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Abstract A wide variety of applied problems of statistical hypothesis testing can be
treated under a general setup of the linear models which includes analysis of vari-
ance. In this study, a new method is presented to test linear hypothesis using a fuzzy
test statistic produced by a set of confidence intervals with non-equal tails. Also, a
fuzzy significance level is used to evaluate the linear hypothesis. The method can be
used to improve linear hypothesis testing when there is a sensitively in accepting or
rejecting the null hypothesis. Also, as a simple case of linear hypothesis testing,
one-way analysis of variance based on fuzzy test statistic and fuzzy significance
level is investigated. Numerical examples are provided for illustration.

Keywords Analysis of variance � Confidence interval � Fuzzy critical value �
Fuzzy test statistic � Fuzzy significance level � Linear hypothesis � Linear model

1 Introduction and Background

Analysis of Variance (ANOVA) is a common and popular method in the analysis of
experimental designs. It includes important cases such as one-way and two-way
ANOVA, and one-way and two-way analysis of covariance, and it has many useful
applications in industry, agriculture and social sciences [8, 12, 13]. Various aspects
of this topic have been considered in a fuzzy environment. One-way and two-way
ANOVA using fuzzy unbiased estimators for variance parameter are discussed based
on arithmetic operations on intervals by Buckley [3]. Wu [16] presented one-way
ANOVA based on several notations of the a-cuts of fuzzy random variables, opti-
mistic and pessimistic degrees and solving an optimization problem. An approach
for one-way ANOVA has been carried out by Nourbakhsh et al. [10] for fuzzy data
in which Zadeh’s extension principle [9, 17] plays a key role for the applied
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computing operations. A statistical technique for testing the fuzzy hypothesis of
one-way ANOVA is proposed by Kalpanapriya et al. [7] using the levels of pes-
simistic and optimistic of the triangular fuzzy data.

Linear hypothesis testing is an extension of analysis of variance. It can test
hypotheses about the unknown parameters of the linear model, such as testing the
equality of the means of several random variables [12]. Sometimes the observed
value of test statistic is close to the related quantiles of statistical distributions, so
there is uncertainty in accepting or rejecting the null hypothesis H0. In this paper, a
method is presented for linear hypothesis testing using a fuzzy test statistic and a
fuzzy significance level. Moreover, the method can be used for modelling this
uncertainty using fuzzy sets theory.

A method for testing statistical hypotheses in a fuzzy environment was intro-
duced by Buckley [2, 3]. It considers a fuzzy test statistic and fuzzy critical values
produced using confidence intervals with equal tails and arithmetic operations on
intervals. In Buckley’s method the fuzzy estimates are developed as fuzzy numbers,
and their membership functions have been derived by Falsafain et al. [5]. In [2] the
non-fuzzy hypotheses are tested, and in [14] and [1] the presented approach in [2] is
generalized to the case where the statistical hypotheses and the observed data are
also fuzzy. When dealing with non-symmetric statistical distributions, using con-
fidence intervals with equal tails results in producing a fuzzy estimate where the
membership degree for the unbiased point estimate of the required parameter is not
equal to one [4]. While we expect that the unbiased point estimate has the highest
importance in the fuzzy estimate, i.e. its membership degree should be equal to one.
Solutions to overcome this problem using the confidence intervals with non-equal
tails are provided by Buckley [3], and Falsafain and Taheri [4]. It has been shown
that the solution presented by Falsafain and Taheri [4] is reduced to Buckley’s
method when dealing with symmetric statistical distributions. Moreover, it is
possible to obtain the membership functions of the corrected fuzzy estimates.
Therefore, we use this solution in this paper.

In order to discuss linear hypothesis testing based on fuzzy test statistic and fuzzy
significance level, we first recall some basic concepts of fuzzy sets theory in Sect. 2.
Section 3 contains a brief review of linear model and linear hypothesis. In Sect. 4,
fuzzy test statistic and fuzzy critical value are discussed and decision rules are pre-
sented. Also, one-way ANOVA as a special case of linear hypothesis testing is
discussed in Sect. 5. Two numerical examples are provided in Sect. 6 to show that our
approach could perform quite well in practice. A conclusion is provided in Sect. 7.

2 Preliminaries

Some concepts of fuzzy sets theory, which will be referred to throughout this paper,
are discussed in this section. Let U be a universal set and F Uð Þ ¼
~Aj~A : U ! 0; 1½ �� �

. Any ~A 2 FðUÞ is called a fuzzy set on U. The a-cuts of ~A is
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the crisp set ~Aa ¼ u 2 Uj~A uð Þ� a
� �

, for 0\a� 1. Moreover, ~A0 is separately

defined [2] as the closure of the union of all the ~Aa, for 0\a� 1. The value ~A uð Þ is
interpreted as the membership degree of a point u. ~A 2 FðRÞ is called a fuzzy
number, under the following conditions:

1. There is a unique r0 2 R with ~A r0ð Þ ¼ 1,
2. The a-cuts of ~A are closed and bounded intervals on R for any 0� a� 1,

where R is the set of all real numbers. In other words for every fuzzy number ~A we
have ~Aa ¼ a1 að Þ; a2 að Þ½ � for all a 2 0; 1½ � which are the closed, bounded, intervals
and their bounds are as functions of a.

To continue discussions, we need to clarify the concept of an unbiased fuzzy
estimator, using the following definition. Similar to conventional statistics, a fuzzy
estimator is a rule for calculating a fuzzy estimate of an unknown parameter based
on observed data. Thus the rule and its result (the fuzzy estimate) are distinguished.

Definition 2.1 A fuzzy number ~h is an unbiased fuzzy estimator for parameter h
from a statistical distribution if:

1. The a-cuts of ~h are 1� að Þ100% confidence intervals for h, with a 2 0:01; 1½ �
and ~ha ¼ ~h0:01 for a 2 ½0; 0:01Þ.

2. If ĥ is an unbiased point estimator for h then ~h ĥ
� �

¼ 1.

An explicit and unique membership function is given for a fuzzy estimate by the
following theorem.

Theorem 2.1 [5] Suppose that X1;X2; . . .;Xn is a random sample of size n from a
distribution with unknown parameter h. If, based on observations x1; x2; . . .; xn, we
consider ~Aa ¼ h1 að Þ; h2 að Þ½ � as a 1� að Þ 100 % confidence interval for h, then the
fuzzy estimate of h is a fuzzy set with the following unique membership function:

~h uð Þ ¼ min h�1
1 uð Þ; �h2½ ��1 �uð Þ; 1

n o
:

To end this section, we give an introduction to interval arithmetic. Let I ¼ a; b½ �
and J ¼ c; d½ � be two closed intervals. Then based on the interval arithmetic,
we have

Iþ J ¼ aþ c; bþ d½ �;

I � J ¼ a� d; b� c½ �;

I � J ¼ a; b½ �; a ¼ min ac; ad; bc; bdf gb ¼ max ac; ad; bc; bdf g
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and

I=J ¼ a; b½ � � 1=d; 1=c½ �;

where zero does not belong to J ¼ c; d½ � in the last case.

3 Linear Hypothesis Testing

In this section we give a brief review of linear hypothesis testing, for more details
see [12, 13]. The concepts of linear model and linear hypothesis are given in
Definition 3.1. The process of linear hypothesis testing is presented in Theorem 3.1.

Definition 3.1 Let Y ¼ Y1Y2. . .Ynð Þ0 be a random column vector and X be a n� k
matrix of full rank k\n and known constants xij; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; k. It is
said that the distribution of Y satisfies a linear model if E Yð Þ ¼ Xb, where b ¼
b1b2. . .bkð Þ0 is vector of unknown (scalar) parameters b1; b2; . . .; bk, where bj 2 R

for j ¼ 1; 2; . . .; k. It is convenient to write Y ¼ Xbþ �, where � ¼ �1�2. . .�nð Þ0 is a
vector of non-observable independent normal random variables with common
variance r2 and E �j

� � ¼ 0; j ¼ 1; 2; . . .; n. Relation Y ¼ Xbþ � is known as a
linear model. The linear hypothesis concerns b, such that b satisfies H0 : Hb ¼ 0,
where H is a known r � k matrix of full rank r� k.

Theorem 3.1 Consider the linear model Y ¼ Xbþ �. The generalized likelihood
ratio (GLR) test for testing the linear hypothesis H0 : Hb ¼ 0 is to reject H0 at
significance level c if F�F1�c;r;n�k, where PH0 F\F1�c;r;n�k

� � ¼ 1� c and F is
the random variable given by

F ¼ SS�=r
SS= n� kð Þ

where,

SS� ¼ Y � X^̂b
� �0

Y � X^̂b
� �

� Y � Xb̂
� �0

Y � Xb̂
� �

and

SS ¼ Y � Xb̂
� �0

Y � Xb̂
� �

;

b̂ is the maximum likelihood estimator (MLE) of b and ^̂
b is the MLE of b under H0.

Moreover, under H0 the random variable F has the F-distribution with r and
n� kð Þ degrees of freedom.
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Note 3.1 As the result of Theorem 3.1, it can be shown that the pivotal quantity
SS=r2 has the distribution v2 with n� kð Þ degrees of freedom and SS�=r2 has the
distribution v2 with r degrees of freedom, under the null hypothesis H0. So both of
these pivotal quantities can be used to produce confidence intervals for r2. It is clear
that the statistics SS= n� kð Þ and SS�=r (under H0) are the unbiased point estimators
for the unknown parameter r2.

4 Linear Hypothesis Testing Based on Fuzzy Test Statistic

4.1 Testing at Precise Significance Level

In this section, taking into account Buckley’s method in [2] and its modifications in
[4], we consider testing the linear hypothesis based on a fuzzy test statistic and a
fuzzy significance level. Because we could obtain a fuzzy test statistics to evaluate
the linear hypothesis, we give several theorems sequentially. Also, we obtain a
fuzzy critical value using a-cuts of a considered fuzzy significance level. Next we
make two decision rules to the cases where the critical value is either crisp or fuzzy.
In the rest of this paper, the symbols v2n;t and Fn;t1;t2 will be used to represent the

n’th quantile of the distribution v2 with t degrees of freedom and the nth quantile of
the distribution F with t1 and t2 degrees of freedom, respectively.

Theorem 4.1.1 In a linear model consider SS= n� kð Þ as an unbiased point esti-

mator for parameter r2. Then an unbiased fuzzy estimator for r2 is fr2 with the
following a-cuts

ðfr2Þa ¼ SS=v2
1�aþ ap0 ; n�kð Þ; SS=v

2
ap0 ; n�kð Þ

h i
0:01� a� 1

ðfr2Þ0:01 0� a\0:01

(

in which p0 is obtained from the relation v2p0;ðn�kÞ ¼ n� k.

Proof Based on the pivotal quantity SS=r2, a 1� að Þ 100 % confidence interval for

r2 is SS=v21�aþ ap; n�kð Þ; SS=v
2
ap; n�kð Þ

h i
for any 0\a\1 and 0\p\1. When a ¼ 1

and p ¼ p0, satisfying v2
p0 ; n�kð Þ ¼ n� k, this interval becomes the point SS= n� kð Þ

which is unbiased point estimator for r2. Now fixing p ¼ p0 and varying a from
0.01 to 1 we obtain nested intervals which are the a - cuts of a fuzzy number,

say fr2 . Finally, ðfr2Þa ¼ ðfr2Þ0:01 for 0� a\0:01. So, we have the unbiased fuzzy

estimator fr2 for r2. h

Lemma 4.1.1 The membership function of fuzzy estimator fr2 in Theorem 4.1.1 is
as follows:
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fr2 uð Þ ¼
1�G SS=uð Þ

1�p0
SS

v2
0:99þ 0:01p0 ; n�kð Þ

� u� SS
n�k

G SS=uð Þ
p0

SS
n�k � u� SS

v2
0:01p0 ; n�kð Þ

0 otherwise;

8>><>>:
where G is the cumulative distribution function of the v2 variable with n� kð Þ
degrees of freedom.

Proof By Theorem 4.1.1, we have h1 að Þ ¼ SS=v2
1�aþ ap0 ; n�kð Þ for 0:01� a� 1.

Hence, h�1
1 uð Þ ¼ 1� G ss=uð Þ½ �= 1� p

0� �
. Also h2 að Þ ¼ SS=v2

ap0 ; n�kð Þ, therefore

�h2½ ��1 �uð Þ ¼ G ss=uð Þ½ �=p0
for 0:01� a� 1. Based on Theorem 2.1 fr2 uð Þ ¼

minfh�1
1 uð Þ; �h2½ ��1 �uð Þ; 1g. So, the proof follows. h

Theorem 4.1.2 Consider SS�=r as an unbiased point estimator for parameter r2

under the null hypothesis H0 : Hb ¼ 0. Then, an unbiased fuzzy estimator for r2 isgr2H0
with a-cuts ðgr2H0

Þa, where

ðgr2H0
Þa ¼

SS�=v21�aþ ap00;r; SS
�=v2ap00;r

h i
0:01� a� 1

ðgr2H0
Þ0:01 0� a\0:01

8<:
in which p00 is obtained from the relation v2

p00 ;r ¼ r.

Proof Consider the pivotal quantity SS�=r2. Now the proof is similar to that of
Theorem 4.1.1. h

Notice that, similar to Lemma 4.1.1, one can derive the membership function of

fuzzy estimator gr2H0
, but under H0 : Hb ¼ 0.

Lemma 4.1.2 The membership function of fuzzy estimator gr2H0
in Theorem 4.1.2 is

as follows:

gr2H0
uð Þ ¼

1�G SS�=uð Þ
1�p00

SS�
v2
0:99þ 0:01p00 ;r

� u� SS�
r

G SS�=uð Þ
p00

SS�
r � u� SS�

v2
0:01p00 ;r

0 otherwise;

8>>><>>>:
where G is the cumulative distribution function of the v2 variable with r degrees of
freedom.

Proof By Theorem 4.1.2, the proof is similar to that of Lemma 4.1.1. h

Remark 4.1.1 Theorems 4.1.1 and 4.1.2 define unbiased fuzzy estimators for r2

under null hypothesis H0. Moreover, Lemmas 4.1.1 and 4.1.2 provide the mem-
bership functions of these two estimators.
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Theorem 4.1.3 The fuzzy test statistic for testing H0 : Hb ¼ 0 is ~F with a-cuts

~Fa ¼
f1 að ÞF; f2 að ÞF½ � 0:01� a� 1

~F0:01 0� a\0:01;

(

where

F ¼ SS�=r
SS= n� kð Þ ;

f1 að Þ ¼ rð Þv2ap0; n�kð Þ
h i

= n� kð Þv21�aþ ap00;r

h i
and

f2 að Þ ¼ rð Þv21�aþ ap0; n�kð Þ
h i

= n� kð Þv2ap00;r
h i

:

Proof Using the equality ~Fa ¼ ð~r2H0
Þa=ð~r2Þa and interval arithmetic, the fuzzy test

statistic follows from Buckley’s method. h

Decision rule 4.1.1 After observing the data and crisp significance level c, a typical
method for rejecting or accepting the null hypothesis H0 : Hb ¼ 0 can be made as
follows. First we calculate the ratio AR= AR þALð Þ, where AR (AL) is area under the
graph of the fuzzy test statistic ~F, but to the right (left) of the vertical line through
F1�c;r;n�k (see Fig. 1). Note that Fig. 1 just illustrates the sketch of AR and AL since
the sides of ~F are curves, not straight line segments. Next we choose a value for the
credit level u from 0; 1ð �, [1]. Finally, our decision rule at significance level c is:

1. if AR= AR þALð Þ�u, then reject the hypothesis H0 : Hb ¼ 0,
2. if AR= AR þALð Þ\u, then accept H0.

Fig. 1 The areas AR and AL
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Remark 4.1.2 The presented decision rule 4.1.1 is reasonable since one can see
that, by choosing any a 2 0; 1½ � and any F 2 ~Fa, this F is some value of the test
statistic corresponding to this a which relates back to confidence intervals for r2.
Therefore, if point F; að Þ is in the region AR then H0 is rejected because
F�F1�c;r;n�k , and if point F; að Þ is in the region AL then H0 is accepted since
F\F1�c;r;n�k.

Remark 4.1.3 In Decision rule 4.1.1, u and c are criterions which control possi-
bilistic and probabilistic errors, respectively. Indeed they unify the concepts of
randomness and fuzziness. The selected value of u is more or less subjective and
depends on the decision maker desire.

4.2 Testing at Fuzzy Significance Level

The approach for accepting or rejecting the null hypothesis in Subsection 4.1 is on
the basis of comparing the observed fuzzy test statistic ~F with the crisp critical
value F1�c;r;n�k at a crisp significance level c. In practice it is more natural to
consider the significance level as a fuzzy set since the test statistic is fuzzy. In fact, a
fuzzy significance level is considered as a fuzzy number on 0; 1ð Þ, [6, 15].
Subsequently, we define a fuzzy significance level as a fuzzy number. We obtain a
fuzzy critical value to evaluate the linear hypothesis using a-cuts of the defined
fuzzy significance level. Finally, we provide a decision rule to decide whether to
reject or accept the null hypothesis H0 : Hb ¼ 0.

Definition 4.2.1 A fuzzy significance level is a fuzzy number with the following
a-cuts

~ca ¼ c1 þ c� c1ð Þa; c2 � c2 � cð Þa½ � 0:01� a� 1
~c0:01 0� a\0:01;

�
where 0\c1 � c� c2\1.

Theorem 4.2.1 In linear hypothesis testing based on fuzzy test statistics at the
introduced fuzzy significance level in Definition 4.2.1, the critical value is a fuzzy
number with the following a-cuts

ecvð Þa¼ F 1�c2 þ c2�cð Það Þ;r;n�k;F 1�c1� c�c1ð Það Þ;r;n�k

	 

0:01� a� 1ecvð Þ0:01 0� a\0:01:

�
Proof The proof follows by substituting a-cuts of the fuzzy significance level ~c for
crisp one c in the crisp critical level and by using the interval arithmetic. h
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Example 4.2.1 Consider a linear hypothesis testing at the significance level c ¼
0:05 where n ¼ 25, r ¼ 3 and k ¼ 4. Assume that the significance level is a fuzzy
number with the following a-cuts

~ca ¼ 0:03þ 0:05� 0:03ð Þa; 0:07� 0:07� 0:05ð Þa½ � 0:01� a� 1
~c0:01 0� a\0:01:

�
Then based on Theorem 4.2.1 the fuzzy critical value is a fuzzy number with

a-cuts ecvð Þa as follows

ecvð Þa¼ F 0:93þ 0:02að Þ;3;21; F 0:97�0:02að Þ;3;21
	 


0:01� a� 1ecvð Þ0:01 0� a\0:01:

�
Figure 2 shows the fuzzy numbers ~c and ecv.

Decision rule 4.2.1 After observing the data, the final decision rule is derived by
comparing two fuzzy numbers ecv and ~F. Here a way is provided to decide whether
to reject or accept the null hypothesis H0 : Hb ¼ 0. First we calculate the ratio
AR= AR þALð Þ, where AR and AL are depicted in Fig. 3. Note that Fig. 3 just
illustrates the sketch of AR and AL since the sides of ~F and ecv are curves, not
straight line segments. Next we choose a value for the credit level u from 0; 1ð �.
Finally, our decision rule at significance level c is as follows:

1. if AR= AR þALð Þ�u, then reject the hypothesis H0 : Hb ¼ 0,
2. if AR= AR þALð Þ\u, then accept H0.

Fig. 2 The fuzzy numbers ~c
and ecv

Linear Hypothesis Testing Based … 305



Remark 4.2.1 Decision rule 4.2.1 is reasonable since one can see that, by choosing
any a 2 0; 1½ �, any F 2 ~Fa and any F1�c;r;n�k 2 ecvð Þa, F1�c;r;n�k and F are some
values of the test statistic and the critical level corresponding to this a which relates
back to confidence intervals for r2 and a-cuts for the fuzzy significance level,
respectively. Therefore, if point F; að Þ is in the region AR then we reject H0 because
F�maxfF1�c;r;n�k : F1�c;r;n�k 2 ecvð Þag, if point F; að Þ is in the region AL then we
decide to accept H0 since F\minfF1�c;r;n�k : F1�c;r;n�k 2 ecvð Þag, and finally if
point F; að Þ is not in the region AL or AR then we do not make any decision onH0. To
this end, we have not shared point F; að Þ in the final decision in Decision rule 4.2.1.

Remark 4.2.2 While, Buckley [2, 3] and Taheri et al. [1, 14] consider the problem
of testing hypothesis based on a fuzzy test statistic and a crisp significance level, we
assume that the significance level is fuzzy. Our method is, therefore, more con-
venient in real world studies.

5 One-Way ANOVA: A Simple Case of Linear
Hypothesis Testing

In this section, one-way ANOVA is considered taking into account the method of
linear hypothesis testing based on the fuzzy test statistic and fuzzy significance
level. However, we must mention that the procedure proposed in this article is still
applicable for any case of linear hypothesis testing. We now give a brief review of
one-way ANOVA. For more detail refer to [8, 12]. Consider the linear model

Yij ¼ li þ �ij; j ¼ 1; 2; . . .; ni; i ¼ 1; 2; . . .; k;

Fig. 3 The areas AR and AL
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where �ij’s have a normal distribution with an unknown variance r2, zero mean and
li’s are unknown parameters. We are interested in testing the linear hypothesis
H0 : l1 ¼ l2 ¼ � � � ¼ lk . To simplify the discussion we use the following notations

SSTr ¼
Xk

i¼1
ni �Yi: � �Y::ð Þ2; SSE ¼

Xk

i¼1

Xni

j¼1
Yij � �Yi:
� �2

; n ¼
Xk

i¼1
ni and

F1 ¼ SSTr= k � 1ð Þ
SSE= n� kð Þ ;

where �Yi: ¼
Pni

j¼1 Yij=ni and �Y:: ¼
Pk

i¼1

Pni
j¼1 Yij=n. By replacing b ¼ l1l2. . .lkð Þ0

in Theorem 3.1, it can be shown that SS ¼ SSE,SS� ¼ SSTr,r ¼ k � 1ð Þ, F ¼ F1
and the null hypothesis H0 : l1 ¼ l2 ¼ � � � ¼ lk is rejected if the observed value of
F1 statistic is greater than or equal to F1�c;k�1;n�k. The case described above is
referred to as a one-way analysis of variance which is a very simple case of linear
hypothesis testing. One-way ANOVA has many applications in agricultural and
engineering sciences.

6 Illustrative Examples

Example 6.1 An experiment is conducted to determine if there is a difference in the
breaking strength of a monofilament fibre produced by four different machines for a
textile company. Also it is known that all fibres are of equal thickness. A random
sample is selected from each machine. The fibre strength y for each specimen is
shown in Table 1. The one-way ANOVA model is Yij ¼ li þ �ij, j ¼ 1; 2; . . .; ni;
i ¼ 1; 2; 3; 4. We are going to test the null hypothesis H0 : l1 ¼ l2 ¼ l3 ¼ l4. All
computations are done by R software [11].

In the traditional statistics point of view and based on Theorem 3.1, we have
F1 ¼ 2:789 and F0:95;3;32 ¼ 2:901. Therefore we accept H0 at the crisp significance
level c ¼ 0:05 because F1\F0:95;3:32. In other words, there is not any difference at
significance level 0:05 in the breaking strength of a monofilament fibre produced by

Table 1 Breaking strength data where y is strength in pounds

Machine 1 y11 ¼ 37 y12 ¼ 41 y13 ¼ 40 y14 ¼ 40 y15 ¼ 39

y16 ¼ 35 y17 ¼ 39 y18 ¼ 39 y19 ¼ 40 y110 ¼ 43

Machine 2 y21 ¼ 39 y22 ¼ 41 y23 ¼ 41 y24 ¼ 40 y25 ¼ 43

y26 ¼ 41 y27 ¼ 42 y28 ¼ 38 y29 ¼ 40

Machine 3 y31 ¼ 45 y32 ¼ 42 y33 ¼ 40 y34 ¼ 41 y35 ¼ 40

y36 ¼ 40 y37 ¼ 41 y38 ¼ 40

Machine 4 y41 ¼ 41 y42 ¼ 44 y43 ¼ 42 y44 ¼ 41 y45 ¼ 41

y46 ¼ 41 y47 ¼ 43 y48 ¼ 39 y49 ¼ 41
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four machines. In follows, consider two situations to understand the need of pre-
senting fuzzy-decision-based approach:

1. Let us only change y11 ¼ 37, in Table 1, to y11 ¼ 36. Now we have F1 ¼ 2:907
and F0:95;3;32 ¼ 2:901. So we reject H0 : l1 ¼ l2 ¼ l3 ¼ l4, for c ¼ 0:05
because F1�F0:95;3;32 (i.e. there is a difference in the breaking strength of a
monofilament fibre produced by four machines).

2. Reconsider the observations of the experiment in Table 1, if we change the crisp
significance level c ¼ 0:05 to c ¼ 0:06 then the null hypothesis H0 : l1 ¼ l2 ¼
l3 ¼ l4 is rejected since F1 ¼ 2:789 is greater than F0:94;3;32 ¼ 2:732.

Therefore, we are not sure whether to accept or reject H0, since the values of
F1�c;k�1;n�k and F1 are close to each other, based on data in Table 1 and c ¼ 0:05.
We overcome the sensitivity of this test by using linear hypothesis testing based on
a fuzzy test statistic and a fuzzy significance level. In this example we have
SS ¼ SSE ¼ 97:419, SS� ¼ SSTr ¼ 25:469, r ¼ k � 1ð Þ ¼ 3, F ¼ F1 ¼ 2:789 and
n ¼ 36. Based on Theorem 4.1.1 a fuzzy estimate for r2 is a fuzzy number with
a-cuts

ðfr2Þa ¼ 97:419=v21�aþ a 0:533ð Þ;32; 97:419=v
2
a 0:533ð Þ;32

h i
0:01� a� 1

ðfr2Þ0:01 0� a\0:01

(

where p0 ¼ 0:533 is obtained from the relation v2
p0 ;32 ¼ 32. By Lemma 4.1.1, the

membership function of this fuzzy estimate can be given by

fr2 uð Þ ¼
1�G 97:419=uð Þ

1�0:533
97:419

v2
0:99þ 0:01 0:533ð Þ;32

� u� 97:419
32

G 97:419=uð Þ
0:533

97:419
32 � u� 97:419

v2
0:01 0:533ð Þ;32

0 otherwise;

8>><>>:
where G is the cumulative distribution function of a v2 variable with 32 degrees of
freedom, as depicted in Fig. 4. Also, under the null hypothesis H0 : l1 ¼ l2 ¼
l3 ¼ l4 an unbiased fuzzy estimate for r2 based on Theorem 4.1.2 is a fuzzy
number with the following a - cuts:

ðgr2H0
Þa ¼

25:469=v21�aþ a 0:608ð Þ;3; 25:469=v
2
a 0:608ð Þ;3

h i
0:01� a� 1

ðgr2H0
Þ0:01 0� a\0:01

8<:
and p00 ¼ 0:608 is obtained from the relation v2

p00 ;3 ¼ 3. Now by Theorem 4.1.3, the

observed value of the fuzzy test statistic ~F is a fuzzy number with the following
a-cuts (see Fig. 5):
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~Fa ¼
v2
a 0:533ð Þ;32

v2
1�aþ a 0:608ð Þ;3

0:261;
v21�aþ a 0:533ð Þ;32

v2
a 0:608ð Þ;3

0:261
� �

0:01� a� 1

~F0:01 0� a\0:01:

8<:
By using Definition 4.2.1 we consider the fuzzy significance level as a fuzzy

number with the following a-cuts:

Fig. 4 The fuzzy estimator
for r2

Fig. 5 The fuzzy numbers ~F
and ecv
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~ca ¼ 0:02þ 0:03a; 0:08� 0:03a½ � 0:01� a� 1
~c0:01 0� a\0:01;

�
and by Theorem 4.2.1 one can obtain a-cuts of the fuzzy critical value as follows:

ecvð Þa¼ F 0:92þ 0:03að Þ;3;32;F 0:98�0:03að Þ;3;32
	 


0:01� a� 1ecvð Þ0:01 0� a\0:01:

�
The graphs of the fuzzy numbers ecv and ~F are shown in Fig. 5. Finally, by

Decision rule 4.2.1, since AR= AR þALð Þ ¼ 0:8971 where AR ¼ 9:7892 and
AL ¼ 1:1230, the null hypothesis H0 : l1 ¼ l2 ¼ l3 ¼ l4 is rejected for every
credit level u 2 0; 0:8971ð �. In fact it is possible for us to reject H0 for a high level
of credit, since high ratio of observed values of the test statistic lead to reject H0.

Example 6.2 The quantity of oxygen dissolved in water is used as a measure of
water pollution. Samples are taken at four locations in a lake and the quantity of
dissolved oxygen is recorded in [12] as in Table 2 (lower reading corresponds to
greater pollution). We would like to see that whether the data indicate a significant
difference in the average amount of dissolved oxygen for the four location based on
a fuzzy test statistic and the crisp significance level c ¼ 0:05. The one-way
ANOVA model is Yij ¼ li þ �ij, j ¼ 1; 2; . . .; ni; i ¼ 1; 2; 3; 4.

In this example we have SS ¼ SSE ¼ 4:267, SS� ¼ SSTr ¼ 0:718,
r ¼ k � 1ð Þ ¼ 3, F ¼ F1 ¼ 0:897, n ¼ 20 and F0:95;3;16 ¼ 3:239. By Lemma
4.1.1, the membership function of the fuzzy estimate for r2 is given as follows:

~r2 uð Þ ¼
1�G 4:267=uð Þ

1�0:547
4:267

v2
0:99þ 0:01 0:547ð Þ;16

� u� 4:267
16

G 4:267=uð Þ
0:547

4:267
16 � u� 4:267

v2
0:01 0:547ð Þ;16

0 otherwise;

8>><>>:
where G is the cumulative distribution function of a v2 variable with 16 degrees of
freedom, as depicted in Fig. 6.

By Theorem 4.1.3, the observed value of the fuzzy test statistic ~F is a fuzzy
number with the following a-cuts:

Table 2 Quantity of dissolved oxygen (%)

Location 1 y11 ¼ 7:8 y12 ¼ 6:4 y13 ¼ 8:2 y14 ¼ 6:9

Location 2 y21 ¼ 6:7 y22 ¼ 6:8 y23 ¼ 7:1 y24 ¼ 6:9 y25 ¼ 7:3

Location 3 y31 ¼ 7:2 y32 ¼ 7:4 y33 ¼ 6:9 y34 ¼ 6:4 y35 ¼ 6:5

Location 4 y41 ¼ 6 y42 ¼ 7:4 y43 ¼ 6:5 y44 ¼ 6:9 y45 ¼ 7:2 y46 ¼ 6:8
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~Fa ¼
v2
a 0:547ð Þ;16

v2
1�aþ a 0:608ð Þ;3

0:168;
v21�aþ a 0:547ð Þ;16

v2
a 0:608ð Þ;3

0:168
� �

0:01� a� 1

~F0:01 0� a\0:01:

8<:
The graph of the fuzzy test statistic ~F is shown in Fig. 7. Finally, by Decision

rule 4.1.1, since AR= AR þALð Þ ¼ 0:578 where AR ¼ 2:467 and AL ¼ 1:797, the

Fig. 6 The fuzzy estimator
for r2

Fig. 7 The fuzzy test statistic
~F
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null hypothe-sis H0 : l1 ¼ l2 ¼ l3 ¼ l4 is accepted for every credit level
u 2 0:578; 1ð �. In other words, there is not any difference at significance level 0:05
in the average amount of dissolved oxygen for the four location for every credit
level u 2 0:578; 1ð �.

7 Conclusions

We have applied fuzzy techniques to linear hypothesis testing in this paper.
Basically, in this method a set of 1� að Þ 100 % confidence intervals, for all
0:01� a� 1, are employed to produce the notion of the fuzzy test statistic. Also the
concept of fuzzy critical value is derived based on a-cuts of a defined fuzzy sig-
nificance level. Then, decision rules are provided based on these notions.
Employing all the confidence intervals from the 99 % to the 0 % rather than only a
single confidence interval results in using far more information in data for the
statistical inference. Moreover, this method improves the statistical hypotheses
testing when there is an uncertainty in accepting or rejecting the hypotheses. This
issue is clarified by practical examples. As a simple case of the linear hypothesis
testing, one-way analysis of variance based on fuzzy test statistic and fuzzy sig-
nificance level is discussed. Nevertheless, as a matter of fact, the proposed method
in this article is still applicable to other cases of linear hypothesis testing. An
interesting topic for future research is the study of the proposed method on the
linear hypothesis testing when the hypotheses are fuzzy rather than crisp. Also, one
can consider this problem based on fuzzy data with crisp/fuzzy parameters.
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