
Software Process Improvement Roadmaps –
Using Design Patterns to Aid SME’s
Developing Medical Device Software
in the Implementation of IEC 62304

Peter Rust(&), Derek Flood, and Fergal McCaffery

Regulated Software Research Centre and Lero,
Dundalk Institute of Technology, Dundalk, Ireland

{peter.rust,derek.flood,fergal.mccaffery}@dkit.ie

Abstract. One stated objective of the European Union is to encourage SME’s
expand their area of operation into other domains. The medical device domain is
one such domain identified by the EU. Medical device software development
must be carried out in a manner that compliance with certain medical device
standards and regulations can be demonstrated. IEC 62304, Medical device
software - software life cycle processes, is a standard that defines the processes
that are required to be executed in order to develop safe software. SME software
development organizations wishing to expand their operations into the medical
device software development domain face serious challenges in demonstrating
compliance with IEC 62304. The standard describes the set of processes,
activities, and tasks that are required to be carried out, but importantly do not
describe how they should be carried out. This paper describes the development
of a roadmap that will aid software development SME’s, entering the medical
device software development domain, by the use of design patterns to generate
“How-to” artefacts, overcome the challenge of demonstrating compliance.

Keywords: SME’s � Medical device software � Medical device standards �
Regulatory compliance � Software roadmap � Software process improvement �
Software process improvement roadmaps � IEC 62304 � Design patterns

1 Introduction

In Europe, the medtech industry generates over €100 billion annually and employs
approximately 575,000 people. As many as 95 % of these companies are small to
medium enterprises (SME) [1]. SME software development organizations wishing to
enter the medical device software development arena must be able to demonstrate that
the processes, utilised in the development of the software, are compliant with IEC
62304 [2]. IEC 62304 is the Medical Device Software – software life cycle processes
standard and it is harmonised in the European Union (EU) and the United States of
America (USA). The path to regulatory compliance for software development orga-
nizations that are able to demonstrate compliance with IEC 62304 is shorter and they
will be able to market their product both in the EU and USA. However, implementing

© Springer International Publishing Switzerland 2016
P.M. Clarke et al. (Eds.): SPICE 2016, CCIS 609, pp. 43–56, 2016.
DOI: 10.1007/978-3-319-38980-6_4



IEC 62304 within a medical device software development organization is not
straightforward or easy. Höss et al. [3] describe a pilot project that they undertook to
acquire skills in implementing IEC 62304 in a hospital-based environment (in-house
manufacture). They concluded that the pilot project carried out at their facility clearly
demonstrated that the interpretation and implementation of IEC 62304 is not feasible
without appropriately qualified staff. They recognized that it could be carried out by a
small team with limited resources although the initial effort is significant and a learning
curve must be overcome.

Standalone software can now be classified as an active medical device [4]. IEC
62304 defines the life cycle requirements for medical device software. These require-
ments vary according to the safety classification assigned to the software system as
defined by requirement 4.3. The software safety class is assigned according to the
possible effects on the patient, operator, or other people resulting from a hazard to which
the software system can contribute. The software safety classes are based on severity as
follows:

Class A: no injury or damage to health is possible

Class B: non-serious injury is possible

Class C: death or serious injury is possible.

The life cycle requirements establish a common framework for medical device
software life cycle processes, but critically the standard does not state how the pro-
cesses should be implemented. SME’s in the general software development sphere will
have their own processes in place; however these may not be robust enough to satisfy
the requirements of IEC 62304. The processes in place will require improvement and
new processes will inevitably be required to be implemented.

The Capability Maturity Model® Integration (CMMI®) [5] and ISO/IEC
15504-5:2012 (SPICE) [6] are two software process improvement models that are
directed at the general software development domain. These models are not robust
enough to allow organizations achieve medical device regulatory compliance [7]. The
development of MDevSPICE® (formerly known as Medi SPICE) has filled this void
[7]. An MDevSPICE® assessment will identify the gaps that appear in an organiza-
tion’s processes, but critically, not how to fill these gaps.

During the initial research period, various methods were considered as a means for
bringing the IEC 62304 standard to SME’s developing medical device software. These
included decision trees, flowcharts, roadmaps and design patterns. After a review of the
literature and due consideration of the various methods, a roadmap was chosen as the
most appropriate method. A roadmap was subsequently developed for the implemen-
tation of IEC 62304. During the process of developing the “how-to” artefacts that form
a crucial part of the roadmap, it was noted that design patterns may have a role in
developing these artefacts. This paper explores that avenue.

The remainder of this paper is structured in the following manner: Sect. 2 describes
roadmaps and the roadmapping process. Section 3 introduces the concept of design
patterns, outlining their history, the process of creating them and describing their
structure. Section 4 presents a discussion while Sect. 5 presents the conclusions and
future work.

44 P. Rust et al.



2 Roadmaps and the Roadmapping Process

2.1 Development of the Roadmap

The definition of a roadmap for standards implementation has gone through a number
of versions before the following was decided upon: “A series of Activities, comprised of
Tasks that will guide an organisation, through the use of specific “How-to’s” towards
compliance with regulatory standards”. To generate the roadmap for IEC 62304 the
roadmap development method described by Flood et al. [8] has been applied. This
method, described below, has been revised in light of the latest definition of a roadmap.

1. Identify requirements of the standard and rephrase them as Tasks;
2. Group the Tasks into logical Activities;
3. Order the Activities into a sequence by which they can be introduced into an

organization in a rational manner;
4. Validate the generated roadmap;
5. Identify the “How-To’s” that can meet the identified Tasks;
6. Validate the “How-To’s” in a host organization.

Flood et al. [8, 9] have already applied the roadmapping process to ISO 14971 and
IEC 62366 and these roadmaps have been validated with industry experts. A roadmap
has also been developed for traceability in the medical device domain and now with the
development of an IEC 62304 roadmap, the suite is nearing completion.

2.2 Process Used to Develop the Roadmap

In step 1 as described above the standard was decomposed into its elementary
requirements and a total of 172 elementary requirements were identified. The require-
ments were then transformed into Tasks by the application of an action verb.

Taking as an example of the transformation process, IEC 62304, requirement 5.1.1
states that “the manufacturer shall establish a software development plan (or plans) for
conducting the activities of the software development process appropriate to the scope,
magnitude, and software safety classifications of the software system to be developed.”
This was transformed into a Task defined as “establish a software development plan.
The plan is for the software system to be developed (for conducting the eight activities
of the software development process), defining fully the software lifecycle model to be
utilised.”

In step 2 when the transformation of all the requirements was complete, the Tasks
were analysed for particular keywords that would aid their grouping into logical
Activities. The above Task was assigned the keyword “Planning”. A total of seven
Tasks were initially grouped according to this keyword and an Activity created titled
“Software Development Planning”. The generation of the final roadmap is described in
Rust et al. [10]. Following the roadmap generation process, a total of five Tasks were
allocated to the Software Development Planning Activity. The final allocation of Tasks
to Activities is detailed in Table 1.

Software Process Improvement Roadmaps 45



2.3 Structure of the Roadmap

The metaphor for the roadmap is detailed in Fig. 1 below. The metaphor presented
below was designed to highlight the stage at which each of the Activities may be
applied during the development of a medical device software project. It can be seen that
a number of the processes may be ongoing for the duration of the software develop-
ment process.

Each of the phases in the software development lifecycle is depicted to overlap as a
number of Tasks may be performed in parallel. Taking an example of the Software Unit
Implementation and Verification Process and the Software Detailed Design Process, it
is feasible that during the second Task of the Software Detailed Design Process –

“Document a design with enough detail to allow correct implementation of each
software unit”, the organization may commence the first Task of the Software Unit
Implementation – “Implement each software unit”.

Each task will be associated with an artefact in the “How-to” repository and will
also be context dependent (Safety Classification). The artefacts will be constructed
using design patterns as a building mechanism.

3 Design Patterns

3.1 What is a Design Pattern?

Christopher Alexander is an architect that introduced the concept of design patterns for
the design of towns, communities, buildings and homes [11]. He compiled a catalogue
of some 253 patterns to describe various elements and combinations of elements for

Table 1. Final number of tasks per activity

Ref Activity Final No of Tasks

1 QMS 1
2 RMS 1
3 Software Safety Classification 3
4 Software Development Planning Process 5
5 Software Configuration Management Process 4
6 Software Risk Management Process 9
7 Software Requirements Analysis Process 4
8 Software Architectural Design Process 10
9 Software Detailed Design Process 4
10 Software Unit Implementation and Verification Process 5
11 Software Integration and Integration Testing Process 6
12 Software System Testing Process 3
13 Software Release Process 6
14 Software Problem Resolution Process 8
15 Change Request Process 7
16 Software Maintenance Process 6

46 P. Rust et al.



repeatable architectural design. Alexander stated, “Each pattern describes a problem
which occurs over and over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice” [12].

While Alexander was talking about patterns for the design and construction of
towns, houses and buildings, the concept can be applied to the design and “construction”
of the “How-to” artefacts for standards implementation. Indeed, design patterns have
been proposed for the following other domains:

• Object orientated software design [12].
• Business Process Modelling [13].
• Real time and embedded systems [14].
• Security risk orientated patterns [15].
• Architectural design patterns (computer) [16].
• Workflow patterns [17].
• Nurse practitioner practice patterns [18].
• Behaviour design patterns [19].
• Patterns for effective use cases [20].
• Pro HTML5 and CSS3 design patterns [21].

Fig. 1. Metaphor for the Roadmap

Software Process Improvement Roadmaps 47



3.2 History of Design Patterns

Christopher Alexander describes in his “book of two halves”, A Pattern Language [11]
and A Timeless Way of Building [22], how first the gate must be constructed and on
passing through the gate the practice of building can be undertaken. Building the gate
comprises the identification of the design patterns that constitute the language. Once
that is complete the patterns are used to design and build concrete structures that are
unique to the user of the language. The patterns are based on real life experience and
can be reused time and time again without replication of a particular solution.

OOPSLA – Object-Oriented Programming, Systems, Languages, and Applications
held its first conference in 1986 [23] and about 50 papers were presented. Among the
presenters were Ralph Johnson, Ward Cunningham and Kent Beck. In 1987 Ward
Cunningham and Kent Beck were working as consultants on a Smalltalk project that
was having difficulty in completing [24]. Both had an interest in Alexander’s design
patterns. Alexander believed that the occupiers of a building should be involved in its
design. Cunningham and Beck decided to allow the users of the software to complete
the design. Cunningham developed a five pattern “language” that helped these novice
designers take advantage of Smalltalk’s strengths and avoid its weaknesses. The
experiment was successful in that the project was completed.

Erich Gamma while conducting doctoral research became intrigued by Alexander’s
work and the reusability feature of design patterns. In August of 1993 [25], Kent Beck
and Grady Booch sponsored a hillside retreat for a group of people who were also
interested in pattern languages and wanted to build on Gamma’s work. Present were
Ward Cunningham, Ralph Johnson, Ken Auer, Hal Hilderbrand, Grady Booch, Kent
Beck and Jim Coplien. The Hillside Group was established. In 1994 [24] they spon-
sored a conference on the Pattern Language of Programs (PloP-94) which was held at
Allerton Park in Monticello, Illinois, a property of the University of Illinois at Urbana
Champaign. The conference chair was Ralph Johnson and in the program chair, Ward
Cunningham. The PloP conferences are held annually to this day. The use of design
patterns in software engineering has greatly increased over the years. The book Design
Patterns: Elements of Reusable Object-Oriented Software has sold over 500,000 copies
since it was first published.

3.3 Process Used to Develop Design Patterns

A literature review conducted by the authors has unearthed various methods of
developing Pattern Languages. This section describes a number of the more prominent
methods and provides a justification of the methods selected to develop the Language.

Alexander et al. [11] describes the format adopted in writing their patterns as:

• First, there is a picture, which shows an archetypal example of the problem.
• Second, after the picture, each pattern has an introductory paragraph which sets the

context for the pattern, by explaining how it helps to complete certain larger
patterns.

48 P. Rust et al.



• The essence of the problem is then described in one or two sentences.
• The body of the problem, which is the longest section, describes the empirical

background of the pattern, the evidence for its validity and the range of ways it can
be manifested in the building.

• The solution follows in the form of an instruction – so that you know exactly what
you need to do, to build the pattern.

• The solution in the form of a labelled diagram follows indicating its main
components.

• Lastly, the links to other patterns in the language are listed.

Gamma et al. [12] start by describing the four essential elements of a pattern:

1. Name: The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two.

2. Problem: The problem describes when to apply the pattern.
3. Solution: The solution describes the elements that make up the design, their rela-

tionships, responsibilities, and collaborations.
4. Consequences: The consequences are the results and trade-offs of applying the

pattern.

Each pattern is then described using a consistent format:

• Pattern Name and Classification - The pattern’s name conveys the essence of the
pattern. The pattern’s classification falls under two headings purpose and scope.

• Intent - What does the design pattern do? What is its rationale and intent? What
particular design issue or problem does it address?

• Also Known As - Other well-known names for the pattern, if any.
• Motivation - A scenario that illustrates a design problem and how the class and

object structures in the pattern solve the problem.
• Applicability - What are the situations in which the design pattern can be applied?
• Structure - A graphical representation of the classes in the pattern using a notation

based on the Object Modelling Technique (OMT).
• Participants - The classes and/or objects participating in the design pattern and

their responsibilities.
• Collaborations - How the participants collaborate to carry out their responsibilities.
• Consequences - How does the pattern support its objectives? What are the

trade-offs and results of using the pattern?
• Implementation - What pitfalls, hints, or techniques should you be aware of when

implementing the pattern? Are there language-specific issues?
• Sample Code - Code fragments that illustrate how you might implement the pattern

in C++ or Smalltalk.
• Known Uses - Examples of the pattern found in real systems.
• Related Patterns - What design patterns are closely related to this one?

Wellhausen and Fießer [26] offer their advice in writing patterns using the door
lock as an example. Although they do not reference Alexander or Gamma, the pattern
produced is very similar to that of the patterns proposed by Alexander and Gamma,

Software Process Improvement Roadmaps 49



starting first with the name and then with a picture or diagram followed by the context,
problem, forces, solution and consequences. The sequence in which the design pattern
should be addressed is detailed in Fig. 2 below.

Cunningham [27] provides the following tips for writing a pattern language:

• Pick a whole area.
• Make a list of all the things that you have learned about the area.
• Cast each item on your list as a solution.
• Write each item as a pattern. Include four paragraphs in total, the first two separated

from the last two by the word “therefore”.
• Organise them into sections, writing a short introduction to the section and listing

each pattern in the section.
• Write an introduction to the language that hints at the forces that you will be

addressing.

Arising out of a workshop at PLoP-95, Meszaros and Doble [28] collaborated on
writing a pattern language for pattern writing. These patterns were reviewed at Plop-96
and were published in 1997.

There are recurring themes running throughout all of these contributions. With this
in mind and that the patterns to be created are for standards implementation, the
following format is being adopted:

• Name
• Software Safety Classification
• Context
• Problem
• Motivation (Forces)
• Solution
• Consequences
• Related Patterns
• ISO/IEC Reference
• Catalogue (Section)
• Alias

Fig. 2. Essential pattern sections and their writing order

50 P. Rust et al.



3.4 Structure of the Design Patterns

To demonstrate the process of writing a pattern language, using the tips for writing
pattern languages proposed by Cunningham [27], and referencing the pattern devel-
opment process described by Wellhausen and Fießer [26], the following steps were
undertaken:

1. The area chosen is standards implementation in the medical device software
development domain.

2. The standard to be implemented is IEC 62304 [6].
3. The requirements of IEC 62304 have been listed and cast as solutions.
4. The solution to the problem is to establish a software development plan.
5. The problem for which a pattern is to be written is “The software developer wants to

demonstrate compliance with requirement 5.1.1 - Establish a Software Develop-
ment Plan - for software classified as Class A.”

Solution: The solution will describe the main essential elements that are required.
The solution is not particular or specific because a pattern is like a template that can be
applied in many different situations. In this instance, the solution is the actual software
development plan for medical device software with a safety classification of Class A. In
previous research, a software development plan template was designed to take account
of all safety classifications A, B and C. This content of this template has been stripped
down to include only those elements that are essential for compliance with IEC 62304
under a Class A safety classification. The design pattern solution for medical device
software with a safety classification of Class B will only contain the additional ele-
ments that are required to achieve compliance for this safety classification. Similarly,
the solution for medical device software with a safety classification of Class C will only
contain those remaining elements that are required to complete a full software devel-
opment plan for Class C software.

Problem: The problem describes when to apply the pattern. It explains the problem
and its context. The problem for the software development team is that compliance
with IEC 62304 must be demonstrated. A physical software development plan must be
produced. IEC 62304 lists certain elements that must be addressed or referenced by the
plan. For SME’s with little or no experience in the medical device domain this can be a
daunting task. The design pattern will not only define the problem but critically will
provide a template for the solution.

Consequences: The consequences will describe the benefits and possible liabilities
of using the pattern. Consider first the benefits of using the pattern, a plan for the
medical device software development is established. The plan is safety classification
dependent. Only those requirements that are necessary are considered. The software
development team has identified only those activities of the software development
process that are required for the particular safety classification and by means of the
roadmap will be able to address these in a timely manner.

Secondly the liabilities must be considered. Planning is an iterative process. Failure to
keep the plan up-dated may have detrimental consequences. The software development

Software Process Improvement Roadmaps 51



plan will include or reference certain other plans that are required by other activities and
processes. As the software development proceeds, these plans will evolve and quite
possibly change. Keeping the software development plan updated and circulated to all
members of the team will ensure that every member of the team knows what artefacts are
current. Failure may lead to members of the team using outdated artefacts.

Motivation (Forces): The reasons why the solution is required. The motivation
will mirror the consequences. A software development plan is a necessary artefact to
demonstrate compliance with IEC 62304. The software development plan requires that
certain identified tasks be undertaken. The resources required to undertake the devel-
opment must be identified and put in place. Failure to plan and failure to resource the
development adequately will result in failure to achieve regulatory compliance.

Context: What is the situation when the pattern can be applied? List the elements
that have already been completed. Referencing the roadmap, it can be established
which elements that will be already underway at the point in time that the software
development plan is required to be in place. The quality management, risk management
and software configuration management processes will have commenced. The software
system will have been assigned a safety classification of A, B or C. The level of
planning required will vary depending on the safety classification assigned. In this
instance a safety classification of Class A has been assigned, so only the design pattern
for Class A software development plan need be considered.

Name: The pattern name is used to describe the problem, its solution and conse-
quences in a short sentence. Naming a pattern in this way allows the user to easily find
the correct pattern. The context can be established and work can start on the solution.
The name chosen in this instance is - Establish Software Development Plan for a safety
classification of Class A.

Catalogue: The catalogue will be used to group patterns in a meaningful way, so
that the user can quickly see other patterns that may be useful. In this case the design
pattern will be filed under the Planning entry in the catalogue.

Related Patterns: 5.2. Update the software development plan. 5.4. Identify sup-
porting items. 5.5. Plan configuration items management control. X.X Documentation
Plan.

IEC References: IEC 62304 requirement 5.1.1 The manufacturer shall establish a
software development plan (or plans) for conducting the activities of the software
development process appropriate to the scope, magnitude, and software safety classi-
fications of the software system to be developed. The software development life cycle
model shall either be fully defined or be referenced in the plan (or plans).

Alias: There are no known aliases at this time.
Artefact: The template for the software development plan for medical device

software with a safety classification of Class A, which is compliant with IEC 62304,
comprises twenty pages. Only those elements that are required by specific requirements
are included. The elements are gathered in sections as detailed Rust et al. [29]. The
contents page is reproduced hereunder (Fig. 3).

The Final Pattern: The final pattern comprises all the eleven sections described
above, and detailed in Fig. 4 below.

52 P. Rust et al.



Fig. 3. Contents page from software development plan template Class A

Fig. 4. The final pattern

Software Process Improvement Roadmaps 53



4 Discussion

IEC 62304 defines the processes required for the development of safe software for the
medical device domain but does not tell the organization “how to” implement the
processes. The generated roadmap, together with the “how-to” artefacts, when com-
pleted will fill this gap. The “how-to” artefacts will be developed using design patterns
as described above. Each step on the roadmap will reference an appropriate design
pattern that will contain the basic information that will guide the software development
team in the implementation of the process. The software development team need only
choose those processes which they require, which in turn will only reference the design
patterns that are relevant to the software safety class of the medical device software.
The software development team will be familiar with the concept of design patterns and
will therefore be better positioned to understand and use the design patterns presented
to them. The combination of the roadmap and the design patterns will guide the
software development team in the production of the artefacts that will aid them in
demonstrating compliance with the regulatory requirements.

5 Conclusions and Future Work

One of the stated objectives of the EU is to encourage software development SME’s to
enter other domains. Medical device software development is one such domain.
However, the medical device software development domain is strictly regulated. The
regulatory standards provide a description of all the necessary processes that must be
planned for, executed and that the results of the execution are recorded and documented.
The documents will be audited and compliance with the regulations and standards will
be determined by the results of the audit. How to plan, execute and document their
processes is the challenge for SME’s entering the medical device software domain. The
design patterns that identify the “how-to” element of the processes combined with the
roadmap, will guide the SME’s along the path to regulatory compliance in a timely and
planned manner.

The roadmap is currently being validated by industry experts. The next stage of this
work is to create more design patterns to help build additional “How-to” artefacts and
have them trialled in SME medical device software development organizations that are
new to the medical device domain.

Acknowledgement. This research is supported by the Science Foundation Ireland Principal
Investigator Programme, grant number 08/IN.1/I2030 and by Lero - the Irish Software Research
Centre (http://www.lero.ie) grant 10/CE/I1855 & 13/RC/20194.

References

1. About the Medtech sector | IMDA. http://www.imda.ie/Sectors/IMDA/IMDA.nsf/vPages/
Medtech_sector*about-the-medtech-sector!OpenDocument. Accessed 23 Feb 2016

54 P. Rust et al.

http://www.lero.ie
http://www.imda.ie/Sectors/IMDA/IMDA.nsf/vPages/Medtech_sector%7eabout-the-medtech-sector!OpenDocument
http://www.imda.ie/Sectors/IMDA/IMDA.nsf/vPages/Medtech_sector%7eabout-the-medtech-sector!OpenDocument


2. IEC: IEC 62304:2006 - Medical device software – Software life cycle processes. ISO,
Geneva, Switzerland (2006)

3. Höss, A., Lampe, C., Panse, R., Ackermann, B., Naumann, J., Jäkel, O.: First experiences
with the implementation of the European standard EN 62304 on medical device software for
the quality assurance of a radiotherapy unit. Radiat. Oncol. 9, 10 (2014)

4. McHugh, M., McCaffery, F., Casey, V.: Standalone software as an active medical device. In:
O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) SPICE 2011. CCIS, vol. 155,
pp. 97–107. Springer, Heidelberg (2011)

5. CMMI Product Team (2010), Capability Maturity Model® Integration for Development
Version 1.2. Software Engineering Institute, Pittsburch, PA (2010)

6. ISO/IEC: ISO/IEC 15504-5, Information technology - Process Assessment - Part 5: An
Exemplar Process Assessment Model. ISO, Geneva, Switzerland (2012)

7. McCaffery, F., Dorling, A.: Medi SPICE development. Softw. Process Maint. Evol. Improv.
Pract. J. 22(4), 255–268 (2010)

8. Flood, D., McCaffery, F., Casey, V., McKeever, R., Rust, P.: A roadmap to ISO 14971
implementation. J. Softw. Process Evol. 27(5), 319–336 (2015)

9. Flood, D., McCaffery, F., Casey, V., Regan, G.: A methodology for software process
improvement roadmaps for regulated domains – example with IEC 62366. In: McCaffery, F.,
O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364, pp. 25–35. Springer,
Heidelberg (2013)

10. Rust, P., Flood, D., McCaffery, F.: Software process improvement & roadmapping – a
roadmap for implementing IEC 62304 in organizations developing and maintaining medical
device software. In: Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2015. CCIS,
vol. 526, pp. 19–30. Springer, Heidelberg (2015)

11. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. OUP USA (1977)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education, Upper Saddle River (1994)

13. Atwood, D.: BPM process patterns: repeatable design for BPM process models. BP Trends,
May 2006

14. Douglass, B.P.: Doing Hard Time: Developing Real-time Systems with UML, Objects,
Frameworks, and Patterns. Addison-Wesley Professional, Boston (1999)

15. Ahmed, N., Matulevičius, R.: Securing business processes using security risk-oriented
patterns. Comput. Stand. Interfaces 36(4), 723–733 (2014)

16. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture. Patterns for Concurrent and Networked Objects. Wiley, New York (2013)

17. van Der Aalst, W.: Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)
18. Fain, J., Melkus, G.: Nurse practitioner practice patterns based on standards of medical care

for patients with diabetes. Diabetes Care 17, 879–881 (1994)
19. Taylor, G., Wray, R.: Behavior design patterns: engineering human behavior models. Ann

Arbor (2004)
20. Adolph, S., Cockburn, A., Bramble, P.: Patterns for effective use cases (2002)
21. Bowers, M., Synodinos, D., Sumner, V., Zack, A.: Pro HTML5 and CSS3 Design Patterns

(2011)
22. Alexander, C.: The Timeless Way of Building - Christopher Alexander. OUP USA (1979)
23. OOPSLA. http://www.oopsla.org/oopsla-history/. Accessed 25 Feb 2016
24. History of Patterns. http://www.c2.com/cgi/wiki?HistoryOfPatterns. Accessed 04 Feb 2016
25. The Hillside Group - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/The_

Hillside_Group. Accessed 26 Feb 2016

Software Process Improvement Roadmaps 55

http://www.oopsla.org/oopsla-history/
http://www.c2.com/cgi/wiki?HistoryOfPatterns
https://en.wikipedia.org/wiki/The_Hillside_Group
https://en.wikipedia.org/wiki/The_Hillside_Group


26. Wellhausen, T., Fießer, A.: How to write a pattern. In: European Conference on Pattern
(2011)

27. Cunningham, W.: Tips For Writing Pattern Languages (1994). http://www.c2.com/cgi/wiki?
TipsForWritingPatternLanguages. Accessed 02 Feb 2016

28. Meszaros, G., Doble, J.: A pattern language for pattern writing. Pattern Lang. Progr. Des. 3,
529–574 (1998)

29. Rust, P., Flood, D., McCaffery, F.: Creation of an IEC 62304 compliant Software
Development Plan. In: EuroasiaSPI (2015)

56 P. Rust et al.

http://www.c2.com/cgi/wiki?TipsForWritingPatternLanguages
http://www.c2.com/cgi/wiki?TipsForWritingPatternLanguages

	Software Process Improvement Roadmaps – Using Design Patterns to Aid SME’s Developing Medical Device Software in the Implementation of IEC 62304
	Abstract
	1 Introduction
	2 Roadmaps and the Roadmapping Process
	2.1 Development of the Roadmap
	2.2 Process Used to Develop the Roadmap
	2.3 Structure of the Roadmap

	3 Design Patterns
	3.1 What is a Design Pattern?
	3.2 History of Design Patterns
	3.3 Process Used to Develop Design Patterns
	3.4 Structure of the Design Patterns

	4 Discussion
	5 Conclusions and Future Work
	Acknowledgement
	References


