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Abstract In this chapter, we will deal with fuzzy correlation and fuzzy non-linear
regression analyses. Both correlation and regression analyses that are useful and
widely employed statistical tools have been redefined in the framework of fuzzy set
theory in order to comprehend relation and to model observations of variables
collected as either qualitative or approximately known quantities which are no
longer being utilized directly in classical sense. When fuzzy correlation and fuzzy
non-linear regression are concern, dealing with several computational complexities
emerging due to the nature of fuzzy set theory is a challenge. It should be noted that
there is no well-established formula or method in order to calculate fuzzy correlation
coefficient or to estimate parameters of the fuzzy regression model. Therefore, a rich
literature will accompany with the readers. While extension principle based methods
are utilized in the computational procedures for fuzzy correlation coefficient, the
distance based methods preferred rather than mathematical programming ones are
employed in parameter estimation of fuzzy regression models. That extension
principle combined with either fuzzy arithmetic or non-linear programming is two
different methods proposed in the literature will be examined with small but illus-
trative examples in detail for fuzzy correlation analysis. Fuzzy non-linear regression
has been a relatively new studied method when compared to fuzzy linear regression.
However, both employ similar tools. S-curve fuzzy regression and two types of
quadratic fuzzy regression models in the literature will be discussed.
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1 Introduction

Both correlation analysis and regression analysis are two of the most applied sta-
tistical tools in several disciplines due to its applicability and interpretability. They
allow certain types of measurements to be used in classical statistical theory which
means that observation are supposed to follow certain distributions. However,
encountering observations either described by linguistic terms such as “bad”,
“good” and “very good”, or approximately known quantities such as “around 2” is
possible. With the introduction of fuzzy set theory, uncertainty different than one
defined by probabilistic framework being modeled with possibility distribution for
data collected as either qualitative or approximately known quantities has been a
research area for data analysts.

Extending both methods to fuzzy framework gives rise to several proposed
methods utilizing different aspects of fuzzy set theory.

2 Fuzzy Correlation Analysis

Correlation coefficient is a statistical measure which determines both the direction
and strength of the linear relation between two variables which is defined by

rXY ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2Pn

i¼1ðyi � �yÞ2
q ð1Þ

where X and Y are variables whose values are denoted by xi; yið Þ; i ¼ 1; 2; . . .; n and
their corresponding arithmetic means are denoted by �x and �y respectively. Its range
restricted in a closed interval [−1, 1] tells how strong the linear dependence is
between those variables with the knowledge of direction.

When the correlation coefficient is reconsidered in the fuzzy setting which means
that observation values either are qualitative knowledge such as linguistic terms
taking values of, for example, “bad” or “good” or “excellent”, or are approximately
known values, for instance, the value of the quantity can be defined around 2,
measuring it is a need to quantify the relation. Both types of data are encountered
when subjective or linguistic evaluations are provided by experts in the field of
engineering, management or social sciences [1–3]. For example, the need for fuzzy
correlation measure can arise when to quantify relation between the technology
level and the management achievements of firms in management science or when to
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partition images to determine similarity or dissimilarity is concern in the field of
engineering. Indeed, these types of exemplifications can easily be extended to any
disciplines. Therefore, measuring correlation coefficient between two variables
involving fuzziness is a need and computational procedures are challenging than
that given in (1).

Computing fuzzy correlation employs basically two different methods. The first of
which is to rely on Zadeh’s extension principle, which aims at finding the mem-
bership function of fuzzy correlation. In order to determine membership function of
fuzzy correlation, some methods are available providing with both analytical and
numerical solutions, for example, using weakest t-norm and non-linear program-
ming. Before explaining the details of the methods that are utilized in the compu-
tation of fuzzy correlation as well as fuzzy non-linear regression, some preliminary
notions and definitions are needed which are fuzzy numbers, LR type fuzzy numbers,
α-cuts of a fuzzy set and triangular norm, namely, t-norm, Zadeh’s extension prin-
ciple, fuzzy arithmetic. More detailed treatment of the subjects mentioned above can
be found in variety of books pertinent to fuzzy set theory or fuzzy logic [4].

A fuzzy number is a convex subset of the real line R with a normalized mem-
bership function. For example, an asymmetric triangular fuzzy number ~x ¼ ðx; a; bÞ
is defined by

~x tð Þ ¼
1� x�t

a ; if x� a� t� x
1� t�x

b ; if x� t� xþ b
0; otherwise

8<: ð2Þ

where the center value x 2 R; left spread value a[ 0; and right spread value b[ 0
are based on the definition of fuzzy number. When a ¼ b is assumed, an asym-
metric triangular fuzzy number is called a symmetric triangular fuzzy number and is
denoted by ~x ¼ x; að Þ: Other types of fuzzy numbers such as trapezoidal fuzzy
number and Gaussian fuzzy number are also defined and utilized in various
applications dependent upon the suitability, interpretability, and applicability.

A fuzzy number ~x ¼ ðx; aÞLR of type LR is a function from real numbers into the
interval [0, 1] defined by

~x tð Þ ¼
L x�t

a

� �
for x� a� t� x

R t�x
b

� �
for x� t� xþ b

(
ð3Þ

where L and R are non-increasing and continuous shape functions from [0,1] to
[0,1] satisfying L 0ð Þ ¼ R 0ð Þ ¼ 1 and L 1ð Þ ¼ R 1ð Þ ¼ 0:

An α-cut of a fuzzy set is a crisp set defined by

Aa ¼ x 2 AjlAðxÞ� agf ð4Þ
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A binary operation T on unit interval is said to be a triangular norm or t-norm if
and only if T is associative, commutative, non-decreasing and T x; 1ð Þ ¼
x for each x 2 ½0; 1�:

Extending ordinary arithmetic into fuzzy number setting is possible by
employing Zadeh’s extension principle defined by

lB yð Þ ¼ Sup|{z}
x1; . . .; xnð Þ 2 U1x. . .xUn

y ¼ f x1; . . .; xnð Þ

minðlA1
x1ð Þ; . . .lAn

xnð ÞÞ ð5Þ

where A ¼ A1x. . .xAn and U ¼ U1x. . .xUn are Cartesian product of the fuzzy sets
Ai; ði ¼ 1; . . .; nÞ and universal sets Ui; ði ¼ 1; . . .; nÞ of fuzzy sets respectively.

2.1 Fuzzy Correlation Coefficient Based on the Weakest
t-Norm (Tw) and Fuzzy Arithmetic

When Zadeh’s extension principle is rewritten using one of union operators such as
t-norm instead of minimization, the arithmetic operators are defined by

ð~A� ~BÞ ¼ Sup|{z}
xþ y¼z

T ~A xð Þ; ~B yð Þ� � ð6aÞ

~A� ~B
� � ¼ Sup|{z}

x�y¼z

Tð~A xð Þ; ~B yð ÞÞ ð6bÞ

~Aø~B
� � ¼ Sup|{z}

x=y¼z

Tð~A xð Þ; ~B yð ÞÞ ð6cÞ

where ~A and ~B are fuzzy numbers and ⊕ , ⊗ , ⊘ are fuzzy arithmetic operators for
addition, multiplication and division, respectively.

When fuzzy correlation is being computed, applying the extension principle
based on the weakest t-norm denoted by Tw for a sample of n independent pairs of
LR type fuzzy numbers is the method using the classical definition of the correlation
coefficient given in (1) [5]. Instead of using the union operator Sup; Tw based fuzzy
addition and multiplication are preferred in order to preserve the shape of the
resultant LR type fuzzy numbers since it is the fact that fuzzy multiplication and
division operators lead to resultant fuzzy numbers different than LR types except
fuzzy addition and subtraction.
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When the observations are fuzzy, the sample correlation coefficient given in (1)
is rewritten.

~rfX;Y ¼
Pn

i¼1ð~xi � 1
n
	Pn

i¼1 ~xiÞð~yi � 1
n
	Pn

i¼1 ~yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ð~xi � 1

n
	Pn

i¼1 ~xiÞ2
Pn

i¼1ð~yi � 1
n
	Pn

i¼1 ~yiÞ2
q ð7Þ

where ~xi ¼ ðxi; ciÞ and ~yi ¼ ðyi; diÞ; i ¼ 1; 2; . . .; n; are symmetric triangular fuzzy
numbers and �~x ¼ 1

n
	Pn

i¼1 ~xi and �~y ¼ 1
n
	Pn

i¼1 ~yi are the average values of fuzzy
numbers ~X and ~Y ; respectively. Then the average values of fuzzy numbers ~X and ~Y
are calculated based on Tw as follows:

�~x ¼ ð1
n

Xn
i¼1

xi; max
1� i� n

ciÞ ð8aÞ

�~y ¼ ð1
n

Xn
i¼1

yi; max
1� i� n

diÞ ð8bÞ

The expressions given in (8a) and (8b) can be written for just some observation
using Tw as follows:

ð~x� �~xiÞ ¼ ðxi � 1
n

Xn
i¼1

xi; max
1� i� n

ciÞL ð9aÞ

ð~y� �~yiÞ ¼ ðyi � 1
n

Xn
i¼1

yi; max
1� i� n

diÞL ð9bÞ

Then the product of (9a) and (9b) is obtained as follows:

xi � 1
n

Xn
i¼1

xi

 !
yi � 1

n

Xn
i¼1

yi

 !
;max xi � 1

n

Xn
i¼1

xi

�����
����� max
1� k� n

dk; yi � 1
n

Xn
i¼1

yi

 !
max

1� k� n
ck

 !
L

ð10Þ

The numerator of (7) is the summation of the product of (9a) and (9b) using Tw
based fuzzy arithmetic denoted by

Xn
i¼1

xi � 1
n

Xn
k¼1

xk

 !Xn
i¼1

yi � 1
n

Xn
k¼1

yk

 !
; max
1� i� n

xi � 1
n

Xn
k¼1

xk

�����
����� max
1� k� n

dk; xi�1
n

Xn
k¼1

xk

�����
����� max
1� k� n

ck

 !
ð11Þ

In order to compute the denominator of (7), we will follow the similar steps. The
summation of the square of the differences between fuzzy observations and its
fuzzy arithmetic mean for each variable is denoted using Tw based fuzzy arithmetic
in (12) and (13).
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Xn
i¼1

ðxi � 1
n

Xn
i¼1

xkÞ2; max
1� i� n

jxi � 1
n

Xn
i¼1

xkj max
1� k� n

ck

 !
L

ð12Þ

Xn
i¼1

ðyi � 1
n

Xn
i¼1

ykÞ2; max
1� i� n

jyi � 1
n

Xn
i¼1

xkj max
1� k� n

dk

 !
L

ð13Þ

The product of (12) and (13) yields (14) and (15)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � 1
n

Xn
i¼1

xk

 !2Xn
i¼1

yi � 1
n

Xn
i¼1

yk

 !2

;

vuut ð14Þ

maxf
Xn

i¼1
ðxi � 1

n

Xn

i¼1
xkÞ2 max

1� i� n
jyi � 1

n

Xn

i¼1
ykj max

1� k� n
dk;Xn

i¼1
ðyi � 1

n

Xn

i¼1
ykÞ2 max

1� i� n
jxi � 1

n

Xn

i¼1
xkj max

1� k� n
ck;Pn

i¼1 ðxi � 1
n

Pn
i¼1 xkÞ2

Pn
i¼1 ðyi � 1

n

Pn
i¼1 ykÞ2

ð15Þ

where expressions in (14) and (15) are center and the spread part of the fuzzy
number in denominator of (7), respectively.

Hence, both numerator and denominator are obtained. The last step is to divide
those two fuzzy numbers. Its division is simply based on the implementation of the
expression given in (6c). It is denoted by

~Aø ~B
� �

zð Þ ¼
L

a
b�zð Þ

1
bð Þmax a;zbð Þð Þ

� 	
; z�minf a�a

b ; a
bþb

� �
g

R
z�a

bð Þ
1
bð Þmax a;zbð Þ

� 	
; z�maxf aþ að Þ

b ; a
b�bð Þg

8>><>>: ð16Þ

where a; b[ 0 and it is assumed that L ¼ R; also ~A ¼ ða; aÞLL and ~B ¼ ðb; bÞLL are
fuzzy numbers. Also, other cases including the different signs of two fuzzy numbers
are easily defined and given in [5]. It should be noted that expression given in (16)
holds for LL types fuzzy numbers.

A small data set presented in Table 1 will be used in order to exemplify
calculations.

Table 1 Data set for both
fuzzy numbers written in the
form of symmetric triangular
fuzzy numbers

~xi ¼ ðxi; ciÞ ~yi ¼ ðyi; diÞ
(2.5,0.10) (2.0,0.2)

(3.0,0.4) (2.6,0.3)

(3.2,0.3) (2.9,0.5)

(3.5,0.2) (3.8,0.4)

(4.1,0.5) (6.0,0.60)
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Fuzzy arithmetic for both variables are obtained as �~X ¼ ð3:26; 0:5Þ and �~Y ¼
ð3:46; 0:6Þ: Then using expression (11) results in (3.582, 1.27) which is the enu-
merator of (7). The denominator is calculated using (14) and (15) leading to (3.72,
2.71). When former value one is divided by the latter one, the membership function
for correlation coefficient is denoted by

~r eXY ¼¼ ð3:58; 1:27Þ
ð3:72; 2:71Þ ¼

1� 0:96�z
maxð0:341;0:728zÞ if 0:341� z� 0:96

1� z�0:96
maxð0:341;0:728zÞ if 0:96� z� 1:304

(

2.2 Fuzzy Correlation Based on Zadeh’s Extension
Principle

Another approach in the computation of fuzzy correlation coefficient is to use the
α-cuts of fuzzy numbers in order to derive the membership function proposed by
[6]. This method relies on the application of the extension principle aiming at
finding the α-cuts of ~rfX;Y : The α-cuts of ~Xi and ~Yi are denoted by

ðXiÞa ¼ ðXiÞLa ; ðXiÞLa

 � ¼ ½min

x
xijf l~xiðxiÞ� ag;max

x
xijf l~xiðxiÞ� ag� ð17aÞ

ðYiÞa ¼ ðYiÞLa ; ðYiÞLa

 � ¼ ½min

y
yijf l~yiðyiÞ� ag;max

y
yijf l~yiðyiÞ� ag� ð17bÞ

Also, its interval form containing the values of both variables are denoted by

½ XiÞa; ðYiÞa
� � ¼ ½min

x
xijl~xi xið Þ� a
� 

;max
x

xijl~xi xið Þ� a
� � ð18Þ

where the α-cuts of ~Xi and ~Yi are both crisp sets.
Then as mentioned in [6], a pair of non-linear mathematical programs are

introduced in order to find the lower and upper bounds of the α-cuts of ~rfX;Y : Those
are denoted as follows:

ðrXYÞLa ¼ min
Xn

i¼1
xi � �xð Þ yi � �yð Þ

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � �xÞ2

Xn

i¼1
ðyi � �yÞ2

q� 	
s:t ðXiÞLa � xi �ðXiÞUa ; 8i

ðYiÞLa � xi �ðYiÞUa ; 8i
ð19aÞ
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ðrXY ÞUa ¼ max
Xn

i¼1
xi � �xð Þ yi � �yð Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � �xÞ2

Xn
i¼1

ðyi � �yÞ2
s !" #

s:t ðXiÞLa � xi �ðXiÞUa ; 8i
ðYiÞLa � xi �ðYiÞUa ; 8i

ð19bÞ

In the case of nonexistence of analytic solutions of non-linear programming
problems, it is possible to obtain the numeric solutions for ðrXYÞLa and ðrXY ÞUa at
different α levels, which leads to the approximate shape of LðrÞ and RðrÞ: A small
data set which is given in Table 1 will be used to exemplify.

In order to work with a pair of non-linear programming problems, the α-cuts of
variables for specified values (α = 0.0, 0.1, …, 0.9, 1.0) are tabulated in Tables 2
and 3, respectively.

For each α value, while the first column shows the left end point, the second
column denotes the right end point. Similar construction is made for the fuzzy ~Y
variable in Table 3.

Based on those values presented in Tables 2 and 3, a pair of non-linear pro-
gramming problem is solved in order to calculate correlation values for each cor-
responding α-cut values. Those are tabulated in Table 4.

Table 2 The α-cuts values for ~X

α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

2.4 2.6 2.41 2.59 2.42 2.58 2.4 2.6 2.41 2.59 2.42 2.58

2.6 3.4 2.64 3.36 2.68 3.32 2.6 3.4 2.64 3.36 2.68 3.32

2.9 3.5 2.93 3.47 2.96 3.44 2.9 3.5 2.93 3.47 2.96 3.44

3.3 3.7 3.32 3.68 3.34 3.66 3.3 3.7 3.32 3.68 3.34 3.66

3.6 4.6 3.65 4.55 3.70 4.50 3.6 4.6 3.65 4.55 3.70 4.50

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

2.46 2.54 2.47 2.53 2.48 2.46 2.54 2.47 2.53 2.48

2.84 3.16 2.88 3.12 2.92 2.84 3.16 2.88 3.12 2.92

3.08 3.32 3.11 3.29 3.14 3.08 3.32 3.11 3.29 3.14

3.42 3.58 3.44 3.56 3.46 3.42 3.58 3.44 3.56 3.46

3.90 4.30 3.95 4.25 4.00 3.90 4.30 3.95 4.25 4.00
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3 Fuzzy Non-linear Regressions

Fuzzy linear regression has been utilized as a modeling technique since the first
introduction by [7] when one encounters different settings such as linguistically
defined values, small data sets, unknown structure between dependent variable and
independent variables, approximate measurements like intervals. Modeling endea-
vor covers several applications in many disciplines ranging from quality function
deployment to determining claiming reserves [8, 9]. Also, it allows crisp numbers to
be utilized in the modeling. Therefore, several types of fuzzy linear regression
models and their parameter estimation methods have been proposed. The generic
form of it can be denoted by

~Y ¼ ~A0 þ ~A1 � ~X1 þ � � � þ ~An � ~Xk; i ¼ 1; . . .; n ð20Þ

where parameters, dependent and independent variables are all fuzzy numbers
represented as one of the types such as triangular, trapezoidal and Gaussian fuzzy
numbers.

Despite of the fact that several estimation methods have been defined, they are
actually being grouped into two different methods that have been utilized and
evolved during the research. The first of which is based on mathematical pro-
gramming methods such as linear programming, goal programming, and non-linear
programming and so on. The second one is to rely on the minimization of distance
between two fuzzy sets so-called fuzzy least squares, which are the squares of the
differences between the observed and estimated values of dependent variable.

When fuzzy non-linear regression is concern, the same variety pertinent to model
types and their estimation methods are encountered. In this chapter, two different
types of fuzzy non-linear regression models that are available in the literature will be
presented with small but illustrative examples. The first one is called S-shaped curve
fuzzy regression whose crisp version is widely utilized in the modeling of complex

Table 3 The α-cuts values for ~Y

α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

1.8 2.2 1.82 2.18 1.84 2.16 1.86 2.14 1.88 2.12 1.9 2.1

2.3 2.9 2.33 2.87 2.36 2.84 2.39 2.81 2.42 2.78 2.45 2.75

2.4 3.4 2.45 3.35 2.5 3.30 2.55 3.25 2.6 3.2 2.65 3.15

3.4 4.2 3.44 4.16 3.48 4.12 3.52 4.08 3.56 4.04 3.6 4.0

5.4 6.6 5.46 6.54 5.52 6.48 5.58 6.42 5.64 6.36 5.7 6.3

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1.92 2.08 1.94 2.06 1.96 2.04 1.98 2.02 2.0 2.0

2.48 2.72 2.51 2.69 2.54 2.66 2.57 2.63 2.6 2.6

2.7 3.1 2.75 3.05 2.8 3 2.85 2.95 2.9 2.9

3.64 3.96 3.68 3.92 3.72 3.88 3.76 3.84 3.8 3.8

5.76 6.24 5.82 6.18 5.88 6.12 5.94 6.06 6.0 6.0
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systems such as biology, agriculture and social economy. Both input variable and
output variable in this model are fuzzy numbers. Its parameter estimation method is
based upon minimizing the distance between fuzzy observed values and fuzzy
estimated values which are represented by the pre-defined model. The parameter
estimates are obtained as crisp values. The second one is called quadratic fuzzy
regression model which appears to be two different types. While the first quadratic
fuzzy regression allows quadratic term to be included in the model, the second one
has interaction terms. While input variables have crisp values, the output variable
and the parameters are fuzzy values. Its parameter estimation method uses the dis-
tance based methods aiming at minimizing the difference between observed values
and estimated values proposed by [10, 12, 13].

3.1 S-Shaped Curve Fuzzy Regression

S-shaped curve fuzzy regression was proposed by [11] in order to model obser-
vations that are encountered in complex systems such as biology, social economy
and agricultural sciences where the trend of growing is experienced slowly at the
beginning, rapid increments are observed during process and it finishes with the
saturation at the last phase.

Suppose that ~xi and ~yi; ði ¼ 1; . . .; nÞ are observations that are tried to be mod-
eled defined by

~y ¼ ðaþ b � exp ð�~xÞÞ�1; a; b 2 R ð21Þ

It is assumed that least squares based metrics between fuzzy numbers has better
estimation ability when parameter estimation in fuzzy non-linear regression is
concern. Therefore, metric defined in (22) will be utilized to determine parameters
of the model given in (21).

~d ~A; ~B
� � ¼ Z 1

0
w2 að Þd2 Aa;Bað Þdt

� 	1
2

; ~A; ~B 2 FðRÞ ð22Þ

where w2ðaÞ should be chosen as a monotone increasing function in [0, 1], and ~A
and ~B are fuzzy numbers defined on real line denoted by FðRÞ:

The motivation behind choosing monotone increasing function is based on the
desire of having higher degree of membership level set when determining the
distance between fuzzy numbers.

The distance based on the α-cuts of ~A and ~B given in (22) is denoted by

d2 ¼ ~Aa; ~Ba
� � ¼ ½l að Þ � pðaÞ�2 þ ½r að Þ � qðaÞ�2 ð23Þ

where ~Aa ¼ ½l að Þ; r að Þ� and ~Ba ¼ ½p að Þ; q að Þ�:

Fuzzy Correlation and Fuzzy Non-linear Regression Analysis 213



Utilizing the metric and the model given in (21) and (22) respectively, the least
squares optimization problem is written in (24).

Minimize M a; bð Þ ¼
Xn

i¼1
~d2 aþ b exp �~xið Þ; 1

~yi

� �
ð24Þ

The α-cuts of functions of ~X and ~Y are represented as follows:

ð~YiÞa ¼½fi að Þ; gi að Þ�; ð~XiÞa ¼ ½ui að Þ; vi að Þ�;
1
~Yi

� �
a

¼ 1
giðaÞ ;

1
fiðaÞ

� 	
ðexp �~xið ÞÞa ¼ ½exp �við Þ; exp �uið Þ�;

ðexp ~xið ÞÞa ¼½exp uið Þ; exp við Þ�; a 2 ð0; 1�

ð25Þ

where expression in (25) holds for positive fuzzy numbers.
Two different minimization functions are defined with respect to the sign of b;

which are for b� 0 and b\0; respectively.
In order to simplify the notations, the α-cut in parenthesis is removed. Also, w2 is

adapted instead of using w2ðaÞ in (22) and (25).
For b� 0; the α-cut of ðaþ b exp �~xið ÞÞa is denoted by

aþ b exp �við Þ; aþ b exp �uið Þ½ �; ði ¼ 1; . . .; nÞ ð26Þ

Then, its least squares optimization function given in (24) is rewritten

min
a;b

Mþ a; bð Þ ¼
Xn

i¼1
~d2 aþ b expð�xiÞ; 1

~yi

� �
¼
Z 1

0
w2

Xn
i¼1

aþ b exp �við Þ � 1
gi

� �2

þ aþ b exp �uið Þ � 1
fi

� �2
" #

da

ð27Þ

By taking derivatives of optimization function given in (27) with respect to
parameters a and b, an equation system consisting two equations are obtained. The
first equation system is denoted by ES1

ES1 ¼

2na
R 1

0
w2daþ b

R 1

0
w2Pn

i¼1 ðexpð�viÞþ exp �uið ÞÞda
¼ R 1

0
w2Pn

i¼1
1
fi
þ 1

gi

� �
da

a
R 1

0
w2Pn

i¼1 ðexpð�viÞþ exp �uið ÞÞdaþ b
R 1

0
w2ÞPn

i¼1 ðexpð�2viÞþ exp �2uið ÞÞda
¼ R 1

0
w2Pn

i¼1
1
fi
expð�2vi þ 1

gi
expð�2uiÞ

� �
da

8>>>>>><>>>>>>:
ð28Þ
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For b\0; the α-cut of ðaþ b exp �~xið ÞÞa is denoted by

aþ b exp �uið Þ; aþ b exp �við Þ½ �; i ¼ 1; . . .; nÞ ð29Þ

Then, its least squares optimization function given in (24) is rewritten for this
case.

min
a;b

M� a; bð Þ ¼
Xn
i¼1

~d2ðaþ b expð�xiÞ; 1
~yi
Þ

¼
Z 1

0
w2
Xn
i¼1

½ aþ b exp �uið Þ � 1
gi

� �2

þ aþ b exp �við Þ � 1
fi

� �2

�da

ð30Þ

By taking derivatives of optimization function given in (30) with respect to
parameters a and b; an equation system consisting two equations are obtained. The
second equation system is denoted by ES2

ES2 ¼

2na
R 1
0 w

2daþ b
R 1
0 w

2Pn
i¼1

ðexpð�viÞþ exp �uið ÞÞda

¼ R 10 w2 að ÞPn
i¼1

1
fi að Þ þ 1

gi að Þ
� �

da

a
R 1
0 w

2Pn
i¼1

ðexpð�viÞþ exp �uið ÞÞdaþ b
R 1
0 w

2Pn
i¼1

ðexpð�2viÞþ exp �2uið ÞÞda

¼ R 10 w2Pn
i¼1

1
fi að Þ expð�vi þ 1

gi að Þ expð�2uiÞ
� �

da

8>>>>>>>>>><>>>>>>>>>>:
ð31Þ

In order to find the parameters of fuzzy non-linear regression defined in the form
of S-curve fuzzy model, ES1 and ES2 needs to be solved. For this purpose, criterion
is defined by [11], which is denoted by (32) and (33) are utilized.

Db ¼2n
Z 1

0
w2da

Z 1

0

1
fi
exp uið Þþ 1

gi
exp við Þ

� �
da

�
Z 1

0
w2
Xn
i¼1

exp �við Þþ exp uið Þð Þda
Z 1

0
w2
Xn
i¼1

1
fi
þ 1

gi

� �
da

ð32Þ

Db� ¼2n
Z 1

0
w2da

Z 1

0
w2
Xn
i¼1

ð1
gi
exp uið Þþ 1

fi
exp við ÞÞda

�
Z 1

0
w2
Xn
i¼1

exp �uið Þþ exp �við Þð Þda
Z 1

0
w2
Xn
i¼1

1
fi
þ 1

gi

� �
da

ð33Þ

It is proved by [11] that Db �Db� :
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Based on values of Db; The solution set of (28) or (31) is searched using the
computational procedure

If Db � 0; expression (28) has unique solution which is denoted by the form of
parameter estimates

a ¼ p1
D

and b ¼ Db

D
ð34Þ

where p1 and D are determinant values which are defined by

p1 ¼
R 1
0 w

2Pn
i¼1

1
fi
þ 1

gi

� �
da

R1
0
w2Pn

i¼1
exp �við Þþ exp �uið Þð ÞdaR 1

0 w2Pn
i¼1

1
fi
exp uið Þþ 1

gi
exp við Þ

� �
da

R 1
0 w

2Pn
i¼1

exp �2við Þþ exp �2uið Þð Þda

��������
��������

ð35Þ

D ¼
2n
R 1
0 w2da

R 1
0 w2Pn

i¼1
exp �við Þþ exp �uið Þð ÞdaR 1

0 w
2Pn
i¼1

exp �við Þþ exp �uið Þð Þda R 1
0 w2Pn

i¼1
exp �2við Þþ exp �2uið Þð Þda

��������
��������

ð36Þ

If Db\0; then Db� �Db � 0: Hence expression (31) has a unique solution
which is expressed in the form of parameter estimates

a ¼ p2
D

and b ¼ Db�
D

ð37Þ

where p2 is a determinant value which are defined by

p2 ¼
R 1
0 w

2da
Pn
i¼1

1
fi
þ 1

gi

� �
da

R 1
0 w2Pn

i¼1
exp �við Þþ exp �uið Þð ÞdaR 1

0 w2Pn
i¼1

1
gi
exp uið Þþ 1

fi
exp við Þ

� �
da

R 1
0 w

2Pn
i¼1

exp �2við Þþ exp �2uið Þð Þda

��������
��������

ð38Þ

A small data set is tabulated in Table 5. Our aim is to determine parameters of
fuzzy non-linear regression model defined in (21).

a ¼ p1
D

¼ �6:53
1:41

¼ �4:63 and b ¼ Db

D
¼ 56:46

1:41
¼ 40:04
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The model given in (21) is denoted by

~y ¼ �4:63þ 40:04 expð�~xÞ ð39Þ

3.2 Quadratic Fuzzy Regression

The second type of fuzzy non-linear regression model is quadratic fuzzy regression
expressed in two different models. While the first of which is the one including a
quadratic term, the second one contains a term consisting of the interaction of the
independent variables. They are proposed by [12] and denoted by (40) and (41).

~Yi ¼ A0 þA1Xi1 þA2X
2
i1; i ¼ 1; 2; . . .; n ð40Þ

~Yi ¼ A0 þA1Xi1 þA2Xj1 þA3Xi1Xj1; i; j ¼ 1; 2; . . .; n ð41Þ

In both models, it is assumed that input variables are non-negative crisp values
and output variable is normal and convex fuzzy numbers with either symmetric or
non-symmetric triangular membership functions. The parameter estimation method
so-called fuzzy least squares which aim to minimizing the squares of the differences
between the observed fuzzy dependent variable and the estimated fuzzy outputs are
widely applied to estimation of the parameters. In order to define the difference
between the observed and the estimated fuzzy numbers, some methods trans-
forming those fuzzy numbers into crisp numbers are proposed in [10, 12, 13]. One
of the methods called Overall Existence Ranking Index (OERI) was proposed in
[13]. It is based on the usage of the inverse membership function which is simply a
ranking method developed for fuzzy sets. For a given existence level w, the inverse
image in terms of membership function, lðxÞ, is defined as

l�1 wð Þ ¼ x : l xð Þ ¼ wf g ð42Þ

Then for any two arbitrary fuzzy numbers A and B, if A is said to be larger than B
at w where w 2 ð0; 1�, l�1

A ðwÞ� 
[ l�1

B ðwÞ� 
holds. The inverse is not generally

true. The OERI for a fuzzy number A ¼ ðx; a; bÞ is a crisp number defined as

Table 5 Data set for S-curve
fuzzy regression

~xi ¼ ðxi; ciÞ ~y ¼ ðyi; diÞ
(1.0,0.3) (3.0,0.2)

(2.0,0.7) (8.0,0.4)

(3.0,0.4) (22.0,0.6)

(4.0,1.9) (25.0,1.3)

(5.0,1.3) (30.0,1.5)
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OM Að Þ ¼ x� 1
2
X1 wð Þaþ 1� X1ðwÞ

2
b ð43Þ

where X1 wð Þ is a weighting function determined by decision makers subjectively.
The more realistic weighting function is the linear one mentioned in [13]. Then for
fuzzy numbers A and B; the distance is defined as

D A;Bð Þ ¼ OM Að Þ � OMðBÞ ð44Þ

When OERI is adapted into regression problem, its distance function can be
written as follows:

MIN
Xn
i¼1

½Yi � ðbYiÞ�2 ¼
Xn
i¼1

½DðYi; bYiÞ�2 ¼
Xn
i¼1

½OM Yið Þ � OMðbYiÞ�2 ð45Þ

The minimization function and its constraints employing OERI can be written as

MIN
Xn

i¼1
ymi � axi � X1 wð Þ

2
yLi � cxi
� �þ 1� X1 wð Þ

2
yRi � dxi
� �� 	2

þ yLi � cxi
� �2 þ yRi � dxi

� �2( )
ð46Þ

ymi � 1� að ÞyLi � axi � 1� að Þcxi

ymi þ 1� að ÞyRi � axi þð1� aÞdxi
c; d� 0

where fuzzy number A ¼ ða; c; dÞ is the parameter of the regression and fuzzy
number Y ¼ ðym; yL; yRÞ is the observed dependent variable and 0\a� 1: The
formulation given in (46) is the case having one independent variables and its
formulation can be easily extended to multiple cases of independent variables
easily.

Similarly, Diamond [10] proposed another distance function defined as

d2 A;Bð Þ ¼ ðx� yÞ2 þ ½ x� yð Þ � ða� cÞ�2 þ ½ x� yð Þ � ðb� dÞ�2 ð47Þ

The formulations denoted based on the method proposed by Diamond is given as
follows:

ðXTXÞaL ¼ XTYL ð48aÞ

ðXTXÞaU ¼ XTYR ð48bÞ
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where YL and YR are vectors denoting the left end points and the right end points of
the response values and aL and aR are vectors denoting the left end points and the
right end points of the center values of the predicted parameters.

where X is the data matrix denoted by

X ¼
1 X11 X2

11

..

. ..
. ..

.

1 Xn1 X2
n1

264
375 ð49Þ

Similar construction was also proposed by [12] for the quadratic fuzzy regres-
sion containing the interaction term of independent variables.

The generic data matrix for the model given in (41) is given as follows:

X ¼
1
..
.

1

X11 X12 X11X12

..

. ..
. ..

.

Xn1 Xm2 Xn1Xm2

264
375 ð50Þ

A small data set is used in order to illustrate the models given in (40) and (41)
(Table 6).

The parameter estimates for model (40) and (41) are denoted respectively by

~y ¼ 6:37; 0:86ð Þþ �3:12; 0:48ð Þx1 þð0:59; 0:10Þx21
~y ¼ 10:05; 1:53ð Þþ �1:62; 0:18ð Þx1 þ �2:90; 0:51ð Þx2 þð0:76; 0:12Þx1x2

4 Conclusion

Fuzzy correlation measure is an important fuzzy statistics that helps comprehend
the relation between two variables that are collected as either linguistically defined
values or approximately known quantities. In classical statistical theory, the cor-
relation of these types of variables can no longer be calculated without losing
information included. With the help of fuzzy set theory providing mathematical
tools allowing to model uncertainty different than one defined by probabilistic
approach, the relation between those variables can be quantified using fuzzy

Table 6 Data set for
quadratic regression models

~yi x1 x2
(4,0.5) 1 2.1

(3,0.3) 2 3.3

(2,0.2) 3 4.6

(4,0.7) 4 1.8

(6,0.9) 5 3.7
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correlation measure. Despite of the fact several methods are available in the liter-
ature, two different methods are chosen due to having utilized fuzzy concepts
directly in computational procedures and their reliable results. Both of them using
basically Zadeh’s extension principle with the combination of either fuzzy arith-
metic and the weakest t-norm or non-linear programming problem are employed.
Both methods with same small data set are run.

Fuzzy non-linear regression is a method fully benefiting from methodological
developments used in fuzzy linear regression when it is defined in a form different
than linear structure distance. They are called S-curve regression and quadratic
fuzzy regression. It is a fact that distance based parameter estimation methods has
better ability than mathematical programming ones do when parameter estimation is
concern in fuzzy non-linear regression. Two data sets for S-curve fuzzy regression
and quadratic fuzzy regression are employed respectively.
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