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Preface

Statistical decision-making helps us learn to analyze data and use methods of
statistical inference in making business decisions. Statistical inference is the process
of drawing conclusions about the population based on information from a sample of
that population. Statistical inference methods include point and interval estimations,
hypothesis testing, clustering, etc. However, descriptive statistics is used in the
inferential statistics as an input to conclude about the population.

Fuzziness is a kind of uncertainty that everything is a matter of degree. The
sources of this uncertainty may be the incomplete information or insufficient data.
Fuzzy statistics is a complementary statistics in these cases where classical statistics
has almost nothing to do. In this book, fuzzy decision-making techniques are
presented by their theory and applications. Fuzzy interval estimation, fuzzy
hypothesis testing, fuzzy regression and correlation, and fuzzy process control are
some of these techniques involved in this book.

The first chapter presents an introduction to fuzzy decision-making. The authors
survey the literature of fuzzy statistics and fuzzy statistical decision-making and
present the results by graphical illustrations.

The second chapter presents discrete fuzzy probability distributions. The fuzzy
expectation theory is introduced. Fuzzy Bayes theorem, fuzzy binomial distribution,
and fuzzy Poisson distribution are derived and numerical examples are given.

The third chapter presents continuous fuzzy probability distributions. Fuzzy
continuous expectation, fuzzy continuous uniform distribution, fuzzy exponential
distribution, fuzzy Laplace distribution, fuzzy normal distribution, and fuzzy log-
normal distribution are developed and numerical examples are given.

The fourth chapter explains the generalized Bayes theorem in handling fuzzy a
priori information and fuzzy data. Individual measurement results also contain
another kind of uncertainty, which is called fuzziness. The combination of fuzziness
and stochastic uncertainty calls for a generalization of Bayesian inference, i.e.,
fuzzy Bayesian inference.

The fifth chapter converts the classical central tendency measures to their fuzzy
cases. Fuzzy mean, fuzzy mode, and fuzzy median are explained by numerical
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examples. Fuzzy frequency distribution is another subtitle of this chapter. Classical
graphical illustrations are examined under fuzziness. A numerical example for each
central tendency measure is given.

The sixth chapter develops the fuzzy versions of classical dispersion measures
namely, standard deviation and variance, mean absolute deviation, coefficient of
variation, range, and quartiles. Initially it summarizes the classical dispersion
measures and then develops their fuzzy versions for triangular fuzzy data.
A numerical example for each fuzzy dispersion measure is given.

The seventh chapter introduces a new approach for the estimation of a parameter
in the statistical models, based on fuzzy sample space. Two basic concepts of the
point estimation, i.e., sufficiency and completeness, are extended to the fuzzy data
case. Then, the unbiased estimator and the uniformly minimum variance unbiased
(UMVU) estimator are defined for such situations. The properties of these esti-
mators are investigated, and some procedures are provided to obtain the UMVU
estimators, based on fuzzy data.

The eighth chapter is on fuzzy confidence regions. The construction is explained
for classical statistics as well as for Bayesian analysis. A numerical example is also
given.

The ninth chapter focuses on analyzing the works on fuzzy point and interval
estimations (PIE) for the years between 1980 and 2015. In this chapter, the liter-
ature is reviewed through Scopus database and the review results are given by
graphical illustrations. The chapter also uses the extensions of fuzzy sets such as
interval-valued intuitionistic fuzzy sets (IVIFS) and hesitant fuzzy sets (HFS) to
develop the confidence intervals based on these sets. The chapter also includes
numerical examples to increase the understandability of the proposed approaches.

The tenth chapter generalizes the p-value concept for testing fuzzy hypotheses
on the basis of Zadeh’s probability measure of fuzzy events. The authors prove that
the introduced p-value has uniform distribution over (0,1) when the null fuzzy
hypothesis is true. Then based on such a p-value, a procedure is illustrated to test
various types of fuzzy hypotheses. Several applied examples are given to show the
performance of the method.

The eleventh chapter has two objectives. It critically exposes the most relevant
fuzzy linear regression methods and remarks the most relevant actuarial applica-
tions of fuzzy regression and also develops one recurrent application: the estimation
of the public debt yield curve as a basis for fuzzy financial pricing of insurance
contracts.

The twelfth chapter deals with fuzzy correlation and fuzzy nonlinear regression
analyses. Both correlation and regression analyses that are useful and widely
employed statistical tools are redefined in the framework of fuzzy set theory in order
to comprehend relation and to model observations of variables collected as either
qualitative or approximately known quantities which are no longer being utilized
directly in classical sense. While extension principle based methods are utilized in
the computational procedures for fuzzy correlation coefficient, the distance based
methods preferred rather than mathematical programming ones are employed in
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parameter estimation of fuzzy regression models. Illustrative examples in detail for
fuzzy correlation analysis are given.

The thirteenth chapter discusses Interactive Dichotomizer 3 (ID3) algorithm and
supervised learning in quest (SLIQ) decision tree algorithm. These algorithms
generate fuzzy decision trees. Their performances are tested using simple training
sets from the literature.

The fourteenth chapter presents the Shewhart process control techniques under
fuzziness. Variable and attribute control charts are extended to their fuzzy versions.
Numerical examples are also given.

The fifteenth chapter develops exponentially weighted moving averages
(EWMA) and cumulative sum (CUSUM) control charts having the ability of
detecting small shifts in the process mean. Numerical illustrations of fuzzy EWMA
and CUSUM control charts are also given.

The sixteenth chapter presents a new method to test linear hypothesis using a
fuzzy set statistic produced by a set of confidence intervals with non-equal tails.
A fuzzy significance level is used to evaluate the linear hypothesis. One-way
ANOVA based on fuzzy test statistic and fuzzy significance level is developed.
Numerical examples are given for illustration.

The seventeenth chapter summarizes and reviews the fuzzy ANOVA where the
collected data considered fuzzy rather than crisp numbers. A real case study is also
presented.

The eighteenth chapter presents different types of fuzzy data mining approaches
including Apriori-based fuzzy data mining, tree-based fuzzy data mining, and
genetic-fuzzy data mining approaches.

We hope that this book will provide a useful resource of ideas, techniques, and
methods for the development of fuzzy statistics. We are grateful to the referees
whose valuable and highly appreciated works contributed to select the high-quality
chapters published in this book. We would also like to thank Prof. Janusz
Kacprzyk, the editor of Studies in Fuzziness and Soft Computing at Springer for his
supportive role in this process.

Istanbul, Turkey Cengiz Kahraman
Özgür Kabak
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Fuzzy Statistical Decision-Making

Cengiz Kahraman and Özgür Kabak

Abstract The classification of decision-making methods can be based on the types
of the data in hand. If the data are given as a decision matrix with discrete values,
you can use multiple attribute decision-making. If the data are given as unit cost or
profit values together with budget or capacity constraints and if you have more than
one objective, then you can use multiple objective decision-making in a continuous
space. If the data are given as the parameters of certain probability distributions,
then you can use statistical decision-making, generally through hypothesis tests. If
the data are not exactly known, the fuzzy sets based approaches are incorporated
into these decision-making methods. Fuzzy statistical decision-making is one of the
most often used methods when insufficient statistical data exist in hand. Fuzzy
hypothesis tests, fuzzy variance analysis, and fuzzy design of experiments are the
examples of fuzzy statistical decision-making techniques. In this chapter, we survey
the literature of fuzzy statistics and fuzzy statistical decision-making and present the
results by graphical illustrations.

Keywords Fuzzy statistics � Statistical decision-making � Fuzzy event �
Classification

1 Introduction

The probability theory is based on the data obtained from sufficient observations for
a certain event. From these data, you can determine the probability distribution of
the event and calculate its occurrence probability and make probabilistic estima-
tions. Without having sufficient observed data, these probabilistic calculations
cannot be made. Then, an expert would try to produce a subjective possibility
distribution based on few data or few observations.

C. Kahraman (&) � Ö. Kabak
Department of Industrial Engineering, Istanbul Technical University,
34367 Macka, Istanbul, Turkey
e-mail: kahramanc@itu.edu.tr
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In classical statistical decision-making, we have crisp parameter values and their
probability distributions are clearly known to make decision and estimations. In
fuzzy statistical decision-making, the values of parameters are not certain. Hence,
possibility distributions instead of probability distributions are preferred.

Zadeh’s [27] following famous example clearly explains the difference between
possibility and probability distributions.

Consider the statement “Hans ate X eggs for breakfast”, with X taking values in
U = {1, 2, 3, 4, …}. We may associate a possibility distribution with X by inter-
preting pX uð Þ as the degree of ease with which Hans can eat u eggs. We may also
associate a probability distribution with X by interpreting pX uð Þ as the probability of
Hans eating u eggs for breakfast. Assuming that we employ some explicit or
implicit criterion for assessing the degree with which Hans can eat u eggs for
breakfast, the values of pX uð Þ and pX uð Þ might be as shown in Table 1.

It can be easily seen that, whereas the possibility that Hans may eat three eggs
for breakfast is 1, the probability that he may do so might be quite small, e.g., 0.1.
Thus, a high degree of possibility does not imply a high degree of probability, nor
does a low degree of probability imply a low degree of possibility. However, if an
event is impossible, it is bound to be improbable.

The probability measure for crisp events can be extended to a probability
measure for fuzzy events. Probabilistic fuzzy systems are based on the concept of
the probability of a fuzzy event [26]. The probability of a continuous fuzzy event ~A
is obtained by taking the expectation of the membership function as in Eq. (1).

Pr ~A
� � ¼

Zþ1

�1
u~A xð Þf xð Þdx ¼ E u~A xð Þ� � ð1Þ

where f(x) is the probability density function and u~A xð Þ is the continuous mem-
bership function of the fuzzy event ~A.

In the literature, there are about 4,000 publications on fuzzy statistics including
journal manuscripts, conference papers, book chapters, etc. One of the
most-referenced papers on fuzzy statistics is by Ahmed et al. [1]. They present a
novel algorithm for fuzzy segmentation of magnetic resonance imaging (MRI) data
and estimation of intensity inhomogeneities using fuzzy logic. MRI intensity
inhomogeneities are attributed to imperfections in the radio-frequency coils or to
problems associated with the acquisition sequences. Another most-referenced paper
is by Krishnapuram and Keller [16]. They proposed the possibilistic C-means
algorithm (PCM) to address the drawbacks associated with the constrained mem-
berships used in algorithms such as the fuzzy C-means (FCM).

Table 1 The possibility and probability distributions associated with X

u 1 2 3 4 5 6 7 8

pX uð Þ 1 1 1 1 0.8 0.6 0.4 0.2

pX uð Þ 0.1 0.8 0.1 0 0 0 0 0

2 C. Kahraman and Ö. Kabak



The history of fuzzy statistics goes back to 1970s. Stallings [22] developed
formalism for describing the syntactic pattern recognition of capital letters. Next,
the fuzzy set approach based on the concepts of Bayesian statistics was described.
Finally, the two approaches were compared. Later, Jain [13] indicated that the
comparison was improper as it compared Bayesian statistics with a particular case
of the fuzzy set theory. He showed that other interpretation of fuzzy connectives
may result in entirely different results. Kandel and Byatt [15] introduce a bibliog-
raphy of 570 items, all classified with the fuzzy set theory and its applications,
which will help the readers to come to grips with the literature explosion on the
subjects of fuzzy sets, fuzzy algebra, fuzzy statistics, and closely related applica-
tions. Kandel [14] made some fuzzy statistics applications for computer system
security. Hong et al. [12] studied fuzzy conceptions, fuzzy measures, fuzzy
statistics, and multi-dimension attribute spaces.

Buckley [6] investigated the use of fuzzy data in a fuzzy decision problem. An
optional decision is a decision function from the data into the set of actions with
maximum membership in some fuzzy sets. Fuzzy estimation is when the set of
actions and the states of nature are identical. Fuzzy hypothesis testing is when an
action states that the state of nature belongs to one of two disjoint sets. He defined a
class of optional decisions identified under general assumptions.

Based upon Peizhuang’s theory of set-valued statistics and Yager’s theory of
bags, Baowen et al. [3] gave a new form to the definition of fuzzy bag and its
properties as well as operations in set-valued statistics. Zeng et al. [28] presented a
review of noise levels of turbine generator sets in power stations, together with the
occurrences encountered in 125 and 300 mw units which are summarized from the
measured data of 17 units in power stations. Xihe [25] demonstrated ‘stability of
membership frequencies’ in a fuzzy statistical model. Bialasiewicz [5] presented an
approach to the selection of essential features of objects, which is based on suffi-
cient and ε-sufficient statistics. It is shown how sufficient and ε-sufficient statistics
can be used to construct partitions of the space of outcomes of an experiment in
order to simplify the pattern recognition process. After 1990s, the number of
publications on fuzzy statistics gained a significant acceleration. Taheri [23]
reviewed essential works on fuzzy estimation, fuzzy hypotheses testing, fuzzy
regression, fuzzy Bayesian statistics, and some relevant fields. The rest of the
literature will be classified with respect to their publication years, authors, countries,
etc. in Sect. 2.

The organization of this chapter is as follows. Section 2 gives the literature
review with graphical illustrations. Section 3 includes the books on fuzzy statistics
in the literature. Section 4 gives a numerical application of fuzzy statistical
decision-making. Section 5 concludes the chapter.

Fuzzy Statistical Decision-Making 3



2 Literature Review: Graphical Illustrations

In this section, we have searched the term “fuzzy statistics” in Scopus database.
When the term fuzzy statistics is searched in the title, abstracts, and keywords of
articles, the number of the documents that the Scopus found is 3,940. When the
term fuzzy statistics is searched in the title of articles, the number of the documents
that the Scopus found became 151. In the following, 3,940 documents are classified
with respect to their publication years, their subject areas, their authors, source
universities and countries.

2.1 Classification with Respect to Publication Years

Figure 1 gives the graph publication year versus frequency. The publications on
fuzzy statistics appear at the end of 1970s. We observe a slight increasing trend
between the years 1980 and 1990 whereas a stronger increasing trend exists
between the years 1990 and 2000. After the year 2000, we observe an exponential
increase in the number of publications on fuzzy statistics.

2.2 Classification with Respect to Affiliations

Figure 2 presents the graph affiliation versus frequency. University of Oviedo is by far
the first university among all, which produce studies on fuzzy statistics. Those institutes
compose of the second class producing publications on fuzzy statistics: Tsingua
University, IEEE, University of Tehran, Institute of the Polish Academy of Sciences,
Harbin Institute of Technology, Beihang University, and Shanghai Jiaotong University.
The third class involves Zhejiang University, National Chengchi University, Islamic

Fig. 1 Frequencies of fuzzy
statistics publications with
respect to the years
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AzadUniversity,ChineseAcademyofSciences,NorthChinaElectric PowerUniversity,
andXidianUniversitywhereas the fourth class involvesHuazhongUniversity of Science
and Technology, Istanbul Technical University, Southeast University (China), and
National Cheng Kung University. There are 12 Chinese universities among the first 18
universities producing publications on fuzzy statistics.

2.3 Classification with Respect to Authors

Figure 3 shows the graph authors versus frequency. The first 13 researchers are
Ozgur Kisi (Turkey), Berlin Wu (Taiwan), Maria Angeles Gil (Spain), Olgierd
Hryniewicz (Poland), Witold Pedrycz (Poland), Abraham Kandel (US), Ihsan Kaya
(Turkey), Cengiz Kahraman (Turkey), Junzo Watada (Japan), Didier Dubois

Fig. 2 Universities
producing the papers of fuzzy
statistics

Fig. 3 Fuzzy statistics:
number of publications with
respect to their authors
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(France), Hung T. Nguyen (US), Ana Colubi (Spain), and Paul D. Gader (US),
respectively. It is interesting that there is no Chinese researcher among the first 13
researchers even there are 12 Chinese universities among the first 18 universities
producing fuzzy statistics publications. The reason is that Chinese researchers’
mode on fuzzy statistics is low even their number is high.

2.4 Classification with Respect to Countries

Figure 4 presents the graph countries versus frequency. China has the first rank,
followed by US, Taiwan, Iran, India, Spain, Turkey, and the others. The sum of
fuzzy statistics publications from China and US is also equal to the sum of all other
countries.

2.5 Classification with Respect to Document Type

Figure 5 gives the graph document type versus frequency. Almost all of the fuzzy
statistics publications have been published as journal articles or conference papers.
As it is clearly seen from the graph, the number of book publications on fuzzy
statistics is very few when compared with articles and conference papers. This
proves the need for new books on fuzzy statistics.

2.6 Classification with Respect to Subject Areas

Figure 6 presents the graph subject areas versus frequency. The first three subject
areas, which fuzzy statistics are used, are computer science, engineering, and

Fig. 4 Countries producing
the studies of fuzzy statistics
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mathematics, respectively. The sum of the publications on computer science and
engineering are much larger than the sum of all other subject areas.

3 Books on Fuzzy Statistics

There are few books on fuzzy statistics, which have been published by various
publishers. Negoita and Ralescu [17] offer the first detailed descriptions of fuzzy
controllers, fuzzy statistics, and fuzzy-set theory. Ayyub and Gupta [2] handle
uncertainty analysis in engineering and sciences. They develop some models using
fuzzy logic, statistics, and neural network approach. Slowinski [21] cover
decision-making, mathematical programming, statistics and data analysis, and
reliability, maintenance and replacement in his book. He accounts for advances in
fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. Ross
et al. [20] provide clear descriptions of fuzzy logic and probability, as well as the
theoretical background, examples. Grzegorzewski et al. [11] present some “soft-
ening” approaches, which utilize concepts and techniques developed in theories
such as fuzzy sets theory, rough sets, possibility theory, theory of belief functions
and imprecise probabilities.

Fig. 6 Subject areas of fuzzy
statistics publications

Fig. 5 Fuzzy statistics
publications with respect to
the document types
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Bertoluzza et al. [4] connect probability theory/statistics and fuzzy set theory in
different ways. Several probabilistic studies are developed, as well as techniques
and criteria to get descriptive and inferential statistical conclusions from fuzzy data.
Buckley [8] introduces elementary fuzzy statistics based on crisp data. In the
introductory chapters the book presents a very readable survey of fuzzy sets
including fuzzy arithmetic and fuzzy functions. The book develops fuzzy estimation
and demonstrates the construction of fuzzy estimators for various important and
special cases of variance, mean and distribution functions. It is shown how to use
fuzzy estimators in hypothesis testing and regression, which leads to a compre-
hensive presentation of fuzzy hypothesis testing and fuzzy regression as well as
fuzzy prediction. Nguyen and Wu [18] present basic foundational aspects for a
theory of statistics with fuzzy data, together with a set of practical applications.
Fuzzy data are modeled as observations from random fuzzy sets. Theories of fuzzy
logic and of random closed sets are used as basic ingredients in building statistical
concepts and procedures in the context of imprecise data, including coarse data
analysis. The monograph also aims at motivating statisticians to look at fuzzy
statistics to enlarge the domain of applicability of statistics in general. Buckley [9]
combines material from his previous books FP [7] and FS [8], plus has about one
third new results. From FP he has material on basic fuzzy probability, discrete
(fuzzy Poisson, binomial) and continuous (uniform, normal, exponential) fuzzy
random variables. From FS he includes chapters on fuzzy estimation and fuzzy
hypothesis testing related to means, variances, proportions, correlation and
regression. New material includes fuzzy estimators for arrival and service rates, and
the uniform distribution, with applications in fuzzy queuing theory. Also, new to
this book, is three chapters on fuzzy maximum entropy (imprecise side conditions)
estimators producing fuzzy distributions and crisp discrete/continuous distributions.
Other new results are: (1) two chapters on fuzzy ANOVA (one-way and two-way);
(2) random fuzzy numbers with applications to fuzzy Monte Carlo studies; and (3) a
fuzzy nonparametric estimator for the median. Viertl [24] presents the foundations
of the description of fuzzy data, including methods on how to obtain the charac-
terizing function of fuzzy measurement results. Furthermore, statistical methods are
then generalized to the analysis of fuzzy data and fuzzy a-priori information.
Nguyen et al. [19] show how to compute statistics under interval and fuzzy
uncertainty. The resulting methods are applied to computer science (optimal
scheduling of different processors), to information technology (maintaining pri-
vacy), to computer engineering (design of computer chips), and to data processing
in geosciences, radar imaging, and structural mechanics.

4 Fuzzy Statistical Decision-Making: An Example

In classical inferential statistics all the parameters of a mathematical model and the
data are exactly known. However, if all these parameters and data are not obtained,
the classical models are valid only under some additional assumptions that might be

8 C. Kahraman and Ö. Kabak



not fulfilled. We face such a situation when our experimental data are of a linguistic
type [10]. We present an example of fuzzy hypothesis tests in the following [9].

A sample of 144 units gave a sample mean of 214.452 and a sample standard
deviation of 25.6. The significance level is 0.02. Make a fuzzy hypothesis test for
H0: l� 210 versus Ha: l[ 210 using α-cut levels 0.4 and 0.9.

This is a right-tailed hypothesis test. First of all, from the standard normal
distribution (SND) table, we find Z0 ¼ Zb¼0:02 ¼ 2:05375. From the given data, we
calculate the Zc value from the sample statistics as follows:

Zc ¼ �x� l
r=

ffiffiffi
n

pð Þ ¼
214:452� 210

25:6=
ffiffiffiffiffiffiffiffi
144

p� � ¼ 2:086875 ð2Þ

Table 2 gives the triangular fuzzy Z values obtained from both SND table and
sample statistics. The classical Z0 value from SND table is 2.05375. This Z0 value
may be changed depending on the risk perception of the decision maker. Hence, we
represent the Z0 value as a triangular fuzzy number. Since we consider the possible
slight changes in the sample mean and sample standard deviation, the Zc value
calculated from the sample may change accordingly.

Table 2 Comparison of fuzzy Z values

Fuzzy Z values from SND table Calculated fuzzy Z values

α zα/2 z0 − zα/2 z0 + zα/2 α zα/2 zc − zα/2 zc + zα/2
0.01 −2.576 −0.522 4.630 0.01 −2.576 −0.489 4.663

0.02 −2.326 −0.273 4.380 0.02 −2.326 −0.239 4.413

0.03 −2.170 −0.116 4.224 0.03 −2.170 −0.083 4.257

0.04 −2.054 0.000 4.107 0.04 −2.054 0.033 4.141

0.05 −1.960 0.094 4.014 0.05 −1.960 0.127 4.047

0.06 −1.881 0.173 3.935 0.06 −1.881 0.206 3.968

0.07 −1.812 0.242 3.866 0.07 −1.812 0.275 3.899

0.08 −1.751 0.303 3.804 0.08 −1.751 0.336 3.838

0.09 −1.695 0.358 3.749 0.09 −1.695 0.391 3.782

0.1 −1.645 0.409 3.699 0.1 −1.645 0.442 3.732

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0.35 −0.935 1.119 2.988 0.35 −0.935 1.152 3.021

0.36 −0.915 1.138 2.969 0.36 −0.915 1.172 3.002

0.37 −0.896 1.157 2.950 0.37 −0.896 1.190 2.983

0.38 −0.878 1.176 2.932 0.38 −0.878 1.209 2.965

0.39 −0.860 1.194 2.913 0.39 −0.860 1.227 2.946

0.4 −0.842 1.212 2.895 0.4 −0.842 1.245 2.928

0.41 −0.824 1.230 2.878 0.41 −0.824 1.263 2.911

0.42 −0.806 1.247 2.860 0.42 −0.806 1.280 2.893
(continued)
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The intersection value of the left side representation of Zc and the right side
representation of Z0 is between α = 0.98 and α = 0.99. For both α-cut level = 0.4
and α-cut level = 0.9, no decision can be given. The classical decision would be
reject the null hypothesis.

5 Conclusion

In this chapter, we presented the literature review results for fuzzy statistics and
fuzzy statistical decision-making. The literature review reveals that after the year
2000, fuzzy statistics attracts the researchers. The researchers in Chinese univer-
sities produce most of the publications on fuzzy statistics. However, the largest
frequency per researcher (mode) of these publications does not belong to Chinese
researchers. The researchers having the largest frequencies are from Turkey,
Taiwan, Spain, Poland, US, Japan, and France. The total publications on fuzzy
statistics from China and USA are larger than the sum of all other countries. Almost
all of the publications on fuzzy statistics have been published in Journals or at

Table 2 (continued)

Fuzzy Z values from SND table Calculated fuzzy Z values

α zα/2 z0 − zα/2 z0 + zα/2 α zα/2 zc − zα/2 zc + zα/2
0.43 −0.789 1.265 2.843 0.43 −0.789 1.298 2.876

0.44 −0.772 1.282 2.826 0.44 −0.772 1.315 2.859

0.45 −0.755 1.298 2.809 0.45 −0.755 1.331 2.842

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0.85 −0.189 1.865 2.243 0.85 −0.189 2.276 1.820

0.86 −0.176 1.877 2.230 0.86 −0.176 2.263 1.832

0.87 −0.164 1.890 2.217 0.87 −0.164 2.251 1.845

0.88 −0.151 1.903 2.205 0.88 −0.151 2.238 1.858

0.89 −0.138 1.915 2.192 0.89 −0.138 2.225 1.870

0.9 −0.126 1.928 2.179 0.9 −0.126 2.213 1.883

0.91 −0.113 1.941 2.167 0.91 −0.113 2.200 1.896

0.92 −0.100 1.953 2.154 0.92 −0.100 2.187 1.908

0.93 −0.088 1.966 2.142 0.93 −0.088 2.175 1.921

0.94 −0.075 1.978 2.129 0.94 −0.075 2.162 1.933

0.95 −0.063 1.991 2.116 0.95 −0.063 2.150 1.946

0.96 −0.050 2.004 2.104 −0.050 2.037 2.137 −0.050

0.97 −0.038 2.016 2.091 −0.038 2.049 2.124 −0.038

0.98 −0.025 2.029 2.079 −0.025 2.062 2.112 −0.025

0.99 −0.013 2.041 2.066 −0.013 2.074 2.099 −0.013

1 0.000 2.054 2.054 1 0.000 2.087 2.087
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conferences. The subject areas of most of these publications are on computer sci-
ence, engineering, and mathematics.

The extensions of fuzzy sets such as type-2 fuzzy sets, intuitionistic fuzzy sets,
and hesitant fuzzy sets present new opportunities to extend fuzzy statistics. For
further research, these extensions are suggested to expand the fuzzy statistical
decision-making techniques such as intuitionistic fuzzy hypothesis tests and hesi-
tant fuzzy hypothesis tests.
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Fuzzy Probability Theory I: Discrete Case

I. Burak Parlak and A. Cağrı Tolga

Abstract This chapter introduces the underlying theory of Fuzzy Probability and
Statistics related to the differences and similarities between discrete probability and
possibility spaces. Fuzzy Probability Theory for Discrete Case starts with the
fundamental tools to implement an immigration of crisp probability theory into
fuzzy probability theory. Fuzzy random variables are the initial steps to develop this
theory. Different models for fuzzy random variables are designated regarding the
fuzzy expectation and fuzzy variance. In order to derive the observation related to
fuzzy discrete random variables, a brief summary of alpha-cuts is introduced.
Furthermore, essential properties of fuzzy probability are derived to present the
measurement of fuzzy conditional probability, fuzzy independency and fuzzy Bayes
theorem. The fuzzy expectation theory is studied in order to characterize fuzzy
probability distributions. Fuzzy discrete distributions; Fuzzy Binomial and Fuzzy
Poisson are introduced with different examples. The chapter is concluded with
further steps in the discrete case.

Keywords Fuzzy random variable � Fuzzy conditional probability � Fuzzy
independency � Fuzzy Bayes theorem � Fuzzy Hypergeometric distribution � Fuzzy
Binomial distribution � Fuzzy Poisson distribution

1 Introduction

When certainties occur people typically look back to gathered data and try to
estimate future events. Traditionally, one of the methodologies; well known as
probability theory has met these requirements in dealing with uncertainty and
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imprecision. However in full-uncertainty cases, probability theory may not be
considered sufficient and it should be integrated with fuzzy logic to enhance its
robustness. Full-uncertainty can be described as no one has data on the occurrence
of possible cases moreover in some cases nobody know anything about these
becoming true possible events. For example, think about space missions: likewise
landing of the Rosetta spacecraft to the comet 67P. Additionally think about Mars
relocation mission. Of course scientists can compute all the probabilities however
despite all the observations made by Phoenix and Curiosity at Mars the events what
will happen in the near future in the Mars mission contain deep vaguenesses. By
these contingent events, people try to estimate the various events and additionally
their probabilities of course.

Probability measures in fuzzy sets were first revealed by Zadeh [1]. In his work,
Zadeh stated that an extension by fuzzy sets might eventually broaden the domain
of practicability of probability theory, notably in those fields in which fuzziness is
an expansive phenomenon. Then, in his another paper published after 10 years from
the previous one, he claimed that the imprecision which is intrinsic in natural
languages is, in the main, possibilistic rather than probabilistic in nature [2]. Fuzzy
random variables (FRVs) were defined by Kwakernaak and he put forward several
theories about independent fuzzy variables for the first time in the literature [3].
Then, he added algorithms about fuzzy random variable after 1 year, and also he
gave examples for the discrete case [4].

Liu and Liu offered a new concept of fuzzy expected values related with Choquet
integral occurring by chance with random variables (RVs) [5]. They contemplated a
fuzzy simulation technique in order to calculate the expected value of general fuzzy
variable. Also, a new description of scalar expected value operator for fuzzy ran-
dom variables was given initially in their paper [6]. Buckley developed fuzzy
probabilistic definitions and theorems about fuzzy probability in his pioneer books
[7–9]. Nguyen and Wu presented some mathematical background of probability
theory for linguistic fuzzy data and introduced several practical examples in their
book [10]. Recently, Shapiro reviewed the fuzzy probability theory and summa-
rized the application fields in order to represent fuzzy random variables and the
variations between probability and possibility spaces [11–13].

In a nutshell, a fuzzy random variable is a random variable (RV) which is
defined using a membership function related to a fuzzy set. However, this definition
could be interpreted within the Probability Space and the Possibility Space: Ps. Let
X be the sample space, F be the r-algebra of subsets of X and P be the probability
on X. X;F ;Pð Þ is the 3-tuple which is called the Probability Space. On the other
hand, let H be the sample space, PðHÞ be power set of H and Ps be the possibility
on H. Then, H;PðHÞ;Psð Þ is the 3-tuple which is called the Possibility Space.

In order to compare these triples, let us consider the following example; in a
football match of a national league, total number of goals is determined between 1
and 8. The question is to illustrate the meaning between the probable number of
goals and the possible number of goals. This difference is represented in Fig. 1. The
left chart describes the probability values for the number of goals. On the other
hand, the right chart shows the possibility of the number of goals. It is remarkable
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that having one or two goals have different probabilities, but they are equally
possible in a football match.

The differences between probability space X;F ;Pð Þ and possibility space ðH;
PðHÞ;PsÞ are detailed within the studies of Shapiro [11–13]. As a summary,
Table 1 condenses the properties for both spaces as follows;

Discrete possibility space is plotted in Fig. 2 as a graph of membership functions
for each discrete event.

In this chapter, fuzzy random variables will be defined and related results will be
presented to link them with discrete fuzzy random variables. The discrete fuzzy
probability function and its related expectation will be given also. While deepening
in fuzzy random variables a-cuts need to be investigated. The consequent section
will contain this alpha-cuts topic. Fuzzy probability will be discussed in Sect. 4. In
Sect. 5, we will penetrate to discrete fuzzy expectation topic. Section 6 will make
mention of fuzzy conditional probability. Fuzzy independency and fuzzy Bayes
formula will be investigated in Sects. 7 and 8 successively. Then Fuzzy
Hypergeometric distribution will be investigated in Sect. 9. After that, in Sect. 10
Fuzzy Binomial distribution will be expressed. And Fuzzy Poisson distribution,

Fig. 1 The probability and possibility of having a certain number of goals in a football match

Table 1 Properties of
probability and possibility
spaces

Probability space Possibility space

X;F ;Pð Þ H;P Hð Þ;Psð Þ
X: Sample space H: Sample space

F : r-algebra of subsets P Hð Þ: power set of H
P: Probability of X Ps: Possibility on H

PðXÞ ¼ 1 PsðHÞ ¼ 1

PðAÞ� 0 Psð;Þ ¼ 0

PfS1
i¼1

Aig Ai : disjoint events
PsfSi Aig ¼ supi PsfAig
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ending of the discrete probability distributions, will be explained in Sect. 11. All
these Fuzzy discrete distributions will be intensified by illustrative examples.
Finally, we will complete this chapter by an inclusive section.

2 Fuzzy Random Variables

The statement of fuzzy random variable (FRV) was firstly developed by
Kwakernaak [3], as ‘random variables whose values are not real, but fuzzy num-
bers’. He defined a FRV as an ambiguous cognition of a crisp but unobservable
random variable. For example, let’s think about assigning an age to people in a
conference. Consider X as their existing age that is an unexceptional random
variable on the real line, of course at the positive side. But, someone can simply
conceive a random variable x through a set of values as follows: “young”, “middle
age” and “old”. Which means; someone conceive fuzzy sets as noteable results
since the genuine X is not remarkable.

As Shapiro [12] remarked; Kwakernaak [4] introduced the fundamentals for a
fuzzy random variable model. However before Kwakernaak’s study there were
essential studies made by various scientist on random sets [1, 2, 14–17]. Puri and
Ralescu [18] developed new idea to generate the fuzziness and they stated that the
expected value could be fuzzy but the variance should be scalar. Liu and Liu [6]
asserted the law of truth conservation and they insisted on that possibility measure
was inconsistent with the law of excluded middle and the law of contradiction.
They maintained that the expected value and variance of any FRV should be scalar
both. However, in contradiction to all these ideas in his books Buckley [7–9]
developed another aspect that is generating the fuzziness and the model where the

Fig. 2 The illustration of discrete possibility space
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expected value and the variance are both fuzzy values. Table 2 summarizes fun-
damental studies on fuzzy probability theory and applications.

A fuzzy membership function would have different values in an interval.
Therefore, a fuzzy random variable will be a random variable whose value would
be a set using the fuzzy membership function.

Let xi, i 2 N be a discrete fuzzy random variable. If the values of xi are denu-
marable, xi is called a discrete fuzzy random variable. The probability function of a
discrete fuzzy random variable is the representation of the discrete values and their
respective probabilities. Furthermore, the fuzzy values of xi are denoted as l xið Þ.

In discrete case, this membership function will be represented using fuzzy
probability mass function whereas it will be the fuzzy probability density function
in continuous case.

In order to generalize the FRV in discrete case, let A be a fuzzy subset of X. If
AðxÞ 6¼ 0 for n times of x values in X, this subset A could be identified as a discrete
fuzzy set. Let us suppose AðxÞ 6¼ 0 for 1� i� n in X. Therefore, we may write the
fuzzy set as follows

~A ¼ l1; . . .; li; . . .; ln ð1Þ

Here li are called the membership values of xi. In this chapter we will adapt the
following expression ~A xið Þ ¼ ~li, 1� i� n. In the generalized form, discrete fuzzy
subsets could be any space in X. Therefore, we may note that a-cuts of discrete
fuzzy sets of R, the set of real numbers, do not produce closed, bounded intervals.

Let X ¼ x1; . . .; xn be a finite set and suppose a probability function denominated
by P should depicted on all subsets of X with P xið Þ ¼ ai, 1� i� n, 0� ai � 1 for all
i. As we recall from probability theory the summation of ai (1� i� n) values
should be equal to 1. The relation between X and P is identified as discrete
probability distribution.

Table 2 Summary of milestones on fuzzy probabilistic studies

Researchers State of art

Zadeh 1968 [1] Fuzzy probability measures

Kendall 1974 [14] Random sets

Matheron 1975 [15] Random sets

Fron 1976 [16] Random fuzzy sets

Zadeh 1978 [2] Possibility theory

Nguyen 1978 [17] Random sets and belief functions

Kwakernaak 1978 [3], 1979 [4] Fuzzy random variable

Puri and Ralescu 1986 [18] Fuzzy random variables

Buckley 2004 [7], 2005 [8], 2006 [7] Fuzzy discrete and continuous probability
distributions

Couso et al. 2014 [24] Ill perceived random sets
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Even the probabilistic ai values should be already known, they are generally
estimated, or are observed by experiments. In order to immigrate the fuzzy case, let
us start with the assumption of the uncertainty for some ai and let us model them
using fuzzy numbers as described recently. In practice, we may write some ai as
fuzzy numbers and the others as crisp number. However, we should apply fuzzy
notation for both ai numbers in order to facilitate the nomenclature and the
calculations.

Moreover, we may write the uncertain ai values as ~ai; fuzzy values, and we may
apply the probability theory in a similar way; 8 ai and nominate that 0\~ai\1,
1� i� n. Throughout the rest of this chapter, this fuzzy nomenclature is used for
given or estimated probabilities.

The probability value ai is expressed as ~ai = ai. However, ~ai might be omitted
and ~A might be preferred in order to express the whole distribution in some cases.
Therefore, FRV values X ¼ xi coupled with fuzzy probabilistic values; ~A ¼ ai are
called a discrete fuzzy probability distribution. Finally, fuzzy P is ~P and intrinsi-
cally ~P xið Þ ¼ ~ai, 1� i� n, 0� ~ai � 1 could be written.

Consequently, in order to satisfy the summation of probability values, the fol-
lowing restriction should be taken into account when a missed observation is
estimated regarding the fuzzy case. We can estimate ai in ~ai½a�, all a, and ai 2 ~ai½1�
should satisfy

Pn
i¼1 ai ¼ 1.

2.1 The FRV Model by Puri and Ralescu

Let X;F ;Pð Þ be a probability space, AðRnÞ emphasize the set of fuzzy subsets,
x : Rn ! ½0; 1�;X : X ! AðRnÞ be defined by XaðxÞ ¼ x 2 R

n : XðxÞðxÞ� að Þ,
and B denote the Borel subsets of Rn. An FRV by Puri and Ralescu is a function
X : X ! AðRnÞ such that, for every a 2 ½0; 1�:

fðx; xÞ : x 2 XaðxÞg 2 F � B

The most wonted measure is the Aumann-type mean for digitizing the central
tendency of the distribution of an FRV model by Puri and Ralescu. In his work,
Aumann [19] widened the real-valued variable’s mean and maintained its principal
essential characters and attitude. Before giving the statement of expected value and
variance a definition of integrably boundedness has to be made:

A # is an FRV as can be mentioned an integrably bounded FRV related with the
probability space X;F ;Pð Þ iff #0k k 2 L1 X;F ;Pð Þ, where, for the function f ,
L1 X;F ;Pð Þ ¼ ff j f : X ! R;F -measurable,

R
fj j1dP\1g.

Let # be an integrably bounded FRV related with X;F ;Pð Þ, and SðAÞ be a
nonempty bounded set as regard to the L1(P)-norm, the expected value of # is the
unpaired fuzzy set ~Eð# jPÞ of Rn such that
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~Eð# jPÞ� �
a¼
Z
X
#adP for all a 2 ½0; 1�; ð2Þ

where
R
X #adP ¼ R

X fdP j f 2 Sð#aÞ
� �

is the Aumann integral of #a as regard to P.
Variance of a Puri and Ralescu type FRV is argued by Feng et al. [20]. They

claimed that, the variance should be used to observe the spread or deployment of
the FRV around its expected value (EV) just like under the circumstances of real
random variables. Ultimately, they illustrated the Puri and Ralescu type variance as
a scalar shown below:

Varð~XÞ ¼ 1
2

Z 1

0
VðXaÞþVð�XaÞ½ �da ð3Þ

Also in the literature, there are some other offers for scalar variance. Premier one
is considering a numerical element of every fuzzy realization of the FRV as the
midpoint of the support and then computing the deployment of these representative
values.

2.2 The FRV Model by Buckley Based on Kwakernaak

As given in the previous subsection, let X;F ;Pð Þ be a probability space and let
AðRÞ emphasize the all fuzzy numbers’ set in the real numbers set, R. Particularly,
AðRÞ depicts the class of normal convex fuzzy subsets of R which has the severe a-
levels for a 2 ½0; 1�. Assignment class could be defined as U, and U : R ! ½0; 1�,
i.e., UðuÞ 2 ½0; 1�, for all u 2 R, such that Ua is a non-empty severe interval, where

Ua ¼ fx 2 R jUðxÞ� a if a 2 ð0; 1�
clðsuppUÞ if a ¼ 0

�

An FRV is an assignment # : X ! AðRÞ thus for each a 2 ½0; 1� and all x 2 X
the real-valued assignment:

inf #a : X ! R, ensuring inf #aðxÞ ¼ inf #ðxÞð Þa, and
sup #a : X ! R, ensuring inf #aðxÞ ¼ inf #ðxÞð Þa, are real valued RVs.
The central tendency of the distribution of an FRV model by Buckley based on

Kwakernaak can be widened to the real-valued variable’s mean and can be cal-
culated as below:

lEðUÞ #ð Þ ¼ sup fl#ðUÞ jU 2 UA;EðUÞ ¼ #g; # 2 R ð4Þ

where E indicates the usual expectation. Similarly, the fuzzy variance of # is a
fuzzy set on ½0;1) with
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lVðUÞ #ð Þ ¼ sup fl#ðUÞ jU 2 UA;V2U ¼ r2g; r2 2 ½0;1Þ: ð5Þ

where, # is an FRV, UA is the collection of all A-measurable RVs of X and V
indicates the usual variance.

As stated in the previous sections, mean and variance of a fuzzy random variable
in Liu and Liu’s model are both scalar. One can calculate these values more easily
than the cited FRV models above.

3 Alpha-Cuts

In a more universal perception, the random set could be produced by the a-cuts of A
as stated in Zadeh’s article [21]. To be more en detail, an a-cut, Aa, of A is a
non-fuzzy set described by Aa ¼ fx j lAðxÞ� ag; 0� a� 1. The a-cuts are
employed to be the main components of a random set; with a it is assumed to be
uniformly distributed over the interval ½0; 1�.

A fuzzy set A can be produced from a random set. Essentially, the identical result
can be obtained without appearing of randomness. It is clear that a fuzzy set may be
reproduced from its a-cuts both discriminating and additively. In order to explain
this case, suppose that lAa

ðxÞ express the membership function of Aa. As Aa is
non-fuzzy, it might be confused with the specific function of Aa. Then, the mem-
bership function of A can be displayed in terms of the membership functions of the
Aa (a) discriminating as lAðxÞ ¼ supaða ^ lAa

ðxÞÞ; 0� a� 1, where ^ expresses
min, and (b) additively as

lAðxÞ ¼
Z1

0

lAa
ðxÞda: ð6Þ

The illustrative representation is depicted in Fig. 3.

4 Fuzzy Probability

Let us start to define two (crisp) subsets A and B be of X. Moreover, we want to
compute fuzzy probabilities which are denoted ~P Að Þ and ~P Bð Þ, respectively. We
have to implement fuzzy algebra to calculate these values. In some ai values there
would be an uncertainty, however in discrete probability distribution there is no
uncertainty. Therefore, the probability summation rule a1 þ � � � þ an ¼ 1 for each
ai values in ~ai a½ � should be satisfied. This constraint will be served as the basis of
our fuzzy algebra.
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We suppose that A ¼ x1; . . .; xk, 1� k\n, then define

~P Að Þ½a� ¼
Xk
i¼1

ai

( )
ð7Þ

for 0� a� 1, where ai 2 ~ai a½ �; 1� i� n;
Pn

i¼1 ai ¼ 1 which is related to the fuzzy
algebra. First of all, a complete discrete probability distribution using the a-cuts
should be determined. Secondly, a probability in Eq. (7) should be calculated.

Let us denote that ~P Að Þ a½ � is not equal to the sum on fuzzy the intervals ~ai a½ �
with the fuzzy algebra in 1� i� k. Let us try to complete the definition of ~P Að Þ a½ �
by introducing the a-cuts of a fuzzy number P Að Þ.

Initially, we note that xl; . . .; xm; xi � 0;
Pn

i¼1 xi ¼ 1 and f a1; a2; . . .; anð Þ ¼Pk
i¼1 ai. Using these definitions, we might write that

1. If A\B ¼ ;, then P ~A
� �þP ~B

� �� ~P A[Bð Þ.
2. If A�B, ~P Að Þ a½ � ¼ pa1 að Þ; pa2 að Þ½ � and ~P Bð Þ a½ � ¼ pb1 að Þ; pb2 að Þ½ � then

pai að Þ� pbi að Þ for i ¼ 1; 2 and 0� a� 1
3. 0� ~P A½ � � 1 all A with ~P ;ð Þ ¼ 0, ~P Xð Þ ¼ 1
4. ~P A½ � þ ~P A0½ � � 1, A0 is the complement of A.
5. For A\B 6¼ ;, ~P A[Bð Þ� ~P Að Þþ ~P Bð Þ � ~P A[Bð Þ

Example 1 Let n be 5 and the sets are; X ¼ a1; a2; a3f g Y ¼ a4; a5f g and the fuzzy
probabilities for each random variables are ~xi ¼ 0:1; 0:2; 0:3ð Þ 1� i� 5.

Therefore, we may compute that; ~P Xð Þ 0½ � ¼ 0:3; 0:9½ �, ~P Xð Þ 1½ � ¼ 0:6; 0:6½ � and
~P Yð Þ 0½ � ¼ 0:2; 0:6½ �, ~P Yð Þ 1½ � ¼ 0:4; 0:4½ �.

Fig. 3 The representation of alpha cuts for a triangular fuzzy number
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Example 2 Let n be 6 and the sets are; X ¼ a1; a2; a3f g Y ¼ a3; a4f g and
Z ¼ a4; a5; a6f g the fuzzy probabilities for random variables are as follows;
~xi ¼ 0:1; 0:15; 0:2ð Þ for 1� i� 4 ~xj ¼ 0:15; 0:2; 0:22ð Þ for 5� j� 6.

Therefore, we may compute that; ~P Xð Þ 0½ � ¼ 0:3; 0:6½ �, ~P Xð Þ 1½ � ¼ 0:45; 0:45½ �,
~P Yð Þ 0½ � ¼ 0:2; 0:4½ �, ~P Yð Þ 1½ � ¼ 0:3; 0:3½ � and ~P Zð Þ 0½ � ¼ 0:4; 0:64½ �, ~P Zð Þ 1½ � ¼
0:55; 0:55½ �.
Furthermore, we may deduce the fuzzy probabilities of the intersection;

~P X \Yð Þ 0½ � ¼ 0:1; 0:2½ �, ~P X \ Yð Þ 1½ � ¼ 0:15; 0:15½ �, ~P Y \ Zð Þ 0½ � ¼ 0:1; 0:2½ �,
~P Y \ Zð Þ 1½ � ¼ 0:15; 0:15½ �.

Finally the fuzzy union probabilities are as follows; ~P X [ Yð Þ 0½ � ¼ 0:4; 0:8½ �,
~P X [Yð Þ 1½ � ¼ 0:6; 0:6½ �, ~P Y [ Zð Þ 0½ � ¼ 0:5; 0:84½ �, ~P Y [ Zð Þ 1½ � ¼ 0:7; 0:7½ �.

We may note that; 0:4; 0:8½ � 6¼ 0:3; 0:6½ � þ 0:2; 0:4½ � � 0:1; 0:2½ � and
0:5; 0:84½ � 6¼ 0:2; 0:4½ � þ 0:4; 0:64½ � � 0:1; 0:2½ �.
Therefore, we should remark that ~P X [Yð Þ and ~P Y [ Zð Þ can be expressed as a

subset of ~P Xð Þþ ~P Yð Þ � ~P X \ Yð Þ, ~P Yð Þþ ~P Zð Þ � ~P Y \ Zð Þ, respectively.

5 Fuzzy Discrete Expectation

Suppose X and Y are two random variables with joint probability density f ðx; y; hÞ.
where x 2 R and the joint density function’s vector of parameters should be
h ¼ ðh1; . . .hnÞ. Mostly cited parameters are anticipated employing a random
sample from the population. These anticipations can be a point estimate or a
confidence interval. In lieu of anticipation of a point, a confidence interval for each
hi could be replaced by the probability density function to obtain an interval joint
probability density function. Whereas more general form should be constructed and
this necessitates formulation of the indefiniteness in the hi by replacing a fuzzy
number for hi and acquire a joint fuzzy probability density function. For a-cuts of
the fuzzy number utilized for hi, vide supra Sect. 3. If one wishes to implement the
interval probability density functions utilizing the fuzzy numbers with a-cuts of
course could be better. The joint fuzzy density functions are fulfilled by substituting
fuzzy numbers for the vague parameters. For to clarify the nubiluous definitions
fuzzy marginals should be discussed now.

Since the hi in h are uncertain fuzzy numbers ~hi are replaced for the hi, 1� i� n,
that provides joint fuzzy density f ðx; y; ~hÞ. The fuzzy marginal for X is

f ðx; ~hÞ ¼
X1
k¼1

f ðxk; yk; ~hÞ: ð8Þ
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The fuzzy marginal for Y could be written by the same way. The a-cuts of the
fuzzy marginals f ðx; ~hÞ could be calculated by the following equation

f ðx; ~hÞ½a� ¼
X1
k¼1

f ðxk; yk; hÞ j hi 2 ~hi½a�; 1� i� n

( )
; ð9Þ

for 0� a� 1, and also we can derive an analogous equation for f ðy; ~hÞ½a�.
Equation (9) gives the a-cuts of a fuzzy set for each value of x.

At this juncture let f ðx; hÞ be the crisp marginal of x which means non-fuzzy
marginal of x. Let’s utilize f ðx; hÞ to procure the mean lxðhÞ and variance VarxðhÞ
of X. The mean and variance of X are written as functions of h as they are related
with the values of the parameters. Suppose that lxðhÞ and VarxðhÞ are discrete
functions of h. Deriving the fuzzy mean and variance of the fuzzy marginal could
be made by fuzzification of the crisp mean and variance. Subjacent theorem can be
deduced from the previous explanations for X and also can be utilized for Y .

Theorem The fuzzy mean and variance of the fuzzy marginal f ðx; ~hÞ are lxð~hÞ and
Varxð~hÞ [8].
Proof An a-cut of the fuzzy mean of the fuzzy marginal for X is

Mxð~hÞ½a� ¼
X1
k¼1

xkf ðxk; hÞ j hi 2 ~hi½a�; 1� i� n

( )
; ð10Þ

for 0� a� 1. Now the sum in Eq. (10) equalsMxðhÞ for each hi 2 ~hi, 1� i� n. So

Mxð~hÞ½a� ¼ flxðhÞ j hi 2 ~hi½a�; 1� i� ng: ð11Þ

Because of this, the fuzzy mean is Mxð~hÞ. See the studies explained at the cited
references in the various fuzzy distributions parts of this chapter.

The fuzzy variance with a-cuts could be written as follows:

Varxð~hÞ½a� ¼ f
X1
k¼1

ðxk � lxk ðhÞÞ2f ðxk; hÞ j hi 2 ~h½a�; 1� i� ng; ð12Þ

for 0� a� 1. But the sum in the above equation equals VarxðhÞ for each hi 2 ~hi,
1� i� n. Due to this

Varxð~hÞ½a� ¼ fVarxðhÞ j hi 2 ~hi½a�; 1� i� ng: ð13Þ

So, the fuzzy variance is just Varxð~hÞ. h
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6 Fuzzy Conditional Probability

In probability theory, conditional probability serves us to introduce and calculate
joint probabilities. In fuzzy probability theory, we will apply the same approach by
using fuzzy random variables.

Let M ¼ xl; . . .; xr, N ¼ xs; . . .; xt for 1� r� s� t� n so that M and N are not
disjoint. The fuzzy conditional probability of M given N should be defined natu-
rally. The fuzzy conditional probability might be written as P M jNð Þ. Furthermore,
the following definitions for fuzzy conditional probability could be presented.
At first,

~P M jNð Þ ¼
Ps

i¼r aiPt
i¼r ai

ai 2 ~ai½a� 1� i� n ð14Þ

The numerator of the division is the sum of the ai; in the intersection of M and
N, while the denominator is the sum of the ai in N. Then we may write;

~P M jNð Þ ¼
~P M \Nð Þ
~P Nð Þ ð15Þ

These definitions for fuzzy conditional probability would be considered as the
fuzzy version of conditional probability theory. Therefore, we might interpret the
fundamental characteristics of fuzzy conditional probability which are:

1. 0� ~P M jNð Þ� 1
2. ~P N jNð Þ ¼ 1 crisp one
3. ~P M jNð Þ ¼ 1 crisp if N�M
4. ~P M jNð Þ ¼ 0 crisp if N \M ¼ ;
5. ~P M1 [M2 jNð Þ� ~P M1 jNð Þþ ~P M2 jNð Þ if M1 \M2 ¼ ;

Firstly, we may note that the first three properties will be directly related to the
initial definition of fuzzy conditional probability. Let us assume an empty sum
which will be equal to zero. As the numerator in Eq. 14 is an set empty, the fourth
property will be true while these events M and N would be disjoint. For the last
property in fuzzy conditional case, let us define that;

~P M1 [M2 jNð Þ a½ ��~P M1 jNð Þ a½ � þ ~P M2 jNð Þ a½ � 0\a\1 ð16Þ

We evaluate the expression through a. Let us set x ¼ bþ c
h which belongs to

M1 [M2 jNð Þ a½ �. For x we may write;

• b is equal to the sum of the ai for xi 2 M1 \N.
• c is equal to the sum of the ai for; xi 2 M2 \N.
• h is equal to the sum of the ai for xi 2 N.
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As a simplification, the sum of ai will be equal to one as ai 2 ~ai a½ �. Therefore,
we may write that b=d belongs to ~P M1 jNð Þ a½ � and c=d belongs to ~P M2 jNð Þ a½ �.

7 Fuzzy Independency

In probability theory, the dependency or the independency of the events are crucial
to observe the joints probabilities. However, the properties related to the moments
are generally related to the independency to simplify the calculations. In the case of
fuzzy probability, a similar reasoning would be applied to define the case for two
events M and N.

As it is represented in fuzzy conditional probability, we may adapt two defini-
tions; strong and weak independency for the events M and N.

The first expression to define the independency is based on the fuzzy conditional
probability. M and N are characterized as strongly independent if

~PðM jNÞ ¼ ~PðMÞ ð17Þ

and

~PðN jMÞ ¼ ~PðNÞ ð18Þ

These expressions are not always obvious to define the independency. Therefore,
we need to introduce a new term which is the weak independency in fuzzy prob-
ability theory. We may write that the events M and N are weakly independent if

~PðM jNÞ½1� ¼ ~PðMÞ½1� ð19Þ

and

~PðN jMÞ½1� ¼ ~PðNÞ½1� ð20Þ

In the second formulation where the events are characterized as weakly inde-
pendent, we use the a ¼ 1 cuts to satisfy the equality. Therefore, events which are
strongly independent are obviously weakly independent.

In order to conclude the fuzzy independency, we may start to use the conven-
tional expression of independency based on the crisp way. Initially, the events M
and N are said independent when

~PðM \NÞ ¼ ~PðMÞ~PðNÞ ð21Þ
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8 Fuzzy Bayes Formula

In the probability theory, Bayes formula formulates the relationship between the
current and the prior information. It is supported by the theory of conditional
probability. In this section, we will show the fuzzy interpretation of Bayes formula.

Let X ¼ x1; . . .; xn be a random variable and let bi, 1� i� k, be a partition of X.
We assume that bi are not empty sets, and they are mutually disjoint. The union of
bi is X. In a case where the probability of bi is not known, we can develop a
conditional probability to calculate bi.

If hi are some priors that we may know and

pij ¼ P bi j hj
� � ð22Þ

where pij will generate the probability of bi.
In order to calculate pij, we need the estimates pj ¼ PðhjÞ. The probability pj is

defined as the prior probability distribution. The probability that the partition bi is
given when the priors hj has accomplished as follows;

P hj j bi
� � ¼ P bi j hj

� �
P hj
� �

PJ
j¼1 P bi j hj

� �
P hj
� � 1� j� J ð23Þ

Moreover, pkj ¼ P hj j bi
� �

is called the posterior probability distribution. The
probability P bið Þ might be calculated by integrating pij and pj as follows;

P bið Þ ¼
XJ
j¼1

P bi j hj
� �

P hj
� �

1� i� k ð24Þ

For a specific event bk which has occured, we might develop the prior for the
posterior and calculate the probabilities of bi as

P bið Þ ¼
XJ
j¼1

P bi j hj
� �

P hj j bk
� �

1� i� k ð25Þ

Finally, Fuzzy Bayes formulation could be written using the a-cuts of fuzzy
posterior distribution as follows;

~P hj j bk
� �

a½ � ¼ pijpjPJ
j¼1 pijpj

ð26Þ
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9 Fuzzy Hypergeometric Distribution

In the discrete probability theory, the hypergeometric distribution is considered
among the fundamental probability distributions where lot acceptance area is
modeled using the probabilistic information. This formulation is developed for
fuzzy case in the inspection of geospatial data by Tong and Wang [22].

It is assumed that there is a finite population concerning N units in hypergeo-
metric distribution. Let’s say some number D of these units contribute a class of
interest which can be a success or a failure (D � N). This type of probability
distribution describes the probability of x interests in n pulls without replacement.
Then, x can be depicted as a hypergeometric random variable with the probability
distribution as below:

PðxÞ ¼
D
x

� �
N � D
n� x

� �
N
n

� � x ¼ 0; 1; 2; . . .;minðn;DÞ ð27Þ

In order to calculate the fuzzy probability, we need to use the fuzzy algebra for
~D ¼ N~r and ~n ¼ N~l and in addition we should have derive the minimum and the
maximum of ~PðxÞ using the a-cuts. The fuzzy hypergeometric distribution is
characterized as the probability model for a fuzzy random sample selection of ~n
items without replacement from a lot of N items of which ~D are non-conforming or
defective. Therefore, fuzzy hypergeometric probability mass function is derived by
using fuzzy numbers for the conforming items based on the approach of Tong and
Wang [22] as follows;

~PðxÞ a½ � ¼ min

~D
x

� �
N � ~D
~n� x

� �
N
~n

� �
8>><
>>:

9>>=
>>; 0� a� 1 ð28Þ

~PðxÞ a½ � ¼ max

~D
x

� �
N � ~D
~n� x

� �
N
~n

� �
8>><
>>:

9>>=
>>; 0� a� 1 ð29Þ

Moreover, the fuzzy probability ~P a½ � is obtained within P r1ð Þ;P r2ð Þ½ �. Therefore,

~PðxÞ a½ � ¼
Nr
x

� �
N � Nr
Nl� x

� �
N
Nl

� � r 2 ~r a½ � l 2 ~l a½ � 0� a� 1 ð30Þ
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Example 3 Suppose that a lot contains 2000 items, a fraction of ~r ¼ ð0:25; 0:3; 0:4Þ
which do not conform requirements. If a fraction of ~l ¼ ð0:04; 0:05; 0:06Þ items is
selected at random without replacement, then the fuzzy probability of finding one or
fewer nonconforming items in the sample is as follows;

~Pfx� 1g ¼ ~Pfx ¼ 0gþ ~Pfx ¼ 1g

min ~Pfx� 1g� � ¼

2000ð0:25þ ð0:3� 0:25ÞaÞ
0

 ! !
2000� 2000ð0:25þ ð0:3� 0:25ÞaÞ

2000ð0:04þð0:05� 0:04ÞaÞ

 ! !

2000

2000ð0:04þ ð0:05� 0:04ÞaÞ

 ! !

þ

2000ð0:25þð0:3� 0:25ÞaÞ
0

 ! !
2000� 2000ð0:25þð0:3� 0:25ÞaÞ
ð2000ð0:04þð0:05� 0:04ÞaÞ � 1Þ

 ! !

2000

2000ð0:04þð0:05� 0:04ÞaÞ

 ! !

ð31Þ

max ~Pfx� 1g� � ¼

2000ð0:4þð0:3� 0:4ÞaÞ
0

 ! !
2000� 2000ð0:4þð0:3� 0:4ÞaÞ
2000ð0:06þð0:05� 0:06ÞaÞ

 ! !

2000

2000ð0:06þ ð0:05� 0:06ÞaÞ

 ! !

þ

2000ð0:4þð0:3� 0:4ÞaÞ
0

 ! !
2000� 2000ð0:4þð0:3� 0:4ÞaÞ
ð2000ð0:06þð0:05� 0:06ÞaÞ � 1Þ

 ! !

2000

2000ð0:06þð0:05� 0:06ÞaÞ

 ! !

ð32Þ

~Pfx� 1g ¼

600aÞ
0

� �� �
1400aÞ
100aÞ

� �� �
2000
100aÞ

� �� � þ
600aÞ
1

� �� �
1400aÞ

ð100aÞ � 1Þ
� �� �
2000
100aÞ

� �� � ;

600aÞ
0

� �� �
1400aÞ
100aÞ

� �� �
2000
100aÞ

� �� � þ
600aÞ
1

� �� �
1400aÞ

ð100aÞ � 1Þ
� �� �
2000
140aÞ

� �� �

2
66666666664

3
77777777775

ð33Þ

Fuzzy Mean and Variance of Hypergeometric Distribution

The mean and variance of the hypergeometric distribution could be calculated

~l a½ � ¼ N~l 	 N~r
N

ð34Þ
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and

~r2 a½ � ¼ N~l 	 N~r
N

1� N~r
N

� �
N � N~l
N � 1

� �
ð35Þ

10 Fuzzy Binomial Distribution

Binomial distribution could be considered as the generalized form of Bernouilli
distribution. Fuzzy Binomial distribution is defined with a fuzzy random variable.

In this section, the studies about binomial distribution in fuzzy form were firstly
developed by Buckley using the a-cuts [8]. Kahraman and Kaya applied this model
into fuzzy sampling by numerous examples [23].

Let X ¼ fx1; x2; . . .; xng be a discrete random variable. We start to apply the
initial definition of Binomial distribution. A number of experiments n is considered
independent, the probability of success is p and the probability of failure is 1� p for
a single experiment. Therefore X could be defined as a binomial random variable.

In order to generalize this expression, independent experiments should be
repeated n times to gather the probability of xi successes for i 2 1; n½ �. Thus;

P xð Þ ¼ n
x

� �
pxqnx x ¼ 0; 1; 2; . . .; n ð36Þ

Fuzzy Binomial probability mass function is derived by using fuzzy numbers for
the success: ~p and the failure: ~q. In order to calculate the fuzzy probability, we need
to use the fuzzy algebra for ~p and ~q and to derive the minimum and the maximum of
~PðxÞ using the a-cuts as follows;

~P k1ð Þ a½ � ¼ min
n
x

� �
~px~qnx

� 	
0� a� 1 ð37Þ

~P k2ð Þ a½ � ¼ max
n
x

� �
~px~qnx

� 	
0� a� 1 ð38Þ

where p 2 ~p a½ �, q 2 ~q a½ �, pþ q ¼ 1.
Furthermore, the fuzzy probability ~P a½ � is obtained within P k1ð Þ;P k2ð Þ½ �. Thus,

~P xð Þ ¼ n
x

� �
pxqnx 0� a� 1 ð39Þ

Example 4 For a determined time period, a shipyard company calculates that their
yachts develop squeaks of indoor equipments in a measured percentage interval
8; 12; 20ð Þ within the guarantee period. In a randomly delivery, 5 yachts reach the
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end of the guarantee period without any squeaks. Find the fuzzy probability in this
case?

In order to solve this problem, we start to define p and q. Then,
~q ¼ 1� ~p ¼ 1� 0:08; 0:12; 0:2ð Þ ¼ 0:8; 0:88; 0:92ð Þ. We need to calculate the
fuzzy number ~P 5½ �. Therefore, we can rewrite the Eqs. 37, 38 as follows:

P k1ð Þ a½ � ¼ min
5
0

� �
~p0 1� ~pð Þ 5�0ð Þ

� 	
0� a� 1 ð40Þ

P k2ð Þ a½ � ¼ max
5
0

� �
~p0 1� ~pð Þ 5�0ð Þ

� 	
0� a� 1 ð41Þ

We obtain P k1ð Þ a½ � ¼ min 1� pð Þ5
n o

, P k2ð Þ a½ � ¼ max 1� pð Þ5
n o

. As the

derivation d 1�pð Þ5
dp � 0, for ~p a½ �, where a ¼ 0, we may write the probability in the

case of 5 yachts as follows;

~P 5ð Þ a½ � ¼ 1� p1 að Þð Þ5; 1� p2 að Þð Þ5
h i

ð42Þ

Therefore, ~p a½ � ¼ p1 að Þ; p2 að Þ½ � ¼ 0:08þ 0:04a; 0:2� 0:08a½ � for 0� a� 1.

Fuzzy Mean and Variance of Binomial Distribution

By using the a-cuts the fuzzy mean of Fuzzy Binomial distribution could be cal-
culated as follows;

~l a½ � ¼
Xn
i¼1

xiki ð43Þ

for ki 2 ~ki a½ �, 1� i� n and
Pn

i¼1 ki ¼ 1.
Therefore, we may write;

~l a½ � ¼
Xn
i¼1

i
n
i

� �
piqn�i ð44Þ

which is equal to ~l a½ � ¼ n~p.
The variance is also calculated using the same principle;

~r2 a½ � ¼
Xn
i¼1

xi � lið Þ2ki ð45Þ

Finally, we may write the fuzzy variance of the fuzzy binomial distribution as
follows; ~r2 a½ � ¼ n~p~q.
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Example 5 Let ~p have a linear triangular fuzzy membership function (0:14; 0:27;
0:65). Calculate the variance of fuzzy binomial distribution.

We know that;

~r2 a½ � ¼ n~p~q ð46Þ

Furthermore, we may write ~r2 a½ � ¼ n~p 1� ~pð Þ and we obtain; 1� ~pð Þ = (0:35;
0:73; 0:86). In order to interpret the variance, MATLAB 2014a is used to sketch the
variance for the different n values. We obtained the following Fig. 4.

11 Fuzzy Poisson Distribution

Poisson distribution is characterized by the experiments whose outputs are discrete
in continuous space. A regular time observation could be considered as discrete
values whereas time is continuous. On the other hand, Fuzzy Poisson distribution is
represented by a fuzzy random variable.

The studies about Fuzzy Poisson distribution were firstly developed by Buckley
using the a-cuts [8]. Kahraman and Kaya applied this model into fuzzy sampling by
several examples [23].

In order to generate the fuzzy Poisson distribution we define X ¼ fx1; x2; . . .; xng
which is a discrete random variable. X has also the Poisson probability mass
function. When the probability P xð Þ is defined for the probability that X ¼ x, we
may write

Fig. 4 The representation of variance analysis for fuzzy binomial distribution
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P xð Þ ¼ kxexp �kð Þ
x!

ð47Þ

where, x ¼ 0; 1; 2; . . .; n, and k[ 0.
Fuzzy Poisson probability mass function is derived by using fuzzy number

~k[ 0. Let us denote ~PðxÞ to be the fuzzy probability that X ¼ x. Therefore, we can
calculate the fuzzy probability using a-cuts algebra,

~P xð Þ½a� ¼ kxexp �kð Þ
x!

; k 2 ~k½a�; 0� a� 1 ð48Þ

Furthermore, the fuzzy expression will depend on x where ~k 0½ � is observed. For a
fixed x, let us calculate m kð Þ ¼ ke�k=x!. When we observe the monotonicity of
m kð Þ, we remark that it is an increasing function for k\x, the maximum value of
m kð Þ is for k ¼ x and finally, m kð Þ is a decreasing function for k[ x.

In order to summarize the way to analyze the Fuzzy Poisson distribution, let
~k a½ � ¼ k1 að Þ; k2 að Þ½ � and 0� a� 1. We note that;

1. For x[ k2 0ð Þ; ~P xð Þ½a� ¼ m k1ð Þ;m k2ð Þ½ �
2. For k1 0ð Þ[ x; ~P xð Þ½a� ¼ m k2ð Þ;m k1ð Þ½ �
3. For x 2 ~k 0½ �; b; a 2 0; 1½ �

• ~P xð Þ½a� ¼ m k1ð Þ;m xð Þ½ � 0� a� b
• ~P xð Þ½a� ¼ m xð Þ;m k2ð Þ½ � b� a� 1

Example 6 In order to illustrate an example of Fuzzy Poisson distributionlet x be
the measurement of the defective percentage in a lot: x ¼ 0:1 and
~k ¼ 0:08; 0:12; 0:18ð Þ. Determine the fuzzy probability ~P 0:1ð Þ.

Since x ¼ 0:1 2 0:08; 0:18½ �, let us start to evaluate the interval for ~k 0½ �.
~k a½ � ¼ 0:08þ 0:04a; 0:18� 0:06a½ �. In order to calculate ~P 0:1ð Þ, we must interpret
the fuzzy intervals;

p1 að Þ ¼ min m kð Þf g; p2 að Þ ¼ max m kð Þf g k 2 ~k a½ � ð49Þ

When the set of Eqs. (49) are examined, we may write;

~P 0:1ð Þ a½ � ¼ m 0:08þ 0:04að Þ;mð0:1Þ½ � 0� a� 0:5 ð50Þ
~P 0:1ð Þ a½ � ¼ m 0:1ð Þ;m 0:18� 0:06að Þ½ � 0:5� a� 1 ð51Þ

Fuzzy Mean and Variance of Poisson Distribution

Furthermore, we need to calculate the fuzzy mean and the fuzzy variance of fuzzy
Poisson probability distribution. Using the same principle in the fuzzy binomial
distribution, we may write;
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~l a½ � ¼
X1
k¼0

kh kð Þ
( )

ð52Þ

This expression could be simplied into ~l ¼ ~k which is similar to the crisp case.
Let us calculate the variance with the similar way.

~r2 a½ � ¼
X1
k¼0

k � lð Þ2h kð Þ
( )

ð53Þ

which gives us the similar representation of crisp case; ~r2 ¼ ~k.

12 Conclusion

In an uncertain environment, like placing on the market of a new product, accep-
tance of defective lot sizes or interplanetary missions the occurrence of some events
can not be anticipated through imprecise linguistic data. However, those cases
necessitate formulation of probability distributions with fuzzy random variables.
Fuzzy expectation in discrete case was provided in this chapter to find means for
fuzzy distributions those are Fuzzy Hypergeometric, Fuzzy Binomial and Fuzzy
Poisson distributions. And also fuzzy variances of those distributions were pro-
vided. We also dealt with fuzzy conditional probability. Independency with fuzzy
random variables was offered before Fuzzy Bayes formula which are the basic of
fuzzy probability theory. Additionally explanatory examples are employed for more
paraphrasing. We tried to state the fuzzy probability theory by discrete form more
clearly in a well-organized frame in this chapter. Fuzzy Hypergeometric distribution
reinforced with an example was the additional contribution of this chapter to the
literature among the books related with this topic.

For further research, general or interval type-2 fuzzy numbers can be integrated
in the fuzzy discrete probability theory. Moreover, Fuzzy Hypergeometric, Fuzzy
Binomial and Fuzzy Poisson distributions would be expressed within this frame-
work. Finally, hidden Markov models might be extended by considering intu-
itionistic fuzzy probabilities.
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Fuzzy Probability Theory II: Continuous
Case

A. Cağrı Tolga and I. Burak Parlak

Abstract Continuous probability density functions are widely used in various
domains. The characterization of the fuzzy continuous probability theory is similar
to the discrete case. However, the possibility space is continuous and the integration
between the minimum and the maximum values would set the fuzzy probability
through the alpha-cuts. In this chapter, the foundations of fuzzy probability and
possibility theory are described for the continuous case. A brief introduction
summarized the key concepts in this area with recent applications. The expectation
theory is interpreted using the relationship with fuzzy continuous random variables.
Fuzzy continuous applications are enriched with different probability density
functions. Therefore, fundamental distributions are detailed within their uses and
their properties. In this chapter, fuzzy uniform, fuzzy exponential, fuzzy laplace,
fuzzy normal and fuzzy lognormal distributions are examined. Several examples are
given for the use of these fuzzy distributions regarding the fuzzy interval algebra.
Finally, the future suggestions and applications are discussed in the conclusion.

Keywords Fuzzy uniform distribution � Fuzzy exponential distribution � Fuzzy
laplace distribution � Fuzzy normal distribution � Fuzzy lognormal distribution

1 Introduction

Continuous probabilistic approaches are crucial to develop models in order to
describe real probabilistic applications. In this chapter, the background of fuzzy
probability theory will be inherited from the discrete case. Furthermore, continuous
probability theory will be developed to represent fuzzy continuous distributions.
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Initially, basic fuzzy random variables are considered for continuous domain in
order to define the fuzzy continuity and to explain the fuzzy continuous distribu-
tions. Figure 1 represents the continuous possibility space for events having similar
triangular fuzzy membership functions. Therefore, a triangular surface is depicted
for this case. Fuzzy continuous probability functions and its related expectations are
given, respectively. Fuzzy events are associated with the occurrences as continuous
subsets in the probability space. Furthermore, each fuzzy continuous probability
distribution is studied with numerical examples. In fuzzy continuous distributions,
crisp numbers are substituted by fuzzy numbers by taking a-cuts to produce con-
tinuous fuzzy probability density functions.

As the uniform probability distribution is one of the most common distributions,
we started to develop its properties in fuzzy case. The uniform probability density
function expressed as Uðm; nÞ;m\n; it is illustrated by fuzzy random variables; ~m
and ~n. Fuzzy exponential distribution followed the fuzzy uniform distribution. In
the fuzzy exponential distribution k will be replaced with ~k which is a fuzzy
number. Then fuzzy normal distribution is interpreted and its theory is applied to
derive fuzzy lognormal distribution. The normal probability function N l; r2ð Þ is
depicted in fuzzy form by N ~l; ~r2ð Þ notation. Finally, the fuzzy lognormal proba-
bility function is represented as L ~l; ~r2ð Þ.

After the definition of probability measures of fuzzy events by Zadeh [1, 2],
continuous fuzzy random variables were first defined by Buckley in his books [3–5].
Liu and Liu operated on fuzzy expectations in the context of their studies [6, 7].
Nguyen and Wu investigated convergence of random fuzzy sets with Choquet
integral in their study [8]. An important study on process capability indices by using
fuzzy normal distribution was annexed to the literature by Kaya and Kahraman [9].
Process capability analysis is a significant area in quality topics used at

Fig. 1 The illustration of continuous possibility space
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measurements of manufacturing. By fuzzy normal distribution the upper spec limits
and lower spec limits gain more flexible evaluation. Shapiro explained fuzzy con-
tinuous distribution in a clear form and applied the continuity into real life appli-
cations [10, 11]. Rakus-Andersson expanded the continuity of fuzzy probabilities by
the means of continuous events according to the procedure of the approximation, and
characterized this approach by an irrelevant cumulative error [12]. Dey and
Chakraborty derived a fuzzy random continuous system regarding an annual cus-
tomer demand which is based on a uniformly distributed continuous fuzzy random
variable [13]. They reduced the setup cost capital and ameliorated the process quality
which incorporated into the total cost with minimizing object. Montes et al. [14]
worked on the area of PZ-compatibility based on t-norms for Zadeh’s probability
which fulfills Kolmogorov’s axioms in fuzzy occurrences. They characterized a
complete description of PZ-compatible continuous t-norms.

In this chapter, we assume that fuzzy random variables, a-cuts are already
known. Fuzzy probability were investigated in the previous section we will not give
definitions of these topics for continuous case. In Sect. 2, we will penetrate to
continuous fuzzy expectation issue. Section 3 will make mention of Fuzzy Uniform
distribution. Then Fuzzy Exponential distribution will be investigated in Sect. 4.
Section 5 will contain and depict Fuzzy Laplace distribution. After that, in Sect. 6
Fuzzy Normal distribution will be expressed. Various approximations between
distributions in fuzzy manner will be depicted in that section also. And the ending
of the continuous probability distributions, Fuzzy Lognormal distribution will be
explained in Sect. 7. All these Fuzzy continuous distributions will be reinforced by
illustrative examples. Finally, we will complete this chapter by a comprehensive
review.

2 Fuzzy Continuous Expectation

Before the definition and the analysis of fuzzy continuous distributions, we need to
generalize the idea of expectation in continuous case. As Kwakernaak [15, 16]
introduced the mathematical foundations of the fuzzy expectation and the fuzzy
variance, Buckley generated a clear point of view for their use through the examples
and the applications [3–5]. In this section we will review a summary of these
concepts.

Let us start with an initial definition; suppose K and L are two random variables
with joint probability density f ðk; l; hÞ where k; l 2 R and the joint density func-
tion’s vector of parameters should be h ¼ ðh1; . . .hnÞ.

In continuous probability, a random sample is essential in order to estimate
stochastic dynamics of the population. The anticipation related to the population
could be a point or an interval. Instead of point estimation, a confidence interval for
each hi could be replaced by the probability density function to obtain an interval
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joint probability density function. On the other hand, a general formulation should
be expanded and this step requires an expression of the uncertainty based on hi by
replacing a fuzzy number for hi and acquiring a joint fuzzy probability density
function.

As a recall, the a-cuts of fuzzy number utilized for hi are represented in a similar
way in Fuzzy probability theory I: discrete case: section 3. We remark that a better
formulation could be implemented utilizing a-cuts of the fuzzy numbers for the
interval probability density functions. The joint fuzzy density functions are fulfilled
by substituting fuzzy numbers for the vague parameters. Therefore, the nubiluous
definitions of fuzzy marginals should be discussed now.

Since the hi in h are uncertain, fuzzy numbers ~hi are replaced for the hi, 1� i� n,
then it provides joint fuzzy density f ðk; l; ~hÞ. The fuzzy marginal for K is

f ðk; ~hÞ ¼
Z1
�1

f ðk; l; ~hÞdl: ð1Þ

A similar formulation could be adapted to derive the fuzzy marginal of L. The a-
cuts of the fuzzy marginals f ðk; ~hÞ could be calculated by the following equation

f ðk; ~hÞ½a� ¼ f
Z1
�1

f ðk; l; hÞdl j hi 2 ~hi½a�; 1� i� ng; ð2Þ

for 0� a� 1, and also we can derive an analogous equation for f ðl; ~hÞ½a�.
Equation (2) gives the a-cuts of a fuzzy set for each value of k.

At this juncture let f ðk; hÞ be the crisp (not fuzzy) marginal of k. Let’s utilize
f ðk; hÞ to find the mean lkðhÞ and variance VarkðhÞ of K. The mean and variance of
K are written as the functions of h as they are related with the values of the
parameters. Suppose that lkðhÞ and VarkðhÞ are continuous functions of h. Deriving
the fuzzy mean and variance of the fuzzy marginal could be made by fuzzification
of the crisp mean and variance. The following theorem can be deduced from the
previous explanations for K and also can be utilized for L.

Theorem For the fuzzy marginal f ðk; ~h), the fuzzy mean and the fuzzy variance are
lkð~hÞ and Varkð~hÞ, respectively [4].

Proof An a-cut of the fuzzy mean of the fuzzy marginal for K is

Mkð~hÞ½a� ¼ f
Z1
�1

kf ðk; hÞdk j hi 2 ~hi½a�; 1� i� ng; ð3Þ

for 0� a� 1. Now the integral in Eq. (3) equals MkðhÞ for each hi 2 ~hi, 1� i� n.
So
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Mkð~hÞ½a� ¼ flkðhÞ j hi 2 ~hi½a�; 1� i� ng: ð4Þ

Because of this, the fuzzy mean is Mkð~hÞ. See the “examples” parts in various
fuzzy distributions sections of this chapter.

The a-cuts of the fuzzy variance are

Varkð~hÞ½a� ¼ f
Z1
�1

ðk � lkðhÞÞ2f ðk; hÞdk j hi 2 ~hi½a�; 1� i� ng; ð5Þ

for 0� a� 1. But the integral in the above equation equals VarkðhÞ for each hi 2 ~hi,
1� i� n. Due to this

Varkð~hÞ½a� ¼ fVarkðhÞ j hi 2 ~hi½a�; 1� i� ng: ð6Þ

So, the fuzzy variance is just Varkð~hÞ.

3 Fuzzy Uniform Distribution

The uniform distribution is a probabilistic approach to model an interval where the
events are equally probable. In order to implement this distribution, upper and
lower parameters are required to generate the interval. For the fuzzy uniform dis-
tribution, this interval will be expressed as a fuzzy interval.

Let Uðm; nÞ be the uniform probability density function for m\n. Thus,

PðxÞ ¼
1

m�n for m� x� n
0 otherwise

�
ð7Þ

Furthermore, the uniform distribution will be transformed into a fuzzy distri-
bution by substituting m; n using fuzzy numbers ~m; ~n;

~P a; b½ � a½ � ¼ 1
m� n

form 2 ~m a½ � ; n 2 ~n a½ � ð8Þ

However, ~m and ~n must be determined in order to calculate the probability value
~P k; l½ �. Thus,

p1 k; l½ � a½ � ¼ min
K

m� n

� �
ð9Þ

p2 k; l½ � a½ � ¼ max
K

m� n

� �
ð10Þ
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where K denotes the length of the interval k; l½ � \ m; n½ �.
Example 1 Let ~X be a continuous fuzzy uniform random variable with parameters
�4;�2½ � and 2; 4½ �. Calculate the probability P �3\X\3½ �.
We start with the calculation of ~P a; b½ � a½ � ¼ p1 að Þ; p2 að Þ½ � where p1 að Þ, p2 að Þ are

the minimum and the maximum values of the interval. Thus,

p1 að Þ ¼ min
K �3; 3;m; nð Þ

m� n

� �
ð11Þ

p2 að Þ ¼ max
K �3; 3;m; nð Þ

m� n

� �
ð12Þ

For all a, the maximum value will be equal to 1. Therefore, we need to calculate
the minimum value of the interval. For this purpose, we must study the intervals for
b and c where ~b a½ � ¼ �4þ a;�2� a½ � and ~c a½ � ¼ 2þ a; 4� a½ �. In this case, we
need to consider the interval algebra as follows

• �4þ a� n� � 3; 2þ a�m� 3
• �4þ a� n� � 3; 3�m� 4� a
• �3� n� � a� 2; 2þ a�m� 3
• �3� n� � a� 2; 3�m� 4� a

Thus,
• 5þ a�m� n� 7� a
• 6�m� n� 8� 2a
• 4þ 2a�m� n� 6
• 5þ a�m� n� 7� a

Therefore, we find that the minimum of the interval is equal to 6=ð8� 2aÞ.
Finally, the a-cuts of ~P �3; 3½ � are expressed with 6=ð8� 2aÞ and the solution is
illustrated in Fig. 2.

Fuzzy Mean and Variance of Uniform Distribution

Finally, we may note that the mean ~l and variance ~r2 of the uniform distribution
could be calculated;

~l a½ � ¼ ~mþ ~n
2

ð13Þ

~r2 a½ � ¼ ð~m� ~nÞ2
12

ð14Þ
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4 Fuzzy Exponential Distribution

Exponential distribution is considered as the probabilistic approach which describes
the time factor between the events occurring in a Poisson process.

The exponential density function is expressed as;

f ðtÞ ¼ ke�kt 0\t and 0\k ð15Þ

In order to calculate the fuzzy probability values, we need to define an interval
a; b½ � in which we calculate the probability ~P a; b½ �. Therefore, we may calculate this
value as follows;

~P a; b½ � a½ � ¼
Zb
a

ke�ktdt for k 2 ~k a½ � ð16Þ

Let us denote ~P a; b½ � a½ � ¼ p1 að Þ; p2 að Þ½ �. Thus,

p1 a; b½ � a½ � ¼ min
Z b

a
ke�ktdt

� �
for k 2 ~k a½ � ð17Þ

p2 a; b½ � a½ � ¼ max
Z b

a
ke�ktdt

� �
for k 2 ~k a½ � ð18Þ

Fig. 2 The probability chart of fuzzy uniform distribution for ~P �3; 3½ �
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Example 2 Let k ¼ 0:3; 0:4; 0:8ð Þ. Find the fuzzy probability ~P 2; 5½ �.
We need to calculate the minimum and the maximum probabilities using the a-

cuts based on the Eqs. (17), and (18). Afterwards, we obtain the following Table 1
where these values are represented.

Finally, we can sketch ~P 2; 5½ � as it is shown in Fig. 3.

Table 1 Fuzzy probability
values of Example 2

a min ~P 2; 5½ � a½ �� �
max ~P 2; 5½ � a½ �� �

0 0.1836 0.3257

0.1 0.1963 0.3257

0.2 0.2096 0.3254

0.3 0.2233 0.3248

0.4 0.2373 0.3239

0.5 0.2514 0.3228

0.6 0.2655 0.3215

0.7 0.2792 0.3199

0.8 0.2922 0.3181

0.9 0.3040 0.3161

1 0.314 0.314

Fig. 3 Fuzzy probability values of Example 2
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Fuzzy Mean and Variance of Exponential Distribution

In order to complete the properties of fuzzy exponential distribution we have to
review the corresponding fuzzy mean and the fuzzy variance. We may note the
mean ~l and variance ~r2 of the exponential distribution could be calculated as
follows;

~l a½ � ¼ 1
~k

ð19Þ

~r2 a½ � ¼ 1
~k2

ð20Þ

5 Fuzzy Laplace Distribution

The Laplace distribution which also called double exponential distribution due to its
supplementary parameter. It is widely used in signal and control theory applications
where the coefficient of Discrete Fourier Transformation is considered. Laplace
distribution consists of two different parameters l and b[ 0. The Laplace density
function is characterized as;

f ðxÞ ¼ 1
2b

e
� x�lj j

b ð21Þ

Using the same principle, we may derive the fuzzy probabilistic expression by
considering l and b as fuzzy values. Therefore, we may note an interval k; l½ � in
which we calculate the fuzzy probability as follows;

p1 k; l½ � a½ � ¼ min
1
2b

e
� x�lj j

b

� �
ð22Þ

p2 k; l½ � a½ � ¼ max
1
2b

e
� x�lj j

b

� �
ð23Þ

where l 2 ~l a½ �, b 2 ~b a½ � and 0� a� 1.
Therefore, we note the calculation of ~P k; l½ � a½ � ¼ p1 að Þp2 að Þ½ � where p1 að Þ and

p2 að Þ are the minimum and the maximum of the interval. Thus,

~P k; l½ � a½ � ¼ 1
2b

e
� x�lj j

b for l 2 ~l a½ � ; b 2 ~b a½ � ð24Þ

Example 3 In a manufacturing process, daily yields are found distributed sym-
metrically around 0 and ~b is found ð35; 45; 55Þ. The rate of return in this process is
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modeled with fuzzy Laplace distribution. Calculate the fuzzy probability of
receiving a rate of return bigger than 0:05.

In order to find the solution, we need to resolve the following integration;

~P 0:05;1½ Þ a½ � ¼
Z1
0:05

1
2b

e
� x�lj j

b dx l 2 ~l a½ �; b 2 ~b a½ �; 0� a� 1 ð25Þ

Thus,

~P 0:05;1½ Þ a½ � ¼ 1
2b

e
l
b

Z1
0:05

e
�x
b dx l 2 ~l a½ �; b 2 ~b a½ �; 0� a� 1 ð26Þ

Therefore,

~P 0:05;1½ Þ a½ � ¼ 1
2b

e
l
b �be�x=b
h i1

0:05
l 2 ~l a½ �; b 2 ~b a½ �; 0� a� 1 ð27Þ

At this point, we have to calculate the a-cuts for Eq. 27.
Finally, we obtain the fuzzy probability values of ~P 0:05;1½ Þ as indicated in

Table 2.

Fuzzy Mean and Variance of Laplace Distribution

When we review the corresponding fuzzy mean and the fuzzy variance of Laplace
distribution, we should remark that the mean is ~l and the variance is 2~b2.

Table 2 Fuzzy probability
values of Example 3

a min ~P 0:05;1½ Þ a½ �� �
max ~P 0:05;1½ Þ a½ �� �

0 0.4993 0.4995

0.1 0.4993 0.4995

0.2 0.4993 0.4995

0.3 0.4993 0.4995

0.4 0.4994 0.4995

0.5 0.4994 0.4995

0.6 0.4994 0.4995

0.7 0.4994 0.4995

0.8 0.4994 0.4995

0.9 0.4994 0.4995

1 0.4994 0.4994
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6 Fuzzy Normal Distribution

The normal distribution could be considered as one of the most popular distribution
in this field. The normal or Gaussian distribution has a bell shape which charac-
terizes that any real observation will be limited by an upper and lower bound.
A special case of the normal distribution is called standard normal or unit normal
distribution where the mean l is 0 and the variance r2 is 1.

The normal density function is defined as;

f ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e�
1
2ðx�l

r Þ2 ð28Þ

where �1\l\1 and r2 [ 0
Let us denote ~P a; b½ � a½ � ¼ p1 að Þ; p2 að Þ½ �. Thus, in order to derive the fuzzy

probability, we have to resolve the interval values as follows;

p1 a; b½ � a½ � ¼ min
1

r
ffiffiffiffiffiffi
2p

p e�
1
2ðx�l

r Þ2
� �

ð29Þ

p2 a; b½ � a½ � ¼ max
1

r
ffiffiffiffiffiffi
2p

p e�
1
2ðx�l

r Þ2
� �

ð30Þ

where l 2 ~l a½ � and r2 2 ~r2 a½ �
Fuzzy Mean and Variance of Normal Distribution

As the normal distribution is introduced with its mean and its variance, it is trivial to
note that the fuzzy mean is ~l and the fuzzy variance is ~r2, respectively.

Example 4 Let the mean ~l ¼ 15; 18; 19ð Þ and the variance ~r2 ¼ 1; 4; 5ð Þ. Compute
the fuzzy probability value for ~P 18; 21½ �.

In order to calculate this value we should use the following integration;

~P 18; 21½ � a½ � ¼ 1ffiffiffiffiffiffi
2p

p
Zz2
z1

e�z2=2dz

8<
:

9=
; ð31Þ

where, l 2 ~l a½ �; r2 2 ~r2. We set that z1 ¼ 18�l
r and z2 ¼ 21�l

r . Thus, we generate
Table 3 using the calculation of the integration in Eq. (31) and with these values
one can easily trace the Fig. 4.

The calculation of the mean and the variance are crucial to characterize the
parameters of a random process. These parameters are also necessary for the fuzzy
normal distribution. Recently, Kaya and Kahraman [9] and Buckley [4, 5] studied
fuzzy estimation methods to handle the membership functions of the mean and the
variance. We will follow a similar approach in order to estimate them.
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Let x be a random variable with a normal density function N l; r2ð Þ where the
mean; l is unknown and the variance; r2 is known. In order to estimate the mean l,
a random sample x1; x2; . . .; xn could be considered. The mean of this random
sample would be a crisp number k. We recall that k would have a normal density
function N l; r2=nð Þ and standard normal density function N 0; 1ð Þ would be written
using k�l

r=
ffiffi
n

p (Fig. 5). Then;

P zW=2 � k � l
rffiffi
n

p � � zW=2

 !
¼ 1� b ð32Þ

Table 3 Fuzzy probability
values of Example 4

a min ~P 18; 21½ � a½ �� �
max ~P 18; 21½ � a½ �� �

0 0.0013 0.4871

0.1 0.0066 0.5037

0.2 0.0223 0.5210

0.3 0.0572 0.5390

0.4 0.1183 0.5578

0.5 0.2066 0.5773

0.6 0.3154 0.5975

0.7 0.4320 0.6183

0.8 0.5408 0.6395

0.9 0.6275 0.6607

1 0.6816 0.6816

Fig. 4 Fuzzy triangular MFs of the mean and the variance

46 A. Cağrı Tolga and I. Burak Parlak



and we may write;

P kþ zW=2
rffiffiffi
n

p � l� k � zW=2
rffiffiffi
n

p
� �

¼ 1� b ð33Þ

where zW=2 is the z value of the probability from Nð0; 1Þ distribution which is above
W=2. Therefore, 1� bð Þ 100 % confidence interval for l is as follows;

s1 bð Þ; s2 bð Þ½ � ¼ k � zW=2
rffiffiffi
n

p ; kþ zW=2
rffiffiffi
n

p
	 


ð34Þ

Here, we note that
R zW=2

�1 N 0; 1ð Þdx ¼ 1� b=2. In order to interpret the fuzzy
case, we may substitute the bs with the a-cuts. Finally we may obtain the fuzzy
estimator ~l as follows;

l1 að Þ; l2 að Þ½ � ¼ k � za=2
rffiffiffi
n

p ; kþ za=2
rffiffiffi
n

p
	 


ð35Þ

Example 5 Let x be a random variable with probability density function N l; 2ð Þ.
There is a random sample x1; x2; . . .; x150. We assume that the mean of the samples
will be equal to 15 after n ¼ 150. Try to calculate the fuzzy mean ~l.

Fig. 5 Fuzzy probability values of Example 4
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We will adapt a similar approach which is represented in Eq. (35)

l1 að Þ; l2 að Þ½ � ¼ 15� 0:1633za=2; 15þ 0:1633za=2
� � ð36Þ

After the estimation of the mean, we need to formulate an approach to estimate
the variance. In a similar manner we have to start with the definition of a normal
process (Fig. 6).

Let x be a random variable having a probability density function N l; r2ð Þ where
the mean l and the variance r2 are unknown. In order to achieve r2 estimation, a

random sample x1; x2; . . .; xn is considered. In probability theory, n�1ð Þs2
r2 is called

Chi-square distribution with n� 1 degrees of freedom. Thus, fuzzy r2 could be
estimated using a confidence interval as follows;

n� 1ð Þs2
v2R;b=2

;
n� 1ð Þs2
v2L;b=2

" #
ð37Þ

v2R;b=2 and v2L;b=2 denote the right and the left sides of v2 distribution, respec-

tively. Furthermore, we can rewrite this expression to obtain an unbiased fuzzy
estimator [4, 5, 9].

L kð Þ ¼ 1� kð Þv2R;0:005 þ k n� 1ð Þ ð38Þ

R kð Þ ¼ 1� kð Þv2L;0:005 þ k n� 1ð Þ ð39Þ

Fig. 6 Membership function of the mean for Example 5
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The unbiased 1� bð Þ 100 % confidence interval is determined for r2 as follows;

~r2 ¼ n� 1ð Þs2
L kð Þ ;

n� 1ð Þs2
R kð Þ

	 

ð40Þ

In order to interpret the fuzzy case, we may substitute the ks with the a-cuts.
Finally we may obtain the fuzzy estimator ~r2 as follows;

~r2 a½ � ¼ n� 1ð Þs2
1� að Þv2R;0:005 þ a n� 1ð Þ ;

n� 1ð Þs2
1� að Þv2L;0:005 þ a n� 1ð Þ

" #
ð41Þ

Example 6 Assume that we have a random sample x1; x2; . . .; xn having a normal
probability density function Nðl; r2Þ where r2 is unknown. In order to estimate r2,
let us consider that s2 value is determined as 2:05 for 150 samples. Try to calculate
the fuzzy variance ~r2.

We will adapt a similar approach which is represented in Eq. (41)

~r2 a½ � ¼ 149ð Þð2:05Þ
1� að Þv2R;0:005 þ a 149ð Þ ;

149ð Þ2:05
1� að Þv2L;0:005 þ a 149ð Þ

" #
ð42Þ

Finally, we obtained ~r2 values by taking a-cuts. Figure 7 depicts this expression.

Fig. 7 Membership function of the variance for Example 6
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Fuzzy Normal Approximations

• Approximation of Fuzzy Binomial Distribution
At this point, let us study the approximation between fuzzy normal and fuzzy

binomial distribution. As a recall from the discrete case, let p = 0.5 and m = 150
which we will use to write fuzzy binomial distribution. Since p value is fuzzy, let
~p ¼ ð0:3; 0:5; 0:55Þ we may write;

P1 a½ � ¼ min 150p2ð1� pÞ� �
p 2 ~p a½ � ð43Þ

P2 a½ � ¼ max 150p2ð1� pÞ� �
p 2 ~p a½ � ð44Þ

Then,

~PðXÞ a½ � ¼ 150ðp1ðaÞÞ2ð1� p1ðaÞÞ150ðp2ðaÞÞ2ð1� p2ðaÞÞ
h i

;

~p a½ � ¼ p1ðaÞ; p2ðaÞ½ � ¼ 0:3þ 0:2a; 0:55� 0:05a½ �
ð45Þ

Therefore, we have to define the fuzzy mean and fuzzy variance of Bðm; ~pÞ; the
fuzzy binomial distribution. Let ~l ¼ m~p the fuzzy mean and we consider Bð150; ~pÞ
to find the fuzzy probability ~P 30; 50½ �. Thus, we may write;

~P 30; 50½ � a½ � ¼
X50
i¼30

150
i

� �
pið1� pÞ150�i ð46Þ

Using the normal probability density function f ðx; 0; 1Þ we may approximate the
same expression with z1 ¼ 29:5�l

r and z2 ¼ 50:5�l
r as follows;

~P 30; 50½ � a½ � �
Zz2
z1

f ðx; 0; 1Þdx l 2 ~l½a� r2 2 ~r2½a� ð47Þ

We should note that ~l and ~r2 are the fuzzy binomial mean and the fuzzy
binomial variance, respectively.

• Approximation of Fuzzy Poisson Distribution
The fuzzy Poisson distribution could be approximated using fuzzy normal distri-
bution. Similar to fuzzy binomial case, let k ¼ 15 which we will use to express fuzzy
Poisson distribution. Since k value is fuzzy, let ~k ¼ ð10; 15; 18Þ we may write;

p1 að Þ ¼ min m kð Þf g ð48Þ

p2 að Þ ¼ max m kð Þf g ð49Þ

where k 2 ~k a½ � and m kð Þ ¼ ke�k=x!.
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Then, we may apply the same approximation technique to achieve a fuzzy
probability value through fuzzy normal distribution. Let 11�X � 17 and we may
note that;

~P 11; 17½ � a½ � ¼
X17
x¼11

kxe�k

x!

( )
k 2 ~k a½ � ð50Þ

Therefore, we may rewrite this expression using the fuzzy normal distribution by
defining the boundaries, z1 ¼ 10:5�l

r and z2 ¼ 17:5�l
r as follows;

~P 11; 17½ � a½ � �
Zz2
z1

f ðx; 0; 1Þdx k 2 ~k½a� ð51Þ

7 Fuzzy Lognormal Distribution

Lognormal distribution could be interpreted as an extended form of normal dis-
tribution. Let t be a random variable which has a normal distribution; mean l and
variance r2. x ¼ et is a lognormal random variable and the lognormal distribution
L ~l; ~r2ð Þ is;

f ðxÞ ¼ 1

xr
ffiffiffiffiffiffi
2p

p e � ln xð Þ�lð Þ2
2r2

� �
0\x\1 ð52Þ

In order to develop the fuzzy lognormal distribution, we follow a similar
approach as we developed in fuzzy normal distribution. Let N ~l; ~r2ð Þ be a fuzzy
normal distribution with fuzzy numbers ~l and ~r2. The fuzzy lognormal probability
~P is calculated within an interval a; b½ �. For a 2 0; 1½ �, l 2 ~l a½ � and r2 2 ~r2 a½ �,
~P a; b½ � is calculated using the interval z1; z2½ � where z1 ¼ a� lð Þ=r and z2 ¼
b� lð Þ=r as follows;

~P a; b½ � a½ � ¼
Zz2
z1

f x; 0; 1ð Þdx a 2 0; 1½ � ð53Þ

Example 7 Let the fuzzy mean be ~l ¼ 6; 6:5; 7:5ð Þ and the fuzzy variance be
~r2 ¼ 1:44; 1:69; 1:96ð Þ. Compute the fuzzy probability value ~P 500; 700½ � using
fuzzy lognormal distribution.

In order to calculate this value we should use the following integration;
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~P 500; 700½ � a½ � ¼ 1ffiffiffiffiffiffi
2p

p
Zz2
z1

e�z2=2dz

8<
:

9=
; ð54Þ

where l 2 ~l a½ �; r2 2 ~r2. We set that z1 ¼ ln 500ð Þ�l
r and z2 ¼ ln 700ð Þ�l

r . Thus, we
generate Table 4 using the calculation of the integration in Eq. (54) and the Fig. 8.

Fuzzy Mean and Variance of Lognormal Distribution

The mean and the variance of fuzzy lognormal distribution are derived from the
lognormal distribution. By using the a-cuts, the fuzzy mean; ~lL of fuzzy lognormal
distribution could be calculated as follows;

Table 4 Fuzzy probability
values of Example 7

a min ~P 500; 700½ � a½ �� �
max ~P 500; 700½ � a½ �� �

0 0.0868 0.1060

0.1 0.0887 0.1065

0.2 0.0904 0.1067

0.3 0.0922 0.1068

0.4 0.0939 0.1067

0.5 0.0955 0.1064

0.6 0.0971 0.1059

0.7 0.0986 0.1053

0.8 0.1000 0.1045

0.9 0.1013 0.1036

1 0.1026 0.1026

Fig. 8 Fuzzy probability values of Example 7
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~lL a½ � ¼ e~lþ ~r2=2 ð55Þ

Similarly, the fuzzy variance; ~r2L of fuzzy lognormal distribution is calculated as
follows;

~r2L a½ � ¼ e~r
2�1e2~lþ ~r2 ð56Þ

8 Conclusion

In fuzzy probability theory, continuous case serves frequently to better understand
real applications and to develop realistic models. The theory is based on the use of
fuzzy continuous random variables. Therefore, the similarity between discrete and
continuous case facilitates the integration of fundamental definitions and to link the
probability and possibility theory.

In this section, we applied the already developed theory of fuzzy random vari-
ables into the continuous case. Therefore, the expectations theory was derived and
the fundamental parts were introduced to characterize the distributions. Variables
could be derived using fuzzy continuous random variables. Fuzzy uniform, fuzzy
exponential, fuzzy laplace, fuzzy normal and fuzzy lognormal distributions were
explained starting with the crisp distributions. Therefore, the continuous case helped
us to show the immigration into the fuzzy representation by adapting the a-cuts. The
continuous expectation theory guided us to derive the fuzzy mean and the fuzzy
variance of all distributions. The illustrative examples depicted the implementation
of this theory and explained how to sketch the fuzzy probability in continuous case.

Moreover, fuzzy continuous theory is also utilized in fuzzy probability distri-
butions while the occurrences of events appear by imprecise linguistic data. We
tried to state more clearly the fuzzy probability theory in continuous form in a
well-organized frame in this chapter.

For further research topics, construction of fuzzy uniform, fuzzy exponential,
fuzzy laplace, fuzzy normal, and fuzzy lognormal probability distributions by type-2
fuzzy numbers can be accomplished by further studies. Also Markov models taking
into account type-2 fuzzy numbers could be investigated in more developed form.
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On Fuzzy Bayesian Inference

Reinhard Viertl and Owat Sunanta

Abstract Bayesian inference deals with a-priori information in statistical analysis.
However, usually Bayesians assume that all kind of uncertainty can be modeled by
probability. Unfortunately, this is not always true due to how uncertainties are
defined. The uncertainty of measurement results of continuous quantities differs
from probabilistic uncertainty. Individual measurement results also contain another
kind of uncertainty, which is called fuzziness. The combination of fuzziness and
stochastic uncertainty calls for a generalization of Bayesian inference, i.e. fuzzy
Bayesian inference. This chapter explains the generalized Bayes’ theorem in han-
dling fuzzy a-priori information and fuzzy data.

Keywords Bayesian inference � Characterizing functions � Fuzzy data � Fuzzy
numbers � Fuzzy probability distributions � Fuzzy vectors � Generalized Bayes’
theorem � Vector-characterizing functions

1 Introduction

In standard Bayesian inference, a-priori distributions are assumed to be standard
probability distributions and the observations are assumed to be numbers or vectors.
Bayes’ theorem formulates the transition from an a-priori distribution of the
stochastic quantity ~h, which describes the parameters of interest h, to a corre-
sponding a-posteriori distribution. For continuous stochastic model X * f(�|h); h 2
⊝, based on observations x1,…, xn of X, the transition of an a-priori density with an
updated information to the distribution of the stochastic quantity describing the
parameter ~h is given by the conditional density p(�| x1, …, xn) of ~h, i.e.
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p hjx1; . . .; xnð Þ ¼ p hð Þ � lðh; x1; . . .; xnÞR
� p hð Þ � lðh; x1; . . .; xnÞdh ð1Þ

where l(h; x1, …, xn) is the likelihood function defined on the parameter space ⊝.
However, the use of a-priori densities in form of standard probability densities is

questionable in reality. Moreover, real observations from continuous quantities are
not precise numbers, but rather fuzzy.

The first problem can be overcome by using a more general form of probability,
i.e. fuzzy probability densities. The second problem can be solved by using fuzzy
numbers and fuzzy vectors. The generalization of fuzzy Bayesian inference is, then,
necessary (see related work in [1, 3, 7]).

In Sect. 2, the mathematical concepts for fuzzy numbers and vectors along with
their characterizing functions are described. In Sect. 3, fuzzy probability densities
are introduced through defining fuzzy a-priori distributions. In Sect. 4, the math-
ematical description of fuzzy observations and their corresponding characterizing
functions is explained. In Sect. 5, the generalized Bayes’ theorem is described for
handling fuzzy a-priori densities by using the so-called d-level functions. As a
result, the fuzzy a-posteriori density is obtained. In Sect. 6, fuzzy predictive den-
sities are described. The paper is, then, concluded with an example (Sect. 7) to
show results of applying the streamlined concepts. Lastly, final remarks along with
proposed future research are given in Sect. 8.

2 Fuzzy Numbers and Fuzzy Vectors

In order to describe observations or measurements of continuous quantities, the
definition of general fuzzy numbers is useful.

Definition 1 A general fuzzy number x* is defined by its characterizing function
n(�), which is a real function of one real variable and possesses the following
properties:

(1) n: ℝ ! [0, 1]
(2) The support of n(�), denoted by supp[n(�)] and defined by

supp[n(�)] ≔ {x 2 ℝ: n(x) > 0},
is a bounded subset of ℝ.

(3) For all d 2 (0, 1] the d-cut Cd[n(�)], defined by
Cd[n(�)] ≔ {x 2 ℝ: n(x) � d} =

Skd
j¼1½ad;j; bd;j],

is non-empty and a finite union of compact intervals.

Along with general fuzzy numbers, a related critical question is how to obtain
the characterizing function of a measurement result. For details, see [4, 5].

For multivariate continuous data, a standard measurement result is an
n-dimensional real vector (x1; . . .; xn). In reality, there are two possibilities:
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First, when the individual values of the variables xi are fuzzy numbers x�i , a
vector of fuzzy numbers (x�1; . . .; x

�
n) is obtained.

Second, a fuzzy version of a vector is obtained. For example, the position of a
ship on a radar screen, which is, in the ideal case, a two-dimensional vector (x, y) 2
ℝ2. In real situation, such position is characterized by a light point on the screen,
which is not a precise vector. Instead, the result is a fuzzy vector, denoted as (x, y)*.

Definition 2 Using the notation x = (x1; . . .; xn), an n-dimensional fuzzy vector x*

is determined by its so-called vector-characterizing function f(�, …, �), which is a
real function of n real variables x1; . . .; xn and possesses the following properties:

(1) f: ℝn ! [0, 1]
(2) The support of f(�,…,�) is a bounded set.
(3) For all d2(0, 1], the d-cut Cd[ x

*], defined by
Cd[ x

*] ≔ { x 2 ℝn: f(x) � d},

is non-empty, bounded, and a finite union of simply connected and closed sets.
Again, how to obtain the vector-characterizing function of a fuzzy vector is

important (see [4] for details).

3 Fuzzy A-priori Distributions

Standard a-priori distributions in Bayesian inference are frequently not well justi-
fied in solving real-world problems. Therefore, a more general form of expressing
a-priori information is more appropriate. These generalized a-priori distributions are
called fuzzy a-priori densities. In order to define fuzzy densities, a special form of
general fuzzy numbers is necessary.

Definition 3 A general fuzzy number whose d-cuts are non-empty compact
intervals [ad, bd] is called fuzzy interval, F I(ℝ) identifying the set of all fuzzy
intervals. For functions f *(�) defined on a measure space (M, A; µ), whose values
f *(x) are fuzzy intervals, their so-called lower limit and upper limit d-level func-
tions f

d
(�) and �fd(�) are defined in the following way:

Let Cd[ f
*(x)] = [ad(x), bd(x)] 8d 2 (0, 1], the lower limit and upper limit d-level

functions ad(�) and bd(�) are standard real-valued functions defined by their values
f
d
(x) ≔ ad(x) 8x 2 M and �fd (x) ≔ bd(x) 8x 2 M.
Fuzzy densities are fuzzy valued function f *(�) defined on a measure space (M,

A, µ) possessing the following properties:

(i) f *(�) is fuzzy interval 8x 2 M
(ii) 9g : M ! [0, ∞) which is a standard probability density on (M, A, µ) such

that f
1
(x) � g(x) � �f1(x) 8x 2 M

(iii) all d-level functions f
d
(�) and �f d (�) are integrable functions with finite

integral.
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Next, probabilities of events A 2 A based on a fuzzy probability density f *(�) are
defined in the following way:

Let Dd be the set of all standard probability densities h(�) on (M, A, µ) where
f
d
(x) � h(x) � �fd(x) 8x 2 M. The generalized probability P*(A) is a fuzzy

interval, which is determined by a generating family of compact intervals Bd = [ad,
bd] where

bd :¼ sup
Z

A
hðxÞdlðxÞ : h 2 Dd

� �

8d 2 0; 1ð �:

ad :¼ inf
Z

A
hðxÞdlðxÞ : h 2 Dd

� �

By applying the so-called construction lemma for general fuzzy numbers (see
[4]), the characterizing function n(�) of P*(A) is given by its values

n xð Þ ¼ supfd:1½ad;bd� xð Þ : d 2 0; 1½ �g 8x 2 R, where 1Bð�Þ denotes the indica-
tor function of the set B, and [a0,b0] ≔ ℝ.

As a result, fuzzy probability density is defined. Fuzzy probability densities are
general forms of expressing a-priori information concerning parameters h in
stochastic models X * f (�|h); h 2 ⊝.

Remark 1 The concept of fuzzy probability differs from that of the lower/upper
probabilities.

4 Fuzzy Data

Real observations of continuous stochastic quantities X are not precise numbers or
vectors, whereas the measurement results are rather fuzzy. The best mathematical
description (see also [2, 6]) of such observations is by means of general fuzzy
numbers x�1; . . .; x

�
n with corresponding characterizing functions n1(�), …, nn(�). The

fuzziness of an observation x�i resolves the problem in standard continuous
stochastic models where observed data have zero probability.

There are different approaches to generalize Bayes’ theorem to take care of
fuzziness. A promising method is defining the likelihood function by the extension
principle. For independent fuzzy observations x�1; . . .; x

�
n with characterizing func-

tions ni(�), where i = 1, 2, …, n, the likelihood function can be defined based on the
combined fuzzy sample element x*.
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x* is the combined fuzzy sample whose vector-characterizing function f(�,…,�) is
defined by its values in the following way:

fðx1; . . .; xnÞ := minfn1 x1ð Þ; . . .; nnðxnÞg 8ðx1; . . .; xnÞ 2 R
n ð3Þ

The generalized likelihood function l� h; x�ð Þ can, then, be represented by its
lower limit d-level function ldðh; x�Þ and the upper limit d-level function ldðh; x�Þ
for all d 2 (0, 1]. For a d-cut of the fuzzy likelihood function l� h; x�ð Þ, the following
fuzzy value is obtained:

Cd l� h; x�ð Þð Þ ¼ ld h; x�ð Þ; ldðh; x�Þ
� � ð4Þ

Remark 2 The generalized likelihood function l� h; x�ð Þ is a fuzzy valued function,
i.e. l�: H !F I([0; ∞)).

5 Generalized Bayes’ Theorem

The standard Bayes’ theorem has to be generalized to handle fuzzy a-priori densities
p�(�) on the parameter space ⊝ and fuzzy data x�1; . . .; x

�
n of parametric stochastic

models X * f(�|h); h 2 ⊝. This is possible by using the d-level functions pd(�) and
�pd(�) of p�(�) along with defining the corresponding d-level functions pd(�jx�1; . . .; x�n)
and �pd(�jx�1; . . .; x�n) of the fuzzy a-posteriori density in the following way:

�pd hjx�1; . . .; x�n
� � ¼ �pd hð Þ ��ldðh; x�1; . . .; x�nÞR

�
1
2 pd hð Þ � ld h; x�1; . . .; x�n

� �þ �pd hð Þ ��ldðh; x�1; . . .; x�nÞ
� �

dh

ð5Þ

pd hjx�1; . . .; x�n
� � ¼ pd hð Þ � ldðh; x�1; . . .; x�nÞR

�
1
2 pd hð Þ � ld h; x�1; . . .; x�n

� �þ �pd hð Þ ��ldðh; x�1; . . .; x�nÞ
� �

dh

Remark 3 The averaging 1
2

R
� pd hð Þ � ld h; x�1; . . .; x

�
n

� �þ �pd hð Þ ��ldðh; x�1; . . .;
�

x�nÞ�dh
is necessary in order to keep the sequential updating of standard Bayes’ theorem as
shown in the following lemma.

Lemma 1 For the given definition of the fuzzy a-posteriori density, the following
holds:
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Let x�1; . . .; x
�
k be a fuzzy sample and x�kþ 1; . . .; x

�
n a second fuzzy sample from a

stochastic model X * f(�|h); h 2 ⊝. Also, let p�(�) be a fuzzy a-priori density on
the parameter space ⊝.

Calculating the fuzzy a-posteriori density p�(�| x�1; . . .; x�k) and taking this cal-
culated density as new a-priori density for the second sample as well as further
calculating the corresponding a-posteriori density p�(�| x�kþ 1; . . .; x

�
n), we obtain the

same result as that from taking all the observations x�1; . . .; x
�
n and calculating the

a-posteriori density p�(� | x�1; . . .; x�n) in one step.

Proof The d-level functions pd(�| x�1; . . .; x�k) and �pd(�| x�1; . . .; x�k ), pd(�| x�kþ 1; . . .; x
�
n)

and �pd(�| x�kþ 1; . . .; x
�
n) are considered.

For the d-level functions, we obtain

Cd(p�(h | x�1; . . .; x
�
n)) = [pd(h | x�1; . . .; x

�
n); �pd(h | x�1; . . .; x

�
nÞ].

Using the abbreviation

Nðx�1; . . .; x�nÞ ¼
1
2

Z

H
pd hð Þ � ldðh; x�Þdhþ

Z

H
�pd hð Þ ��ldðh; x�Þdh

� 	

¼
Z

H

1
2
pd hð Þ � ld h; x�ð Þþ �pd hð Þ ��ldðh; x�Þ½ �dh;

and taking the fuzzy a-posteriori density p*(� | x�1; . . .; x�k) as new a-priori density
and x�kþ 1; . . .; x

�
n as data, also defining the combined fuzzy sample element x�1 of

fuzzy sample x�1; . . .; x
�
k and x�2 of fuzzy sample x�kþ 1; . . .; x

�
n in the same manner as

x* in Sect. 4, the lower limit d-level function of the new a-posteriori density is
defined by:

pd hjx�1; . . .; x�n
� � ¼ pd hjx�1; . . .; x�k

� � � ld h; x�2
� �

R
H

1
2 pd hjx�1; . . .; x�k

� � � ld h; x�2
� �þ �pd hjx�1; . . .; x�k

� � ��ldðh; x�2Þ
� �

dh

¼ ½Nðx�1; . . .; x�kÞ��1pd hð Þ � ld h; x�1
� � � ld h; x�2

� �

R
H

1
2N½ x�1; . . .; x�k

� ���1 pd hð Þ � ld h; x�1
� � � ld h; x�2

� �þ �pd hð Þ ��ldðh; x�1Þ ��ldðh; x�2Þ
� �

dh

¼ pd hð Þ � ld h; x�1
� � � ld h; x�2

� �
R
H

1
2 pd hð Þ � ld h; x�1

� � � ld h; x�2
� �þ �pd hð Þ ��ldðh; x�1Þ ��ldðh; x�2Þ

� �
dh

¼ pd hð Þ � ld h; x�ð ÞR
H

1
2 pd hð Þ � ld h; x�ð Þþ �pd hð Þ ��ldðh; x�Þ½ �dh

¼ pd hjx�1; . . .; x�n
� �

:

The upper limit d-level functions �pd(hjx�) are obtained analogously. Therefore,
the sequential updating from standard Bayes’ theorem also remains valid for fuzzy
data.
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6 Fuzzy Predictive Distributions

Standard predictive densities for stochastic model X * f (�|h); h 2 ⊝ based on data
D are defined as marginal density of the stochastic quantity X, i.e.

pðxjDÞ :=
Z

�
f xjhð Þp hjDð Þdh 8x 2 MX ;

where MX is the observation space of X.
In case of fuzzy a-posteriori density p�(�|D*) based on fuzzy data D*, the inte-

gration has to be generalized. This generalized integration yields fuzzy intervals.
Based on Dd as defined in Sect. 3, the generating family of intervals [cd,dd], d 2
(0, 1] is defined by

cd ≔ inf {
R
� f xjhð ÞhðhÞdh: h2Dd}

dd ≔ sup{
R
� f xjhð ÞhðhÞdh: h2Dd}.

Definition 4 The fuzzy predictive density p*(�|D*) of X is defined by its values
p*(x|D*) 8x 2 MX whose characterizing function wx(�) is given by the construction
lemma, i.e.

wx yð Þ ¼ supfd:1½cd;dd�ðyÞ : d 2 0; 1½ �g 8y 2 R; where c0;d0
� �

:¼ R:

Remark 4 The standard case of precise a-priori density and precise data is a special
case of the above construction. In this case, for standard a-posteriori densities
p(�|D), the above definition yields as characterizing function wx(�) of the value of
the predictive density the indicator function of p(x|D), i.e. wxð�Þ ¼ 1 pðxjDÞf gð�Þ:

7 Example

Waiting times in a queuing system are modeled with an exponential distribution and
with fuzzy gamma density as a-priori density for the parameter h 2 (0, ∞).
Different d-level functions (each with upper and lower limits) of the fuzzy a-priori
density are generated (using the method described in Sect. 3) and shown in Fig. 1.

Using a fuzzy sample of waiting times D* = ðx�1; . . .; x�8Þ with characterizing
functions as shown in Fig. 2, the application of the generalized Bayes’ theorem
(explained in Sect. 5) yields the corresponding fuzzy a-posteriori density p�(�|D*)
with their d-level functions. Some d-level functions of the result are depicted in
Fig. 3. Compared with the fuzzy a-priori density (Fig. 1), one notices the changes
in both shape and magnitude of the distribution curves, i.e. the distribution is
updated based on the fuzzy sample.

Some d-level functions of the predictive density p*(|D*) are approximated by
simulation and the result is depicted in Fig. 4. Application of fuzzy a-posteriori
density p�(�|D*) based on fuzzy data D* along with the generalized integration as
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explained in Sect. 6, the predictive density (marginal density in standard case) is
obtained.

Fig. 1 Fuzzy a-priori density

Fig. 2 Fuzzy sample
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Fig. 3 Fuzzy a-posteriori density

Fig. 4 Fuzzy predictive density
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8 Final Remark

A more general concept of fuzzy a-priori densities is introduced to handle fuzzy a
priori information and fuzzy data, as opposed to the use of standard probability.
This concept is more suitable in modeling prior information, which is usually
uncertain, i.e. fuzzy. Besides, concepts of general fuzzy numbers and fuzzy vectors
along with their characterizing functions have been applied in capturing the
imprecision of continuous quantities. The fuzzy probability densities with their
d-level functions are used to define fuzzy a-posteriori densities, where the a-priori
densities are updated based on fuzzy samples. In addition, fuzzy a-posteriori den-
sities can be used in order to generate fuzzy predictive distributions. In doing so, a
generalized integration procedure for the construction of fuzzy predictive densities
is introduced. As a result, Bayes’ theorem is generalized for modeling data with
explainable mathematical grounds in capturing the variability and imprecision of
real observations. However, in many applications, the data to be analyzed are
thought of as displayed in a matrix or in several matrices. A suggesting direction for
future effort is, therefore, to explicitly consider the inference methods for multi-
variate fuzzy data.
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Fuzzy Central Tendency Measures

Cengiz Kahraman and İrem Uçal Sarı

Abstract This chapter converts the classical central tendency measures to their
fuzzy cases. Fuzzy mean, fuzzy mode and fuzzy median are explained by numerical
examples. Fuzzy frequency distribution is another subtitle of this chapter. Classical
graphical illustrations are examined under fuzziness. A numerical example for each
central tendency measure is given.

Keywords Fuzzy sets � Mode � Median � Geometric mean � Quadratic mean �
Arithmetic mean � Harmonic mean

1 Introduction

A measure of central tendency is a single value that attempts to describe a set of
data by identifying the central position within that set of data. The mean is most
likely the measure of central tendency, but there are others, such as the median and
the mode. The mean, median and mode are all valid measures of central tendency,
but under different conditions, some measures of central tendency become more
appropriate to use than others.

Statistical modeling is used to describe variability of quantities and errors in
observations. But these models assume the observations to be numbers or vectors.
This assumption is often not realistic because measurement results of continuous
quantities are always not precise numbers but more or less non-precise. This kind of
uncertainty is different from errors and variability. Whereas errors and variability
can be modelled by stochastic variables and probability distributions, imprecision is
another kind of uncertainty, called fuzziness. For a quantitative description of such
data the most up-to-date method is to use fuzzy numbers and fuzzy vectors which
are special fuzzy models [9].
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This chapter briefly gives the definitions of classical central tendency measures,
and then explains how to calculate the fuzzy central tendency measures when we
have fuzzy data. Fuzzy mode, fuzzy median and fuzzy mean are explained by
numerical examples. Fuzzy frequency distribution and graphical illustrations for
fuzzy data are also given by numerical examples.

The remaining of this chapter is organized as follows. Section 2 briefly presents
the literature review on fuzzy central tendency measures. Section 3 includes the
classical measures of central tendency. Section 4 converts the classical definitions
to their fuzzy cases. Section 5 gives the steps of fuzzy frequency distribution.
Section 6 shows graphical illustrations for fuzzy data. Section 7 concludes the
chapter.

2 Literature Review

There exist a few publications in the literature related to fuzzy central tendency
measures. Goodman [1] determined the measures of central tendency of fuzzy sets
by a new approach based on the characterization of homomorphic-like operators
among fuzzy sets and related random sets. The measures of central tendency refer to
the domain values of a given fuzzy set. A number of ad hoc approaches, such as the
mean-of-maxima (MOM) of the fuzzy set membership function and the
center-of-area (COA) approach for the measurement of central tendencies, were
analyzed. Sun and Wu [8] proposed definitions of fuzzy mode, fuzzy median and
fuzzy mean as well as investigation of their related properties and employ these
techniques in the practical applications of real life. Empirical result shows that fuzzy
statistics with soft computing is more realistic and reasonable for the statistical
research. Teran (2009) presents an account of the notion of centrality which is based
on fuzzy events and is valid for single distributions and for families of distributions.
This unifying framework includes (a) univariate location estimators like the mean,
the median and the mode, (b) the interquartile interval and the Lorenz curve of a
random variable, (c) several generalized medians, trimmed regions and statistical
depth functions from multivariate analysis, (d) most known location estimators for
random sets, (e) the probability mass function of a discrete random variable and the
coverage function of a random closed set, (f) the Choquet integral with respect to an
infinitely alternating or infinitely monotone capacity. Lu and Jiao [3] used fuzzy
average statistics and analyzed the questionnaire for university students. They found
that fuzzy sample mean, fuzzy sample mode and fuzzy sample median could
describe the fuzzy investing behavior of the university students and its average
trends. Random fuzzy numbers has become a valuable tool to model and handle
fuzzy-valued data generated through a random process. Recent studies have been
devoted to introduce measures of the central tendency of random fuzzy numbers
showing a more robust behaviour than the so-called Aumann-type mean value.
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Sinova et al. [6] aimed to explore the extension of the median to random fuzzy
numbers. This extension is based on the 1-norm distance and its adequacy is shown
by analyzing its properties and comparing its robustness with that of the mean both
theoretically and empirically. Parvathi and Atanassova [5] defined the theoretical
aspects like sample mean, median, and mode of intuitionistic fuzzy data are defined.
Sinova et al. [7] aimed to deepen in the analysis of these centrality measures and the
Aumann-type mean by examining the situation of symmetric random fuzzy
numbers.

3 Central Tendency Measures

A measure of central tendency is a single value that attempts to describe a whole set
of data with a single value that describes the middle or center of a data set by
identifying the central position within that set of data. In this section, the most used
measures of central tendency and the graphical representation methods of data are
detailed.

3.1 Mean

The mean is the arithmetic average for a set of data. To find the arithmetic average
for a set of values the sum of all values in the set of data are divided by the number
of the values in that data.

The mean of a sample is denoted by �x and calculated by using Eq. 1 where
x1; x2; x3;. . .; xn are the values in the set of data and n is the number of the sample
size.

�x ¼ x1 þ x2 þ x3; þ � � � þ xn
n

¼
Pn

i¼1 xi
n

ð1Þ

The mean of a population is denoted by μ and calculated by using Eq. 2 where N
is the number of the population.

l ¼ x1 þ x2 þ x3; þ � � � þ xN
N

¼
PN

i¼1 xi
N

ð2Þ

Example 1 There are 50 observations of execution times of an experiment are given
in Table 1.

Sum of all the values in Table 1 is calculated as 6723. By using Eq. 2 the mean
is calculated as 6723/50 = 134.46.
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3.2 Median

The median of a data set is the middle value which divides the data set into two
equal groups, after the values are ordered from lowest to highest. If there is an even
number of values in the set, the median is calculated by taking the mean of the two
values in the center of the data.

Example 2 To calculate median of the data set given in Table 1, first the data are
ordered from the least to the largest:

122, 123, 123, 123, 124, 125, 125, 125, 127, 127, 128, 128, 128, 129, 130, 131,
131, 131, 132, 134, 135, 135, 136, 136, 137, 137, 137, 137, 137, 138, 138, 139,
139, 139, 139, 139, 139, 140, 140, 140, 140, 141, 141, 141, 142, 142, 143, 143,
143, 144

The middle values of the data are 137 and 137. Median of the data is calculated
by taking the arithmetic mean of these two data which is equal to 137.

3.3 Mode

Themode of a data set is themost commonly occurring value in the set.Mode can also
be defined as the element with the largest frequency in a given data set.
The frequency of a particular data value is the number of times the data value occurs.

Example 3 To calculate mode of the data set given in Table 1, first the frequencies
of the values which are written in brackets below are determined:

122 (1), 123 (3), 124 (1), 125 (3), 127 (2), 128 (3), 129 (1), 130 (1), 131 (3), 132
(1), 134 (1), 135 (2), 136 (2), 137 (5), 138 (2), 139 (6), 140 (4), 141 (3), 142 (2),
143 (3), 144 (1).

The mode of the data set is determined as 139 which is repeated 6 times in the
data set.

3.4 Geometric Mean

Geometric mean indicates the typical value of a data set by using the product of
their values. Geometric mean is defined as the nth root of the product of n

Table 1 The observations 141 137 144 128 137 127 125 143 128 132

125 125 139 129 137 136 139 123 127 141

135 130 140 123 140 135 131 139 128 139

139 138 140 143 137 137 139 140 142 134
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numbers. The geometric mean is preferred when working with percentages (which
are derived from values), whereas the standard arithmetic mean is preferred when
working with the values themselves.

Geometric mean of a sample is denoted by GM and calculated by using Eq. 3:

GM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � x3 � � � � � xnn

p ð3Þ

Example 4 Geometric mean of the data set given in Table 1 is calculated as 134.3
as shown below:

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
141� 125� 135� 139� 123� 137

�125� 130� 138� 142� � � � � 122
50

s
¼ 134:3

3.5 Harmonic Mean

Harmonic mean indicates the typical value of a data set by dividing the number of
observations by the reciprocal of each number in the series. Harmonic mean of a
sample is denoted by HM and calculated by using Eq. 4:

HM ¼ 1
1
n

1
x1
þ 1

x2
þ 1

x3
þ . . .þ 1

xn

� � ¼ nPn
i¼1

1
xi

ð4Þ

Example 5 Harmonic mean of the data set given in Table 1 is calculated as 134.137
as shown below:

HM ¼ 50
1

141 þ 1
125 þ 1

135 þ 1
139 þ 1

123 þ 1
137 þ 1

125 þ 1
130 þ � � � þ 1

122

� �
¼ 134:137

3.6 Quadratic Mean

Quadratic mean (QM) is a statistical measure of the magnitude of a varying quantity.
It can be calculated for a series of discrete values or for a continuously varying
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function. It is calculated by taking the square root of the mean of the squares of the
values. It is a special case of the generalized mean with the exponent p = 2.

Quadratic mean of a sample is denoted by QM and calculated by using Eq. 5:

QM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23 þ � � � þ x2n

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

n

r
ð5Þ

Example 6 Quadratic mean of the data set given in Table 1 is calculated as 134.61
as shown below:

QM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1412 þ 1252 þ 1352 þ 1392 þ 1232 þ 1372 þ 1252 þ 1302 þ 1382 þ � � � þ 1222

50

r
¼ 134:61

3.7 Graphical Representation of Data

3.7.1 Stem-and-Leaf Plots

A stem and leaf plot is a graphical method of displaying data where each data value
is split into a stem which is the first digit or digits of the number and a leaf which is
usually the last digit of the number. It is particularly useful when the data are not
too numerous.

On a standard stem and leaf plot the stem is on the left and in this column the
first digits of the numbers in the data set are ordered from smallest to largest.
A vertical line is drawn between stem and leaf columns. The leaves are on the left
side of the plot. Each number on the leaf represents one single value from the data
set. The numbers in the leaf are organized from smallest to largest and separated by
commas.

Example 7 The stem and leaf plot of the data set given in Table 1 is shown in
Fig. 1:

12 2,3,3,3,4,5,5,5,7,7,8,8,8,9
13 0,1,1,1,2,4,5,5,6,6,7,7,7,7,7,8,8,9,9,9,9,9,9
14 0,0,0,0,1,1,1,2,2,3,3,3,4

Fig. 1 Stem and leaf plot

70 C. Kahraman and İ.U. Sarı



3.7.2 Frequency Distribution Tables

Frequency distributions are visual displays that organize and present frequency
counts so that the information can be interpreted more easily. Frequency distribu-
tions can show either the actual number of observations falling in each range or the
percentage of observations. Frequency distributions are particularly useful in
summarizing large data sets and assigning probabilities.

There are four steps for constructing a frequency distribution from a data set.

1. The number of the classes is decided which is mostly preferred between 5 and
20.

2. The class width is defined by rounding up the value which is found by dividing
the range of the data by the number of classes.

3. The class limits are determined which are mostly defined by taking the mini-
mum data entry as the lower limit of the first class. To get the lower limit of the
next class, simply the class width is added to the lower limit of a class. After
determining lower limits for all classes, upper limits for each class is determined
considering that the classes cannot overlap.

4. The number of data entries for each class are counted and in the row of the table
for that class.

Example 8 To construct a frequency distribution table from the data set given in
Table 1 we decide the number of classes as 8. The range of the data set is 144–
122 = 22. The class width is defined as 3 by rounding up 22/8 = 2.75. The class
limits are determined as 122–124, 125–127, 128–130, 131–133, 134–136, 137–
138, 139–141 and 142–145. The frequency table is constructed in Table 2 by
counting the number of data which belongs to a class.

3.7.3 Histograms

A histogram is a graphical display of data using bars of different heights. It shows a
count of the data points falling in various ranges. It is particularly useful when there

Table 2 Frequency
distribution table

Class limits Frequency

122–124 5

125–127 5

128–130 5

131–133 4

134–136 5

137–139 13

140–142 9

143–145 4
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are a large number of observations. In order to make a histogram, first the frequency
distributions are calculated. Then histogram is constructed by using the groups and
frequencies in the frequency distribution on the horizontal and vertical axes,
respectively.

Example 9 Histogram of the data set given in Table 1 is constructed by using the
frequency distribution table given in Table 2 and shown in Fig. 2.

3.7.4 Frequency Polygons

Frequency polygons are a graphical device for understanding the shapes of distri-
butions. To construct a frequency polygon, midpoints of the interval of corre-
sponding rectangle in a histogram are joined together by straight lines. They serve
the same purpose as histograms, but are especially helpful for comparing sets of data.

Example 10 Frequency polygon of the data set given in Table 1 is shown in Fig. 3.

Fig. 2 Histogram

Fig. 3 Frequency polygon
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3.7.5 Bar Charts

Bar charts are used to display and compare the number, frequency or other measure
for different discrete categories or groups. One axis of the chart shows the specific
categories being compared, and the other axis represents a discrete value.

Example 11 A manufacturer produces 5 different types of items. The production
amounts of the items are given in Table 3.

Bar chart of the data given in Table 3 is shown in Fig. 4:

3.7.6 Pie Charts

A pie chart is a circular statistical graphic, which shows the relative contribution
that different categories contribute to an overall total. In a pie chart, the arc length of
each category (and consequently its central angle and area), is proportional to the
quantity it represents.

Example 12 Pie chart of the data set given in Table 3 is shown in Fig. 5:

Table 3 Production amounts of the items

Item A Item B Item C Item D Item E

Production amounts 5000 8000 3000 17,000 12,000

Fig. 4 Bar chart
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4 Central Tendency Measures Under Fuzziness

4.1 Fuzzy Arithmetic Mean

In case of fuzziness, the data are vague and are represented by fuzzy sets. Table 4
represents a group of fuzzy data selected from a population randomly:

Fuzzy arithmetic mean for the sample can be calculated by Eq. (6):

~�x ¼
Pn

i¼1 ~xi
n

ð6Þ

Assume ~xi values are represented by triangular fuzzy numbers in the form of
xl; xm; xuð Þ where xl [ 0. Then Eq. (6) becomes

~�x ¼
Pn

i¼1 ~xi
n

¼
Xn
i¼1

xli=n;
Xn
i¼1

xmi=n;
Xn
i¼1

xui=n

 !
ð7Þ

Now assume ~xi values are represented by trapezoidal fuzzy numbers in the form
of xl; xm1; xm2; xuð Þ where xl [ 0. Then Eq. (6) becomes

~�x ¼
Pn

i¼1 ~xi
n

¼
Xn
i¼1

xli=n;
Xn
i¼1

xm1i=n;
Xn
i¼1

xm2i=n;
Xn
i¼1

xui=n

 !
ð8Þ

Table 4 Fuzzy data ~x1 ~x2 … ~xk
~xkþ 1 ~xkþ 2 … ~xl
~xlþ 1 ~xlþ 2 … ~xn

Fig. 5 Pie chart
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Fuzzy arithmetic mean for the population can be calculated by Eq. (9):

~l ¼
PN

i¼1 ~xi
N

ð9Þ

Assume ~xi values are represented by triangular fuzzy numbers in the form of
xl; xm; xuð Þ where xl [ 0. Then Eq. (9) becomes

~l ¼
PN

i¼1 ~xi
N

¼
XN
i¼1

xli=N;
XN
i¼1

xmi=N;
XN
i¼1

xui=N

 !
ð10Þ

Now assume ~xi values are represented by trapezoidal fuzzy numbers in the form
of xl; xm1; xm2; xuð Þ where xl [ 0. Then Eq. (9) becomes

~l ¼
PN

i¼1 ~xi
N

¼
XN
i¼1

xli=N;
XN
i¼1

xm1i=N;
XN
i¼1

xm2i=N;
XN
i¼1

xui=N

 !
ð11Þ

Example 13 Consider the fuzzy data belonging to a sample in Table 5 and calculate
the arithmetic mean.

We can apply a fuzzification percentage to obtain their corresponding fuzzy
numbers in Table 5. For instance, if a 10 % fuzzification percentage is used, the
triangular fuzzy numbers given in Table 6 are obtained.

~�x ¼
Xn
i¼1

xli=n;
Xn
i¼1

xmi=n;
Xn
i¼1

xui=n

 !
¼ 20:7; 23; 25:3ð Þ

Nguyen and Wu [4] give the definition of fuzzy sample mean as follows:
Let U be the universal set, L ¼ L1; L2; . . .; Lkf g be a set of k-linguistic variables

on U, and Fxi ¼ mi1
L1

þ mi2
L2

þ � � � þ mik
Lk
; i ¼ 1; 2; . . .; n

n o
be a sequence of random

Table 5 Fuzzy data

Around 20 Around 23 Around 20 Around 21

Around 28 Around 19 Around 22 Around 32

Around 14 Around 29 Around 21 Around 27

Table 6 10 % fuzzification

(18, 20, 22) (20.7, 23, 25.3) (18, 20, 22) (18.9, 21, 23.1)

(25.2, 28, 30.8) (17.1, 19, 20.9) (19.8, 22, 24.2) (28.8, 32, 35.2)

(12.6, 14, 15.4) (26.1, 29, 31.9) (18.9, 21, 23.1) (24.3, 27, 29.7)
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fuzzy sample on U. mij
Pk

j¼1 mij ¼ 1
� �

is the membership with respect to Lj. Then,

the fuzzy sample mean is defined as

Fx ¼
1
n
Pn

i¼1 mi1

L1
þ

1
n
Pn

i¼1 mi2

L2
þ � � � þ

1
n
Pn

i¼1 mik

Lk
ð12Þ

Nguyen and Wu [4] give the definition of fuzzy sample mean for the
interval-valued data as follows:

Let U be the universe set, and Fxi ¼ ai; bi½ �; ai; bi 2 R; i ¼ 1; 2; . . .; nf g be a
sequence of random fuzzy sample on U. Then the fuzzy sample mean value is
defined as

F�x ¼ 1
n

Xn
i¼1

ai;
1
n

Xn
i¼1

bi

" #
ð13Þ

Example 14 Let’s consider the data in Table 7.
Using Eq. (13), the fuzzy sample mean is calculated as follows:

F�x ¼ 3þ 4þ 2þ 2þ 4þ 5þ � � � þ 5
16

;
7þ 6þ 5þ 4þ 5þ 7þ � � � þ 6

16

� �
¼ 3:5625; 6:3125½ �

4.2 Fuzzy Median

To be able to find the median when the values are fuzzy numbers, it is necessary to
rank the data from the least value to the largest value. Hence, a ranking method for
fuzzy numbers is needed. In the literature, there are many ranking methods
developed by different researchers, which may give different ranking results. This
means that you may not obtain the same rank for the fuzzy data if you use a few
ranking methods and you may find different medians for each of these methods.

Example 15 Consider the data in Table 6. Let us use Lee and Li’s [2] method to
rank these numbers. Lee and Li’s [2] method for triangular fuzzy numbers is
defined as in Eq. (14):

Table 7 The interval valued
data

[3, 7] [4, 6] [2, 5] [2, 4]

[4, 5] [5, 7] [3, 8] [4, 7]

[3, 6] [3, 5] [4, 7] [6, 8]

[2, 7] [4, 7] [3, 6] [5, 6]
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�xP ~xið Þ ¼ xil þ 2xim þ xiu
4

ð14Þ

Since we applied 10 % fuzzification of the middle point, the result of Eq. (12)
will be equal to the middle point of each fuzzy number. Thus we have 14, 19, 20,
20, 21, 21, 22, 23, 27, 28, 29, and 32. The median is (21 + 22)/2 = 21.5. We can
write it as a fuzzy number by 10 % fuzzification again to be (19.35, 21.5, 23.65).
You would find the same result if you had used the fuzzy TFNs (18.9, 21, 23.1) and
(19.8, 22, 24.2) by summing them and dividing by 2.

Nguyen and Wu [4] give the definition of fuzzy sample median as follows:
Let U be the universe set and L ¼ L1; L2; . . .; Lkf g be a ordered set of

k-linguistic variables on U, and xi ¼ mi1
L1

þ mi2
L2

þ � � � þ mik
Lk
; i ¼ 1; 2; . . .; n

n o
be a

sequence of random fuzzy sample on U. Let Sj ¼
Pn

i¼1 mij, j = 1,2,…,k and
T ¼ 1:S1 þ 2:S2 þ � � � þ k:Sk . Then, the minimum Lj such that

P j
i¼1 Si � T

2

	 

is

called the fuzzy median of this sample. Here, T
2

	 

means the largest integral that

equal or less than T
2:

F median xið Þ ¼ Lj : minimum j such that
Xj

i¼1

Si � T
2

� �( )
ð15Þ

Nguyen and Wu [4] give the definition of fuzzy sample median for the
interval-valued data as follows:

Let U be the universe set, and Fxi ¼ ai; bi½ �; ai; bi 2 R; i ¼ 1; 2; . . .; nf g be a
sequence of random fuzzy sample on U. Let cj be center of the interval of ai; bi½ �
and lj be the length of ai; bi½ �. Then the fuzzy sample mean is defined by Eq. (16):

F median ¼ c; rð Þ; c ¼ median cj
� �

; r ¼ median lif g
2

ð16Þ

4.3 Fuzzy Mode

To be able to find the mode when the values are fuzzy numbers, one way is first to
defuzzify the data and then find the element having the largest frequency. However,
this approach may generally result in “no mode” for the data since defuzzification
of fuzzy numbers will possibly give a unique value different from the others.
Another approach for fuzzy mode may be to examine the intersections of intervals,
if any, of fuzzy numbers since the same values on the x-axis may be determined as a
mode or modes.

Example 16 Consider the data in Table 6. Let us use Lee and Li’s [2] method to
rank these numbers. The method is given by Eq. (12). Since we applied 10 %
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fuzzification of the middle point, the result of Eq. (12) will be equal to the middle
point of each fuzzy number. Thus we have 14, 19, 20, 20, 21, 21, 22, 23, 27, 28, 29,
and 32. The data are bimodal and they are (18, 20, 22) and (18.9, 21, 23.1). Now
consider the following fuzzy numbers and determine the mode or modes: (4, 6, 8),
(4, 7, 8), (3, 4, 6), (9, 10, 12), (1, 2, 3).

The fuzzy numbers (9, 10, 12) and (1, 2, 3) have no intersection with the other
fuzzy numbers. Hence we do not consider these numbers while calculating the
mode. The mode is somewhere in the interval [4, 6] and the most possible value in
this interval is found in the following way (see Fig. 6).

aMode ¼ max
min
x¼4

1; 0; 0ð Þ;min
x¼5

0:5; 0:5; 0:33ð Þ;
min
x¼5:5

0:75; 0:4; 0:4ð Þ;min
x¼6

1; 0:67; 0ð Þ

( )

aMode ¼ max 0; 0:33; 0:4; 0f g ¼ 0:4

Thus, the mode is 5.5 with a membership of 0.4.
Nguyen and Wu [4] give the definition of fuzzy sample mode as follows:
Let U be the universal set, L ¼ L1; L2; . . .; Lkf g a set of k-linguistic variables onU,

and FSi; i ¼ 1; 2; . . .; nf g a sequence of random fuzzy sample on U. For each sample

FSi, ASSİGN a linguistic variable Lj a normalized membership mij
Pk

j¼1 mij ¼ 1
� �

,

let Sj ¼
Pn

i¼1 mij; j ¼ 1; 2; . . .; k:Then, the maximum value of Sj with respect to Lj is

called the fuzzy mode (FM) of this sample. That is FM ¼ LjjSj ¼ max
1� i� k

Si

 �
.

Nguyen and Wu [4] give the definition of fuzzy sample mode for interval-valued
data as follows:

Let U be the universal set, L ¼ L1; L2; . . .; Lkf g a set of k-linguistic variables on
U, and FSi ¼ ai; bi½ �; ai; bi 2 R; i ¼ 1; 2; . . .; nf g be a sequence of random fuzzy
sample on U. For each sample FSi, if there is an interval c; d½ � which is covered by
certain samples, we call these samples as a cluster. Let MS be the set of clusters
which contains the maximum number of sample, then the fuzzy mode FM is
defined by Eq. (17):

Fig. 6 Determination of
mode
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FM ¼ a; b½ � ¼
\

ai; bi½ �j ai; bi½ � � MS
n o

ð17Þ

If a; b½ � does not exist (i.e. a; b½ � is an empty set), it is said that the sample data do
not have fuzzy mode.

5 Fuzzy Frequency Distribution

Obtaining a fuzzy frequency distribution will be explained by solving a numerical
example. First, assume we have the data in Table 8.

Step 1. Determine the number of values in the data set and let be N.
Let it be N = 36 in Table 8.
Step 2. Determine the least and largest values in the data set to find the range.
Using a ranking method, the values in Table 8 are ranked. Assume that in

Table 8, the least value is (15, 17, 19) and the largest value is (53, 56, 58).
Step 3. Calculate the range of the data.
R = (53, 56, 58) − (15, 17, 19) = (34, 39, 43)
Step 4. Calculate the number of classes, k. It can be calculated by using the

equation k ¼ ffiffiffiffi
N

p ¼ ffiffiffiffiffi
36

p ¼ 6.
Step 5. Calculate the class width, h using Eq. (18).

h� R
k

ð18Þ

h� 34; 39; 43ð Þ
6

¼ 5:67; 6:5; 7:17ð Þ

Step 6. Establish the class limits.
To establish the class limits, Table 9 is used. We start by adding “h-1” to the

least value in order to find the upper limit of the first class.
If you made it correctly, the largest value of the data must be within the class

limits of the last class. In our case, the interval (43.35, 49.5, 54.85) and (48.02, 55,
61.02) involves (53, 56, 58), which indicates that the process is correct.

Step 7. Establish the class boundaries.
The class boundaries can be obtained by subtracting 0.5 from the class limits as

in Table 10.
Step 8. Determine the class frequencies.

Table 8 The fuzzy data for
frequency distribution

(34, 36, 39) (41, 45, 52) (21, 23, 26)

(30, 34, 35) (15, 17, 19) (53, 56, 58)

(36, 41, 44) … (43, 46, 48)
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The values in Table 8 must be defuzzified in order to determine to which class
they belong. For instance, (34, 36, 39) can be defuzzified by the formula
(a + 2b + c)/4, and the result becomes 36.25. Applying the same formula to the
class boundaries, we find that 36.25 belongs to the fourth class. Assuming that we
made it for all of the values in Table 8, we obtained Table 11.

Table 10 Class boundaries

Class number Lower class boundary (LCB) Upper class boundary (UCB)

1 (14.5, 16.5, 18.5) (20.17, 23, 25.67)

2 (20.17, 23.0, 25.67) (25.84, 29.5, 32.84)

3 (25.84, 29.5, 32.84) (31.51, 36, 40.01)

4 (31.51, 36, 40.01) (37.18, 42.5, 47.18)

5 (37.18, 42.5, 47.18) (42.85, 49, 54.35)

6 (42.85, 49, 54.35) (48.52, 55.5, 61.52)

Table 11 Defuzzified boundaries and class frequencies

Class number Defuzzified lower boundary Defuzzified upper boundary Class frequency

1 16.5 22.96 3

2 22.96 29.42 7

3 29.42 35.88 11

4 35.88 42.34 8

5 42.34 48.8 5

6 48.8 55.26 2

Table 9 Class limits

Class number Lower limit Upper limit

1 (15, 17, 19) (19.67, 22.5, 25.17)

2 (20.67, 23.5, 26.17) (25.34, 29, 32.34)

3 (26.34, 30, 33.34) (31.01, 35.5, 39.51)

4 (32.01, 36.5, 40.51) (36.68, 42, 46.68)

5 (37.68, 43, 47.68) (42.35, 48.5, 53.85)

6 (43.35, 49.5, 54.85) (48.02, 55, 61.02)
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6 Fuzzy Graphics

6.1 Fuzzy Stem-and-Leaf Display

Classical stem and leaf diagram is converted its fuzzy case for the data in Table 8.
Figure 7 illustrates the stem and leaf diagram for only 8 fuzzy numbers in Table 8.
This figure shows us a left-skewed distribution.

6.2 Fuzzy Histograms

Figure 8 shows the fuzzy lower and upper class boundaries of a class. As it can be seen
from Fig. 8, some data may belong to the previous or next class at the same time.

Fig. 8 Fuzzy class boundaries of a class

Fig. 7 Fuzzy stem and leaf diagram
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6.3 Fuzzy Frequency Polygons

Fuzzy frequency polygon is illustrated for two classes in Fig. 9. Let LCB = (a, b, c)
and UCB = (d, e, f). Since the class marks (class midpoints) may be between
[(a + d)/2, (c + f)/2] for each class, the frequency polygon for two classes will be as
in Fig. 9.

7 Conclusion

Central tendency measures are summary measures that attempt to describe a whole
set of data with a single value that represents the middle or center of its distribution.
When we have fuzzy data, classical central tendency measures should be trans-
formed to their fuzzy cases. We proposed these fuzzy measures and gave an
example for each measure. We also proposed fuzzy graphs for histogram, polygon,
and stem and leaf diagram. For further research, the new extensions of fuzzy sets
can be used to convert the classical central tendency measures to obtain hesitant
fuzzy mean, intuitionistic fuzzy mean, hesitant fuzzy mode, intuitionistic fuzzy
mode, hesitant fuzzy median, and intuitionistic fuzzy median.

Fig. 9 A part of fuzzy polygon
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Fuzzy Dispersion Measures

İrem Uçal Sarı, Cengiz Kahraman and Özgür Kabak

Abstract Dispersion measures are very useful tools to measure the variability of
data. Under uncertainty, the fuzzy set theory can be used to capture the vagueness
in the data. This chapter develops the fuzzy versions of classical dispersion mea-
sures namely, standard deviation and variance, mean absolute deviation, coefficient
of variation, range, and quartiles. Initially, we summarize the classical dispersion
measures and then we develop their fuzzy versions for triangular fuzzy data.
A numerical example for each fuzzy dispersion measure is given.

Keywords Dispersion measures � Fuzzy sets � Standard deviation � Variance �
Absolute deviation � Coefficient of variation � Range � Quartiles

1 Introduction

Dispersion measures are used to describe the spread of the data, or its variation
around a central value. Dispersion measures are important to understand two data
sets which have the same mean or median, but entirely different levels of variability.
There are various methods that can be used to measure the dispersion of a dataset,
each with its own set of advantages and disadvantages.

The classical dispersion measures need exact data whereas we sometimes meet
imprecise and vague data in real life problems. Especially some problems include
categorical data which are represented by linguistic terms. For instance, classifi-
cation of the people for whom we do not have their age data can be made by
observing them and using linguistic terms such as very old, old, middle-aged,
young, and very young. In such cases, the fuzzy set theory can capture the
uncertainty included in these linguistic data.
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In the literature there is not much research on fuzzy dispersion measures.
DiCesare et al. [1] presented a new approach to the summarization of linguistic data
and defined a measure of variation of the data, a fuzzy variance. They constructed a
normalized measure of dispersion based on the fuzzy variance and the range of the
fuzzy data. The concepts of variance and range are extended to the fuzzy sets theory
and the values obtained are interpreted in a linguistic fashion. Spadoni and Stefanini
[8] proposed an algorithm for the computation of the interval and fuzzy variance.
Pizzi [6] described dispersion-adjusted fuzzy quartile encoding based preprocessing
method for the classification of patterns. They defined fuzzy quantile and in-
terquartile range to determine reasonable values for the fuzzy set boundaries. Kaya
and Kahraman [3, 4] used fuzzy process mean, and fuzzy variance, which are
obtained by using the fuzzy extension principle to add more information and
flexibility to process capability indices. Tsao [9] proposed novel equations for
computing the fuzzy variance and standard deviation by applying the fuzzy arith-
metic with requisite constraints.

In this paper the classical dispersion measures are fuzzified by using triangular
fuzzy data. The proposed equations can also be used for trapezoidal fuzzy data as
well. The rest of the chapter is organized as follows: Sect. 2 presents the classical
dispersion measures. Section 3 fuzzifies the dispersion measures and gives
numerical examples. Section 4 concludes the chapter.

2 Classical Dispersion Measures

There are six frequently used measures of variability: standard deviation, variance,
the range, mean absolute deviation, coefficient of variance and interquartile range.

2.1 Standard Deviation and Variance

The standard deviation and variance are more complete measures of dispersion
which take into account every score in a distribution. Variance is the average
squared difference of scores from the mean score of a distribution. Standard
deviation is the square root of the variance. Two different calculations are used to
determine standard population or form a sample of a larger population.

Variance of a population is the average squared distance of all measurements
from the population mean. It is determined by r2 and calculated by using Eq. 1
(Soong [7]):

r2 ¼
PN

i¼1 ðxi � lÞ2
N

ð1Þ
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where xi represents the ith value in the data set, l is the mean of the data set and N is
the number of the number of the data in the set.

Standard deviation of a population is determined by r and calculated by using
Eq. 2:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðxi � lÞ2
N

s
ð2Þ

Variance of a sample is determined by s2 and calculated by using Eq. 3:

s2 ¼
Pn

i¼1 ðxi � �xÞ2
n� 1

ð3Þ

where xi is the ith value in the sample set, �x is the mean of the sample set and n is
the number of the data in the sample set.

Standard deviation of a sample is determined by s and calculated by using
Eq. 4:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � �xÞ2
n� 1

s
ð4Þ

Example 1 There are 50 observations of execution times of an experiment are given
in Table 1.

Sum of all the values in Table 1 is equal to 6723. The mean is calculated as
6723/50 = 134.46. By using Eq. 1 variance of the data set is calculated as 42.32
and by using Eq. 2 standard deviation of the data set is calculated as 6.50.

r2 ¼ ð141� 134:46Þ2 þð125� 134:46Þ2þ ð135� 134:46Þ2 þ � � � þ ð122� 134:46Þ2
50

¼ 42:32

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð141� 134:46Þ2 þð125� 134:46Þ2 þð135� 134:46Þ2 þ � � � þ ð122� 134:46Þ2

50

s
¼ 6:50

Table 1 The observations

141 137 144 128 137 127 125 143 128 132

125 125 139 129 137 136 139 123 127 141

135 130 140 123 140 135 131 139 128 139

139 138 140 143 137 137 139 140 142 134

123 142 124 141 131 143 138 131 136 122
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2.2 Mean Absolute Deviation

The mean absolute deviation (MAD) of a data set is the average distance between
each data value and the mean. It helps to understand whether the mean of the data
set is useful or not. When the mean absolute deviation is large, the mean is not
relevant mostly because of an outlier. MAD of a population is determined by Eq. 5
(Montgomery and Runger [5]):

MAD ¼ 1
N

XN
i¼1

xi � lj j ð5Þ

MAD of a sample is determined by Eq. 6:

MAD ¼ 1
n

Xn
i¼1

xi � �xj j ð6Þ

Example 2 To calculate the mean absolute deviation of the data set given in
Table 1, Eq. 5 is applied and MAD of the data set is calculated as 5.728.

MAD ¼ 1
50

ðð 141� 134:46j jÞ þ ð 125� 134:46j jÞ þ ð 135� 134:46j jÞ
þ � � � þ ð 122� 134:46j jÞÞ ¼ 5:728

2.3 Coefficient of Variation

Coefficient of variation is the ratio of the standard deviation to the mean which
shows the extent of variability in relation to the mean of the population. The
coefficient of variation should be computed only for data which can take
non-negative values. Coefficient of variation is denoted by CV and is determined by
Eq. 6 for a population data set as follows:

CV ¼ r
l

ð7Þ

Coefficient of variation of a sample data set is determined by Eq. 8:

CV ¼ s
�x

ð8Þ
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Example 3 Coefficient of variation is calculated as 0.048 for the data set given in
Table 1 by using Eq. 7.

CV ¼ 6:50
134:46

¼ 0:048

2.4 Range

The range is the simplest measure of dispersion. It is the difference between the
maximum and minimum values in the data set. Due to the fact that range is deter-
mined by the furthest outliers (extreme scores) it does not give information about the
typical values of the data set. Range is denoted by R and determined by Eq. 9:

R ¼ max xið Þ �min xið Þ ð9Þ

Example 4 Range of the data set given in Table 1 is found as 22.

R ¼ 144�122 ¼ 22:

2.5 The Interquartile Range

The interquartile range (IQR) is a measure of variability that indicates the extent to
which the central 50 % of values within the data set are dispersed. It is based on
dividing a data set into quartiles which are the values that divide a rank-ordered data
set into four equal parts. First quartile (Q1) which is also known as lower quartile is
the middle value in the first half of the rank-ordered data set, second quartile (Q2) is
the median value in the data set and the third quartile (Q3) which is also known as
higher quartile is the middle value in the second half of the rank ordered data set.
The interquartile range is the difference between the first and third quartiles which is
obtained by using Eq. 10 [2]:

IQR ¼ Q3 � Q1 ð10Þ

Since only the middle 50 % of the data affects this measure, it is robust to
outliers.

Example 5 Interquartile range of the data set given in Table 1 is calculated as 11.5.

IQR ¼ 139:75�128:25 ¼ 11:5:
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3 Dispersion Measures Under Fuzziness

3.1 Fuzzy Variance and Fuzzy Standard Deviation

When the data are ambiguous and they could be represented by fuzzy sets. In
Table 2 a fuzzy data is represented:

Fuzzy variance for the sample can be calculated by Eq. 11:

~s2 ¼
Pn

i¼1 ð~xi � ~�xÞ2
n� 1

ð11Þ

Fuzzy standard deviation for the sample can be calculated by Eq. 12:

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ð~xi � ~�xÞ2
n� 1

s
ð12Þ

Assume ~xi and ~�x values are represented by triangular fuzzy numbers in the form
of ~xi ¼ ðxli; xmi; xuiÞ and ~�x ¼ ð�xl;�xm;�xuÞ where xli [ 0 and �xl [ 0. Then fuzzy
variance formula for the sample data represented by triangular fuzzy numbers can
be calculated by Eq. 13:

~s2 ¼
Pn

i¼1 ðxli � �xlÞ2
n� 1

;

Pn
i¼1 ðxmi � �xmÞ2

n� 1
;

Pn
i¼1 ðxui � �xuÞ2

n� 1

 !
ð13Þ

For the independent any two fuzzy numbers the largest possible value of the
second number is subtracted from the least possible value of the first number to get
the first term of the subtraction, and similar operations for the other two terms. In
Eq. 13, as it is seen the least possible values are subtracted in the first term; the most
possible values in the second term and the largest possible values in the third term
are subtracted since ~xi values produce ~�x value; in other words ~�x is dependent on ~xi
values.

Fuzzy standard deviation formula for the sample data represented by triangular
fuzzy numbers is given in Eq. 14:

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxli � �xlÞ2
n� 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxmi � �xmÞ2

n� 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxui � �xuÞ2

n� 1

s0
@

1
A ð14Þ

Table 2 Fuzzy data ~x1 ~x2 … ~xk
~xkþ 1 ~xkþ 2 … ~x1
~x1þ 1 ~x1þ 2 … ~xn
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Now assume ~xi and ~�x values are represented by trapezoidal fuzzy numbers in the
form of ~xi ¼ ðxli; xm1i; xm2i; xuiÞ and ~�x ¼ ð�xl;�xm1;�xm2;�xuÞ where xli [ 0 and �xl [ 0.
Then Eq. 11 becomes Eq. 15:

~s2 ¼
Pn

i¼1 ðxli � �xlÞ2
n� 1

;

Pn
i¼1 ðxm1 � �xm1Þ2

n� 1
;

Pn
i¼1 ðxm2 � �xm2Þ2

n� 1
;

Pn
i¼1 ðxu � �xuÞ2

n� 1

 !

ð15Þ

Fuzzy standard deviation formula for the sample data represented by trapezoidal
fuzzy numbers is given in Eq. 16:

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxli � �xlÞ2
n� 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxm1i � �xm1Þ2

n� 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxm2i � �xm2Þ2

n� 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxui � �xuÞ2

n� 1

s0
@

1
A

ð16Þ

Fuzzy variance for the population can be calculated by Eq. 17:

~r2 ¼
PN

i¼1 ð~xi � ~lÞ2
N

ð17Þ

Fuzzy standard deviation for the population can be calculated by Eq. 18:

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ð~xi � ~lÞ2
N

s
ð18Þ

Assume ~xi and ~l values are represented by triangular fuzzy numbers in the form
of ~xi ¼ ðxli; xmi; xuiÞ and ~l ¼ ðll;lm; luÞ where xli [ 0 and ll [ 0 x1 [ 0. Then
Eq. 17 becomes

~r2 ¼
PN

i¼1 ð~xi � ~lÞ2
N

¼
PN

i¼1 ðxli � llÞ2
N

;

PN
i¼1 ðxmi � lmÞ2

N
;

PN
i¼1 ðxui � luÞ2

N

 !

ð19Þ

Fuzzy standard deviation formula for the population data represented by trian-
gular fuzzy numbers is given in Eq. 20:

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyli � llÞ2
N

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðymi � lmÞ2

N

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyui � luÞ2

N

s0
@

1
A ð20Þ
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Now assume ~xi and ~l values are represented by trapezoidal fuzzy numbers in the
form of ~xi ¼ ðxli; xm1i; xm2i; xuiÞ and ~l ¼ ðll; lm1; lm2; luÞ where xli [ 0 and ll [ 0.
Then Eq. 17 becomes

~r2 ¼
PN

i¼1 ð~xi � ~lÞ2
N

¼
PN

i¼1 ðxli � llÞ2
N

;

PN
i¼1 ðxm1i � lm1Þ2

N
;

PN
i¼1 ðxm2i � lm2Þ2

N
;

PN
i¼1 ðxui � luÞ2

N

 !

ð21Þ

Fuzzy standard deviation formula for the population data represented by trape-
zoidal fuzzy numbers is given in Eq. 22:

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ð~xi � ~lÞ2
N

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðxli � llÞ2
N

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðxli � llÞ2

N

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðxli � llÞ2

N

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðxli � llÞ2

N

s0
@

1
A

ð22Þ

Example 6 Consider the fuzzy data belonging to a sample in Table 3 and calculate
the arithmetic mean.

We can apply a fuzzification percentage to obtain their corresponding fuzzy
numbers in Table 3. For instance, if a 10 % fuzzification percentage is used, the
triangular fuzzy numbers given in Table 4 are obtained:

Mean of the sample data given in Table 4 is calculated as (20.7, 23, 25.3).
Variance of the sample data set is calculated by using Eq. 13 as (20.765, 25.636,
31.02). Standard deviation of the sample data set given in Table 4 is calculated by
using Eq. 14 as (4.557, 5.063, 5.569).

Table 3 Fuzzy data

Around 20 Around 23 Around 20 Around 21

Around 28 Around 19 Around 22 Around 32

Around 14 Around 29 Around 21 Around 27

Table 4 10% fuzzification

(18, 20, 22) (20.7, 23, 25.3) (18, 20, 22) (18.9, 21, 23.1)

(25.2, 28, 30.8) (17.1, 19, 20.9) (19.8, 22, 24.2) (28.8, 32, 35.2)

(12.6, 14, 15.4) (26.1, 29, 31.9) (18.9, 21, 23.1) (24.3, 27, 29.7)
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3.2 Fuzzy Mean Absolute Deviation

Fuzzy mean absolute deviation of a population data is represented by M~AD and can
be calculated by using Eq. 23:

M~AD ¼ 1
N

XN
i¼1

~xi � ~lj j ð23Þ

Assume ~xi and ~l values are represented by triangular fuzzy numbers in the form
of ~xi ¼ ðxli; xmi; xuiÞ and ~l ¼ ðll; lm; luÞ where xli [ 0 and ll [ 0. Then Eq. 23
becomes

M~AD ¼ 1
N

XN
i¼1

~xi � ~lj j ¼
PN

i¼1 xli � llj j
N

;

PN
i¼1 xmi � lmj j

N
;

PN
i¼1 xui � luj j

N

 !

ð24Þ

Now assume ~xi and ~l values are represented by trapezoidal fuzzy numbers in the
form of ~xi ¼ ðxli; xm1i; xm2i; xuiÞ and ~l ¼ ðll; lm1; lm2; luÞ where yli [ 0 and ll [ 0.
Then Eq. 23 becomes

M~AD ¼ 1
N

XN
i¼1

~xi � ~lj j

¼
PN

i¼1 xli � llj j
N

;

PN
i¼1 xm1i � lm1j j

N
;

PN
i¼1 xm2i � lm2j j

N
;

PN
i¼1 xui � luj j

N

 !

ð25Þ

M~AD of a sample is determined by Eq. 26:

M~AD ¼ 1
n

Xn
i¼1

~xi � ~�xj j ð26Þ

Assume ~xi and �x values are represented by triangular fuzzy numbers in the form
of ~xi ¼ ðxli; xmi; xuiÞ and ~�x ¼ ð�xl;�xm;�xuÞ where xli [ 0 and �xl [ 0. Then fuzzy mean
absolute devision formula for the sample data represented by triangular fuzzy
numbers can be calculated by Eq. 27:

M~AD ¼ 1
n

Xn
i¼1

~xi � ~�xj j ¼
Pn

i¼1 xli � �xlj j
n

;

Pn
i¼1 xmi � �xmj j

n
;

Pn
i¼1 xui � �xuj j

n

� �

ð27Þ
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Now assume ~xi and �x values are represented by trapezoidal fuzzy numbers in the
form of ~xi ¼ ðxli; xm1i; xm2i; xuiÞ and �x ¼ ð�xl;�xm1;�xm2;�xuÞ where xli [ 0 and �xl [ 0.
Then Eq. 26 becomes Eq. 28:

M~AD ¼ 1
n

Xn
i¼1

~xi � ~�xj j

¼
Pn

i¼1 xli � �xlj j
n

;

Pn
i¼1 xm1i � �xm1j j

n
;

Pn
i¼1 xm2i � �xm2j j

n
;

Pn
i¼1 xui � �xuj j

n

� �
ð28Þ

Example 7 To calculate the fuzzy mean absolute deviation of the sample data set
given in Table 4, Eq. 27 is applied and M~AD of the data set is calculated as
(3.6,4,4.4).

M~AD ¼ 43:2
12

;
48
12

;
52:8
12

� �
¼ ð3:6; 4; 4:4Þ

3.3 Fuzzy Coefficient of Variation

Fuzzy coefficient of variation is the ratio of the fuzzy standard deviation to the
fuzzy mean which shows the extent of variability in relation to the fuzzy mean of
the population. Fuzzy coefficient of variation is denoted by C~V and is determined
by Eq. 29 for a population data set:

C~V ¼ ~r
~l

ð29Þ

Assume ~r and ~l values are represented by triangular fuzzy numbers in the form
of ~r ¼ ðrl; rm; ruÞ and ~l ¼ ðll;lm; luÞ where rl [ 0 and ll [ 0. C~V of a popu-
lation data represented by triangular fuzzy numbers is given in Eq. 30:

C ~V ¼ ~r
~l
¼ rl

ll
;
rm
lm

;
ru
lu

� �
ð30Þ

Now assume ~r and ~l values are represented by trapezoidal fuzzy numbers in the
form of ~r ¼ ðrl; rm1; rm2; ruÞ and ~l ¼ ðll; lm1; lm2; luÞ where rl [ 0 and ll [ 0.
C ~V of a population data represented by trapezoidal fuzzy numbers is given in Eq. 31:

C ~V ¼ ~r
~l
¼ rl

ll
;
rm1
lm1

;
rm2
lm2

;
ru
lu

� �
ð31Þ
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C ~V is determined by Eq. 32 for a sample data set:

C ~V ¼ ~s
~�x

ð32Þ

Assume ~s and ~�x values are represented by triangular fuzzy numbers in the form
of ~s ¼ ðsl; sm; suÞ and ~�x ¼ ð�xl;�xm;�xuÞ where sl [ 0 and �xl [ 0. C~V of a sample data
represented by triangular fuzzy numbers is given in Eq. 33:

C ~V ¼ ~s
~�x
¼ sl

�xl
;
sm
�xm

;
su
�xu

� �
ð33Þ

Now assume ~s and ~�x values are represented by trapezoidal fuzzy numbers in the
form of ~s ¼ ðsl; sm1; sm2; suÞ an �x ¼ ð�xl;�xm1;�xm2;�xuÞ where sl [ 0 and �xl [ 0. C ~V
of a sample data represented by trapezoidal fuzzy numbers is given in Eq. 34:

C ~V ¼ ~s
~�x
¼ sl

�xl
;
sm1
�xm2

;
sm1
�xm2

;
su
�xu

� �
ð34Þ

Example 8 Coefficient of variation is calculated as (4.5424, 4.5427, 4.5430) for the
data set given in Table 4 by using Eq. 33:

C ~V ¼ ~s
~�x
¼ 20:7

4:556
;

23
5:063

;
25:3
5:569

� �
¼ ð4:5424; 4:5427; 4:5430Þ

3.4 Fuzzy Range

In a fuzzy data set, sometimes it is hard to define the maximum and the minimum
values of the data. When the maximum and the minimum fuzzy numbers of a data
set cannot be determined easily, first ranking methods should be used to find out the
maximum and the minimum values. Then by applying Eq. 35, fuzzy range which is
denoted by ~R can be determined:

~R ¼ max ~xið Þ �min ~xið Þ ð35Þ

Assume ~xi values are represented by triangular fuzzy numbers in the form of
~xi ¼ ðxil; xim; xiuÞ where xil [ 0. ~R of a data set represented by triangular fuzzy
numbers is given in Eq. 36:

~R ¼ ðxmax; l � xmin; uÞ; ðxmax;m � xmin;mÞ; ðxmax; u � xmin; lÞ
� � ð36Þ
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where maxð~xiÞ ¼ xmax; l; xmax;m; xmax; u
� �

and minð~xiÞ ¼ xmin; l; xmin;m; xmin; u
� �

pro-
viding that xmax; l � xmin; u � 0. Otherwise; it is not certain that there are clear
maximum and minimum values in the data set. In that case range could be calcu-
lated by using defuzzified values of the data set. Then maximum and minimum
values can be easily determined.

Assume ~xi values are represented by trapezoidal fuzzy numbers in the form of
~xi ¼ ðxil; xim1; xim2; xiuÞ where xil [ 0. ~R of a data set represented by trapezoidal
fuzzy numbers is given in Eq. 37:

~R ¼ ðxmax; l � xmin; uÞ; ðxmax;m1 � xmin;m2Þ; ðxmax;m2 � xmin;m1Þ; ðxmax; u � xmin; lÞ
� �

ð37Þ

where maxð~xiÞ ¼ xmax; l; xmax;m1; xmax;m2; xmax; u
� �

and minð~xiÞ ¼ xmin; l; xmin;m1;
�

xmin;m2;xmin;u
�
providing that xmax; l � xmin; u � 0.

Example 9 In the data set given in Table 4, it is obvious that the maximum value of
the data is (28.8, 32, 35.2) and the minimum value of the data is (12.6, 14, 15.4). By
using Eq. 36 fuzzy range of the data set is calculated as (13.4,18, 22.6).

~R ¼ ð28:8; 32; 35:2Þ � ð12:6; 14; 15:4Þ ¼ ð13:4; 18; 22:6Þ

3.5 Fuzzy Interquartile Range

The formula of fuzzy interquartile range (I ~QR) is given in Eq. 38

I ~QR ¼ ~Q3 � ~Q1 ð38Þ

where ~Q1 is the middle value in the first half of the rank ordered fuzzy data set
which is the ((n + 1)/4)th element of the data set and ~Q3 is the middle value in the
second half of the rank ordered fuzzy data set which is the (3(n + 1)/4)th element of
the data set.

Assume ~Qi values are represented by triangular fuzzy numbers in the form of
~Qi ¼ ðQil;Qim;QiuÞ where Qil [ 0. I ~QR of a data set represented by triangular
fuzzy numbers is given in Eq. 39 where Q3l � Q1u � 0:

I ~QR ¼ Q3l � Q1uð Þ; Q3m � Q1mð Þ; Q3u � Q1lð Þð Þ ð39Þ
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Now assume ~Qi values are represented by trapezoidal fuzzy numbers in the form
of ~Qi ¼ ðQil;Qim1;Qim2;QiuÞ where Qil [ 0. I ~QR of a data set represented by
trapezoidal fuzzy numbers is given in Eq. 40 where Q3l � Q1u � 0:

I ~QR ¼ Q3l � Q1uð Þ; Q3m1 � Q1m2ð Þ; Q3m2 � Q1m1ð Þ; Q3u � Q1lð Þð Þ ð40Þ

Example 10 There are lots of ranking methods which could be used to rank fuzzy
numbers. In this example it is preferred to rank fuzzy numbers by using their most
expected values. The fuzzy numbers in the data set given in Table 4 are ranked as
follows:

(12.6,14,15.4), (17.1, 19, 20.9), (18, 20, 22), (18, 20, 22), (18.9, 21, 23.1), (18.9,
21, 23.1), (19.8, 22, 24.2), (20.7, 23, 25.3), (24.3, 27, 29.7), (25.2, 28, 30.8), (26.1,
29, 31.9), (28.8, 32, 35.2)

There are 12 numbers in the data set which means the first quartile is the
(12 + 1)/4 = 3.25th number in the ranked ordered fuzzy data set. The first quartile
is obtained as follows:

~Q1 ¼ ð18; 20; 22Þþ ð3:25� 3Þðð18; 20; 22Þ � ð18; 20; 22ÞÞ ¼ ð18; 20; 22Þ

The third quartile is obtained as follows:

~Q3 ¼ ð24:3; 27; 29:7Þþ ð3:25x3� 9Þðð25:2; 28; 30:8Þ � ð24:3; 27; 29:7ÞÞ
¼ ð20:925; 27:75; 34:575Þ

By applying Eq. 39 I ~QR is calculated as (−1.075,7.75,16.575) which means
there is no clear third quartile and first quartile in the data set.

I ~QR ¼ ~Q3 � ~Q1 ¼ ð20:925; 27:75; 34:575Þ � ð18; 20; 22Þ
¼ ð�1:075; 7:75; 16:575Þ

In this case, I ~QR can be calculated by defuzzifying ~Q1 and ~Q3. In this example,
center of area defuzzification method is used. This technique can be expressed as
shown in Eq. 41:

x� ¼
R
liðxÞxdxR
liðxÞdx

ð41Þ
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By using center of area defuzzification method IQR is calculated as 7.75:

Q�
1 ¼

R 20
18

x�18
2

� �
xdxþ R 22

20
22�x
2

� �
xdxR 20

18
x�18
2

� �
dxþ R 22

20
22�x
2

� �
dx

¼ 40
2

¼ 20

Q�
3 ¼

R 27:75
20:925

x�20:925
2

� �
xdxþ R 34:575

27:75
34:575�x

2

� �
xdxR 27:75

20:925
x�20:925

2

� �
dxþ R 34:575

27:75
34:575�x

2

� �
dx

¼ 646:306
23:290

¼ 27:75

IQR� ¼Q�
3 � Q�

1 ¼ 27:75� 20 ¼ 7:75

4 Conclusion

Dispersion measures are important concepts to measure the variability of data. The
classical approaches cannot deal with vague and imprecise data. Therefore; in this
chapter, we have introduced corresponding fuzzy concepts of variance, standard
deviation, mean absolute deviation, coefficient of variation, range, and quartiles.

The resulting fuzzy dispersion measures should be defuzzified for comparison
purposes. Since different defuzzification methods might give different defuzzified
values, interpretation of the fuzzy result should be based on more than one
defuzzification method. For instance; fuzzy coefficient of variations of two samples
from two populations can be compared based on the defuzzified values which may
depend on the selected defuzzification method.

For further research the new extensions of fuzzy sets such as intuitionistic,
type-2, or hesitant fuzzy sets can be used in developing the fuzzy dispersion
measures. Intuitionistic fuzzy variance, hesitant fuzzy variance, and type-2 fuzzy
variance have not yet been introduced in the literature.
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Sufficiency, Completeness,
and Unbiasedness Based on Fuzzy
Sample Space

Mohsen Arefi and S. Mahmoud Taheri

Abstract A new approach is introduced to the estimation of a parameter in the
statistical models, based on fuzzy sample space. Two basic concepts of the point
estimation theory, i.e. sufficiency and completeness, are extended to the fuzzy data
case. Then, the unbiased estimator and the UMVU estimator are defined for such
situations. The properties of these estimators are investigated, and some procedures
are provided to obtain the UMVU estimators, based on fuzzy data.

Keywords Completeness � Fuzzy random sample � Point estimation � Sufficiency �
Unbiasedness � Uniformly minimum variance unbiased estimator (UMVUE)

1 Introduction and Motivation

An important topic in parametric statistical inference is the point estimation of an
unknown parameter of the model of interest. In classical approaches to the problem
of point estimation, some essential assumptions are imposed on the underlying
model. Specially, it is often assumed that the available data derived from the model
are observed to be exact quantities. But, in real world problems, there are many
situations in which the available data are imprecise (fuzzy) rather than crisp.

For instance, in survival analysis, in the study to estimate the proportion of a
population who are infected with a certain virus, we may not able to identify the
presence or absence of the virus in each member of the population, exactly. In this
case, we may instead derive some vague inference about the situation, represented
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by linguistic terms such as: it is quite certain that he/she has virus, we are 0.50
certain that he/she has the virus, and so on. As another example, in social studies
we may not able to measure the public opinion on a certain subject, precisely.
People usually reflect their opinions on a social subject in non-exact (fuzzy) terms,
such as: I more or less agree, I completely agree, I cannot fully agree, and the like.
We can provide a list of such real world examples in which it is actually non-precise
data that must be handled.

Since such non-precise data typically do not lend themselves to analysis by the
classical statistical methods, we, therefore, need to develop new methods of sta-
tistical analysis based on non-precise data. The fuzzy set theory provides the
necessary tools to extend the classical statistical methods to the analysis of
non-precise (fuzzy) data.

The main contribution of this research is to investigate the problem of point
estimation when the data available are fuzzy rather than crisp. In this regard, we
extend the basic concepts of point estimation such as: sufficiency, completeness,
and unbiasedness to the case the data available are fuzzy. Then, to investigate the
properties of the introduced concepts, we develop the concept of UMVU estimators
based on fuzzy data.

The organization of this paper is as follows. In Sect. 2, a literature survey related
to sampling theory under fuzziness is presented. In Sect. 3, we recall some pre-
liminaries concerning fuzzy sample space and fuzzy random sample. In Sect. 4, we
extend the concepts of sufficiency and completeness based on fuzzy data. In Sect. 5,
the unbiased estimators based on fuzzy data are studied and, as a special case, the
UMVU estimators for such a data are investigated. Some examples to find the
proposed estimators are presented in Sect. 6. Section 7 concludes the paper.

2 Literature Survey

Over the past decades, there have been a lot of attempts to investigate the statistical
methods with fuzzy data. But, as far as the authors know, there have been only a
few works on the topic of sampling theory and point estimation under fuzziness. In
this section, we briefly review some important works in these topics.

Let us, first, review some works related to the sampling theory in fuzzy envi-
ronment. Kruse [34] and Miyakoshi and Shimbo [40] investigated the strong law of
large numbers for the sequences of independent and identically distributed fuzzy
random variables. Kelement et al. [31] proved a strong law of large numbers and a
central limit theorem for independent and identically distributed fuzzy random
variables, whose values are fuzzy sets with compact levels. Boswell and Taylor [8]
stated and proved a central limit theorem for fuzzy random variables. Guangyuan
and Zhong [24] defined two types of generalized metrics in the set of all fuzzy
random variables on a probability space. Then, they studied several different kinds
of convergence for sequences of fuzzy random variables with respect to the
introduced metrics. They also investigated some relations of these kinds of
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convergence. Using some limit properties of fuzzy numbers, Wu [51] extended the
weak and strong convergence of fuzzy distribution functions. He also investigated a
central limit theorem for fuzzy random variables based on a notion of fuzzy normal
distribution. He studied the law of large numbers for fuzzy random variables, too
[52]. Joo and Kim [28] obtained the Kolmogorov’s strong law of large numbers for
sums of independent and level-wise identically distributed fuzzy random variables,
(see also Kim [30] and Joo [27]). Feng [18] proposed a formulation of strong and
weak laws of large numbers for fuzzy random variables based on the concept of
variance of fuzzy random variables. A strong law of large numbers, a central limit
theorem and a Gliwenko-Cantelli theorem for fuzzy random variables are proved by
Kratschmer [32] based on the Lp-metrics on the fuzzy sample spaces (see also [33]).
Li and Ogura [37] presented the strong laws of large numbers for independent (not
necessary identically distributed) fuzzy set-valued random variables whose base
space is a separable Banach space or an Euclidean space, in the sense of an
extended Hausdorff metric. Strong laws of large numbers for t-norm-based addition
of fuzzy random variables are studied by Teran [47] and Hong [26]. Guan and Li
[23] proved a strong law of large numbers for exchangeable random variables with
respect to nonadditive measures and based on the relationship between set-valued
random variables. See also Colubi [15], Joo et al. [29], and Fu and Zhang [19] for
some limit theorems for fuzzy random sets. It should be mentioned that, beside the
above works, a few works have been done by researchers on sampling methods
under fuzziness. For instance, Garcia et al. [20] considered the problem of esti-
mating the expected value of a fuzzy-valued random element in the stratified ran-
dom sampling from finite populations. Lin and Lee [38, 39] introduced a fuzzy
sense of sampling to express the degree of interviewee’s feelings in sampling
survey via questionnaire.

Now, we review briefly some important works on the point estimation in fuzzy
environment. Kruse [35] studied a method to obtain a statistical estimation with
linguistic data. Kruse and Meyer [36] investigated both consistent estimators and
unbiased estimators using set representation techniques. Gil et al. [21] and Schnatter
[43] studied some fuzzy Bayes estimators for real-valued parameters. Gil et al. [21]
developed their methods by borrowing the concept of probability measures of fuzzy
events from Zadeh [56], but Schnatter [43] focused on the different combination
rules for fuzzy data. Cai [11] studied parameter estimation based on normal fuzzy
variables. Yao and Hwang [55] proposed the concept of the sufficient statistic and
the unbiased estimator based on a sample of fuzzy random variables. Hong [25]
extended Cai’s approach to the study of parameter estimations of non-normal fuzzy
variables. Viertl [49], using the extension principle, investigated some methods to
obtain a point estimation based on fuzzy data. Wu [53] developed a procedure for
fuzzy estimating of fuzzy parameters based on fuzzy random variables. Buckley
[9, 10] considered the confidence interval as the a-cuts of a triangular shaped fuzzy
estimation for the parameter of interest (see also, Falsafain and Taheri [16] for an
improved method on the Buckley’s approach). An approach for obtaining the
UMVU estimators based on the a-cuts of fuzzy observations is studied by Akbari

Sufficiency, Completeness, and Unbiasedness Based … 103



and Rezaei [1]. Parchami and Mashinchi [42] applied the Buckley’s approach to
find fuzzy estimates of the process capability indices. Also, Falsafain et al. [17]
studied a method to find the explicit formula for membership functions of the fuzzy
estimations in statistical models by developing Buckley’s approach. Taheri and
Arefi [46] used the estimation introduced by Buckley to extend an approach for
testing fuzzy hypotheses. Arefi and Taheri [5] investigated some aspects of a
Bayesian approach to the estimation problem for fuzzy data. For more on statistics
in imprecise environments, the reader is referred to the relevant literature, e.g.
Taheri [45], Viertl [50], and Blanco-Fernandez et al. [7].

In sequel, we introduce and investigate a new approach to the theory of point
estimation for fuzzy data, in which, for the first time, some basic concepts of the
point estimation are investigated.

3 Preliminaries

Assume that ðX;AÞ is a measurable space, in which X is a sample space, and
ðX;A;PÞ is a probability space, where P is a probability measure on ðX;AÞ. In the
following, we recall two definitions from Casals et al. [12] and Torabi et al. [48],
but in a slightly different way.

Definition 1 A fuzzy sample space (associated with the probability space
ðX;A;PÞ), denoted by ~v ¼ ~x1; . . .;~xkf g, is a collection of fuzzy sets ~xi; i ¼
1; 2; . . .; k of X whose membership functions are Borel measurable and satisfy the
orthogonality constraint:

Pk
i¼1 ~xiðxÞ ¼ 1; 8x 2 X.

Remark 1 The orthogonality constraint in Definition 1 is not a strong condition. If
~x1; . . .;~xk are some fuzzy numbers such that they do not satisfy the orthogonality
constraint, we can render a translation on ~xi’s, so that they obey the orthogonality
constraint. See the following example.

Example 1 Let ðX;A;PÞ be a probability space with X ¼ ½0; 1�. Consider the
membership functions of fuzzy sets as follows:

~x1ðxÞ ¼ 1� x; 0� x� 1;

~x2ðxÞ ¼ 2x 0� x\0:5;
2ð1� xÞ 0:5� x� 1;

�

~x3ðxÞ ¼ x; 0� x� 1:

The above fuzzy numbers do not obey the orthogonality constraint, since

X3

i¼1

~xiðxÞ ¼ 1þ 2x 0� x\0:5;
3� 2x 0:5� x� 1:

�
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But, we can obtain a fuzzy sample space based on ~x1, ~x2, and ~x3, denoted by
~v ¼ ~x�1;~x

�
2;~x

�
3

� �
, as follows

~x�1ðxÞ ¼
1�x
1þ 2x 0� x\0:5;
1�x
3�2x 0:5� x� 1;

�

~x�2ðxÞ ¼
2x

1þ 2x 0� x\0:5;
2ð1�xÞ
3�2x 0:5� x� 1;

(

~x�3ðxÞ ¼
x

1þ 2x 0� x\0:5;
x

3�2x 0:5� x� 1:

�

Remark 2 In this paper, we assume that ðX;AÞ and ð~v;FÞ are two measurable
spaces, where ~v is the fuzzy sample space on X, and F is a r-field on ~v. Also,
~vn ¼ ~v� � � � � ~v is the Cartesian product on the fuzzy sample spaces, and F n ¼
F � � � � � F is a r-field on ~vn.

Definition 2 Let ðX;A;PÞ be a probability space. A fuzzy random sample (of size
n) based on the original random variable X with PDF f ð:Þ, denoted by
~X ¼ ð~X1; . . .; ~XnÞ, is a measurable function from ðX;AÞ to ð~vn;F nÞ, whose proba-
bility (following Zadeh’s probability 1968) is given by

hð~xÞ ¼hð~xr1 ; . . .;~xrnÞ ¼ Pð~X ¼ ~xÞ

¼
Z

v

. . .

Z

v

Yn

i¼1

~xriðxiÞf ðxiÞdmðx1; . . .; xnÞ;

where ~x ¼ ð~xr1 ; . . .;~xrnÞ, ~xri 2 ~v and f ð:Þ is the Radon-Nikodym derivative of P with
respect to m (a r-finite measure). The measure m usually is “counting measure” or
“Lebesgue measure”, and v ¼ fx 2 R j f ðxÞ[ 0g is the support of X.

Note that, using Fubini’s theorem ([6], pp. 233–234), we obtain

hð~xr1 ; . . .;~xrnÞ ¼ hð~xr1Þ � � � hð~xrnÞ; 8~xri 2 ~v;

where

hð~xriÞ ¼
Z

v

~xriðxiÞf ðxiÞdmðxiÞ; i ¼ 1; . . .; n:
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The hð~xriÞ forms a PDF on ~v, since based on the orthogonality of the ~xri , we have

X

~xri2~v
hð~xriÞ ¼

X

~xri2~v

Z

v

~xriðxiÞf ðxiÞdmðxiÞ

¼
Z

v

f ðxiÞ
X

~xri2~v
~xriðxiÞdmðxiÞ

¼
Z

v

f ðxidmÞðxiÞ ¼ 1:

Theorem 1 [48] Let ðX;A;PÞ be a probability space and ~X be a fuzzy random
sample related to the fuzzy sample space ~v. If g is a measurable function from ~vn to
R, then Y ¼ gð~XÞ is a crisp (non-fuzzy) random variable.

Suppose that we have a fuzzy sample space ~v based on the original random
variable X (with the probability density function or probability mass function
fXðx; hÞ, h 2 H), and that by taking a random sample of size n, we obtain the fuzzy
random sample ~X ¼ ð~X1; . . .; ~XnÞ. In the following, using such a sample data, we
provide an approach to point estimation for the unknown parameter h.

4 Sufficiency and Completeness

In this section, we extend the concepts of sufficiency and completeness to the case
the available data are fuzzy rather than crisp.

Definition 3 Let ~X be a fuzzy random sample, and g be a measurable function from
~vn to R. The function gð~XÞ is called a statistic if gð~XÞ does not depend on h.

Note that, when gð~XÞ is applied to estimating the unknown parameter h, it is
commonly called the estimator of h.

Definition 4 Let ~X ¼ ð~X1; . . .; ~XnÞ be a fuzzy random sample related to the fuzzy
sample space ~v. Suppose that

~A1 ¼ ð~Xr1 ; . . .; ~Xrm1
Þ 	 ~X

and

~A2 ¼ ð~Xrm2
; . . .; ~Xrm3

Þ 	 ~X:
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Based on Definition 2, we define the joint probability of ~A1 and ~A2 as follows

(i) If m1\m2, then

Pð~A1 ¼ ~x; ~A2 ¼ ~yÞ ¼ Pð~Xr1 ¼ ~xr1 ; . . .; ~Xrm1

¼ ~xrm1 ;
~Xrm2

¼ ~yrm2 ; . . .;
~Xrm3

¼ ~yrm3 Þ;

(ii) If r1 �m2 �m1\m3, and for each i ¼ m2; . . .;m1, ~xi ¼ ~yi, then

Pð~A1 ¼ ~x; ~A2 ¼ ~yÞ ¼ Pð~Xr1 ¼ ~xr1 ; . . .; ~Xrm1

¼ ~xrm1 ;
~Xrm1 þ 1 ¼ ~yrm1 þ 1 ; . . .; ~Xrm3

¼ ~yrm3 Þ;

(iii) If r1 �m2 �m1\m3, and 9i 2 fm2; . . .;m1g, such that ~xi 6¼ ~yi, then

Pð~A1 ¼ ~x; ~A2 ¼ ~yÞ ¼ 0:

Remark 3 Based on Definition 4, the conditional probability of ~A1 given ~A2 is
defined as follows

Pð~A1 ¼ ~xj~A2 ¼ ~yÞ ¼ Pð~A1 ¼ ~x; ~A2 ¼ ~yÞ
Pð~A2 ¼ ~yÞ ; Pð~A2 ¼ ~yÞ 6¼ 0:

Definition 5 Let ~X ¼ ð~X1; . . .; ~XnÞ be a fuzzy random sample related to the fuzzy
sample space ~v, and g be a measurable function from ~vn to R. Then, T ¼ gð~XÞ is a
sufficient statistic for h (parameter of the statistical model f ðx; hÞ if and only if the
conditional distribution Pð~X ¼ ~xjT ¼ tÞ does not depend on h.

Definition 6 Let T ¼ gð~XÞ be a statistic based on fuzzy data. T ¼ gð~XÞ is called a
complete statistic if and only if for every statistic dðTÞ, if EðdðTÞÞ ¼ 0, then
(8h 2 H)

Ph dðTÞ ¼ 0½ � ¼ Ph
~X ¼ ð~x1; . . .;~xnÞjdð~XÞ ¼ 0

� � ¼ 1;

where Phð:Þ is Zadeh’s probability based on Definition 2.

Remark 4 When the available data are crisp numbers x1; . . .; xn, then Definition 5
and Definition 6 reduce to the ordinary definitions of sufficiency and completeness.

Example 2 Consider a study for estimating the proportion h of a kind of trees in a
forest, which are infected with a plague. We take a sample of n trees and examine
each tree for the presence of plague. Suppose that we do not have any precise
mechanism to make an exact distinction between the presence and absence of pla-
gue, but rather they can inform us whether (a) with much certainty the tree presents
infection; or whether (b) with much certainty the tree does not present infection.
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The usual model for this problem starts from the Bernoulli experiment X
associated with the presence of plague (Binð1; hÞ; 0\h\1). Thereafter, the model
gathers the available information in a fuzzy partition ~v ¼ f~x1;~x2g. We identify the
information with much certainty the tree presents infection and with much certainty
the tree does not present infection with the fuzzy sets ~x1 and ~x2 on x ¼ 0; 1,
respectively. The membership functions of ~x1 and ~x2 are given by

~x1 ¼ 0:9
0

;
0:3
1

� �
; ~x2 ¼ 0:1

0
;
0:7
1

� �
;

whose PDF’s are as

hð~xÞ ¼ P

x¼0;1
~xðxÞf ðxÞ

¼ 0:9ð1� hÞþ 0:3h ~x ¼ ~x1
0:1ð1� hÞþ 0:7h ~x ¼ ~x2

�

¼ 0:9� 0:6h ~x ¼ ~x1;
0:1þ 0:6h ~x ¼ ~x2:

�

Suppose that, we have taken a fuzzy random sample of size n ¼ 2 as
~X ¼ ð~X1; ~X2Þ. Let the statistic ~T ¼ ~X1 
 ~X2 be as follows

~t1 ¼ ~x1 
 ~x1 ¼ 0:81
0 ; 0:271 ; 0:092

� �
;

~t2 ¼ ~x1 
 ~x2 ¼ ~x2 
 ~x1 ¼ 0:18
0 ; 0:661 ; 0:422

� �
;

~t3 ¼ ~x2 
 ~x2 ¼ 0:01
0 ; 0:071 ; 0:492

� �
;

where the PDF of ~T are as

p1 ¼ Pð~T ¼ ~t1Þ ¼ 0:81ð1� hÞ2 þ 0:54hð1� hÞþ 0:09h2;
p2 ¼ Pð~T ¼ ~t2Þ ¼ 0:18ð1� hÞ2 þ 1:32hð1� hÞþ 0:42h2;
p3 ¼ Pð~T ¼ ~t3Þ ¼ 0:01ð1� hÞ2 þ 0:14hð1� hÞþ 0:49h2:

Based on Definition 4 and Remark 3, we obtain

Pð~X1 ¼ ~x; ~X2 ¼ ~yj~T ¼ ~t1Þ ¼
Pð~X1¼~x1;~X2¼~x1Þ

Pð~T¼~t1Þ ~x ¼ ~x1 and ~y ¼ ~x1

0 otherwise

(

¼
Pð~X1¼~x1;~X2¼~x1Þ
Pð~X1¼~x1;~X2¼~x1Þ ~x ¼ ~x1 and ~y ¼ ~x1

0 otherwise

(

¼ 1 ~x ¼ ~x1 and ~y ¼ ~x1;

0 otherwise;

�
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Pð~X1 ¼ ~x; ~X2 ¼ ~yj~T ¼ ~t2Þ ¼

Pð~X1¼~x1;~X2¼~x2Þ
Pð~T¼~t2Þ ~x ¼ ~x1 and ~y ¼ ~x2

Pð~X1¼~x2;~X2¼~x1Þ
Pð~T¼~t2Þ ~x ¼ ~x2 and ~y ¼ ~x1

0 otherwise

8
>><

>>:

¼

Pð~X1¼~x1;~X2¼~x2Þ
Pð~X1¼~x1;~X2¼~x2ÞþPð~X1¼~x2;~X2¼~x1Þ ~x ¼ ~x1 and ~y ¼ ~x2

Pð~X1¼~x2;~X2¼~x1Þ
Pð~X1¼~x1;~X2¼~x2ÞþPð~X1¼~x2;~X2¼~x1Þ ~x ¼ ~x2 and ~y ¼ ~x1

0 otherwise

8
>><

>>:

¼
1
2 ~x ¼ ~x1 and ~y ¼ ~x2;
1
2 ~x ¼ ~x2 and ~y ¼ ~x1;

0 otherwise;

8
><

>:

Pð~X1 ¼ ~x; ~X2 ¼ ~yj~T ¼ ~t3Þ ¼
Pð~X1¼~x2;~X2¼~x2Þ

Pð~T¼~t3Þ ~x ¼ ~x2 and ~y ¼ ~x2

0 otherwise

(

¼
Pð~X1¼~x2;~X2¼~x2Þ
Pð~X1¼~x2;~X2¼~x2Þ ~x ¼ ~x2 and ~y ¼ ~x2

0 otherwise

(

¼ 1 ~x ¼ ~x2 and ~y ¼ ~x2;

0 otherwise:

�

Therefore, eT is a sufficient statistics for h. For completeness, suppose that gðeT Þ
is defined as

gð~TÞ ¼
m1 ~T ¼ ~t1;
m2 ~T ¼ ~t2;
m3 ~T ¼ ~t3:

8
<

:

If Eðgð~TÞÞ ¼ 0, then m1p1 þm2p2 þm3p3 ¼ 0, and we have

0:81m1 þ 0:18m2 þ 0:01m3 ¼ 0;
�1:08m1 þ 0:96m2 þ 0:12m3 ¼ 0;
0:36m1 � 0:72m2 þ 0:36m3 ¼ 0:

8
<

:
) m1 ¼ m2 ¼ m3 ¼ 0:

Hence, 8h 2 ð0; 1Þ, gð~TÞ ¼ 0, and so ~T is a complete statistic.

5 Unbiasedness

In this section, we define the concepts of unbiased estimator and UMVUE based on
fuzzy data.
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Definition 7 Let ~X be a fuzzy random sample related to the fuzzy sample space ~v,
and g be a measurable function from ~vn to R. The expectation and the mean squared
error (MSE) of the estimator Y ¼ gð~XÞ are defined as follows (see also [48]):

EðYÞ ¼ Eðgð~XÞÞ ¼
X

~x2~vn
gð~xÞhð~xÞ;

and

MSEYðhÞ ¼ EðY � hÞ2 ¼ Varðgð~XÞÞþ Eðgð~XÞÞ � h
� 	2

:

Definition 8 Let ~X be a fuzzy random sample related to the fuzzy sample space ~v
and g be a measurable function from ~vn to R. Then, U ¼ gð~XÞ is called an unbiased
estimator for h if

EðUÞ ¼ Eðgð~XÞÞ ¼ h; 8h 2 H:

Example 3 Consider Example 2. To obtain an unbiased estimator for h, consider
the estimator gð~XÞ as follows

gð~XÞ ¼
m1 ~x ¼ ð~x1;~x1Þ;
m2 ~x ¼ ð~x1;~x2Þ or ð~x2;~x1Þ;
m3 ~x ¼ ð~x2;~x2Þ;

8
<

:

where the PDF of ~X ¼ ð~X1; ~X2Þ is given by

Pð~X ¼ ~xÞ ¼
0:36h2 � 1:08hþ 0:81 ~x ¼ ð~x1;~x1Þ;
�0:36h2 þ 0:48hþ 0:09 ~x ¼ ð~x1;~x2Þ;
�0:36h2 þ 0:48hþ 0:09 ~x ¼ ð~x2;~x1Þ;
0:36h2 þ 0:12hþ 0:01 ~x ¼ ð~x2;~x2Þ:

8
>><

>>:

Then, gð~XÞ is an unbiased estimator for h, if m1 ¼ � 1
6, m2 ¼ 2

3, and m3 ¼ 3
2. If

we observe ð~x1;~x2Þ or ð~x2;~x1Þ, then the unbiased estimator gð~XÞ is in the range
ð0; 1Þ and would be an acceptable estimator.

Definition 9 Let ~X be a fuzzy random sample related to the fuzzy sample space ~v.
Let g1 and g2 be two measurable functions from ~vn to R. The estimator Y1 ¼ g1ð~XÞ
is called more efficient than the estimator Y2 ¼ g2ð~XÞ if for each h 2 H,
MSEY1ðhÞ�MSEY2ðhÞ.
Example 4 Suppose that in Example 2, we want to estimate the parameter h based
on a fuzzy random sample of size n ¼ 1. Consider two estimators as follows:
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Y1 ¼
1
3 ~x ¼ ~x1;
1
2 ~x ¼ ~x2;

(

Y2 ¼
2
3 ~x ¼ ~x1;
1
7 ~x ¼ ~x2;

(

MSEY1ðhÞ and MSEY2ðhÞ are calculated as

MSEY1ðhÞ ¼ 1
8 � 37

60 hþ 4
5 h

2;

MSEY2ðhÞ ¼ 197
490 � 218

147 hþ 57
35 h

2;

hence, the estimator Y1 is more efficient than Y2, since MSEY1ðhÞ\MSEY2ðhÞ,
8h 2 ð0; 1Þ.
Definition 10 Let ~X be a fuzzy random sample related to the fuzzy sample space ~v,
and g1 and g2 be two measurable functions from ~vn to R. Then, the unbiased
estimator g1ð~XÞ of h is called the “uniformly minimum variance unbiased esti-
mator” (UMVUE) if and only if Varðg1ð~XÞÞ�Varðg2ð~XÞÞ for all h and for any
other unbiased estimator g2ð~XÞ of h.
Theorem 2 Let T ¼ gð~XÞ be a sufficient and complete statistic for h based on a
fuzzy random sample ~X. Let qðTÞ be any unbiased estimator for the parameter h
with a Borel function q. Then, qðTÞ is the unique UMVUE for h.

Proof T is a sufficient and complete statistic, and is also an ordinary random
variable based on Theorem 1. Hence, based on Lehmann-Scheffe theorem ([44],
Theorem 3.1), qðTÞ is the unique UMVUE for h. h

Corollary 1 Let T ¼ gð~XÞ be a complete sufficient statistic. If the distribution of
Tð~XÞ is available, then the UMVUE is a function q of Tð~XÞ such that

E qðTð~XÞÞ� � ¼ h:

Theorem 3 Let gð~XÞ be any unbiased estimator of h based on Definition 8, and
Tð~XÞ be a sufficient and complete statistic. Then qðTð~XÞÞ ¼ Eðgð~XÞjTð~XÞÞ is the
UMVUE of h.

Proof We have

Var gð~XÞ� 	 ¼Var Eðgð~XÞjTð~XÞÞ� 	þE Varðgð~XÞjTð~XÞÞ� 	

¼Var qðTð~XÞÞ� 	þE Varðgð~XÞjTð~XÞÞ� 	

�Var qðTð~XÞÞ� 	
;

hence, qðTð~XÞÞ is the UMVUE of h. h
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6 Numerical Examples

Example 5 In Example 2, we show that ~T ¼ ~X1 
 ~X2 is a complete sufficient
statistic. Now, consider the estimator qð~TÞ as follows:

qð~TÞ ¼
w1 ~T ¼ ~t1;
w2 ~T ¼ ~t2;
w3 ~T ¼ ~t3:

8
<

:

If we take w1 ¼ � 1
6 ;w2 ¼ 2

3 ;w3 ¼ 3
2, then qð~TÞ would be an unbiased estimator.

Hence, the UMVUE for h is obtained as follows:

qð~TÞ ¼
� 1

6
~T ¼ ~t1;

2
3

~T ¼ ~t2;
3
2

~T ¼ ~t3:

8
<

:

In the general case, if we take a fuzzy random sample of size n, then qð~TÞ ¼
3
2 � 5

3n Tð~XÞ is the UMVUE for h, where Tð~XÞ is given by

Tð~XÞ ¼

n ~x ¼ ð~x1;~x1; . . .;~x1;~x1Þ;
n� 1 ~x ¼ ð~x2;~x1; . . .;~x1;~x1Þ or . . .ð~x1;~x1; . . .;~x1;~x2Þ;
n� 2 ~x ¼ ð~x2;~x2; . . .;~x1;~x1Þ or . . .ð~x1;~x1; . . .;~x2;~x2Þ;
..
. ..

.

0 ~x ¼ ð~x2;~x2; . . .;~x2;~x2Þ:

8
>>>>><

>>>>>:

For Tð~XÞ ¼ 0 and Tð~XÞ ¼ n, the unbiased estimator qð~TÞ ¼ 3
2 � 5

3n Tð~XÞ is not
in the range ð0; 1Þ. Hence, the unbiased estimator qð~TÞ ¼ 3

2 � 5
3n Tð~XÞ is acceptable

for Tð~XÞ ¼ 1; 2; . . .; n� 1.

Example 6 Let X be a random variable from a beta distribution Betaðh; 1Þ with a
density of

f ðx; hÞ ¼ hxh�1; h[ 0; 0\x\1:

Suppose that, the fuzzy sample space ~v contains the following fuzzy events

~x1ðxÞ ¼ 1� 2x 0� x\0:5;
2x� 1 0:5� x\1;

�

~x2ðxÞ ¼ 2x 0� x\0:5;
2� 2x 0:5� x\1:

�
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The PDFs of the fuzzy events ~x1 and ~x2 are as follows

p1 ¼ hð~x1Þ ¼ h� 1
hþ 1

; p2 ¼ hð~x2Þ ¼ 2
hþ 1

:

Let the parameter of interest be b ¼ aþ bh
hþ 1 , where a� 0 and b[ 0 are known

constants and a 6¼ b. Suppose that we have a fuzzy random sample of size n.
Consider the sufficient and complete statistic as follows

Tð~XÞ ¼

z0 ~x ¼ ð~x1;~x1; . . .;~x1;~x1Þ;
z1 ~x ¼ ð~x2;~x1; . . .;~x1;~x1Þ or . . .ð~x1;~x1; . . .;~x1;~x2Þ;
z2 ~x ¼ ð~x2;~x2; . . .;~x1;~x1Þ or . . .ð~x1;~x1; . . .;~x2;~x2Þ;
..
. ..

.

zn ~x ¼ ð~x2;~x2; . . .;~x2;~x2Þ:

8
>>>>>>><

>>>>>>>:

On the other hand, Tð~XÞ is an unbiased estimator if EðTð~XÞÞ ¼ h. Hence, we
obtain

Xn

i¼0

zi
n
i


 �
2iðh� 1Þn�i ¼ ðaþ bhÞðhþ 1Þn�1:

The above relation can rewrite as follows

z0k
n þ

Xn�2

i¼0

zi þ 1
n

iþ 1


 �
2iþ 1kn�i�1 þ zn2n

¼ bkn þ
Xn�2

i¼0

ðaþ bÞ n� 1

i


 �
2i þ b

n� 1

iþ 1


 �
2iþ 1

� 
kn�i�1 þðaþ bÞ2n�1

where k ¼ h� 1. Hence, Tð~XÞ is the UMVUE for b ¼ aþ bh
hþ 1 if and only if

z0 ¼ b; zi ¼ iaþð2n� iÞb
2n

; i ¼ 1; 2; . . .; n:

Example 7 Suppose that we have taken a fuzzy random sample of n ¼ 2 from a
uniform distribution Uð0; hÞ. Assume further that the fuzzy sample space ~v contains
the following fuzzy events

~x1ðxÞ ¼
1 0� x\0:5;

2� 2x 0:5� x\1;

�

~x2ðxÞ ¼
2x� 1 0:5� x\1;

1 1� x\1:5

4� 2x 1:5� x\2;

8
><

>:

~x3ðxÞ ¼
2x� 3 1:5� x\2;

1 2� x:

�
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The probabilities of these fuzzy events are obtained as

p1 ¼ hð~x1Þ ¼ 3
4h ;

p2 ¼ hð~x2Þ ¼ 1
h ;

p3 ¼ hð~x3Þ ¼ 4h�7
4h :

We can obtain two sufficient statistics as follows

T1ð~XÞ ¼

m1 ~x ¼ ð~x1;~x1Þ;
m2 ~x ¼ ð~x2;~x2Þ;
m3 ~x ¼ ð~x3;~x3Þ;
m4 ~x ¼ ð~x1;~x2Þ; ð~x2;~x1Þ;
m5 ~x ¼ ð~x1;~x3Þ; ð~x3;~x1Þ;
m6 ~x ¼ ð~x2;~x3Þ; ð~x3;~x2Þ;

8
>>>>>><

>>>>>>:

and

T2ð~XÞ ¼
w1 ~x ¼ ð~x1;~x1Þ; ð~x2;~x2Þ; ð~x1;~x2Þ; ð~x2;~x1Þ;
w2 ~x ¼ ð~x3;~x1Þ; ð~x1;~x3Þ; ð~x2;~x3Þ; ð~x3;~x2Þ;
w3 ~x ¼ ð~x3;~x3Þ:

8
<

:

Note that, T2ð~XÞ is the only complete statistic. Also, the UMVUE for h does not
exist, because if EðT2ð~XÞÞ ¼ h, then we cannot find w1;w2;w3 satisfy the following
relation

ð49w1 � 98w2 þ 49w3Þþ ð56w2 � 56w3Þhþ 16w3h
2 ¼ 16h3:

Now, let the parameter of interest be b ¼ 1
h. We will obtain below the UMVUE

for b based on the two methods proposed in Corollary 1 and Theorem 3,
respectively.

A1: Based on Corollary 1, we obtain w1;w2; and w3 such that EðT2ð~XÞÞ ¼ b. If
EðT2ð~XÞÞ ¼ b, then ð49w1 � 98w2 þ 49w3Þþ ð56w2 � 56w3Þhþ 16w3h

2 ¼ 16h.
Therefore, the UMVUE for b ¼ 1

h is obtained as

hðT2Þ ¼
w1 ¼ 4

7 ~x ¼ ð~x1;~x1Þ; ð~x2;~x2Þ; ð~x1;~x2Þ; ð~x2;~x1Þ;
w2 ¼ 2

7 ~x ¼ ð~x3;~x1Þ; ð~x1;~x3Þ; ð~x2;~x3Þ; ð~x3;~x2Þ;
w3 ¼ 0 ~x ¼ ð~x3;~x3Þ:

8
><

>:

A2: Based on Theorem 3, first we obtain an unbiased estimator H for b, then it is
concluded that hðT2Þ ¼ EðHjT2ð~XÞÞ is the UMVUE. For example, let H be as
follows
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H ¼ Hð~X1Þ ¼
1 ~X1 ¼ ~x1;
1
4

~X1 ¼ ~x2;
0 ~X1 ¼ ~x3:

8
<

:

The conditional distribution of H given T2 is obtained as

PðH ¼ yjT2 ¼ w1Þ ¼
3
7 y ¼ 1;
4
7 y ¼ 1

4 ;

0 y ¼ 0;

8
><

>:

PðH ¼ yjT2 ¼ w2Þ ¼
3
14 y ¼ 1;
2
7 y ¼ 1

4 ;
1
2 y ¼ 0;

8
><

>:

PðH ¼ yjT2 ¼ w3Þ ¼
0 y ¼ 1; 14 ;

1 y ¼ 0:

(

Hence, the UMVUE for b ¼ 1
h is given by

hðT2Þ ¼EðHð~X1ÞjT2ð~XÞÞ

¼
4
7 T2 ¼ w1
2
7 T2 ¼ w2

0 T2 ¼ w3

8
><

>:

¼
4
7 ~x ¼ ð~x1;~x1Þ; ð~x2;~x2Þ; ð~x1;~x2Þ; ð~x2;~x1Þ;
2
7 ~x ¼ ð~x3;~x1Þ; ð~x1;~x3Þ; ð~x2;~x3Þ; ð~x3;~x2Þ;
0 ~x ¼ ð~x3;~x3Þ;

8
><

>:

which is exactly the same as obtained in Part A1.

7 Conclusion

In practical real world problems, we usually confront with non-precise observa-
tions. Conventional statistical methods are not appropriate for analyzing such sit-
uations. We, therefore, need some new statistical methods to deal with non-precise
data.

In this regard, a new approach was introduced to the estimation of a parameter
when the available data were reported as non-precise (fuzzy) quantities. In the
proposed approach, the concepts of sufficient, complete, unbiased, and UMVU
estimators are extended to the case the data are fuzzy. Some procedures to find such
estimators, based on fuzzy data, are presented.
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Applicability of the theory of point estimation provided in this research for
constructing and evaluating confidence intervals based on fuzzy data (Chachi and
Taheri [13] and Chachi et al. [14]), testing hypothesis using fuzzy data
(Grzegorzewski [22], Wu [54], and Arefi and Taheri [2, 3]), and fuzzy regression
analysis (Namdari et al. [41] and Arefi and Taheri [4]) are some topics for more
research. An effective concept to obtain unbiased estimators is U-statistic (see [44],
Definition 3.2). The U-statistic presents a large class of unbiased estimators in
parametric and nonparametric problems. The study of U-statistic based on different
kernel functions and under fuzzy data may be a subject of interest for future
research. Moreover, investigation of the proposed approach in a decision theoretic
framework may also be a subject of interest for future research.
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Fuzzy Confidence Regions

Reinhard Viertl and Shohreh Mirzaei Yeganeh

Abstract Confidence regions are usually based on exact data. However, continuous
data are always more or less non-precise, also called fuzzy. For fuzzy data the
concept of confidence regions has to be generalized. This is possible and the
resulting confidence regions are fuzzy subsets of the parameter space. The con-
struction is explained for classical statistics as well as for Bayesian analysis. An
example is given in the last section.

Keywords Confidence regions � Fuzzy confidence regions � Fuzzy data � Fuzzy
Highest Posterior Density (HPD)-regions � Fuzzy sets

1 Introduction

Classical confidence regions for parameters h in stochastic models X� f :jhð Þ; h 2
H based on standard data x1; . . .; xn of X are classical subsets H1�a of H, with
0\a\1, such that Pr h 2 H1�a½ � ¼ 1� a; where 1� a is the so-called confidence
level. Let MX denote the set of possible values which X can assume. Such confi-
dence sets are based on confidence functions j : Mn

X ! } Hð Þ which are functions
from the sample space Mn

X of X to the system of subsets of H. For a mathematical
sample X1; . . .;Xn from X, i.e. a finite sequence of independent and identical as X
distributed random variables Xi, a confidence function has to obey

Prh j X1; . . .;Xnð Þ 2 H1�a½ � ¼ 1� a 8h 2 H:

For observed sample x1; . . .; xn with xi 2 MX ; j x1; . . .; xnð Þ is a classical subset
of H, called confidence set with coverage probability 1� a.
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2 Fuzzy Data

Since all observations of continuous quantities are more or less fuzzy, a realistic
sample in this case consists of n fuzzy numbers x�1; . . .; x

�
n with corresponding

characterizing functions n1ð:Þ; . . .; nnð:Þ: Therefore the concept of confidence sets
has to be adapted to this situation. This generalization is based on the so-called
combined fuzzy sample x�, which is a fuzzy element of the sample space, charac-
terized by its membership function fð:; . . .; :Þ, defined on the sample space Mn

X (see
[1]). This membership function fð:; . . .; :Þ is obtained from the characterizing
functions ni :ð Þ; i ¼ 1ð1Þn of x�i by the so-called minimum-t-norm, i.e.

f x1; . . .; xnð Þ := minfn1 x1ð Þ; . . .; nnðxnÞg 8 x1; . . .; xnð Þ 2 Mn
X :

3 Generalized Confidence Sets

In case of fuzzy data it is natural that related confidence sets become fuzzy subsets
of the parameter space H. Therefore it is necessary to determine the membership
function uð:Þ of the generalized (fuzzy) subsets H�

1�a: Using the notation x ¼
x1; . . .; xnð Þ 2 Mn

X ; and based on a classical confidence function j : Mn
X ! }ðHÞ

with confidence level 1� a; the construction of the membership function uð:Þ is
possible in the following way.

Based on the combined fuzzy sample x� whose membership function fð:; . . .; :Þ
is given, the membership function u :ð Þ of a so-called fuzzy confidence region is
defined by its values

u hð Þ :¼ supffðxÞ : h 2 jðxÞg;
0;

if 9 x 2 Mn
X : h 2 jðxÞ

if 6 9 x 2 Mn
X : h 2 jðxÞ

� �
8h 2 H:

Remark In case of classical samples x ¼ x1; . . .; xnð Þ 2 Mn
X the resulting member-

ship function is the indicator function 1jðxÞð:Þ of the classical confidence set jðxÞ:
In case of fuzzy data, the membership function uð:Þ of the fuzzy confidence set

above is fulfilling the following inequality:

1S
x :fðxÞ¼1

jðxÞðhÞ5uðhÞ 8h 2 H

This can be seen by considering supffðxÞ : h 2 jðxÞg.
Example Let X have exponential distribution with density f ðxjhÞ ¼ 1

h exp � x
h

� �

1 0;1ð ÞðxÞ with parameter space H ¼ ð0;1Þ. A classical confidence function
jðX1; . . .;XnÞ based on sampleX1; . . .;Xn ofX with confidence level 1� a is given by
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jðX1; . . .;XnÞ ¼ 2
Pn

i¼1 Xi

v22n;1�a
2

;
2
Pn

i¼1 Xi

v22n;a2

" #

:

Hereby v22n;p is denoting the p-fractile of the chi-square distribution with 2n
degrees of freedom.

In Fig. 1, the membership functions of a fuzzy sample of X are depicted.
In Fig. 2, the membership functions of related fuzzy confidence intervals based

on the fuzzy data from Fig. 1 for different coverage probabilities 1� a are
illustrated.

For one-dimensional parameters and classical confidence functions which result
in confidence intervals, the following proposition holds:

Proposition 1 Let x� be a combined fuzzy sample of size n with vector-
characterizing function f : Rn ! ½0; 1� whose d-cuts are simply connected, and
j :; . . .; :ð Þ be a level 1� a confidence function for the one-dimensional parameter h
of a stochastic model X � f ð:jhÞ; h 2 H�R with

j X1; . . .;Xnð Þ ¼ ½j X1; . . .;Xnð Þ; �j X1; . . .;Xnð Þ�

Fig. 1 Fuzzy sample

Fig. 2 Fuzzy confidence
intervals
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where jð:; . . .; :Þ and �j :; . . .; :ð Þ are continuous functions. Then the membership
function uð:Þ of the fuzzy confidence region defined at the beginning of this section
is the characterizing function of a fuzzy interval H�

1�a whose d-cuts obey the
following:

Cd H�
1�a

� � ¼ ½min j xð Þ : x 2 Cd x�ð Þf g; maxf�j xð Þ : x 2 Cd x�ð Þg� 8d 2 ð0; 1�
Proof By the continuity of jð:; . . .; :Þ and �j :; . . .; :ð Þ the set
j�1 hf gð Þ := x : h 2 j xð Þf g ¼ fx : j xð Þ� h� �j xð Þg is closed. The next step is to
prove

Cd H�
1�a

� � ¼
[

x2Cdðx�Þ
jðxÞ ¼

[

x2Cdðx�Þ
½j xð Þ; �j xð Þ�:

Firstly, let h 2 S
x2Cd x�ð Þ j xð Þ ) 9x	 2 Cd x�ð Þ: h 2 j x	ð Þ ) f x	ð Þ
 d ) sup

f xð Þ : h 2 j xð Þf g
 d ) h 2 Cd H�
1�a

� �
:

On the other hand for h 2 Cd H�
1�a

� �
we have u hð Þ ¼ sup f xð Þ : h 2 j xð Þf g
 d;

and by the compactness of j xð Þ we have sup f xð Þ : h 2 j xð Þf g
 d¼ max n xð Þ :f
h 2 k xð Þg 
 d ) 9 x	 : f x	ð Þ 
 d; and therefore h 2 S

x2Cdðx�Þ j xð Þ:
In order to prove

[

x2Cdðx�Þ
½j xð Þ; �j xð Þ� ¼ ½min j xð Þ : x 2 Cd x�ð Þf g; maxf�j xð Þ : x 2 Cd x�ð Þg�;

by the continuity of jð:; . . .; :Þ and �j :; . . .; :ð Þ and the connectedness of Cd x�ð Þ 8d 2
ð0; 1� it follows that Sx2Cdðx�Þ½j xð Þ; �j xð Þ� is connected and compact and therefore a

closed interval.

Remark The concept of fuzzy confidence intervals applies also to one-dimensional
transformed parameters s hð Þ 2 R:

4 Bayesian Confidence Regions

Bayesian confidence regions H1�a for a parameter h in a stochastic model
X� f :jhð Þ; h 2 H are based on the a posteriori distribution of the parameter.

H1�a is defined as a subset of H such that Pr H1�ajDð Þ ¼ 1� a, where 0\a\1,
and 1� a is called confidence level.

For continuous parameter space H usually so-called HPD-regions (Highest
Posterior Density) are considered.
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A HPD-region HHPD;1�a�H is defined using the a posteriori density pð:jDÞ on
the parameter space H in the following way:

(1)
R
HHPD;1�a

p hjDð Þdh ¼ 1� a

(2) p hjDð Þ
Cmax 8h 2 HHPD;1�a

where Cmax is the maximal constant such that condition (1) is fulfilled.

5 Fuzzy a Posteriori Densities

Bayes’ theorem for classical probability densities reads

p hjDð Þ ¼ p hð Þ:lðh;DÞR
H p hð Þ:lðh;DÞdh 8h 2 H:

Here pð:Þ is the a priori density on the parameter space H, and lð:;DÞ is the
likelihood function which is in the simplest case of complete sample D ¼
ðx1; . . .; xnÞ given by its values

l h; x1; . . .; xnð Þ ¼
Yn

i¼1

f xijhð Þ 8h 2 H:

In case of fuzzy data D� ¼ ðx�1; . . .; x�nÞ Bayes’ theorem has to be generalized.
This is possible by using so-called fuzzy densities f �ð:Þ. These are functions defined
on a measure space ðX;A; lÞ whose values f �ðxÞ are fuzzy intervals with d-cuts

f
d
xð Þ;�fd xð Þ

h i
8d 2 ð0; 1�, such that the real valued functions f

d
ð:Þ and �fdð:Þ are

integrable with finite integrals. Moreover there has to be a classical probability
density gð:Þ on ðX;A; lÞ obeying f

1
xð Þ� gðxÞ��f1 xð Þ 8x 2 X: The functions

f
d
ð:Þ and �fdð:Þ are called lower and upper d-level functions of f �ð:Þ.
For fuzzy a priori density p�ð:Þ onH, and fuzzy sample x�1; . . .; x

�
n with combined

fuzzy sample x�, Bayes’ theorem can be generalized in the following way:
The likelihood function is generalized by application of the extension principle.

From this fuzzy valued function l�ð:; x�Þ, the d-level functions ldð:; x�Þ and �ldð:; x�Þ
are obtained. Then Bayes’ theorem is generalized by using the d-level functions
pdð:jx�Þ and �pdð:jx�Þ of the fuzzy a posteriori density p�ð:jx�Þ; whose values are
defined in the following way:

�pd hjx�ð Þ := �pd hð Þ:�ldðh; x�ÞR
H

1
2 ½pd hð Þ:ld h; x�ð Þþ �pd hð Þ:�ld h; x�ð Þ�dh
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and

pd hjx�ð Þ := pd hð Þ:ld h; x�ð ÞR
H

1
2 ½pd hð Þ:ld h; x�ð Þþ �pd hð Þ:�ld h; x�ð Þ�dh

for all d 2 ð0; 1�.
Based on the fuzzy a posteriori density, generalized Bayesian confidence regions

as well as fuzzy HPD-regions can be constructed.

6 Fuzzy Bayesian Confidence Regions

In order to define fuzzy Bayesian confidence sets, the so-called construction lemma
for fuzzy sets is important.

Construction Lemma For universal set M and a family of classical subsets of M,
i.e. ðAd; d 2 0; 1ð �Þ which are nested, i.e. d1\d1 ) Ad1 � Ad2 , the membership
function lð:Þ of the generated fuzzy subset A� of M is given by

l xð Þ ¼ sup d:1Ad xð Þ : d 2 0; 1½ �f g 8x 2 M:

For the proof see [2].

Remark For the generated fuzzy subset A� of M, the following equivalence is valid:

Ad ¼ Cd½l :ð Þ� , Ad

\

b\d

Ab

The proof of this equivalence is given in the forthcoming PhD thesis by
L. Kovarova.

Now the generalized Bayesian confidence set can be defined:

Definition For a stochastic model X � f :jhð Þ; h 2 H with continuous parameter
space H�R

k and fuzzy a posteriori density p�ð:jx�Þ; let Dd denote the set of
classical probability densities on H, for which the following holds:

Dd ¼fg : H ! 0;1½ Þ; g is a density onH obeying pd hjx�ð Þ� g hð Þ
� �pd hjx�ð Þ 8h 2 Hg

Then for each g 2 Dd and confidence level 1� a a standard Bayesian confi-
dence set Bg;1�a is constructed. The union Ad ¼

S
g2Dd

Bg;1�a is taken as the gen-
erating family of the fuzzy confidence set A�

1�a. The membership function uð:Þ of
the fuzzy confidence set is given by the construction lemma, i.e.
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uA�
1�a

hð Þ ¼ supfd:1Ad hð Þ : d 2 ½0; 1�g 8h 2 H:

Remark For classical a posteriori densities this definition yields the indicator
function of the standard Bayesian confidence region.

7 Fuzzy HPD-Regions

Based on the concept of HPD-regions from Sect. 4 the generalization of
HPD-regions for fuzzy a posteriori distributions is possible, similar to the con-
struction in Sect. 6.

For each g 2 Dd an HPD-region Hg;HPD;1�a can be constructed. Then the gen-
erating family of classical subsets ðBd; d 2 ð0; 1�Þ is obtained by

Bd ¼
[

g2Dd

Hg;HPD;1�a:

The fuzzy HPD-region H�
HPD;1�a is the fuzzy subset of H whose membership

function wð:Þ is given by the construction lemma from Sect. 6 (see [3]).

8 Example

Let the stochastic quantity X have an exponential distribution X � f :jhð Þ; h[ 0 with
density

f xjhð Þ ¼ 1
h
e�

x
h1 0;1ð Þ xð Þ:

Fig. 3 Fuzzy a priori density
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The fuzzy a priori density p�ð:Þ is assumed to be a fuzzy Gamma density, which
is depicted in Fig. 3.

A sample of eight fuzzy observations is given in Fig. 1. Applying the general-
ized Bayes’ theorem from Sect. 5 the fuzzy a posteriori density is obtained. The
result is displayed in Fig. 4.

The membership function of a fuzzy Bayesian confidence region with coverage
probability 95%, based on the fuzzy sample from Fig. 1 is presented in Fig. 5.

Fig. 4 Fuzzy a posteriori density

Fig. 5 Fuzzy HPD-interval
for h

126 R. Viertl and S.M. Yeganeh



9 Conclusion

In this chapter, the concept of confidence regions has been generalized for fuzzy
data. The construction has been explained for classical statistics as well as for
Bayesian analysis. Bayesian confidence regions, fuzzy a posteriori densities, fuzzy
Bayesian confidence regions, fuzzy Highest Posterior Density (HPD)-regions have
been developed. For further studies, other extensions of fuzzy sets may be handled.
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Fuzzy Extensions of Confidence Intervals:
Estimation for µ, σ2, and p

Cengiz Kahraman, Irem Otay and Başar Öztayşi

Abstract Even though classical point and interval estimations (PIE) are one of the
most studied fields in statistics, there are a few numbers of studies covering fuzzy
point and interval estimations. In this pursuit, this study focuses on analyzing the
works on fuzzy PIE for the years between 1980 and 2015. In the chapter, the
literature is reviewed through Scopus database and the review results are given by
graphical illustrations. We also use the extensions of fuzzy sets such as
interval-valued intuitionistic fuzzy sets (IVIFS) and hesitant fuzzy sets (HFS) to
develop the confidence intervals based on these sets. The chapter also includes
numerical examples to increase the understandability of the proposed approaches.

Keywords Fuzzy � Point estimation � Interval estimation � Interval-valued intu-
itionistic fuzzy sets � Hesitant fuzzy sets

1 Introduction

A point estimator estimates the considered parameter as a specific numerical value.
For instance, the best point estimate of the population mean (µ) is the sample mean
(x). An interval estimator of a parameter estimates the considered parameter as an
interval or a range of values. This estimator may or may not contain the value of the
parameter being estimated depending on the significance level (α). Confidence level
can be expressed as (1 − α). Confidence level of interval estimation is the proba-
bility that the parameter is within the confidence interval while a confidence interval
is calculated based on the sample statistics and confidence level. An estimator
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should be unbiased, consistent and efficient. An unbiased estimator provides that
the expected values of the sample statistics are equal to the corresponding popu-
lation parameters. A consistent estimator provides that larger sample sizes give the
better estimation of population parameters. A relatively efficient estimator has the
smallest variance among all the estimators [12].

In the literature, confidence intervals are calculated for the population parameters:
mean (µ), variance (r2), binomial proportion (p), difference in means (µ1 − µ2), ratio
of two variances (r21=r

2
2), and difference in binomial proportions (p1 − p2). In this

chapter, we aim to estimate mean (µ), variance (r2), binomial proportion (p) using
IVIFS and HFS. The classical estimation theory gives exact estimations for popu-
lation parameters, which means the lower and upper confidence limits and point
estimations are crisp numbers. However, in real life problems, there are uncertain,
vague and incomplete data that can justify the usage of the fuzzy set theory. For
instance, sale forecasting for a new product would be impossible with insufficient
past data. In this case, we can express our forecasting by using linguistic expressions
such as “around 150 units” or “between 100 and 200 units”.

In the literature, there are a limited number of fuzzy works on point estimations
and confidence intervals. These works will be explained in detail in Sect. 2. The
aim of this chapter is to summarize the literature on fuzzy point and interval
estimations (PIE) by giving numerical examples. The chapter will also propose
some new approaches to fuzzy PIE.

The rest of this chapter is organized as follows: In Sect. 2, the publications on
PIE are analyzed statistically. In Sect. 3, an extensive literature review on fuzzy
confidence interval (FCI) is presented with numerical examples. In Sect. 4, a new
approach for fuzzy estimation is proposed by using intuitionistic fuzzy sets while in
Sect. 5 another approach for fuzzy estimation is presented by hesitant fuzzy sets. In
the last section, conclusion remarks and future research directions are included.

2 Literature Review: Statistics of Publications on PIE

In this section, we first analyze the fuzzy papers on estimation theory by entering
keywords “fuzzy confidence interval”, “fuzzy point estimation”, and “fuzzy interval
estimation” into Scopus database for article title, abstract and keywords under
search field type.

In Fig. 1, the publication frequencies of the papers published on fuzzy confi-
dence intervals between 1980 and 2014 are illustrated. The years that the largest
numbers of fuzzy PIE papers were published are 2005 and 2011. Figure 2 displays
the journals publishing papers on fuzzy confidence intervals with respect to pub-
lishing frequencies. The journals that published the largest numbers of papers are
Journal of Intelligent and Fuzzy Systems and Fuzzy Sets and Systems.
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Figure 3 shows the distribution of papers on fuzzy PIE with respect to source
countries and the number of papers published. The largest number of fuzzy PIE
papers published is from Iran with nine papers and it is followed by China with four
papers and United States with four papers.

Figure 4 demonstrates the subject areas of the fuzzy PIE papers by giving the
percentages obtained from Scopus. The highest numbers of studies have been done
especially in Engineering (63 %), Computer Science (59 %) and Mathematics
(48 %) fields in the years between 1980 and 2014.

0

1

2

3

4

5

6

1980 1985 1990 1995 2000 2005 2010 2015 2020

Fig. 1 Publication frequencies of the fuzzy PIE papers with respect to years

Fig. 2 Journals publishing fuzzy PIE papers
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3 Literature Review: Ordinary Fuzzy Confidence
Intervals

Earlier studies conducted on fuzzy estimation, particularly on confidence intervals
are in 1980s. McCain [10] developed a fuzzy confidence interval. According to the
author, the fuzzy concept is useful for optimization problems having fuzzy objec-
tives and constraints. In the study, fuzzy confidence intervals are constructed from
uncertain hypotheses. The author highlighted the importance of fuzzy confidence
intervals on the applications of decision theory and economics. McCain [11] also
studied a focal theory with regard to rational behavior by considering uncertainty.
The author proposed a theory of choice, concentrated on fuzzy confidence intervals
and highlighted empirical implication of the theory especially in kinky demand
curves in an industrial economy. The theory was composed of the fuzzy confidence
intervals and particular choice theory. In the study, demand elasticity is defined by

Iran

China

United States

India

Slovenia

Japan

Netherlands

Poland

Switzerland

Taiwan

Thailand

Fig. 3 Fuzzy PIE papers with respect to source countries
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Mathematics (48%)

Decision Sciences (11%)

Biochemistry, Genetics and Molecular …

Chemical Engineering (3.7%)

Chemistry (3.7%)

Environmental Science (3.7%)

Medicine (3.7%)

Multidisciplinary (3.7%)

Physics and Astronomy (3.7%)

Fig. 4 Subject areas of fuzzy PIE papers
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using a fuzzy confidence interval and the concept of uncertainty is realized by the
usage of the fuzzy set theory and particularly the fuzzy confidence interval.

However, many studies have been made starting from 2000s. For instance,
Parchami and Mashinchi [13] made a study on process capability indices measuring
the actual or the potential performance of processes. They compared the actual and
desired performances considering the target and limits of specifications. Apart from
the traditional methods analyzing precise estimations of process capabilities, the
authors introduced a new algorithm based on Buckley’s [3] estimation approach
and used confidence intervals to estimate some process capability indices as Cp, Cpk

and Cpm by employing triangular fuzzy numbers.
Let denote the upper and lower specification limits with U and L, respectively.

For a random variable X having mean �x and standard deviation of s, a ð1� bÞ100%
confidence interval is calculated by Eq. (1) given below:

r21ðbÞ; r22ðbÞ
� � ¼ s2ðn� 1Þ

.
v2n�1;1�b=2; s

2ðn� 1Þ
.
v2n�1;b=2

h i
ð1Þ

Fuzzy estimates for process capability indices (FEPCI) with α-cuts of eCp are:

ðeCpÞa ¼
U � L
6s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;a=2

n� 1

s
;
U � L
6s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1;1�a=2

n� 1

s2
4

3
5 ð2Þ

where ð0� a� 1Þ
Example 1 We would like to estimate Cp. The upper and lower specification limits
are 10 and 6, sequentially. Let say X is a random variable with N(5, r2) and a
standard deviation with ¾. A � ð1� bÞ100% confidence interval for r2 can be
calculated as follows:

r21ðbÞ; r22ðbÞ
� � ¼ 9ðn� 1Þ

.
16v2n�1;1�b=2; 9ðn� 1Þ

.
16v2n�1;b=2

h i

ðeCpÞa ¼
10� 6

6 � ð3=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v225�1;a=2

25� 1

s
;
10� 6

6 � ð3=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v225�1;1�a=2

25� 1

s2
4

3
5

where ð0� a� 1Þ (for n = 25).
Alex [1] concentrated on fuzzy point estimation for a supply chain management

problem and made new definitions for arithmetic operations on fuzzy points. The
paper proposed a new approach for dealing with uncertainties in the supply chain.
According to the author, prediction of the market demand is very tough and
important problem. Alex [1] presented a new fuzzy estimation approach and ana-
lyzed non-stationary supply chains.

Skrjanc [14] suggested a new approach for defining fuzzy confidence intervals
by using applied statistics. The study aims to find the confidence interval employing
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the lower and upper fuzzy bounds by covering all the output measurements. The
author emphasized that the method is useful for describing uncertain nonlinear
functions or searching intervals for nonlinear process output. The developed model
is applied for waste-water treatment plant modeling problem concerning uncer-
tainties with regard to the composition of incoming waste water.

Wu [18] suggested fuzzy confidence intervals by considering unknown fuzzy
parameters and fuzzy random variables and solved an optimization problem. In the
study, ~X1; ~X2; . . .; ~Xn are independent, identically and normally distributed fuzzy
random variables and ~l is a fuzzy parameter. ~XU

1h; . . .; ~X
U
nh and ~XL

1h; . . .; ~X
L
nh are

independent and identically distributed fuzzy random variables from
N ~lUh ; r

2
� �

and N ~lLh ; r
2

� �
, respectively. If r is known and ~xLih and ~x

U
ih are the

observed values of ~XL
ih and ~XU

ih , confidence intervals for ~lUh and ~lLh are
L ~xUh
� �

;U ~xUh
� �� �

and L ~xLh
� �

;U ~xLh
� �� �

are given in Eqs. (3) and (4). In the study,
triangular fuzzy number ~xi ¼ xLi ; xi; x

U
i

� �
is employed.

Lð~xLhÞ ¼
1
n

Xn
i¼1

~xLih � za=2
rffiffiffi
n

p ; Lð~xUh Þ ¼
1
n

Xn
i¼1

~xUih � za=2
rffiffiffi
n

p ð3Þ

Uð~xLhÞ ¼
1
n

Xn
i¼1

~xLih þ za=2
rffiffiffi
n

p ; Uð~xUh Þ ¼
1
n

Xn
i¼1

~xUih þ za=2
rffiffiffi
n

p ð4Þ

Kaya and Kahraman [8] analyzed robust process capability indices (RPCIs) for a
piston manufacturing company by incorporating the fuzzy set theory to increase
PCIs’ flexibility and sensitivity by defining fuzzy specification limits and fuzzy
standard deviation. Then fuzzy RPCIs were obtained to express the process per-
formance more realistically for the piston manufacturing stage. In their study, the
authors estimated r2 by using the unbiased fuzzy confidence interval ð1� bÞ100%
confidence level.

eer c ¼ nbr2

LðkÞ ;
nbr2

RðkÞ
� �

; ð0� a� 1Þ ð5Þ

ðr̂cÞa ¼
nr̂2

1� að Þv2R;0:005 þ na
;

nr̂2

1� að Þv2l;0:005 þ na

" #
where 0� a� 1 ð6Þ

Skrjanc [15] proposed a method for identifying confidence interval for Takagi–
Sugeno fuzzy models when the data have changeable variance. The authors
implemented the model for the pH-titration curve. In the application part, pH
processes have nonlinear behavior based on different titration curves. The interval

fuzzy modeling is used for fault detection system. y�j ¼ u�T
j hj þ e�j and by�j ¼ u�T

j
bhj

where u�T
j indicates the regression matrix. The lower and the upper confidence

intervals are as in Eqs. (7) and (8):
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fjðz�i Þ ¼ u�T
ij hj � ta;M�nr̂jð1þu�T

ij uju
T
j

	 
�1
u�
ijÞ1=2 ð7Þ

�fjðz�i Þ ¼ u�T
ij hj þ ta;M�nr̂jð1þu�T

ij uju
T
j

	 
�1
u�
ijÞ1=2 ð8Þ

where M − n represents the degree of freedom and ta;M�n denotes for the percentile
of t-distribution for 100ð1� 2aÞ percentage confidence interval.

Chachi and Taheri [4] proposed the two-sided and one-sided fuzzy confidence
intervals based on normal fuzzy random variables. In their study, h-level sets of
fuzzy parameters were used to make fuzzy confidence intervals. In the study, by
considering normal (Gaussian) fuzzy random variables with known variance r2 and

for X1;X2; . . .;Xn
i:i:d:
� N ~h; r2

	 

, a fuzzy confidence interval for the fuzzy

parameter ðbhÞ was obtained. To make the calculations easier, triangular fuzzy
numbers were employed. Two-sided fuzzy confidence intervals were calculated as
follows:

Let say Xl
1h; . . .;X

l
nh
i:i:d
� Nðhlh; r2Þ and Xu

1h; . . .;X
u
nh
i:i:d
� Nðhuh; r2Þ for h 2 0; 1½ �.

Two-sided 100(1 − a) % confidence intervals for hlh and huh, respectively are as in
Eqs. (9) and (10):

STðXl
hÞ ¼ h :

ffiffiffi
n

p ðXl
h � hÞ
r

����
����� z1�a

2

� 
¼ Xl

h �
rffiffiffi
n

p z1�a
2
;Xl

h þ
rffiffiffi
n

p z1�a
2

� �
ð9Þ

STðXu
hÞ ¼ h :

ffiffiffi
n

p ðXu
h � hÞ
r

����
����� z1�a

2

� 
¼ Xu

h �
rffiffiffi
n

p z1�a
2
;Xu

h þ
rffiffiffi
n

p z1�a
2

� �
ð10Þ

where Xi
h ¼ ðXi

1h; . . .;X
i
nhÞ �Xl

h ¼
Pn

j¼1 X
l
jh

n
for i ¼ l; u: ð11Þ

Example 2 The marketing department for a bulb producer company wants to
estimate the average life of a bulb that the company recently developed. Only 24
new bulbs were tested. Because of some unexpected situations, we cannot measure
the bulb life precisely, and we just obtain the bulb life around a number. The bulb
life numbers are taken to be triangular fuzzy numbers as in Table 1. We assume that
the data are observations from normally distributed fuzzy random variables with
variance 149,400.

Using fuzzy arithmetics �X is obtained as (8592, 8770, 8969) and
�Xh = [8592 + 178h, 8969� 199 h�.

The two sided 0.95 confidence intervals are calculated using Eqs. (9) and (10) as
follows;
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ST Xl
h

� � ¼ 8592�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
149400

p ffiffiffiffiffi
24

p � 1:96; 8592þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
149400

p ffiffiffiffiffi
24

p � 1:96
� �

¼ ½8482:21þ 178h, 8721:79� 178h�

ST Xu
h

� � ¼ 8969�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
149400

p ffiffiffiffiffi
24

p � 1:96; 8969þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
149400

p ffiffiffiffiffi
24

p � 1:96
� �

¼ ½8839:21þ 199h, 9098:79� 199h�

The intervals for different values of h are presented in Fig. 5.
Garg [6] presented a new methodology for evaluating repairable industrial

systems by proposing availability-cost optimization model for improving the sys-
tem efficiency with the proposed confidence interval based fuzzy Lambda-Tau
(CIBFLT) methodology. The methodology was applied in a washing unit for the
paper industry. The proposed methodology was composed of two stages. In the first
stage, availability-cost optimization model was constructed and solved by using one
of the meta-heuristic techniques called Particle swarm optimization (PSO) while in
the second stage reliability parameters are calculated by using the proposed
methodology and the results were compared with fuzzy Lambda-Tau methodology.

In their method, for ~A ¼ ða; b; cÞ as a triangular fuzzy number, the α-cut at (1 − Ƞ)
100 % confidence level of ~A is as in Eq. (12):

Table 1 The data of 24 new bulbs as triangular fuzzy numbers

(8871,9061,9304) (8558,8698,8868) (8689,8814,9010) (8458,8696,8932)

(8748,8911,9042) (8528,8655,8809) (8825,8923,9101) (8519,8658,8857)

(8198,8433,8656) (8579,8819,9058) (8644,8834,9086) (8774,8945,9156)

(8717,8860,9042) (8087,8235,8385) (8583,8693,8850) (8316,8417,8596)

(8913,9076,9272) (8856,9081,9300) (8437,8689,8944) (8252,8490,8730)

(8403,8611,8817) (8516,8747,8919) (8816,9025,9186) (8924,9109,9327)

Fig. 5 Intervals for different values of h
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AðaÞ ¼ aþ aðb� aÞ � rffiffiffi
k

p tk�1
g
2

	 

; c� aðc� bÞþ rffiffiffi

k
p tk�1

g
2

	 
� �
ð12Þ

where r is the standard deviation of b, and k − 1 is the degree of freedom.
Garg [7] also presented a confidence interval based lambda-tau methodology to

handle with imprecise and vague information in the repairable industrial systems by
using the fuzzy set theory and statistics. In the study, reliability parameters were
used to analyze the repair system behavior of synthesis unit of a urea fertilizer plant
in India, and compared the results with the results of fuzzy lambda-tau technique.
The sensitivity analysis was conducted to check the effects of failure. In the paper,
the two-sided confidence interval for the α-cut ðAðaÞÞ was stated as:

AðaÞ ¼ aþðb� aÞa� rffiffiffi
k

p tk�1
c
2

	 

; c� aðc� bÞþ rffiffiffi

k
p tk�1

c
2

	 
� �
ð13Þ

where ~A ¼ ða; b; cÞ is a triangular fuzzy number, r is the standard deviation of
population b, k − 1 is the degree of freedom and T is a t distributed random variable.

The confidence interval for binomial proportion under fuzziness is another
research area studied by various researchers in the literature. Buckley [3] proposed
the following confidence interval for binomial proportion.

Let p be the probability of a success so that q = 1 − p will be the probability of a
failure. We want to estimate the value of p. We therefore gather a random sample
which here is running the experiment in n independent times and counting the
number of times we succeed. Let x be the number of times we observed a success in
n independent repetitions of this experiment. Then our point estimate of p is

p̂ ¼ x=n. We know that p̂� pð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

q� �
is approximately N(0, 1) if n is

sufficiently large. Then,

Pðzb
2
� p̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ=n
q � zb

2
Þ 	 1� b ð14Þ

Solving the inequality for p we have

p̂� zb
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=n

q
; p̂þ zb

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=n

q� �
ð15Þ

However, we have no value for p to use in this confidence interval. So, still
assuming that n is sufficiently large, we substitute p̂ for p in Eq. (15).

Using q̂ ¼ 1� p̂, and we get the final (1 − β) 100 % approximate confidence
interval
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p̂� zb
2

ffiffiffiffiffi
p̂q̂
n

r
; p̂þ zb

2

ffiffiffiffiffi
p̂q̂
n

r" #
ð16Þ

Put these confidence intervals together, and we get �p, our triangular shape fuzzy
number estimator of p.

Example 3 Assume that you have p̂ ¼ 0:52 where n = 36. Figure 6 shows the
fuzzy intervals depending on the α-cut levels.

4 Intuitionistic Fuzzy Confidence Intervals

4.1 Interval-Valued Intuitionistic Fuzzy Sets

In the fuzzy set theory, the membership of an element to a fuzzy set is a single value
between zero and one. However, the degree of non-membership of an element in a
fuzzy set may not be equal to 1 minus the membership degree since there may be
some hesitation degree. Therefore, a generalization of fuzzy sets was proposed by
Atanassov [2] as intuitionistic fuzzy sets (IFS) which incorporate the degree of
hesitation, which is defined as 1 minus the sum of membership and
non-membership degrees.

Definition 1 Let X 6¼ ; be a given set. An intuitionistic fuzzy set in X is an object
A given by

~A ¼ hx; l~A xð Þ; v~A xð Þi; x�X� �
; ð17Þ

where l~A : X ! 0; 1½ � and v~A : X ! 0; 1½ � satisfy the condition

0� l~A xð Þþ v~A xð Þ� 1; ð18Þ

for every x �X: Hesitancy is equal to “1� l~A xð Þþ v~A xð Þ� �
”.
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Fig. 6 Fuzzy Estimator �p,
0.01 ≤ β ≤ 1
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The definition of interval-valued intuitionistic fuzzy sets (IVIFS) is given as
follows:

Definition 2 Let D
 0; 1½ � be the set of all closed subintervals of the interval and X
be a universe of discourse. An interval-valued intuitionistic fuzzy set in ~A over X is
an object having the form

~A ¼ hx; ~lA xð Þ;~vA xð Þijx �Xf g ð19Þ

where ~l~A ! D
 0; 1½ �; ~v~A xð Þ ! D
 0; 1½ � with the condition
0� sup ~l~A xð Þþ sup~v~A xð Þ� 1; 8x 2 X:

The intervals ~l~A xð Þ and ~v~A xð Þ denote the membership function and the
non-membership function of the element x to the set ~A, respectively. Thus, for each
x 2 X, ~l~A xð Þ and ~v~A xð Þ are closed intervals and their lower and upper end points are
denoted by ~lfAL xð Þ; ~lfAU xð Þ; ~v eAL xð Þ; and ~v eAL xð Þ, respectively. Interval-valued

intiutionistic fuzzy set ~A is then defined by

~A ¼ \x; ~lfAL xð Þ; ~lfAU xð Þ
h i

; ½~v eAL xð Þ; ~vfAU xð Þ�[ jx 2 X
n o

ð20Þ

where 0� ~lfAU xð Þþ~v~AU xð Þ� 1; ~lfAL xð Þ� 0;~v eAL xð Þ� 0:

For each element x, we can compute the unknown degree (hesitancy degree) of
an interval-valued intuitionistic fuzzy interval of x 2 X in ~A defined as follows:

p~A xð Þ ¼ 1� ~l~A xð Þ � ~v~A xð Þ ¼ ½1� ~lfAU xð Þ � ~v~AU xð Þ�; ½1� ~lfAL xð Þ � ~vfAL xð Þ�
	 


ð21Þ

For convenience, let ~l~A xð Þ ¼ l�; lþ½ �; ~v~A xð Þ ¼ v�; vþ½ �, so
~A ¼ l�; lþ½ �; v�; vþ½ �ð Þ.

Some arithmetic operations with interval-valued intuitionistic fuzzy sets and
k� 0 are given in the following: Let ~I1 ¼ l�1 ; l

þ
1

� �
; v�1 ; v

þ
1

� �� �
and ~I2 ¼

l�2 ; l
þ
2

� �
; v�2 ; v

þ
2

� �� �
be two interval-valued intuitionistic fuzzy sets. Then,

~I1 � ~I2 ¼ l�1 þ l�2 � l�1 l
�
2 ; l

þ
1 þ lþ

2 � lþ
1 lþ

2

� �
: v�1 v

�
2 ; v

þ
1 vþ2

� �� � ð22Þ

~I1  ~I2 ¼ l�1 l
�
2 ; l

þ
1 lþ

2

� �
; v�1 þ v�2 � v�1 v

�
2 ; v

þ
1 þ vþ2 � vþ1 vþ2

� �� � ð23Þ

k~I1 ¼ 1� 1� l�1
� �k

; 1� 1� lþ
1

� �kh i
; v�1
� �k

; vþ1
� �kh i	 


ð24Þ

Using the extension principle, the arithmetic operations for interval-valued
intuitionistic fuzzy numbers can be obtained by the general equation given in
Eq. (25) [9].
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~A~~B ¼
\z; max

z¼x�y
min l�~A xð Þ; l�~B yð Þ
n o

;max
z¼x�y

min lþ
~A

xð Þ; lþ
~B

yð Þ
n o� �

;

min
z¼x�y max v�~A xð Þ; v�~B yð Þ

n o
; min
z¼x�y max vþ~A xð Þ; vþ~B yð Þ

n o� �
[ j x; yð Þ 2 X � Y

8>><
>>:

9>>=
>>;

ð25Þ

where the symbol “*” stands for one of the algebraic operations. For instance, the
subtraction and summation operations for interval-valued intuitionistic fuzzy
numbers are defined as in Eqs. (26) and (27):

~A�~B ¼
\z; max

z¼x�y
min l�~A xð Þ; l�~B yð Þ
n o

; max
z¼x�y

min lþ
~A

xð Þ; lþ
~B

yð Þ
n o� �

;

min
z¼x�y

max v�~A xð Þ; v�~B yð Þ
n o

; min
z¼x�y

max vþ~A xð Þ; vþ~B yð Þ
n o� �

[ j x; yð Þ 2 X � Y

8>><
>>:

9>>=
>>;

ð26Þ

~A� ~B ¼
\z; max

z¼xþ y
min l�~A xð Þ; l�~B yð Þ
n o

; max
z¼xþ y

min lþ
~A

xð Þ;lþ
~B

yð Þ
n o� �

;

min
z¼xþ y

max v�~A xð Þ; v�~B yð Þ
n o

; min
z¼xþ y

max vþ~A xð Þ; vþ~B yð Þ
n o� �

[ j x; yð Þ 2 X � Y

8>><
>>:

9>>=
>>;

ð27Þ

In case of having multiple IVIFSs, the summation operation can be defined as in
Eq. (28).

Xn
j¼1

~xij ¼

\z;

max
z¼
Pn

j¼1
xj
min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �

;

max
z¼
Pn

j¼1
xj
min lþ

1 x1ð Þ; lþ
2 x2ð Þ; . . .; lþ

n xnð Þ� �
2
664

3
775;

min
z¼
Pn

j¼1
xj
max v�1 x1ð Þ; v�2 x2ð Þ; . . .; v�n xnð Þ� �

;

min
z¼
Pn

j¼1
xj
max vþ1 x1ð Þ; vþ2 x2ð Þ; . . .; vþn xnð Þ� �

2
664

3
775[

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð28Þ

Definition 3 Let ~aj ¼ aj; bj
� �

; cj; dj
� �� �

j ¼ 1; 2; . . .; nð Þ be a collection of
interval-valued intuitionistic fuzzy numbers and let IIFWA: Qn ! Q, if

IIFWAw ~a1; ~a2; . . .; ~anð Þ ¼ w1~a1 � w2~a2 � � � � � wn~an ð29Þ
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Then IIFWA is called an interval-valued intuitionistic fuzzy weighted averaging
(IIFWA) operator, where Q is the set of all IVIFNs, w ¼ w1;w2; . . .;wnð Þ is the
weight vector of the IVIFNs ~aj ðj ¼ 1; 2; . . .; nÞ, and wj [ 0,

Pn
j¼1 wj ¼ 1.

The IIFWA operator can be further transformed into the following form:

IIFWAw ~a1; ~a2; . . .; ~anð Þ ¼ 1�
Yn
i¼1

1� aið Þ
 !wi

; 1�
Yn
i¼1

1� bið Þ
 !wi

" #
;

Yn
i¼1

ci

 !wi

;
Yn
i¼1

di

 !wi
" # !

ð30Þ

Especially if w ¼ 1=n;
1=n; . . .;

1=n
	 


, then the IIFWA operator reduces to an

interval-valued intuitionistic fuzzy averaging (IIFA) operator, where

IIFA ~a1; ~a2; . . .; ~anð Þ ¼ 1
n

~a1 � ~a2 � � � � � ~anð Þ

¼ 1�
Yn
i¼1

1� aið Þ
 !1=n

; 1�
Yn
i¼1

1� bið Þ
 !1=n

2
4

3
5; Yn

i¼1

ci

 !1=n

;
Yn
i¼1

di

 !1=n
2
4

3
5

0
@

1
A

ð31Þ

4.2 A Proposed Method for Confidence Intervals
with IVIFSs

In this section, we will estimate population mean, binomial proportion and popu-
lation variance using interval-valued intuitionistic fuzzy sets and we will give
numerical examples.

4.2.1 IVIF Confidence Interval for Population Mean

We will first obtain the interval-valued intuitionistic confidence interval for the
population mean. Assume that we have an interval-valued intuitionistic fuzzy

sample data set ~xj; l�j ; l
þ
j

h i
; v�j ; v

þ
j

h i	 

as in Table 2.

Table 2 Interval-valued intuitionistic fuzzy sample data set

~x1; l�1 ; l
þ
1

� �
;

v�1 ; v
þ
1

� �� �
~x2; l�2 ; l

þ
2

� �
;

v�2 ; v
þ
2

� �� � � � � ~xn; l�n ;l
þ
n

� �
;

v�n ; v
þ
n

� �� �
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The sample mean from Table 2 is calculated as follows:

Pn
j¼1 ~xj
n

¼

\z;

max
z¼
Pn

j¼1
xj
min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �

;

max
z¼
Pn

j¼1
xj
min lþ

1 x1ð Þ; lþ
2 x2ð Þ; . . .; lþ

n xnð Þ� �
2
664

3
775;

min
z¼
Pn

j¼1
xj
max v�1 x1ð Þ; v�2 x2ð Þ; . . .; v�n xnð Þ� �

;

min
z¼
Pn

j¼1
xj
max vþ

1 x1ð Þ; vþ
2 x2ð Þ; . . .; vþ

n xnð Þ� �
2
664

3
775[

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

n
ð32Þ

If σ is known and the significance level is α, then the interval estimation of fuzzy
population mean is given by Eq. (33) based on Eq. (32).

Pn
j¼1 ~xj
n

� za=2 � rffiffiffi
n

p
� �

ð33Þ

When there are multiple expert evaluations in terms of interval-valued intu-
itionistic fuzzy sets for a certain xj value as seen in Table 3, the aggregation
operation given in Eq. (31) can be applied. Thus, Table 3 is transformed to Table 2
composed of the aggregated values.

Example 4 Table 4 gives the interval-valued intuitionistic sample data composed of
49 random observations. Because of the space constraint, we only give a small part
of the sample data. The standard deviation of the population is known to be 2.95
and the significance level is 5 %.

Table 3 Interval-valued intuitionistic fuzzy sample data in case of multi-experts

~x1; l�11; l
þ
11

� �
; v�11; v

þ
11

� �� �
; l�12;l

þ
12

� �
; v�12; v

þ
12

� �� �� �� �
~x2; l�21; l

þ
21

� �
; v�21; v

þ
21

� �� �
; l�22;l

þ
22

� �
; v�22; v

þ
22

� �� �
; l�23;l

þ
23

� �
; v�23; v

þ
23

� �� �� �� �
� � �
~xn; l�n1; l

þ
n1

� �
; v�n1; v

þ
n1

� �� �
; l�n2; l

þ
n2

� �
; v�n2; v

þ
n2

� �� �� �

Table 4 Sample data for estimating population mean

72:6; 0:55; 0:75½ �; 0; 0:15½ �ð Þ � � � 65:8; 0:75; 0:90½ �; 0; 0:10½ �ð Þ
� � � . .

. � � �
80:2; 0:35; 0:60½ �; 0:25; 0:35½ �ð Þ � � � 63:4; 0:60; 0:85½ �; 0:10; 0:15½ �ð Þ
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From Table 4, we calculate the sample mean by using Eqs. (32) and (33), and
find 64:1; 0:72; 0:84½ �; 0:08; 0:13½ �ð Þ. Then,

64:1; 0:72; 0:84½ �; 0:08; 0:13½ �ð Þ � 1:96� 2:95ffiffiffiffiffi
49

p
� �

From Eqs. (26) and (27), we obtain 64:1; 0:72; 0:84½ �; 0:08; 0:13½ �ð Þ � ð0:826;
1:0; 1:0½ �; 0; 0½ �ÞÞ. Thus, the confidence interval illustrated in Fig. 7 is expressed

as
(63.274,[0.72,0.84],[0.08,0.13])� ~l� (64.926,[0.72,0.84],[0.08, 0.13]).

4.2.2 IVIF Confidence Interval for Binomial Proportion

Now we will develop interval-valued intuitionistic confidence interval for p (bi-
nomial proportion).

P

~�pIVIFS � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�pIVIFS 1�~�pIVIFSð Þ

n

q
� ~pIVIFS �

~�pIVIFS þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�pIVIFSð1�~�pIVIFSÞ

n

q
0
BB@

1
CCA ¼ 1� a ð34Þ

P
�p; l�; lþ½ �; v�; vþ½ �ð Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p; l�;lþ½ �; v�;vþ½ �ð Þ 1� �p; l�;lþ½ �; v�;vþ½ �ð Þð Þ

n

q
� �pIVIFS �

�p; l�; lþ½ �; v�; vþ½ �ð Þþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p; l�;lþ½ �; v�;vþ½ �ð Þ 1� �p; l�;lþ½ �; v�;vþ½ �ð Þð Þ

n

q
0
BB@

1
CCA ¼ 1� a

ð35Þ

Hesitancy Non-Membership

0.84 

0.08 

0.13 

0.72 

63.274 64.926
x 

Membership

Fig. 7 Illustration of interval-valued intuitionistic confidence interval
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where

~�pIVIFS ¼

\z;

max
z¼
P

i
xi=n

k

min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �
;

max
z¼
P

i
xi=n

k

min lþ
1 x1ð Þ; lþ

2 x2ð Þ; . . .; lþ
n xnð Þ� �

2
6664

3
7775;

min
z¼
P

i
xi=n

k

max v�1 x1ð Þ; v�2 x2ð Þ; . . .; v�n xnð Þ� �
;

min
z¼
P

i
xi=n

k

max vþ
1 x1ð Þ; vþ

2 x2ð Þ; . . .; vþ
n xnð Þ� �

2
6664

3
7775[

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð36Þ

and x stands for the defectives in a sample and k denotes the number of possible
defectives predicted by the experts.

Example 5 Consider the following data and compute the confidence interval for
p. Let the sample size be n = 144 and the significance level be α = 5 %.

By using Eq. (31), IVIFSs in Table 5 are aggregated as follows:

IIFAðn ¼ 9Þ
¼ 1� 1� 0:3ð Þ 1� 0:5ð Þð Þ1=2; 1� 1� 0:5ð Þ 1� 0:8ð Þð Þ1=2

h i
; 0:4� 0ð Þ1=2; 0:5� 0:2ð Þ1=2
h i	 


IIFA n ¼ 9ð Þ ¼ 0:41; 0:68½ �; ½0; 0:32�

Similarly,

IIFAðn ¼ 10Þ ¼ 1� 1� 0:4ð Þ 1� 0:5ð Þ 1� 0:3ð Þð Þ1=3; 1� 1� 0:7ð Þ 1� 0:8ð Þ 1� 0:7ð Þð Þ1=3
h i	

;

0:1� 0� 0:2ð Þ1=3; 0:3� 0:2� 0:3ð Þ1=3
h i


IIFA n ¼ 10ð Þ ¼ 0:41; 0:73½ �; ½0; 0:04�

IIFAðn ¼ 11Þ ¼ 1� 1� 0:2ð Þ 1� 0:3ð Þð Þ1=2; 1� 1� 0:6ð Þ 1� 0:5ð Þð Þ1=2
h i

;
	

0:1� 0:2ð Þ1=2; 0:3� 0:4ð Þ1=2
h i

IIFA n ¼ 11ð Þ ¼ 0:25; 0:55½ �; ½0:14; 0:35�

Table 5 Interval-valued intuitionistic fuzzy sample data in case of multi-experts for the number
of defectives

Number of defectives IVIFSs

9 0:3; 0:5½ �; 0:4; 0:5½ �ð Þ; 0:5; 0:8½ �; 0; 0:2½ �ð Þð Þ
10 0:4; 0:7½ �; 0:1; 0:3½ �ð Þ; 0:5; 0:8½ �; 0; 0:2½ �ð Þ; 0:3; 0:7½ �; 0:2; 0:3½ �ð Þð Þ
11 0:2; 0:6½ �; 0:1; 0:3½ �ð Þ; 0:3; 0:5½ �; 0:2; 0:4½ �ð Þð Þ
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Now, we apply Eq. (36) to obtain the mean value of defective numbers.

~�pIVIFS ¼
9

144 þ 10
144 þ 11

144

� �
3

; 0:25; 0:55½ �; ½0:14; 0:35�
� �

¼ ð0:07; 0:25; 0:55½ �; ½0:14; 0:35�Þ

Then, using Eq. (35), the IVIF confidence interval for p is estimated as in the
following:

ð0:07; 0:25; 0:55½ �; ½0:14; 0:35�Þ
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:07; 0:25; 0:55½ �; 0:14; 0:35½ �ð Þð1� 0:07; 0:25; 0:55½ �; ½0:14; 0:35�ð ÞÞ

144

r

ð0:03; 0:25; 0:55½ �; ½0:14; 0:35�Þ � ~p�ð0:11; 0:25; 0:55½ �; ½0:14; 0:35�Þ

This result indicates that the binomial proportion is between 0.03 and 0.11 with a
membership of [0.25, 0.55] and a non-membership of [0.14, 0.35]).

4.2.3 IVIF Confidence Interval for Population Variance

Now we will develop interval-valued intuitionistic confidence interval for r2.

~s2IVIFSðn� 1Þ
v2n�1;1�a=2

� ~r2IVIFS �
~s2IVIFSðn� 1Þ

v2n�1;a=2

ð37Þ

P
ðs2; l�; lþ½ �; v�; vþ½ �Þðn� 1Þ

v2n�1;1�a=2

� ~r2IVIFS �
ðs2; l�; lþ½ �; v�; vþ½ �Þðn� 1Þ

v2n�1;a=2

 !

¼ 1� a

ð38Þ

where

~s2IVIFS ¼

\z;

max
z¼
P

i
S2
i

k

min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �
;

max
z¼
P

i
S2
i

k

min lþ
1 x1ð Þ; lþ

2 x2ð Þ; . . .; lþ
n xnð Þ� �

2
6664

3
7775;

min
z¼
P

i
S2
i

k

max v�1 x1ð Þ; v�2 x2ð Þ; . . .; v�n xnð Þ� �
;

min
z¼
P

i
S2
i

k

max vþ
1 x1ð Þ; vþ

2 x2ð Þ; . . .; vþ
n xnð Þ� �

2
6664

3
7775[

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð39Þ

and k represents the number of estimations for S2.
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Example 6 Consider the following data and compute the confidence interval for r2.
Let the sample size be n = 25 and the significance level be α = 5 %.

From the uncertain data, the various calculated values of S2i are displayed in
Table 6 with their IVIFSs.

By using Eq. (31), IVIFSs in Table 6 are aggregated as follows:

IIFAðS22 ¼ 0:29Þ ¼ 1� 1� 0:3ð Þ 1� 0:4ð Þ 1� 0:5ð Þð Þ1=3; 1� 1� 0:6ð Þ 1� 0:6ð Þ 1� 0:7ð Þð Þ1=3
h i

;
	

0:1� 0:2� 0:2ð Þ1=3; 0:4� 0:4� 0:3ð Þ1=3
h i


IIFA S22 ¼ 0:29
� � ¼ 0:41; 0:64½ �; ½0; 16; 0:36�

IIFAðS23 ¼ 0:32Þ ¼ 1� 1� 0:4ð Þ 1� 0:2ð Þð Þ1=2; 1� 1� 0:6ð Þ 1� 0:5ð Þð Þ1=2
h i

;
	

0:3� 0:4ð Þ1=2; 0:4� 0:5ð Þ1=2
h i


IIFA S23 ¼ 0:32
� � ¼ 0:31; 0:55½ �; ½0:35; 0:45�

The mean value of S2 is calculated using Eq. (39) as follows:

~s2IVIFS ¼
0:27þ 0:29þ 0:32

3
; 0:20; 0:40½ �; 0:35; 0:50½ �

� �
¼ 0:293; 0:20; 0:40½ �; 0:35; 0:50½ �ð Þ

Then, using Eq. (38), the IVIF confidence interval for r2IVIFS is estimated as in
the following:

P
0:293; 0:20; 0:40½ �; 0:35; 0:50½ �ð Þð24Þ

39:364
� ~r2IVIFS �

0:293; 0:20; 0:40½ �; 0:35; 0:50½ �ð Þð24Þ
12:401

� �
¼ 1� a

ð0:18; 0:20; 0:40½ �; 0:35; 0:50½ �Þ � ~r2IVIFS �ð0:57; 0:20; 0:40½ �; 0:35; 0:50½ �Þ

This result indicates that the population variance is between 0.18 and 0.57 with a
membership of [0.20, 0.40] and a non-membership of [0.35, 0.50].

Table 6 Interval-valued intuitionistic fuzzy sample data in case of multi-experts for S2

S2i IVIFSs

0.27 0:2; 0:4½ �; 0:30; 0:50½ �ð Þ
0.29 0:3; 0:6½ �; 0:1; 0:4½ �ð Þ; 0:4; 0:6½ �; 0:2; 0:4½ �ð Þ; 0:5; 0:7½ �; 0:2; 0:3½ �ð Þð Þ
0.32 0:4; 0:6½ �; 0:3; 0:4½ �ð Þ; 0:2; 0:5½ �; 0:4; 0:5½ �ð Þð Þ
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5 Hesitant Fuzzy Confidence Intervals

5.1 Hesitant Fuzzy Sets

Hesitant fuzzy sets (HFS) is a novel and recent extension of fuzzy sets that aim to
model the uncertainty originated by the hesitation that might arise in the assignment
of membership degrees of the elements to a fuzzy set. A HFS is defined in terms of
a function that returns a set of membership values for each element in the domain.

Definition 4 Let X be a reference set, a HFS on X is a function ɧ that returns a
subset of values in [0,1] [16]:

ð40Þ

Definition 5 Let M ¼ l1; l2; . . .; lnf g be a set of n membership functions.
The HFS associated to M, is defined as [16]:

ð41Þ

where xεX:
Xia and Xu [19] completed the original definition of HFS by including the

mathematical representation of a HFS as follows:

E ¼ hx; hE xð Þi : xεXf g ð42Þ

where hEðxÞ is a set of some values in [0,1], denoting the possible membership
degrees of the element x 2 X to the set E. For convenience, Xia and Xu [19] noted
h ¼ hE xð Þ and called it Hesitant Fuzzy Element (HFE) of E and H ¼ [ hEðxÞ, the
set of all HFEs of E.

Chen et al. [5] presented the definition of Interval-Valued Hesitant Fuzzy Set
(IVHFS), as a generalization of HFS in which the membership degrees of an
element to a given set are defined by several possible interval values. An IVHFS is
defined as follows:

Definiton 6 Let X be a reference set, and I([0, 1]) be a set of all closed subintervals
of [0, 1]. An IVHFS on X is,

~A ¼ xi; ~hA xið Þ xij εX,i ¼ 1; 2; . . .; n
� � ð43Þ

where ~hA xið Þ X → u(I([0, 1])) denotes all possible interval-valued membership
degrees of the element xi 2 X to the set ~A. Aggregation of the interval-valued
hesitant fuzzy sets is obtained using Definition 7.
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Definition 7 Let ~hi i ¼ 1; 2; . . .; nð Þ be a collection of interval-valued hesitant fuzzy
elements (IVHFE).Their aggregated value can be calculated by using hesitant
interval-valued fuzzy weighted averaging (HIVFWA) operation given in Eq. (44)
[17]:

HIVFWA ~h1; ~h2; . . .; ~hn
� � ¼ 1�

Yn
j¼1

1� cLj

	 
wj

; 1�
Yn
j¼1

ð1� cRj Þwj

" #( )
ð44Þ

where wjðj ¼ 1; ::; nÞ is the weighting vector of hj and wj [ 0;
Pn

j¼1 wj ¼ 1.
Using the extension principle, the arithmetic operations for interval-valued

hesitant fuzzy numbers can be obtained by the general equation given in Eqs. (45)
and (46).

~A�~B ¼ \z; max
z¼x�y

min l�~A xð Þ; l�~B yð Þ
n o

; max
z¼x�y

min lþ
~A

xð Þ; lþ
~B

yð Þ
n o� �

[ j x; yð Þ 2 X � Y

8<
:

9=
; ð45Þ

~A� ~B ¼ \z; max
z¼xþ y

min l�~A xð Þ; l�~B yð Þ
n o

; max
z¼xþ y

min lþ
~A

xð Þ; lþ
~B

yð Þ
n o� �

[ j x; yð Þ 2 X � Y

8<
:

9=
; ð46Þ

5.2 A Proposed Method for Confidence Intervals
with IVHFSs

In this section, we will estimate population mean, binomial proportion and popu-
lation variance using interval-valued hesitant fuzzy sets and we will give numerical
examples.

5.2.1 IVHF Confidence Interval for Population Mean

We will first obtain the interval-valued hesitant confidence interval for the popu-
lation mean. Assume that we have an interval-valued hesitant fuzzy sample data set

ð~xj; l�j ; l
þ
j

h i
Þ; j = 1,. . .; n: as in Table 7, obtained from m experts.

First of all, the aggregation of hesitant fuzzy values is realized by using Eq. (44).
Thus, Table 7 is transformed to Table 8. Then, Eq. (47) is used to calculate the
sample mean.
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Pn
j¼1 ~xj
n

¼

\z;

max
z¼
Pn

j¼1
xj
min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �

;

max
z¼
Pn

j¼1
xj
min lþ

1 x1ð Þ; lþ
2 x2ð Þ; . . .; lþ

n xnð Þ� � [

8>><
>>:

9>>=
>>;

n
ð47Þ

If σ is known and the significance level is α, then the interval estimation of fuzzy
population mean is given by Eq. (48).

Pn
j¼1 ~xj
n

� za=2 � rffiffiffi
n

p ð48Þ

Example 7 Table 9 gives the interval-valued hesitant sample data composed of 36
random observations. Because of the space constraint, we only give a small part of
the sample data. The standard deviation of the population is known to be 1.75 and
the significance level is 5 %.

From Table 9, we calculate the sample mean by using Eqs. (47) and (48), and
find 78:30; 0:65; 0:85½ �ð Þ.Then,

78:30; 0:65; 0:85½ �ð Þ � 1:96� 1:75ffiffiffiffiffi
36

p
� �

Table 7 Interval-valued
hesitant fuzzy sample data set

~x1; l�11; l
þ
11

� �
; l�12;l

þ
12

� �� �� �
~x2; l�21; l

þ
21

� �� �
; l�22;l

þ
22

� �� �
; l�23; l

þ
23

� �� �� �� �
. . .

~xn; ð l�n1;l
þ
n1

� �
; l�n2;l

þ
n2

� �� �

Table 8 Aggregated
interval-valued hesitant fuzzy
sample data set

~x1; l�a1; l
þ
a1

� �� �
~x2; l�a2; l

þ
a2

� �� �
. . .

~xn; l�an; l
þ
an

� �� �

Table 9 Sample data for numerical example

82:4; 0:55; 0:75½ �; 0:60; 0:65½ �; 0:45; 0:70½ �ð Þ � � � 77:9; 0:75; 0:90½ �; 0:65; 0:85½ �ð Þ
� � � . .

. � � �
74:5; 0:35; 0:60½ �; 0:40; 0:55½ �ð Þ � � � 80:9; 0:60; 0:85½ �; 0:65; 0:80½ �; 0:60; 0:75½ �ð Þ
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From Eqs. (45) and (46), we obtain 78:30; 0:65; 0:85½ �ð Þ � ð0:572; 1:0; 1:0½ �Þ.
Thus, the confidence interval illustrated in Fig. 8 is expressed as (77.728,[0.65,
0.85]) � ~l� (78.872,[0.65, 0.85]).

5.2.2 IVHF Confidence Interval for Binomial Proportion

Now we will develop interval-valued hesitant confidence interval for p (binomial
proportion).

P
~�pIVHFS � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�pIVHFS 1�~�pIVHFSð Þ

n

q
� ~pIVHFS �

~�pIVHFS þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�pIVHFS 1�~�pIVHFSð Þ

n

q
0
BB@

1
CCA ¼ 1� a ð49Þ

P
�p; l�; lþ½ �ð Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p; l�;lþ½ �ð Þ 1� �p; l�;lþ½ �ð Þð Þ

n

q
� ~pIVHFS �

�p; l�; lþ½ �ð Þþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p; l�;lþ½ �ð Þ 1� �p; l�;lþ½ �ð Þð Þ

n

q
0
BB@

1
CCA ¼ 1� a ð50Þ

where

~�pIVHFS ¼ \z,

max
z¼
P

i
xi=n

k

min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �
;

max
z¼
P

i
xi=n

k

min lþ
1 x1ð Þ; lþ

2 x2ð Þ; . . .; lþ
n xnð Þ� �

2
6664

3
7775[

0
BBB@

1
CCCA ð51Þ

0.65 

0.85 

77.728 78.872 
x 

Fig. 8 Illustration of interval-valued hesitant confidence interval
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and x stands for the defectives in a sample and k denotes the number of possible
defectives predicted by the experts.

Example 8 Consider the following data and compute the confidence interval for
p. Let the sample size be n = 169 and the significance level be α = 5 %.

By using Eq. (44), IVHFSs in Table 10 are aggregated as follows:

HIVFWAðn ¼ 2Þ ¼ 1� 1� 0:2ð Þ 1� 0:3ð Þð Þ1=2
h i

; 1� 1� 0:4ð Þ 1� 0:5ð Þð Þ1=2
h i	 


HIVFWA n ¼ 2ð Þ ¼ ½0:25; 0:45�

HIVFWAðn ¼ 3Þ
¼ 1� 1� 0:4ð Þ 1� 0:6ð Þ 1� 0:7ð Þð Þ1=3; 1� 1� 0:8ð Þ 1� 0:8ð Þ 1� 0:9ð Þð Þ1=3

h i	 


HIVFWA n ¼ 3ð Þ ¼ ½0:58; 0:86�

HIVFWAðn ¼ 4Þ
¼ 1� 1� 0:2ð Þ 1� 0:3ð Þ 1� 0:2ð Þð Þ1=3; 1� 1� 0:3ð Þ 1� 0:4ð Þ 1� 0:4ð Þð Þ1=3

h i	 


HIVFWA n ¼ 4ð Þ ¼ ½0:23; 0:40�

Now, we apply Eq. (51) to obtain the mean value of defective numbers.

~�pIVHFS ¼
2

169 þ 3
169 þ 4

169

� �
3

; 0:23; 0:40½ �
� �

¼ ð0:05; 0:23; 0:40½ �Þ

Then, using Eq. (50), the IVHF confidence interval for p is estimated as in the
following:

ð0:05; 0:23; 0:40½ �Þ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05; 0:23; 0:40½ �ð Þð1� 0:05; 0:23; 0:40½ �ð ÞÞ

169

r

ð0:02; 0:23; 0:40½ �Þ � ~pIVHFS �ð0:08; ½0:23; 0:40�Þ

Table 10 Interval-valued
hesitant fuzzy sample data in
case of multi-experts

Number of defectives IVHFSs

2 0:2; 0:4½ �; 0:3; 0:5½ �f g
3 0:4; 0:8½ �; 0:6; 0:8½ �; 0:7; 0:9½ �f g
4 0:2; 0:3½ �; 0:3; 0:4½ �; 0:2; 0:4½ �f g

Fuzzy Extensions of Confidence Intervals … 151



This result indicates that the binomial proportion is between 0.02 and 0.08 with a
membership of 0:23; 0:40½ �

5.2.3 IVHF Confidence Interval for Population Variance

Now we will develop interval-valued hesitant confidence interval for r2.

~s2IVHFSðn� 1Þ
v2n�1;1�a=2

� ~r2IVHFS �
~s2IVHFSðn� 1Þ

v2n�1;a=2

ð52Þ

P
ðs2; l�; lþ½ �Þðn� 1Þ

v2n�1;1�a=2

� ~r2IVHFS �
ðs2; l�; lþ½ �Þðn� 1Þ

v2n�1;a=2

 !
¼ 1� a ð53Þ

where

~s2IVHFS ¼
P

i S
2
i

k
; \z;

max
z¼
P

i
S2
i

k

min l�1 x1ð Þ; l�2 x2ð Þ; . . .; l�n xnð Þ� �
;

max
z¼
P

i
S2
i

k

min lþ
1 x1ð Þ; lþ

2 x2ð Þ; . . .; lþ
n xnð Þ� �

2
6664

3
7775;

[

0
BBBB@

1
CCCCA ð54Þ

s2 ¼
P

i
S2i

k and k represents the number of estimations for S2.

Example 9 Consider the following data and compute the confidence interval for r2.
Let the sample size be n = 28 and the significance level be α = 5 %.

From the uncertain data, the various calculated values of S2i are displayed in
Table 11 with their IVHFSs.

By using Eq. (44), IVHFSs in Table 11 are aggregated as follows:

HIVFWAðS21 ¼ 1:45Þ
¼ 1� 1� 0:2ð Þ 1� 0:4ð Þð Þ1=2

h i
; 1� 1� 0:4ð Þ 1� 0:5ð Þð Þ1=2
h i	 


HIVFWA S21 ¼ 1:45
� � ¼ ½0:31; 0:45�

Table 11 Interval-valued
hesitant fuzzy sample data in
case of multi-experts for S2

S2i IVHFS

1.45 0:2; 0:4½ �; 0:4; 0:5½ �
1.53 0:5; 0:7½ �; 0:45; 0:65½ �; 0:55; 0:75½ �
1.59 0:35; 0:55½ �; 0:25; 0:45½ �
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HIVFWAðS22 ¼ 1:53Þ ¼ 1� 1� 0:5ð Þ 1� 0:45ð Þ 1� 0:55ð Þð Þ1=3
h i	

;

1� 1� 0:7ð Þ 1� 0:65ð Þ 1� 0:75ð Þð Þ1=3
h i


HIVFWA S22 ¼ 1:53
� � ¼ ½0:50; 0:70�

HIVFWAðS23 ¼ 1:59Þ ¼ 1� 1� 0:35ð Þ 1� 0:25ð Þð Þ1=2
h i

; 1� 1� 0:55ð Þ 1� 0:45ð Þð Þ1=2
h i	 


HIVFWA S23 ¼ 1:59
� � ¼ ½0:30; 0:50�

The mean value of S2 is calculated using Eq. (53) as follows:

~s2IVHFS ¼
1:45þ 1:53þ 1:59

3
; 0:30; 0:45½ �

� �
¼ 1:52; 0:30; 0:45½ �ð Þ

Then, using Eq. (54), the IVHF confidence interval for ~r2IVHFS is estimated as in
the following:

P
1:52; 0:30; 0:45½ �ð Þð27Þ

43:195
� ~r2IVIFS �

1:52; 0:30; 0:45½ �ð Þð27Þ
14:573

� �
¼ 1� a

ð0:95; 0:30; 0:45½ �Þ � ~r2IVIFS �ð2:82; 0:30; 0:45½ �Þ

This result indicates that the population variance is between 0.95 and 2.82 with a
membership of 0:30; 0:45½ �.

6 Conclusion Remarks and Future Research Suggestions

This chapter deals with the interval estimation of a single parameter such as µ, σ,
and p. Various approaches to ordinary fuzzy confidence intervals have been pro-
posed by several researchers by today. The chapter summarizes these approaches by
giving numerical examples. It also includes new approaches for confidence inter-
vals using the extensions of fuzzy sets, namely hesitant fuzzy sets and intuitionistic
fuzzy sets. Each proposed approach has been illustrated by a numerical example.
The future studies may be based on the other extensions of fuzzy sets such as fuzzy
multisets, and type-II fuzzy sets, etc. Other types of hesitant and intuitionistic fuzzy
sets may be also used for the development of fuzzy confidence intervals such as
triangular hesitant fuzzy sets, and triangular intuitionistic fuzzy sets, etc.
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Testing Fuzzy Hypotheses: A New
p-value-based Approach

Abbas Parchami, S. Mohmoud Taheri, Bahram Sadeghpour Gildeh
and Mashaallah Mashinchi

Abstract In this paper, on the basis of Zadeh’s probability measure of fuzzy
events, the p-value concept is generalized for testing fuzzy hypotheses. We prove
that the introduced p-value has uniform distribution over (0, 1) when the null fuzzy
hypothesis is true. Then, based on such a p-value, a procedure is illustrated to test
various types of fuzzy hypotheses. Several applied examples are given to show the
performance of the method.

Keywords Fuzzy statistics � Testing hypothesis � Fuzzy hypothesis � p-value

1 Introduction

In testing statistical hypotheses, we may face with situations in which hypotheses
are imprecise (fuzzy) rather than crisp. For instance, suppose that the interested
parameter h is the proportion of a population which has a certain disease. We take a
random sample from population and study the sample for having some idea about h.
In ordinary hypotheses testing, one uses the hypotheses of the form:
“H0 : h ¼ 0:15”, versus “H1 : h 6¼ 0:15”; or of the form: “H0 : h� 0:15”, versus
“H1 : h\0:15”; and so on. However, we would sometimes like to test more real-
istic hypotheses, such as small, very small, large, approximately 0.15, and so on.
In this situation, fuzzy expressions are more suitable to real life problems than
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classical crisp hypotheses. Therefore, more suitable formulation of the hypotheses
might be, “~H0 : h is small”, versus “~H1 : h is not small”. We call such vague
expressions as fuzzy hypotheses. In this paper we are going to present a new p-
value-based approach for testing fuzzy hypotheses.

Let us review some works on the topic of testing hypotheses in fuzzy envi-
ronment. Tanaka et al. [26] investigated hypotheses testing problem with fuzzy data
in the decision problem framework. In decision theory framework, Casals et al. [7]
proposed Bayes and minimax fuzzy tests for testing statistical hypotheses based on
vague data. By using Zadeh’s probabilistic definition, Casals et al. [6] extended the
Neyman-Pearson Lemma and Bayesian approach to testing hypotheses, where the
observations are fuzzy. Arnold [3, 4] worked on testing fuzzy hypotheses with crisp
data. He gave new definitions for probability of type I and type II errors and
presented a best test for the one-parameter exponential family. Grzegorzewski and
Hryniewicz [13] reviewed some methods in testing statistical hypotheses in fuzzy
environment, pointing out their advantages or disadvantages and practical prob-
lems. Taheri and Behboodian [24] formulated the problem of testing fuzzy
hypotheses when the hypotheses are fuzzy and the observations are crisp. In order
to establish optimality criteria, they gave new definitions for probability of type I
and type II errors. Then, on the basis of these new errors, they stated and proved
Neyman-Pearson Lemma for testing fuzzy hypotheses. Also they studied on the
problem of hypotheses testing, from a Bayesian point of view, when the observa-
tions are ordinary and the hypotheses are fuzzy, see Taheri and Behboodian [25].
Arnold and Gerke [5] studied testing fuzzy linear hypotheses in linear regression
models. Holeňa [14] presented a principally different approach for testing fuzzy
hypotheses, which was motivated by observational logic and its success in auto-
mated knowledge discovery. Using a generalized metric for fuzzy numbers,
Montenegro et al. [17] proposed a method to test the fuzzy mean of a fuzzy random
variable. Torabi and Behboodian [27] introduced the likelihood ratio test for testing
fuzzy hypotheses problem. González-Rodríguez el al. [12] introduced a bootstrap
approach to the one-sample test of mean for imprecisely valued sample data.
Filzmoser and Viertl [9] worked on the problem of testing hypotheses, and intro-
duced a fuzzy p-value when the observations are fuzzy and hypotheses are crisp. In
a similar framework, and using the extension principle, Parchami et al. [20] worked
on testing fuzzy hypotheses problem with crisp data and introduced a concept of
fuzzy p-value for such situations. For combining the ideas of two recent works, see
Parchami et al. [22]. González-Rodríguez el al. [11] developed a one-way ANOVA
test for fuzzy observations in which the fuzzy observations are treated as functional
data of a functional Hilbert space.

In this paper, a new p-value-based method is introduced for testing fuzzy
hypotheses. The proposed method is on the basis of the concept of probability
measure of fuzzy events by Zadeh [30]. Also, it must be mentioned that all results of
this study coincide to the results of testing classical hypotheses, when the
hypotheses reduce to two crisp sets of the parameter space.
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This paper is organized as follows. In Sect. 2, we review p-value approach to
testing classical hypotheses. In Sects. 3 and 4, we recall and redefine some pre-
liminaries and concepts about fuzzy hypotheses and measuring the probability
under a fuzzy hypothesis. In Sect. 5, we present a new p-value-based approach for
testing fuzzy hypotheses problem. The distribution of the introduced p-value under
null fuzzy hypothesis is discussed in Sect. 6. Some applied examples are presented
in Sect. 7. A conclusion is given in the final section.

2 Testing Statistical Hypotheses

Let X ¼ ðX1; . . .;XnÞ be a random sample with the observed value x ¼ ðx1; . . .; xnÞ;
where Xi has the probability density function (p.d.f.) or the probability mass
function (p.m.f.) f ðxi; hÞ, i ¼ 1; . . .; n with the unknown parameter h 2 H�R: It
will be assumed that the functional form of f ðx; hÞ is known. The problem of testing
statistical hypotheses is to decide whether to accept (or reject) the null hypothesis
H0 : h 2 H0 � H against H1 : h 2 Hc

0 ¼ H�H0 , based on the random sample X:
Usually, statistical hypotheses are one of the following forms:

(i) H0 : h ¼ h0 versus H1 : h ¼ h1 ðh0 [ h1Þ
(ii) H0 : h ¼ h0 versus H1 : h ¼ h1 ðh0\h1Þ
(iii) H0 : h� h0 versus H1 : h\h0
(iv) H0 : h� h0 versus H1 : h[ h0
(v) H0 : h ¼ h0 versus H1 : h 6¼ h0

in which h0 and h1 are two known real numbers and we named them the boundary
of the null and alternative hypotheses, respectively. A test u is said to be a test of
(significance) level a 2 0; 1½ � if au � a; where au ¼ suph2H0

Ph (Rejection of H0Þ:
Commonly, the statistical tests are based on a so called test statistic TðXÞ: In a
nonrandomized test, the space of possible values of the test statistic T is decom-
posed into a rejection region and its complement, the acceptance region. Under
some certain conditions, the rejection region usually takes one of the following
forms:

ðaÞ T � tl ðbÞ T � tr ðcÞ T 62 t1; t2ð Þ ð1Þ

where, tl, tr , or t1 and t2 are certain quantiles of the distribution of T ; so that
au ¼ a: In case (c), we may obtain t1 and t2 by the equal tails method, so that
PhðT � t1Þ ¼ PhðT � t2Þ ¼ a=2. The hypothesis H0 is rejected if the value t ¼ tðxÞ
falls into the rejection region. In usual tests, the critical regions of testing
hypotheses (i) and (iii) are of form (a), the critical region of testing hypotheses (ii)
and (iv) are of form (b), and the critical region of testing hypotheses (v) is of form
(c). For more details see [9] and Page 381 of [15].

There exist different statistical approaches to the problem of testing hypotheses.
One approach is to use p-value, which is defined as the smallest significance level
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leading to rejection of the null hypothesis (see Page 381 of [15]). The p-value for
cases (1.a), (1.b) and (1.c) could be obtained as follows

(a) Ph0ðT � tÞ
(b) Ph0ðT � tÞ
(c) 2min Ph0ðT � tÞ;Ph0ðT � tÞ½ � ¼ 2Ph0ðT � tÞ if t�m

2Ph0ðT � tÞ if t�m

�

where h0 is the boundary of the null hypothesis, m is the median of the distribution
of T and t is the observed value of test statistic ðTÞ; see Filzmoser and Viertl [9] and
Parchami et al. [20]. If the p-value is less than a, then null hypothesis is rejected at
the significance level a, otherwise null hypothesis is not rejected.

3 Fuzzy Hypotheses: Motivations and Basic Concepts

Traditionally, the hypotheses for which we wish to provide a test should be for-
mulized in precise assertions. This limitation, sometimes, forces a statistician to
make decision procedure in an unrealistic manner. But, in realistic problems, we
may come across non-precise (fuzzy) hypotheses.

Definition 1 [24] Any hypothesis of the form “~H : h is HðhÞ” is called a fuzzy
hypothesis, where “h is HðhÞ” implies that h is in a fuzzy set of H, the parameter
space, with membership function HðhÞ:

Note that the ordinary hypothesis “H : h 2 H0” is a fuzzy hypothesis with the
membership function HðhÞ ¼ 1 at h 2 H0, and zero otherwise, i.e., the indicator
function of the crisp set H0:

Example 1 Let h be the parameter of a binomial distribution. Consider the fol-
lowing function

H0ðhÞ ¼ 2h if 0\h\ 1
2 ;

2� 2h if 1
2 � h\1:

�

The hypothesis “~H0 : h is HðhÞ” is a fuzzy hypothesis and it means that h ’ 1
2 ;

i.e. “h is approximately 1
2” (see Fig. 1).

Example 2 Suppose that we are going to have an investigation on the amount of
Cadmium (Cd) absorption in a plant from a polluted soil. The unknown parameter
is the amount of Cd uptake in a plant (in term of mg kg−1 DM) from soil which we
denoted it with l: The optimum range Cd absorbed in a plant have been proposed
by Pais and Benton [19] as [0.05, 0.2]; and also its maximum have been specified
by 3 mg kg−1 DM. The experimenter wants to investigate on the following ques-
tion: Whether the mean of Cd absorption coincides to the proposed suitable
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amounts by Pais and Benton or not? If one decides to formulate this problem by
either of the following two testing classical hypotheses, then he/she will face to a
contradiction in the results of

Test 1 H0 : l � 0:2; against, H1 : l\ 02;
and

Test 2 H0 : l � 3; against, H1 : l\ 3;

for more details see Tables 3–5 of [21]. The presented contradiction in the result of
Test 1 and Test 2 comes from the difference between the null hypotheses in two
tests; in other words it comes from very vague proposed information in [19].

In this applied example, one cannot represent the whole above presented
information by Pais and Benton with a classical (precise) set. But, using fuzzy set
theory, one can show the optimum range and the maximum amount of Cd uptakes
in a plant by the following fuzzy set, in which the membership is considered to be 1
on interval ½0; 0:05�, since the lower Cd absorption is better for any plant (see
Fig. 2).

Fig. 1 The membership
functions of the fuzzy
hypothesis in Example 1

Fig. 2 The membership
functions of the fuzzy
hypotheses in Example 2
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H0ðlÞ ¼
1 if 0� l\0:2;
3�l
2:8 if 0:2� l\3;
0 if l� 3:

8<
: ð9Þ

Now, the experimenter can test fuzzy hypotheses “~H0 : l is H0ðlÞ”, against
“~H1 : l is H1ðlÞ” without facing any contradiction in the result, where the mem-
bership functions of H0ðlÞ and H1ðlÞ ¼ 1� H0ðlÞ are depicted in Fig. 2.

Definition 2 (See also Arefi and Taheri [1, 2]) (a) Let the fuzzy hypothesis
“~H : h is HðhÞ” be such that (i) H is an increasing (decreasing) function of h; and
(ii) there exists h1 2 H so that HðhÞ ¼ 1 for h� h1 ðh� h1Þ: Then, ~H is called a
fuzzy one-sided hypothesis.

(b) Let the fuzzy hypothesis “~H : h is HðhÞ” be such that (i) there exists an
interval h1; h2½ � � H so that HðhÞ ¼ 1 for h 2 h1; h2½ � , (ii) H is an increasing
function of h for h� h1 and is a decreasing function for h� h2: Then, ~H is called a
fuzzy two-sided hypothesis.

Now, we recall the concept of the boundary of fuzzy hypothesis from Parchami
et al. [20], which is needed in next sections.

Definition 3 The boundary of the fuzzy hypothesis ~H is a fuzzy subset of H with
membership function Hb defined as follows,

(i) HbðhÞ ¼ HðhÞ for h� h1
0 for h[ h1

� �
, if ~H is one-sided and H is non-decreasing,

(ii) HbðhÞ ¼ HðhÞ for h� h1
0 for h[ h1

� �
, if ~H is one-sided and H is non-increasing,

(iii) HbðhÞ ¼ HðhÞ, if ~H is two-sided.

Remark 1 In Definition 3, we call Hb the boundary of the fuzzy hypothesis ~H; since
as ~H reduces to a crisp hypothesis, Hb becomes just a single point which is the
boundary of the crisp hypothesis ~H:

Example 3 Let h be the parameter of a binomial distribution. Suppose that

HðhÞ ¼
1 if 0� h� 0:2
6�10h

4 if 0:2� h� 0:6
0 if 0:6� h� 1:

8<
:

Then, the hypothesis “~H : h is HðhÞ” is a fuzzy one-sided hypothesis. So, by
Definition 3,
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HbðhÞ ¼
6�10h

4 if 0:2� h� 0:6
0 elsewhere;

�

is the membership function of the boundary of the fuzzy hypothesis ~H (see Fig. 3).

4 Probability Measure Under a Fuzzy Hypothesis

Definition 4 [27] Let the random variable X have p.d.f. or p.m.f. f ðx; hÞ and
“~H : h is HðhÞ” be a fuzzy hypothesis for which

R
h HðhÞ dh\1: The weighted

probability density function of X; under fuzzy hypothesis ~H; is defined by

f ðx; ~HÞ ¼
Z
h
H	ðhÞ f ðx; hÞ dh;

where H	ðhÞ ¼ HðhÞR
h
HðhÞ dh is the normalized membership function of HðhÞ. Replace

integration by summation in discrete case.
Note that the normalized membership function is not necessarily a membership

function, i.e., it may be greater than 1 for some values of h:
The advantage of Definition 4 is that the weighted p.d.f. can integrate all pos-

sible p.d.f.s with different weights. The value of H	ðhÞ can be understood as the
weight of f ðx; hÞ; and the weighted p.d.f. can let different possible f ðx; hÞ’s play
different roles in this integration.

Remark 2 [27] Note that f ðx; ~HÞ in Definition 4 is a p.d.f., since f ðx; ~HÞ is non-
negative and

Fig. 3 The membership
functions of the fuzzy
hypothesis and its boundary
in Example 3
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Z
x
f ðx; ~HÞ dx ¼

Z
x

Z
h
H	ðhÞ f ðx; hÞ dh dx

¼
Z
h
H	ðhÞ

Z
x
f ðx; hÞ dx

� �
dh

¼
Z
h
H	ðhÞ dh ¼ 1:

Remark 3 If H is the crisp hypothesis “H : h ¼ h0”, then f ðx; ~HÞ = f ðx; h0Þ.
Example 4 Let X
Nðl; 0:7Þ, l , and be unknown. The weighted probability
density function of X under fuzzy hypothesis l ’ 4 is as follows

f ðx; l ’ 4Þ ¼
Z
l
H	ðlÞ f ðx; lÞ dl

¼ 2
3

Z
l
HðlÞ 1ffiffiffiffiffiffiffiffiffi

1:4p
p e�

ðx�lÞ2
1:4 dl ; x 2 R

where l ’ 4 is defined by the following membership function

HðlÞ ¼
l�2
2 if 2� l� 4
2ð4:5� lÞ if 4\l� 4:5
0 elsewhere:

8<
:

The weighted p.d.f. of X under fuzzy hypothesis l ’ 4 is drown in Fig. 4.

Example 5 Let X
 binðn ¼ 8; hÞ; i.e.

f ðx; hÞ ¼ 8

x

 !
hxð1� hÞ8�x; x ¼ 0; 1; . . .; 8; 0\h\1:

Fig. 4 The weighted p.d.f. of
X under fuzzy hypothesis
l ’ 4 and the p.d.f of X under
hypothesis l ¼ 4 in Example
4
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Then, under fuzzy hypothesis “~H : h is approximately 1
2” where H0ðhÞ is defined

in Example 1, the weighted probability density function of X is as follows

f ðx; ~H0Þ ¼ f x; h ’ 1
2

� �

¼
Z
h
H	

0ðhÞ f ðx; hÞ dh

¼ 2
Z
h
H0ðhÞ

8

x

 !
hxð1� hÞ8�x

" #
dh ; x ¼ 0; 1; . . .; 8:

Now, for example, under fuzzy hypothesis ~H0 the value of PðX� 2Þ is obtained
as follows

P~H0
ðX� 2Þ ¼ Ph’1

2
ðX � 2Þ

¼
Z
h
H	

0ðhÞPhðX � 2Þ dh

¼ 2
Z
h
H0ðhÞ PhðX ¼ 0ÞþPhðX ¼ 1ÞþPhðX ¼ 2Þ½ � dh

¼ 2
Z 1=2

0
2h ð21h2 þ 6hþ 1Þð1� hÞ6
h i

dh

þ 2
Z 1

1=2
ð2� 2hÞ ð21h2 þ 6hþ 1Þð1� hÞ6

h i
dh

¼ 0:238þ 0:021 ¼ 0:259:

5 Testing Fuzzy Hypotheses: A p-value Approach

The main problem. The main problem studied in this work is to test fuzzy
hypotheses

~H0 : h is H0ðhÞ
~H1 : h is H1ðhÞ

(

based on a random sample from a p.d.f. or p.m.f. f ðx; hÞ; h 2 H: This problem is
called the problem of testing fuzzy hypotheses. In the sequence, by inspiration of
[30], we propose a new p-value-based approach to such a problem.

First, note that, similar to the kinds of hypotheses given in Sect. 2, the fuzzy
hypotheses can be modeled by one of the following forms in practice:
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(i)
~H0 : h is approximately h0;

~H1 : h is approximately h1;

(
ðDef ðH0Þ[Def ðH1ÞÞ

(ii)
~H0 : h is approximately h0;

~H1 : h is approximately h1;

(
ðDef ðH0Þ\Def ðH1ÞÞ

(iii)
~H0 : h is approximately bigger than h0;

~H1 : h is approximately smaller than h0;

(

(iv)
~H0 : h is approximately smaller than h0;

~H1 : h is approximately bigger than h0;

(

(v)
~H0 : h is near to h0;

~H1 : h is away from h0;

(

where h0 and h1 are two known numbers and Def ð:Þ is a defuzzifier function. It is
obvious that the critical regions of testing fuzzy hypotheses are similar to the critical
regions of testing precise hypotheses which are formulated in (1). In other words,
the critical regions of testing fuzzy hypotheses (i) and (iii) is of form (1.a), the
critical regions of testing fuzzy hypotheses (ii) and (iv) is of form (1.b), and the
critical region of testing fuzzy hypotheses (v) is of form (1.c). It must be mentioned
that the critical regions of testing fuzzy hypotheses (i) and (ii) are determined after
defuzzification of fuzzy hypotheses and they depend on the defuzzifier function.

Definition 4 In testing fuzzy hypotheses problem, for any critical region of forms
(1.a), (1.b) and (1.c), the p-value is respectively defined as

ðaÞ p-value ¼ PH0 b
ðT � tÞ

¼
Z
h
H	

0 bðhÞPhðT � tÞ dh; ð2Þ

ðbÞ p-value ¼ PH0 b
ðT � tÞ

¼
Z
h
H	

0 bðhÞPhðT � tÞ dh; ð3Þ

and

ðcÞ p-value ¼ 2PH0 b
ðT � tÞ if t�mr

2PH0 b
ðT � tÞ if t�ml

(

¼ 2
R
h H

	
0 bðhÞPhðT � tÞ dh if t�mr

2
R
h H

	
0 bðhÞPhðT � tÞ dh if t�ml

( ð4Þ
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where H	
0 b is the normalized membership function of the boundary of the fuzzy null

hypothesis. Moreover,

ml ¼ inffm : m 2 SuppðmÞg; ð5Þ

mr ¼ supfm : m 2 SuppðmÞg; ð6Þ

where the fuzzy set m; with membership function mðmÞ ¼ H0 bðhÞ, is called the
median of the distribution of the test statistic under the fuzzy null boundary H0 b and
m is the median of the distribution TðXÞ under h: Replace integration by sum-
mation in discrete case.

Remark 4 When the hypotheses are crisp rather than fuzzy, the membership
function of the fuzzy boundary is reduced to the indicator function of a single point,
i.e. the indicator function of the boundary h0: In these cases, considering formulas
(2–4), the introduced p-values in Definition 4 are reduced to the classical p-values
in Sect. 2.

Remark 5 As we mentioned in Sect. 1, some works have been done by researchers
on the p-value-based methods in fuzzy environments. Denœux et al. [8] and
Filzmoser and Viertl [9] introduced the fuzzy p-value for testing hypotheses based
on fuzzy data; Parchami et al. [20] introduced a fuzzy p-value for testing fuzzy
hypotheses; and Parchami et al. [22] introduced the fuzzy p-value for testing fuzzy
hypotheses based on fuzzy data. In contrast with the above works, it should be
mentioned that, the p-value introduced in this study is a real number on unit interval
which is formulated on the basis of the probability measure under fuzzy hypothesis.

Remark 6 Considering Formula (4), in a two-sided test we have a three-decision
testing problem as follows

(i) accept ~H1 and reject ~H0,
(ii) reject ~H1 and accept ~H0,
(iii) neither accept nor reject both ~H0 and ~H1.

In the case (iii), the uncertainty of the decision is expressed by fuzziness of m,
i.e. when t 2 SuppðmÞ we cannot come to a clear decision, because there is not a
significant difference between the observed value of the statistic and the median of
the T under ~H0. In such cases, one may take more samples and follow the procedure
until acceptance or rejection of ~H0. Note that, Filzmoser and Viertl [9] proposed to
consider a no-decision region in their fuzzy p-value-based approach to test crisp
hypotheses with fuzzy data, where they say “The need for formulating a
three-decision testing problem was already indicated by Neyman and Pearson [18]”.
It should be mentioned that, with decreasing fuzziness of the null hypothesis in case
(c), the no-decision region decreases. On the other hand, this region is deleted in
testing usual (crisp) hypotheses.
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6 Distribution of the Introduced p-value Under Fuzzy Null
Hypothesis

Theorem 1 In testing fuzzy hypotheses “~H0 : h is H0ðhÞ” versus
“~H1 : h is H1ðhÞ”, if the test statistic has a continuous distribution, then p-value has
uniform distribution over (0, 1) under the boundary of fuzzy null hypothesis.

Proof We prove Theorem 1 for critical region of form (1.a). The proof is similar for
cases (1.b) and (1.c). Regarding to Remark 2, we denote the weighted p.d.f. (or p.m.
f.) of X under fuzzy hypothesis ~H by f ðx; ~HÞ, and we denote its weighted cumu-
lative density function by FX; ~HðxÞ ¼ P~HðX� xÞ under fuzzy hypothesis ~H: By
Definition 4, P-value ¼ PH0 b

ðT � tÞ ¼ FT ;H0 bðtÞ in case (a), and hence before
observing data we can denote the random p-value by

P-value ¼ FT ;H0 bðTÞ: ð7Þ

Therefore, we have

FP�value;H0 bðuÞ ¼ PH0 b P-value� u½ �
¼ PH0 b FT ;H0 bðTÞ� u

� �
; by ð7Þ

¼ PH0 b T �F�1
T ;H0 b

ðuÞ
h i

; since FT ;H0 b is a 1�1 function

¼ FT ;H0 b
F�1
T ;H0 b

ðuÞ
	 


¼ u ; 8 0\u\1;

and the proof is finished.h

Remark 7 Considering Remark 4, the result of Theorem 1 for precise hypotheses is
reduced to Lemma 3.3.1 in Page 64 of (Lehmann and Romano [16]).

Corollary 1 The fact that p-value has uniform distribution over (0, 1) under H0 b

can be useful in practice. For example, suppose that we have p-values p1; . . .; pk for
k independent tests of the same null fuzzy hypothesis. By assuming that the p-values
have uniform distribution over (0, 1), one can combine the p-values using the test
statistic

T ¼ �2
Xk

i¼1
lnðpiÞ ð8Þ

and conclude that T has chi-square distribution with 2k degrees of freedom under
the boundary of null fuzzy hypothesis.
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7 Illustrative Examples

In this section, we illustrate different situations of testing fuzzy hypotheses by four
examples. In Examples 6 and 8 we consider one-sided tests, and in Examples 7 and
9 we consider two-sided tests.

Example 6 The lifetime X of certain lamps (in term of hour) produced by a factory
is distributed normally with unknown mean µ and standard deviation r ¼ 120. In a
random sample of size n ¼ 36 lamps, we get �x ¼ 1327. Suppose that we wish to
test the following fuzzy hypotheses

~H0 : l is approximately 1300;
~H1 : l is approximately bigger than 1300;

�

where the membership functions of ~H0 and ~H1 are considered by an expert as
follows (see Fig. 5)

H0ðlÞ ¼
l�1275

25 if 1275� l\1300;
1325�l

25 if 1300� l\1325;
0 elsewhere;

8<
:

H1ðlÞ ¼
0 if l\1275;
l�1275

50 if 1275� l\1325;
1 if l� 1325:

8<
:

In this example, the rejection region is of the form (1.b). Note that in this case
H0 bðlÞ ¼ H0ðlÞ is the boundary of ~H0, and considering (3), one can compute p-
value as follows

Fig. 5 The membership
functions of the fuzzy
hypotheses in Example 6
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p-value ¼ PH0 b
ð�X��xÞ

¼
Z
l
H	

0 bðlÞPlð�X � 1327Þ dl

¼ 1R
l H0 bðlÞ dl

Z
l
H0 bðlÞPlð�X� 1327Þ dl

¼ 1
25

Z 1300

1275

l� 1275
25

Plð�X � 1327Þ dl

þ 1
25

Z 1325

1300

1325� l
25

Plð�X � 1327Þ dl

¼ 1
252

Z 1300

1275
ðl� 1275Þ

Z 1

1327

1

20
ffiffiffiffiffiffi
2p

p e�
ð�x�lÞ2

40 d�x dl

þ 1
252

Z 1325

1300
ð1325� lÞ

Z 1

1327

1

20
ffiffiffiffiffiffi
2p

p e�
ð�x�lÞ2

40 d�x dl

¼ 0:0223þ 0:0926

¼ 0:1149:

Therefore, for instance, one can accept fuzzy hypothesis ~H0 at the significance
level 0.10.

Example 7 Suppose that, in Example 6, we wish to test

~H0 : l is near to 1300;
~H1 : l is away from 1300;

�

where the membership function H0ðlÞ introduced in Example 6 and H1ðlÞ ¼
1� H0ðlÞ (see Fig. 6). In this example, we only change the form of fuzzy
hypotheses of Example 6 into one of five proposed forms for fuzzy hypotheses in
Sect. 5. In this case, the rejection region is of the form (1.c). Note that

Fig. 6 The membership
functions of the fuzzy
hypotheses in Example 7
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�X
Nðl; 120236 Þ, and since for the normal distribution the median coincides with the
mean, therefore under ~H0 the membership function of m is

mðmÞ ¼
m�1275

25 if 1275�m\1300;
1325�m

25 if 1300�m\1325;
0 elsewhere:

8<
:

Here t ¼ �x ¼ 1327 � mr ¼ 1325, and hence,

p-value ¼ 2
Z
l
H	

0 bðlÞPlð�X� 1327Þ dl

¼ 2
252

Z 1300

1275
ðl� 1275Þ

Z 1

1327

1

20
ffiffiffiffiffiffi
2p

p e�
ð�x�lÞ2

40 d�x dl

þ 2
252

Z 1325

1300
ð1325� lÞ

Z 1

1327

1

20
ffiffiffiffiffiffi
2p

p e�
ð�x�lÞ2

40 d�x dl

¼ 0:23

So, based on the observed data, the fuzzy null hypothesis is accepted at any
significance level a� 0:23:

Example 8 The manager of a factory has reinstalled a new system to upgrade the
security of his personnel. We can suppose that the number of monthly accidents has
the poisson distribution with mean k. A study shows that there occurred 27 acci-
dents during the past year. After installation of the new system the manager wants
to test if the average of the monthly accidents is approximately bigger than 3. That
is to test

~H0 : k is approximately bigger than 3;
~H1 : k is approximately smaller than 3;

�

where ~H0 and ~H1 have the following membership functions (see Fig. 7)

H0ðkÞ ¼
0 if k\2:75;
2ðk� 2:75Þ if 2:75� k\3:25;
1 if k� 3:25;

8<
:

H1ðkÞ ¼
1 if k\2:75;
2ð3:25� kÞ if 2:75� k\3:25;
0 if k� 3:25:

8<
:

The rejection region is of the form (1.a), so the membership function of the fuzzy
boundary is
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H0 bðkÞ ¼ 2ðk� 2:75Þ
0

if 2:75� k\3:25;
elsewhere:

�

Therefore, considering T ¼P12
i¼1 Xi 
Pð12kÞ,

p-value ¼ PH0 bðT � tÞ
¼
Z
k
H	

0 bðkÞ PkðT � 27Þ dk

¼ 1R
k H0 bðkÞ dk

Z
k
H0 bðkÞ PkðT � 27Þ dk

¼ 4
Z 3:25

2:75
2ðk� 2:75Þ

X27

t¼0

e�12kð12kÞt
t!

� �
dk

¼ 0:0588:

Hence, the null fuzzy hypothesis is accepted at each level a � 0:0588 and is
rejected at each level a [ 0:0588:

Example 9 The amount of an adverse substance extracted from a sample of size 14
cigarettes of a special brand is given in milligrams as 15.3, 13.5, 13.4, 12.7, 14.4,
14.4, 13.9, 14.3, 13.8, 16.2, 15.4, 15.6, 12.8 and 13.1. From the previous experi-
ments it is known that the random variable of interest is distributed normally with
standard deviation r ¼ 1:2. Suppose that, we wish to test the following fuzzy
hypotheses about unknown mean µ

~H0 : l is near to 15;
~H1 : l is away from 15;

�

Fig. 7 The membership
functions of the fuzzy
hypotheses in Example 8
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where ~H0 is given by the membership function

H0ðlÞ ¼
l�14:3
0:7 if 14:3� l\15;

15:7�l
0:7 if 15� l\15:7;

0 elsewhere;

8<
:

and H1ðlÞ ¼ 1� H0ðlÞ (see Fig. 7). In this case, the rejection region is of the form
(1.c). Since T ¼ �X 
Nðl; r2n Þ and for a normal distribution the median coincides
with the mean, therefore, under ~H0 the membership function of m is

mðmÞ ¼
l�14:3
0:7 if 14:3� l\15;

15:7�l
0:7 if 15� l\15:7;

0 elsewhere:

8<
:

In this example we see that t�ml, since t ¼ �x ¼ 14:2 and ml ¼ 14:3. Also, note
that H0 bðlÞ ¼ H0ðlÞ, and so

p-value ¼ 2
Z
l
H	

0 bðlÞPlð�X� 14:2Þ dl

¼ 2R
l H0 bðlÞ dl

Z
l
H0 bðlÞPlðZ� 14:2� l

1:2
Þ dl

¼ 20
7

Z 15

14:3

l� 14:3
0:7

Z 14:2�l
1:2

�1
ð2pÞ�1

2 expð� z2

2
Þ dz dl

þ 20
7

Z 15:7

15

15:7� l
0:7

Z 14:2�l
1:2

�1
ð2pÞ�1

2 expð� z2

2
Þ dz dl

¼ 0:01920þ 0:00299

¼ 0:0222:

Fig. 8 The membership
functions of the fuzzy
hypotheses in Example 9
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Therefore, for instance, the fuzzy hypothesis ~H0 is rejected at significance level
0.05 and is accepted at significance level 0.01 (see Fig. 8).

8 Conclusion

In this paper, a new p-value-based approach was presented for testing statistical
hypotheses when the hypotheses are fuzzy rather than crisp. The proposed
approach, which is based on the concept of the probability measure of fuzzy events,
is an extension of the classical p-value approach. It was shown that the introduced
p-value has uniform distribution over (0,1) under the null fuzzy hypothesis.
Numerical examples were provided to illustrate the performance of the method.

The study of the applicability of the proposed approach to test about the
parameters of fuzzy regression models is a possible topic for further research. In
addition, the investigation of the p-value approach to test of fuzzy hypotheses from
a Bayesian perspective is another potential subject for more study.
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Fuzzy Regression Analysis: An Actuarial
Perspective

Jorge de Andrés-Sánchez

Abstract The first objective of this paper is to describe from a critical point of
view the main types of fuzzy regression methods: those based on minimum
fuzziness principle, those that are built up by minimising the squared distance
between observations and estimates and models that mix both methodologies.
Finally, we revise the actuarial applications of fuzzy regression proposed in the
literature and develop in detail two of them: estimating the yield curve and cal-
culating claim reserves.

Keywords Fuzzy regression analysis � Actuarial applications � Minimum fuzzi-
ness principle � Fuzzy least squares � Yield curve model

1 Introduction

Fuzzy Data Analysis (FDA) literature has been very productive in last two decades.
It includes theoretical papers as well as empirical applications. Following Dubois
and Prade [1] FDA includes fuzzy analysis of data and also analysis of fuzzy data.
Concretely, this chapter is devoted to fuzzy regression (FR) which is one of the
most common FDA used in empirical applications in several fields as medicine [2],
management [3, 4, 5] or economics [6, 7]. Concretely, in chapter we describe the
most relevant applications of FR on insurance issues.

In our opinion, there are several advantages of FR methods over conventional
regression methods that can explain their success in empirical applications:

(a) The estimates that are obtained after adjusting the coefficients are not random
variables, which are difficult to manipulate in arithmetical operations, but
fuzzy numbers, which are easier to handle arithmetically. So, when starting
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from magnitudes estimated by random variables (e.g. as a result of its pre-
diction from a least squares regression) these random variables are often
reduced to their mathematical expectation (which may or may not be corrected
by their variance) so that they are easier to handle. If fuzzy numbers are used,
this loss of information is not needed.

(b) If the phenomena investigated are economic or social, the observations are a
consequence of the interaction between the economic agents’ beliefs and
expectations, which are highly subjective and vague. Fuzzy Set Theory,
therefore, is a good way of treating this information.

(c) Observations are often not crisp numbers; they are confidence intervals or not
well defined quantities. If econometric methods are to be used, the observa-
tions for the explained variable and/or the explanatory variable must be rep-
resented by a single value which involves losing a great deal of information.
Fuzzy regression, however, does not necessarily reduce the values of each
variable to a crisp number, i.e., all the observed values can be used in the
regression analysis.

The literature has proposed several FR methods throughout time, i.e. we cannot
properly speak about “Fuzzy Regression” but about “Fuzzy Regression Methods”.
Following Chang and Ayyub [8] we can classify FR methods in three categories,
depending on the criteria used to fit coefficients:

(a) Methods that use Minimum Fuzziness Principle [9, 10].
(b) Methods that generalise Ordinary Least Squares to the presence of fuzziness in

the sample [11, 14].
(c) Methods that use sequentially above criteria [12, 13].

The chapter is structured as follows. In the next section we will describe the
basic concepts on fuzzy numbers to develop FR methods. In the third section we
expose the most usual FR method in actuarial applications as well as we reflect on
their advantages and drawbacks. Fourth and fifth sections develop two usual
applications of FR methods in actuarial literature: fitting yield curve for actual
financial pricing and estimating claiming behaviour in a non-life insurance context.
Finally, we remark the most relevant conclusions of this survey.

2 Basics on Fuzzy Numbers

A Fuzzy Number (FN) is a fuzzy subset ~a defined over real numbers. It is the main
instrument used in Fuzzy Set Theory (FST) for quantifying uncertain quantities.
Two properties are required for a FN. The first one is that it must be a normal fuzzy
set (i.e. sup8x2< l~aðxÞ ¼ 1). The second is that it must be convex (i.e. its a-cuts
must be convex sets).

For practical purposes, Triangular Fuzzy Numbers (TFNs) are widely used since
they are easy to handle arithmetically and they can be interpreted intuitively. We
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shall symbolise a TFN ~a as ~a = (a, la, ra) where a is the centre and la and ra are the
left and right spreads, respectively. For example, a subjective judgement by an
economist “I expect that for the next two years the inflation rate will be around 2 %
and deviations no greater than 1 %” may be quantified in a very natural way as
(0.02, 0.01, 0.01). Analytically, a TFN is characterised by its membership function
l~a xð Þ or, alternatively, by its a-cuts, aa, as:

l~a xð Þ ¼
x�aþ la

la
a� la\x� a

aþ ra�x
ra

a\x� aþ ra
0 otherwise

8<
: ð1aÞ

aa ¼ a að Þ; a að Þb c ¼ a� la 1� að Þ; aþ ra 1� að Þ½ � ð1bÞ

In a fuzzy regression context is very usual to use symmetrical TFNs (STFNs),
i.e. la = ra In this case the spread will be symbolised as sa and a STFN will be
denoted as ~a = (a, sa). Analytically:

l~a xð Þ ¼
x�aj j
sa

a� sa � x� aþ sa
0 otherwise

�
ð2aÞ

aa ¼ a að Þ; a að Þb c ¼ a� sa 1� að Þ; aþ sa 1� að Þ½ � ð2bÞ

In many quantitative analyses, it is often necessary to evaluate functions which
we shall name y = f(x1, x2, …, xn). Then, if x1, x2, …, xn are not crisp numbers but
the FNs ~a1, ~a2,…, ~an, f(�) induces the FN ~b = f ~a1; ~a2; . . .; ~anð Þ. To obtain its a-cuts,
ba, from a1a ; a2a ; . . .; ana , it is necessary to evaluate:

aa ¼ f ~a1; ~a2; . . .; ~anð Þa¼ f a1a ; a2a ; . . .; anað Þ ð3aÞ

Many functional relationships are continuously increasing or decreasing with
respect to all the variables involved in such a way that it is easy to evaluate the a-
cuts of ~b. Buckley and Qu [14] demonstrate that if the function f(�) that induces ~b is
increasing with respect to the first m variables, where m � n, and decreasing with
respect to the last n-m variables, then ba (3a) turns into:

ba ¼ b að Þ; b að Þ� � ¼ f a1 að Þ; . . .; am að Þ; amþ 1 að Þ; . . .; an að Þ� �
; f a1 að Þ; . . .; am að Þ; amþ 1 að Þ; . . .; an að Þ
� �h i

ð3bÞ

If a FN ~b is obtained from a linear combination of the TFNs ~ai = (ai, lai , rai ),
i = 1, …, n, i.e. ~b ¼Pn

i¼1 ki~ai, ki 2ℜ, ~b will be the TFN, ~b = (b, lb, rb), where:
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b ¼
Xn
i¼1

aiki; lb ¼
Xn

i¼1;ki � 0

lai kij j þ
Xn

i¼1;ki\0

rai kij j; rb ¼
Xn

i¼1;ki � 0

rai kij j þ
Xn

i¼1;ki\0

lai kij j

ð4aÞ

If ~b is obtained from a linear combination of the STFNs ~ai = (ai, sai ), i = 1, …,
n, we obtain the STFN, ~b = (b, lb), where:

b ¼
Xn
i¼1

aiki; sb ¼
Xn
i¼1

sai kij j ð4bÞ

A key concept in several regression models is the level of inclusion of a FN ~b
within another FN ~a, l ~b� ~a

� �
. By using a-cuts aa ¼ a að Þ; a að Þb c and

ba ¼ b að Þ; b að Þ	 

, l ~b�~a
� � � a if ba�aa, i.e.:

a að Þ� b að Þ and a að Þ� b að Þ ð5Þ

Other relevant concept in some fuzzy regression methods is the squared distance
between FNs. There is no unique definition for it. Whereas Diamond [15] proposes
the following measure for TFNs:

d2D ~a; ~b
� � ¼ a� b� la � lbð Þ½ �2 þ a� bð Þ2 þ a� bþ ra � rbð Þ½ �2 ð6aÞ

On the other hand, Chang [11], by using weighted fuzzy arithmetic, defines
squared distance between ~a and ~b as:

d2C ~a; ~b
� � ¼ Z

1

0

b að Þ � a að Þ½ �2a daþ
Z1
0

b að Þ � a að Þ� �2
a da ð6bÞ

where (6b) is:

d2C ~a; ~b
� � ¼ a� bð Þ2 þ 1

3
ra � rbð Þ � la � lbð Þ½ � þ 1

12
ra � rbð Þ2 þ la � lbð Þ2

h i
ð6cÞ

when ~a and ~b are TFN.
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3 Fuzzy Regression Models

Like any regression technique, the aim of Fuzzy Regression (FR) is to determine a
functional relationship between a dependent variable and a set of independent ones.
FR allows not only obtaining functional relationships between some variables when
they are crisp but also when the observations are quantified with FNs.

As in econometric linear regression, we shall suppose that the explained variable
is a linear combination of the explanatory variables. This relationship should be
obtained from a sample of n observations {(Y1,X1), (Y2,X2), …,(Yj,Xj),…, (Yn,Xn)}
where Xj is the j-th observation of the explanatory variable, Xj = X0j;X1j;X2j; . . .;

�
Xij; . . .;XmjÞ. Moreover, X0,j = 1 8j, and Xij is the observed value for the i-th
variable in the j-th case of the sample. Yj is the j-th observation of the explained
variable, j = 1, 2, …, n. The j-th observation may either be a crisp value or a TFN.
In either case, it can be represented through the TFN representation ~Yj ¼
Yj; lYj ; rYj
� �

where, for a crisp observations, lYj ¼ rYj ¼ 0.
Finally, we must estimate the following fuzzy linear function:

~Y�
j ¼ ~a0X0j þ ~a1X1j þ � � � þ ~amXmj ð7Þ

where ~Y�
j is the estimate of the true observation ~Yj after fitting the coefficients

~a0; ~a1; . . .; ~am. Of course, the final objective is obtaining the estimates of dependent
variables as closed as possible to their corresponding observed values. Literature
has proposed several models to fit those coefficients. The significant difference
between them is the criteria considered to measure neighbourhood between ~Y�

j and
~Yj. So, we distinguish:

(a) Models that use Minimum Fuzziness Criteria (MFC) to fit (7). We will
describe the model developed in Tanaka [9] and Tanaka and Ishibuchi [10].

(b) Models that minimise squared distances, in such a way that classical least
squares criteria is generalised to FR. This paper will use the results in Chang
[11].

(c) Models that combine criteria (a) and (b). We will describe developments by
Savic and Pedrycz [13] and Ishibuchi and Nii [12].

3.1 Fuzzy Regression with Minimum Fuzziness Principle

The fuzzy regression model based on the minimum fuzziness principle (MFP) is
developed in Tanaka [9] and Tanaka and Ishibuchi [10]. It has been widely used
models in economic applications. Concretely, in actuarial applications we can
outline Andrés and Terceño [16] and Berry-Sölzle et al. [17]. Andrés and Terceño
[16] present a model to fit TSIR that combine cubic spline model by McCulloch
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[18] and FR under MFP. Subsequently they reflect on how to apply fuzzy estimates
of discount rates in actuarial pricing. Berry Stölzle et al. [17] use this model of FR
to detect fuzziness in the relation between solvency of property-liability insurance
companies and some accounting indicators.

In this case, the parameters ~ai, i = 0, 1, 2, …, m must be STFNs. These
parameters can therefore be written as ~ai = ai; saið Þ, i = 0, 1, …, m. When we have

obtained ~ai, the estimates of, ~Yj, ~Y�
j are also STFN ~Y�

j ¼ Y�
j ; sY�

j

� �
, will be, from

(4b):

~Y�
j ¼ Y�

j ; sY�
j

� �
¼
Xm
i¼0

ai; saið ÞXij ¼
Xm
i¼0

aiXij;
Xm
i¼0

sai Xij

�� �� !
ð8aÞ

whose a-cuts for a level a′ are:

Y�
ja0

¼ Y�
j � sY�

j
ð1� a0Þ; Y�

j þ sY�
j
ð1� a0Þ

h i

¼
Xm
i¼0

aiXij � ð1� a0Þ
Xm
i¼0

sai Xij

�� ��;Xm
i¼0

aiXij þð1� a0Þ
Xm
i¼0

sai Xij

�� ��" # ð8bÞ

The parameters ai and sai , must minimise the spreads of ~Y�
j , and simultaneously

maximise (8b) the congruence of ~Y�
j with ~Yj, which is measured as l ~Yj � ~Y�

j

� �
(see

Eq. 5). Specifically, we must solve the following multiple objective programme:

Minimise
ai;sai ;i¼0;1;...;m

z ¼
Xn
j¼1

sY�
j
¼
Xn
j¼1

Xm
i¼0

sai Xij

�� ��; Maximise
ai;sai ;i¼0;1;...;m

a ð9aÞ

subject to:

l ~Yj � ~Y�
j

� �
� a j ¼ 1; 2; . . .; n sai � 0 i ¼ 0; 1; . . .;m; a 2 ½0; 1� ð9bÞ

If for the second objective we require a minimum accomplishment level a′, the
above programme is transformed into the following linear one:

Minimise
ai;sai ;i¼0;1;...;m

z ¼
Xn
j¼1

Xm
i¼0

sai Xij

�� �� ð10aÞ

subject to:

Xm
i¼0

aiXij � 1� a0ð Þ
Xm
i¼0

sai xij
�� ��� Yj � lYj 1� a0ð Þ; j ¼ 1; 2; . . .; n ð10bÞ
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Xm
i¼0

aiXij þ 1� a0ð Þ
Xm
i¼0

sai xij
�� ��� Yj þ rYj 1� a0ð Þ; j ¼ 1; 2; . . .; n ð10cÞ

sai � 0 i ¼ 0; 1; . . .;m ð10dÞ

Let us point out several drawbacks of this FR model:

(a) This model usually has a lack of connection with ordinary least squares
(OLS) as it is outlined in Shapiro [19]. The modal value of observations on
explained variable and their estimates may be not very close. However, as we
will expose bellow, Savic and Pedrycz [13] and Ishibuchi and Nii [12] propose
extensions to this regression method that partially use least squares criteria and
solve this problem.

(b) This fuzzy regression method is very sensitive to outliers and so, the spreads
of coefficients can take an excessive great value. So, the predictions from the
model may be too uncertain to be useful. Following Hung and Yang [20],
“Once an outlier has been detected, it should be put under scrutiny. One
should not mechanically reject outliers and proceed with the analysis. If the
outliers are bona fide observations, they may indicate the inadequacy of the
model under some specific conditions. They often provide valuable clues to the
analyst for constructing a better model. It is important for a data analyst to be
able to identity outliers and assess their effect on various aspects of the
analysis.” So, those reasons explain why the literature has proposed a great
number of methods to detect and solve those problem. For a wide survey, see
Chen [21] or Hung and Yang [20].

(c) Chang and Ayyub [8] and Hojati et al. [22] point out that the linear pro-
gramming problem to solve increases its complexity very much since for every
new observation the two new constraints must be added an so, the minimising
problem must be reformulated.

(d) The criteria to choose the level a′ to solve (10a)–(10d) is arbitrary. So, Savic
and Pedrycz [13] indicates that it is usual taking a′ = 0.5 but it is not neces-
sarily the best choice and it has not a deep foundation. However, Moskowitz
and Kim [23], propose a method that assesses practitioners choosing a′
rationally.

3.2 Fuzzy Least Squares

Fuzzy Least Squares (FLS) uses as a criteria to fit coefficients ~ai, i = 0, 1, …, m to
minimise the squared distance between ~Yj and ~Y�

j . In actuarial issues, Koissi and
Shapiro [24] fit a fuzzy temporal structure of interest rates whereas Apaydin and
Baser [25] adjust claiming behaviour in a non-life context with geometric separa-
tion method by Taylor [26].
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FLS does not require the coefficients to be STFN, i.e. ~ai = ai; lai ; raið Þ, i = 0, 1,…,
m. On the other hand, we will suppose that Xi,j � 0, i = 0, 1,…, m and j = 1, 2,…,
n. Notice that it does not suppose any loose of generality. If any observation of the ith
explanatory variable is negative, Xi,j < 0, we can rescale the observations of the ith

explanatory variable as Xi,j
* = Xi,j − Minj¼1;2;...;n Xi;j

� 
. So, ~Y�

j ¼ Y�
j ; lY�

j
; rY�

j

� �
is,

from (4a):

~Y�
j ¼ Y�

j ; lY�
j
; rY�

j

� �
¼
Xm
i¼0

ai; lai ; raið ÞXij ¼
Xm
i¼0

aiXi;j;
Xm
i¼0

laiXi;j;
Xm
i¼0

raiXi;j

 !

ð11aÞ

whose a-cuts are:

Y�
ja0

¼ Y�
j � lY�

j
ð1� aÞ;Y�

j þ rY�
j
ð1� aÞ

h i

¼
Xm
i¼0

aiXij � 1� að Þ
Xm
i¼0

laiXi;j;
Xm
i¼0

aiXij þ 1� að Þ
Xm
i¼0

raiXi;j

" # ð11bÞ

The parameters ai, lai and rai must minimise the distance between ~Y�
j and the real

observation of response variable ~Yj. If we use the squared distance defined by
Diamond [15], as it is done by Koissi and Shapiro [24], the following quadratic
programming problem must be solved:

Minimise
ai;lai ;rai i¼0;1;...;m

Xn
j¼1

d2D ~Yj; ~Y
�
j

� �
¼
Xn
j¼1

d2D ~Yj;
Xm
i¼0

~aiXi;j

 !
ð12aÞ

where, from (6c) we find:

d2D ~Yj;
Xm
i¼0

~aiXi;j

 !
¼ Yj �

Xm
i¼0

aiXi;j � lYj �
Xm
i¼0

laiXi;j

 !" #2

þ Yj �
Xm
i¼0

aiXi;j

 !2

þ Yj �
Xm
i¼0

aiXi;jþ rYj �
Xm
i¼0

raiXi;j

 !" #2

ð12bÞ

Apaydin and Baser [25] use the definition of distance by Chang [11]. In this case
the quadratic programming problem to solve is:

Minimise
ai;lai ;rai i¼0;1;...;m

Xn
j¼1

d2C ~Yj; ~Y
�
j

� �
¼
Xn
j¼1

d2C ~Yj;
Xm
i¼0

~aiXi;j

 !
ð13aÞ
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where, from (6a) we find:

d2C ~Yj;
Xm
i¼0

~aiXi;j

 !
¼ Yj �

Xm
i¼0

aiXi;j

 !2

þ 1
3

rYj �
Xm
i¼0

raiXi;j

 !
� lYj �

Xm
i¼0

laiXi;j

 !" #

þ 1
12

rYj �
Xm
i¼0

raiXi;j

 !2

� lYj �
Xm
i¼0

laiXi;j

 !2
2
4

3
5

ð13bÞ

In both cases FLS is reduced to three independent OLS estimates. The centres
are obtained by using OLS and taking as observed responses Yj, j = 1, 2, …,
n. Likewise, the left (right) widths lai (rai ), i = 0, 1, …, m are also obtained with
OLS by considering for the observations of dependent variable lYj (rYj ), j = 1, 2, …,
n. So, following Chang [11], for the centres we must solve:

Xm
k¼0

Xn
j¼1

Xi;jXk;j

 !
ak ¼

Xn
j¼1

Xi;jYj; i ¼ 0; 1; 2; . . .;m ð14aÞ

Analogously, for the left spreads:

Xm
k¼0

Xn
j¼1

Xi;jXk;j

 !
lak ¼

Xn
j¼1

Xi;jlYj ; i ¼ 0; 1; 2; . . .;m ð14bÞ

And for the right spreads, the system to solve is:

Xm
k¼0

Xn
j¼1

Xi;jXk;j

 !
rak ¼

Xn
j¼1

Xi;jrYj ; i ¼ 0; 1; 2; . . .;m ð14cÞ

In our opinion, the principal criticism to this model is that it does not reflect all
the uncertainty of the observed system as we can check in the examples of Sect. 3.4.
It does not quantify the uncertainty in the relation between input and output vari-
ables when observations are crisp. So, if the observed responses are crisp, the
difference between ~Y�

j and ~Yj is explained neither from fuzziness nor from ran-
domness. Actually, as we can check in the second example of subsection 3.4., when
observations of responses are fuzzy, the total fuzziness of the observations about ~Yj
measured as

Pn
j¼1 lYj þ rYj
� �

is not completely explained by the width sum of

estimates
Pn

j¼1 lY�
j
þ rY�

j

� �
since

Pn
j¼1 lYj þ rYj
� �

>
Pn

j¼1 lY�
j
þ rY�

j

� �
.
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3.3 Combining Least Squares and Minimum Fuzziness
Principle

A reasonable way to avoid some problems of MFP and FLS is to combine both
criteria in order to take advantage of their strengths. Savic and Pedrycz [13] sup-
pose, as pure MFC model, that the coefficients ~ai are STFN, in such a way that
~ai = ai; saið Þ, i = 0, 1, …, m. On the other hand, centres are adjusted by using least
squares principle. Subsequently, spreads are obtained by using MFP. In life
insurance field, Koissi and Shapiro [27] follows this methodology to forecast
mortality combining Lee-Carter schema with fuzzy regression.

So, to adjust coefficients, Savic and Pedrycz [13] propose the following two
steps.
Step 1 Fit the centres ai, i = 0, 1, …, m by using OLS. As observed values of

explained variable take their centres, Yj, j = 1, 2,…, n. So, the values fitted
for a0, a1, …am the centres are equal to those obtained with FLS

Step 2 Fit the widths sai , i = 0, 1, …, m with MFP. We must solve the linear
programme (10a)–(10d) but taking into account that decision variables are
only the spreads. Of course, a′ must be fixed beforehand:

Minimise
sai ;i¼0;1;...;m

z ¼
Xn
j¼1

Xm
i¼0

sai Xij

�� �� ð15aÞ

subject to:

Xm
i¼0

aiXij � 1� a0ð Þ
Xm
i¼0

sai xij
�� ��� Yj � lYj 1� a0ð Þ; j ¼ 1; 2; . . .; n ð15bÞ

Xm
i¼0

aiXij þ 1� a0ð Þ
Xm
i¼0

sai xij
�� ��� Yj þ rYj 1� a0ð Þ; j ¼ 1; 2; . . .; n ð15cÞ

sai � 0 i ¼ 0; 1; . . .;m ð15dÞ

Ishibuchi and Nii [12] extend Savic and Pedrycz results to the case of
non-symmetrical TFN, i.e., ~ai ¼ ai; lai ; raið Þ, i = 0, 1, …, m. In actuarial applica-
tions, Andrés-Sánchez 28 propose combining exponential splines and this FR
model to fit temporal structure of interest rates. In a non-life context
Andrés-Sánchez [29] predicts claiming behaviour by using a trending fuzzified
function and Andrés-Sánchez [30] extends ANOVA schema by Kremer [31] for
claim reserving to the presence of fuzziness.

To adjust the centres, we proceed exactly as Savic and Pedrycz [13] or FLS
method. Likewise, to obtain widths we also use MFP, but now we must solve a
slightly different linear programme to (15a)–(15d). Concretely:
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Minimise
lai ;rai ;i¼0;1;...;m

z ¼
Xn
j¼1

Xm
i¼0

lai xij
�� ��þ Xn

j¼1

Xm
i¼0

rai xij
�� �� ð16aÞ

subject to:

Xm
i¼0

aiXij �
Xm

i¼0;xij � 0

la0 Xij

�� ��þ Xm
i¼0;xij\0

rai Xij

�� ��
0
@

1
A 1� a0ð Þ � Yj � lYj 1� a0ð Þ;

j ¼ 1; 2; . . .; n

ð16bÞ

Xm
i¼0

aiXij þ
Xm

i¼0;xij � 0

rai xij
�� ��þ Xm

i¼0;xij\0

lai xij
�� ��

0
@

1
A 1� a0ð Þ � Yj þ rYj 1� a0ð Þ;

j ¼ 1; 2; . . .; n

ð16cÞ

lai ; rai � 0 i ¼ 0; 1; . . .;m ð16dÞ

3.4 Numerical Examples

In this subsection we will develop two simple numerical examples to show in detail
how to implement the regression models exposed above. In both examples the
model to be fitted is: ~Y�

j ¼ ~a0X0j þ ~a1X1j, where X0,j = 1, j = 1, 2, 3, 4. In Example
1 the output observations are crisp numbers and the data is taken from Table 1. So,
the fuzziness in the linear relation reflects only the deviations between observations
Yj, and the centres of their estimates, Yj

*. With pure MFC (Tanaka [9] and Ishibuchi
and Tanaka [10]) we must fit a model governed by STFNs:

~Y�
j ¼ Y�

j ; sY�
j

� �
¼ a0; sa0ð Þþ a1; sa1ð ÞX1;j ¼ a0 þ a1X1j; sa0 þ sa1 X1j

�� ��� �

Table 1 Data for Example 1 and estimates from each regression model

j ~Y�
j (TK) ~Y�

j (FLS) ~Y�
j (S&P) ~Y�

j (I&N) ~Yj X0,j X1,j

1 (1000, 50) (992.5, 0, 0) (992.5, 68.33) (992.50, 68.33, 65) (1000, 0, 0) 1 1

2 (1500, 100) (1510, 0, 0) (1510, 136.67) (1510, 136.67, 80) (1550, 0, 0) 1 2

3 (2000, 150) (2027.5, 0, 0) (2027.5, 205) (2027.5, 205, 95) (1925, 0, 0) 1 3

4 (2500, 200) (2545, 0, 0) (2545, 273.33) (2545, 273.33, 110) (2600, 0, 0) 1 4

TK Tanaka’s model, FLS Fuzzy Least Squares, S&P Savic and Pedrycz’s (1992) model and
I&N Ishibuchi and Nii’s [12] model
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To fit the parameters ai and sai we will require a minimum accomplishment level
a′ = 0.5 and so, the linear programme to solve for this model is:

Minimise
a0;a1;sa0 ;sa1

z ¼ 4sa0 þ 10sa1

subject to:

a0 þ a1 � 1� 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ� 1000� a0 þ a1 � 1þ 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ
a0 þ a1 � 2� 1� 0:5ð Þ sa0 þ sa1 � 2ð Þ� 1550� a0 þ a1 � 2þ 1� 0:5ð Þ sa0 þ sa1 � 2ð Þ
a0 þ a1 � 3� 1� 0:5ð Þ sa0 þ sa1 � 3ð Þ� 1925� a0 þ a1 � 3þ 1� 0:5ð Þ sa0 þ sa1 � 3ð Þ
a0 þ a1 � 4� 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600� a0 þ a1 � 4þ 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ
sa0 ; sa1 � 0

and solving this linear programme we find ~Y�
j ¼ Y�

j ; sY�
j

� �
¼ (500, 0) + (500, 50)

X1,j.
With FLS we must fit the following model:

~Y�
j ¼ Y�

j ; 0; 0
� �

¼ a0; 0; 0ð Þþ a1; 0; 0ð ÞX1;j ¼ a0 þ a1X1j; 0; 0
� �

Notice that there is no fuzziness in estimates since the observations are crisp and
so (14b)–(14c) must not be applied. And so, by using OLS we finally fit ~Y�

j ¼ Y�
j ¼

475 + 517.5X1,j

The model by Savic and Pedrycz [13], suppose symmetrical coefficients but
estimates their centres by using OLS, i.e. a0 ¼ 475 and a1 ¼ 517:5 as FLS.
Subsequently we must fit sai , i = 0, 1, by solving:

Minimise
sa0 ;sa1

z ¼ 4sa0 þ 10sa1

subject to:

475þ 517:5 � 1� 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ� 1000� 475þ 517:5 � 1þ 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ
475þ 517:5 � 2� 1� 0:5ð Þ sa0 þ sa1 � 2ð Þ� 1550� 475þ 517:5 � 2þ 1� 0:5ð Þ sa0 þ sa1 � 2ð Þ
475þ 517:5 � 3� 1� 0:5ð Þ sa0 þ sa1 � 3ð Þ� 1925� 475þ 517:5 � 3þ 1� 0:5ð Þ sa0 þ sa1 � 3ð Þ
475þ 517:5 � 4� 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600� 475þ 517:5 � 4þ 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ
sa0 ; sa1 � 0

and solving this linear programme we find ~Y�
j ¼ Y�

j ; sY�
j

� �
¼(475, 0) + (517.5,

68.33)X1,j
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Ishibuchi and Nii [12] suppose that coefficients are non-symmetrical. Likewise
given that the observations of the explanatory variable are positive, we can write:

~Y�
j ¼ Y�

j ; lY�
j
; rY�

j

� �
¼ a0; la0 ; ra0ð Þþ a1; la1 ; ra1ð ÞXij ¼

¼ a0 þ a1X1;j; la0 þ la1X1j; ra0 þ ra1X1j
� �

The centres of the coefficients are fitted with OLS, i.e. a0 = 475 and a1 = 517.5.
Subsequently we must fit lai , rai i = 0,1, by solving:

Minimise
la0 ;la1 ;ra0 ;ra1

z ¼ 4la0 þ 10la1 þ 4ra0 þ 10ra1

subject to:

475þ 517:5 � 1� 1� 0:5ð Þ la0 þ la1 � 1ð Þ� 1000� 475þ 517:5 � 1þ 1� 0:5ð Þ ra0 þ ra1 � 1ð Þ
475þ 517:5 � 2� 1� 0:5ð Þ la0 þ la1 � 2ð Þ� 1550� 475þ 517:5 � 2þ 1� 0:5ð Þ ra0 þ ra1 � 2ð Þ
475þ 517:5 � 3� 1� 0:5ð Þ la0 þ la1 � 3ð Þ� 1925� 475þ 517:5 � 3þ 1� 0:5ð Þ ra0 þ ra1 � 3ð Þ
475þ 517:5 � 4� 1� 0:5ð Þ la0 þ la1 � 4ð Þ� 2600� 475þ 517:5 � 4þ 1� 0:5ð Þ ra0 þ ra1 � 4ð Þ
la0 ; la1 ; ra0 ; ra1 � 0

and solving this minimising programme we find ~Y�
j ¼ Y�

j ; lY�
j
; rY�

j

� �
¼ (475, 0,

50) + (517.5, 68.33, 15)X1,j

Results in Table 1 suggest the following questions:

(a) The mean of the absolute difference between Y�
j and Yj is greater with pure

MFP than with LS estimates. With MFP we find (0 + 50 + 75 + 100)/
4 = 56.25. Otherwise, LS estimates produce the following mean absolute
error: (7.5 + 40 + 102.5 + 55)/4 = 51.25.

(b) When output observations are crisp, FLS gives a crisp estimate. So, the dif-
ference between the crisp observation and the linear system is not explained.

(c) So, the models by Savic and Pedrycz [13] and Ishibuchi and Nii [12] allow
avoiding the greatest discordance between the centres of the observed and
estimated output that arises when using strictly MFP but also explain the
difference between ~Y�

j and ~Yj from a fuzzy perspective. Likewise, when

coefficients ~a0 and ~a1 are not constrained to be symmetrical the estimates, ~Y�
j

incorporate less uncertainty and, simultaneously, allow reflecting asymmetri-
cal structure of observations.

In Example 2 the output observations are fuzzy numbers (see Table 2). So, the
fuzziness in the linear relation must take into account not only the deviations
between observations Yj, and the centres of their estimates, Yj

*, but also the fuzzi-
ness of observations. In all the models that use MFC we stablish a minimum
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accomplishment level a′ = 0.5 for the inclusion constraints. To fit the parameters ai
and sai with pure MFC, we must solve the following linear programming problem:

Minimise
a0;a1;sa0 ;sa1

z ¼ 4sa0 þ 10sa1

subject to:

a0 þ a1 � 1� 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ� 1000� 50 1� 0:5ð Þ
. . .

a0 þ a1 � 4� 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600� 150 1� 0:5ð Þ
a0 þ a1 � 1þ 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ� 1000þ 75 1� 0:5ð Þ
. . .

a0 þ a1 � 4þ 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600þ 200 1� 0:5ð Þ
sa0 ; sa1 � 0

and solving this linear programme, we find ~Y�
j ¼ Y�

j ; sY�
j

� �
¼(483.33, 0) +

(509.03, 90.28)X1,j

With FLS, we must adjust:

~Y�
j ¼ Y�

j ; lY�
j
; rY�

j

� �
¼ a0; la0 ; ra0ð Þþ a1; la1 ; ra1ð ÞXij

¼ a0 þ a1X1;j; la0 þ la1X1j; ra0 þ ra1X1j
� �

To adjust the parameters we must fit three OLS models. For the centres we find
with (14a):

Y�
j ¼ 475þ 517:5X1;j:

Table 2 Data for Example 2 and estimates from each regression model

j ~Y�
j (TK) ~Y�

j (FLS) ~Y�
j (S&P) ~Y�

j (I&N) ~Yj X0,

j

X1,

j

1 (992.36, 90.28) (992.5, 45,
47.5)

(992.50,
101.67)

(992.50, 101.67,
90.00)

(1000, 50,
75)

1 1

2 (1501.39, 180.56) (1510, 77.5,
95)

(1510.00,
203.33)

(1510.00, 203.33,
163.33)

(1550, 75,
50)

1 2

3 (2010.42, 270.83) (2027.5, 110,
142.5)

(2027.50,
305.00)

(2027.50, 305.00,
236.67)

(1925, 100,
150)

1 3

4 (2519.44, 361.11) (2545, 142.5,
190)

(2545.00,
406.67)

(2545.00, 406.67,
310.00)

(2600, 150,
200)

1 4

TK Tanaka’s model, FLS Fuzzy Least Squares, S&P Savic and Pedrycz’s [12] model and I&N Ishibuchi and
Nii’s [12] model
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For the left and right spreads, by using (14b)–(14c), we find lY�
j
¼ 12.5 + 32.5X1,j

and rY�
j
¼ 42.5X1,j.

To fit the model by Savic and Pedrycz [13], we suppose that the centres of the
parameters are estimated with OLS, i.e. a0 = 475 and a1 = 517.5. Subsequently we
fit sai , i = 0, 1, by solving:

Minimise
sa0 ;sa1

z ¼ 4sa0 þ 10sa1

subject to:

475þ 517:5 � 1� 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ� 1000� 50 1� 0:5ð Þ
. . .

475þ 517:5 � 4� 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600� 150 1� 0:5ð Þ
475þ 517:5 � 1þ 1� 0:5ð Þ sa0 þ sa1 � 1ð Þ� 1000þ 75 1� 0:5ð Þ
. . .

475þ 517:5 � 4þ 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600þ 200 1� 0:5ð Þ
sa0 ; sa1 � 0

being the final solution for this model ~Y�
j ¼ Y�

j ; sY�
j

� �
¼(475, 0) + (517.5, 101.67)

X1,j

Given that coefficients are non-symmetrical and taking into account that the
centres are the same as in the case of FLS, i.e. a0 = 475 and a1 = 517.5, to fit the
widths with Ishibuchi and Nii [12] we must solve:

Minimise
la0 ;la1 ;ra0 ;ra1

z ¼ 4la0 þ 10la1 þ 4ra0 þ 10ra1

subject to:

475þ 517; 5 � 1� 1� 0:5ð Þ la0 þ la1 � 1ð Þ� 1000� 50 1� 0:5ð Þ
. . .

475þ 517:5 � 4� 1� 0:5ð Þ la0 þ la1 � 4ð Þ� 2600� 150 1� 0:5ð Þ
475þ 517:5 � 1þ 1� 0:5ð Þ ra0 þ ra1 � 1ð Þ� 1000þ 75 1� 0:5ð Þ
. . .

475þ 517:5 � 4þ 1� 0:5ð Þ sa0 þ sa1 � 4ð Þ� 2600þ 200 1� 0:5ð Þ
la0 ; la1 ; ra0 ; ra1 � 0

Solving this linear programme we find ~Y�
j ¼ Y�

j ; lY�
j
; rY�

j

� �
¼ (475, 0,

101.67) + (517.5, 16.67, 73.33)X1,j.
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The results in Table 2 suggest the following questions:

(a) The mean of the absolute deviation between Y�
j and Yj is still greater with pure

MFP than with OLS estimates. With MFP we find (7.64 + 48.61 + 85.42 +
80.56)/4 = 55.5. Otherwise, the mean deviation of OLS estimates is 51.25.

(b) We must also remark that despite the centres of observations over response
variable do not change respect example 1, the centres of the parameters (and
so, mode of the predictions) are different in pure MFP model respect to the
width of observations. That is to say, the estimates for the most feasible values
are sensible in pure MFC regression. On the other hand, FLS and models that
mix LS with MFP are not sensible in this sense.

(c) FLS neither reflects in a fuzzy way the uncertainty about the relation of
response and input variables nor the total fuzziness of the observations about
independent variable. Whereas the global uncertainty of the observations,
measured as the sum of the spreads, is 50 + 75 + 75 + ��� + 200 = 425, the
uncertainty reflected in FLS is 45 + 47.5 + 77.5 + ��� + 190 = 375. On the
other hand, the constraints of inclusion lead to the models that use MFP to
capture all the uncertainty of observations. So, in all the cases the sum of the
widths from response observations is smaller than the sum of spreads of their
estimates.

4 Estimating a Fuzzy Yield Curve for Fuzzy Financial
Pricing

Several papers in the financial literature as Kaufmann [32], Buckley [33] or Li Calzi
[34] propose using fuzzy numbers to model interest rate uncertainty. In an insurance
context Ostaszewski [35] and Cummins and Derrig [36] develop life and non-life
insurance financial pricing with fuzzy parameters. In this way Andrés and Terceño
[16] and Koissi and Shapiro [24] propose estimating a fuzzy Temporal Structure of
Interest Rates (TSIR) with FR as a basis for fuzzy financial pricing since fuzzy
TSIR enable to quantify the anticipated rates in the fixed income markets for the
future with fuzzy numbers. In all the cases the authors modelise the discount factor
described by spot rates with a spline curve with parameters quantified via TFNs.
However, in each paper fit different FR models. Andrés and Terceño [16] use pure
MFP model and Andrés and Terceño (2004) estimate Ishibuchi and Nii’s [12] FR
model. On the other hand, Koissi and Shapiro [24] fits TSIR with FLS.

In this section the financial basis of TSIR model to fuzzify is slightly different to
abovementioned papers. Concretely we will adjust the yield curve model by Echols
and Elliot [37]. The yield curve of a bond market relates the Internal Rate of Return
(IRR) of these bonds with their maturity and it is a good approximation of the real
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TSIR that implicitly governs the market. Concretely, Echols and Elliott’s formu-
lation of yield curve is:

IRRj ¼ a0 þ a1 tj
� ��1 þ a2tj þ a3cj ð17Þ

where:
IRRj =IRR of the jth bond.
tj= maturity of the jth bond.
cj = Coupon of the jth bond. The objective of this variable is to measure the

coupon bias of the yield curve respect to the TSIR.
Likewise, a0, a1, a2 and a3 stand for the parameters of the model.
In our opinion, FR have a number of advantages over traditional regression

techniques in this problem. For our purposes Andrés and Terceño [19] point out the
following:

(a) The interest rates that we will fit after adjusting regression model is easier to
use in subsequent calculations if they are fuzzy numbers rather that they are
adjusted with random variables.

(b) The asset prices that are determined in the markets depend on the agents’
expectations of future inflation, the issuers’ credibility, etc., i.e., information
that is highly subjective and, sometimes, also vague.

(c) Observations are often not crisp numbers; they are confidence intervals. For
instance, the price (or alternatively, the IRR) of a financial asset throughout
one session often oscillates within an interval, rarely does it remain the same.

In our case, we will assume that the observations about the IRR of the bonds are
TFN. So, for the ith bond, we have that I~RRj ¼ IRRj; lIRRj ; rIRRj

� �
. For the centre,

IRRj we will take the IRR when the price of the bond is negotiated at its mean price
weighted by the liquidity. The left spread is the difference between IRRj and the
minimum IRR negotiated for this bond during the session. Analogously, rIRRj

comes from the difference between the maximum IRR of the bond within the day
and IRRj.

In our application we will adjust the yield curve to Spanish public debt market
the 01/25/2013 (see data in Table 3). If we take IRRj, j = 1, 2, …, 34 for the
observations of dependent variable, with for the conventional OLS (14a) we fit:

IRRj ¼ 1:155� 0:085 tj
� ��1 þ 0:217tj þ 0:257cj

To use Tanaka’s Model, we formulate Echols and Elliot equation in the fol-
lowing manner:

IRR�
j ; sIRR�

j

� �
¼ a0; sa0ð Þþ a1; sa1ð Þ tj

� ��1 þ a2; sa2ð Þtj þ a3; sa3ð Þcj ð18Þ
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Table 3 Fixed income instruments negotiated in the Spanish bond market on 01/25/2013

Asset Coupon Maturity Mean
Price

Maximun
Price

Minimum
Price

IRRj

(%)
lIRRj

(%)
rIRRj

(%)

T-Bill 0 02/15/2013 99.989 99.989 99.989 0.192 0.000 0.000

T-Bill 0 04/19/2013 99.898 99.898 99.898 0.445 0.000 0.000

T-Bill 0 07/19/2013 99.657 99.657 99.657 0.720 0.000 0.000

T-Bill 0 08/23/2013 99.476 99.477 99.476 0.918 0.002 0.000

T-Bill 0 12/13/2013 98.908 98.935 98.891 1.253 0.031 0.020

T-Bill 0 01/24/2014 98.717 98.769 98.717 1.304 0.054 0.000

T-Bill 0 06/20/2014 97.592 97.592 97.592 1.758 0.000 0.000

Bond 2.3 04/30/2013 100.441 100.445 100.42 0.593 0.015 0.080

Bond 4.2 07/30/2013 101.65 101.65 101.65 0.928 0.000 0.000

Bond 3.4 04/30/2014 102.04 102.04 102.04 1.744 0.000 0.000

Bond 4.75 07/30/2014 104.154 104.16 104.1 1.922 0.004 0.035

Bond 3.3 10/31/2014 102.03 102.042 102.029 2.111 0.007 0.001

Bond 4.4 01/31/2015 104.266 104.285 104.18 2.212 0.009 0.043

Bond 2.75 03/31/2015 100.68 100.68 100.68 2.423 0.000 0.000

Bond 3 04/30/2015 101.173 101.2 101.13 2.457 0.012 0.020

Bond 4 07/30/2015 103.32 103.32 103.32 2.610 0.000 0.000

Bond 3.75 10/31/2015 102.544 102.62 102.42 2.777 0.028 0.046

Bond 3.15 01/31/2016 100.672 100.76 100.65 2.914 0.031 0.008

Bond 3.25 04/30/2016 100.7 100.7 100.699 3.018 0.000 0.000

Bond 4.25 10/31/2016 103.451 103.47 103.436 3.258 0.005 0.004

Bond 3.8 01/31/2017 101.543 101.55 101.53 3.382 0.002 0.003

Bond 5.5 07/30/2017 108.165 108.18 108.15 3.505 0.003 0.003

Bond 4.5 01/31/2018 103.23 103.35 103.2 3.781 0.026 0.007

Bond 4.1 07/30/2018 101.173 101.3 101.03 3.856 0.026 0.029

Bond 4.6 07/30/2019 102.8 102.8 102.8 4.097 0.000 0.000

Bond 4.3 10/31/2019 99 99 99 4.472 0.000 0.000

Bond 4 04/30/2020 97.8 97.8 97.8 4.357 0.000 0.000

Bond 4.85 10/31/2020 101.713 101.81 101.628 4.580 0.015 0.013

Bond 5.5 04/30/2021 105.066 105.3 105.008 4.741 0.034 0.008

Bond 5.85 01/31/2022 106.569 106.802 106.09 4.930 0.031 0.065

Bond 5.43 01/31/2023 101.971 102.23 101.855 5.173 0.033 0.015

Bond 4.8 01/31/2024 96.287 96.321 96.272 5.252 0.004 0.002

Bond 5.9 07/30/2026 103.82 103.82 103.82 5.488 0.000 0.000

Bond 6 01/31/2029 105.35 105.35 105.35 5.489 0.000 0.000

Bond 5.75 07/30/2032 101.84 102 101.68 5.589 0.013 0.014

Bond 4.9 07/30/2040 88.6 88.6 88.6 5.731 0.000 0.000
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where the estimate of I~RRj after adjusting (8), I~RR�
j , is a STFN. In our sample, we

find:

IRR�
j ; sIRR�

j

� �
¼ 1:679; 0:000ð Þ þ �0:311; 0:224ð Þ tj

� ��1 þ 0:286; 0:098ð Þtj
þ 0:048; 0:000ð Þcj

FLS formulation for (17) is:

IRR�
j ; lIRR�

j
; rIRR�

j

� �
¼ a0; la0 ; ra0ð Þþ a1; la1 ; ra1ð Þt�1

j

þ a2; la2 ; ra2ð Þtj þ a3; la3 ; ra3ð Þcj
ð19Þ

and regressing with OLS centres and radius of I~RRj respect tj, (tj)
−1 and cj we

obtain:

IRR�
j ; lIRR�

j
; rIRR�

j

� �
¼ 1:155; 0; 0ð Þþ �0:085; 0:001; 0:075ð Þ tið Þ�1

þ 0:217; 0; 0:007ð Þti þ 0:257; 0; 0:012ð Þci

To use Savic and Pedrycz’s extension of Tanaka’s model we take for the centres
the OLS estimates of the coefficients, i.e. a0 = 1.155; a1 = −0.085; a2 = 0.217;
a3 = 0.257, and so:

IRR�
j ; sIRR�

j

� �
¼ 1:155; 0:033ð Þ þ �0:085; 0:033ð Þ tj

� ��1 þ 0:217; 0:391ð Þtj
þ 0:257; 0:103ð Þcj

Likewise, with Ishibuchi and Nii [12], the model to be estimated is also (19)
where, as in the case of Savic [13], a0 = 1.155; a1 = −0.085; a2 = 0.217;
a3 = 0.257 but the coefficients are non STFN.

IRR�
j ; lIRR�

j
; rIRR�

j

� �
¼ a0; la0 ; ra0ð Þþ a1; la1 ; ra1ð Þt�1

j

þ a2; la2 ; ra2ð Þtj þ a3; la3 ; ra3ð Þcj

Concretely:

IRR�
i ; lIRR�

i
; rIRR�

i

� �
¼ 1:155; 0:030; 0:243ð Þþ �0:085; 0:030; 0:075ð Þ tj

� ��1

þ 0:217; 0:153; 0:014ð Þtj þ 0:257; 0:116; 0:000ð Þcj

The TSIR is the functional relation between spot rates (that for a given maturity
t years we will symbolise as rt) and their maturity (t years). That function is also
known as zero coupon rate since rt is the IRR of a bond with that maturity that does
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not pay any coupon. So, with Echols and Elliot [37] formulation of yield curve,
TSIR is approximated without considering the coupon. In a crisp environment, we
will approximate in our numerical application, rt 	 1.155 − 0.085t−1 +
0.217t. Likewise, Table 4 shows several TSIR fitted with FR models.

5 Fuzzy Regression to Trend Behaviour of Claiming

Claim provisions are crucial for the financial stability of insurance companies. This
is why actuarial literature has proposed numerous claim reserving methods, which
are usually based on statistical concepts. However, Straub [38] points out that the
mutant and uncertain behaviour of insurance environments does not make advisable
to use a wide data-base when calculating claim reserves. For example, if claims are
related to bodily injuries, the future losses for the company will depend on the
growth of the wage index (which will be used to determine the amount of
indemnification due), changes in court practices and public awareness of liability
matters. On the one hand, this involves a considerable loss in reliability of statistical
methods but, on the other, it makes the use of Fuzzy Set Theory very attractive. In
this section we expose the FR method by Andrés-Sánchez [29] to trend claiming
growth rate throughout development periods.

The data-base about the evolution of the claims, is usually presented in a run-off
triangle similar to Table 1, where Zi,j is the accumulated claim cost of the insurance
contracts underwritten in the ith period (i = 0, 1,…, n) at the end of the jth claiming
period (j = 0, 1, …, n). We would like to point out that it is common in actuarial
literature to use a “squared” claim triangle like ours: i.e. a claim triangle in which

Table 4 Estimates of spot rates, for maturities from 6 months to 30 years

t TK FLS S&P I&N

0.5 (1.200, 0.497) (1.094, 0.000, 0.014) (0.986, 0.832) (1.094, 0.350, 0.309)

1 (1.654, 0.322) (1.288, 0.001, 0.007) (1.288, 0.457) (1.288, 0.212, 0.333)

2 (2.095, 0.309) (1.548, 0.002, 0.003) (1.548, 0.295) (1.548, 0.166, 0.401)

3 (2.433, 0.370) (1.779, 0.003, 0.002) (1.779, 0.262) (1.779, 0.170, 0.474)

4 (2.744, 0.450) (2.004, 0.003, 0.002) (2.004, 0.263) (2.004, 0.188, 0.548)

5 (3.045, 0.537) (2.225, 0.004, 0.001) (2.225, 0.276) (2.225, 0.210, 0.623)

6 (3.341, 0.628) (2.446, 0.005, 0.001) (2.446, 0.296) (2.446, 0.235, 0.698)

7 (3.634, 0.721) (2.665, 0.006, 0.001) (2.665, 0.320) (2.665, 0.261, 0.773)

8 (3.925, 0.815) (2.884, 0.007, 0.001) (2.884, 0.346) (2.884, 0.288, 0.848)

9 (4.215, 0.911) (3.103, 0.008, 0.001) (3.103, 0.373) (3.103, 0.316, 0.923)

10 (4.504, 1.006) (3.321, 0.008, 0.001) (3.321, 0.402) (3.321, 0.344, 0.999)

20 (7.376, 1.979) (5.500, 0.017, 0.000) (5.500, 0.712) (5.500, 0.636, 1.752)

30 (10.237, 2.960) (7.677, 0.025, 0.000) (7.677, 1.035) (7.677, 0.933, 2.506)

TK Tanaka’s model, FLS Fuzzy Least Squares, S&P Savic and Pedrycz’s [13] model and
I&N Ishibuchi and Nii’s [12] model
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the number of origin and development periods is equal (n + 1 in Table 1). So the
accumulated value of claims we know for the ith origin period ends at a jth period,
where i + j = n or, equivalently, j = n − i.

The differences between the methods proposed in actuarial literature for claim
reserving are not in the way in which the data are presented but how the cumulated
claims are predicted in development periods where they are unknown (i.e., to
determine Zi,j, i = 0, 1, …,n, j > n − i in Table 5 and i = 0, 1, …, 4, j > 4 − i in
Table 6).

Many claim reserving methods require that the link ratio triangle be determined
firstly. The link ratio of the ith underwriting period at claiming period j, ri,j, is the
growth ratio of cumulated claims at the ith origin period between development
periods j and j +1:

ri;j ¼ Zi;jþ 1

Zi;j
ð20Þ

So, by applying (20) in Table 1, we deduce the general form of a link ratio
triangle, i.e. Table 7. Table 8 shows the link ratio triangle in our numerical
example.

The key to predict future claiming behaviour consists in fitting a representative
link-ratio for any underwriting period for the pairs of claiming periods j and j + 1,
rj, j = 0, 1, …, n − 1. However, if independent estimates are obtained for rj, j = 0,
1, …, n − 1, an overparameterisation problem may be produced. So, the capability

Table 5 Run off triangle

Claiming/development period

0 1 … j … n-1 n
Underwriting/origin

period
0 Z0,0 Z0,1 … Z0,j … Z0,n-

1

Z0,n

1 Z1,0 Z1,1 … Z1,j … Z1,n-
1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
i Zi,0 Zi,1 … Zi,j …
⋮ ⋮ ⋮ ⋮
n-1 Zn-1,0 Zn-1,1 …
n Zn,0 …

Table 6 Run off triangle in our numerical applications

Claiming/development period

Underwriting/origin period year i/j 0 1 2 3 4

2000 0 1120 2090 2610 2920 3130

2001 1 1030 1920 2370 2710

2002 2 1090 2140 2610

2003 3 1300 2650

2004 4 1420
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of generalising the historical data of this usual procedure may be not very good. To
obtain a better generalisation capability, the number of parameters to be fitted
should be reduced as much as possible. To solve this drawback, Sherman [39]
proposes to smooth link ratios rj, j = 0, 1, …, n − 1 with:

rj ¼ 1þ eaðjþ 1Þb ð21Þ

where the parameters to be estimated are only a and b. Notice that in our example,
modelling rj with (21) involves fitting only 2 parameters (a and b) and not indi-
vidually r0, r1, r2, r3. Although (21) is not linear, we can transform it easily into a
linear expression:

Rj ¼ aþ b � ln jþ 1ð Þ: ð22Þ

where Rj = ln (rj – 1).
Notice that the representative link ratio for the development year rj (and so, Rj)

can be interpreted as an uncertain quantity. So, in our case we can quantify in a
natural way Rj as a TFN ~Rj ¼ Rj; lRj ; rRj

� �
where:

Table 7 Link ratio triangle

Claiming/development period

0 1 … j … n − 1 n
Underwriting/origin

period
0 r0,0 = Z0,1/

Z0,0
r0,1 = Z0,2/

Z0,1
… r0,j = Z0, j

+1/Z0,j
… r0,n-1 = Z0,

n/Z0,n-1
1 r1,0 = Z1,1/

Z1,0
r1,1 = Z1,2/

Z0,1
… r1,j = Z1,j

+1/Z1,j
… – –

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
i ri,0 = Zi,1/

Zi,0
ri,1 = Zi,2/

Zi,1
… ri,j = Zi, j

+1/Zi,j
… – –

⋮ ⋮ ⋮ ⋮
n −

1
rn-1,0 = Zn-

1,1/Zn-1,0
n – – … – – – –

Table 8 Link ratio in our numerical example

Claiming/development year

i/j 0 1 2 3 4

Underwriting/origin year 2000 0 1.866 1.249 1.119 1.072 –

2001 1 1.864 1.234 1.143 – –

2002 2 1.963 1.220 – – –

2003 3 2.038 – – – –

2004 4 – – – – –

196 J. de Andrés-Sánchez



Rj ¼
Pn�j�1

i¼0 ln ri;j � 1
� �

n� j
ð23aÞ

lRj ¼ Rj � ln Min r0;j; r1;j; . . .; rn�j�1;j
� � 1

� � ð23bÞ

rRj ¼ ln Max r0;j; r1;j; . . .; rn�j�1;j
� � 1

� �� Rj ð23cÞ

Table 9 shows the values of TFNs ~Rj ¼ Rj; lRj ; rRj

� �
j = 0, 1, 2, 3, that we

deduce from Table 8, (23a), (23b) and (23c):
So, considering Rj, j = 0,1,2,3 as crisp observations of dependent variable, with

OLS we adjust Rj = −0.103 – 1.829�ln(j + 1). In this way, Andrés-Sánchez [29] fits
the evolution of claiming growth with FR:

~R�
j ¼ ~aþ ~b lnðjþ 1Þ ð24Þ

In the case of pure MFP model, the coefficients will be the STFNs ~a ¼ ða; saÞ
and ~b ¼ b; sbð Þ, So, the model (24) turns into (25):

R�
j ; sR�

j

� �
¼ ða; saÞþ ðb; sbÞlnðjþ 1Þ ¼ aþ blnðjþ 1Þ; sa þ sblnðjþ 1Þð Þ ð25Þ

and with the data in Table 9 we find:

R�
j ; sR�

j

� �
¼ �0.129, 0.223ð Þ + �1.795, 0ð Þln j + 1ð Þ

If we use FLS, the model to be estimated is:

R�
j ; lRj ; rRj

� �
¼ ða; la; raÞþ ðb; lb; rbÞln(jþ 1Þ
¼ aþ bln(jþ 1Þ; la þ lbln(jþ 1Þ; ra þ rbln(jþ 1Þð Þ

ð26Þ

and with the data in Table 9 we find:

R�
j ; lR�

j
; rR�

j

� �
¼ �0:103; 0:057; 0:067ð Þþ �1:819; 0; 0ð Þln jþ 1ð Þ

Table 9 Fuzzy observations
~Rj ¼ Rj; lRj ; rRj

� �
, j = 0, 1, 2,

3 in our example

j ~Rj ¼ Rj; lRj ; rRj

� �
0 (−0.072, 0.074, 0.110)

1 (−1.453, 0.063, 0.061)

2 (−2.036, 0.094, 0.094)

3 (−2.632, 0.000, 0.000)
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To use Savic and Pedrycz [13] we take for the centres the OLS estimes of the
coefficients, i.e. a = −0.103 and b = −1.819 and so, the STFN formulation is:

R�
j ; sR�

j

� �
¼ �0:103; 0:244ð Þþ �1:819; 0ð Þ ln jþ 1ð Þ

Likewise, with Ishibuchi and Nii [12] we fit:

R�
j ; lR�

j
; rR�

j

� �
¼ �0:103; 0:241; 0:241ð Þþ �1:819; 0; 0ð Þln jþ 1ð Þ

After adjusting parameters ~a and ~b, we can obtain the fuzzy growth rate of
claims between jth and (j + 1)th development period, ~rj, by evaluating (21) with
FNs, i.e.:

~rj ¼ 1þ e~aðjþ 1Þ~b ð27aÞ

So, taking into account that rj is an increasing function of a and b (see
Andrés-Sánchez [29]), its a-cuts can be obtained following (3b) when ~a and ~b are
TFNs as:

rja ¼ rj að Þ; rj að Þ
h i

¼ 1þ ea�la 1�að Þðjþ 1Þb�lb 1�að Þ; 1þ eaþ ra 1�að Þðjþ 1Þbþ rb 1�að Þ
h i

ð27bÞ

In the particular case where if ~a and ~b are STFNs, then:

rja ¼ rj að Þ; rj að Þ
h i

¼ 1þ ea�sa 1�að Þðjþ 1Þb�sb 1�að Þ; 1þ eaþ sa 1�að Þðjþ 1Þbþ sb 1�að Þ
h i

ð27cÞ

So, Tables 10, 11, 12 and 13 show the smoothed link rations from the FR
models fitted in this section.

Table 10 a-cuts of claim growth rates ~rj, j = 0, 1, 2, 3 from MFP

~r0 ~r1 ~r2 ~r3
a r0 að Þ r0 að Þ r1 að Þ r1 að Þ r2 að Þ r2 að Þ r3 að Þ r3 að Þ
1 1.879 1.879 1.253 1.253 1.122 1.122 1.073 1.073

0.5 1.786 1.983 1.227 1.283 1.109 1.137 1.065 1.082

0 1.703 2.099 1.203 1.317 1.098 1.153 1.058 1.091
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6 Conclusions

This chapter has described fuzzy regression methods. Fuzzy regression is one of the
most important instruments in fuzzy data analysis and it has been used widely in
empirical applications. Taking into account the cost function to be minimised in
order to adjust the coefficients, three different fuzzy regression methods have been
developed: minimum fuzziness principle (MFP) methodology, fuzzy least squares
(FLS) and procedures that mix both pure principles. So, whereas MFP is very
sensitive to outliers and, in general, to any little change in data, FLS is not able to
explain uncertainty in the linear relation of variables and also, when there is
presence of fuzziness in data, the estimates does not reflect all the uncertainty of
them. So, mixed methods arise as an interesting alternative that solve both
drawbacks.

We also had paid a special attention to the applications of fuzzy regression in
several areas of actuarial science as well as we have developed detailed two of the
most common uses: the estimation of temporal structure of interest rates and the
prediction of future claim costs in a non-life insurance context.

Table 11 a-cuts of claim growth rates ~rj, j = 0, 1, 2, 3 from FLS

~r0 ~r1 ~r2 ~r3
a r0 að Þ r0 að Þ r1 að Þ r1 að Þ r2 að Þ r2 að Þ r3 að Þ r3 að Þ
1 1.902 1.902 1.256 1.256 1.122 1.122 1.072 1.072

0.5 1.877 1.933 1.248 1.264 1.119 1.126 1.070 1.075

0 1.852 1.965 1.241 1.273 1.115 1.131 1.068 1.077

Table 12 a-cuts of claim growth rates ~rj, j = 0, 1, 2, 3 from Savic and Pedrycz [13] fuzzy
regression model

~r0 ~r1 ~r2 ~r3
a r0 að Þ r0 að Þ r1 að Þ r1 að Þ r2 að Þ r2 að Þ r3 að Þ r3 að Þ
1 1.902 1.902 1.256 1.256 1.122 1.122 1.072 1.072

0.5 1.798 2.019 1.226 1.289 1.108 1.138 1.064 1.082

0 1.707 2.151 1.200 1.326 1.096 1.156 1.057 1.092

Table 13 a-cuts of claim growth rates ~rj, j = 0, 1, 2, 3 from Ishibuchi and Nii [12] fuzzy
regression model

~r0 ~r1 ~r2 ~r3
a r0 að Þ r0 að Þ r1 að Þ r1 að Þ r2 að Þ r2 að Þ r3 að Þ r3 að Þ
1 1.902 1.902 1.256 1.256 1.122 1.122 1.072 1.072

0.5 1.800 2.019 1.227 1.289 1.108 1.138 1.064 1.082

0 1.709 2.151 1.201 1.326 1.096 1.156 1.057 1.092
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Fuzzy Correlation and Fuzzy Non-linear
Regression Analysis

Murat Alper Basaran, Biagio Simonetti and Luigi D’Ambra

Abstract In this chapter, we will deal with fuzzy correlation and fuzzy non-linear
regression analyses. Both correlation and regression analyses that are useful and
widely employed statistical tools have been redefined in the framework of fuzzy set
theory in order to comprehend relation and to model observations of variables
collected as either qualitative or approximately known quantities which are no
longer being utilized directly in classical sense. When fuzzy correlation and fuzzy
non-linear regression are concern, dealing with several computational complexities
emerging due to the nature of fuzzy set theory is a challenge. It should be noted that
there is no well-established formula or method in order to calculate fuzzy correlation
coefficient or to estimate parameters of the fuzzy regression model. Therefore, a rich
literature will accompany with the readers. While extension principle based methods
are utilized in the computational procedures for fuzzy correlation coefficient, the
distance based methods preferred rather than mathematical programming ones are
employed in parameter estimation of fuzzy regression models. That extension
principle combined with either fuzzy arithmetic or non-linear programming is two
different methods proposed in the literature will be examined with small but illus-
trative examples in detail for fuzzy correlation analysis. Fuzzy non-linear regression
has been a relatively new studied method when compared to fuzzy linear regression.
However, both employ similar tools. S-curve fuzzy regression and two types of
quadratic fuzzy regression models in the literature will be discussed.
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Keywords Fuzzy correlation analysis � Fuzzy non-linear regression analysis �
S-curve regression � Quadratic regression

1 Introduction

Both correlation analysis and regression analysis are two of the most applied sta-
tistical tools in several disciplines due to its applicability and interpretability. They
allow certain types of measurements to be used in classical statistical theory which
means that observation are supposed to follow certain distributions. However,
encountering observations either described by linguistic terms such as “bad”,
“good” and “very good”, or approximately known quantities such as “around 2” is
possible. With the introduction of fuzzy set theory, uncertainty different than one
defined by probabilistic framework being modeled with possibility distribution for
data collected as either qualitative or approximately known quantities has been a
research area for data analysts.

Extending both methods to fuzzy framework gives rise to several proposed
methods utilizing different aspects of fuzzy set theory.

2 Fuzzy Correlation Analysis

Correlation coefficient is a statistical measure which determines both the direction
and strength of the linear relation between two variables which is defined by

rXY ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2Pn

i¼1ðyi � �yÞ2
q ð1Þ

where X and Y are variables whose values are denoted by xi; yið Þ; i ¼ 1; 2; . . .; n and
their corresponding arithmetic means are denoted by �x and �y respectively. Its range
restricted in a closed interval [−1, 1] tells how strong the linear dependence is
between those variables with the knowledge of direction.

When the correlation coefficient is reconsidered in the fuzzy setting which means
that observation values either are qualitative knowledge such as linguistic terms
taking values of, for example, “bad” or “good” or “excellent”, or are approximately
known values, for instance, the value of the quantity can be defined around 2,
measuring it is a need to quantify the relation. Both types of data are encountered
when subjective or linguistic evaluations are provided by experts in the field of
engineering, management or social sciences [1–3]. For example, the need for fuzzy
correlation measure can arise when to quantify relation between the technology
level and the management achievements of firms in management science or when to
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partition images to determine similarity or dissimilarity is concern in the field of
engineering. Indeed, these types of exemplifications can easily be extended to any
disciplines. Therefore, measuring correlation coefficient between two variables
involving fuzziness is a need and computational procedures are challenging than
that given in (1).

Computing fuzzy correlation employs basically two different methods. The first of
which is to rely on Zadeh’s extension principle, which aims at finding the mem-
bership function of fuzzy correlation. In order to determine membership function of
fuzzy correlation, some methods are available providing with both analytical and
numerical solutions, for example, using weakest t-norm and non-linear program-
ming. Before explaining the details of the methods that are utilized in the compu-
tation of fuzzy correlation as well as fuzzy non-linear regression, some preliminary
notions and definitions are needed which are fuzzy numbers, LR type fuzzy numbers,
α-cuts of a fuzzy set and triangular norm, namely, t-norm, Zadeh’s extension prin-
ciple, fuzzy arithmetic. More detailed treatment of the subjects mentioned above can
be found in variety of books pertinent to fuzzy set theory or fuzzy logic [4].

A fuzzy number is a convex subset of the real line R with a normalized mem-
bership function. For example, an asymmetric triangular fuzzy number ~x ¼ ðx; a; bÞ
is defined by

~x tð Þ ¼
1� x�t

a ; if x� a� t� x
1� t�x

b ; if x� t� xþ b
0; otherwise

8<
: ð2Þ

where the center value x 2 R; left spread value a[ 0; and right spread value b[ 0
are based on the definition of fuzzy number. When a ¼ b is assumed, an asym-
metric triangular fuzzy number is called a symmetric triangular fuzzy number and is
denoted by ~x ¼ x; að Þ: Other types of fuzzy numbers such as trapezoidal fuzzy
number and Gaussian fuzzy number are also defined and utilized in various
applications dependent upon the suitability, interpretability, and applicability.

A fuzzy number ~x ¼ ðx; aÞLR of type LR is a function from real numbers into the
interval [0, 1] defined by

~x tð Þ ¼
L x�t

a

� �
for x� a� t� x

R t�x
b

� �
for x� t� xþ b

(
ð3Þ

where L and R are non-increasing and continuous shape functions from [0,1] to
[0,1] satisfying L 0ð Þ ¼ R 0ð Þ ¼ 1 and L 1ð Þ ¼ R 1ð Þ ¼ 0:

An α-cut of a fuzzy set is a crisp set defined by

Aa ¼ x 2 AjlAðxÞ� agf ð4Þ
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A binary operation T on unit interval is said to be a triangular norm or t-norm if
and only if T is associative, commutative, non-decreasing and T x; 1ð Þ ¼
x for each x 2 ½0; 1�:

Extending ordinary arithmetic into fuzzy number setting is possible by
employing Zadeh’s extension principle defined by

lB yð Þ ¼ Sup|{z}
x1; . . .; xnð Þ 2 U1x. . .xUn

y ¼ f x1; . . .; xnð Þ

minðlA1
x1ð Þ; . . .lAn

xnð ÞÞ ð5Þ

where A ¼ A1x. . .xAn and U ¼ U1x. . .xUn are Cartesian product of the fuzzy sets
Ai; ði ¼ 1; . . .; nÞ and universal sets Ui; ði ¼ 1; . . .; nÞ of fuzzy sets respectively.

2.1 Fuzzy Correlation Coefficient Based on the Weakest
t-Norm (Tw) and Fuzzy Arithmetic

When Zadeh’s extension principle is rewritten using one of union operators such as
t-norm instead of minimization, the arithmetic operators are defined by

ð~A� ~BÞ ¼ Sup|{z}
xþ y¼z

T ~A xð Þ; ~B yð Þ� � ð6aÞ

~A� ~B
� � ¼ Sup|{z}

x�y¼z

Tð~A xð Þ; ~B yð ÞÞ ð6bÞ

~Aø~B
� � ¼ Sup|{z}

x=y¼z

Tð~A xð Þ; ~B yð ÞÞ ð6cÞ

where ~A and ~B are fuzzy numbers and ⊕ , ⊗ , ⊘ are fuzzy arithmetic operators for
addition, multiplication and division, respectively.

When fuzzy correlation is being computed, applying the extension principle
based on the weakest t-norm denoted by Tw for a sample of n independent pairs of
LR type fuzzy numbers is the method using the classical definition of the correlation
coefficient given in (1) [5]. Instead of using the union operator Sup; Tw based fuzzy
addition and multiplication are preferred in order to preserve the shape of the
resultant LR type fuzzy numbers since it is the fact that fuzzy multiplication and
division operators lead to resultant fuzzy numbers different than LR types except
fuzzy addition and subtraction.
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When the observations are fuzzy, the sample correlation coefficient given in (1)
is rewritten.

~rfX;Y ¼
Pn

i¼1ð~xi � 1
n
	Pn

i¼1 ~xiÞð~yi � 1
n
	Pn

i¼1 ~yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ð~xi � 1

n
	Pn

i¼1 ~xiÞ2
Pn

i¼1ð~yi � 1
n
	Pn

i¼1 ~yiÞ2
q ð7Þ

where ~xi ¼ ðxi; ciÞ and ~yi ¼ ðyi; diÞ; i ¼ 1; 2; . . .; n; are symmetric triangular fuzzy
numbers and �~x ¼ 1

n
	Pn

i¼1 ~xi and �~y ¼ 1
n
	Pn

i¼1 ~yi are the average values of fuzzy
numbers ~X and ~Y ; respectively. Then the average values of fuzzy numbers ~X and ~Y
are calculated based on Tw as follows:

�~x ¼ ð1
n

Xn
i¼1

xi; max
1� i� n

ciÞ ð8aÞ

�~y ¼ ð1
n

Xn
i¼1

yi; max
1� i� n

diÞ ð8bÞ

The expressions given in (8a) and (8b) can be written for just some observation
using Tw as follows:

ð~x� �~xiÞ ¼ ðxi � 1
n

Xn
i¼1

xi; max
1� i� n

ciÞL ð9aÞ

ð~y� �~yiÞ ¼ ðyi � 1
n

Xn
i¼1

yi; max
1� i� n

diÞL ð9bÞ

Then the product of (9a) and (9b) is obtained as follows:

xi � 1
n

Xn
i¼1

xi

 !
yi � 1

n

Xn
i¼1

yi

 !
;max xi � 1

n

Xn
i¼1

xi

�����
����� max
1� k� n

dk; yi � 1
n

Xn
i¼1

yi

 !
max

1� k� n
ck

 !
L

ð10Þ

The numerator of (7) is the summation of the product of (9a) and (9b) using Tw
based fuzzy arithmetic denoted by

Xn
i¼1

xi � 1
n

Xn
k¼1

xk

 !Xn
i¼1

yi � 1
n

Xn
k¼1

yk

 !
; max
1� i� n

xi � 1
n

Xn
k¼1

xk

�����
����� max
1� k� n

dk; xi�1
n

Xn
k¼1

xk

�����
����� max
1� k� n

ck

 !

ð11Þ

In order to compute the denominator of (7), we will follow the similar steps. The
summation of the square of the differences between fuzzy observations and its
fuzzy arithmetic mean for each variable is denoted using Tw based fuzzy arithmetic
in (12) and (13).
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Xn
i¼1

ðxi � 1
n

Xn
i¼1

xkÞ2; max
1� i� n

jxi � 1
n

Xn
i¼1

xkj max
1� k� n

ck

 !
L

ð12Þ

Xn
i¼1

ðyi � 1
n

Xn
i¼1

ykÞ2; max
1� i� n

jyi � 1
n

Xn
i¼1

xkj max
1� k� n

dk

 !
L

ð13Þ

The product of (12) and (13) yields (14) and (15)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � 1
n

Xn
i¼1

xk

 !2Xn
i¼1

yi � 1
n

Xn
i¼1

yk

 !2

;

vuut ð14Þ

maxf
Xn

i¼1
ðxi � 1

n

Xn

i¼1
xkÞ2 max

1� i� n
jyi � 1

n

Xn

i¼1
ykj max

1� k� n
dk;Xn

i¼1
ðyi � 1

n

Xn

i¼1
ykÞ2 max

1� i� n
jxi � 1

n

Xn

i¼1
xkj max

1� k� n
ck;Pn

i¼1 ðxi � 1
n

Pn
i¼1 xkÞ2

Pn
i¼1 ðyi � 1

n

Pn
i¼1 ykÞ2

ð15Þ

where expressions in (14) and (15) are center and the spread part of the fuzzy
number in denominator of (7), respectively.

Hence, both numerator and denominator are obtained. The last step is to divide
those two fuzzy numbers. Its division is simply based on the implementation of the
expression given in (6c). It is denoted by

~Aø ~B
� �

zð Þ ¼
L

a
b�zð Þ

1
bð Þmax a;zbð Þð Þ

� 	
; z�minf a�a

b ; a
bþb

� �
g

R
z�a

bð Þ
1
bð Þmax a;zbð Þ

� 	
; z�maxf aþ að Þ

b ; a
b�bð Þg

8>><
>>: ð16Þ

where a; b[ 0 and it is assumed that L ¼ R; also ~A ¼ ða; aÞLL and ~B ¼ ðb; bÞLL are
fuzzy numbers. Also, other cases including the different signs of two fuzzy numbers
are easily defined and given in [5]. It should be noted that expression given in (16)
holds for LL types fuzzy numbers.

A small data set presented in Table 1 will be used in order to exemplify
calculations.

Table 1 Data set for both
fuzzy numbers written in the
form of symmetric triangular
fuzzy numbers

~xi ¼ ðxi; ciÞ ~yi ¼ ðyi; diÞ
(2.5,0.10) (2.0,0.2)

(3.0,0.4) (2.6,0.3)

(3.2,0.3) (2.9,0.5)

(3.5,0.2) (3.8,0.4)

(4.1,0.5) (6.0,0.60)
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Fuzzy arithmetic for both variables are obtained as �~X ¼ ð3:26; 0:5Þ and �~Y ¼
ð3:46; 0:6Þ: Then using expression (11) results in (3.582, 1.27) which is the enu-
merator of (7). The denominator is calculated using (14) and (15) leading to (3.72,
2.71). When former value one is divided by the latter one, the membership function
for correlation coefficient is denoted by

~r eXY ¼¼ ð3:58; 1:27Þ
ð3:72; 2:71Þ ¼

1� 0:96�z
maxð0:341;0:728zÞ if 0:341� z� 0:96

1� z�0:96
maxð0:341;0:728zÞ if 0:96� z� 1:304

(

2.2 Fuzzy Correlation Based on Zadeh’s Extension
Principle

Another approach in the computation of fuzzy correlation coefficient is to use the
α-cuts of fuzzy numbers in order to derive the membership function proposed by
[6]. This method relies on the application of the extension principle aiming at
finding the α-cuts of ~rfX;Y : The α-cuts of ~Xi and ~Yi are denoted by

ðXiÞa ¼ ðXiÞLa ; ðXiÞLa

 � ¼ ½min

x
xijf l~xiðxiÞ� ag;max

x
xijf l~xiðxiÞ� ag� ð17aÞ

ðYiÞa ¼ ðYiÞLa ; ðYiÞLa

 � ¼ ½min

y
yijf l~yiðyiÞ� ag;max

y
yijf l~yiðyiÞ� ag� ð17bÞ

Also, its interval form containing the values of both variables are denoted by

½ XiÞa; ðYiÞa
� � ¼ ½min

x
xijl~xi xið Þ� a
� 

;max
x

xijl~xi xið Þ� a
� � ð18Þ

where the α-cuts of ~Xi and ~Yi are both crisp sets.
Then as mentioned in [6], a pair of non-linear mathematical programs are

introduced in order to find the lower and upper bounds of the α-cuts of ~rfX;Y : Those
are denoted as follows:

ðrXYÞLa ¼ min
Xn

i¼1
xi � �xð Þ yi � �yð Þ

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � �xÞ2

Xn

i¼1
ðyi � �yÞ2

q� 	
s:t ðXiÞLa � xi �ðXiÞUa ; 8i

ðYiÞLa � xi �ðYiÞUa ; 8i
ð19aÞ
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ðrXY ÞUa ¼ max
Xn

i¼1
xi � �xð Þ yi � �yð Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � �xÞ2

Xn
i¼1

ðyi � �yÞ2
s !" #

s:t ðXiÞLa � xi �ðXiÞUa ; 8i
ðYiÞLa � xi �ðYiÞUa ; 8i

ð19bÞ

In the case of nonexistence of analytic solutions of non-linear programming
problems, it is possible to obtain the numeric solutions for ðrXYÞLa and ðrXY ÞUa at
different α levels, which leads to the approximate shape of LðrÞ and RðrÞ: A small
data set which is given in Table 1 will be used to exemplify.

In order to work with a pair of non-linear programming problems, the α-cuts of
variables for specified values (α = 0.0, 0.1, …, 0.9, 1.0) are tabulated in Tables 2
and 3, respectively.

For each α value, while the first column shows the left end point, the second
column denotes the right end point. Similar construction is made for the fuzzy ~Y
variable in Table 3.

Based on those values presented in Tables 2 and 3, a pair of non-linear pro-
gramming problem is solved in order to calculate correlation values for each cor-
responding α-cut values. Those are tabulated in Table 4.

Table 2 The α-cuts values for ~X

α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

2.4 2.6 2.41 2.59 2.42 2.58 2.4 2.6 2.41 2.59 2.42 2.58

2.6 3.4 2.64 3.36 2.68 3.32 2.6 3.4 2.64 3.36 2.68 3.32

2.9 3.5 2.93 3.47 2.96 3.44 2.9 3.5 2.93 3.47 2.96 3.44

3.3 3.7 3.32 3.68 3.34 3.66 3.3 3.7 3.32 3.68 3.34 3.66

3.6 4.6 3.65 4.55 3.70 4.50 3.6 4.6 3.65 4.55 3.70 4.50

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

2.46 2.54 2.47 2.53 2.48 2.46 2.54 2.47 2.53 2.48

2.84 3.16 2.88 3.12 2.92 2.84 3.16 2.88 3.12 2.92

3.08 3.32 3.11 3.29 3.14 3.08 3.32 3.11 3.29 3.14

3.42 3.58 3.44 3.56 3.46 3.42 3.58 3.44 3.56 3.46

3.90 4.30 3.95 4.25 4.00 3.90 4.30 3.95 4.25 4.00
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3 Fuzzy Non-linear Regressions

Fuzzy linear regression has been utilized as a modeling technique since the first
introduction by [7] when one encounters different settings such as linguistically
defined values, small data sets, unknown structure between dependent variable and
independent variables, approximate measurements like intervals. Modeling endea-
vor covers several applications in many disciplines ranging from quality function
deployment to determining claiming reserves [8, 9]. Also, it allows crisp numbers to
be utilized in the modeling. Therefore, several types of fuzzy linear regression
models and their parameter estimation methods have been proposed. The generic
form of it can be denoted by

~Y ¼ ~A0 þ ~A1 � ~X1 þ � � � þ ~An � ~Xk; i ¼ 1; . . .; n ð20Þ

where parameters, dependent and independent variables are all fuzzy numbers
represented as one of the types such as triangular, trapezoidal and Gaussian fuzzy
numbers.

Despite of the fact that several estimation methods have been defined, they are
actually being grouped into two different methods that have been utilized and
evolved during the research. The first of which is based on mathematical pro-
gramming methods such as linear programming, goal programming, and non-linear
programming and so on. The second one is to rely on the minimization of distance
between two fuzzy sets so-called fuzzy least squares, which are the squares of the
differences between the observed and estimated values of dependent variable.

When fuzzy non-linear regression is concern, the same variety pertinent to model
types and their estimation methods are encountered. In this chapter, two different
types of fuzzy non-linear regression models that are available in the literature will be
presented with small but illustrative examples. The first one is called S-shaped curve
fuzzy regression whose crisp version is widely utilized in the modeling of complex

Table 3 The α-cuts values for ~Y

α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

1.8 2.2 1.82 2.18 1.84 2.16 1.86 2.14 1.88 2.12 1.9 2.1

2.3 2.9 2.33 2.87 2.36 2.84 2.39 2.81 2.42 2.78 2.45 2.75

2.4 3.4 2.45 3.35 2.5 3.30 2.55 3.25 2.6 3.2 2.65 3.15

3.4 4.2 3.44 4.16 3.48 4.12 3.52 4.08 3.56 4.04 3.6 4.0

5.4 6.6 5.46 6.54 5.52 6.48 5.58 6.42 5.64 6.36 5.7 6.3

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1.92 2.08 1.94 2.06 1.96 2.04 1.98 2.02 2.0 2.0

2.48 2.72 2.51 2.69 2.54 2.66 2.57 2.63 2.6 2.6

2.7 3.1 2.75 3.05 2.8 3 2.85 2.95 2.9 2.9

3.64 3.96 3.68 3.92 3.72 3.88 3.76 3.84 3.8 3.8

5.76 6.24 5.82 6.18 5.88 6.12 5.94 6.06 6.0 6.0
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systems such as biology, agriculture and social economy. Both input variable and
output variable in this model are fuzzy numbers. Its parameter estimation method is
based upon minimizing the distance between fuzzy observed values and fuzzy
estimated values which are represented by the pre-defined model. The parameter
estimates are obtained as crisp values. The second one is called quadratic fuzzy
regression model which appears to be two different types. While the first quadratic
fuzzy regression allows quadratic term to be included in the model, the second one
has interaction terms. While input variables have crisp values, the output variable
and the parameters are fuzzy values. Its parameter estimation method uses the dis-
tance based methods aiming at minimizing the difference between observed values
and estimated values proposed by [10, 12, 13].

3.1 S-Shaped Curve Fuzzy Regression

S-shaped curve fuzzy regression was proposed by [11] in order to model obser-
vations that are encountered in complex systems such as biology, social economy
and agricultural sciences where the trend of growing is experienced slowly at the
beginning, rapid increments are observed during process and it finishes with the
saturation at the last phase.

Suppose that ~xi and ~yi; ði ¼ 1; . . .; nÞ are observations that are tried to be mod-
eled defined by

~y ¼ ðaþ b � exp ð�~xÞÞ�1; a; b 2 R ð21Þ

It is assumed that least squares based metrics between fuzzy numbers has better
estimation ability when parameter estimation in fuzzy non-linear regression is
concern. Therefore, metric defined in (22) will be utilized to determine parameters
of the model given in (21).

~d ~A; ~B
� � ¼ Z 1

0
w2 að Þd2 Aa;Bað Þdt

� 	1
2

; ~A; ~B 2 FðRÞ ð22Þ

where w2ðaÞ should be chosen as a monotone increasing function in [0, 1], and ~A
and ~B are fuzzy numbers defined on real line denoted by FðRÞ:

The motivation behind choosing monotone increasing function is based on the
desire of having higher degree of membership level set when determining the
distance between fuzzy numbers.

The distance based on the α-cuts of ~A and ~B given in (22) is denoted by

d2 ¼ ~Aa; ~Ba
� � ¼ ½l að Þ � pðaÞ�2 þ ½r að Þ � qðaÞ�2 ð23Þ

where ~Aa ¼ ½l að Þ; r að Þ� and ~Ba ¼ ½p að Þ; q að Þ�:
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Utilizing the metric and the model given in (21) and (22) respectively, the least
squares optimization problem is written in (24).

Minimize M a; bð Þ ¼
Xn

i¼1
~d2 aþ b exp �~xið Þ; 1

~yi

� �
ð24Þ

The α-cuts of functions of ~X and ~Y are represented as follows:

ð~YiÞa ¼½fi að Þ; gi að Þ�; ð~XiÞa ¼ ½ui að Þ; vi að Þ�;
1
~Yi

� �
a

¼ 1
giðaÞ ;

1
fiðaÞ

� 	
ðexp �~xið ÞÞa ¼ ½exp �við Þ; exp �uið Þ�;

ðexp ~xið ÞÞa ¼½exp uið Þ; exp við Þ�; a 2 ð0; 1�

ð25Þ

where expression in (25) holds for positive fuzzy numbers.
Two different minimization functions are defined with respect to the sign of b;

which are for b� 0 and b\0; respectively.
In order to simplify the notations, the α-cut in parenthesis is removed. Also, w2 is

adapted instead of using w2ðaÞ in (22) and (25).
For b� 0; the α-cut of ðaþ b exp �~xið ÞÞa is denoted by

aþ b exp �við Þ; aþ b exp �uið Þ½ �; ði ¼ 1; . . .; nÞ ð26Þ

Then, its least squares optimization function given in (24) is rewritten

min
a;b

Mþ a; bð Þ ¼
Xn

i¼1
~d2 aþ b expð�xiÞ; 1

~yi

� �

¼
Z 1

0
w2

Xn
i¼1

aþ b exp �við Þ � 1
gi

� �2

þ aþ b exp �uið Þ � 1
fi

� �2
" #

da

ð27Þ

By taking derivatives of optimization function given in (27) with respect to
parameters a and b, an equation system consisting two equations are obtained. The
first equation system is denoted by ES1

ES1 ¼

2na
R 1

0
w2daþ b

R 1

0
w2Pn

i¼1 ðexpð�viÞþ exp �uið ÞÞda
¼ R 1

0
w2Pn

i¼1
1
fi
þ 1

gi

� �
da

a
R 1

0
w2Pn

i¼1 ðexpð�viÞþ exp �uið ÞÞdaþ b
R 1

0
w2ÞPn

i¼1 ðexpð�2viÞþ exp �2uið ÞÞda
¼ R 1

0
w2Pn

i¼1
1
fi
expð�2vi þ 1

gi
expð�2uiÞ

� �
da

8>>>>>><
>>>>>>:

ð28Þ
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For b\0; the α-cut of ðaþ b exp �~xið ÞÞa is denoted by

aþ b exp �uið Þ; aþ b exp �við Þ½ �; i ¼ 1; . . .; nÞ ð29Þ

Then, its least squares optimization function given in (24) is rewritten for this
case.

min
a;b

M� a; bð Þ ¼
Xn
i¼1

~d2ðaþ b expð�xiÞ; 1
~yi
Þ

¼
Z 1

0
w2
Xn
i¼1

½ aþ b exp �uið Þ � 1
gi

� �2

þ aþ b exp �við Þ � 1
fi

� �2

�da

ð30Þ

By taking derivatives of optimization function given in (30) with respect to
parameters a and b; an equation system consisting two equations are obtained. The
second equation system is denoted by ES2

ES2 ¼

2na
R 1
0 w

2daþ b
R 1
0 w

2Pn
i¼1

ðexpð�viÞþ exp �uið ÞÞda

¼ R 10 w2 að ÞPn
i¼1

1
fi að Þ þ 1

gi að Þ
� �

da

a
R 1
0 w

2Pn
i¼1

ðexpð�viÞþ exp �uið ÞÞdaþ b
R 1
0 w

2Pn
i¼1

ðexpð�2viÞþ exp �2uið ÞÞda

¼ R 10 w2Pn
i¼1

1
fi að Þ expð�vi þ 1

gi að Þ expð�2uiÞ
� �

da

8>>>>>>>>>><
>>>>>>>>>>:

ð31Þ

In order to find the parameters of fuzzy non-linear regression defined in the form
of S-curve fuzzy model, ES1 and ES2 needs to be solved. For this purpose, criterion
is defined by [11], which is denoted by (32) and (33) are utilized.

Db ¼2n
Z 1

0
w2da

Z 1

0

1
fi
exp uið Þþ 1

gi
exp við Þ

� �
da

�
Z 1

0
w2
Xn
i¼1

exp �við Þþ exp uið Þð Þda
Z 1

0
w2
Xn
i¼1

1
fi
þ 1

gi

� �
da

ð32Þ

Db� ¼2n
Z 1

0
w2da

Z 1

0
w2
Xn
i¼1

ð1
gi
exp uið Þþ 1

fi
exp við ÞÞda

�
Z 1

0
w2
Xn
i¼1

exp �uið Þþ exp �við Þð Þda
Z 1

0
w2
Xn
i¼1

1
fi
þ 1

gi

� �
da

ð33Þ

It is proved by [11] that Db �Db� :
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Based on values of Db; The solution set of (28) or (31) is searched using the
computational procedure

If Db � 0; expression (28) has unique solution which is denoted by the form of
parameter estimates

a ¼ p1
D

and b ¼ Db

D
ð34Þ

where p1 and D are determinant values which are defined by

p1 ¼
R 1
0 w

2Pn
i¼1

1
fi
þ 1

gi

� �
da

R1
0
w2Pn

i¼1
exp �við Þþ exp �uið Þð Þda

R 1
0 w2Pn

i¼1

1
fi
exp uið Þþ 1

gi
exp við Þ

� �
da

R 1
0 w

2Pn
i¼1

exp �2við Þþ exp �2uið Þð Þda

��������

��������
ð35Þ

D ¼
2n
R 1
0 w2da

R 1
0 w2Pn

i¼1
exp �við Þþ exp �uið Þð Þda

R 1
0 w

2Pn
i¼1

exp �við Þþ exp �uið Þð Þda R 1
0 w2Pn

i¼1
exp �2við Þþ exp �2uið Þð Þda

��������

��������
ð36Þ

If Db\0; then Db� �Db � 0: Hence expression (31) has a unique solution
which is expressed in the form of parameter estimates

a ¼ p2
D

and b ¼ Db�
D

ð37Þ

where p2 is a determinant value which are defined by

p2 ¼
R 1
0 w

2da
Pn
i¼1

1
fi
þ 1

gi

� �
da

R 1
0 w2Pn

i¼1
exp �við Þþ exp �uið Þð Þda

R 1
0 w2Pn

i¼1

1
gi
exp uið Þþ 1

fi
exp við Þ

� �
da

R 1
0 w

2Pn
i¼1

exp �2við Þþ exp �2uið Þð Þda

��������

��������
ð38Þ

A small data set is tabulated in Table 5. Our aim is to determine parameters of
fuzzy non-linear regression model defined in (21).

a ¼ p1
D

¼ �6:53
1:41

¼ �4:63 and b ¼ Db

D
¼ 56:46

1:41
¼ 40:04
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The model given in (21) is denoted by

~y ¼ �4:63þ 40:04 expð�~xÞ ð39Þ

3.2 Quadratic Fuzzy Regression

The second type of fuzzy non-linear regression model is quadratic fuzzy regression
expressed in two different models. While the first of which is the one including a
quadratic term, the second one contains a term consisting of the interaction of the
independent variables. They are proposed by [12] and denoted by (40) and (41).

~Yi ¼ A0 þA1Xi1 þA2X
2
i1; i ¼ 1; 2; . . .; n ð40Þ

~Yi ¼ A0 þA1Xi1 þA2Xj1 þA3Xi1Xj1; i; j ¼ 1; 2; . . .; n ð41Þ

In both models, it is assumed that input variables are non-negative crisp values
and output variable is normal and convex fuzzy numbers with either symmetric or
non-symmetric triangular membership functions. The parameter estimation method
so-called fuzzy least squares which aim to minimizing the squares of the differences
between the observed fuzzy dependent variable and the estimated fuzzy outputs are
widely applied to estimation of the parameters. In order to define the difference
between the observed and the estimated fuzzy numbers, some methods trans-
forming those fuzzy numbers into crisp numbers are proposed in [10, 12, 13]. One
of the methods called Overall Existence Ranking Index (OERI) was proposed in
[13]. It is based on the usage of the inverse membership function which is simply a
ranking method developed for fuzzy sets. For a given existence level w, the inverse
image in terms of membership function, lðxÞ, is defined as

l�1 wð Þ ¼ x : l xð Þ ¼ wf g ð42Þ

Then for any two arbitrary fuzzy numbers A and B, if A is said to be larger than B
at w where w 2 ð0; 1�, l�1

A ðwÞ� 
[ l�1

B ðwÞ� 
holds. The inverse is not generally

true. The OERI for a fuzzy number A ¼ ðx; a; bÞ is a crisp number defined as

Table 5 Data set for S-curve
fuzzy regression

~xi ¼ ðxi; ciÞ ~y ¼ ðyi; diÞ
(1.0,0.3) (3.0,0.2)

(2.0,0.7) (8.0,0.4)

(3.0,0.4) (22.0,0.6)

(4.0,1.9) (25.0,1.3)

(5.0,1.3) (30.0,1.5)
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OM Að Þ ¼ x� 1
2
X1 wð Þaþ 1� X1ðwÞ

2
b ð43Þ

where X1 wð Þ is a weighting function determined by decision makers subjectively.
The more realistic weighting function is the linear one mentioned in [13]. Then for
fuzzy numbers A and B; the distance is defined as

D A;Bð Þ ¼ OM Að Þ � OMðBÞ ð44Þ

When OERI is adapted into regression problem, its distance function can be
written as follows:

MIN
Xn
i¼1

½Yi � ðbYiÞ�2 ¼
Xn
i¼1

½DðYi; bYiÞ�2 ¼
Xn
i¼1

½OM Yið Þ � OMðbYiÞ�2 ð45Þ

The minimization function and its constraints employing OERI can be written as

MIN
Xn

i¼1
ymi � axi � X1 wð Þ

2
yLi � cxi
� �þ 1� X1 wð Þ

2
yRi � dxi
� �� 	2

þ yLi � cxi
� �2 þ yRi � dxi

� �2( )

ð46Þ

ymi � 1� að ÞyLi � axi � 1� að Þcxi

ymi þ 1� að ÞyRi � axi þð1� aÞdxi
c; d� 0

where fuzzy number A ¼ ða; c; dÞ is the parameter of the regression and fuzzy
number Y ¼ ðym; yL; yRÞ is the observed dependent variable and 0\a� 1: The
formulation given in (46) is the case having one independent variables and its
formulation can be easily extended to multiple cases of independent variables
easily.

Similarly, Diamond [10] proposed another distance function defined as

d2 A;Bð Þ ¼ ðx� yÞ2 þ ½ x� yð Þ � ða� cÞ�2 þ ½ x� yð Þ � ðb� dÞ�2 ð47Þ

The formulations denoted based on the method proposed by Diamond is given as
follows:

ðXTXÞaL ¼ XTYL ð48aÞ

ðXTXÞaU ¼ XTYR ð48bÞ
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where YL and YR are vectors denoting the left end points and the right end points of
the response values and aL and aR are vectors denoting the left end points and the
right end points of the center values of the predicted parameters.

where X is the data matrix denoted by

X ¼
1 X11 X2

11

..

. ..
. ..

.

1 Xn1 X2
n1

2
64

3
75 ð49Þ

Similar construction was also proposed by [12] for the quadratic fuzzy regres-
sion containing the interaction term of independent variables.

The generic data matrix for the model given in (41) is given as follows:

X ¼
1
..
.

1

X11 X12 X11X12

..

. ..
. ..

.

Xn1 Xm2 Xn1Xm2

2
64

3
75 ð50Þ

A small data set is used in order to illustrate the models given in (40) and (41)
(Table 6).

The parameter estimates for model (40) and (41) are denoted respectively by

~y ¼ 6:37; 0:86ð Þþ �3:12; 0:48ð Þx1 þð0:59; 0:10Þx21
~y ¼ 10:05; 1:53ð Þþ �1:62; 0:18ð Þx1 þ �2:90; 0:51ð Þx2 þð0:76; 0:12Þx1x2

4 Conclusion

Fuzzy correlation measure is an important fuzzy statistics that helps comprehend
the relation between two variables that are collected as either linguistically defined
values or approximately known quantities. In classical statistical theory, the cor-
relation of these types of variables can no longer be calculated without losing
information included. With the help of fuzzy set theory providing mathematical
tools allowing to model uncertainty different than one defined by probabilistic
approach, the relation between those variables can be quantified using fuzzy

Table 6 Data set for
quadratic regression models

~yi x1 x2
(4,0.5) 1 2.1

(3,0.3) 2 3.3

(2,0.2) 3 4.6

(4,0.7) 4 1.8

(6,0.9) 5 3.7
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correlation measure. Despite of the fact several methods are available in the liter-
ature, two different methods are chosen due to having utilized fuzzy concepts
directly in computational procedures and their reliable results. Both of them using
basically Zadeh’s extension principle with the combination of either fuzzy arith-
metic and the weakest t-norm or non-linear programming problem are employed.
Both methods with same small data set are run.

Fuzzy non-linear regression is a method fully benefiting from methodological
developments used in fuzzy linear regression when it is defined in a form different
than linear structure distance. They are called S-curve regression and quadratic
fuzzy regression. It is a fact that distance based parameter estimation methods has
better ability than mathematical programming ones do when parameter estimation is
concern in fuzzy non-linear regression. Two data sets for S-curve fuzzy regression
and quadratic fuzzy regression are employed respectively.
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Fuzzy Decision Trees

Ayca Altay and Didem Cinar

Abstract Decision trees are one of the most widely used classification techniques
because of their easily understandable representation. In the literature, various
methods have been developed to generate useful decision trees. ID3 and SLIQ
algorithms are two of the important algorithms generating decision trees. Although
they have been applied for various real life problems, they are inadequate to rep-
resent ambiguity and vagueness of human thinking and perception. In this study,
fuzzy ID3 and fuzzy SLIQ algorithms, which generate fuzzy decision trees, are
discussed as well as their enhanced versions. Their performances are also tested
using simple training sets from the literature.

Keywords Fuzzy decision trees � Induction algorithms � Classification

1 Introduction to Decision Trees

Decision trees are predictive models designed for supervised data mining that
analyze data in a multi-variate and tree-like fashion [25]. They achieve object
classification through splitting the branches of a tree where each split presents a test
through an attribute or a criterion. Each split is called a node and the first split is
called the root of the tree. When the splitting or the branching process is terminated,
each of the last node is called a terminal node or a leaf of the tree. Each branch
sequence provides a rule for classification of objects [26]. An example of a decision
tree is provided in Fig. 1 [26]. In Fig. 1, the decision of playing tennis is achieved
through considering weather related factors such as the outlook of the weather, the
humidity and wind. The first split is achieved through the outlook which constitutes
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the root of the tree. If the sky is overcast, then the decision to play tennis is reached
making this the final split of a certain conditional outlook. The decision to play
tennis is the leaf or the terminal node of the tree. However, if the weather is sunny
or rainy, a direct decision cannot be reached without considering humidity or wind
conditions. Hence, in such cases, the terminal node cannot be reached solely on the
outlook.

Decision trees split a complex decision process into a set of simpler decisions to
classify the given objects with an easily understandable representation [27]. This is
the reason that decision trees are important tools in data mining literature [31].
Many algorithms have been proposed to construct decision trees. Although these
methods have generated useful decision trees for classification problems, they are
inadequate to represent ambiguity and vagueness of human thinking and perception
[46].

In classical set theory, an element either belongs to a certain set or not. For
example, in the decision tree given in Fig. 1, it is assumed that humidity of an object
is known precisely as it is either high or normal. Assume that there is a certain limit,
20 %, which is used to determine humidity of an object, i.e. if humidity is over that
limit, then it belongs to high, otherwise it belongs to normal. If an object has 21 %
humidity, should we classify the object as not play tennis?

Crisp sets may not be realistic for the real world problems including vagueness
and subjectivity. Therefore, fuzzy sets have been integrated to the decision trees to
enhance the uncertainty handling capability. In this chapter, classical induction
algorithms to construct fuzzy decision trees are discussed.

The reminder of this chapter is organized as follows. Well-known crisp decision
tree induction algorithms from the literature are explained in the next section.
Induction algorithms for fuzzy decision trees and corresponding literature review
are given in Sect. 3. The algorithms are applied to a sample training set from the
literature and the results are discussed in Sect. 4. Finally, a brief summary on recent
approaches is presented in Sect. 5 and concluding remarks are presented in Sect. 6.

Fig. 1 A sample decision
tree [26]
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2 Decision Trees and Classification Problems

A formal definition of a typical classification problem can be described as follows. S
is the set of objects in a training set in which each object is described by attributes
A ¼ fA1; . . .;ANg. Domain of each attribute Ai is represented by a set of discrete
linguistic terms LðAiÞ ¼ fA1

i ; . . .;A
ni
i g. Each object s 2 S is classified by a set of

classes C ¼ fC1; . . .;CKg. Let n denotes the number of objects where
\x1; y1 [ ; . . .;\xn; yn [ be the objects of the data, xs and ys being the inputs and
output of object s; respectively. The set of classes can be numerical values, ordered
or unordered factors. Construction of a decision tree involves following decisions:
(i) which attribute to split, (ii) when to stop splitting, and (iii) how to assign
terminal nodes to a class.

A small training set about credit risk assessment procedure [23] is given in
Table 1. Each customer is evaluated according to risk potential. As a classification
problem, each customer is an object of S: There are three possible decisions for risk
evaluation: high, moderate, and low. Credit history, debt, collateral and income are
the attributes which are used to decide risk potential of a customer. Attribute
evaluations for 14 customers are shown in Table 1. Attributes and their values are
given as follows:

• Credit history = {good, bad, unknown}
• Debt = {high, low}
• Collateral = {adequate, none}
• Income = {low ($0 to $15 K), moderate ($15 to $35 K), high (over $35 K}

Table 1 A training data on risk assessment

# Credit history Debt Collateral Income Risk

1 Bad High None $0 to $15K High

2 Unknown High None $15 to $35K High

3 Unknown Low None $15 to $35K Moderate

4 Unknown Low None $0 to $15K High

5 Unknown Low None over $35K Low

6 Unknown Low Adequate over $35K Low

7 Bad Low None $0 to $15K High

8 Bad Low Adequate over $35K Moderate

9 Good Low None over $35K Low

10 Good High Adequate over $35K Low

11 Good High None $0 to $15K High

12 Good High None $15 to $35K Moderate

13 Good High None over $35K Low

14 Bad High None $15 to $35K High
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In this study, induction algorithms used to construct decision trees are investi-
gated. Since constructing optimal binary decision trees is an NP-complete problem,
efficient heuristics have been developed to generate near-optimal decision trees
[20]. ID3 algorithm, CART and SLIQ algorithms are analyzed in the context of this
chapter. Credit risk evaluation example given above will be used to explain ID3 and
CART algorithms, whereas SLIQ algorithm will provide its own example.

2.1 ID3 Algorithm

ID3 (Interactive Dichotomizer 3) algorithm, which is developed by Quinlan [33,
34] in 1986, is one of the most well-known decision tree induction algorithms.
Basically, it uses an information theoretic measure of entropy to evaluate the dis-
criminatory power of each attribute. ID3 uses information gain of each attribute to
build a decision tree. The attribute adding the greatest information about the
decision is selected first [32]. The greatest information gain means the greatest
decrease in entropy which is calculated for set S as follows:

EðSÞ ¼
XK

k¼1

�pðkÞlog2 pðkÞ ¼
XK

k¼1

� jCkj
jSj log2

jCkj
jSj ð1Þ

where EðSÞ represents the entropy and pðkÞ is relative frequency of class k in set S;
i.e. pðkÞ is the ratio of the objects in class k to the whole set S: In all computations,
0 � log20 is assumed as 0. If decisions for all objects are the same, then entropy will
be zero. This means there is no need to split the node on the corresponding decision
level. Let Ti be the set of subsets created from splitting set S by attribute Ai:
Information gain for each attribute is computed as follows:

IGðS;AiÞ ¼ EðSÞ �
X

t2Ti
pðtÞEðtÞ ¼ EðSÞ �

X

t2Ti

jtj
jSjEðtÞ ð2Þ

EðtÞ ¼
XK

k¼1

�pðtkÞlog2 pðtkÞ ¼
XK

k¼1

� jtkj
jtj log2

jtkj
jtj ð3Þ

where t ¼ [ K
k¼1tk: At each iteration of ID3 algorithm, the attribute having the

greatest gain of information is selected as the decision level. A pseudocode
including main steps of ID3 algorithm is given in Algorithm 1.
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Algorithm 1: ID3 Algorithm
Input: Classification data

1 Calculate p(k), E(S)
2 Compute IG(S,Aj) = maxi∈SIG(S,Ai)
3 Branch for attribute Aj

4 Update S
5 if E(S) = 0 or no attribute remains to split then terminate this branch;
6 if all branches terminated then terminate the algorithm;
7 else
8 Go to Step 1

Output: Decision tree

A decision tree for the credit risk assessment data can be generated by ID3
algorithm as follows. In the data set, there are 6 customers classified as high risk, 3
customers as moderate risk and 5 customers as low risk. The entropy for set S is
computed as follows:

EðSÞ ¼ � 6
14

log2
6
14

� �
� 3
14

log2
3
14

� �
� 5
14

log2
5
14

� �
¼ 1:531

To compute the information gain of an attribute, entropy value for each subset t
of that attribute should be calculated. For attribute credit history, entropy values for
good, bad and unknown should be computed. Among the 14 customers, 5 of them
has good credit history with 1 high risk, 1 moderate risk and 3 low risk levels.
Entropy value for good credit history can be obtained as follows:

EðgoodÞ ¼ � 1
5
log2

1
5

� �
� 1
5
log2

1
5

� �
� 3
5
log2

3
5

� �
¼ 1:371

Similarly, entropy values for other features are found as EðbadÞ ¼ 0:811 and
EðunknownÞ ¼ 1:522: In data set, there are customers with 5 good, 4 bad and 5
unknown credit history. So, the information gain for attribute credit history can be
obtained as follows:

IGðS; credit historyÞ ¼ 1:531� 5
14

1:317� 4
14

0:811� 5
14

1:522 ¼ 0:266

Information gain for other attributes are found as IGðS; debtÞ ¼ 0:063;
IGðS; collateralÞ ¼ 0:207 and IGðS; incomeÞ ¼ 0:967: Since attribute income is
the greatest one with 0.967 information gain, it becomes the root node of decision
tree with three branches as high, moderate and low.

Firstly, branch high will be handled to construct the next level of decision tree.
Customers having high income constitute the new set Shigh: New information gain
values are obtained for the rest of attributes given that the customers have high
income. There are 6 high income customers in the data set of which 5 is low risk
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and 1 is moderate risk. No high risk one among the high income customers.
Entropy for Shigh is computed as follows:

EðShighÞ ¼ � 5
6
log2

5
6

� �
� 1
6
log2

1
6

� �
¼ 0:65

We will find information gain values for attributes credit history, debt and
collateral, because they have not been placed on the decision tree yet. Let us
compute the information gain for credit history. Since all customers having high
income and good credit history is classified as low risk, EðgoodÞ ¼ 0: Because of
the same reason EðbadÞ and EðunknownÞ are also zero. The information gain for
attribute credit history is obtained as follows:

IGðShigh; credit historyÞ ¼ 0:65� 3
6
0� 1

6
0� 2

6
0 ¼ 0:65

With similar computation we have IGðShigh; debtÞ ¼ 0:109 and
IGðShigh; collateralÞ ¼ 0:191: Since the gain of information for credit history is the
greatest one, it becomes next level of the corresponding branch. A decision node for
credit history is added to the decision tree with three branches as good, bad and
unknown. Since entropy for each branch is zero, the tree does not grow from this
branch anymore. Computations proceed similarly for the rest of branches for node
income (moderate and low) until the entropy for each branch is found zero or no
attributes remains to be split. The whole decision tree obtained by ID3 algorithm is
given at Fig. 2.

After the decision tree is constructed, classification rules are derived.
For example one of the rules obtained from the decision tree given in Fig. 2 is

Fig. 2 Decision tree obtained using ID3 algorithm
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“if income is high (over 35$) and credit history is good then object (customer) is in
the low risk group”. New objects can easily be classified with the rules obtained by
decision tree.

Simplicity and comprehensibility are the most important features of a decision
tree. In ID3 algorithm, an attribute appears only once on a decision path which is
important to satisfy comprehensibility. On the other hand, it may result with the
overlapping classes where ID3 cannot provide any information about the inter-
section regions [27].

2.2 Other Information Gain Measures

The heterogeneity in an outcome by attribute classification is also called impurity
[1]. In order to find the optimal split variable, ID3 algorithm uses the entropy which
attempts to find the maximum information gain in the decreasing heterogeneity of
the data. Depending on the outcome of the objects, different gain measures become
suitable for the splitting process. Other information gain measures are presented
below.

2.2.1 GINI Impurity

GINI impurity is mainly used in Classification Trees, where the outcome is binary
or categorical. It is calculated as [1]

GINIðtÞ ¼ 1�
XK

k¼1

½ptðkÞ�2 ð4Þ

where GINIðtÞ represents the GINI impurity of node t and ptðkÞ is relative fre-
quency of class k in node t: The GINI impurity of a split is calculated as

GINIðS;AiÞ ¼
X

t2Ti

jtj
jSjGINIðtÞ ð5Þ

As for the aforementioned example, the credit history being good results in 3
low; 1 moderate and 1 high risk decision.

GINIðgoodÞ ¼ 1� ½ð3
5
Þ2 þð1

5
Þ2 þð1

5
Þ2� ¼ 14

25
¼ 0:560

In a similar fashion, the GINI impurity for the credit history being unknown and
bad are calculated as 0.640 and 0.375, respectively. Total impurity of credit history is
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GINIðS; credit historyÞ ¼ 5
14

� GINIðgoodÞþ 5
14

� GINIðunknownÞ

þ 4
14

� GINIðbadÞ ¼ 0:536

The GINI impurity for debt, collateral and income are calculated as 0.612, 0.563
and 0.262, respectively. A higher GINI impurity indicates a higher level of
heterogeneity and a lower determination level on a decision; whereas a lower GINI
impurity indicates a more determined rule on a decision. Since the lowest GINI
impurity belongs to the income attribute, this attribute becomes the root of the tree
with three branches that are low, moderate and high.

2.2.2 Misclassification Error

Misclassification error is also an impurity measure that evaluates the number of
outcomes in different classes for binary and categorical outcomes [40]. The mis-
classification error rate of node t is calculated as [1]

MEðtÞ ¼ 1� maxk½pðtkÞ� ð6Þ

For the credit risk example, branching the tree on good results in 3 low risks, 1
high risk and 1 moderate risk, making the fractions of answers 0.6, 0.2 and 0.2.
Misclassification error for good credit history is computed as follows:

MEðgoodÞ ¼ 1� maxð0:6; 0:2; 0:2Þ ¼ 1� 0:6 ¼ 0:4

The maximum value of fraction of answers (the class that the majority of
answers belong to) also provides the class for that node. In that sense, if a person
has a good credit history, they are expected to be in the low risk class. Similarly, the
misclassification error of an unknown credit history results in 2 low risks, 2 high
risks and 1 moderate risk. Hence,

MEðunknownÞ ¼ 1� maxð0:4; 0:4; 0:2Þ ¼ 1� 0:4 ¼ 0:6

The class for unknown credit risk cannot be fully determined from this node,
since the fractions or the frequency of low and high risks are the same. However,
misclassification error remains the same whichever class is chosen. The misclasi-
fication error is calculated for bad credit history as

MEðbadÞ ¼ 1� maxð0:75; 0:25; 0Þ ¼ 0:25

Hence, the class besomes high risk, since most of the people with bad credit
histories belong to the high risk group. The miscalculation error for this first split is
calculated through all misclassified data. The misclassified number of objects for
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people with good; unknown and bad credit history is 2, 3 and 1, respectively. In a
total of 14 objects, 6 of them are placed incorrectly. Hence,MEðS; credit historyÞ ¼
6=14 ¼ 0:428: The misclassification error rate are calculated as 0.5, 0.428 and
0.214 for the debt; collateral and income attributes. Hence, the first split is achieved
through income:

The comparison of entropy, GINI impurity and misclassfication error is sum-
marized in the Fig. 3. The maximum impurity level can be 0.5 for GINI impurity
and misclassfication error and 1 for entropy which indicates the case of maximum
heterogeneity in data. As can be seen from Fig. 3, entropy has a nonlinear and more
accelarated increase as the heterogeneity increases.

2.2.3 Goodman and Kruskal Index

Generally used in unsupervised clustering, Goodman-Kruskal Index is a measure of
misclassification that compares the distances between elements [14].
Goodman-Kruskal Index is based on distance comparisons of components from
clusters. Let ðp; q; r; sÞ be four different elements that are clustered and named a
quadruple. In clustering, it is essential that the elements within a cluster are close to
each other and the elements in different clusters are apart. In that manner, a
quadruple is assigned concordant if it satisfies one of the conditions below:

• dðp; qÞ[ dðr; sÞ; p and q are in different clusters, and r and s are in the same
cluster.

• dðp; qÞ\dðr; sÞ; p and q are n same clusters, and r and s are in different clusters.

where d signifies distance. On the other hand, a quadruple is assigned disconcor-
dant if it satisfies one of the conditions given below:

Fig. 3 The comparison
between entropy, GINI
impurity and misclassfication
error
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• dðp; qÞ[ dðr; sÞ; p and q are in the same cluster, and r and s are in different
clusters.

• dðp; qÞ\dðr; sÞ; p and q are in different cluster and r and s are in the same
cluster.

All concordance and discordance conditions signify within two couples, the
closer ones are allowed to be in the same cluster whereas further ones are to be in
different clusters. The Goodman-Kruskal Index calculates the concordance ratio of
all possible quadruples for clustering. It is formulated as in the following equation.

GK ¼ ðQC � QDÞ=ðQC þQDÞ ð7Þ

where QC is the number of concordant quadruples and QD is the number of dis-
cordant quadruples. According to the formula, in case of many concordant
quadruples and few discordant quadruples, the Goodman-Kruskal ratio increases.
Hence, a large value of the index indicates a more robust classification. However,
the distance metric requires numerical values for classification. Although categor-
ical values can be presented in multi-level binary representation, the accuracy of
this index requires numerical inputs and categorical outputs. Hence, this is not an
appropriate index for the credit risk classification example mentioned above.

2.2.4 Deviance

Deviance is another measure of impurity which is calculated as

DðtÞ ¼ �2
XK

k¼1

½ntkðlnðptkÞÞ� ð8Þ

where ntk is the number of objects observed at node t in class k and ptk is the
probability of being in class k at node t [26]. Analogous to the standard deviation,
the deviance is a measure of the deviation of objects in a class. Hence, for a class in
order to be more homogeneous, the deviance should be as small as possible. For the
credit risk example, the root node has 5 low risk, 3 moderate risk and 6 high risk
values. Let k ¼ 1; 2; 3 indicate classes low; moderate and high classes, respectively.
Hence, the probability of a low risk object is pð1Þ ¼ 5=14 ¼ 0:357: Likely, the
probability of a moderate risk object is pð1Þ ¼ 3=14 ¼ 0:214 and a high risk is
pð3Þ ¼ 6=14 ¼ 0:429: The total deviance of the root node is calculated as

Dð1Þ ¼ �2½ð5 � lnð0:357ÞÞþ ð3 � lnð0:214ÞÞþ ð6 � lnð0:429ÞÞ� ¼ 29:71

If the first split is made by splitting through credit history, the split results in 4
bad objects, 5 unknown objects and 5 unknown objects. Out of 4 bad objects, 3 of
them end in high risk and one of them ends in moderate risk. Out of 5 unknown
objects, 2 of them end in low risk, 2 of them end in high risk, and one of them ends
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in moderate risk. Lastly, out of 5 good objects, 3 of them end in low risk, one of
them ends in moderate risk, and one of them ends in high risk. Hence, the deviance
of that split would be

Dð2Þ ¼ � 2½ð3 � lnð3
4
ÞÞþ ð1 � lnð1

4
Þ� � 2½ð2 � lnð2

5
ÞÞþ 2 � lnð2

5
ÞÞ

þ 1 � lnð1
5
ÞÞ� � 2½ð3 � lnð3

5
ÞÞþ 1 � lnð1

5
ÞÞþ 1 � lnð1

5
ÞÞ� ¼ 24:55

With such a split, the deviance would be decreased from 29.71 to 24.55, which is
a decrease of 5.24 units of impurity. If the split attribute would be debt, the new
deviance value of the split would be 28.49, which is a decrease of 1.22. The
deviance value of the split would be 25.71, in case of collateral and 10.95 in case of
income. Since the smallest deviance value is achieved by income, it is selected as
the first attribute for the split of the tree.

2.3 Tree Pruning

In order to avoid overfitting problem, pruning is the process of avoiding abundant
nodes of a tree. In this case, the mathematical definition of an overfitting is as
follows:

Erðh;DÞ\Erðh0;DÞ andErðhÞ[Erðh0Þ ð9Þ

where h and h0 are different subsets of a set of objects set D; H is the universal set
and Erð�Þ is the error rate [19]. If the overall error rate of h is higher than h0; yet, the
error rate relation is reversed when the tree constructed on the data that D provides,
it is said that the tree overfits D: In order to avoid overfitting, trees are eliminated
from nodes which cause overfitting. Pruning is applied in two ways: (i) Pre-
pruning: the node is eliminated before its addition to the tree, (ii) Post-pruning: the
node is eliminated after its addition to the tree. Different pre-pruning methods are
analysed in literature. In pre-pruning a threshold is determined for constructing the
tree and when this threshold is reached, generation of new nodes are stopped. One
threshold is to limit the number of maximum branches of the tree and cancel growth
when this number is reached [21]. The main drawback of this approach is the
tendency to collect less-relevant attributes on the tree and losing vital attributes due
to the limited size of the tree. In pre-pruning the main challenge is to determine the
optimum threshold for pruning.

In post-pruning, the tree is let to fully and perfectly grow. Once the tree is
generated, another set of data than training are fed into the tree in order to find the
“best pruned tree”. Hence, post-pruning techniques require the data to be divided in
two: training data and testing data. The training data are used for the tree generation
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and the testing data are used for the pruning process [21]. There are various
post-pruning algorithms in literature, two of which are explained below.

2.3.1 Cost Complexity Pruning

Once a base tree (T0) is generated, various sub-trees (T1; T2; . . .; Tt) of this tree are
sequentially constructed in a way that minimizes the error rate per leaf node using
the following formula [37].

a ¼ eððprunedðT ; tÞ; SÞ � eðT ; SÞÞ
jleavesðTÞj � jleavesðprunedðT; tÞj ð10Þ

where eðT ; SÞ is the error rate of tree T over sample S:jleavesðTÞj is the number of
leaves on tree T. prunedðT ; tÞ specifies any tree by removing node t and
re-attaching remaining nodes. Hence, by error rate (a) minimization, the node t to
be removed is selected. By a recursion of that approach, best pruned tree is
obtained. The tree obtained in ID3 algorithm has 0 error rate due to small sized and
clean data; hence, it is not appropriate for pruning.

2.3.2 Minimum Error Pruning

Proposed by Niblett [28], Minimum Error Pruning attempts to prune the tree using a
proposed error rate measure that is compared between pruned and original tree. This
comparison is achieved through comparing error rates which imply if the error rate
decreases when each nonterminal route is pruned. The error rate formula for the
pruned tree is given below:

Erp ¼ n� nc þ k � 1
nþ k

ð11Þ

where n is the number of objects that satisfy the conditions of the related
non-terminal node, nc is the maximum number of elements that belong the same
class out of n objects and k is the number of classes. Assume that the error rate is
calculated for the credit history node in case of a moderate (between 15 and 35 K)
income (Note that the error rate cannot be calculated for the credit history node
under the low (0–15 K) income, since this is a terminal node). Let Erp be the error
rate of the pruned tree. If the tree is pruned from that node, that is, if the splits that
originate from credit history are removed and credit history becomes a terminal
node, a total of 4 objects are left (the objects which satisfy a moderate income).
2 of these objects belong to high risk class and 2 of them belong to moderate
risk class. Hence, the number of objects in the most crowded class (nc) is 2. There
are 3 classes in total (k ¼ 3). The error rate is Erp ¼ ð4� 2þ 3� 1Þ=ð4þ 3Þ ¼
4=7 ¼ 0:571.
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When it comes to the error term for the unpruned tree, there is another node debt
with three branches. One branch belongs to high debt which has 3 objects, 2 of
which have high risk and one of which has moderate risk. Other branch belongs to
low debt with one object which results in moderate risk. The error rate for an
unpruned subtree is calculated as

Eru ¼
XK

k¼1

½nk
n
� ðn� nc þ k � 1

nþ k
Þ� ð12Þ

where nk is the number of elements that satisfy the conditions on the branch that
leads up to kth class. The error rate of the unpruned tree becomes

Eru ¼ 3
4
� 3� 2þ 3� 1

3þ 3
þ 1

4
� 1� 1þ 3� 1

1þ 3
¼ 0:375

Since the error rate is lower in the unpruned tree, the tree should not be pruned.
At this point, the importance of separate training and testing objects arises, since the
tree is constructed using training objects with the objective of minimizing error.

2.4 C4.5 Algorithm

Although ID3 algorithm is an efficient method for classification of symbolic data, it
requires a discretization procedure prior to attribute selection for nonsymbolic
(numeric, continuous) data [27]. Classification and Regression Trees (CART) [4]
and C4.5 [35] are decision tree induction algorithms which do not require prior
partitioning. In these algorithms, thresholds are dynamically computed and an
attribute may be used multiple time with different thresholds. In spite of an
improvement in accuracy, these methods can result in a reduction of
comprehensibility.

The C4.5 algorithm, also proposed by Quinlan [36], overcomes some disad-
vantages of the ID3 algorithm. The C4.5 algorithm

• can handle attributes both numeric and categorical values
• can handle data with missing attribute values
• prunes trees after training.

In order to handle numerical values of attributes, following steps are included:

• sort the numerical attribute (ai) values in an ascending order
• determine adjacent values that the decision reverses or changes (say, b and c

where b; c 2 R)
• calculate the mean of these values (say, d ¼ ðaþ bÞ=2)
• categorize and reassign the attribute values by controlling if they are less than or

more than or equal to the mean (the classes are “\d” and “� d”).
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The steps of the algorithm are listed below:

1. Training data and testing data are separated.
2. The minimum number of objects for a class is determined as a threshold.
3. Numerical values are categorized.
4. Missing attribute values are predicted in a way which provides the most

information gain.
5. By selecting an appropriate impurity measure, the tree is generated as in the ID3

algorithm. Tree generation is ceased when the threshold number is reached.
6. The tree is pruned using one of the appropriate pruning techniques.

2.5 Classification and Regression Trees (CART)

CART is developed by Breimen et al. [4] for constructing binary decision trees
which are called classification trees and numerical decision trees which are called
regression trees [4]. Classification trees utilize GINI impurity for splitting whereas
C4.5 algorithm is generally entitled to information gain (entropy) related measures.
Another difference is that for the pruning process, CART uses cost-complexity error
method whereas C4.5 does not use recursive methods. Additionally, in classifica-
tion trees, each split is binary. Likely, the decision tree can be split using the same
attribute more than once. The pseudocode including main steps of CART is given
in Algorithm 2.

In case of the credit card risk example, the first split had been made on income
by using the GINI impurity. The first split leads to a leaf in terms of low incomes.
Hence, the first binary split involves if the income is low or not, and the first branch
becomes a leaf. In CART, the second split does not have to be on income again.

Continuing with the credit risk example, we have 14 data for credit risk assess-
ment. Although the size of data is small, we will use the first 10 data for training
and the last 4 data for testing. The GINI impurities for all nodes are calculated
asGINIðgoodÞ ¼ 0; GINIðUnknownÞ ¼ 0:64; GINIðBadÞ ¼ 0:444;GINIðHighÞ ¼
0:444; GINIðLowÞ ¼ 0:653; GINIðNoneÞ ¼ 0:571; GINIðAdequateÞ ¼ 0:444; GINI
ð0� 15KÞ ¼ 0; GINIð15K � 35KÞ ¼ 0:5; GINIðover 35KÞ ¼ 0:32: The attribute
GINI impurities are GðS; credithistoryÞ ¼ 0:453;GðS; debtÞ ¼ 0:59;GINIðS; collateralÞ ¼
0:533;GINIðS; incomeÞ ¼ 0:26: The GINI impurity for all objects is 0.62. Hence,
the greatest impurity reduction is achieved by income by a decrease of 0.62 −
0.26 = 0.36. Since the tree should be binary in CART, the nodes for income should
be decided. The smallest GINI impurity belongs to 0� 15K; which decreases the
impurity to 0. Hence, the first split is achieved through income by splitting the ones
that are less than 15 K and that are more than 15 K. The impurity of the branch
0� 15K is 0, hence no more splitting is made after this node, making this node a
terminal one or a leaf. The other branch includes objects with income values over
15 K. The GINI impurity of that node is calculated as 0.571. To see if further
splitting is required, we calculate the GINI impurities of all other nodes, which are

234 A. Altay and D. Cinar



calculated as GINI(good) = 0, GINI(Unknown) = 0.625, GINI(Bad) = 0, GINI(High)
= 0.444, GINI(Low) = 0.5, GINI(None) = 0.565, GINI(Adequate) = 0.444, GINI
(15K – 35K) = 0.5, GINI(over 35K) = 0.32. The attribute GINI impurities
are GðS; credithistoryÞ ¼ 0:358; GðS; debtÞ ¼ 0:484; GINIðS; collateralÞ;¼ 0:513;
GINIðS; incomeÞ ¼ 0:371: The greatest contribution to decreasing GINI impurity is
again achieved by income and the tree is split into two more nodes based on if the
income is between 15 and 35K or higher than 35K.

Algorithm 2: CART Algorithm
Input: Training data

1 Calculate GINI(t) for all nodes
2 Compute GINI(S,Aj) = mini∈SGINI(S,Ai)
3 if attribute Aj has two nodes then branch for attribute Aj ;
4 else
5 Compute GINI(tl) = mint∈Aj

IG(t)
6 Create two branch as (t1, ..., tl) and (tl+1, ..., tn) where t1, ..., tn ∈ Aj

7 if GINI of the branch is 0 then terminate this branch;
8 if all branches terminated then terminate the algorithm;
9 else

10 Update S
11 Go to Step 1

Output: Decision tree

If the income is between 15 and 35 K, the impurity of that node is 0.5. Since all
attributes of income have been covered beforehand, no further splitting on income
is feasible. The GINI impurities of nodes are GINIðunknownÞ ¼ 0:5; GINIðhighÞ ¼
0; GINIðlowÞ ¼ 0; GINIðNoneÞ ¼ 0:5: The attribute GINI impurities are GINI
ðS; credithistoryÞ ¼ 0:5;GINIðS; debtÞ ¼ 0; GINIðS; collateralÞ ¼ 0:5: Hence, another
split is achieved through debt being high or low. This split yields in two nodes with
one object in each. Hence, the nodes are declared terminal.

If the income is higher than 35 K, the impurity of this node is 0.32. The
impurities of all nodes are GINI(good) = 0, GINI(unknown) = 0, GINI(bad) = 0,
GINI(high) = 0, GINI(low) = 0.375, GINI(none) = 0, GINI(adequate) = 0.444. The
attribute GINI impurities are GINIðS; credithistoryÞ ¼ 0; GINIðS; debtÞ ¼ 0:3;
GINIðS; collateralÞ ¼ 0:267: Hence, the split is achieved considering credit history
which has three attribute values with all 0 impurities. Assuming that the split is
achieved on if the credithistory is bad or not, the node with bad credit history is
left with one object and therefore is a leaf. The other node that involves objects
with not bad history has a GINI impurity of 0, and no more splitting is necessary
for that node. In that manner, the decision tree is constructed as in Fig. 4. The rules
are derived from the decision tree as follows:

Fuzzy Decision Trees 235



1. if the income is less than 15 K, then risk is high;
2. if the income is higher than 15 K and between 15 K and 35 K and the debt is

high; then risk is high;
3. if the income is higher than 15 K and between 15 K and 35 K and the debt is

low; then risk is moderate;
4. if the income is higher than 35 K and credit history is bad; then the risk is

moderate:
5. if the income is higher than 35 K and the credit history is not bad, then the risk

is low:

The tree is generated using 10 data, the rest of the data will be used for pruning,
using Cost Complexity Pruning. First test object has an income less than 15 K,
hence according to the tree, the object should indicate a high risk which it does.
Likely, the other three data also fits to the tree and the error rate of the unpruned tree
is 0. To see if we can benefit from pruning, it is required to check if any pruning
also yields an error rate of 0, since it is an impossible task to surpass such error rate.
For example, lets prune the debt node. In this case, there are 1 moderate and 1 high
risk objects in the training data. Assigning any class to that node would lead to the
same error rate, since testing data also contains 1 moderate and 1 high risk objects.
This yields that if any pruning is done, error rate will increase. Hence, the tree is left
unpruned in terms of debt node. Similarly, any pruning leads to a higher error rate
than 0, which means no pruning should be done over the generated tree.

Similar to classification trees, regression trees use the same structure. However,
in this case, numerical outputs are classified, that is, the rules result in a continu-
ous number. The objective of the tree is to minimize the error between the actual
output and the predicted class of the output in terms of an error measure (i.e.
squared error) [10].

Fig. 4 Classification tree of the credit risk example

236 A. Altay and D. Cinar



2.6 Supervised Learning in Quest (SLIQ)

This algorithm is proposed by Mehta et al. [24] for binary decision trees which
involve numerical or categorical values. It uses the GINI impurity and a split limit
with a breadth-first approach. During the tree building process, two main decisions
have to be made: (i) evaluation of splits for each attribute and the selection of the
best split and (ii) creation of partitions using the best split. Splitting through
numerical attributes are in the form of A\v where A is the attribute value and v is
the split value and a real number. The pseudocode including main steps of SLIQ is
given in Algorithm 3.

Algorithm 3: SLIQ Algorithm
Input: Numerical or categorical data

1 Sort data with respect to attribute Ai

2 Determine split points vij for Ai

3 Compute GINI(S,Ai, vil) = minjGINI(S,Ai, vij)
4 Create two branch as < vil and > vil
5 if GINI of the branch is 0 then terminate this branch;
6 if all branches terminated then terminate the algorithm;
7 else
8 Update S
9 i ← i+ 1

10 Go to Step 1

Output: Binary decision tree

The following example in Table 2 is to be used for SLIQ. In this example, all
values are numerical and there are two output classes. The first step of this algo-
rithm is to determine a split value for numerical attributes. In order to achieve that,
the numerical values are sorted and the class outputs are listed. Sorting for the first
attribute A1, Table 3 is obtained.

The split points are determined as the points where the output changes. For
example, observing the Table 3, the first change appears to occur when the attribute
value of A1 switches from 46 to 47, as the object with the value of 46 belongs to
Class 2 and the object with the value of 47 belongs to Class 1. Their mean is
selected as the split point. Hence, a split could occur in the form of A1 \ 46:5 and
A1 [ 46:5: Other split point options include the switch from 51 to 52 in the form
A1 \ 51:5 and A1 [ 51:5. Other split points are 53, 54.5, 55.5 and 58.5. Note that
for the value of 55, two objects belong to Class 1 and one object belongs to Class 2.
However, a certain split cannot be achieved when two different classes have the
same attribute value; as a result, 55 is not chosen as a split value. In order to find the
right split, the GINI impurity is used. The root node involves ten Class 1 objects
and ten Class 2 objects, making the GINI impurity 0.5. The GINI for the first split
involves two branches GINIðA1\46:5Þ ¼ 0 since all objects belong to the same
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class. The GINI impurity for the branch A1 [ 46:5 is calculated as 0.408.
The GINI impurity of the split is GðS;A1; 46:5Þ ¼ 0:286: Other split values are
GINIðS;A1; 51:5Þ ¼ 0:495; GINIðS;A1; 53Þ ¼ 0:490; GINIðS;A1; 54:5Þ ¼ 0:476;
GINIðS;A1; 55:5Þ ¼ 0:490 andGINIðS;A1; 58:5Þ ¼ 0:474: The maximum decrease
in the GINI is achieved by the split point 46.5; that is, if the first split were to be
chosen through A1; the split point would be 46.5. However, a similar approach is to
be carried out for all attributes. GINIðS;A1Þ becomes the smallest GINI impurity,
thus, 0.286.

Similarly for A2; the split points are 62 and 67 where the GINI impurities are
GINIðS;A2; 62Þ ¼ 0:412 and GINIðS;A2; 67Þ ¼ 0:231. The second split point
provides a decrease of 0.269 and GINIðS;A2Þ ¼ 0:231. In terms of A3, the split
point options are 0.5, 2.5, 10.5, 13.5, 16.5 and 19.5 with GINI impurities 0.375,
0.374, 0.493, 0.469, 0.490 and 0.444. Hence, GINIðS;A3Þ ¼ 0:374 by the point 2.5.
Considering A1; A2 andA3; the maximum decrease on GINI impurity is provided by
A2 by splitting from the value of 67. The left branch A2 [ 67 involves a GINI
impurity of 0, hence all objects belong to the same class, making this node a leaf.
However, the GINI impurity of the branch A2\67 has a GINI of 0.355 and needs

Table 2 Example table for
SLIQ

# A1 A2 A3 Class

1 38 69 21 2

2 42 69 1 2

3 43 58 52 2

4 44 58 9 2

5 46 69 3 2

6 46 58 2 2

7 47 66 12 1

8 48 66 0 1

9 49 66 0 1

10 50 66 1 1

11 51 66 1 1

12 52 69 3 2

13 54 66 0 1

14 54 68 7 2

15 55 66 0 1

16 55 66 18 1

17 55 68 15 2

18 56 66 1 1

19 56 66 2 1

20 61 68 1 2
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further splitting over 13 objects. Further splitting provides two alternative trees.
Over the split A2\67; both GINIðS;A1; 46:5Þ and GINIðS;A2; 62Þ has values of 0.
Two trees generated by SLIQ algorithm are given in Figs. 5 and 6.

Fig. 5 Second tree generated
by the SLIQ algorithm

Table 3 Sorted A1 data for
SLIQ

A1 Class

38 2

42 2

43 2

44 2

46 2

46 2

47 1

48 1

49 1

50 1

51 1

52 2

54 1

54 2

55 1

55 1

55 2

56 1

56 1

61 2
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3 Fuzzy Decision Trees

Fuzzy sets are integrated to induction algorithms to improve their comprehensibility
by combining with cognitive uncertainties [46]. A fuzzy decision tree can be
considered as a generalized version of the crisp case [43]. Fuzzy decision trees were
first mentioned by Chang and Pavlidis [8] in 1977. Since then, many fuzzy decision
tree induction algorithms have been proposed in the literature. A comprehensive
review on fuzzy decision trees can be found in Chiang and Hsu [9]. In this section,
widely used fuzzy induction algorithms—fuzzy ID3 and fuzzy SLIQ algorithms—
are discussed and a brief literature review on recent studies using these algorithms
is given.

Before discussing fuzzy decision trees, some fundamental fuzzy operations
related with fuzzy decision tree induction process are given as the following. Let ~S
be a fuzzy set of n objects in a training set. A fuzzy subset for class k can be
represented with ~Ck . Relative frequency pk for class k can be computed as follows:

pðkÞ ¼ Mð~CkÞPK
k¼1 Mð~CkÞ

ð13Þ

Mð~CkÞ ¼
X

x2~S
l~Ck

ðxÞ ð14Þ

where Mð~CkÞ is the cardinality of subset ~Ck and l~Ck
ðxÞ is the membership value of

object x to class k: For each attribute Ai; there are ni linguistic terms which are
represented by A1

i ; . . .;A
ni
i : Let ~Ti be the set of subsets created from splitting set ~S by

attribute Ai: Relative frequency of class k in subset ~t 2 ~Ti is

Fig. 6 First tree generated by the SLIQ algorithm
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pð~tkÞ ¼ Mð~tk \ ~CkÞ
Mð~tkÞ ; [ K

k¼1~tk ¼ ~t ð15Þ

Mð~tk \ ~CkÞ ¼
X

x2~S
minðl~tkðxÞ; l~Ck

ðxÞÞ ð16Þ

3.1 Input Representation

In this study, a triangular membership function is used to determine the membership
values for all linguistic terms. Each linguistic value Aj

i is represented with three
value ðaj; bj; cjÞ where aj and cj are the least possible values while bj is the most
occurred value for Aj

i : Let x be a numerical value for attribute Ai: Membership
function for each linguistic term Aj

i ð j ¼ 1; . . .; niÞ can be defined as follows:

lA1
i
ðxÞ ¼

1 a1 � x� b1
ðc1 � xÞ=ðc1 � b1Þ b1\x\c1
0 x� c1

8
<

:
ð17Þ

lAni
i
ðxÞ ¼

0 x� ani
ðx� aniÞ=ðbni � aniÞ ani\x\bni
1 ni � x� cni

8
<

:
ð18Þ

lAj
i
ðxÞ ¼

0 x � aj
ðx� ajÞ=ðbj � ajÞ aj\x\bj
ðcj � xÞ=ðcj � bjÞ bj\x\cj
0 x� cj

8
>><

>>:
; 1\j\ni ð19Þ

The selection of the membership function is of a crucial importance. However,
the most common way to determine the membership function has come to be
trial-and-error [2]. It is a prevalent approach that the selection and parameter tuning
of the membership function is tuned until a more desirable behavior is reached [18].
For many other applications of fuzzy logic, metaheuristic approaches are utilized for
tuning membership function parameters [13, 28, 38].

The graphical representation of membership function used in this study can be
seen in Fig. 7. Parameters of each attribute for the credit risk assessment example
are given in Table 4. We assume that each customer is evaluated using a scale
between 0 and 10 for credit history, debt and collateral attributes and risk decision.
Fuzzy membership values are given in Table 5.
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3.2 Fuzzy ID3 Algorithm

Fuzzy ID3 algorithm and its variants are the most used induction algorithms in the
literature because it does not require much computational effort to generate fuzzy
decision trees and it is suitable for large-scale learning problems [43]. The main
idea of fuzzy ID3 is the same with classical ID3. The main difference between two
algorithms is the computation of entropy values as follows:

Eð~SÞ ¼
XK

k¼1

�pðkÞlog2 pðkÞ ¼
XK

k¼1

� Mð~CkÞ
PK

k¼1 Mð~CkÞ
log2

Mð~CkÞ
PK

k¼1 Mð~CkÞ
ð20Þ

Eð~tÞ ¼
XK

k¼1

�pð~tkÞlog2 pð~tkÞ ¼
XK

k¼1

� Mð~tk \ ~CkÞ
PK

k¼1 Mð~tk \ ~CkÞ
log2

Mð~tk \ ~CkÞ
PK

k¼1 Mð~tk \ ~CkÞ
ð21Þ

Fig. 7 Membership function for attribute Ai

Table 4 Triangular membership parameters for credit risk assessment problem

Attribute Linguistic term (a, b, c)

credit history good (4, 8, 10)

bad (0, 2, 6)

unknown (2, 5, 8)

debt low (0, 3, 8)

high (3, 8, 10)

collateral none (0, 3, 8)

adequate (3, 8, 10)

income low (0, 10K, 30K)

moderate (10K, 25K, 40K)

high (20K, 40K, 60K)

risk low (4, 8, 10)

moderate (2, 5, 8)

high (0, 2, 6)
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Morever, information gain is computed as follows:

IGð~S;AiÞ ¼ Eð~SÞ �
X

~t2~Ti
pð~tÞEð~tÞ ð22Þ

At each iteration of fuzzy ID3, truth level of classifying objects within the branch
into each class is calculated as follows [46]:

Pð~t; ~CkÞ ¼ Mð~t\ ~CkÞ
Mð~tÞ ð23Þ

where Pð~t; ~CkÞ is the truth level of class k on the branch including set ~t: If the truth
level for a branch is larger than a predetermined threshold parameter b; then the
branch is terminated as a leaf. Otherwise, the next attribute having the greatest
information gain is investigated to split the branch. All objects in a leaf are clas-
sified to the class with the highest truth level [46].

Fuzzy ID3 algorithm can be applied to the fuzzy credit risk assessment data in
the following way. Let b be 0.7. Firstly, the attribute having the greatest entropy is
selected as the main decision node using Eq. (20).

Eð~SÞ ¼ � 4:9
16

log2
4:9
16

� �
� 4:9

16
log2

4:9
16

� �
� 6:2

16
log2

6:2
16

� �
¼ 1:576

EðgoodÞ ¼ � 3:2
5:7

log2
3:2
5:7

� �
� 2:6
5:7

log2
2:6
5:7

� �
� 1:8
5:7

log2
1:8
5:7

� �
¼ 1:509

Similarly, entropy values for other features are found as EðbadÞ ¼
1:314 andEðunknownÞ ¼ 1:502: The information gain for credit history is given in
the following:

IGð~S; credit historyÞ ¼ 1:576� 5:7
16:1

1:509� 4:9
16:1

1:314� 5:5
16:1

1:502 ¼ 0:129

The information gain for the other attributes are found as IGðS; debtÞ ¼ 0:037;
IGðS; collateralÞ ¼ 0:052 and IGðS; incomeÞ ¼ 0:301: Since attribute income is the
greatest one with 0.301 information gain, it becomes the root node of decision tree
with three branches as high, moderate and low. The truth level of each class
k ¼ low risk; moderate risk; high riskf g for branch low is computed as follows:
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Pð~Slow; ~Clow riskÞ ¼ 0:4
4

¼ 0:1

Pð~Slow; ~Cmoderate riskÞ ¼ 0:3þ 0:2þ 0:2þ 0:4
4

¼ 0:3

Pð~Slow; ~Chigh riskÞ ¼ 0:8þ 0:2þ 0:9þ 0:8þ 0:7þ 0:1þ 0:1
4

¼ 0:9

Pð~t; ~CkÞ represents the truth level of class k for set ~t: Since Pð~Slow; ~Chigh riskÞ ¼
0:9[ b ¼ 0:7; the branch low is terminated and all objects on this branch classified
as high_risk. Truth level of classes for branch moderate in the first level are found
as Pð~Smoderate; ~Clow riskÞ ¼ 0:264; Pð~Smoderate; ~Cmoderate riskÞ ¼ 0:585; andPð~Smoderate;
~Chigh riskÞ ¼ 0:66: Since none of them is larger than b parameter, splitting proce-
dure is performed for branch moderate as follows. Firstly, the entropy of set
~Smoderate is computed.

Eð~SmoderateÞ ¼ � 1:4
8

log2
1:4
8

� �
� 3:1

8
log2

3:1
8

� �
� 3:5

8
log2

3:5
8

� �
¼ 1:492

The recursive computation performed to compute information gain of each
attribute as IGð~Smoderate; credit historyÞ ¼ 0:236; IGð~Smoderate; debtÞ ¼ 0:249; IG
ð~Smoderate; collateralÞ ¼ 0:226: Since the information gain debt is the greatest one,
it becomes the second level decision node of this branch. The computations con-
tinue until the whole objects are classified. The decision tree obtained using fuzzy
ID3 algorithm is given in Fig. 8. Risk assessment decisions are given at the end of
each leaf with their corresponding truth level P.

Many enhancements have been proposed for fuzzy ID3 algorithm in the liter-
ature. The studies of Umana et al. [42] and Janikow [16] are the first ones extending
ID3 algorithms with using fuzzy sets. Hayashi [15] proposed a fuzzy ID3 algorithm
with adjusting mechanism of AND/OR operator. Chang et al. [7] hybridized fuzzy
ID3 algorithm with genetic algorithms to optimize the rule parameters in the tuning
process. Bartczuk and Rutkowska [3] developed a new version of fuzzy ID3
algorithm which allows to use more than one attribute value in leaves. By this way,
decision trees contain less number of the nodes than the ones constructed by
classical algorithms. Wang et al. [44] obtained several fuzzy attribute reducts,
which are subset of attributes that are necessary and sufficient to represent the given
data, and generated a fuzzy decision tree for each fuzzy attribute reduct by a fuzzy
ID3 algorithm. Jin et al. [17] proposed a generalized fuzzy partition entropy-based
ID3 algorithm which considers the impact of the non-linear characteristics of the
membership degree of fuzzy sets. There are also various applications of fuzzy ID3
algorithm in the literature, such as performance evaluation [22], online purchasing
behavior analysis [45], image processing [11] and medical diagnosis [12].
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3.2.1 Generating the Classification Rules

Each branch from root to leaf can be converted to a rule. The decision nodes on a
path gives the features of attributes which represent a given condition while the leaf
at the end of a path is the final decision. The rules extracted from the decision tree
given by Fig. 8 are as follows:

1. if income is high and credit history is good then risk is low ðP ¼ 0:778Þ
2. if income is high and credit history is bad then risk is moderate ðP ¼ 0:736Þ
3. if income is high and credit history is unknown then risk is low ðP ¼ 0:706Þ
4. if income is moderate and debt is high and credit history is good and collateral

is none then risk is moderate ðP ¼ 0:533Þ
5. if income is moderate and debt is high and credit history is good and collateral

is adequate then risk is high ðP ¼ 0:8Þ
6. if income is moderate and debt is high and credit history is bad then risk is

high ðP ¼ 1Þ
7. if income is moderate and debt is high and credit history is unknown then risk

is moderate ðP ¼ 0:833Þ
8. if income is moderate and debt is low then risk is high ðP ¼ 0:784Þ
9. if income is low then risk is high ðP ¼ 0:9Þ.

Quinlan [34] investigated the methods which are simplifying non-fuzzy decision
trees without compromising their accuracy. Yuan and Shaw [46] applied rule sim-
plification technique to fuzzy decision trees. In this technique, a rule is simplified by

Fig. 8 Decision tree obtained by fuzzy ID3 algorithm
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removing an attribute term from the condition (if) part. For a rule, an attribute is
removed from the rule and the truth level is obtained in each time. The simplified
rule having the greater truth level than the original rule is replaced with the original
one. In the cresit risk assessment example, only rule 4 and rule 5 can be simplified.
Simplified version of rules and their truth levels are given in the following:

4. if income is moderate and credit history is good then risk is moderate
ðP ¼ 0:696Þ

5. if income is moderate and debt is high and collateral is adequate then risk is
high ðP ¼ 0:929Þ.
It can be observed that truth levels of simplified rule 4 and 5 are greater than the

rules obtained by fuzzy ID3.

3.2.2 Classification with Rules

The classification of an object with decision tree rules can be summarized as
follows [46]:

1. Membership value of the object is computed for each rule.
2. If several rules results with the same class, maximum membership value among

the rules are considered as the membership value of the object to the corre-
sponding class.

3. If the object belongs to various classes with different membership values, it is
assigned to the class having the largest membership value.

This procedure is applied for all objects in the data set. The classification result
of training data set in credit risk assessment example is given at Table 6.
Classification results obtained by fuzzy ID3 algorithm is exactly the same with the
given classes in the training data.

3.3 Fuzzy SLIQ Algorithm

The SLIQ algorithm has been fuzzified by Chandra and Verghese [6]. In the crisp
case, midpoints of the values where classes switch are determined as split points.
According to Chandra and Verghese, the fuzziness lies in the choice of the split
point, and the distance to the split point together with the standard deviation of the
attribute values determine the output. Fuzzy membership values are calculated
using standard deviation, the split point and user specified parameters b; a as given
below:
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lval ¼
lw

lpþ lw�val

1
rw

val�rpþ rw

val\lp

lp� val� rp

val[ rp

8
><

>:

If the branch is in the form of A\v or A� v; it is called a left split and if the
branch is in the form of A[ v or A� v; it is called a right split. The calculation of
parameters lp and rp are the same for left and right splits.

lp ¼ split point � b ð24Þ

rp ¼ split pointþ b ð25Þ

The calculation of lw and rw for the left split is given below:

lw ¼ a � r ð26Þ

rw ¼ 0 ð27Þ

In case of a right split, the formula change as follows:

lw ¼ 0 ð28Þ

rw ¼ a � r ð29Þ

Table 6 Results of fuzzy ID3 algorithm for credit risk assessment example

# Real classification Results of fuzzy ID3

Membership values Decision Membership values Decision

low moderate high low moderate high

1 0 0.3 0.8 high 0 0 0.8 high

2 0 0.2 0.9 high 0 0.2 0.8 high

3 0.1 0.8 0.4 moderate 0.1 0.5 0.4 moderate

4 0 0.2 0.9 high 0 0 0.9 high

5 0.8 0.3 0 low 0.8 0.3 0 low

6 0.9 0.2 0 low 0.7 0.2 0 low

7 0 0 1 high 0 0 0.8 high

8 0.3 1 0.3 moderate 0.2 0.6 0.3 moderate

9 0.6 0.5 0 low 0.6 0 0 low

10 0.8 0.3 0 low 0.8 0 0 low

11 0 0 1 high 0 0 0.7 high

12 0.4 0.8 0.1 moderate 0.1 0.8 0.1 moderate

13 1 0 0 low 0.8 0 0 low

14 0 0.3 0.8 high 0 0.3 0.7 high
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where r is the standard deviation of the attribute values. The parameters lw and rw
control the slope of the membership functions and depend on the standard devia-
tion, and in various applications b 2 ½0; 1�: However, for bigger spreads of the data,
it is possible that b[ 1: As given in the SLIQ algorithm in Sect. 2.6, the split
points are determined and membership values are calculated using these split
points. In this case, the GINI impurity uses fuzzy membership values; hence, the
GINI impurity is fuzzified as follows:

GINIðxjÞ ¼
XV

v¼1

NðvÞ

NðuÞ ½1�
XK

k¼1

ðN
ðvÞ
wk

NðvÞÞ
2� ð30Þ

where K is the total number of classes, V is the total number of partitions, NðuÞ is
the sum of membership values of the objects in the dataset before split if xj is
chosen as the split point, NðvÞ is the sum of membership values in the vth partition

and is NðvÞ
wk the sum of the product of the fuzzy membership values of the attribute

and the fuzzy membership values of the corresponding records for class wk in the
vth partition. For the example given in Table 2, let’s assume that the split is about to
be made for attribute A2 and the split point is 67, a ¼ 1 and b ¼ 0:5: The standard
deviation (r) for this attribute is calculated as 3.54. For the left branch
A2\67; lw ¼ 3:54; rw ¼ 0; lp ¼ 66:5; rp ¼ 67:5: Since there are 2 classes, K ¼ 2

Table 7 Example table for
fuzzy SLIQ

A2 Membership values Class

69 0.702 2

69 0.702 2

58 0.294 2

58 0.294 2

69 0.702 2

58 0.294 2

66 0.876 1

66 0.876 1

66 0.876 1

66 0.876 1

66 0.876 1

69 0.702 2

66 0.876 1

68 0.876 2

66 0.876 1

66 0.876 1

68 0.876 2

66 0.876 1

66 0.876 1

68 0.876 2
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and any split over A2 would yield 2 branches V ¼ 2; The values of fuzzy mem-
bership is given in the Table 7.

The sum of all membership values, that is NðuÞ ¼ 15:078: The sum of fuzzy
membership values with partitions are Nð1Þ ¼ 0:876 � 10þ 0:294 � 3 ¼ 9:642 (for
the left split) and Nð2Þ ¼ 0:702 � 4þ 0:876 � 3 ¼ 5:436 (for the right split). For the
left split, 10 objects belong to Class 1, and their fuzzy membership value sums are

Nð1Þ
1 ¼ 0:876 � 10 ¼ 8:760: Likely, 3 objects belong to Class 2; indicating Nð1Þ

2 ¼
0:294 � 3 ¼ 0:882: The GINI impurity for that partition (branch) is

GINIðS;A2\67Þ ¼ 1� ð8:760
9:642

Þ2 � ð0:882
9:642

Þ2 ¼ 0:166

As for the right split, that is, A[ 67; all seven objects belongs to Class 2 making

Nð1Þ
1 ¼ 0 and Nð1Þ

2 ¼ 5:436; Hence

GINIðS;A2[ 67Þ ¼ 1� ð5:436
5:436

Þ2 � ð 0
5:436

Þ2 ¼ 0

The total GINI over the A2 split is

GINIðS;A2Þ ¼ 9:642
15:078

� 0:166þ 5:436
15:078

� 0 ¼ 0:106

GINI impurities over all attributes and all split points are given in Table 8. The
most decrease in GINI impurity is provided by the A2 attribute with a split at point
67.

Table 8 Fuzzy GINI
impurities for different splits

Attribute Split point GINI

A1 46.5 0.220

A1 51.5 0.490

A1 53 0.479

A1 54.5 0.463

A1 55.5 0.463

A1 58.5 0.440

A2 62 0.374

A2 67 0.106

A3 0.5 0.362

A3 2.5 0.369

A3 10.5 0.500

A3 13.5 0.478

A3 16.5 0.500

A3 19.5 0.435
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The left split is defined as A\67 and the right split is defined as A[ 67.
13 objects are lead to the left split. The right split has a GINI of 0, hence it is
terminated a leaf node. However, the right side has 13 objects that are required to be
further-partitioned. For the remaining 13 objects, the table of possible partitions and
their GINI impurities are shown in Table 9. According to the table, there are two
options on the second split. One split can be achieved through A1 being less or
greater than 46.5 and another split can be achieved through A2 being less or greater
than 62. Same trees as shown in Figs. 6 and 5 are obtained by fuzzy SLIQ
algorithm.

4 Computational Results

The algorithms discussed in this study are evaluated by using a small training data
set from Yuan and Shaw [46]. A sport activity is decided according to the weather
condition of a given day. Membership values for weather data and activities are
given in Table 10. Volleyball, swimming and weight lifting (w_lifting) are activ-
ities one of which is decided to play considering the outlook, temperature, humidity
and wind. Decision tree obtained by fuzzy ID3 algorithm is given in Fig. 9. The
rules obtained by fuzzy ID3 algorithm are as follows:

1. if temperature is hot and outlook is sunny then choose swimming ðP ¼ 0:854Þ
2. if temperature is hot and outlook is cloudy then choose swimming ðP ¼ 0:722Þ
3. if temperature is hot and outlook is rain then choose w_lifting ðP ¼ 0:727Þ
4. if temperature is mild and wind is windy then choose w_lifting ðP ¼ 0:813Þ
5. if temperature is mild and wind is not_windy then choose volleyball

ðP ¼ 0:784Þ
6. if temperature is cool then choose w_lifting ðP ¼ 0:884Þ.

Rule 3 can be simplified with rule simplification technique as follows: 3. if
outlook is rain then choose w_lifting ðP ¼ 0:889Þ: Classification results are given
in Table 14. Objects 2 and 8 are classified into wrong classes and object 16 can be
assigned one of two classes with the same membership value. Decision tree and
classification results are obtained by using fuzzy entropy measure given in

Table 9 Fuzzy GINI
impurities for the second split

Attribute Split point GINI

A1 46.5 0.000

A2 62 0.000

A3 1.5 0.185

A3 5.5 0.281

A3 10.5 0.341

A3 35 0.253
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Sect. 3.2. Rules and classification results are the same with the ones obtained by
Yuan and Shaw [46] where ambiguity measure was used instead of entropy.

Since the number of outcomes is three in Yuan and Shaw’s example, fuzzy SLIQ
algorithm is not able to tell which sport to play. However, based on the attribute
membership values, it can decide if a person can play volleyball or not for different
membership values of weather conditions. For generating such a tree, two modi-
fications should be made on the data: The membership values of weather conditions
can be assumed as a numerical value representing the related weather condition The
outcome of this example is numerical, it should be converted to binary outcomes. In
order to generate binary outcomes, it is assumed that if the membership value of the
outcome is greater than 0.5, then the certain sport is played. Likely, if the mem-
bership value is less than 0.5, the sport is not played.

For volleyball, the attributes, split points and the fuzzy GINI impurity is
determined as given in Table 11.

The result for windy and not windy weather at splits 0.05 and 0.95 have the
same GINI value. This result is expected since windy and not windy are comple-
mentary attributes whose membership values sum to 1. One attribute can be chosen
for branching. Assume that the first branching is made through weather being windy
with a membership value that is less than 0.05. Branching results in 3 objects in
“lwindy \ 0:05” node(all having a membership value of 0) and 13 in the other node.
The node “lwindy \ 0:05” has a GINI value of 0 (all objects suggest that the person
plays volleyball). Hence, this node is terminated as a leaf. The other node
(lwindy [ 0:05), has a GINI value of 0.26. Further split provides Table 12.

The minimum fuzzy GINI impurity is provided by the weather being mild with a
membership value of 0.5. Hence, two branches are “lmild \ 0:50” and
“lmild [ 0:50”. If the membership value of the weather being mild is less than 0.5,
then the decision is not to play volleyball for all object, hence this node is also
terminated as a leaf. The other branch, however, has a GINI of 0.5 and can be
further branched. The values for third split are given in Table 13.

Table 13 provides four alternatives with GINI impurities of 0. The decision can
depend on the weather being humid; normal; windy or not windy: Since humid and

Fig. 9 Decision tree obtained by fuzzy ID3 algorithm
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normal are complementary attributes just like windy and not windy; the number of
alternative trees can be decreased to two. In case of lwindy [ 0:05 and lmild [ 0:50;
if lhumid\0:15; then the person is known not to play volleyball and if
lhumid [ 0:15; the person is known to play volleyball. Two decision trees are given
in Figs. 10 and 11.

The same process applied to swimming and w lifting yields to the trees shown in
Figs. 12, 13 and 14. For the w lifting decision, two alternative trees exist. The
classes for each object obtained by fuzzy ID3 and fuzzy SLIQ algorithms are shown

Table 11 Fuzzy GINI
impurities for Yuan and
Shaw’s first split

Attribute Split point GINI

Sunny 0.10 0.3661

Sunny 0.45 0.4264

Sunny 0.85 0.4182

Cloudy 0.05 0.4089

Cloudy 0.15 0.3942

Cloudy 0.25 0.4194

Cloudy 0.50 0.3875

Cloudy 0.65 0.4281

Cloudy 0.80 0.4276

Cloudy 0.95 0.3708

Rain 0.15 0.4281

Hot 0.25 0.4294

Hot 0.65 0.3229

Mild 0.25 0.3317

Mild 0.35 0.3801

Mild 0.75 0.4425

Mild 0.95 0.4066

Cool 0.75 0.4120

Cool 0.90 0.3693

Humid 0.05 0.4054

Humid 0.25 0.4214

Humid 0.40 0.3949

Humid 0.95 0.3795

Normal 0.60 0.3303

Normal 0.85 0.4386

Normal 0.95 0.4097

Windy 0.05 0.2356

Windy 0.25 0.4049

Windy 0.35 0.2411

Not_windy 0.65 0.2411

Not_windy 0.75 0.4049

Not_windy 0.95 0.2356
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in Table 14. According to the results in Table 14, fuzzy SLIQ algorithm obtains
better classification than fuzzy ID3 algorithm for sport decision problem.

For a detailed comparison of decision tree algorithms, we refer readers to the
study of Niuniu and Yuxun [29]. This comparison is achieved for crisp cases; yet,
the results obtain also holds for fuzzy decision trees. With a brief summary, it could
be stated that the “No Free Lunch” theorem is valid for fuzzy decision tree cases.

Table 12 Second split to
Fuzzy SLIQ for Yuan and
Shaw

Attribute Split point GINI

Sunny 0.10 0.2009

Sunny 0.45 0.2326

Cloudy 0.50 0.1816

Rain 0.15 0.2907

Hot 0.50 0.2308

Mild 0.50 0.1538

Mild 0.90 0.1941

Cool 0.05 0.2626

Humid 0.15 0.2402

Humid 0.40 0.2272

Normal 0.60 0.2272

Normal 0.80 0.2402

Windy 0.25 0.2586

Windy 0.35 0.1918

Not_windy 0.65 0.1918

Not_windy 0.75 0.2586

Table 13 Third split to
Fuzzy SLIQ for Yuan and
Shaw

Attribute Split point GINI

Sunny 0.10 0.2480

Sunny 0.55 0.3163

Cloudy 0.35 0.3136

Cloudy 0.80 0.2639

Rain 0.05 0.3333

Rain 0.15 0.3333

Hot 0.10 0.5000

Hot 0.25 0.3333

Mild 0.75 0.3333

Mild 0.95 0.3333

Cool 0.05 0.3333

Humid 0.15 0.0000

Normal 0.85 0.0000

Windy 0.50 0.0000

Not_windy 0.50 0.0000
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All algorithms have their advantages and disadvantages. The fuzzy ID3 algorithm is
easy to apply to and has a strong learning capacity; yet, it is sensitive to noise, it
cannot handle branching on multiple attributes at once and cannot handle contin-
uous attribute values. It is also prone to attribute bias problem, that is, the algorithm

Fig. 10 Decision tree 1 obtained by fuzzy SLIQ algorithm for volleyball

Fig. 11 Decision tree 2 obtained by fuzzy SLIQ algorithm for volleyball

Fig. 12 Decision tree
obtained by fuzzy SLIQ
algorithm for swimming
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Fig. 13 Decision tree 1 obtained by fuzzy SLIQ algorithm for weight lifting

Fig. 14 Decision tree 2 obtained by fuzzy SLIQ algorithm for weight lifting

Table 14 Results of fuzzy ID3 algorithm for sport example

# Real classification Results of fuzzy ID3 Results of fuzzy SLIQ

1 swimming swimming swimming

2 volleyball swimming volleyball-swimming

3 swimming swimming swimming

4 volleyball volleyball volleyball

5 w_lifting w_lifting w_lifting

6 w_lifting w_lifting w_lifting

7 w_lifting w_lifting w_lifting

8 volleyball w_lifting volleyball

9 swimming swimming swimming

10 w_lifting w_lifting w_lifting

11 swimming swimming swimming

12 volleyball volleyball volleyball

13 w_lifting w_lifting w_lifting

14 w_lifting w_lifting w_lifting

15 w_lifting w_lifting w_lifting

16 volleyball volleyball-swimming volleyball-swimming
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favors attributes with have a larger attribute value set, but is insignificant than
others. The fuzzy C4.5 algorithm attempts to overcome this issue but using
information gain and can handle continuous attribute values. Both algorithms do
not consider multicollinearity, that is, the correlation among attributes. The effi-
ciency of the fuzzy C4.5 is limited, since it conducts a linear search algorithm for
determining threshold values and it cannot handle large datasets. Fuzzy CART
algorithm can handle nonlinear data with noise with a higher accuracy; but for
complex datasets with many attributes, the accuracy is reduced. The Fuzzy SLIQ
algorithm can handle defaults attribute values which fuzzy ID3 cannot, and pro-
vides a higher implementation speed. However, for the sake of implementation
speed needs a large memory to be allocated.

5 A Summary of Recent Classification Approaches

Given the most fundamental algorithms for fuzzy decision tress, some recent
approaches are summarized in this section. One of the most recent approaches is
developed by Tusor et al. [41] and utilizes greedy inference and complete inference
mechanisms for the split decision.

The state-of-the art on fuzzy decision trees is the intuitionistic fuzzy decision
trees; however, they stem their roots on the ID3 Algorithm [5]. Intuitionistic fuzzy
sets offer an approach that considers a nonmembership value or function besides the
conventional membership function. The difference between membership and non-
membership values are defined as hesitation margin. The ID3 algorithm is applied
for both membership and nonmembership values and the split is considered on the
degree of a data point belonging to one class and not belonging to the others in a
way that maximizes the fuzzy entropy reduction.

The aforementioned algorithms, especially ID3 algorithm, is with the advances
of in Machine Learning algorithms, there is also a new branch for fuzzy decision
trees where they are hybridized and tuned with Neural Network. This approach has
its roots since early 2000s [30]. Yet, the latest approaches involves Neural
Networks with more complicated structures [39].

6 Conclusion

The main points of this chapter are summarized as follows:

• Decision trees are elemental tools for classification problems. Various algo-
rithms have been developed for sustaining the accuracy of a tree while avoiding
abundance of branches.

• ID3 algorithm and its variants are considered as the most basic algorithms for
constructing decision trees. However, ID algorithms are greatly capable of
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processing categorical values, do not produce numerical outcomes and prone to
overfit to the data.

• Numerous impurity measures that measure the information homogeneity are
available. Most used ones are entropy, GINI impurity and misclassification
error.

• Another method for overcoming the overfitting challenge, pruning trees is the
most common approach. In order to prune trees, various methods have been
proposed. Cost complexity and Error complexity methods are known to be
widely used methods for pruning.

• Pruning methods are involved in algorithms such as C4.5, CART or SLIQ. In
order to produce numerical outcomes as classes, regression trees are offered.

• In order to improve classification accuracy, trees are combined with cognitive
uncertainties, leading to Fuzzy Decision Trees.

• As in the case of crisp decision trees, fuzzified versions of ID3 algorithms are
widely exploited. Fuzzy ID3 algorithms offer membership values for inputs and
outputs and attempt to explore the effects of vagueness.

• Fuzzy decision tree algorithms generally generate rules involving a truth degree
related with each rule which indicates the level of generalizability of the related
rule.

• In terms of impurity indices, their fuzzy versions use memberships instead of
cardinalities.

• Fuzzy SLIQ algorithm use linguistic variables and attempt to find the optimal
split value for numerical attributes.

Classification algorithms may have different performance depending on the input
data. The relation between the methodology performance and input data can be
investigated in further studies. Moreover, machine learning algorithms have
become very important in classification literature. The methodologies mentioned in
this chapter can be hybridized with machine learning algorithms and the effect of
dynamic learning on the algorithms can be detected.
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Fuzzy Shewhart Control Charts

Cengiz Kahraman, Murat Gülbay and Eda Boltürk

Abstract Process Control is the active correction of a process based on the results
of process monitoring. Once the process monitoring tools have detected an
assignable cause, this cause is removed to bring the process back into control. This
chapter presents the process control techniques under fuzziness. Variable and
attribute control charts are extended to their fuzzy versions.

Keywords Variable control charts � Attribute control charts � Fuzzy sets �
p-chart � np-chart � c-chart � u-chart � �X and R control charts � �X and S control
charts

1 Introduction

A process may either be classified as “in control” or “out of control”. Based on the
statistical methods, analytical decision-making tools which allow practitioners to
measure, monitor, and control the process behavior are called Statistical Process
Control (SPC). The most successful SPC tool is control charts, originally developed
by Walter Shewhart in the early 1920s. Comparing with boundaries of a stable
process with a graphical display, they enable online data tracing and abnormal
conditions warning, which are an essential tool for continuous quality control.
Basically, the control charts are the graphical display of a quality characteristic that
has been measured or computed from a sample versus the sample number or time to
monitor and show how the process is performing and how the capabilities are
affected by changes to the process. This information is then used to make quality
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improvements. The control charts attempt to distinguish between two types of
process variation that impede peak performance. These variations are as common
cause variations (random causes), which are intrinsic to the process and will always
be present and special cause variations (assignable causes), which stem from
external sources [1].

Based on the monitored quality characteristics in numerical or in “conforming”
or “nonconforming” measurements, the control charts are categorized into two main
groups, variables and attributes. This chapter deals with �X and R, �X and S control
charts for variables and p, np, c, and u control charts for attributes. R is the range
between xmax and xmin in a sample whereas S is the standard deviation of sample
data [1].

The formulas for constructing the control limits on the �X and R charts are
tabulated in Table 1. These formulas need using the past data.

Where the constants A2, D3, and D4 are the coefficients depending on the sample
(observation) size and are tabulated for various sample sizes in Appendix.

When the sample size is variable and relatively large, say n > 10, the usage of �X
and S charts is advantageous. When σ is unknown, we can calculate the control
limits of �X and S control charts as given in the equations in Table 2.

where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi � �xð Þ2
n� 1

s
ð1Þ

�s ¼ s1 þ s2 þ � � � þ sn
n

ð2Þ

The coefficients A3, B3, and B4 depend on the sample (observation) size and are
tabulated for various sample sizes in Appendix.

Table 1 Control limits for �X
and R charts

�X chart R chart

Center Line (CL) ��x �R

Lower Control Limit (LCL) ��x� A2�R D3�R

Upper Control Limit (UCL) ��xþA2�R D4�R

Table 2 Control limits for �X
and R charts

�X chart S chart

CL ��x �s

LCL ��x� A3�s B3�s

UCL ��xþA3�s B4�s

264 C. Kahraman et al.



2 Fuzzy Control Charts for Variables

For many problems, control limits could not be so precise. Uncertainty comes from
the measurement system including operators and gauges, and environmental con-
ditions [2]. A research work incorporating uncertainty into decision analysis is
basically done through the probability theory and/or the fuzzy set theory. The
former represents the stochastic nature of decision analysis while the latter captures
the subjectivity of human behavior. A rational approach toward decision-making
should take human subjectivity into account, rather than employing only objective
probability measures. The fuzzy set theory is a perfect means for modeling
uncertainty (or imprecision) arising from mental phenomena which is neither ran-
dom nor stochastic. When human subjectivity plays an important role in defining
the quality characteristics, the classical control charts may not be applicable since
they require sharp information. The judgments in classical process control are either
“in-control” or “out-of-control” while fuzzy control charts may yield several
intermediate decisions. Fuzzy control charts are inevitable to use when the statis-
tical data in consideration are imprecise and vague; or available information about
the process is incomplete or includes human subjectivity [3]. In the fuzzy case, each
sample, or subgroup, may be represented by a trapezoidal fuzzy number (a,b,c,d) or
a triangular fuzzy number (a, b, b, d) or (a, c, c, d) with an α-cut (if necessary) as
shown in Fig. 1.

2.1 Fuzzy �X and R Control Charts

Let quality characteristic of a sample with a size of n be represented as fuzzy
triangular numbers by ~Xi Xija;Xijb;Xijc;

� �
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Using the

Fig. 1 Representation of a sample by trapezoidal and/or triangular fuzzy numbers: a Trapezoidal
(a, b, c, d) and b triangular (a, b, b, d)
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fuzzy arithmetic the mean of the each subgroup and grand average of the samples
can be calculated by Eqs. (3) and (4).

X
’
i
¼
Pn

j¼1 xija
n

;

Pn
j¼1 xijb
n

;

Pn
j¼1 xijc
n

 !
¼ �xia; �xib; �xicð Þ

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n

ð3Þ

X
ffi ¼

Pm
i¼1 xia
m

;

Pm
i¼1 xib
m

;

Pm
i¼1 xic
m

� �
¼ xa

¼
; xb
¼
; xc
¼� �

ð4Þ

The fuzzy range of each subgroup can be represented by the equation below.

~Ri ¼ ~xij;max � ~xij;min i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n ð5Þ

Since fuzzy numbers cannot be easily compared to each other, we need a ranking
method for fuzzy numbers in Eq. (17). There are many ranking methods for fuzzy
numbers. An attempt to list most of the ranking methods was made in [4]. Once the
maximum and minimum fuzzy observation is decided, the fuzzy range can be
determined by the following equations.

~Ri ¼ ~xij;max � ~xij;min ¼ xija; xijb; xijc;
� �

max� xija; xijb; xijc;
� �

min ð6Þ

~Ri ¼ ð~xija;max � ~xijc;min; ~xijb;max � ~xijb;min; ~xijc;max � ~xija;minÞ ¼ ðRia;Rib;RicÞ ð7Þ

After calculating range of each subgroup, the fuzzy mean of the ranges can be
defined as:

R
’ ¼

Pm
i¼1 Ria

m
;

Pm
i¼1 Rib

m
;

Pm
i¼1 Ric

m

� �
¼ �Ra; �Rb; �Rcð Þ ð8Þ

Control limits for the fuzzy X
’
control charts are then formulized as follows:

fCL ¼ x
ffi ¼ xa; xb; xc

� � ¼ CL1;CL2;CL3ð Þ ð9Þ

gUCL ¼ x
ffi þA2 R

’ ¼ xa; xb; xc
� �þA2 Ra;Rb;Rc

� �
¼ xa þA2Ra; xb þA2Rb; xc þA2Rc
� �

¼ UCL1;UCL2;UCL3ð Þ
ð10Þ

gLCL ¼ x
ffi�A2 R

’ ¼ xa; xb; xc
� �� A2 �Ra; �Rb; �Rcð Þ

¼ xa � A2�Rc; xb � A2�Rb; xc � A2�Ra
� �

¼ LCL1;LCL2;LCL3ð Þ
ð11Þ

266 C. Kahraman et al.



Fuzzy control limits for the R charts can be derived in the same way.

fCL ¼ R
ffi ¼ �Ra; �Rb; �Rcð Þ ¼ CL1;CL2;CL3ð Þ ð12Þ

gUCL ¼ D4 R
ffi ¼ D4 �Ra; �Rb; �Rcð Þ ¼ D4�Ra;D4�Rb;D4�Rcð Þ
¼ UCL1;UCL2;UCL3ð Þ

ð13Þ

gLCL ¼ D3 R
’ ¼ D3�Ra;D3�Rb;D3�Rcð Þ ¼ LCL1;LCL2;LCL3ð Þ ð14Þ

Example 1 From a production, the following 20 random samples whose sizes are 3

units are taken randomly. X and R charts will be constructed. Table 3 gives the
obtained data.

From Table 3, the center line is calculated as fCL ¼ e
X ¼ ð8:113; 8:540; 8:967Þ

n = 3 and A2 ¼ 1:023: The UCL for �X chart: gLCL = (6.974, 7.834, 9.598).

The LCL for �X chart: gLCL = (7.482, 9.246, 10.106). Since all the sample means

are between gLCL and gUCL, the process is under control.

Table 3 Samples taken from the production

Sample no 1 2 3

1 8.242 8.676 9.110 8.423 8.866 9.309 7.985 8.405 8.825

2 7.925 8.342 8.759 7.957 8.376 8.795 8.225 8.658 9.091

3 8.242 8.676 9.110 8.288 8.724 9.160 7.928 8.345 8.762

4 8.030 8.453 8.876 8.049 8.473 8.897 8.407 8.849 9.291

5 8.536 8.985 9.434 8.221 8.654 9.087 8.144 8.573 9.002

6 7.826 8.238 8.650 8.503 8.951 9.399 8.029 8.452 8.875

7 8.028 8.451 8.874 8.034 8.457 8.880 8.402 8.844 9.286

8 8.072 8.497 8.922 8.200 8.632 9.064 7.823 8.235 8.647

9 7.835 8.247 8.659 8.286 8.722 9.158 7.660 8.063 8.466

10 7.812 8.223 8.634 8.527 8.976 9.425 8.248 8.682 9.116

11 8.346 8.785 9.224 7.662 8.065 8.468 8.495 8.942 9.389

12 8.009 8.431 8.853 8.458 8.903 9.348 8.049 8.473 8.897

13 8.255 8.689 9.123 7.630 8.032 8.434 8.153 8.582 9.011

14 8.095 8.521 8.947 8.178 8.608 9.038 7.875 8.289 8.703

15 8.324 8.762 9.200 8.155 8.584 9.013 8.036 8.459 8.882

16 7.780 8.189 8.598 8.144 8.573 9.002 7.794 8.204 8.614

17 8.034 8.457 8.880 7.605 8.005 8.405 7.837 8.249 8.661

18 8.390 8.832 9.274 8.175 8.605 9.035 8.515 8.963 9.411

19 8.197 8.628 9.059 8.030 8.453 8.876 8.065 8.489 8.913

20 8.093 8.519 8.945 8.183 8.614 9.045 8.320 8.758 9.196
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2.2 Fuzzy �X and S Control Charts

Determination of the control limits for paired �X and S charts are based on the
standard deviation as mentioned in Introduction section. Hence, average standard
deviation of the sample standard deviations need to be calculated. Let a quality
characteristic of a sample of size n be represented by a triangular fuzzy number by
~Xi Xija;Xijb;Xijc;
� �

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Using the fuzzy arithmetic, the
fuzzy standard deviation of each subgroup and the average of these standard
deviations can be derived by Eqs. (15) and (16).

si
’ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 ~xij � xi

’� �2
n� 1

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 xija; xijb; xijc
� �� �xia; �xib; �xicð Þ	 
2

n� 1

s

¼ sia; sib; sicð Þ
ð15Þ

s
’ ¼

Pm
i¼1 ~si
m

¼
Pm

i¼1 sia
m

;

Pm
i¼1 sib
m

;

Pm
i¼1 sic
m

� �
¼ �sa;�sb;�scð Þ ð16Þ

The control limits of fuzzy �X control chart based on standard deviation are
obtained as follows:

fCL ¼ x
ffi ¼ xa; xb; xc

� � ¼ CL1;CL2;CL3ð Þ ð17Þ

gUCL ¼ x
ffi þA3 s

’ ¼ xa; xb; xc
� �þA3 �sa;�sb;�scð Þ

¼ xa þA3�sa; xb þA3�sb; xc þA3�sc
� �

¼ UCL1;UCL2;UCL3ð Þ
ð18Þ

gLCL ¼ x
ffi�A3 s

’ ¼ xa; xb; xc
� �� A3 �sa;�sb; scð Þ

¼ xa � A3�sc; xb � A3�sb; xc � A3�sa
� �

¼ LCL1;LCL2;LCL3ð Þ
ð19Þ

Similarly, the control limits of fuzzy s control chart are derived as follows:

fCL ¼ s
’ ¼ �sa;�sb;�scð Þ ¼ CL1;CL2;CL3ð Þ ð20Þ

gUCL ¼B4 s
’ ¼ B4 �sa;�sb;�scð Þ ¼ B4�sa;B4�sb;B4�scð Þ

¼ UCL1;UCL2;UCL3ð Þ

gLCL ¼ D3�s ¼ B3�sa;B3�sb;B3�scð Þ ¼ LCL1;LCL2;LCL3ð Þ ð21Þ
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Example 2 Consider the data in Table 3. The sample standard deviaitions are given
in Table 4. The overall mean is ��x ¼ ð8:113; 8:540; 8:967Þ and its defuzzified value
is 8.540 when the defuzzification equation (a + 2b + c)/4 is used for a gTFN = (a, b,
c). The coefficient A3 for n = 3 is 1.954. In this solution, the defuzzified values of
samples are used in order to calculate their standard deviations.

From Table 4, the mean of standard deviations is obtained as 0.288. Then,
CL ¼ ð8:113; 8:540; 8:967Þ

LCL ¼ ð8:113; 8:540; 8:967Þ � 1:954 0:288; 0:288; 0:288ð Þ
¼ 7:550; 7:977; 8:404ð Þ

UCL ¼ ð8:113; 8:540; 8:967Þþ 1:954 0:288; 0:288; 0:288ð Þ
¼ 8:676; 9:103; 9:530ð Þ

There is not enough evidence indicating that the process is certainly out of

control. All the sample means are between gLCL and gUCL when defuzzified values
are compared. However, it is possible that the process may be out of control since
control limits and sample values have intersections. The detailed analyses can be
found in [3, 5, 6].

Table 4 Defuzzified sample values

Sample no Sample means Defuzzified TFNs Standard deviations

1 (8.217, 8.649, 9.081) 8.676 8.866 8.405 0.268

2 (8.036, 8.459, 8.882) 8.342 8.376 8.658 0.200

3 (8.153, 8.582, 9.011) 8.676 8.724 8.345 0.213

4 (8.162, 8.592, 9.021) 8.453 8.473 8.849 0.232

5 (8.300, 8.737, 9.174) 8.985 8.654 8.573 0.326

6 (8.119, 8.547, 8.975) 8.238 8.951 8.452 0.366

7 (8.155, 8.584, 9.013) 8.451 8.457 8.844 0.232

8 (8.032, 8.455, 8.878) 8.497 8.632 8.235 0.227

9 (7.927, 8.344, 8.761) 8.247 8.722 8.063 0.416

10 (8.196, 8.627, 9.058) 8.223 8.976 8.682 0.394

11 (8.168, 8.597, 9.027) 8.785 8.065 8.942 0.473

12 (8.172, 8.602, 9.033) 8.431 8.903 8.473 0.272

13 (8.013, 8.434, 8.856) 8.689 8.032 8.582 0.375

14 (8.049, 8.473, 8.896) 8.521 8.608 8.289 0.184

15 (8.172, 8.602, 9.032) 8.762 8.584 8.459 0.170

16 (7.906, 8.322, 8.738) 8.189 8.573 8.204 0.344

17 (7.825, 8.237, 8.649) 8.457 8.005 8.249 0.434

18 (8.360, 8.800, 9.240) 8.832 8.605 8.963 0.367

19 (8.097, 8.523, 8.949) 8.628 8.453 8.489 0.095

20 (8.199, 8.630, 9.062) 8.519 8.614 8.758 0.164
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3 Fuzzy Approaches for Control Charts for Attributes

In this section, we give the fuzzy attribute charts for fraction nonconforming.

3.1 Fuzzy ~p Control Chart

The fraction nonconforming is defined as the ratio of the number of nonconforming
units in a population to the total number of units in that population. The units may
have several quality characteristics that are examined simultaneously by the oper-
ator. If the unit does not conform to standard on one or more of these character-
istics, the unit is classified as nonconforming [1].

The traditional p-control chart for known fraction nonconforming in the popu-
lation would be as follows [1]:

UCLp ¼ pþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
ð22Þ

CLp ¼ p ð23Þ

LCLp ¼ p� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
ð24Þ

where; p is the fraction nonconforming in the population, n is the constant sample
size.

If the fraction nonconforming of population is unknown, sample fraction non-
conforming is used instead of it. The sample fraction nonconforming is defined as
the ratio of the number of nonconforming units, that is:

pj ¼ dj
n

ð25Þ

�p ¼
Pm

j¼1 dj
mn

¼
Pm

j¼1 pj
m

ð26Þ

where dj: the number of nonconforming units in the jth sample, pj: fraction non-
conforming of jth sample, �p: the average of sample fractions nonconforming, m: the
number of sample, j = 1, 2, …, m.
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The traditional p-control limits are computed from the average of sample fraction
as [1]:

UCLp ¼ �pþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pð1� �pÞ

n

r
ð27Þ

CLp ¼ �p ð28Þ

LCLp ¼ �p� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pð1� �pÞ

n

r
ð29Þ

3.1.1 Fuzzy ~p-Control Chart Based on Constant Sample Size

In the fuzzy case, the number of nonconforming units is represented by the trian-
gular fuzzy number daj ; dbj ; dcj

� �
.

The fraction nonconforming is expressed by a triangular fuzzy number such as
paj ; pbj ; pcj
� �

. Here, ð�pa; �pb; �pcÞ are the fuzzy averages of the fraction noncon-
forming, where j = 1, 2, …, m:

paj ¼
daj
n

ð30Þ

pbj ¼
dbj
n

ð31Þ

pcj ¼
dcj
n

ð32Þ

�pa ¼
P

paj
m

ð33Þ

�pb ¼
P

pbj
m

ð34Þ

�pc ¼
P

pcj
m

ð35Þ

Fuzzy center line, fuzzy upper and fuzzy lower limits of fuzzy ~p-control chart are
obtained as follows:

U ~CLp ¼ �pa þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pað1� �paÞ

n

r
; �pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pbð1� �pbÞ

n

r
; �pc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pcð1� �pcÞ

n

r !
ð36Þ
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C~Lp ¼ �pa; �pb; �pcð Þ ð37Þ

L~CLp ¼ �pa � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pcð1� �pcÞ

n

r
; �pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pbð1� �pbÞ

n

r
; �pc � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pað1� �paÞ

n

r !
ð38Þ

3.1.2 α-Cut Fuzzy ~p-Control Chart Based on Constant Sample Size

The mean of α-cut is a set which includes all elements whose membership degrees
are greater than equal to α. With α-cuts, the values of �pal and �par are determined as
follows:

�pal ¼ �pa þ a �pb � �pað Þ ð39Þ

�par ¼ �pc � a �pc � �pbð Þ ð40Þ

α-cut fuzzy ~p-control chart is obtained by the following equations:

U ~CLap ¼ �pal þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pal ð1� �pal Þ

n

r
; �pr þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�par ð1� �par Þ

n

r !
ð41Þ

L~CLap ¼ �pal � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pal ð1� �pal Þ

n

r
; �pr � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�par ð1� �par Þ

n

r !
ð42Þ

3.1.3 Fuzzy ~p-Control Chart Based on Variable Sample Size

The control limits of fuzzy ~p-control chart are calculated for each nj by using
triangular membership functions and fuzzy averages of sample fraction noncon-
forming as follows:

C~Lp;j ¼ �pa; �pb; �pcð Þ ð43Þ

U~CLp;j ¼ �pa þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pað1� �paÞ

nj

s
; �pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pbð1� �pbÞ

nj

s
; �pc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pcð1� �pcÞ

nj

s !

ð44Þ

L~CLp;j ¼ �pa � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pað1� �paÞ

nj

s
; �pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pbð1� �pbÞ

nj

s
; �pc � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pcð1� �pcÞ

nj

s !

ð45Þ
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3.2 Fuzzy n~p Control Chart

While p-control chart is related to the fraction of nonconforming, np-control chart is
more convenient to deal with the number of nonconforming units. In many situa-
tions, observation of the number of nonconforming units is easier to interpret than
the usual fraction nonconforming control chart [1].

In the conventional np-control chart for a known number of nonconforming units
in the population is as follows [1]:

UCLnp ¼ npþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
ð46Þ

CLnp ¼ np ð47Þ

LCLnp ¼ np� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
ð48Þ

where np is the number of nonconforming units in the population, n is a constant
sample size.

If the number of nonconforming units in the population is unknown, then the
average of the sample number of nonconforming units, n�p, is used. The number of
nonconforming units in the jth sample is expressed as dj, that is;

n�p ¼
Pm

j¼1 dj
m

ð49Þ

The limits of the traditional np-control chart are given as follows [1]:

UCLnp ¼ n�pþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pð1� �pÞ

p
ð50Þ

CLnp ¼ n�p ð51Þ

LCLnp ¼ n�p� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pð1� �pÞ

p
ð52Þ

In the fuzzy case, the number of nonconforming units for each sample is stated
by a triangular fuzzy number daj ; dbj ; dcj

� �
. The average sample number of non-

conforming units is expressed by a triangular fuzzy number ðn�pa; n�pb; n�pcÞ as
follows:

n�pa ¼
Pm

j¼1 daj
m

ð53Þ

n�pb ¼
Pm

j¼1 dbj
m

ð54Þ
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n�pc ¼
Pm

j¼1 dcj
m

ð55Þ

The limits of fuzzy n~p-control chart are calculated with the following equations;

U ~CLnp ¼ n�pa þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pað1� �paÞ

p
; n�pb þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pbð1� �pbÞ

p
; n�pc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pcð1� �pcÞ

p� �
ð56Þ

C~Lnp ¼ n�pa; n�pb; n�pcð Þ ð57Þ

L~CLnp ¼ n�pa � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pað1� �paÞ

p
; n�pb � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pbð1� �pbÞ

p
; n�pc � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�pcð1� �pcÞ

p� �
ð58Þ

Example 3 200 products are randomly selected from a production and the defective
units are recorded. The obtained results are as in Table 5.

From Table 5, CL = (0.009, 0.014, 0.019), LCL = (−0.011, −0.011,
−0.010) → 0, and UCL = (0.029, 0.039, 0.048) is obtained. There is no sample
mean completely above UCL or below LCL. The process might be out of control
with some degree of possibility. The detailed analyses can be found in [3, 5, 6].

3.3 Fuzzy ~c Control Chart

In the crisp case, control limits for number of nonconformities are calculated by

CL ¼ �c ð59Þ

Table 5 Defective numbers in samples

Sample number Defective number TFN Fuzzy sample ~p

1 Around 4 (3, 4, 5) (0.015, 0.02, 0.025)

2 Around 3 (2, 3, 4) (0.01, 0.015, 0.02)

3 Around 7 (6, 7, 8) (0.03, 0.035, 0.04)

4 Around 3 (2, 3, 4) (0.01, 0.015, 0.02)

5 Around 1 (0, 1, 2) (0, 0.005, 0.01)

6 Around 1 (0, 1, 2) (0, 0.005, 0.01)

7 Around 2 (1, 2, 3) (0.005, 0.01, 0.015)

8 Around 4 (3, 4, 5) (0.015, 0.02, 0.025)

9 Around 1 (0, 1, 2) (0, 0.005, 0.01)

10 Around 2 (1, 2, 3) (0.005, 0.01, 0.015)
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LCL ¼ �c� 3
ffiffiffi
�c

p ð60Þ

UCL ¼ �cþ 3
ffiffiffi
�c

p ð61Þ

where �c is the mean of the nonconformities. In the fuzzy case, each sample, or
subgroup, can be represented by a trapezoidal fuzzy number (a, b, c, d) or a
triangular fuzzy number (a, b, b, d). Note that a trapezoidal fuzzy number becomes
triangular when b = c. For the ease of representation and calculation, a triangular
fuzzy number is also represented as a trapezoidal fuzzy number by (a, b, b, d) or (a,
c, c, d). Center line, fCL is the mean of fuzzy samples, and it is represented by
ð�a; �b;�c; �dÞ where �a; �b;�c; and �d are the arithmetic means of the values a, b, c, and d,
respectively. In the fuzzy case, it can be written as follows.

CL
� ¼

Pn
j¼1 aj
n

;

Pn
j¼1 bj
n

;

Pn
j¼1 cj
n

;

Pn
j¼1 dj
n

� �
¼ �a; �b; �c; �dð Þ ð62Þ

CL
�

can be represented by a fuzzy number whose fuzzy mode (multimodal) is the

closed interval of ½�b;�c�. CL� , LCL
�

, and UCL
�

are calculated by [3, 5]:

CL
� ¼ �a; �b; �c; �dð Þ ¼ CL1;CL2;CL3;CL4ð Þ ð63Þ

LCL
� ¼ CL

� �3

ffiffiffiffiffiffi
CL
�

q
¼ �a� 3

ffiffiffi
�a

p
; �b� 3

ffiffiffi
�b

p
;�c� 3

ffiffiffi
�c

p
; �d � 3

ffiffiffi
�d

p� �
¼ LCL1; LCL2; LCL3; LCL4ð Þ ð64Þ

UCL
� ¼ CL

� þ 3

ffiffiffiffiffiffi
CL
�

q
¼ �aþ 3

ffiffiffi
�a

p
; �bþ 3

ffiffiffi
�b

p
;�cþ 3

ffiffiffi
�c

p
; �dþ 3

ffiffiffi
�d

p� �
¼ UCL1;UCL2;UCL3;UCL4ð Þ ð65Þ

Example 4 A random sample of 15 products is taken from a production and the
number of defects on each product is determined. The results are given in Table 6.
We will calculate the fuzzy control limits for number of defects (nonconformities).

Using Eqs. (63)–(65), we obtain the following control limits:
CL = (1.8, 2.867, 4.133, 4.867), LCL = 0,UCL = (5.825, 7.946, 10.232, 11.485).

3.4 Fuzzy ~u Control Chart

If we are related to the number of nonconformities on one product, c-control chart is
used. When the sample size is not be constant due to the process constraints,
u-control chart is preferred to monitor and evaluation of process. The classical
u-control chart limits proposed by Shewhart are given the following equations:
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UCLu ¼ �uþ 3

ffiffiffiffi
�u
nj

s
ð66Þ

CLu ¼ �u ð67Þ

LCLu ¼ �u� 3

ffiffiffiffi
�u
nj

s
ð68Þ

uj ¼ cj
nj

ð69Þ

�u ¼
Pm

j¼1 uj
m

j ¼ 1; 2; . . .;m ð70Þ

where uj is the number of nonconformities per inspection unit and �u is the average
number of nonconformities per inspection unit, nj is the sample size, cj is total
nonconformities in a sample of nj inspection units, and m is the number of sample.

In the fuzzycase, the number of nonconforming is expressed as a triangular fuzzy
number uaj ; ubj ; ucj

� �
. The fuzzy averages of nonconforming values are calculated by

�ua ¼
P

uaj
m

ð71Þ

Table 6 Number of defects
for the example

Sample number Number of defects

1 (2, 3, 4, 5)

2 (3, 4, 5, 6)

3 (1, 3, 5, 6)

4 (2, 3, 5, 6)

5 (1, 2, 3, 4)

6 (2, 4, 6, 6)

7 (1, 3, 5, 6)

8 (2, 3, 4, 5)

9 (3, 4, 5, 6)

10 (2, 3, 4, 4)

11 (1, 2, 4, 4)

12 (1, 1, 2, 3)

13 (2, 3, 4, 4)

14 (1, 2, 2, 3)

15 (3, 3, 4, 5)

Mean (1.8, 2.867, 4.133, 4.867)
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�ub ¼
P

ubj
m

ð72Þ

�uc ¼
P

ucj
m

ð73Þ

The fuzzy ~u-control chart limits are given as follows:

U ~CLu ¼ �ua þ 3

ffiffiffiffiffi
�ua
nj

s
; �ub þ 3

ffiffiffiffiffi
�ub
nj

s
; �uc þ 3

ffiffiffiffiffi
�uc
nj

s !
ð74Þ

C~Lu ¼ �ua; �ub; �ucð Þ ð75Þ

L~CLu ¼ �ua � 3

ffiffiffiffiffi
�uc
nj

s
; �ub � 3

ffiffiffiffiffi
�ub
nj

s
; �uc � 3

ffiffiffiffiffi
�ua
nj

s !
ð76Þ

3.4.1 α-Cut Fuzzy ~u-Control Chart

When α-cut is adapted to the fuzzy sets, the values of ual and uar are determined as
follows:

�ual ¼ �ul þ a �um � �ulð Þ ð77Þ

�uar ¼ �ur � a �ur � �umð Þ ð78Þ

α-cut fuzzy ~u-control chart is obtained by

U ~CLau ¼ �ual þ 3

ffiffiffiffiffi
�ual
nj

s
; �ur þ 3

ffiffiffiffiffi
�uar
nj

s" #
ð79Þ

C~Lau ¼ �ual ; �uar
	 
 ð80Þ

L~CLau ¼ �ual � 3

ffiffiffiffiffi
�ual
nj

s
; �u; �ur � 3

ffiffiffiffiffi
�uar
nj

s" #
ð81Þ

3.4.2 α-Level Fuzzy Median for α-Cut Fuzzy ~u-Control Chart

α-cut fuzzy ~u-control chart is transformed to crisp numbers via the fuzzy trans-
formation techniques. α-level fuzzy midrange, fuzzy median, fuzzy average and
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fuzzy mode [7] are the transformation techniques. For a sample j, α-level fuzzy
median value (Smed–u,j

α ) is calculated as follows:

Samed�u;j ¼
1
3

uaa;j; u
a
c;j

h i
ð82Þ

By using these formulations, the fuzzy center line, fuzzy upper and fuzzy lower
limits of α-level fuzzy median for α-cut fuzzy ~u-control chart is obtained by:

UCLamed�u ¼ CLamed�u þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CLamed�u

nj

s
ð83Þ

CLamed�u ¼
1
3

�uaa; �u
a
c

	 
 ð84Þ

LCLamed�u ¼ CLamed�u � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CLamed�u

nj

s
ð85Þ

The condition of process control for each sample is defined as:

Process control ¼ in�control; for LCLamed�u � Samed�u;j �UCLamed�u
out�of control; for otherwise

� �
ð86Þ

Example 5 The following defects have been observed on a textile product with the
given sizes.

From Table 7, the following control limits (Table 8) are obtained.
Table 9 presents the ui values calculated for each size. These values are

examined if they are within the corresponding fuzzy control limits with respect to
the sample sizes. All ui values are between the control limits. Hence, the process is
under control.

Table 7 Number of defects
and variable sizes

Sample number Sample size Number of defects

1 200 (3, 4, 5)

2 400 (5, 6, 7)

3 400 (6, 7, 8)

4 200 (2, 3, 4)

5 600 (7, 8, 9)

6 400 (5, 6, 7)

7 600 (9, 10, 11)

8 300 (2, 3, 4)

9 300 (3, 4, 5)

10 600 (6, 7, 8)

278 C. Kahraman et al.



4 Conclusion

Statistical process control is used when a large number of similar items are being
produced. Every process is subject to variability. The variability when a process is
running well is called inherent variability. The purpose of statistical process control
is to give a signal when the process mean has moved away from the target.
A second purpose is to give a signal when item to item variability has increased.
Sometimes, variability cannot be measured with certainty. Some measurements can
be vague enough to handle them with the fuzzy sets [8, 6]. In this chapter, we
presented the fuzzy control charts for variables and attributes. With fuzzy control
charts, a more flexible and informative evaluation of processes can be made. For
further research, we suggest the extensions of fuzzy sets such as type-2 fuzzy sets,
intuitionistic fuzzy sets, or hesitant fuzzy sets to be used in the development of
fuzzy control charts.

Table 8 Fuzzy �u control
limits

Sample size �u ¼ ð1:2; 1:45; 1:7Þ
LCL UCL

2 0 (3.524, 4.004, 4.466)

4 0 (2.843, 3.256, 3.656)

6 0 (2.542, 2.925, 3.297)

6 0 (2.542, 2.925, 3.297)

3 0 (3.097, 3.536, 3.958)

Table 9 ui values for
variable sizes

Sample no Sample size ui values

1 2 (1.500, 2.000, 2.500)

2 4 (1.250, 1.500, 1.750)

3 4 (1.500, 1.750, 2.000)

4 2 (1.000, 1.500, 2.000)

5 6 (1.167, 1.333, 1.500)

6 4 (1.250, 1.500, 1.750)

7 6 (1.500, 1.667, 1.833)

8 3 (0.667, 1.000, 1.333)

9 3 (1.000, 1.333, 1.667)

10 6 (1.000, 1.167, 1.333)
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Appendix

Table of coefficients for control charts for variables

n A2 A3 c4 B3 B4 B5 B6 d2 d3 D1 D2 D3 D4 E2

2 1.880 2.659 0.798 0.000 3.267 0.000 2.606 1.128 0.853 0.000 3.686 0.000 3.267 2.660

3 1.023 1.954 0.886 0.000 2.568 0.000 2.276 1.693 0.888 0.000 4.358 0.000 2.574 1.772

4 0.729 1.628 0.921 0.000 2.266 0.000 2.088 2.059 0.880 0.000 4.698 0.000 2.282 1.457

5 0.577 1.427 0.940 0.000 2.089 0.000 1.964 2.326 0.864 0.000 4.918 0.000 2.114 1.290

6 0.483 1.287 0.952 0.030 1.970 0.029 1.874 2.534 0.848 0.000 5.078 0.000 2.004 1.184

7 0.419 1.182 0.959 0.118 1.882 0.113 1.806 2.704 0.833 0.204 5.204 0.076 1.924 1.109

8 0.373 1.099 0.965 0.185 1.815 0.179 1.751 2.847 0.820 0.388 5.306 0.136 1.864 1.054

9 0.337 1.032 0.969 0.239 1.761 0.232 1.707 2.970 0.808 0.547 5.393 0.184 1.816 1.010

10 0.308 0.975 0.973 0.284 1.716 0.276 1.669 3.078 0.797 0.687 5.469 0.223 1.777 0.975

11 0.285 0.927 0.975 0.321 1.679 0.313 1.637 3.173 0.787 0.811 5.535 0.256 1.744 0.945

12 0.266 0.886 0.978 0.354 1.646 0.346 1.610 3.258 0.778 0.922 5.594 0.283 1.717 0.921

13 0.249 0.850 0.979 0.382 1.618 0.374 1.585 3.336 0.770 1.025 5.647 0.307 1.693 0.899

14 0.235 0.817 0.981 0.406 1.594 0.399 1.563 3.407 0.763 1.118 5.696 0.328 1.672 0.881

15 0.223 0.789 0.982 0.428 1.572 0.421 1.544 3.472 0.756 1.203 5.741 0.347 1.653 0.864

16 0.212 0.763 0.984 0.448 1.552 0.440 1.526 3.532 0.750 1.282 5.782 0.363 1.637 0.849

17 0.203 0.739 0.985 0.466 1.534 0.458 1.511 3.588 0.744 1.356 5.820 0.378 1.622 0.836

18 0.194 0.718 0.985 0.482 1.518 0.475 1.496 3.640 0.739 1.424 5.856 0.391 1.608 0.824

19 0.187 0.698 0.986 0.497 1.503 0.490 1.483 3.689 0.734 1.487 5.891 0.403 1.597 0.813

20 0.180 0.680 0.987 0.510 1.490 0.504 1.470 3.735 0.729 1.549 5.921 0.415 1.585 0.803

21 0.173 0.663 0.988 0.523 1.477 0.516 1.459 3.778 0.724 1.605 5.951 0.425 1.575 0.794

22 0.167 0.647 0.988 0.534 1.466 0.528 1.448 3.819 0.720 1.659 5.979 0.434 1.566 0.786

23 0.162 0.633 0.989 0.545 1.455 0.539 1.438 3.858 0.716 1.710 6.006 0.443 1.557 0.778

24 0.157 0.619 0.989 0.555 1.445 0.549 1.429 3.895 0.712 1.759 6.031 0.451 1.548 0.770

25 0.153 0.606 0.990 0.565 1.435 0.559 1.420 3.931 0.708 1.806 6.056 0.459 1.541 0.763
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Fuzzy EWMA and Fuzzy CUSUM Control
Charts

Nihal Erginel and Sevil Şentürk

Abstract Exponentially Weighted Moving-Averages (EWMA) and
Cumulative-Sum (CUSUM) control charts have the ability of detecting small shifts
in the process mean. Classical EWMA and CUSUM charts are not capable to
capture the uncertainty in case of incomplete data. Fuzzy EWMA and CUSUM
control charts are developed in this chapter and numerical illustrations are given.

Keywords CUSUM � EWMA � Shewhart control charts � Fuzzy sets � Tabular
CUSUM � V-mask

1 Introduction

Shewhart proposed the traditional control charts to detect if assignable causes exist
in process. When data include uncertainty that comes from inherent of data col-
lecting process or measurement system, the fuzzy set theory is a powerful tool to
control processes. Fuzzy variable control charts and fuzzy attribute control charts
are well documented in the literature. Firstly, fuzzy control charts have been
introduced by Raz and Wang [14] and Wang and Raz [21]. After that, Kanagawa
et al. [11], Gülbay et al. [10], Gülbay and Kahraman [8, 9], Faraz and Moghadam
[7], Erginel [4], Şentürk and Erginel [17], Şentürk [16], Şentürk et al. [18], Erginel
et al. [6]. Kaya and Kahraman [12], Erginel [5] have studied fuzzy control charts.
But some special control charts such as exponentially weighted moving-average
(EWMA) control charts and Cumulative–Sum Control Charts (CUSUM) are rarely
handled in fuzzy environment.

N. Erginel (&)
Industrial Engineering Department, Anadolu University, 26555 Eskişehir, Turkey
e-mail: nerginel@anadolu.edu.tr

S. Şentürk
Statistics Department, Anadolu University, 26470 Eskişehir, Turkey
e-mail: sdeligoz@anadolu.edu.tr

© Springer International Publishing Switzerland 2016
C. Kahraman and Ö. Kabak (eds.), Fuzzy Statistical Decision-Making,
Studies in Fuzziness and Soft Computing 343,
DOI 10.1007/978-3-319-39014-7_15

281



EWMA control chart is useful for detecting the small shifts in process mean.
Therefore, a series of EWMA data on the chart tends to move slowly to the new
level following a shift in the process, or will vary about the centerline with small
fluctuations when the process is in control [3]. In traditional EWMA control charts,
data are expressed with crisp value. But, if data include uncertainty or vagueness
due to the measurement system and/or environmental conditions, traditional
EWMA control chart is not sufficient to evaluate fuzzy data. In this case, these
uncertainties are modeled by fuzzy EWMA control charts. Combining multivariate
statistical quality control and the fuzzy set theory, fuzzy multivariate exponentially
weighted moving average (F-MEWMA) control chart was proposed by Alipour and
Noorossana [1]. Shu et al. [15] proposed fuzzy maximum generally weighted
moving average (F-MaxGWMA) to detect outstanding diagnostic abilities for
warning abnormal-manufacturing variation to model fuzziness of imprecise sample
data. Şenturk et al. [19] proposed fuzzy EWMA (FEWMA) for univariate data
under fuzzy environment for detecting small shifts in the data.

CUSUM control charts are also used for catching the small shifts in pro-
cess mean. CUSUMwas proposed firstly by Page in 1954. V-mask procedure that is
helpful for determining whether the process is in control or out-of control was
proposed by Barnhard [2]. The CUSUM chart directly incorporates all the infor-
mation in the sequence of sample values by plotting the cumulative sum of the
deviations of the sample values from a target value [13]. A CUSUM control chart for
fuzzy quality data firstly was interpreted by Wang [20]. Wang proposed an optimal
representative value for fuzzy quality data by means of a combination of a random
variable with a measure of fuzziness. Applying the classical CUSUM chart for these
representative values, a univariate CUSUM control chart concerning LR-fuzzy data
under independent observations is constructed. Fuzzy Tabular CUSUM control chart
is firstly proposed in the following section.

2 Fuzzy EWMA Control Chart

Exponentially weighted moving-average control chart is an effective tool for
detecting the small shifts both in mean and in variance of the process. The theo-
retical structure of EWMA control chart is given as follows.

UCLEWMA ¼ X þA2�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
ð1Þ

CLEWMA ¼ X ð2Þ

LCLEWMA ¼ X � A2�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
ð3Þ
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where, 0\k� 1 is a constant, X is the overall mean, n is the sample size, �R is the
average of the Ri’s while Ri is a range for each sample.

2.1 Theoretical Structure of FEWMA

Fuzzy EWMA control chart was proposed by Şenturk et al. [19] using the ranges
calculated from a process in case of unknown ðra; rb; rcÞ. Fuzzy ranges
ðRa;1; Rb;1; Rc;1Þ are computed from samples (Table 1).

Where, �Ra; �Rb, and �Rc are the arithmetic means of the least possible values, the
most possible values, and the largest possible values, respectively. ðRa;1; Rb;1; Rc;1Þ
and ð�Ra; �Rb; �RcÞ can be calculated similar to fuzzy ~�X � ~R control charts.
Fuzzy EWMA control limits for unknown ðra; rb; rcÞ are given as follows;

U ~CLEWMA ¼ ðXa;Xb;XcÞþA2ð�Ra; �Rb; �RcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
ð2� kÞ

s

¼ Xa þA2�Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; Xb þA2�Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
;Xc þA2�Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s !

ð4Þ

C~LEWMA ¼ ðXa;Xb;XcÞ ð5Þ

L~CLEWMA ¼ ðXa;Xb;XcÞ � A2ð�Ra; �Rb; �RcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
ð2� kÞ

s

¼ Xa � A2�Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; Xb � A2�Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
;Xc � A2�Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s !

ð6Þ

Table 1 Fuzzy averages and
fuzzy ranges

t ~�Xt
~Rj

1 ð�Xa;1; �Xb;1; �Xc;1Þ ðRa;1;Rb;1;Rc;1Þ
.

.

…

m ð�Xa;m; �Xb;m; �Xc;mÞ ðRa;m;Rb;m;Rc;mÞ
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α-cut fuzzy EWMA control limits for unknown ðra; rb; rcÞ are represented by
the following equations:

U ~CLaEWMA ¼ X
a

l ; X
a

r

h i
þA2 �Ra

l ; �R
a
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s

¼ X
a

l þA2�R
a
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; X

a

r þA2�R
a
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s" # ð7Þ

C~LaEWMA ¼ X
a

l ; X
a

r

h i
ð8Þ

L~CLaEWMA ¼ X
a

l ; X
a

r

h i
� A2 �Ra

l ;
�Ra
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s

¼ X
a

l � A2�R
a
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; X

a

r � A2�R
a
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s" # ð9Þ

Fuzzy median transformation technique is integrated to the α-level fuzzy median
for α-cut fuzzy EWMA control chart and unknown ðra; rb; rcÞ as follows;

U ~CLamed�EWMA ¼ ~CL
a
med�EWMA þ

1
2
A2 �Ra

l þ �Ra
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
ð10Þ

~CLamed�EWMA ¼ 1
2

X
a

l þX
a

r

� �
ð11Þ

L~CLaEWMA ¼ ~CLamed�EWMA �
1
2
A2 �Ra

l þ �Ra
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
ð12Þ

For a sample j, α-level fuzzy median value (Samed�EWMA;j) is calculated as follows;

~Samed�EWMA;j ¼
1
2

�Xa
l;j þ �Xa

r;j

� �
ð13Þ

The condition of process control for each sample is defined as;

Process control

¼ in�control; for L~CLamed�EWMA � ~Samed�EWMA;j �U ~CLamed�EWMA

out�of control; for otherwise

( )

ð14Þ
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2.2 Application on FEWMA

The fuzzy data in Table 2 are collected from a production process of plastic button.
Fuzzy measurement values and their fuzzy averages and fuzzy ranges are given in
Table 2.

In Table 2, �Ra; �Rb, and �Rc are the arithmetic means of the least possible
values, the most possible values, and the largest possible values, respectively.

ðRa;1; Rb;1; Rc;1Þ and ð�Ra; �Rb; �RcÞ are calculated similar to fuzzy ~�X � ~R control
charts. Fuzzy EWMA control limits for unknown ðra; rb; rcÞ are given as follows
where k ¼ 0:2;

U ~CLEWMA ¼ Xa þA2�Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; Xb þA2�Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
;Xc þA2�Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s !

¼
3:98þ 0:577ð0:01Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

ð2� 0:2Þ
r

; 4:00þ 0:577ð0:03Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2
ð2� 0:2Þ

r
;

4:02þ 0:577ð0:09Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2
ð2� 0:2Þ

r
0
BBB@

1
CCCA

¼ ð3:982; 4:005; 4:037Þ

Table 2 Fuzzy measurement values, fuzzy averages and fuzzy ranges of plastic button

Sample Xa Xb Xc R

S1-1 3.99 4.00 4.02

S1-2 3.96 3.99 4.01 Ra1 = 0.01

S1-3 3.97 3.98 4.00 Rb1 = 0.03

S1-4 3.95 3.97 3.98 Rc1 = 0.07

S1-5 3.99 4.00 4.01

S2-1 4.01 4.02 4.04

S2-2 4.01 Ra2 = 0.00

S2-3 3.98 4.00 4.01 Rb2 = 0.02

S2-4 4.01 4.02 4.03 Rc2 = 0.06

S2-5 4.00 4.01 4.02

..

. ..
. ..

. ..
. ..

.

S10-1 3.97 3.98 3.99

S10-2 3.98 3.99 4.00 Ra15 = 0.01

S10-3 3.99 4.00 4.02 Rb15 = 0.04

S10-4 3.99 4.01 4.03 Rc15 = 0.08

S10-5 4.00 4.02 4.05
��Xa ¼ 3:98 ��Xb ¼ 4:00 ��Xc ¼ 4:02 �Ra ¼ 0:01

�Rb ¼ 0:03
�Rc ¼ 0:09
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C~LEWMA ¼ ðXa;Xb;XcÞ ¼ ð3:98; 4:00; 4:02Þ

L~CLEWMA ¼ Xa � A2�Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; Xb � A2�Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
;Xc � A2�Ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s !

¼
3:98� 0:577ð0:09Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

ð2� 0:2Þ
r

; 4:00� 0:577ð0:03Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2
ð2� 0:2Þ

r
;

4:02� 0:577ð0:01Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2
ð2� 0:2Þ

r
0
BBB@

1
CCCA

¼ ð3:962; 3:994; 4:018Þ

α-cut fuzzy EWMA control limits for unknown ðra; rb; rcÞ are represented by

the following equations by using X
a

l , X
a

r and �Ra
l ; �Ra

r , where a ¼ 0:65.

X
a

l ¼ Xa þ aðXb � XaÞ ¼ 3:98þ 0:65ð4:00� 3:98Þ ¼ 3:993

X
a

r ¼ Xc � aðXc � XbÞ ¼ 4:02� 0:65ð4:02� 4:00Þ ¼ 4:007

�Ra
l ¼ �Ra þ að�Rb � �RaÞ ¼ 0:01þ 0:65ð0:03� 0:01Þ ¼ 0:023

�Ra
r ¼ �Rc � að�Rc � �RbÞ ¼ 0:09� 0:65ð0:09� 0:03Þ ¼ 0:051

The limits of α-cut fuzzy EWMA control chart are given as follows for plastic
button:

U ~CLaEWMA ¼ X
a

l þA2�R
a
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; X

a

r þA2�R
a
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s !

¼ 3:993þ 0:577ð0:023Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2
ð2� 0:2Þ

r
; 4:007þ 0:577ð0:051Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

ð2� 0:2Þ
r� �

¼ ð3:997; 4:016Þ

C~LaEWMA ¼ ðXa

l ; X
a

r Þ ¼ ð3:993; 4:007Þ
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L~CLaEWMA ¼ X
a

l � A2�R
a
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s
; X

a

r � A2�R
a
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s !

¼ 3:993� 0:577ð0:051Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2
ð2� 0:2Þ

r
; 4:007� 0:577ð0:023Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

ð2� 0:2Þ
r� �

¼ ð3:983; 4:002Þ

The four transformation techniques that are well-known in descriptive statistics
are introduced in the literature: fuzzy mode, α-level fuzzy midrange, fuzzy median
and fuzzy average. It should be pointed out that there is no theoretical basis sup-
porting any one specifically [21]. Fuzzy median transformation technique is inte-
grated to the α-level fuzzy median for α-cut fuzzy EWMA control chart as follows:

UCLamed�EWMA ¼ CLamed�EWMA þ
1
2
A2 �Ra

l þ �Ra
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s

¼ 4:00þ 1
2
0:577ð0:023þ 0:051Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

ð2� 0:2Þ

s

¼ 4:006

CLamed�EWMA ¼ 1
2

X
a

l þX
a

r

h i
¼ 1

2
ð3:993þ 4:007Þ ¼ 4:00

L~CLaEWMA ¼ CLamed�EWMA �
1
2
A2 �Ra

l þ �Ra
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ð2� kÞ

s

¼ 4:00� 1
2
0:577ð0:023þ 0:051Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

ð2� 0:2Þ

s

¼ 3:993

Table 3 Control limits of
fuzzy EWMA, α-level fuzzy
median value and the process
conditions

Sample no Smed–EWMW,j
α 3.993 ≤ Smed–EWMA,j

α ≤ 4.006

1 3.988 In control

2 4.014 Out of control

3 4.004 In control

4 4.006 In control

5 4.005 In control

6 3.996 In control

7 3.998 In control

8 3.988 In control

9 3.996 In control

10 4.000 In control
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As seen in Table 3, the production process of plastic button in clothing industry
is “out of control” due to the second sample.

3 Fuzzy CUSUM Control Chart

CUSUM control charts use V-mask procedure. Typical V-mask control limits are
given in Fig. 1.

In designing V-mask procedure, the following equations are used [13];

d ¼ �2
In!

d2
ð15Þ

d ¼ D
rX

ð16Þ

H ¼ 2ðdÞðr�XÞtan h ð17Þ

tan h ¼ D
2A

ð18Þ

where
d lead distance
ϒ the probability of incorrectly concluding that a shift has occurred (a false

alarm)
Δ the shift in the process mean that it is desired to detect
r�X the standard deviation of �x
H The decision interval of the procedure, or the half height of the V-mask at

point O

d

θ 

L

U

PO

K

1 2 3 ... 4 i

A

2A

3A

Fig. 1 The V-mask and
scaling [13]
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h the angle of V-mask
A a scale factor relating the vertical scale of V-mask

The application of V-mask procedure is complex in real life, so the tabular
CUSUM is preferred by practitioners. The theoretical structure of tabular form of
the CUSUM is given as follows [13]:

SH ið Þ ¼ max 0;�xi � l0 þKð Þþ SH i� 1ð Þ½ � ð19Þ

and

SL ið Þ ¼ max 0; l0 � Kð Þ � �xi þ SL i� 1ð Þ½ � ð20Þ

where SH ið Þ represents the upper one-sided tabular CUSUM for period i, SL ið Þ
shows the lower one-sided tabular CUSUM for period i; l0 is the target value,
SH 0ð Þ ¼ SL 0ð Þ = 0 are the starting values. K is called the reference value and is
usually chosen about halfway between the target l0 and the value of the mean
corresponding to the out of control state, l1 ¼ l0 þD. That is, K is about one-half
of the magnitude of the shift in process;

K ¼ D
2

ð21Þ

If either SH ið Þ or SLðiÞ exceeds the decision interval H, the process is out-of
control otherwise the process is in control.

3.1 Fuzzy Tabular CUSUM

When manufacturing processes and/or measurement systems have some uncertainty
and vagueness due to operators or gauges, the Fuzzy Tabular CUSUM control chart
is more suitable than a traditional CUSUM control chart for analyzing the process.

If the data from a process are expressed as fuzzy numbers, they can be shown as
triangular fuzzy numbers xi ¼ ðxa; xb; xcÞ and fuzzy average �xi ¼ ð�xa;�xb;�xcÞ.

SH ið Þ and SLðiÞ are represented by the fuzzy numbers ðSH ið Þa; SH ið Þb; SH ið ÞcÞ
and ðSL ið Þa; SL ið Þb; SL ið ÞcÞ, respectively.

SHðiÞa ¼ max 0; �xa � ðl0 þKÞþ SHði� 1Þa
� � ð22Þ

SHðiÞb ¼ max 0; �xb � ðl0 þKÞþ SHði� 1Þb
� � ð23Þ

SHðiÞc ¼ max 0; �xc � ðl0 þKÞþ SHði� 1Þc
� � ð24Þ
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SLðiÞa ¼ max 0; ðl0 � KÞ � �xc þ SLði� 1Þa
� � ð25Þ

SLðiÞb ¼ max 0; ðl0 � KÞ � �xb þ SLði� 1Þb
� � ð26Þ

SLðiÞc ¼ max 0; ðl0 � KÞ � �xa þ SLði� 1Þc
� � ð27Þ

ðSH ið Þa; SH ið Þb; SH ið ÞcÞ and ðSL ið Þa; SL ið Þb; SL ið ÞcÞ are transformed to crisp val-
ues by fuzzy transformation techniques for implementation fuzzy tabular CUSUM.
α-level fuzzy midrange transformation technique is used in the theoretical structure
of fuzzy tabular CUSUM.

Before applying transformation techniques, fuzzy tabular CUSUM based on
α-cut is required. These α-cuts are composed of all elements whose membership
degrees are greater than equal to a. The sets Aa ¼ x 2 X : lAðxÞ� a; 0� a� 1f g
are the a-level sets of A. The a-level sets Aa called also the a-cut sets. α-cut fuzzy
averages are obtained as follows:

�xaa ¼ �xa þ að�xb � �xaÞ ð28Þ

�xac ¼ �xc � að�xc � �xbÞ ð29Þ

Also, SaHðiÞa, SaHðiÞc SaLðiÞa and SaLðiÞc based on α-cut for fuzzy tabular CUSUM
are handled as follows, respectively:

SaHðiÞa ¼ max 0; �xaa � ðl0 þKÞþ SaHði� 1Þa
� � ð30Þ

SaHðiÞc ¼ max 0; �xac � ðl0 þKÞþ SaHði� 1Þc
� � ð31Þ

and

SaLðiÞa ¼ max 0; ðl0 � KÞ � �xac þ SaLði� 1Þa
� � ð32Þ

SaLðiÞc ¼ max 0; ðl0 � KÞ � �xaa þ SaLði� 1Þc
� � ð33Þ

The SaHðiÞa, SaHðiÞc SaLðiÞa and SaLðiÞc are combined with α-level fuzzy midrange
transformation technique for fuzzy tabular CUSUM, and given in the following
equations:

SaH�mr ¼
SaHðiÞa þ SaHðiÞc

2
ð34Þ

SaL�mr ¼
SaLðiÞa þ SaLðiÞc

2
ð35Þ

Fuzzy control limits of fuzzy tabular CUSUM can be obtained in terms of
triangular fuzzy numbers.
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In designing fuzzy V-mask, the procedure is proposed as follows:

ðHa;Hb;HcÞ ¼ 2 dð ÞðrXa;rX b; rXcÞ tanh ð36Þ

where
ðrXa;rXb; rXcÞ fuzzy standard deviation of ð�xa;�xb;�xcÞ
ðHa;Hb;HcÞ fuzzy decision interval of the procedure

Fuzzy control limits based on α-cuts for fuzzy tabular CUSUM are calculated as
follows:

Ha
a ¼ Ha þ aðHb � HaÞ ð37Þ

Ha
c ¼ Hc � aðHc � HbÞ ð38Þ

α-cut fuzzy control limits based on α-level fuzzy midrange transformation for
fuzzy tabular CUSUM are handled as follows:

Ha
mr ¼

Ha
a þHa

c

2
ð39Þ

If either fuzzy SaH�mr or SaL�mr exceeds the fuzzy decision interval Ha
mr , the

process is out-of control otherwise the process is in control. The process control
conditions are given as follows:

Process control:

in control; ðSaH�mr\Ha
mrÞ _ ðSaL�mr\Ha

mrÞ
out of control; otherwise

	
ð40Þ

3.2 Application on Fuzzy CUSUM

Fuzzy data from a manufacturing process are collected in terms of triangular fuzzy
numbers and desired to detect the small shifts on process. The fuzzy mean of each
sample and other values are given in Table 4.

For α = 0.65, Table 5 is obtained.
Δ = 1 (When there is 1 shift in µ0, it is desired to detect)
d = 10.5 (This value is also handled from “Cumulative-sum control charts

parameters” table by using ARL-Average Run length when process is in control [13]
A: 2 (the vertical scale of V-mask)

tan h ¼ 0:25
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ðHa;Hb;HcÞ ¼ 2ð10:5Þðr�Xa
; r�Xb

; r�Xc
Þtanh

ðrXa;rXb; rXcÞ ¼ ð0:94; 0:96; 0:98Þ are known from previous studies.

ðHa;Hb;HcÞ ¼ ð4:935; 5:04; 5:145Þ

Ha
a ¼ Ha þ aðHb � HaÞ ¼ 5:00325

Ha
c ¼ Hc � aðHc � HbÞ ¼ 5:07675

Ha
mr ¼

Ha
a þHa

c

2
¼ 5:00325þ 5:07675

2
¼ 5:04

Table 4 Fuzzy measurement values and fuzzy upper one-sided and fuzzy lower one-sided tabular
CUSUM for period i

Period �xa �xb �xc SH(i)a SHðiÞb SH(i)c SLðiÞa SLðiÞb SLðiÞc
1 8.100 8.250 8.750 0.000 0.000 0.000 0.750 1.250 1.400

2 8.900 9.300 9.900 0.000 0.000 0.000 0.350 1.450 2.000

3 10.200 10.800 11.200 0.000 0.300 0.700 0.000 0.150 1.300

4 9.800 10.300 10.800 0.000 0.100 1.000 0.000 0.000 1.000

5 8.9 9.400 9.600 0.000 0.000 0.100 0.000 0.100 1.600

6 8.850 9.370 9.900 0.000 0.000 0.000 0.000 0.230 2.250

7 9.450 10.080 10.600 0.000 0.000 0.100 0.000 0.000 2.300

8 11.290 11.790 11.990 0.790 1.290 1.590 0.000 0.000 0.510

9 10.550 11.000 11.500 0.840 1.790 2.590 0.000 0.000 0.000

10 9.350 9.850 10.200 0.000 1.140 2.290 0.000 0.000 0.150

Table 5 SaHðiÞa, SaHðiÞc SaLðiÞa and SL
α(i)c based on α-cut for fuzzy tabular CUSUM

Period �xaa �xac SH
α (i)a SaHðiÞc SaLðiÞa SL

α(i)c
1 8.198 8.425 0.000 0.000 1.075 1.303

2 9.160 9.510 0.000 0.000 1.065 1.643

3 10.590 10.940 0.090 0.440 0.000 0.553

4 10.125 10.475 0.000 0.415 0.000 0.000

5 9.225 9.470 0.000 0.000 0.030 0.275

6 9.188 9.556 0.000 0.000 0.000 0.587

7 9.860 10.262 0.000 0.000 0.000 0.228

8 11.615 11.860 1.115 1.360 0.000 0.000

9 10.843 11.175 1.458 2.035 0.000 0.000

10 9.675 9.973 0.633 1.508 0.000 0.000
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S0:65H�mr ¼
S0:65H ðiÞa þ S0:65H ðiÞc

2
¼ 1:115þ 1:36

2
¼ 1:2375

for period 8 and all S0:65H�mr values are given in Table 6.

S0:65L�mr ¼
S0:65L ðiÞa þ S0:65L ðiÞc

2
¼ 1:075þ 1:3025

2
¼ 1:18875

for period 1 and all S0:65L�mr values are given in Table 7.
The manufacturing process is “in control” based on fuzzy tabular CUSUM.

4 Conclusions

EWMA and CUSUM control charts are very sensitive detect the small shifts
whereas Shewhart control charts can detect larger shifts in process mean with
respect to EWMA and CUSUM charts. Traditional control charts are not suitable to

Table 6 Control limits of
fuzzy tabular CUSUM, SaH�mr
values and the process
conditions

Period SaH�mr Hmr
α Process control

1 0.000 5.040 In control

2 0.000 5.040 In control

3 0.265 5.040 In control

4 0.208 5.040 In control

5 0.000 5.040 In control

6 0.000 5.040 In control

7 0.000 5.040 In control

8 1.238 5.040 In control

9 1.746 5.040 In control

10 1.070 5.040 In control

Table 7 Control limits of
fuzzy tabular CUSUM, SaL�mr
values and the process
conditions

Period SaL�mr Ha
mr Process control

1 1.189 5.040 In control

2 1.354 5.040 In control

3 0.276 5.040 In control

4 0.000 5.040 In control

5 0.153 5.040 In control

6 0.294 5.040 In control

7 0.114 5.040 In control

8 0.000 5.040 In control

9 0.000 5.040 In control

10 0.000 5.040 In control
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handle fuzzy data obtained from the process under fuzziness. Fuzzy data are caused
from the incapability of measurement system, operators, gauges or methods. In this
chapter, fuzzy EWMA and fuzzy tabular CUSUM control chart have been devel-
oped. Numerical examples on fuzzy control charts have also been given. Fuzzy
multivariate CUSUM and fuzzy multivariate EWMA control charts can be devel-
oped to evaluate multivariate fuzzy data for further research. Besides, new exten-
sions of fuzzy sets such as intuitionistic fuzzy sets or hesitant fuzzy sets can be used
to develop fuzzy EWMA and CUSUM charts.
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Linear Hypothesis Testing Based
on Unbiased Fuzzy Estimators
and Fuzzy Significance Level

Alireza Jiryaei and Mashaallah Mashinchi

Abstract A wide variety of applied problems of statistical hypothesis testing can be
treated under a general setup of the linear models which includes analysis of vari-
ance. In this study, a new method is presented to test linear hypothesis using a fuzzy
test statistic produced by a set of confidence intervals with non-equal tails. Also, a
fuzzy significance level is used to evaluate the linear hypothesis. The method can be
used to improve linear hypothesis testing when there is a sensitively in accepting or
rejecting the null hypothesis. Also, as a simple case of linear hypothesis testing,
one-way analysis of variance based on fuzzy test statistic and fuzzy significance
level is investigated. Numerical examples are provided for illustration.

Keywords Analysis of variance � Confidence interval � Fuzzy critical value �
Fuzzy test statistic � Fuzzy significance level � Linear hypothesis � Linear model

1 Introduction and Background

Analysis of Variance (ANOVA) is a common and popular method in the analysis of
experimental designs. It includes important cases such as one-way and two-way
ANOVA, and one-way and two-way analysis of covariance, and it has many useful
applications in industry, agriculture and social sciences [8, 12, 13]. Various aspects
of this topic have been considered in a fuzzy environment. One-way and two-way
ANOVA using fuzzy unbiased estimators for variance parameter are discussed based
on arithmetic operations on intervals by Buckley [3]. Wu [16] presented one-way
ANOVA based on several notations of the a-cuts of fuzzy random variables, opti-
mistic and pessimistic degrees and solving an optimization problem. An approach
for one-way ANOVA has been carried out by Nourbakhsh et al. [10] for fuzzy data
in which Zadeh’s extension principle [9, 17] plays a key role for the applied

A. Jiryaei (&) � M. Mashinchi
Department of Statistics, Faculty of Mathematics and Computer Sciences,
Shahid Bahonar University of Kerman, Kerman, Iran
e-mail: a.jiryae@gmail.com

© Springer International Publishing Switzerland 2016
C. Kahraman and Ö. Kabak (eds.), Fuzzy Statistical Decision-Making,
Studies in Fuzziness and Soft Computing 343,
DOI 10.1007/978-3-319-39014-7_16

297



computing operations. A statistical technique for testing the fuzzy hypothesis of
one-way ANOVA is proposed by Kalpanapriya et al. [7] using the levels of pes-
simistic and optimistic of the triangular fuzzy data.

Linear hypothesis testing is an extension of analysis of variance. It can test
hypotheses about the unknown parameters of the linear model, such as testing the
equality of the means of several random variables [12]. Sometimes the observed
value of test statistic is close to the related quantiles of statistical distributions, so
there is uncertainty in accepting or rejecting the null hypothesis H0. In this paper, a
method is presented for linear hypothesis testing using a fuzzy test statistic and a
fuzzy significance level. Moreover, the method can be used for modelling this
uncertainty using fuzzy sets theory.

A method for testing statistical hypotheses in a fuzzy environment was intro-
duced by Buckley [2, 3]. It considers a fuzzy test statistic and fuzzy critical values
produced using confidence intervals with equal tails and arithmetic operations on
intervals. In Buckley’s method the fuzzy estimates are developed as fuzzy numbers,
and their membership functions have been derived by Falsafain et al. [5]. In [2] the
non-fuzzy hypotheses are tested, and in [14] and [1] the presented approach in [2] is
generalized to the case where the statistical hypotheses and the observed data are
also fuzzy. When dealing with non-symmetric statistical distributions, using con-
fidence intervals with equal tails results in producing a fuzzy estimate where the
membership degree for the unbiased point estimate of the required parameter is not
equal to one [4]. While we expect that the unbiased point estimate has the highest
importance in the fuzzy estimate, i.e. its membership degree should be equal to one.
Solutions to overcome this problem using the confidence intervals with non-equal
tails are provided by Buckley [3], and Falsafain and Taheri [4]. It has been shown
that the solution presented by Falsafain and Taheri [4] is reduced to Buckley’s
method when dealing with symmetric statistical distributions. Moreover, it is
possible to obtain the membership functions of the corrected fuzzy estimates.
Therefore, we use this solution in this paper.

In order to discuss linear hypothesis testing based on fuzzy test statistic and fuzzy
significance level, we first recall some basic concepts of fuzzy sets theory in Sect. 2.
Section 3 contains a brief review of linear model and linear hypothesis. In Sect. 4,
fuzzy test statistic and fuzzy critical value are discussed and decision rules are pre-
sented. Also, one-way ANOVA as a special case of linear hypothesis testing is
discussed in Sect. 5. Two numerical examples are provided in Sect. 6 to show that our
approach could perform quite well in practice. A conclusion is provided in Sect. 7.

2 Preliminaries

Some concepts of fuzzy sets theory, which will be referred to throughout this paper,
are discussed in this section. Let U be a universal set and F Uð Þ ¼
~Aj~A : U ! 0; 1½ �� �

. Any ~A 2 FðUÞ is called a fuzzy set on U. The a-cuts of ~A is
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the crisp set ~Aa ¼ u 2 Uj~A uð Þ� a
� �

, for 0\a� 1. Moreover, ~A0 is separately

defined [2] as the closure of the union of all the ~Aa, for 0\a� 1. The value ~A uð Þ is
interpreted as the membership degree of a point u. ~A 2 FðRÞ is called a fuzzy
number, under the following conditions:

1. There is a unique r0 2 R with ~A r0ð Þ ¼ 1,
2. The a-cuts of ~A are closed and bounded intervals on R for any 0� a� 1,

where R is the set of all real numbers. In other words for every fuzzy number ~A we
have ~Aa ¼ a1 að Þ; a2 að Þ½ � for all a 2 0; 1½ � which are the closed, bounded, intervals
and their bounds are as functions of a.

To continue discussions, we need to clarify the concept of an unbiased fuzzy
estimator, using the following definition. Similar to conventional statistics, a fuzzy
estimator is a rule for calculating a fuzzy estimate of an unknown parameter based
on observed data. Thus the rule and its result (the fuzzy estimate) are distinguished.

Definition 2.1 A fuzzy number ~h is an unbiased fuzzy estimator for parameter h
from a statistical distribution if:

1. The a-cuts of ~h are 1� að Þ100% confidence intervals for h, with a 2 0:01; 1½ �
and ~ha ¼ ~h0:01 for a 2 ½0; 0:01Þ.

2. If ĥ is an unbiased point estimator for h then ~h ĥ
� �

¼ 1.

An explicit and unique membership function is given for a fuzzy estimate by the
following theorem.

Theorem 2.1 [5] Suppose that X1;X2; . . .;Xn is a random sample of size n from a
distribution with unknown parameter h. If, based on observations x1; x2; . . .; xn, we
consider ~Aa ¼ h1 að Þ; h2 að Þ½ � as a 1� að Þ 100 % confidence interval for h, then the
fuzzy estimate of h is a fuzzy set with the following unique membership function:

~h uð Þ ¼ min h�1
1 uð Þ; �h2½ ��1 �uð Þ; 1

n o
:

To end this section, we give an introduction to interval arithmetic. Let I ¼ a; b½ �
and J ¼ c; d½ � be two closed intervals. Then based on the interval arithmetic,
we have

Iþ J ¼ aþ c; bþ d½ �;

I � J ¼ a� d; b� c½ �;

I � J ¼ a; b½ �; a ¼ min ac; ad; bc; bdf gb ¼ max ac; ad; bc; bdf g
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and

I=J ¼ a; b½ � � 1=d; 1=c½ �;

where zero does not belong to J ¼ c; d½ � in the last case.

3 Linear Hypothesis Testing

In this section we give a brief review of linear hypothesis testing, for more details
see [12, 13]. The concepts of linear model and linear hypothesis are given in
Definition 3.1. The process of linear hypothesis testing is presented in Theorem 3.1.

Definition 3.1 Let Y ¼ Y1Y2. . .Ynð Þ0 be a random column vector and X be a n� k
matrix of full rank k\n and known constants xij; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; k. It is
said that the distribution of Y satisfies a linear model if E Yð Þ ¼ Xb, where b ¼
b1b2. . .bkð Þ0 is vector of unknown (scalar) parameters b1; b2; . . .; bk, where bj 2 R

for j ¼ 1; 2; . . .; k. It is convenient to write Y ¼ Xbþ �, where � ¼ �1�2. . .�nð Þ0 is a
vector of non-observable independent normal random variables with common
variance r2 and E �j

� � ¼ 0; j ¼ 1; 2; . . .; n. Relation Y ¼ Xbþ � is known as a
linear model. The linear hypothesis concerns b, such that b satisfies H0 : Hb ¼ 0,
where H is a known r � k matrix of full rank r� k.

Theorem 3.1 Consider the linear model Y ¼ Xbþ �. The generalized likelihood
ratio (GLR) test for testing the linear hypothesis H0 : Hb ¼ 0 is to reject H0 at
significance level c if F�F1�c;r;n�k, where PH0 F\F1�c;r;n�k

� � ¼ 1� c and F is
the random variable given by

F ¼ SS�=r
SS= n� kð Þ

where,

SS� ¼ Y � X^̂b
� �0

Y � X^̂b
� �

� Y � Xb̂
� �0

Y � Xb̂
� �

and

SS ¼ Y � Xb̂
� �0

Y � Xb̂
� �

;

b̂ is the maximum likelihood estimator (MLE) of b and ^̂
b is the MLE of b under H0.

Moreover, under H0 the random variable F has the F-distribution with r and
n� kð Þ degrees of freedom.
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Note 3.1 As the result of Theorem 3.1, it can be shown that the pivotal quantity
SS=r2 has the distribution v2 with n� kð Þ degrees of freedom and SS�=r2 has the
distribution v2 with r degrees of freedom, under the null hypothesis H0. So both of
these pivotal quantities can be used to produce confidence intervals for r2. It is clear
that the statistics SS= n� kð Þ and SS�=r (under H0) are the unbiased point estimators
for the unknown parameter r2.

4 Linear Hypothesis Testing Based on Fuzzy Test Statistic

4.1 Testing at Precise Significance Level

In this section, taking into account Buckley’s method in [2] and its modifications in
[4], we consider testing the linear hypothesis based on a fuzzy test statistic and a
fuzzy significance level. Because we could obtain a fuzzy test statistics to evaluate
the linear hypothesis, we give several theorems sequentially. Also, we obtain a
fuzzy critical value using a-cuts of a considered fuzzy significance level. Next we
make two decision rules to the cases where the critical value is either crisp or fuzzy.
In the rest of this paper, the symbols v2n;t and Fn;t1;t2 will be used to represent the

n’th quantile of the distribution v2 with t degrees of freedom and the nth quantile of
the distribution F with t1 and t2 degrees of freedom, respectively.

Theorem 4.1.1 In a linear model consider SS= n� kð Þ as an unbiased point esti-

mator for parameter r2. Then an unbiased fuzzy estimator for r2 is fr2 with the
following a-cuts

ðfr2Þa ¼
SS=v2

1�aþ ap0 ; n�kð Þ; SS=v
2
ap0 ; n�kð Þ

h i
0:01� a� 1

ðfr2Þ0:01 0� a\0:01

(

in which p0 is obtained from the relation v2p0;ðn�kÞ ¼ n� k.

Proof Based on the pivotal quantity SS=r2, a 1� að Þ 100 % confidence interval for

r2 is SS=v21�aþ ap; n�kð Þ; SS=v
2
ap; n�kð Þ

h i
for any 0\a\1 and 0\p\1. When a ¼ 1

and p ¼ p0, satisfying v2
p0 ; n�kð Þ ¼ n� k, this interval becomes the point SS= n� kð Þ

which is unbiased point estimator for r2. Now fixing p ¼ p0 and varying a from
0.01 to 1 we obtain nested intervals which are the a - cuts of a fuzzy number,

say fr2 . Finally, ðfr2Þa ¼ ðfr2Þ0:01 for 0� a\0:01. So, we have the unbiased fuzzy

estimator fr2 for r2. h

Lemma 4.1.1 The membership function of fuzzy estimator fr2 in Theorem 4.1.1 is
as follows:
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fr2 uð Þ ¼
1�G SS=uð Þ

1�p0
SS

v2
0:99þ 0:01p0 ; n�kð Þ

� u� SS
n�k

G SS=uð Þ
p0

SS
n�k � u� SS

v2
0:01p0 ; n�kð Þ

0 otherwise;

8
>><

>>:

where G is the cumulative distribution function of the v2 variable with n� kð Þ
degrees of freedom.

Proof By Theorem 4.1.1, we have h1 að Þ ¼ SS=v2
1�aþ ap0 ; n�kð Þ for 0:01� a� 1.

Hence, h�1
1 uð Þ ¼ 1� G ss=uð Þ½ �= 1� p

0� �
. Also h2 að Þ ¼ SS=v2

ap0 ; n�kð Þ, therefore

�h2½ ��1 �uð Þ ¼ G ss=uð Þ½ �=p0
for 0:01� a� 1. Based on Theorem 2.1 fr2 uð Þ ¼

minfh�1
1 uð Þ; �h2½ ��1 �uð Þ; 1g. So, the proof follows. h

Theorem 4.1.2 Consider SS�=r as an unbiased point estimator for parameter r2

under the null hypothesis H0 : Hb ¼ 0. Then, an unbiased fuzzy estimator for r2 is
gr2H0

with a-cuts ðgr2H0
Þa, where

ðgr2H0
Þa ¼

SS�=v21�aþ ap00;r; SS
�=v2ap00;r

h i
0:01� a� 1

ðgr2H0
Þ0:01 0� a\0:01

8
<

:

in which p00 is obtained from the relation v2
p00 ;r ¼ r.

Proof Consider the pivotal quantity SS�=r2. Now the proof is similar to that of
Theorem 4.1.1. h

Notice that, similar to Lemma 4.1.1, one can derive the membership function of

fuzzy estimator gr2H0
, but under H0 : Hb ¼ 0.

Lemma 4.1.2 The membership function of fuzzy estimator gr2H0
in Theorem 4.1.2 is

as follows:

gr2H0
uð Þ ¼

1�G SS�=uð Þ
1�p00

SS�
v2
0:99þ 0:01p00 ;r

� u� SS�
r

G SS�=uð Þ
p00

SS�
r � u� SS�

v2
0:01p00 ;r

0 otherwise;

8
>>><

>>>:

where G is the cumulative distribution function of the v2 variable with r degrees of
freedom.

Proof By Theorem 4.1.2, the proof is similar to that of Lemma 4.1.1. h

Remark 4.1.1 Theorems 4.1.1 and 4.1.2 define unbiased fuzzy estimators for r2

under null hypothesis H0. Moreover, Lemmas 4.1.1 and 4.1.2 provide the mem-
bership functions of these two estimators.
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Theorem 4.1.3 The fuzzy test statistic for testing H0 : Hb ¼ 0 is ~F with a-cuts

~Fa ¼
f1 að ÞF; f2 að ÞF½ � 0:01� a� 1

~F0:01 0� a\0:01;

(

where

F ¼ SS�=r
SS= n� kð Þ ;

f1 að Þ ¼ rð Þv2ap0; n�kð Þ
h i

= n� kð Þv21�aþ ap00;r

h i

and

f2 að Þ ¼ rð Þv21�aþ ap0; n�kð Þ
h i

= n� kð Þv2ap00;r
h i

:

Proof Using the equality ~Fa ¼ ð~r2H0
Þa=ð~r2Þa and interval arithmetic, the fuzzy test

statistic follows from Buckley’s method. h

Decision rule 4.1.1 After observing the data and crisp significance level c, a typical
method for rejecting or accepting the null hypothesis H0 : Hb ¼ 0 can be made as
follows. First we calculate the ratio AR= AR þALð Þ, where AR (AL) is area under the
graph of the fuzzy test statistic ~F, but to the right (left) of the vertical line through
F1�c;r;n�k (see Fig. 1). Note that Fig. 1 just illustrates the sketch of AR and AL since
the sides of ~F are curves, not straight line segments. Next we choose a value for the
credit level u from 0; 1ð �, [1]. Finally, our decision rule at significance level c is:

1. if AR= AR þALð Þ�u, then reject the hypothesis H0 : Hb ¼ 0,
2. if AR= AR þALð Þ\u, then accept H0.

Fig. 1 The areas AR and AL
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Remark 4.1.2 The presented decision rule 4.1.1 is reasonable since one can see
that, by choosing any a 2 0; 1½ � and any F 2 ~Fa, this F is some value of the test
statistic corresponding to this a which relates back to confidence intervals for r2.
Therefore, if point F; að Þ is in the region AR then H0 is rejected because
F�F1�c;r;n�k , and if point F; að Þ is in the region AL then H0 is accepted since
F\F1�c;r;n�k.

Remark 4.1.3 In Decision rule 4.1.1, u and c are criterions which control possi-
bilistic and probabilistic errors, respectively. Indeed they unify the concepts of
randomness and fuzziness. The selected value of u is more or less subjective and
depends on the decision maker desire.

4.2 Testing at Fuzzy Significance Level

The approach for accepting or rejecting the null hypothesis in Subsection 4.1 is on
the basis of comparing the observed fuzzy test statistic ~F with the crisp critical
value F1�c;r;n�k at a crisp significance level c. In practice it is more natural to
consider the significance level as a fuzzy set since the test statistic is fuzzy. In fact, a
fuzzy significance level is considered as a fuzzy number on 0; 1ð Þ, [6, 15].
Subsequently, we define a fuzzy significance level as a fuzzy number. We obtain a
fuzzy critical value to evaluate the linear hypothesis using a-cuts of the defined
fuzzy significance level. Finally, we provide a decision rule to decide whether to
reject or accept the null hypothesis H0 : Hb ¼ 0.

Definition 4.2.1 A fuzzy significance level is a fuzzy number with the following
a-cuts

~ca ¼ c1 þ c� c1ð Þa; c2 � c2 � cð Þa½ � 0:01� a� 1
~c0:01 0� a\0:01;

�

where 0\c1 � c� c2\1.

Theorem 4.2.1 In linear hypothesis testing based on fuzzy test statistics at the
introduced fuzzy significance level in Definition 4.2.1, the critical value is a fuzzy
number with the following a-cuts

ecvð Þa¼ F 1�c2 þ c2�cð Það Þ;r;n�k;F 1�c1� c�c1ð Það Þ;r;n�k

	 

0:01� a� 1

ecvð Þ0:01 0� a\0:01:

�

Proof The proof follows by substituting a-cuts of the fuzzy significance level ~c for
crisp one c in the crisp critical level and by using the interval arithmetic. h
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Example 4.2.1 Consider a linear hypothesis testing at the significance level c ¼
0:05 where n ¼ 25, r ¼ 3 and k ¼ 4. Assume that the significance level is a fuzzy
number with the following a-cuts

~ca ¼ 0:03þ 0:05� 0:03ð Þa; 0:07� 0:07� 0:05ð Þa½ � 0:01� a� 1
~c0:01 0� a\0:01:

�

Then based on Theorem 4.2.1 the fuzzy critical value is a fuzzy number with
a-cuts ecvð Þa as follows

ecvð Þa¼ F 0:93þ 0:02að Þ;3;21; F 0:97�0:02að Þ;3;21
	 


0:01� a� 1
ecvð Þ0:01 0� a\0:01:

�

Figure 2 shows the fuzzy numbers ~c and ecv.

Decision rule 4.2.1 After observing the data, the final decision rule is derived by
comparing two fuzzy numbers ecv and ~F. Here a way is provided to decide whether
to reject or accept the null hypothesis H0 : Hb ¼ 0. First we calculate the ratio
AR= AR þALð Þ, where AR and AL are depicted in Fig. 3. Note that Fig. 3 just
illustrates the sketch of AR and AL since the sides of ~F and ecv are curves, not
straight line segments. Next we choose a value for the credit level u from 0; 1ð �.
Finally, our decision rule at significance level c is as follows:

1. if AR= AR þALð Þ�u, then reject the hypothesis H0 : Hb ¼ 0,
2. if AR= AR þALð Þ\u, then accept H0.

Fig. 2 The fuzzy numbers ~c
and ecv

Linear Hypothesis Testing Based … 305



Remark 4.2.1 Decision rule 4.2.1 is reasonable since one can see that, by choosing
any a 2 0; 1½ �, any F 2 ~Fa and any F1�c;r;n�k 2 ecvð Þa, F1�c;r;n�k and F are some
values of the test statistic and the critical level corresponding to this a which relates
back to confidence intervals for r2 and a-cuts for the fuzzy significance level,
respectively. Therefore, if point F; að Þ is in the region AR then we reject H0 because
F�maxfF1�c;r;n�k : F1�c;r;n�k 2 ecvð Þag, if point F; að Þ is in the region AL then we
decide to accept H0 since F\minfF1�c;r;n�k : F1�c;r;n�k 2 ecvð Þag, and finally if
point F; að Þ is not in the region AL or AR then we do not make any decision onH0. To
this end, we have not shared point F; að Þ in the final decision in Decision rule 4.2.1.

Remark 4.2.2 While, Buckley [2, 3] and Taheri et al. [1, 14] consider the problem
of testing hypothesis based on a fuzzy test statistic and a crisp significance level, we
assume that the significance level is fuzzy. Our method is, therefore, more con-
venient in real world studies.

5 One-Way ANOVA: A Simple Case of Linear
Hypothesis Testing

In this section, one-way ANOVA is considered taking into account the method of
linear hypothesis testing based on the fuzzy test statistic and fuzzy significance
level. However, we must mention that the procedure proposed in this article is still
applicable for any case of linear hypothesis testing. We now give a brief review of
one-way ANOVA. For more detail refer to [8, 12]. Consider the linear model

Yij ¼ li þ �ij; j ¼ 1; 2; . . .; ni; i ¼ 1; 2; . . .; k;

Fig. 3 The areas AR and AL
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where �ij’s have a normal distribution with an unknown variance r2, zero mean and
li’s are unknown parameters. We are interested in testing the linear hypothesis
H0 : l1 ¼ l2 ¼ � � � ¼ lk . To simplify the discussion we use the following notations

SSTr ¼
Xk

i¼1
ni �Yi: � �Y::ð Þ2; SSE ¼

Xk

i¼1

Xni

j¼1
Yij � �Yi:
� �2

; n ¼
Xk

i¼1
ni and

F1 ¼ SSTr= k � 1ð Þ
SSE= n� kð Þ ;

where �Yi: ¼
Pni

j¼1 Yij=ni and �Y:: ¼
Pk

i¼1

Pni
j¼1 Yij=n. By replacing b ¼ l1l2. . .lkð Þ0

in Theorem 3.1, it can be shown that SS ¼ SSE,SS� ¼ SSTr,r ¼ k � 1ð Þ, F ¼ F1
and the null hypothesis H0 : l1 ¼ l2 ¼ � � � ¼ lk is rejected if the observed value of
F1 statistic is greater than or equal to F1�c;k�1;n�k. The case described above is
referred to as a one-way analysis of variance which is a very simple case of linear
hypothesis testing. One-way ANOVA has many applications in agricultural and
engineering sciences.

6 Illustrative Examples

Example 6.1 An experiment is conducted to determine if there is a difference in the
breaking strength of a monofilament fibre produced by four different machines for a
textile company. Also it is known that all fibres are of equal thickness. A random
sample is selected from each machine. The fibre strength y for each specimen is
shown in Table 1. The one-way ANOVA model is Yij ¼ li þ �ij, j ¼ 1; 2; . . .; ni;
i ¼ 1; 2; 3; 4. We are going to test the null hypothesis H0 : l1 ¼ l2 ¼ l3 ¼ l4. All
computations are done by R software [11].

In the traditional statistics point of view and based on Theorem 3.1, we have
F1 ¼ 2:789 and F0:95;3;32 ¼ 2:901. Therefore we accept H0 at the crisp significance
level c ¼ 0:05 because F1\F0:95;3:32. In other words, there is not any difference at
significance level 0:05 in the breaking strength of a monofilament fibre produced by

Table 1 Breaking strength data where y is strength in pounds

Machine 1 y11 ¼ 37 y12 ¼ 41 y13 ¼ 40 y14 ¼ 40 y15 ¼ 39

y16 ¼ 35 y17 ¼ 39 y18 ¼ 39 y19 ¼ 40 y110 ¼ 43

Machine 2 y21 ¼ 39 y22 ¼ 41 y23 ¼ 41 y24 ¼ 40 y25 ¼ 43

y26 ¼ 41 y27 ¼ 42 y28 ¼ 38 y29 ¼ 40

Machine 3 y31 ¼ 45 y32 ¼ 42 y33 ¼ 40 y34 ¼ 41 y35 ¼ 40

y36 ¼ 40 y37 ¼ 41 y38 ¼ 40

Machine 4 y41 ¼ 41 y42 ¼ 44 y43 ¼ 42 y44 ¼ 41 y45 ¼ 41

y46 ¼ 41 y47 ¼ 43 y48 ¼ 39 y49 ¼ 41
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four machines. In follows, consider two situations to understand the need of pre-
senting fuzzy-decision-based approach:

1. Let us only change y11 ¼ 37, in Table 1, to y11 ¼ 36. Now we have F1 ¼ 2:907
and F0:95;3;32 ¼ 2:901. So we reject H0 : l1 ¼ l2 ¼ l3 ¼ l4, for c ¼ 0:05
because F1�F0:95;3;32 (i.e. there is a difference in the breaking strength of a
monofilament fibre produced by four machines).

2. Reconsider the observations of the experiment in Table 1, if we change the crisp
significance level c ¼ 0:05 to c ¼ 0:06 then the null hypothesis H0 : l1 ¼ l2 ¼
l3 ¼ l4 is rejected since F1 ¼ 2:789 is greater than F0:94;3;32 ¼ 2:732.

Therefore, we are not sure whether to accept or reject H0, since the values of
F1�c;k�1;n�k and F1 are close to each other, based on data in Table 1 and c ¼ 0:05.
We overcome the sensitivity of this test by using linear hypothesis testing based on
a fuzzy test statistic and a fuzzy significance level. In this example we have
SS ¼ SSE ¼ 97:419, SS� ¼ SSTr ¼ 25:469, r ¼ k � 1ð Þ ¼ 3, F ¼ F1 ¼ 2:789 and
n ¼ 36. Based on Theorem 4.1.1 a fuzzy estimate for r2 is a fuzzy number with
a-cuts

ðfr2Þa ¼
97:419=v21�aþ a 0:533ð Þ;32; 97:419=v

2
a 0:533ð Þ;32

h i
0:01� a� 1

ðfr2Þ0:01 0� a\0:01

(

where p0 ¼ 0:533 is obtained from the relation v2
p0 ;32 ¼ 32. By Lemma 4.1.1, the

membership function of this fuzzy estimate can be given by

fr2 uð Þ ¼
1�G 97:419=uð Þ

1�0:533
97:419

v2
0:99þ 0:01 0:533ð Þ;32

� u� 97:419
32

G 97:419=uð Þ
0:533

97:419
32 � u� 97:419

v2
0:01 0:533ð Þ;32

0 otherwise;

8
>><

>>:

where G is the cumulative distribution function of a v2 variable with 32 degrees of
freedom, as depicted in Fig. 4. Also, under the null hypothesis H0 : l1 ¼ l2 ¼
l3 ¼ l4 an unbiased fuzzy estimate for r2 based on Theorem 4.1.2 is a fuzzy
number with the following a - cuts:

ðgr2H0
Þa ¼

25:469=v21�aþ a 0:608ð Þ;3; 25:469=v
2
a 0:608ð Þ;3

h i
0:01� a� 1

ðgr2H0
Þ0:01 0� a\0:01

8
<

:

and p00 ¼ 0:608 is obtained from the relation v2
p00 ;3 ¼ 3. Now by Theorem 4.1.3, the

observed value of the fuzzy test statistic ~F is a fuzzy number with the following
a-cuts (see Fig. 5):
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~Fa ¼
v2
a 0:533ð Þ;32

v2
1�aþ a 0:608ð Þ;3

0:261;
v21�aþ a 0:533ð Þ;32

v2
a 0:608ð Þ;3

0:261
� �

0:01� a� 1

~F0:01 0� a\0:01:

8
<

:

By using Definition 4.2.1 we consider the fuzzy significance level as a fuzzy
number with the following a-cuts:

Fig. 4 The fuzzy estimator
for r2

Fig. 5 The fuzzy numbers ~F
and ecv
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~ca ¼ 0:02þ 0:03a; 0:08� 0:03a½ � 0:01� a� 1
~c0:01 0� a\0:01;

�

and by Theorem 4.2.1 one can obtain a-cuts of the fuzzy critical value as follows:

ecvð Þa¼ F 0:92þ 0:03að Þ;3;32;F 0:98�0:03að Þ;3;32
	 


0:01� a� 1
ecvð Þ0:01 0� a\0:01:

�

The graphs of the fuzzy numbers ecv and ~F are shown in Fig. 5. Finally, by
Decision rule 4.2.1, since AR= AR þALð Þ ¼ 0:8971 where AR ¼ 9:7892 and
AL ¼ 1:1230, the null hypothesis H0 : l1 ¼ l2 ¼ l3 ¼ l4 is rejected for every
credit level u 2 0; 0:8971ð �. In fact it is possible for us to reject H0 for a high level
of credit, since high ratio of observed values of the test statistic lead to reject H0.

Example 6.2 The quantity of oxygen dissolved in water is used as a measure of
water pollution. Samples are taken at four locations in a lake and the quantity of
dissolved oxygen is recorded in [12] as in Table 2 (lower reading corresponds to
greater pollution). We would like to see that whether the data indicate a significant
difference in the average amount of dissolved oxygen for the four location based on
a fuzzy test statistic and the crisp significance level c ¼ 0:05. The one-way
ANOVA model is Yij ¼ li þ �ij, j ¼ 1; 2; . . .; ni; i ¼ 1; 2; 3; 4.

In this example we have SS ¼ SSE ¼ 4:267, SS� ¼ SSTr ¼ 0:718,
r ¼ k � 1ð Þ ¼ 3, F ¼ F1 ¼ 0:897, n ¼ 20 and F0:95;3;16 ¼ 3:239. By Lemma
4.1.1, the membership function of the fuzzy estimate for r2 is given as follows:

~r2 uð Þ ¼
1�G 4:267=uð Þ

1�0:547
4:267

v2
0:99þ 0:01 0:547ð Þ;16

� u� 4:267
16

G 4:267=uð Þ
0:547

4:267
16 � u� 4:267

v2
0:01 0:547ð Þ;16

0 otherwise;

8
>><

>>:

where G is the cumulative distribution function of a v2 variable with 16 degrees of
freedom, as depicted in Fig. 6.

By Theorem 4.1.3, the observed value of the fuzzy test statistic ~F is a fuzzy
number with the following a-cuts:

Table 2 Quantity of dissolved oxygen (%)

Location 1 y11 ¼ 7:8 y12 ¼ 6:4 y13 ¼ 8:2 y14 ¼ 6:9

Location 2 y21 ¼ 6:7 y22 ¼ 6:8 y23 ¼ 7:1 y24 ¼ 6:9 y25 ¼ 7:3

Location 3 y31 ¼ 7:2 y32 ¼ 7:4 y33 ¼ 6:9 y34 ¼ 6:4 y35 ¼ 6:5

Location 4 y41 ¼ 6 y42 ¼ 7:4 y43 ¼ 6:5 y44 ¼ 6:9 y45 ¼ 7:2 y46 ¼ 6:8
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~Fa ¼
v2
a 0:547ð Þ;16

v2
1�aþ a 0:608ð Þ;3

0:168;
v21�aþ a 0:547ð Þ;16

v2
a 0:608ð Þ;3

0:168
� �

0:01� a� 1

~F0:01 0� a\0:01:

8
<

:

The graph of the fuzzy test statistic ~F is shown in Fig. 7. Finally, by Decision
rule 4.1.1, since AR= AR þALð Þ ¼ 0:578 where AR ¼ 2:467 and AL ¼ 1:797, the

Fig. 6 The fuzzy estimator
for r2

Fig. 7 The fuzzy test statistic
~F
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null hypothe-sis H0 : l1 ¼ l2 ¼ l3 ¼ l4 is accepted for every credit level
u 2 0:578; 1ð �. In other words, there is not any difference at significance level 0:05
in the average amount of dissolved oxygen for the four location for every credit
level u 2 0:578; 1ð �.

7 Conclusions

We have applied fuzzy techniques to linear hypothesis testing in this paper.
Basically, in this method a set of 1� að Þ 100 % confidence intervals, for all
0:01� a� 1, are employed to produce the notion of the fuzzy test statistic. Also the
concept of fuzzy critical value is derived based on a-cuts of a defined fuzzy sig-
nificance level. Then, decision rules are provided based on these notions.
Employing all the confidence intervals from the 99 % to the 0 % rather than only a
single confidence interval results in using far more information in data for the
statistical inference. Moreover, this method improves the statistical hypotheses
testing when there is an uncertainty in accepting or rejecting the hypotheses. This
issue is clarified by practical examples. As a simple case of the linear hypothesis
testing, one-way analysis of variance based on fuzzy test statistic and fuzzy sig-
nificance level is discussed. Nevertheless, as a matter of fact, the proposed method
in this article is still applicable to other cases of linear hypothesis testing. An
interesting topic for future research is the study of the proposed method on the
linear hypothesis testing when the hypotheses are fuzzy rather than crisp. Also, one
can consider this problem based on fuzzy data with crisp/fuzzy parameters.
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A Practical Application of Fuzzy Analysis
of Variance in Agriculture

R. Ivani, S.H. Sanaei Nejad, B. Ghahraman, A.R. Astaraei
and H. Feizi

Abstract For comparing several populations, the fuzzy analysis of variance has
been summarized and reviewed where the collected data considered fuzzy rather
than crisp numbers. As a practical work based on the real-word data, a case study
was carried out to investigate effects of three concentrations (0, 50 and 100 ppm)
nanoSiO2 on seedling growth and dry matter weight of fenugreek (Trigonella
foenum-graceum L.). All presented data in this study are fuzzy and therefore we
need an extended version of analysis of variance to investigate on these fuzzy
observations. Although, the presented analysis of variance approach based on vague
data can causes to a fuzzy decision, but as an advantage of the proposed approach
the vagueness of this fuzzy decision measured.
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1 Background and Introduction

Nanotechnology is a science that has widely application in industrial and com-
mercial products in recent years [17]. Nowadays, the rapidly increasing applications
of engineered nanomaterials, with sizes smaller than 100 nm in the economy various
areas, such as electronics, cosmetics, textiles, pharmaceutics, and environmental
remediation, have received a lot of attention and concern [4]. Nanotechnology
allows wide advances in agriculture science, such as agricultural transfer, repro-
ductive science and technology, wastes of food to energy, disease prevention, and
treatment in plants using various nanocides [4]. Nanoparticles, because of their tiny
size show unique characteristics. They can change physic–chemical properties
compared to their bulk particles. Because of these larger surface areas, their solu-
bility and surface reactivity was higher than their bulk particles [5]. However, the
interaction mechanisms understanding at the molecular level between biological
systems and nanomaterials is largely unknown [3, 9].

Silicon is the second most abundant element in the earth’s crust, yet its role in
plants biology has been poorly understood [20]. Although silicon has not been
listed among the essential elements for plants, but it can reach levels in plants
similar to those of macro elements [2]. Ahmed et al. [1] reported that silicon caused
to reduce the impacts of different stresses such as metal toxicity, various pests, high
temperature, nutrients imbalance, salt and drought stresses.

Other studies were reported that nanoSiO2 can promote growth and dry matter
weights in borage seedling (Borago officinalis L.) [24], tomato (Lycopersicum
esculentum Mill. cv Super Strain B) [23] and tomato [12]. Lu et al. [16] indicated
that a combination of nanosized TiO2 and SiO2 could increase the nitrate reductase
enzyme in soybean (Glycine max) and its abilities of utilizing water and fertilizer
which in fact end up to accelerate its germination and growth.

The observations including vagueness can be treated using the concept of fuzzy
sets. In other words, the vagueness which is included in data can be expressed
exactly using fuzzy set membership function, and hence, the vague data can be
expressed by the membership functions. Such vague data is processed directly
using the membership function in the statistical analysis. The calculation process
becomes more complicated with respected to the traditional statistical analysis [15],
because it is necessary to perform the calculation precisely using the membership
functions. In many environmental and applied sciences such as social sciences,
agriculture and geology, there are several real-life populations where non-precise
values can be assigned to their experimental outcomes. In this way, fuzzy numbers
are suitable models to handle and formulize these populations in real cases, which is
the reason of our need to the fuzzy set theory in analysis of variance (ANOVA). In
recent years, some papers which have concentrated on different areas of ANOVA
using fuzzy set theory have been published. These areas are presented in follow:
investigating on the behavior of one-way fuzzy analysis of variance (FANOVA)
and comparing it with regression model [7], bootstrap method for approximation of
asymptotic one-sample tests by fuzzy random variables [18], developing a one-way
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ANOVA approach for the functional data on a given Hilbert space [6], exact
one-way ANOVA testing under normal fuzzy random variables [19], processing
analysis of variance method using the moment correction for vague data [15],
bootstrap asymptotic multi-sample testing of means assuming simple fuzzy random
variables [10, 11], considering the cuts of fuzzy random variables for one-way
analysis of variance on the basis of fuzzy data based on optimization approach [25],
extending one-way ANOVA for fuzzy observations based on extension principle
approach [21], generalizing one-way ANOVA for fuzzy random variables and
using least squares method for estimating fuzzy parameters [14].

Mathematics of FANOVA is not as well developed as conventional ANOVA,
and this may be one of the reasons why the use of FANOVA has not been reported
in the environmental literature. This research can be considered as the first step to
cover the gap between environmental practice and theoretical FANOVA. In this
paper, the authors are going to test the mean absorption of Cadmium and Lead in
aerial and bellow corn parts to conclude whether it is dependent on the added levels
of organic fertilizers.

Organizing this paper is as follows. Several arithmetic operations on triangular
fuzzy numbers reviewed in Sect. 2. As an alternative ANOVA method for fuzzy
environments, a new approach to analysis of variance reviewed in Sect. 3 from
[21], when the observed data are fuzzy rather than precise. As an application of this
alternative ANOVA method, an agricultural case study presented in Sect. 4 about
the effect of nanoparticle concentrations on fenugreek seedling based on the gen-
erated real-world data in a Lab. of Ferdowsi University of Mashhad. Conclusions
given in the final section.

2 Arithmetic Operations on Fuzzy Numbers

The notion of a fuzzy set extends the concept of set membership to situations in
which there are many continuum grades of membership [26]. Unlike a classical set
which has a clearly defined boundary, in the sense that a real number is either a
member of the set or it is not, a fuzzy set is a set without a precise and crisp
boundary, and it can contain elements with only a partial degree of membership. In
other words, a given element can simultaneously be a member of more than one set.
For example, suppose one define the optimum range of Zn absorption in a plant as
interval [15,80] mg kg−1 DM. Using traditional set theory, it is possible to define
the equilibrium absorption amount as a single value set containing the element
25 mg kg−1 DM, or define it as a broader set containing the elements between 30
and 40 mg kg−1 DM. In both cases, a crisp set considered and any given absorption
amount is either in or not in the equilibrium range. Fuzzy sets allow for partial
membership and an absorption amount 25 mg kg−1 DM might regarded as having
partial membership of the (fuzzy) equilibrium set and partial membership of a
below-equilibrium set. In practice, this allows the resulting model a high degree of
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flexibility in dealing with uncertainty and imprecision which is in the nature of
many real world problems.

An especial case of fuzzy numbers called triangular fuzzy number (TFN), where
its membership function defined by

Ta;b;cðxÞ ¼
ðx� aþ bÞ=b if a� b� x\a
ðaþ c� xÞ=c if a� x\aþ c

0 elsewhere

8<
: ð1Þ

and it symbolically denoted by Tða; b; cÞ. The real number a called the core value
and the positive real numbers b and c called left and right spreads of TFN,
respectively. FTðRÞ and FTðRþ Þ ¼ fTa;b;c j a; b; c 2 Rþ g, respectively, denote the
set of all TFNs and the set of all positive TFNs, where Rþ is the set of all positive
real numbers. Also, symmetric triangular fuzzy number (STFN) symbolically
denoted by Tða; bÞ in this paper where left and right spreads considered equal to b.

The following equations have been proved in [8] for any
Tða; b; cÞ; Tða0; b0; c0Þ 2 FTðRÞ by Zadeh’s extension principle:

Tða; b; cÞ � Tða0; b0; c0Þ ¼ T aþ a0; bþ b0; cþ c0ð Þ; ð2Þ

Tða; b; cÞ� Tða0; b0; c0Þ ¼ T a� a0; bþ c0; cþ b0ð Þ: ð3Þ

Also, for Tða; b; cÞ, Tða0; b0; c0Þ 2 FTðRþ Þ, operations � and ø are given by
approximation as:

Tða; b; cÞ � Tða0; b0; c0Þ ffi Tðaa0; ab0 þ a0b; ac0 þ a0cÞ; ð4Þ

and

Tða; b; cÞ øTða0; b0; c0Þ ffi Tða
a0
;
ac0 þ a0b

a02
;
ab0 þ a0c

a02
Þ; a0 6¼ 0: ð5Þ

Meanwhile, the scalar multiplication of Tða; b; cÞ 2 FTðRÞ and k 2 0f g[Rþ is
defined by:

T a; b; cð Þ 	 k ¼ k 	 T a; b; cð Þ ¼ Tðka; kb; kcÞ ð6Þ

3 FANOVA Based on Triangular Fuzzy Numbers

In this section, we briefly review a new extended version of fuzzy ANOVA which
we call it FANOVA from [21] which is needed for the real-word data agricultural
case study in this chapter. Let r denotes the number of levels of the factor under
study, any one of these levels is denoted by the index i, i ¼ 1; . . .; r. The number of
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cases for the ith factor level is denoted by ni, and the total number of cases in the
study is denoted by nt, i.e. nt ¼

Pr
i¼1 ni. The index j will be used to identify the

given case or trial for a particular factor level. Therefore, yij denotes the jth
observation on the response variable for the ith factor level and Yij denotes its
corresponding random variable. For instance, Yij can be the sales volume of the jth
store featuring of the ith type of shelf display, or the productivity of the jth
employee in the ith plant. The number of cases or trials for the ith factor level is
denoted by ni, and so j ¼ 1; . . .; ni. Similar to the classical ANOVA model,
FANOVA model can state by:

Yij ¼ li þ eij; for i ¼ 1; . . .; r and j ¼ 1; . . .; ni; ð7Þ

in which, Yij’s are the response variables in the jth trial for the ith factor level, li’s
are the factor level means, and eij’s are independent random variables having the
normal distribution Nð0; r2Þ. Therefore, one can expect that Yij’s are independent
random variables having the normal distribution Nðli; r2Þ for any i ¼ 1; . . .; r. Let
the total sum of squares (SST), the treatment sum of squares (SSTR), and the error
sum of squares (SSE) be respectively defined by

SST ¼
Xr
i¼1

Xni
j¼1

ðYij � Y::Þ2 ¼
Xr
i¼1

Xni
j¼1

Y2
ij �

Y2
��
nt
;

SSTR ¼
Xr
i¼1

niðYi: � Y::Þ2 ¼
Xr
i¼1

Y2
i�
ni

� Y2
��
nt

and

SSE ¼
Xr
i¼1

Xni
j¼1

ðYij � Yi:Þ2 ¼
Xr
i¼1

Xni
j¼1

Y2
ij �

Xr
i¼1

Y2
i�
ni
;

where

Y:: ¼ Y::
nt
¼ 1

nt

Pr
i¼1

Pni
j¼1

Yij and Yi: ¼ Yi:
ni
¼ 1

ni

Pni
j¼1

Yij, for i ¼ 1; . . .; r. The mean of

squares are obtained by MSTR ¼ SSTR
r�1 and MSE ¼ SSE

nt�r where stands for treatment
mean square and error mean square, respectively. And finally, the FANOVA test
statistic is F ¼ MSTR

MSE .
It must be noted that the introduced FANOVA test statistic is a usual random

variable and therefore similar to test statistic in classical ANOVA, has Fisher
distribution with r � 1 and nt � r degrees of freedom. But, the only difference
between classical ANOVA and FANOVA is in the kind of observed data. In other
words, as a developed version of conventional ANOVA, FANOVA is able to
handle with fuzzy-valued data on the basis of Zadeh’s extension principle.
Considering the above discussion, it is assumed that we are concerned with a

A Practical Application of Fuzzy Analysis … 319



conventional ANOVA, where the entire theoretical elements of the model such as
parameters, random variables and statistical hypothesis are crisp, but only the
observed values of the classical random variables can be considered as fuzzy
numbers. In such cases, the recorded data and observations can be considered as
triangular fuzzy numbers ~yij ¼ Tðyij; aij; bijÞ, where ~yij is interpreted as “approxi-
mately yij”, for i ¼ 1; 2; . . .; r and j ¼ 1; 2; . . .; ni. Therefore, considering extension
principle, the observed statistics in FANOVA can be presented by the following
fuzzy sets [21]:

fsst ¼ �r
i¼1

�ni
j¼1

~y2ij

� �
� 1

nt
	 ~y2::

� �

¼ �r
i¼1

�ni
j¼1

~yij � ~yij
� �� �

� 1
nt

	 ~y:: � ~y::ð Þ
� �

;

ð8Þ

fssr ¼ �r
i¼1

1
ni

	 ~y2
i:

� �� �
� 1

nt
	 ~y2::

� �

¼ �r
i¼1

1
ni

	 ~yi: � ~yi:ð Þ
� �� �

� 1
nt

	 ~y:: � ~y::ð Þ
� � ð9Þ

and

fsse ¼ �r
i¼1

�ni
j¼1

~y2ij

� �
� �r

i¼1

1
ni

	 ~y2i:

� 	� �

¼ �r
i¼1

�ni
j¼1

~yij � ~yij
� �� �

� �r
i¼1

1
ni

	 ~yi: � ~yi:ð Þ
� 	� �

;

ð10Þ

in which

~yi: ¼ �ni
j¼1

~yij ¼ ~yi1 � ~yi2 � � � � � ~yini ¼ �ni
j¼1

T yij; aij; bij
� �

¼ T
Xni
j¼1

yij;
Xni
j¼1

aij;
Xni
j¼1

bij

 !
¼ T yi:; ai:; bi:ð Þ;

and

~y:: ¼ �r
i¼1

�ni
j¼1

~yij ¼ ~y11 � ~y12 � � � � � ~yr nr ¼ �r
i¼1

�ni
j¼1

T yij; aij; bij
� �

¼ T y11; a11; b11ð Þ � T y12; a12; b12ð Þ � � � � � T yrnr ; arnr ; brnrð Þ

¼ T
Xr
i¼1

Xni
j¼1

yij;
Xr
i¼1

Xni
j¼1

aij;
Xr
i¼1

Xni
j¼1

bij

 !
¼ T y::; a::; b::ð Þ:
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Also, it is similarly obvious that

gmsr ¼ 1
r � 1

	 fssr ; gmse ¼ 1
nt � r

	 fsse; ð11Þ

and

~f ¼ gmsr øgmse ¼ nt � r
r � 1

	 fssr ø fsseð Þ: ð12Þ

Based on positive TFNs ~yij ¼ Tðyij; aij; bijÞ, i ¼ 1; 2; . . .; r; j ¼ 1; 2; . . .; ni, [21]
calculate the observed value of fisher statistics in FANOVA model by

~f ¼ gmsr øgmse
¼ nt � r

r � 1
	 fssr ø fsseð Þ

ffi T fC; fL; fUð Þ;
ð13Þ

in which

fC ¼ nt � r
r � 1

Pr
i¼1

y2i:
ni
� y2::

ntPr
i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni

2
664

3
775;

fL ¼ 2ðnt � rÞ
r � 1

Pr
i¼1

y2i:
ni
� y2::

nt


 � Pr
i¼1

Pni
j¼1 yijbij þ

Pr
i¼1

yi:ai:
ni


 �
 �h i
Pr

i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni


 �2
2
64

þ
Pr

i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni


 � Pr
i¼1

yi:ai:
ni

þ y::b::
nt


 �h i
Pr

i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni

� 	2

3
7775

and

fU ¼ 2ðnt � rÞ
r � 1

Pr
i¼1

y2i:
ni
� y2::

nt


 � Pr
i¼1

Pni
j¼1 yijaij þ

Pr
i¼1

yi:bi:
ni


 �h i
Pr

i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni


 �2
2
64

þ
Pr

i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni


 � Pr
i¼1

yi:bi:
ni

þ y::a::
nt


 �h i
Pr

i¼1

Pni
j¼1 y

2
ij �

Pr
i¼1

y2i:
ni


 �2
3
75:
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To test whether factor level means li’s are equal or not, FANOVA has been
considered to decide whether to reject (or accept) the null hypothesis
“H0 : l1 ¼ l2 ¼ � � � ¼ lr”, against the alternative hypothesis “H1 : not all li’s are
equal”, based on fuzzy data. FANOVA decision rule constructed on the basis of

comparing the real numbers F1 ¼
R F1�a;r�1;nt�r

0
ef ðf Þ df and F2 ¼

R1
F1�a;r�1;nt�r

ef ðf Þ df ,
in which F1�a;r�1;nt�r is the ath quantile of the fisher distribution with r � 1 and
nt � r degrees of freedom (see Fig. 1). Therefore, at the given significance level a,
we accept the null hypothesis H0 with degree of acceptance DH0 ¼ F1=ðF1 þF2Þ if
F1 [F2; otherwise we reject H0 with degree of rejection DH1 ¼ F2=ðF1 þF2Þ [21].

4 Agricultural Case Study

NanoSiO2 powder was as nano silicon oxide that was supplied by Tecnan (Navarrean
Nanoproducts Technology) Company. Specific surface area of nanoSiO2,

Average primary particle size, Purity and True density were 180–270 m−2 g−1,
10–15 nm, >99.9 % and 2.2 g cc−1, respectively. Also, Pore volume and Average
pore size were 0.549 cm3 g−1 and 110.13 Å, respectively. The effect of nanoSiO2 in
three different concentrations (0, 50 and 100 ppm) was investigated on fenugreek
seedling growth and dry matter weight parameters. Seeds were surface sterilized with
0.1 %mercuric chloride for 30 s and washed several times with distilled water. They
were soaked in solution of different concentrations of nanoSiO2 for 24 h and dried by
sterile paper. Then, 25 seeds were transferred into the each sterile Petri dish of
approximately 9 cm diameter, and also 5 mM distilled water were added with dif-
ferent concentrations. The dishes were covered with Slophan paper and were placed

Fig. 1 The membership
function of the observed
FANOVA test statistic and
the indicator function of the
ath quantile of the Fisher
distribution with r � 1 and
nt � r degrees of freedom
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in incubator under 20 ± 1 °C temperature and 70 % humidity. Seeds were con-
sidered as germinated when their radicle was at least 2 mm length [13]. After
14 days, final germination percentage and seedling growth and dry matter weight
parameters were determined. The precise data for investigation on the effect of
nanoSiO2 on above and below parts of fenugreek seedling are presented in Tables 1
and 2 which are gathered in horticulture science laboratory at agriculture department
of Mashhsd University.

Regarding to Tables 1 and 2, the added nanoSiO2 to seeds are considered at
three levels zero, 50 and 100 ppm in this study. For example, the first three lines of
Table 1 are the effect of nanoSiO2 concentrations on Shoot dry matter weight of
fenugreek plant which can be considered as the factor levels zero, 50 and 100 ppm
in an ANOVA test. Now, we are going to test whether the factor level means li’s
are equal or not for each six measured parameters at the significance level 0.05,
where i ¼ 1, 2, 3. In other words, for each measured parameters we want to decide

Table 1 The effect of nanoSiO2 concentrations on dry matter parameters of fenugreek

Dry matter parameters NanoSiO2 concentrations (ppm) Weight (mg)

Shoot dry matter 0 11.00 7.83 9.56 11.33

50 10.00 10.91 11.10 10.60

100 11.00 15.28 13.11 16.00

Root dry matter 0 2.50 2.50 2.50 2.50

50 2.81 2.15 1.80 2.15

100 2.55 1.44 3.42 1.92

Seedling dry matter 0 13.8 10.33 12.06 12.00

50 12.86 12.91 12.90 12.80

100 13.55 16.72 16.58 16.25

Table 2 The effect of nanoSiO2 concentrations on growth parameters of fenugreek

Growth parameters NanoSiO2 concentrations (ppm) Length (mm)

Shoot length 0 57.50 58.36 57.91 58.30

50 63.16 60.00 66.32 66.00

100 56.92 52.81 60.87 52.00

Root length 0 42.00 43.33 42.66 42.00

50 58.00 52.87 56.87 56.00

100 55.00 53.06 54.42 54.00

Seedling length 0 109.5 91.66 100.57 109.00

50 128.00 105.07 119.14 105.00

100 111.00 112.06 110.00 111.00
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to accept only one of the following hypotheses based on the observed data in
Tables 1 and 2:

H0 : l1 ¼ l2 ¼ l3;

H1 : not all li’s are equal; i ¼ 1; 2; 3:

Considering Model [7], for example in testing the effect of different nanoSiO2

concentrations on shoot dry matter weight of fenugreek, variable Yij denotes the
shoot dry matter weight for jth Petri dish in ith level of nanoSiO2 where i ¼ 1, 2, 3
and j ¼ 1, 2, 3, 4. Although the validity of normality tests is very low for the small
observed sample size, but the normal distribution assumption for random variable
Yij comes from the essence of random variable which is rooted from nature.
Moreover, one can easily cheak the accuracy of the normality assumption for the
observations. For example considering the effect of nanoSiO2 concentrations on
shoot dry matter of fenugreek, the Shapiro-Wilk test confirme normality assumption
with p-value > 0.5.

There are some unavoidable cases in experiment which could be cause the
vagueness in the recorded data. These are:

(1) the possibility of incubation errors and electric oven errors which can be
causes non-precision for the observed data in Tables 1 and 2.

(2) the possibility of the laboratory errors in making the precise levels for
nanoSiO2 solution.

(3) the possibility of human errors in measuring, reading and keeping records.
(4) the limit of the digital laboratory scales of precision.

Therefore, one can conclude that a preferred way to record the observations is to
use vague and fuzzy numbers. In this study, we decide to rewrite the data by
symmetric triangular fuzzy numbers from now, to cover the unavoidable cases
described earlier. The core values of STFNs set equal to the precise recorded data in
Tables 1 and 2, and the vagueness of these STFNs can be considered as a coeffi-
cient of the precise recorded data in Tables 1 and 2. In other words, to cover the
above mentioned unavoidable elements, we convert the precise observations yij’s in
Tables 1 and 2 to the symmetric triangular fuzzy numbers ~yij ¼ Tðyij; yij

100Þ, where
i ¼ 1, 2, 3 and j ¼ 1, 2, 3, 4. It is obvious that the traditional ANOVA cannot
analyze these fuzzy numbers, and we need to the extended version of ANOVA,
which presented in Sect. 3, to investigate on these fuzzy observations. Table 3 is

Table 3 The results of FANOVA on nanoSiO2 concentrations for dry matter parameters of
fenugreek

Dry matter weigh
parameters

Observed FANOVA test
statistic ð~f Þ

F1 F2 Test
result

Degree of
acceptance

Shoot dry matter Tð6:61; 30:3Þ 12.9 17.4 accept H1 DH1 ¼ 0:575

Root dry matter Tð0:25; 4:64Þ 4.59 0.042 accept H0 DH0 ¼ 0:991

Seedling dry matter Tð10:8; 107Þ 47.5 60.2 accept H1 DH1 ¼ 0:559
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includes the results of three FANOVA tests based on the fuzzified data of Table 1.
For example, the membership function of the observed test statistic in FANOVA
model for investigation on the effect of three levels (0, 50 and 100 ppm) nanoSiO2

on shoot dry matter weight of fenugreek has been calculated as ~f ¼ Tð6:61; 30:3Þ
by Eq. [12] which has been drown in Fig. 2. Therefore, after calculating F1 ¼ 12:9
and F2 ¼ 17:4 one can decide to reject the hypothesis “equality of the mean
weights of shoot dry matter for three different levels of nanoSiO2” with certainty
DH1 ¼ 0:575 at significance level of 0.05 (see the first line of Table 3). In other
words, one can claim that “the shoot dry matter weight” has depended on “the
added levels of nanoSiO2” with degree of certainty 0.575. Similarly, Table 4 are
contain the results of several FANOVA tests based on the fuzzified data of Table 2
for three growth matter parameters of fenugreek.

Note that, although we faced a vague decision in FANOVA based on imprecise
data, but this level of uncertainty can be measured in the proposed approach. It must
be mentioned that all calculations of Table 3 done by a computer program in
R software [22] which is available upon request on the basis of FANOVA presented
approach in Sect. 3.

Fig. 2 The membership
function of the observed test
statistic and the indicator
function of the ath quantile of
Fisher distribution in
FANOVA model for
investigation on the effect of
three nanoSiO2

concentrations on the shoot
dry matter weight

Table 4 The results of FANOVA on nanoSiO2 concentration levels for growth matter parameters
of fenugreek

Growth
parameters

Observed FANOVA test
statistic ð~f Þ

F1 F2 Test
result

Degree of
acceptance

Shoot length Tð8:4; 283Þ 138 146 accept H1 DH1 ¼ 0:515

Root length Tð108; 7958Þ 3876 4082 accept H1 DH1 ¼ 0:513

Seedling
length

Tð2:16; 64:13Þ 34.1 30 accept H0 DH0 ¼ 0:532

A Practical Application of Fuzzy Analysis … 325



5 Conclusions and Future Works

The need for analysis of variance based on vague data emerged from the attempt of
providing a rigorous mathematical framework for precisely dealing with uncertain
phenomena expressed by non-precise numbers. As a practical problem, one may
face fuzzy observation rather than crisp data. In analyzing such vague numbers, we
use an extended version of one-way analysis of variance which can measure the
fuzziness of decision and this can be important form the applied view. The fuzzi-
ness of decision, or the degree of acceptance/rejection of the null hypothesis
belongs to [0, 1], but in the ordinary testing hypotheses it belongs to {0, 1}. This is
one of the benefits of using fuzzy approaches instead of the traditional methods in
routine environmental practices containing uncertainties from nature. The results
showed that the proposed FANOVA test is a rational substitution for classical
analysis of variance when the observed data are fuzzy. Theoretical and applied
study on analysis of variance based on fuzzy hypotheses, fuzzy parameters and
fuzzy observations are some potential subjects for further researches.
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A Survey of Fuzzy Data Mining
Techniques

Tzung-Pei Hong, Chun-Hao Chen and Jerry Chun-Wei Lin

Abstract Data mining is very popular recently due to lots of analysis applications
of big data. A well-known algorithm for mining association rules from transactions
is the Apriori algorithm. Because transactions may include quantitative values,
fuzzy sets which can be used to handle quantitative values are thus utilized to mine
fuzzy association rules. Hence in this chapter, some useful fuzzy data mining
techniques are introduced. Firstly, with the predefined membership functions, the
Apriori-based fuzzy data mining algorithms that provide an easily way to mine
fuzzy association rules are described. Since they may be time-consuming when
dataset size is large, several tree-based fuzzy data mining methods are then stated to
improve the mining efficiency. Besides, how to define appropriate membership
functions for fuzzy data mining is important and it can be transferred into an
optimization problem. Four types of genetic-fuzzy mining approaches are thus
given to find both membership functions and fuzzy association rules. At last, some
extended issues are discussed to provide future research directions.
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1 Introduction

The goal of data mining is to extract useful knowledge and patterns for solving
specific issues. Currently, many data mining techniques are applied to various
applications [2, 6, 64], and basket analysis is one among them. One common usage
is to mine association rules from a given dataset. An association rule can be rep-
resented as “X → Y”, where X and Y are itemsets. When used in analyzing purchase
behavior, the rule means that if itemset X is bought, then itemset Y is bought as well.
A famous approach for mining association rules is the Apriori algorithm [2], which
consists of three phases including (1) generating candidate itemsets, (2) finding
large itemsets above a given minimum support, and (3) inducing association rules
above a given minimum confidence. Since traditional association rules only con-
sider relationship among items, they are also called binary association rules. In the
past, many mining approaches were proposed based on the Apriori algorithm [1–3].

However, in real applications, transactions usually have quantitative values.
Hence, some variant approaches have been proposed to deal with such situations.
Since the fuzzy set theory has good ability to process quantitative values and to
represent linguistic meaning, fuzzy data mining problems were then formed, and
several fuzzy data mining approaches were proposed. Thus, based on the Apriori
algorithm, the evolution from binary association rules to fuzzy association rules for
mining algorithms is illustrated in Fig. 1.

Figure 1 shows that existing approaches based on the Apriori algorithm can be
divided into two groups according to a single minimum support and multiple
minimum supports. The representative approaches with a single minimum support
and multiple minimum supports were proposed by Agrawal et al. [2] and Liu et al.
[63], respectively. Then several researchers extended these approaches with tax-
onomy [28, 65, 75, 77] and quantitative databases [31, 50, 53, 55, 75]. Based on the
two types of minimum support, the fuzzy data mining algorithms can be divided
into the following two classes:

Multiple Minimum Support
Liu et al. [LHM99] 

Single Minimum Support
Agrawal et al. [AIS93]

Apriori

Taxonomy

Quantitative DB

• Han et al. [HF95]
Level-by-Level Approach

• Srikant  et al. [SA95]
Generalized Approach 

• Kuok et al. [KFW98]
• Hong et al. [HKC99]

Fuzzy Association Rules

• Srikant et al. [SA96]
Quantitative Association Rules

Taxonomy

• Tzeng et al. (TL07)
Generalized Approach

• Lui et al. [LC00]
Generalized Approach

Quantitative DB

• Lee et al. [LHL04]
Fuzzy Association Rules

• Lee et al. [LHW08]
(Fuzzy Association Rules
Level-by-Level Approach)

Fig. 1 The evolution of Apriori-based association rule mining
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(1) Single-minimum-support fuzzy-mining approaches (SMSFM) [7, 23–26, 31,
33, 41, 50, 52, 66, 71, 72, 79, 82];

(2) Multiple-minimum-support fuzzy-mining approaches (MMSFM) [53–55].

For SMSFM, all items use only one minimum support to judge their importance
and to mine fuzzy association rules. However, using a minimum support for mining
fuzzy association rules may loss some high-valued items and rules. In order to solve
this problem, some approaches were then proposed forMMSFM. Its main concept is
that each item has its own minimum support to reflect its importance. Besides, since
items may have taxonomy, some mining algorithms were also proposed for mining
fuzzy generalized association rules and fuzzy multi-level association rules.
Examples for SMSFM include [25, 26, 33, 52, 72] and forMMSFM contain [54, 55].

Besides the Apriori algorithm to mine fuzzy frequent itemsets in a level-wise
way, Han et al. presented the frequent-pattern-tree (FP-tree) and FP-growth mining
approach [29] to mine frequent itemsets from binary databases without candidate
generation. It consists of two phases: first constructing an FP-tree structure by
keeping only frequent 1-itemsets and then deriving fuzzy frequent itemsets from the
constructed FP-tree structure. For fuzzy data mining with the tree concept, the
processing is usually complicated due to the fuzzy operators, and thus extra infor-
mation needs to be stored in the nodes of a tree. Papadimitriou et al. proposed fuzzy
frequent pattern tree (FFPT) algorithm [73] to find fuzzy association rules based on
the pattern-growth approach with an FP-tree-like mechanism. Lin et al. also pro-
posed several different tree structures to mine fuzzy frequent item sets [57–59].

The fuzzy data mining algorithms mentioned above assume the membership
functions are already known in advance. However, the membership functions may
have a critical influence on the final mining results in fuzzy data mining. Designing
effective and efficient approaches to get both the appropriate membership functions
and fuzzy association rules are worth to be studied. Some scholars thus transform
the problem of deriving appropriate membership functions as an optimization
problem and use genetic algorithms (GAs) to solve it. The problem for finding
membership functions and fuzzy association rules with GAs is called genetic-fuzzy
mining (GFM) problem. The two types of fuzzy mining problems are SMSFM and
MMSFM. The ways of processing items include processing all the items together
(integrated approach) and processing them individually (divide-and-conquer
approach). Therefore, according to the types of fuzzy data mining problems and
the ways of processing items, the GFM problem can be divided into four kinds.
Currently, many GFM approaches have been proposed for mining membership
functions and fuzzy association rules, simultaneously. Some of them will be
described in the following sections.

In addition to processing fuzzy association rules, some extended techniques for
handling fuzzy web browsing patterns and fuzzy high-utility patterns are also
interesting. Maintaining the mined fuzzy knowledge in an efficient way is important
in dynamic environments. Speeding up the mining process needs to be concerned as
well. These issues will be briefly introduced.
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The remaining parts of this chapter are organized as follows. The Apriori-based
fuzzy data mining is stated in Sect. 2. The tree-based fuzzy data mining is described
in Sect. 3. The genetic-fuzzy data mining is explained in Sect. 4. Some extensions
of fuzzy data mining are presented in Sect. 5. Conclusions and future works are
given in Sect. 6.

2 Apriori-Based Fuzzy Data Mining

Knowledge discovery in databases (KDD) has emerging a critical issue in recent
years since it can be used to discover potential relationships among items in
databases. Depending on different types of the processed databases, the discovered
information or knowledge can be generally classified as association rules,
sequential patterns, classification, clustering, among others. Among them,
association-rule mining (ARM) [1, 2, 10] is the most commonly seen in KDD.
For ARM, most algorithms are performed to handle binary databases, in which the
items are represented as binary attributes of 1 or 0. For fuzzy ARM, the data to be
processed is generalized to linguistic ones. In this section, fuzzy mining techniques
based on the Apriori algorithm will be introduced.

2.1 Apriori Algorithm

Agrawal et al. presented a generate-and-test methodology to find frequent (or called
large) itemsets level by level for inducing association rules [1]. The pseudo code of
the Apriori algorithm is given in Table 1.

In Algorithm 1, the database is first scanned to find the occurrence frequencies of
items (Line 1) and the frequent items (1-itemsets) are derived by checking their
counts over the minimum support count (Lines 2–6). The discovered frequent
1-itemsets are then used to generate the candidate 2-itemsets (Line 9). After that, the
combined candidate 2-itemsets are then determined to find frequent 2-itemsets
(Lines 10–15). This process is repeated until no candidate itemsets are generated
(Lines 8–18). After that, the complete frequent itemsets are discovered for later
generating process of association rules (Line 19).

2.2 Fuzzy Concept on Mining

In real-life situations, the same product may be purchased with multiple copies at
the same time in transaction databases. It is a non-trivial task to mine association
rules from this kind of quantitative databases. The fuzzy-set theory was introduced
by Zadeh in 1965 [81] and very suitable to handle quantitative values and represent
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linguistic meaning. Linguistic representation is popular and may help knowledge
more understandable to human beings. In a fuzzy set, each element of a universal
set can be assigned a membership grade to represent its degree of belonging to the
set. Assume that x1 to xn are the elements in fuzzy set A and μ1 to μn are their grades
of membership in A. A can be represented as:

A ¼ l1
x1

þ l2
x2

þ � � � þ ln
xn

: ð1Þ

Three operations namely complementation, union and intersection are com-
monly used in the fuzzy-set theory, which are described below.

1. Complementation: the complementation operation of a fuzzy set A is denoted as
⌐A. The membership function of ⌐A can be defined as:

lA xð Þ ¼ 1� lA xð Þ; 8x 2 X: ð2Þ

Table 1 Apriori algorithm
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2. Union: the union operation of two fuzzy sets A and B is denoted as A[B. The
membership function of A[B for standard operation can be defined as:

lA[B xð Þ ¼ max lA; lBf g; 8x 2 X: ð3Þ

3. Intersection: the intersection operation of two fuzzy sets A and B is denoted as
A\B. The membership function of A\B for standard operation can be defined
as:

lA\B xð Þ ¼ min lA; lBf g; 8x 2 X: ð4Þ

These three operations will be used in fuzzy data mining for deriving fuzzy
association rules.

2.3 Apriori-Based Approaches

Chan and Au first presented an F-APACS algorithm [8] to mine fuzzy association
rules. The values of the quantitative attributes are first converted into the repre-
sentation of linguistic terms with their membership values according to the
pre-defined membership functions. The adjusted difference analysis is adopted to
reveal interesting association rules among attributes. In the F-APACS algorithm,
the user-specified thresholds are unnecessarily required based on the designed
statistical analysis. Besides, both positive and negative fuzzy association rules can
be discovered through the F-APACS algorithm.

Kuok et al. then proposed an approach to handle quantitative attributes for
discovering fuzzy association rules [50]. A significance factor is designed to mine
all frequent (large) itemsets from the quantitative databases. It reflects not only
occurrence frequencies of items in the databases but also the degree supports of
itemsets. A certainty factor is also designed to generate possible rules from the
frequent itemsets.

At the same time, Hong et al. adopted the fuzzy-set theory and presented a
FDTA algorithm [31] to handle the quantitative databases. It is based on the Apriori
algorithm to level-wisely mine fuzzy frequent itemsets for inducing fuzzy associ-
ation rules. The proposed FDTA algorithm first transforms the quantitative values
of items into linguistic-term representation based on the pre-defined membership
functions. The cardinalities of the transformed linguistic terms are then calculated.
Only a linguistic term with the maximum cardinality of each attribute is used for
later mining process. This process can keep the number of items the same as that of
the original attributes, thus reducing computational cost of combinational explo-
sion. After that, the remaining fuzzy frequent itemsets can be used to induce the
fuzzy association rules. The FDTA algorithm is described in Table 2.
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In the FDTA algorithm, the quantity value of each item (attribute) of each
transaction in the databases is first converted based on the given membership
functions (Lines 1–5). The membership values of a linguistic term of each item
(Aj.Rk) are summed together in the database (Line 6). After that, the linguistic term of
each item with the maximum cardinality is found to represent this item for later
mining process (Line 7). If the represented cardinality of the represented linguistic
term is not less than the given minimum support count, it is then put into the set of
fuzzy frequent (large) itemsets (Line 8). After that, the Apriori-like mechanism is

Table 2 FDTA algorithm
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performed to find the fuzzy frequent itemsets (Lines 10–21). This process is repeated
until no candidate itemsets are generated. The discovered fuzzy frequent itemsets are
then formed to calculate their confidence for inducing fuzzy association rules (Lines
22–27). Since each item uses only a linguistic term with the maximum cardinality,
the number of items in the original database is the same as the revealed linguistic
terms. Thus, the combinational explosion problem for mining fuzzy association rules
can be avoided. The flowchart of the FDTA algorithm is shown in Fig. 2.

2.4 Some Variants

Several variant algorithms have been presented to mine fuzzy association rules.
Gyenesei proposed an additional fuzzy normalization process to mine fuzzy asso-
ciation rules from quantitative databases [27]. In his approach, besides fuzzy sup-
port and confidence, a new fuzzy correlation factor was defined as a new measure to
mine interesting fuzzy association rules. Hong et al. then enhanced the FDTA
algorithm to design a new AprioriTid approach [36] for efficiently discovering
fuzzy association rules. Yue et al. extended the FDTA approach for mining fuzzy
association rules with weight constraint [44]. In their approach, each item was
assigned a weight value in a range of [0, 1] to show its importance. The Kohonen

Fig. 2 Flowchart of the FDTA algorithm
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self-organized mapping approach was also adopted to derive fuzzy sets for
numerical attributes. Chen and Wei developed a generalized framework to mine
fuzzy association rules based on fuzzy taxonomic structure [11]. The minimum
support and the minimum confidence thresholds are generalized by means of
sigma-counts. Hong et al. then designed a mining process for extracting interesting
fuzzy association rules based on linguistic minimum support and minimum confi-
dence thresholds [32]. Hong et al. also developed a fuzzy multiple-level mining
algorithm to mine fuzzy association rules by integrating fuzzy-set concepts and
multiple-level taxonomy [33].

3 Tree-Based Fuzzy Data Mining

Instead of finding fuzzy frequent itemsets level by level, another option is based on
the FP-tree structure. Early studies addressed tree structures mainly for classifica-
tion tasks like fuzzy decision tree. For example, Yuan and Shaw presented a fuzzy
decision tree induction method to represent classification knowledge by considering
cognitive uncertainties [80]. Janikow presented a decision tree with additional
flexibility offered by fuzzy representation [43]. The symbolic tree structure was kept
to maintain knowledge comprehensibility. This framework could be used to com-
bine processing capabilities available in symbolic and fuzzy systems. Olaru and
Wehenkel developed a new soft decision trees (SDT) to mine fuzzy classification
rules by integrating the fuzzy-set theory [70]. The proposed SDT could reveal better
accuracy than traditional decision tree from the experiments conducted.

3.1 Tree-Based Framework for Fuzzy Mining

For fuzzy association rule mining, the FDTA algorithm mentioned above adopts an
Apriori-like mechanism to level-wisely mine fuzzy frequent itemsets for inducing
fuzzy association rules. It requires multiple database scans for mining fuzzy fre-
quent itemsets with time-consuming computation. To solve this problem,
Papadimitriou et al. proposed the fuzzy frequent pattern tree (FFPT) algorithm [73].
In the algorithm, a threshold was set to remove unpromising linguistic terms in each
transaction. This process might only discover local fuzzy frequent 1-itemsets but
not global ones since some linguistic terms were removed from each transaction if
their membership values were less than the pre-defined threshold. Besides, no
operations from the fuzzy-set theory were adopted in discovering fuzzy frequent
itemsets.

Lin et al. then presented another fuzzy mining framework for completely dis-
covering fuzzy frequent itemsets based on the tree structure. Since the processing is
usually complicated due to fuzzy operations, some extra information is stored in the
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nodes of a tree for correctly performing the task. Three algorithms namely fuzzy
frequent FP (FFP)-tree [58], compressed fuzzy frequent pattern (CFFP)-tree [59]
and upper-bound fuzzy frequent pattern tree (UBFFP)-tree [57] were developed to
mine fuzzy frequent itemsets from quantitative databases. They are different mainly
in tree construction. In the framework, three layers are used to find fuzzy frequent
itemsets as shown in Fig. 3.

In Fig. 3, the framework includes three layers to mine fuzzy frequent itemsets.
The first layer is the data fuzzification layer. It is used to convert the quantitative
values of items into the representation of linguistic terms and their membership
values. This is the same process as that in the FDTA algorithm for transaction
conversion except that different algorithms adopt different sorting strategies to
transform transactions for later construction. The second layer is the tree con-
struction layer, on which the fuzzified transactions are performed to construct tree

Quantitative
Data

1

0

Low Middle High

valueMembership functions

HighDMiddleDMiddleALowA .

6.0

.

4.0
,...,

.

2.0

.

8.0
++

HighEMiddleEHighBMiddleB .

8.0

.

2.0
,...,

.

8.0

.

2.0
++

…

MiddleDLowDMiddleALowA .

6.0

.

4.0
,...,

.

8.0

.

2.0
++

Large fuzzy regions 
with  maximal 
cardinality

HighDLowA .

6.0
,...,

.

8.0

HighEHighB .

8.0
,...,

.

8.0

…

MiddleDMiddleBMiddleA .

6.0
...,

.

6.0
,

.

8.0

Sorting criteria

HighDLowA .

6.0
,...,

.

8.0

HighEHighB .

8.0
,...,

.

8.0

…

MiddleDMiddleBMiddleA .

6.0
...,

.

6.0
,

.

8.0

Updated transactions

Fuzzy 
FP tree CFFP tree UBFFP tree

Mining 
Algorithms

T
re

e 
C

on
st

ru
ct

io
n 

L
ay

er
D

at
a 

F
uz

zi
fi

ca
tio

n
L

ay
er

M
in

in
g 

L
ay

er

a b

d e f

h

If A = Low, then B = High
If A = Low and B = High, then D = Middle

If D = Middle , then B = High and E = High

…

Fuzzy association rulesTree structures

Construction algorithms

Fig. 3 The framework of tree-based fuzzy data mining

338 T.-P. Hong et al.



structures. Different approaches will construct different tree structures. After that,
the mining layer is designed to mine fuzzy frequent itemsets from the constructed
tree structures based on FP-growth-like mechanisms.

3.2 Fuzzy FP-Tree Algorithm

The fuzzy FP (FFP)-tree algorithm is described in Table 3.
For the FFP-tree algorithm, it uses a similar approach to the FDTA algorithm to

covert the quantities of items in original databases into the representation of lin-
guistic terms and derive fuzzy frequent 1-itemsets (Line 1). Note that each item is

Table 3 Fuzzy FP (FFP)-tree algorithm
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represented as its linguistic term with the maximum cardinality, thus reducing the
processing time of possible combinational explosion. After that, the discovered
fuzzy frequent 1-itemsets are used to build an index Hedaer_Table, which has the
same function as the Header_Table of the FP-tree structure (Line 2). The converted
transactions in the databases are then re-fined to keep only fuzzy frequent
1-itemsets. The local sorting strategy is adopted to sort the remaining fuzzy frequent
1-itemsets according to their transformed membership values in each transaction
(Lines 6–8). The transaction is then processed one by one to buld the FFP-tree and
each node in the tree keeps the membership value of the processed fuzzy frequent
1-itemsets in each transaction (Lines 9–23). An approach similar to the FP-growth
is used to derive fuzzy frequent itemsets from the constructed FFP-tree structure.

Although the FFP-tree algorithm can be used to efficiently mine fuzzy frequent
itemsets from the constructed FFP-tree, more nodes are required since the sorted
order for constructing the FFP-tree is based on the membership values of items in
each transaction. Thus, two transactions with the same linguistic terms may have
different orders, thus generating different paths in the FFP-tree structure. This
process may generate many extra nodes. For example, assume there are two
transactions {A.Low:0.5, B.High:0.3} and {A.Low:0.2, B.High:0.4}. Two paths,
A.Low:0.5 -> B.High:0.3 and B.High:0.4 -> A.Low:0.2, will be built in the
FFP-tree. Although FFP-tree has to generate more tree nodes, the fuzzy frequent
itemsets can be easily extracted by directly adopting FP-growth-like (proposed
FFP-growth) approach to discover fuzzy frequent itemsets since the count of any
super node is no less or equal to the sum of its child nodes. The proposed
FFP-growth approach is shown in Table 4.

3.3 CFFP-Tree and UBFFP-Tree

To solve the above problem of the FFP-tree algorithm, Lin et al. then presented the
compressed FFP (CFFP)-tree algorithm to reduce the number of tree nodes. The
sorting strategy of the CFFP-tree algorithm is different from the FFP-tree algorithm.
It adopts the global sorting strategy to sort the remaining fuzzy frequent 1-itemsets
in descending order of their occurrence frequencies in all transactions. An extra
array is attached to each node and updated in the CFFP-tree structure for keeping
the membership values of the currently processed node with any of its prefix nodes
by intersection operation. Based on the attached array of each node, a CFFP-growth
algorithm is performed to mine the complete fuzzy frequent itemsets through a
simplified intersection operation.

Although the CFFP-tree algorithm adopts an attached array in each node to
reduce the number of tree nodes, it has the overhead of keeping the array. Since the
attached array in each node keeps the membership values of the currently processed
node with any of its prefix items in the path, the space complexity of each node is
high if the size of the processed transactions is large. Lin et al. then proposed the
upper-bound fuzzy frequent pattern (UBFFP)-tree algorithm to overestimate the
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upper-bound membership values of fuzzy frequent itemsets for solving the over-
head problem of the CFFP-tree structure. The UBFFP-tree construction algorithm
uses the same global sorting strategy as the CFFP-tree algorithm for tree con-
struction. Each item in the transactions is then fuzzified by keeping only the lin-
guistic term with the maximum cardinality in later processes, which is the same
procedure as the FFP-tree and CMFFP-tree. The transferred transactions are then
processed tuple by tuple from the first transaction to the last one to construct the
UBFFP tree. Each node in the tree keeps a fuzzy frequent 1-itemset with its
accumulated fuzzy count, which is the same as the FFP-tree structure but different
from the CFFP-tree structure. After the UBFFP-tree is constructed, an
UBFFP-growth algorithm is used to recursively find the fuzzy frequent itemsets
from the UBFFP-tree structure. After the construction process, the UBFFP-growth
algorithm is then executed to mine fuzzy frequent itemsets. In the fuzzy data
mining, the intersection operation is used to get the fuzzy counts of the derived
fuzzy frequent itemsets. When n transactions (n ≥ 2) are used to derive the fuzzy k-
itemsets (k ≥ 2), the actual count of non-redundant fuzzy k-itemset is less or equal
to the minimum of the sum of the same fuzzy k-itemsets from n transactions. For
example, supposing two transactions {f1:s1, f2:s2} and {f1:s3, f2:s4}, and fi represents
as the transformed fuzzy region and si represents as the transformed fuzzy count.

Table 4 FFP-growth algorithm
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Thus, min(s1, s2) + min(s3, s4) ≤ min(s1 + s3, s2 + s4). Hence, the merged branches
of the same fuzzy regions in the UBFFP-tree can obtain the upper-bound property
to mine fuzzy frequent itemsets. This property of the UBFFP-tree structure ensures
that all possible fuzzy frequent itemsets (called upper-bound fuzzy frequent item-
sets) can be discovered and unpromising candidate fuzzy itemsets can be pruned
early. After the upper-bound fuzzy frequent itemsets are generated, an additional
database scan is performed to find the actual fuzzy frequent itemsets from the kept
upper-bound fuzzy frequent itemsets. The UBFFP-tree structure is a condensed tree
structure when compared to the FFP-tree structure, and has the same number of tree
nodes as the CMFFP-tree structure. Besides, it can solve the overhead problem of
the CMFFP-tree algorithm.

3.4 Some Variants

Other variant algorithms were also presented to mine fuzzy frequent itemsets from
quantitative databases. Hong et al. and Lin et al. considered all linguistic terms of
an item, instead of only the one with the maximal scalar cardinality, in fuzzy mining
[40, 62]. They extended the FFP-tree, CFFP-tree and UBFFP-tree structures to
derive multi-term fuzzy frequent itemsets.

4 Genetic-Fuzzy Data Mining

In the previous sections, several fuzzy data mining approaches have been described,
all of which assume the membership functions are predefined. However, in real
applications, different items may have their own membership functions to reflect the
importance of items. In this section, some genetic-fuzzy mining (GFM) approaches
are introduced, which utilize genetic algorithms to mine appropriate membership
functions for items and discover fuzzy association rules.

4.1 Four Types of Genetic-Fuzzy Mining Approaches

Since the membership functions have critical influence on final mining results, how
to derive a set of membership functions for mining fuzzy association rules is an
important issue. Utilizing the advantages of genetic algorithms, many researchers
have proposed various GFM techniques for mining fuzzy association rules, fuzzy
generalized association rules and fuzzy temporal association rules, among others.
According to the encoding strategies and types of fuzzy mining problems, existing
GFM approaches can be divided into four types. The encoding strategies are
classified as integrated and divide-and-conquer strategies. The types of fuzzy
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mining problems include SMSFM and MMSFM as mention in Sect. 1. The four
categories of GFM approaches are shown in Table 5.

There are four categories in Table 5, including IGFM-SMS, IGFM-MMS,
DGFM-SMS and DGFM-MMS problems. They are briefly described as follows.

(1) The Integrated Genetic-Fuzzy Mining Problem for Items with a Single
Minimum Support (IGFM-SMS): The IGFM-SMS problem assumes there is only
one minimum support for all items and the membership functions for all items are
encoded into an integrated chromosome and then derived by genetic algorithms. At
last, the derived membership functions are utilized to mine fuzzy association rules.
Many approaches have been published for solving the IGFM-SMS problem [5, 12,
14, 18, 20–22, 34, 38, 45–49, 68, 76]. For example, Hong et al. proposed a
genetic-fuzzy data-mining algorithm for extracting both association rules and
membership functions from quantitative transactions [38]. Kaya et al. proposed a
GA-based approach for mining membership functions and fuzzy rules, which was
tried to derive membership functions that could reach a maximum profit within an
interval of user-specified minimum support values [45]. Matthews et al. then took
the temporal concept into consideration and proposed a temporal fuzzy association
rule mining with the 2-tuples linguistic representation [68].

(2) The Integrated Genetic-Fuzzy Mining Problem for Items with Multiple
Minimum Supports (IGFM-MMS): The previous subsection indicates there are
lots of researches focusing on the IGFM-SMS problem. However, different items
may have different properties. Thus, different criteria are needed to reflect their
importance. For instance, assume there are some expensive items in a dataset. They
are thus seldom bought because of their high prices, and thus their support values
are low. However, a manager may still be interested in these products due to their
high profits. Chen et al. thus proposed another genetic-fuzzy mining approach [15]
for it, which was an extension of the approach proposed in [38]. The approach
combines the clustering, fuzzy and genetic concepts to derive appropriate minimum
support values and membership functions for items. Other extensions are proposed
in [16, 19].

(3) The Divide-and-Conquer Genetic-Fuzzy Mining Problem for Items with
a Single Minimum Support (DGFM-SMS): The advantages of the IGFM is that
they are easy to use and with few constraints on fitness functions of GAs. However,
if the number of items is large, the IGFM approaches may need lots of time to find a
near-optimal solution because the length of a chromosome is long. The
divide-and-conquer strategy can be used when only an approximate fitness function
is adopted in GFM. Many approaches were also proposed in [13, 35, 37, 39]. For
example, when the number of large 1-itemsets is used in fitness evaluation, the
divide-and-conquer strategy becomes a good choice to deal with it since each item

Table 5 The four types of genetic-fuzzy mining problems

Integrated strategy Divide-and-conquer strategy

Single minimum support IGFM-SMS DGFM-SMS

Multiple minimum supports IGFM-MMS DGFM-MMS
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can be individually processed. Hong et al. thus proposed a GA-based framework
with the divide-and-conquer strategy to search for membership functions with good
converging effects [39].

(4) The Divide-and-Conquer Genetic-Fuzzy Mining Problem for Items with
Multiple Minimum Supports (DGFM-MMS): The problem may be thought of as
the combination of the IGFM-MMS and the DGFM-SMS problems. The framework
for the DGFM-MMS problem can thus be easily designed from the previous
frameworks for IGFM-MMS and DGFM-SMS. Since the DGFM-MMS is complex,
only few literatures have been proposed for finding minimum supports and mem-
bership functions for items to mine fuzzy association rules [17].

Since the number of association rules is large in mining problems and cannot
easily be coded in a chromosome, most approaches proposed learned the mem-
bership functions for items first and then derive fuzzy association rules according to
the membership functions obtained.

According to the types of rules, the approaches can be divided into four types,
including fuzzy association rule, fuzzy generalized association rule, fuzzy weighted
association rule and fuzzy temporal association rule. Earlier approaches more focus
on mining fuzzy association rules [6, 11–16, 18, 19, 32, 38–41, 44–47, 65] and
fuzzy weighted association rules [47]. In recent years, genetic-fuzzy mining
approaches are extended to mine fuzzy generalized association rules and fuzzy
temporal association rules [21, 22, 49, 67, 68].

4.2 Genetic-Fuzzy Mining Framework

Many approaches were proposed for solving the IGFSMS problem. They are dif-
ferent in chromosome representation, genetic operators, and fitness functions [38].
A basic framework of genetic-fuzzy mining based on [38] is shown in Fig. 4.

The genetic-fuzzy mining framework for the IGFSMS consists of two phases
that are membership function mining and fuzzy association rule mining. In the first
phase, membership functions for items are encoded and generated according to
different chromosome encoding methods. The genetic evolution process is then
utilized to find appropriate membership functions. Then, fuzzy association rules are
mined using the derived membership functions.

In 2003, Hong et al. used the following chromosome coding and fitness func-
tions for GFM [40]. Each membership function is encoded as a pair (c, w), where
c and w are center and half span (width) of the membership function as Parodi and
Bonelli did [74].

The set of membership functions MF1 for the item Ij is then represented as a
substring of cj1wj1, cj2wj2, …, cjlwjl, where |Ij| is the number of terms of Ij. The
entire set of membership functions is then encoded by concatenating substrings of
MF1, MF2,…, MFl. Hong et al. evaluated chromosomes by the number of large
1-itemsets and the suitability of membership functions. The fitness value of a
chromosome Cq was then defined as:
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f ðCqÞ ¼ jL1j
unsuitabil ityðCqÞ ;

where |L1| is the number of large 1-itemsets obtained by using the set of mem-
bership functions in Cq. It is used to represent the knowledge amount under the set
of membership functions decoded from a chromosome. Using the number of large
1-itemsets is a trade-off between execution time and rule interestingness because a
larger number of 1-itemsets will result in a larger number of all itemsets with a
higher probability, and then imply more interesting association rules. The evalua-
tion by only 1-itemsets is much faster than that by all itemsets or interesting
association rules. The other factor, unsuitability, in the fitness function, is designed
to reduce the occurrence of bad types of membership functions. The two bad types
of membership functions are shown in Fig. 5, where the first one is too redundant,
and the second one is too separate.
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Fig. 4 The genetic-fuzzy mining framework for the IGFSMS problem

A Survey of Fuzzy Data Mining Techniques 345



A formula is designed to calculate the value of unsuitability according to the
overlap and the coverage degrees of a chromosome. After fitness evaluation, the
genetic operations choose appropriate chromosomes for mating to create good
offspring membership function sets. The offspring then undergo recursive evolution
until a good set of membership functions is obtained.

4.3 Other Approaches

Kaya and Alhaji also proposed a GFM algorithm to derive membership functions
and fuzzy association rules [46, 48] at nearly the same time. Their approach tried to
derive membership functions that could reach a maximum profit within an interval
of user-specified minimum support values. It then used the derived membership
functions to mine fuzzy association rules. They used two criteria in the fitness
function. The first criterion was to maximize the number of large itemsets, and the
second one was to minimize the execution time. Since the two criteria conflicted,
the genetic process evolved to achieve a trade-off solution. Kaya and Alhaji then
extended the approach to mine fuzzy weighted association rules [47, 49].

Based on Hong’s approach [38], Alcala-Fdez et al. also proposed a GFM
algorithm for mining membership functions and fuzzy association rules [4]. The
main difference between the two approaches is that the latter used the 2-tuple fuzzy
linguistic representation model to encode membership functions into a chromo-
some. The coding is shown in Fig. 6.

Figure 6a shows that there are three base membership functions for attribute A,
including Low, Middle and High. Assume there is a chromosome Cq as shown at
the top of Fig. 6b. Then the actual membership functions will be derived from the
modification of the base membership functions according to the chromosome. For
example, the value −0.4 of Middle in Cq means the membership function of Middle
will be moved 0.4 toward the left of the base membership function of Middle, and
the resulting membership functions are shown at the bottom of Fig. 6b. The
advantage of the encoding scheme is that each membership function only needs one
parameter instead of three parameters (in triangular MF). They used the fitness
function defined in [38] to evaluate the chromosomes.
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Fig. 5 The two bad types of membership functions
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Matthews et al. then took the temporal concept into consideration and proposed
a temporal fuzzy association rule mining with the 2-tuples linguistic representation
[68]. Since the purpose of the proposed approach was to mine fuzzy temporal
association rule, the Michigan method was adopted to encode a rule into a chro-
mosome. They took the temporal concept into consideration and used fuzzy support
and fuzzy confidence to evaluate a chromosome. Furthermore, they also extended
their proposed approach to web usage mining [69].

4.4 Genetic-Fuzzy Mining with Taxonomy

In the previous section, the GFM algorithms introduced for mining membership
functions and fuzzy association rules are executed under one single-concept level.
In general, items may have taxonomy. Assume a predefined taxonomy is given in
Fig. 7. There are two item classes, “Food” and “Drinks”. Terminal nodes on the
trees represent actual items appearing in transactions, while internal nodes represent
classes or concepts formed from lower-level nodes. For example, “Apples” and
“Oranges” are two kinds of “Fruit”. “Fruit” is thus a higher level of concept than
“Apples” or “Oranges”.

Low Middle High

0.0 -0.4 0.0Cq :

Low Middle High

Low Middle High

-0.4

(a) (b)

Fig. 6 The encoding method by 2-tuple fuzzy linguistic representation model. a Base member-
ship functions of attribute A, b Chromosome for membership functions of attribute A
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Apples Oranges Old Mills Wonder
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Fig. 7 The given taxonomy

A Survey of Fuzzy Data Mining Techniques 347



Chen et al. thus proposed a multiple-level GFM algorithm for mining member-
ship functions and fuzzy association rules on multiple-concept levels [21]. It used a
slightly different fitness function from the previous one to evaluate the chromosomes
and get the membership functions, and then adopted a fuzzy multi-level association
rule mining approach [55] to mine fuzzy rules. Chen et al. then modified the
approach by using multi-objective GAs to find Pareto solutions, each of which is a
set of membership functions for mining fuzzy association rules [22].

5 Some Extended Issues

In this section, will discuss some extended issues to fuzzy data mining. They
include fuzzy web mining, fuzzy utility mining, incremental fuzzy mining, and
parallel fuzzy mining. These issues are briefly introduced below.

5.1 Fuzzy Web Mining

WWW has been a very popular media used in all over the world. Web mining thus
plays an important role in discovering knowledge embedded in WWW. It can be
roughly divided into three categories, including Web usage mining, Web content
mining, and Web structure mining. The fuzzy-set theory can be similarly adopted in
these techniques to find linguistic and meaningful patterns for human beings to
easily understand and use [56]. Fuzzy Web usage mining focuses on analyzing the
Web browsing behavior of users from Web logs and other data. Some techniques
were developed for finding browsing patterns, personalization, and recommenda-
tion, among others. Fuzzy Web content mining mainly derives useful information
or knowledge from Web page contents. It may include directly mining contents
from Web documents or pages and improving the efficiency of search engines.
Syntax and Semantic analysis and ontology are also used to increase the accuracy.
Fuzzy Web structure mining analyzes the relationships among linked Web pages.
The information retrieved from Fuzzy Web structure mining can be used to improve
the organization of hyperlinks.

5.2 Fuzzy Utility Mining

A company is always measured by its earning. Thus, when analyzing the trans-
action data from a company, not only the sale frequencies of items are considered,
but also their quantities and profits. Chan et al. thus proposed another new issue,
namely utility mining, to consider these factors [9]. They multiplied the profit and
the quantity of an item (or itemset) in a transaction and summed up the values in all
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the transactions as the utility of the item (itemset). If the utility of an item (itemset)
was larger than or equal to a predefined threshold, then it was a desired itemset.

The fuzzy concept can also be put in utility mining. For example, Wang et al.
defined a fuzzy utility function to evaluate utility of an item in databases [78]. For a
fuzzy term of an item, its utility in a transaction was evaluated by the product of the
three factors: the centroid value and the membership value of the fuzzy term, and
the profit of the item. Its total utility was then the sum of the values from all
transactions. The utility of an itemset in a transaction was the summation of the
individual utility values of the fuzzy terms in the itemset. The approach did not
adopt the combined membership degree of an itemset. Lan et al. then presented a
new fuzzy utility function, which considered not only quantities and profits of items
but also the combined membership value, to evaluate the utility of an itemset [51].
Since the downward-closure property did not exist, an effective fuzzy utility upper
bound was adopted in the approach.

5.3 Incremental Fuzzy Mining

Up to now, the approaches introduced for fuzzy mining are executed in a batch
way. When new transactions are inserted into a database, and old transactions are
removed or modified from a database, these approaches must re-process the entire
updated database to form new fuzzy knowledge. Much computational time is
needed in this way. For solving this problem, Hong et al. proposed a maintenance
approach on the tree structure [40]. When new transactions were inserted into a
database, their approach first judged the fuzzy regions generated from the inserted
transactions into four cases according to whether they were frequent or not in the
original database and in the new transactions. It then processed the cases in different
ways to update the Header_Table and the tree whenever necessary. Lin et al. also
proposed a maintenance algorithm for fuzzy frequent itemsets based on the
Apriori-based processing way [61]. Lin et al. also proposed an integrated algorithm
for efficiently integrating multiple fuzzy pattern trees derived from distributed
databases [60].

5.4 Parallel Fuzzy Mining

Due to dramatic increases in available computing power and concomitant decreases
in computing costs over last decades, learning or mining by applying parallel
processing techniques has become a feasible way of overcoming the problem of
slow learning [30]. Some researches use parallel or cloud computing to speed up the
execution of data mining tasks. It is, however, seldom seen for fuzzy data mining.
Hong et al. adopted the master-slave architecture to speed up genetic-fuzzy data
mining [42]. The fitness evaluation process was the most time-consuming part in
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the entire genetic-fuzzy mining process, and was thus processed in parallel by the
slave processors. The other part was processed by the master processor. The master
processor generated a single population, in which each individual represented a
possible set of membership functions as mentioned before. It then distributed the
tasks of fitness evaluation to slave processors. Each slave processor then evaluated
the allocated chromosomes and then sent the results back to the master processor.
The master processor collected the results and did appropriate genetic operations to
generate the next generation. The same steps were repeated until the convergence
condition was achieved.

6 Conclusions

In this chapter, different types of fuzzy data mining approaches have been descri-
bed, including Apriori-based fuzzy data mining, tree-based fuzzy data mining,
genetic-fuzzy data mining approaches, and some extended issues. The main concept
in these approaches is to utilize the fuzzy-set theory to handle quantitative data-
bases. In Apriori-based fuzzy data mining approaches, quantitative values are
transformed into fuzzy sets according to the predefined membership functions.
Then, fuzzy frequent itemsets and fuzzy association rules can be generated based on
the Apriori execution process. Since the execution time of Apriori-based approa-
ches is time-consuming, tree-based fuzzy data mining approaches are then descri-
bed to speed up the mining process. Basically, these approaches are modified from
the FP-tree for processing fuzzy itemsets. In general, the membership functions may
be given by experts. However, the experts may not always be available.
Genetic-fuzzy mining approaches are then proposed to automatically mine appro-
priate membership functions. Four types of genetic-fuzzy mining approaches are
introduced, including IGFM-SMS, IGFM-MMS, DGFM-SMS and DGFM-MMS.
Most of the genetic-fuzzy approaches process with two phases. In first phase, the
genetic process is used to derive membership functions for items. In the second
phase, the fuzzy association rules are mined by the fuzzy mining approach based on
the derived membership functions. Some extended issues including fuzzy web
mining, fuzzy utility mining, incremental fuzzy mining, and parallel fuzzy mining,
are also discussed.

In recent years, along with the increase of data size, big data mining becomes an
emerging research field. Big data means that the data amount is very large, the data
types are heterogeneous, and the data variation is extremely dynamic. Extending the
efficient fuzzy mining algorithms for the big data era is thus an important issue. As
a result, we can know that fuzzy data mining will continuously grow but with a
variety of forms. Another interesting work is to develop visual tools for showing the
derived fuzzy association rules. It can help a decision maker clearly understand or
get useful information quickly. Besides, applying cloud computing or other parallel
and distributed architectures to speed up the fuzzy mining process is worth studying
as well.
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