � �rk � l0̂i
� �� k�rkk �Fs

k ¼ 0:
ð4Þ

Apart from the constitutive equations, to capture the nature of the constraint the
joints enforce on the system, it is also necessary to specify the motion spaces and
the reaction spaces for the joints. The motion space of a joint is defined as the span
of directions along which motions are allowed by that joint and the reaction spaces
are the span of directions along which the joint does not allow motion to take place
and offer reactive forces and torques. For example, in an ideal prismatic joint, the
translational motion space is the sliding direction, and the rotational motion space is
null. At the same time, its translational reaction space contains the two directions
normal to the slider direction and the rotational reaction space contains all three of
the principal directions.

To generate the equations using graph-theoretic formulation, the first step is the
substitution of the constitutive equations into the f-cutset equations obtained from
the rigid bodies or joints present in the tree and the projection (scalar product) of the
resulting equations on to the corresponding motion spaces. The projected equations
are shown in Eq. (5). Since the rotational motion space is null, the rotational
f-cutset equations do not generate any new equation in this step.

G1 : �m€�rm � k �rk � l0̂i
� �� c_�rc þFðtÞ î ¼ 0

� � � î;
G2 : �m€�rmk � �rk � l0̂i

� �� k�rkk � c_�rck ¼ 0
� � � î: ð5Þ

The next step is the elimination of the secondary variables (i.e. branch through
variables and chord across variables). Using the equations shown in (1)–(2), the
chord across variables (i.e. across variables from the edges k, c, F, and s) are
replaced with the branch across variables (i.e. across variables from the edge m).
This results in the equations shown in Eq. (6).

G1 : �m€�rm � k �rm � l0̂i
� �� c_�rm þFðtÞ î ¼ 0

� � � î;
G2 : �m€�rmk � �rm � l0̂i

� �� k�rmk � c_�rmk ¼ 0
� � � î: ð6Þ

Using the constitutive equations one more time, Eq. (6) can be readily simplified
into two second-order ordinary differential equations as shown in equation
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G1 : �m€x� k x� l0ð Þ � c_xþFðtÞ ¼ 0 ) m€xþ k x� l0ð Þþ c_x ¼ FðtÞ;
G2 : �m€xk � x� l0ð Þ � kxk � c _xk ¼ 0 ) m€xk þ x� l0ð Þþ k xk þ c_xk ¼ 0:

ð7Þ

The second equation in (7) is the sensitivity equation of the system with respect
to the model parameter k. This demonstrates that the presented graph-theoretic
formulation can generate the governing equations and the sensitivity equations
directly from the linear graph simultaneously. If sensitivities with respect to a
second parameter is required, a third graph G3 can be defined to generate the
corresponding equations. Further details of this process can be found in reference
[12].

3 Example Problem

Figure 4 shows a simple mechanism with its linear graph representation. It con-
stitutes two rigid bodies of masses m1 = 1 kg and m2 = 5 kg, connected by a
revolute joint that includes a torsional damper with damping coefficient
n = 10 N m s/rad. The parameters L = 1 m and r = 0.03 m represent the length
and radius of cross-section of the pendulum. The sliding block is allowed to move
along a prismatic joint and is connected to a linear spring of spring constant
k = 50 N/m and unstretched length s0 = 0.50 m. The gravity g = 9.81 m/s2 acts in
the downward direction. The nodes A and C represent the frames of reference fixed
to the two centers of mass, G refers to the ground, and B refers to the frame of
reference fixed to the body m2 at the hinge point of the pendulum. The edges m5,
m6 correspond to the inertia, j1 refers to the slider joint, h2 is the revolute joint, r3
and r4 are body fixed vectors.

In branch-chord formulation, the choice of tree determines the state variables of
the system. For the system shown in Fig. 4, if the edges m5, m6, r3, and r4 are
selected as branches (for both translational and rotational domain), the equations are
generated in terms of the absolute coordinates (i.e. position and orientation of the
two bodies), but if the edges j1, h2, r3 and r4 are selected as branches (both trans-
lational and rotational), the equations are generated in terms of the slider dis-
placement s and the revolute joint angle.

Fig. 4 Slider-pendulum with
linear graph
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For this example the latter choice is used for the equation generation. By using
the formulation presented in this paper, the governing equations are generated for
this system as shown in Eq. (8).

m2 r2
�
4þ L2

�
3

� �
€hþm2 L=2ð Þ cos h€sþm2g L=2ð Þ sin hþ n _h ¼ 0;

m2 L=2ð Þ cos h €hþ m1 þm2ð Þ€s� m2 L=2ð Þ sin h _h2 þ k s� s0ð Þ ¼ 0:
ð8Þ

By selecting the parameter L for sensitivity analysis the sensitivity graph G2

results in the equations shown in Eq. (9).

m2 r2
�
4þ L2

�
3

� �
€hL þ m2

2 cos h� L sin hhLð Þ€sþm2 L=2ð Þ cos h€sL þ� 3 ¼ 0

m1€sL þm2 €sL þ L=2ð Þ cos h €hL þ� 1

� �
þ ksL ¼ 0

ð9Þ

� 3 ¼ 2m2 L=3ð Þ€hþ m2=2ð Þg sin hþm2g L=2ð Þ cos h hL þ n _hL

� 1 ¼ 1=2ð Þ cos h� L sin h hLð Þ€h� L sin h _h
� �

_hL � 1=2ð Þ sin hþ L cos h hLð Þ _h 2:

ð10Þ

It can be readily verified that the equations shown in (9) are the symbolic
derivatives of the governing equations shown in Eq. (8). The initial conditions for
the combined Eqs. (8) and (9) are shown in Eq. (11). The rest of the state variables
are initiated at zero. The Runge-Kutta-Fehlberg method was used for numerical
simulation.

s 0ð Þ ¼ 0:5 m _s 0ð Þ ¼ 1 m=s: ð11Þ

Figures 5 and 6 clearly identify the response of the system and validate the
solution of the generated sensitivity equations. Figure 5 shows that the values of s
(t) and h(t) settles after initial oscillations, which is expected for the damped system.
The behavior of sL(t) can also be explained by considering the structure of the
system. By considering the configuration of the system, it can be clearly seen that
for different values of the parameter L, the resulting output of s(t) always

Fig. 5 Simulation results
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approaches the same datum level s0 asymptotically. As a result the sensitivity of s(t)
with respect to the parameter L also oscillates and then settles to zero. To validate
the sensitivity results the solution of the sensitivity equations were compared with
those obtained by finite difference formulation. The comparison, as shown in Fig. 6,
validates the sensitivity results obtained through the presented graph-theoretic
formulation.

4 Conclusions

A graph-theoretic formulation is presented in this paper that can be used to generate
governing equations for dynamic systems in an automated and algorithmic fashion.
The graph-theoretic method has been demonstrated to be able to derive equations
from a pictorial description of the system called the linear graph. The method has
been demonstrated in details using the example of a spring-mass-damper system.
Concurrently, a graph-theoretic framework is presented that can be used to perform
symbolic sensitivity analysis of dynamic systems. This framework is capable of
generating symbolic sensitivity equations for the systems using the same algo-
rithmic steps used in traditional graph-theoretic modelling techniques. The simul-
taneous generation of governing and sensitivity equations have been presented
using an example of a sliding pendulum.
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