
Smart Requirements: How Smart Can They Get?

Danilo Assmann(✉)

Vector Informatik GmbH, Ingersheimer Str. 24, 70499 Stuttgart, Germany
danilo.assmann@vector.com

Abstract. In current practice requirements engineering is a text based process.
The available theory and tools do not address the internal elements–the semantic
structure–of requirements. We present an approach to extract a first domain
model, which can also serve as basis for the system architecture, directly from
the requirements. Besides the model, the approach provides also new and
insightful metrics, which focus on product characteristics instead of process char‐
acteristics. The model and metrics can be used to fulfill the SPiCE (and Auto‐
motiveSPICE 3) requirements, concerning consistency and completeness of
requirement specifications.

Keywords: Requirements · SPiCE (ISO15504/ISO330xx) · AutomotiveSPICE 3 ·
Consistency · Model

1 What Is Wrong with Current Requirements Engineering?

One of the basic beliefs of software engineering still is that requirements are useful.
They have an important influence on the final product. Actually they define and shape
the product and capture the customer expectation in a reliable form [1, 2].

Coming back to the question in the header: nothing is wrong. But we can do more. We
can improve our understanding of the requirements engineering process, and we can
improve the usefulness of the requirements related work products. We need to make them
worthwhile so developers can see and feel the advantage to create and maintain them.

Despite their importance, the way we treat requirements is not very advanced. Basi‐
cally we can distinguish two existing engineering directions:

– usage of patterns (simplified grammar) [3–6]
– improved writing (clear terms and data dictionaries) [7, 8]

Even applying these techniques still leave requirements quite dumb text. This reflects
also the current tooling: we can count and prioritize requirements. We can give them
attributes, we can link text blocks. But actually not much has changed from using good
old Word. We have sentences, paragraphs, and a lack of logic; with slightly improved
usability.

Sure, there is also the area of formal specification (e.g., Z, VDM, B). Which is fasci‐
nating, amazingly complex, and still has little practical influence. [11–13].

Nevertheless, we can learn something from the usage of formal specification, and
also from the successful application of function points:

© Springer International Publishing Switzerland 2016
P.M. Clarke et al. (Eds.): SPICE 2016, CCIS 609, pp. 431–436, 2016.
DOI: 10.1007/978-3-319-38980-6_32



– requirements describe the behavior (functionality) of the system
– everything we need to build the system, and understand the domain, is already in the

requirements

In my own words: the requirements already contain a (in-complete) model of the
application domain and the system (software).1

So how can we improve requirements engineering based on this knowledge? How
can requirements become smart? And what does smart mean anyhow? Simple benefits
of being smart should be:

– a complete and working data dictionary or object hierarchy
– completeness (per requirements, but also for the specification)
– consistency (for the specification and with other work products)
– freedom of conflict (for the specification)
– compliance to AutomotiveSPICE 3 and ISO 26262

That’s what we want to achieve, when we make our requirements smart. Our
approach to smartness relies on three techniques, which combine proven approaches
with new ideas:

– usage of (domain specific) patterns
– domain-specific language (terms)
– explicit extraction of the semantic model

2 Our Concept

2.1 Why Do You Amplify “Domain Specific”?

For conferences and generic tool provider it is very nice to talk on an abstract level. But
in practice most of the time life is much easier: you can be concrete. You have a given
context. And when you build your model, based on this context you can make a lot of
assumptions, which will simplify your life.

So in practice you will have only certain patterns of requirements. You will also have
certain objects, messages, mechanisms, architectures. From what we learned so far, you
can cluster your domain context in:

– software at runtime
– states (in case of finite state machines)
– messages, events
– data and data access
– runtime environment (other objects including hardware and other software)
– build environment (including configuration of the software)
– process (logical flow; technical process of the domain)

1 Why incomplete? Many things we expect from the system are just basic needs, which are not
specified anymore. It is basic knowledge of the domain. Refer to the Kano model for deeper
insight on this topic [9, 10].

432 D. Assmann



The objects in the last three groups will be specific to the topic (domain); and some
of the others also. So it is not possible to provide a standard dictionary. Based on our
experience the built up of such a dictionary does not take long.

The relations (defined by the verbs) follow the context. For generic contexts (data
access, software, messages) we propose to use a generic standard set, with a minimal
set of actions. They all should be clear and redundancy free defined.

E.g., “check” and “validate” have some overlap. So use only one of them, or use a
third more clear/precise term.

2.2 What About Our Patterns?

Now we provide a short insight into our approach. Based on the needs from complying with
the safety standard we provided a set of basic patterns (top-down). These patterns where
applied in several AUTOSAR components. Basically we can distinguish three areas of
patterns:

– services (functionality used via API, callback, callout)
– e.g., <Subject> shall provide a service to <functionality>

– states (description of a finite state machine)
– e.g., <Subject> shall provide a mode to <state>

– use cases (all pre-build and post-build configuration)
– e.g., <Subject> shall be used in <scenario>

The next step was to take a sample (around 10 %) of used specifications and analyze
the real-world requirements and refine the patterns. We did this in two steps:

(1) extracting refined patterns from the examples. E.g., Object - <pattern indicator> -
relation - [definition] - attribute - object2

(2) After having the sample and the application distribution of patterns, we could derive
meta-patterns (grammar): e.g., Object - [[object - condition] - relation - [definition]
- [attribute] - object]

By additionally applying a simple writing guide, the readability of requirements
improves. The structure helps to make clear what should happen through this require‐
ment. It simplifies the process of writing, because you know what to place where.

Requirements for a safety process complying with ISO 26262 demand semi-formal
notations (ASIL C and D). Our patterns fulfill this requirement. So we do not use formal
specification, but a reduced set of words and grammar of natural language.

2.3 Does Semantics Mean Smart?

Now we become real “smart” by going to the next level. The refined patterns allow us
to recognize (and check) the relevant elements of a requirement. This allows us to access
the inner structure of a requirement and create a kind of a model.

2 <pattern indicator> is the predefined text segment from our basic patterns above.

Smart Requirements: How Smart Can They Get? 433



The model gives us possibility to transform the text into a graph. A graph shows the
inherent structure of a requirement and also of a requirement specification. It is a sketch
of the natural architecture. This changes also the perspective: instead of looking at
requirements, the defined objects are the main elements of the model. The requirements
provide only different views of object relation.

The object based view has the advantage that all relations to an object can be seen
in one place, even if they are scattered through the whole document (or several docu‐
ments). This simplifies the review for consistency and completeness (also in case of state
machines). That is requirements “engineering”. Not just read and check. So how does
this work?

Fig. 1. Simple example for requirement with markup.

Basically we do two things: remove the basic pattern elements (and other phrases)
and tag the words following the grammar of the sentence (Fig. 1).

As you can see in the examples the tagging is quite easy (Figs. 1 and 2). You do it
sentence by sentence and the number of objects and relations is limited by the natural
length.

Some direct benefits while doing it manually:

– deep check on patterns: how many requirements conform to which pattern? Justify
with clear reasons all deviations from pattern.

– build and maintain a data dictionary: build up the data dictionary including an object
model (hierarchy)

– relation check: keep your writing clear and tidy; also for the verbs. Do the same words
(verbs) have same meaning, and have different words always different meaning. It is
possible to create a white-list, which covers the common terms (Fig. 2).

Fig. 2. Medium complexity requirement example.

2.4 Tooling

So up to now it is quite boring manual work, with high maintenance effort if you have
to do it again for a new version of a specification.

The idea was to support this process with a very simple tooling. Which are around
100 lines of Java code.

It works completely text based (just text replace) and has currently no support for
natural language processing. It performs a cleanup of unnecessary text, replaces matches

434 D. Assmann



with tags and counts and removes unused elements. As final output the tool provides
tagged text. We use simple hash-tags with type identifier. During the learning process
different output is possible, such as the not used words.

Besides the output, which can easily be translated in GraphViz syntax, it provides
some metrics. We use it as a transformation tool (input to output) with a given threshold,
so it reports after each run, if the transformation is “passed” or “failed” (Fig. 3).

Fig. 3. Simple example of a generated requirement model.

2.5 Graph and Metrics

One advantage of the content based transformation of requirements into a model is that
we can draw charts. And we can get these charts without any additional effort. They are
kind of a side-effect. The chart gives you immediate feedback on the complexity and
structure of your specification, and this in one page (Fig. 3). Basic metrics are visualized:
#objects (#objects per requirement), #states, #levels (depth of requirements), #condi‐
tions, #relation (and the linkage [the edges]), #areas of cohesion. Based on these factors
every requirement specification can be characterized. They define an individual “flavor”.
They have a characteristic on first sight.

3 Conclusion and Outlook

As mentioned throughout the paper, we haven’t done but our first steps. So we still need
more experience.

• Still learning: first we need to understand deviations in the process, then we will really
understand the product.

Smart Requirements: How Smart Can They Get? 435



• Improve tooling, if necessary: in commercial tooling NLP support needs to be
provided. This will be still fast enough, but will give more precise results and much
easier handling. E.g., the automation can be much higher during learning phase.

• Support for data dictionaries/object models: currently we rely only on word lists.
From process modeling we have a lot of experience how to build hierarchical models.
This can also be applied here.

• Diffs on versions: re-read for new versions of specifications will be fast (no effort)
and allow checks on the model. So we can evaluate if there are relevant/risky changes.

• Integration with agile (e.g., SBE or BDS) practices: the notion would be to generate
the headers of the data tables directly out of the requirements (objects/attributes/
environment/states/…). And with changes you can easily see if relevant elements
were added or removed.

References

1. ISO 33060
2. ISO 12207 (2008)
3. Hagge, L., Houdek, F., Lappe, K., Paech, B.: Using patterns for sharing requirements

engineering process rationales. In: Dutoit, A.H., McCall, R., Mistrík, I., Paech, B., et al. (eds.)
Rationale Management in Software Engineering, vol. 1. Springer, Heidelberg (2006)

4. Konrad, S., Cheng, B.H.C.: Requirements patterns for embedded systems. In: Proceedings
of the 10th Anniversary IEEE Joint International Conference on Requirements Engineering,
pp. 127–136 (2002)

5. van Lamsweerde, A.: Requirements engineering in the year 00: a research perspective. In:
Proceedings of the 22nd international conference on Software engineering, pp. 5–19, New
York (2000)

6. Coplien, J.O.: Software design patterns: common questions and answers. In: Rising L. (ed.)
The Patterns Handbook: Techniques, Strategies, and Applications, pp. 311–320 (1998)

7. Houdek, F.: Messung in der Erstellung und Prüfung von Lastenheften, Metrikon (2014)
8. Houdek, F.: Anforderungen verbessern mit DESIRe, REConf (2008)
9. Noriaki, K., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must-be quality. J.

Japanese Soc. Quality Control (in Japanese) 14(2), 39–48 (1984). ISSN: 0386-8230
10. Cadotte, E.R., Normand, T.: Dissatisfiers and satisfiers: suggestions from consumer

complaints and compliments. J. Consum. Satisfaction, Dissatisfaction Complaining Behavior
1, 74–79 (1988). ISBN: 0-922279-01-2, ISSN: 0899-8620

11. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application of B in
a large project. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 369–387.
Springer, Heidelberg (1999)

12. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifications: a theory
and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

13. Clarke, E.M., Wing, J.M., et al.: Formal methods: state of the art and future directions. ACM
Comput. Surv. 28(4), 626–643 (1996)

436 D. Assmann


	Smart Requirements: How Smart Can They Get?
	Abstract
	1 What Is Wrong with Current Requirements Engineering?
	2 Our Concept
	2.1 Why Do You Amplify “Domain Specific”?
	2.2 What About Our Patterns?
	2.3 Does Semantics Mean Smart?
	2.4 Tooling
	2.5 Graph and Metrics

	3 Conclusion and Outlook
	References


