
123

Dimitrios Kotzinos
Yeow Wei Choong
Nicolas Spyratos
Yuzuru Tanaka (Eds.)

9th International Workshop, ISIP 2014
Kuala Lumpur, Malaysia, October 9–10, 2014
Revised Selected Papers

Information Search,
Integration
and Personalization

Communications in Computer and Information Science 497

Communications
in Computer and Information Science 497

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Dimitrios Kotzinos • Yeow Wei Choong
Nicolas Spyratos • Yuzuru Tanaka (Eds.)

Information Search,
Integration
and Personalization
9th International Workshop, ISIP 2014
Kuala Lumpur, Malaysia, October 9–10, 2014
Revised Selected Papers

123

Editors
Dimitrios Kotzinos
Lab. ETIS, Sciences Informatiques
Université de Cergy-Pontoise
Pontoise
France

Yeow Wei Choong
HELP University
Kuala Lumpur
Malaysia

Nicolas Spyratos
LRI
University of Paris South
Orsay
France

Yuzuru Tanaka
Information Science, Knowledge Media Lab
Hokkaido University
Sapporo, Hokkaido
Japan

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-38900-4 ISBN 978-3-319-38901-1 (eBook)
DOI 10.1007/978-3-319-38901-1

Library of Congress Control Number: 2016938668

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This book contains the selected research papers presented at ISIP 2014, the ninth
International Workshop on Information Search, Integration and Personalization. The
workshop was held at HELP University, Kuala Lumpur, Malaysia, during October
9–10, 2014.

In addition to a keynote speech given by Professor Kimihito Ito (Hokkaido
University, Sapporo, Japan), there were 19 presentations of scientific papers, of which
10 were submitted to the post-workshop peer-review process. The international Pro-
gram Committee selected six papers to be included in the proceedings. This year we
also had an invited paper, allowing us to extend the reach of the workshop to subjects
not presented in the workshop but that are on the edge of the research area.

The themes of the presented papers reflected today’s diversity of research topics as
well as the rapid development of interdisciplinary research. With increasingly
sophisticated research in science and technology, there is a growing need for inter-
disciplinary and international availability, distribution, and exchange of the latest
research results, in organic forms, including not only research papers and multimedia
documents, but also various tools developed for measurement, analysis, inference,
design, planning, simulation, and production as well as the related large data sets.
Similar needs are also growing for the interdisciplinary and international availability,
distribution, and exchange of ideas and works among artists, musicians, designers,
architects, directors, and producers. These contents, including multimedia documents,
application tools, and services, are being accumulated on the Web, as well as in local
and global databases, at a remarkable speed that we have never experienced with other
kinds of publishing media. Large amounts of content are now already on the Web,
waiting for their advanced personal and/or public reuse. We need new theories and
technologies for the advanced information search, integration through interoperation,
and personalization of Web content as well as database content.

The ISIP 2014 workshop was organized to offer a forum for presenting original
work and stimulating discussions and exchanges of ideas around these themes,
focusing on the following topics:

– Information search in large data sets (databases, digital libraries, data warehouses)
– Comparison of different information search technologies, approaches, and

algorithms
– Novel approaches to information search
– Personalized information retrieval and personalized Web search
– Data analytics (data mining, data warehousing)
– Integration of Web-services, knowledge bases, digital libraries
– Federation of smart objects

ISIP started as a series of Franco-Japanese workshops in 2003, and its first edition
was placed under the auspices of the French embassy in Tokyo, which provided the

financial support along with the JSPS (Japanese Society for the Promotion of Science).
Up until 2012, the workshops alternated between Japan and France, and attracted
increasing interest from both countries. The following shows the history of past ISIP
workshops:

– 2003: First ISIP in Sapporo (June 30–July 2, Meme Media Lab, Hokkaido
University, Japan)

– 2005: Second ISIP in Lyon (May 9–11, University Claude Bernard Lyon 1, France)
– 2007: Third ISIP in Sapporo (June 27–30, Meme Media Laboratory, Hokkaido

University, Japan)
– 2008: 4th ISIP in Paris (October 6–8, Tour Montparnasse, Paris, France)
– 2009: 5th ISIP in Sapporo (July 6–8, Meme Media Laboratory, Hokkaido

University, Japan)
– 2010: 6th ISIP in Lyon (October 11–13, University Claude Bernard Lyon 1, France)
– 2012: 7th ISIP in Sapporo (October 11–13, Meme Media Lab, Hokkaido Univer-

sity, Japan)
– 2013: 8th ISIP in Bangkok (September 16–18, Centara Grand & Bangkok Con-

vention Centre CentralWorld Bangkok, Thailand).

Originally, the workshops were intended for a Franco-Japanese audience, with
the occasional invitation of researchers from other countries as keynote speakers. The
proceedings of each workshop were published informally, as a technical report of the
hosting institution. One exception was the 2005 workshop, selected papers of which
were published by the Journal of Intelligent Information Systems in its special issue for
ISIP 2005 (Vol. 31, Number 2, October 2008). The original goal of the ISIP workshop
series was to create close synergies between a selected group of researchers from the
two countries; and indeed, several collaborations, joint publications, and joint student
supervisions and research projects originated from participants of the workshop.

After the first six workshops, the organizers concluded that the workshop series had
reached a mature state with an increasing number of researchers participating every
year. As a result, the organizers decided to open up the workshop to a larger audience
by inviting speakers from over ten countries at ISIP 2012, ISIP 2013, and ISIP 2014.
The effort to attract an even larger international audience will continue in the years to
come. This year and last year in particular, an extensive effort was made to include in
the Program Committee academics coming from around the globe, giving the work-
shop an even more international character and disseminating its information and results
globally. We expect this to have an important effect in the participation of the work-
shop in the years to come.

The selected papers contained in this book are grouped into three major topics,
namely, information management (where the invited paper is also incuded), informa-
tion discovery, and knowledge management applications on the web and the cloud;
they span major topics in information management research, both modern and
traditional.

VI Preface

We would like to express our appreciation to all the staff members of the organizing
institution for the help, kindness, and support before during and after the work-
shop. And of course we would like to cordially thank all speakers and participants of
ISIP 2014 for their intensive discussions and exchange of new ideas. This book is an
outcome of those discussions and exchanged ideas.

January 2015 Yeow Wei Choong
Nicolas Spyratos
Yuzuru Tanaka

Preface VII

Organization

ISIP 2014 was organized by the HELP University, Kuala Lumpur, Malaysia.

Executive Committee

Co-chairs

Yeow Wei Choong HELP University, Malaysia
Nicolas Spyratos Paris-Sud University, France
Yuzuru Tanaka Hokkaido University, Japan

Program Committee Chair

Dimitris Kotzinos University of Cergy-Pontoise, France

Local Organization

Yeow Wei Choong HELP University, Malaysia

Publicity

Yeow Wei Choong HELP University, Malaysia
Gilbert Ooi Sin Cheak HELP University, Malaysia

Program Committee

Adriani, Mina University of Indonesia, Indonesia
Amann, Bernd LIP6/UPMC, France
Ba, Hung-Ngo Can Tho University, Vietnam
Boursier, Patrice L3i/University of La Rochelle, France
Choong, Yeow-Wei HELP University, Malaysia
Christophides, Vassilis University of Crete, Greece
Darmont, Jerome ERIC/University Lumière Lyon 2, France
d’Orazio, Laurent LIMOS/Clermont University - University Blaise

Pascal, France
Guillet, Fabrice LINA/Polytech Nantes, France
Imura, Hajime Hokkaido University, Japan
Ito, Kimihito Hokkaido University, Japan
Jen, Tao-Yuan ETIS/University of Cergy Pontoise, France
Kawtrakul, Asanee Kasetsart University, Thailand
Kritikos, Kyriakos ICS-FORTH, Greece
Laurent, Dominique ETIS/University of Cergy Pontoise, France
Lucchese, Claudio ISTI-CNR, Italy
Marinica, Claudia ETIS/University of Cergy Pontoise, France
Petit, Jean-Marc LIRIS/University of Lyon, France

Santos, Maribel Yasmina University of Minho, Portugal
Sellis, Timos Swinburne University of Technology, Australia
Simovici, Dan University of Massachusetts, USA
Spyratos, Nicolas LRI/University of Paris South, France
Sugibuchi, Tsuyoshi Internet Memory Foundation, France
Tanaka, Yuzuru Hokkaido University, Japan
Vodislav, Dan ETIS/University of Cergy Pontoise, France

X Organization

Contents

Information Management

Efficient Identification of the Highest Diversity Gain Object. 3
Dimitris Sacharidis and Timos Sellis

Dualization on Partially Ordered Sets: Preliminary Results 23
Lhouari Nourine and Jean Marc Petit

Continuous Top-k Processing of Social Network Information Streams:
A Vision . 35

Abdulhafiz Alkhouli, Dan Vodislav, and Boris Borzic

Information Discovery

Mining Frequent and Homogeneous Closed Itemsets 51
Ines Hilali, Tao-Yuan Jen, Dominique Laurent, Claudia Marinica,
and Sadok Ben Yahia

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 66
Tao-Yuan Jen, Claudia Marinica, and Abir Ghariani

Knowledge Management Applications on the Web and the Cloud

Webble World 3.0: In the Borderland Between Being a
User or a Developer . 85

Micke Kuwahara and Yuzuru Tanaka

Cloud Based Processing Services Based on Linked Data 97
Elias Grinias and Dimitris Kotzinos

Author Index . 113

http://dx.doi.org/10.1007/978-3-319-38901-1_1
http://dx.doi.org/10.1007/978-3-319-38901-1_2
http://dx.doi.org/10.1007/978-3-319-38901-1_3
http://dx.doi.org/10.1007/978-3-319-38901-1_3
http://dx.doi.org/10.1007/978-3-319-38901-1_4
http://dx.doi.org/10.1007/978-3-319-38901-1_5
http://dx.doi.org/10.1007/978-3-319-38901-1_6
http://dx.doi.org/10.1007/978-3-319-38901-1_6
http://dx.doi.org/10.1007/978-3-319-38901-1_7

Information Management

Efficient Identification
of the Highest Diversity Gain Object

Dimitris Sacharidis1(B) and Timos Sellis2

1 Technische Universität Wien, Vienna, Austria
dimitris@ec.tuwien.ac.at

2 RMIT University, Melbourne, Australia
timos.sellis@rmit.edu.au

Abstract. Diversification has recently attracted a lot of attention, as
a means to retrieve objects that are both relevant to a query and suffi-
ciently dissimilar to each other. Since it is a computationally expensive
problem, greedy techniques that iteratively identify the most promising
objects are typically used. We focus on the sub-task within one iteration
and formalize it as the highest diversity gain problem. We show that it
is possible to optimally solve such problems, by appropriately defining
a novelty function and identifying the object with the highest novelty.
Furthermore, we are able to determine parts of the search space than
cannot contain promising objects. Based on these results, we propose a
greedy diversification algorithm that iteratively invokes a procedure to
determine the most novel object. This procedure uses an index to guide
the search towards promising objects, and computes bounds to prune
large parts of the space. As a result, the procedure is shown to be I/O
optimal, under certain conditions, and experimental studies on real and
synthetic data demonstrate its efficiency.

1 Introduction

Conventional information retrieval systems return a set of objects that has the
highest relevance to a given user query. However, in various situations, such a
result set can be of little help to the user, e.g., when the universe of objects is
huge and objects contain overlapping or duplicate information, when the query
terms are vague and the actual intent of the user is unknown. To increase the
usefulness of the result set, a better approach, termed diversification, suggests
returning objects that are both relevant to the query and diverse, i.e., dissimilar
to each other.

Although they come in various flavors, relevance and diversity generally pose
contradictory objectives. The former favors objects similar to the query, while the
latter favors objects dissimilar to each other and thus to the query. Therefore,
diversification aims to strike a balance between them. In the most common
interpretations, the weighted sum of relevance and diversity is defined to be the
target optimization function, and the diversification problem is stated as finding
a set of objects that maximizes this function.
c© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-38901-1 1

4 D. Sacharidis and T. Sellis

Diversification is significantly more expensive than top-k ranking, and it is
shown to be NP-hard. Therefore, a simple greedy approach is universally adopted
in the literature. Starting with an empty result set, iteratively insert in the set
the highest diversity gain object, i.e., the one that maximizes the optimization
function computed on the set after the insertion. We segregate the sub-task
within one iteration of the greedy approach, and refer to it as the highest diversity
gain problem.

While there has been an abundance of works on diversification problems,
surprisingly little effort has been devoted to studying the highest diversity gain
problem. For the majority of works, efficiency is not an issue, and the highest gain
object is simply identified after retrieving and exhaustively examining all relevant
objects. On the other hand, this work attempts to address this overlooking and
aims to attract further attention to the highest diversity gain problem, similarly
to recent works in top-k diversification [8,16].

Our work focuses on a broad class of diversification problems, formalizing
different definitions of relevance and diversity, computed over sets of attributes,
which may or may not overlap. We show that, for this class, it is possible to define
a novelty function that assigns a score to each object, such that the most novel
object is the one with the highest diversity gain. Then, we study this function
to gather insight on the possible location of the highest diversity gain object.

Building upon our findings, we propose a simple algorithm, termed DIV, that
iteratively invokes the Novelty (NOV) procedure for solving the highest diversity
gain problem. NOV utilizes a multidimensional index storing all objects, in order
to guide the search towards the most novel object, while avoiding parts of the
space that contain unpromising objects. Particularly, NOV computes an upper
and lower bound on the novelty of all object within an index node, and makes
simple observations to eliminate index subtrees. Therefore, without scanning
the entire collection of objects, NOV is able to quickly identify the most novel
one. In fact, we show that under certain conditions NOV is I/O optimal, i.e., it
performs the fewest possible node accesses among any other algorithm that solves
the highest diversity gain problem and operates on the same index. Experimental
results on real and synthetic data, verify the efficiency of DIV, and show that it
is at least an order of magnitude faster than a greedy diversification method [8]
and a simple linear scan-based algorithm.

The remainder of this paper is structured as follows. Section 2 reviews related
work. Section 3 introduces all concepts and formally states the diversification and
highest diversity gain problems. Section 4 presents our approach to the afore-
mentioned problems and details the NOV procedure and the DIV algorithm.
Section 5 presents our experimental study, and Sect. 6 concludes this paper.

2 Related Work

The need for diversification arises in information retrieval (IR) systems, where
for example [3] proposes a reranking approach in order to boost the utility of the
search results. Their greedy approach assigns a score to each document, termed

Efficient Identification of the Highest Diversity Gain Object 5

maximal marginal relevance (MMR), which is used to incrementally retrieve
documents. MMR is a weighted combination of relevance and diversity and plays
the role of a novelty function (similar to Eq. 2 with the difference that the first
term does not consider the diversity of the set O). The authors, however, do
not define a global score for a collection of documents, and do not propose any
algorithm for finding the MMR.

Subsequent works address different variations of IR diversification. The work
of [1] addresses the ambiguity in a user’s query, assuming a taxonomy that mod-
els the information within queries and documents is available. The relevance of
documents is defined with standard metrics, whereas the diversity is computed
using the taxonomy. The proposed greedy algorithm returns a set of documents
that cover various topics of interest from the taxonomy. In a similar spirit, [19]
proposes a method to diversify query results in online shopping applications.
In this scenario, the products are classified, and the goal is to design an effi-
cient method to return diverse products with respect to an ordering among
the attributes of the classification. To improve result diversification, [5] defines
diversity using multiple criteria: anchor texts, query logs, search result clusters
and hosts. Their reranking approach defines a composite similarity function over
these diversity criteria. The work of [2] targets performance in diversity-aware
search. They avoid reranking all relevant documents, by proposing a data access
prioritization scheme, in the spirit of [7], that cleverly alternates among five
sequential and random access methods.

A useful review of diversification problems is made in [10], where the authors
define eight axioms that any diversification system should be expected to satisfy,
and prove that no objective function can satisfy all of them. They also make a
categorization of common diversification objectives into three classes, MaxSum,
MaxMin and mono-objective. The first two classes are related to dispersion prob-
lems [11,17], which are shown to be NP-hard. On the other hand, the last class
is related to MMR and is easy to process in an incremental manner.

Another study focusing on the performance of various diversification meth-
ods, in terms of effectiveness and efficiency, appears in [20]. Their problem for-
mulation is similar to ours, in that they define a global score for a set of objects
as the weighted sum of its relevance and diversity. They study local search meth-
ods that insert/remove objects from the result set, clustering techniques, as well
as algorithms introduced in [3,10]. They also propose two novel algorithms, a
probabilistic approach, and a greedy method that progressively inserts the most
promising object to the result set, in a manner similar to our framework. How-
ever, unlike this work, all these algorithms must examine the entire dataset to
determine at each iteration which object to insert or remove from the result set.

Diversification concepts have also appeared in various other domains; see also
the survey of [6]. In the context of recommender systems, the goal is to recom-
mend diverse items to the user. The work of [21] measures the diversity among
items based on the dissimilarity of their explanations. An item explanation is
the set of similar items that the user has highly rated in the past, or the set
of similar users that have highly rated this item. Keyword search in structured

6 D. Sacharidis and T. Sellis

databases entails constructing a ranked list of structured queries, representing
the possible interpretations of the user’s intent. The work of [4] uses a prob-
abilistic ranking model that also takes into account the diversity of the query
results. In the context of graph databases, [15] finds the top-k diversified “pres-
tige” nodes in information networks using vertex-reinforced random walks. [9]
presents a method for diversifying the results of keyword search in graphs.

The diversification problem is closely related to top-k query processing [12].
The work of [13] introduces the k-nearest diverse neighbor problem, whose goal
is to return a set of k objects that are as close as possible to a given query point,
and at the same time no two objects have diversity below a given threshold.
They propose a greedy algorithm that performs a conventional nearest neighbor
(NN) search around the query, and iteratively insert the next nearest object
if its distance from the current result set is above the threshold. Since it is a
variation of the NN problem, the algorithm avoids visiting the entire dataset.
However, theirs is a much easier problem that does not apply to our formulation.
A similar problem appears in [14], where a query point is specified in a spatial
space, and the goal is to maximize an objective function that tradeoffs relevance
and diversity. In this setting, relevance is defined as the distance to the query,
whereas diversity is defined either as the smallest distance or the angle similarity
to an object in the result. The authors propose a greedy incremental method,
which however avoids a complete scan of the dataset only for the angle-based
diversity. Another related problem is the spatial cohesion query [18], where the
goal is to efficiently find the object that balances the attraction to a set of (point
or area) attractors and the repulsion from a set of (point or area) repellers. In
essence, that problem is a combination of nearest and farthest neighbor search.

The work in [16] defines the problem of top-k diversification as a variation of
conventional top-k, adding the restriction that the result set must not contain
objects with similarity less than a user defined threshold. Note that this problem
definition is similar to [13], but different than ours, as we do not impose a user
defined threshold on the diversity of the objects. Another work [8] is more related
to our problem formulation, and we discuss it in more detail next.

The SPP Algorithm. The work of [8] assumes objects are embedded in a
vector space and solves a problem similar to ours, i.e., their objective function
is Eq. 1. The diversity is defined as in this work, but the relevance of an object
is given by an unknown function, which is not related to the embedded vector
space. In contrast, we define the relevance of an object using the distance of an
object to a given query.

Similar to our most novel object approach, the authors apply a greedy app-
roach to the diversification problem by identifying in each iteration the most
promising object. For this reason, they define a slightly different than ours (Eq. 2)
novelty function. However, this function does not guarantee that they find the
best object in each iteration (i.e., Theorem 1 does not hold).

The proposed algorithm, termed SPP, retrieves objects by sorted access
according to (1) their relevance, and (2) their distance to any arbitrary probing
location in the vector space. The authors show that best probing locations are

Efficient Identification of the Highest Diversity Gain Object 7

the vertices of the bounded Voronoi diagram computed on the diversified set of
objects found in the previous iterations.

In each SPP iteration, the most promising object is identified. In particu-
lar, SPP retrieves multiple objects via sorted access based on either relevance
or distance. Among the objects seen, SPP maintains the one with the highest
novelty found, and also computes a local upper bound on the novelty of the
unseen objects in each probing location. An iteration of SPP terminates when
the maximum of these upper bounds is lower than the highest seen novelty.

3 Definitions

Consider a finite set of objects U , termed the universe. An object o ∈ U is
defined over a set of numerical attributes A = R

|A|. We assume that the set of
attributes A is partitioned into two (not necessarily disjoint) sets, Ar and Av,
defining the relevance and diversity spaces, respectively. We denote as or (resp.
ov) the projection of the object o in the relevance (resp. diversity) space.

Given a query q defined in the relevance space, the relevance of an object o
is the opposite of Euclidean distance between the projection of the object in the
relevance space and q, i.e., rel(o|q) = −d(or,q) = −‖or − q‖2. The smaller the
distance of an object from q, the greater its relevance.

The diversity of two objects o1, o2 is the Euclidean distance between their
projections in the diversity space, i.e., div(o1,o2) = d(ov

1,o
v
2) = ‖ov

1 −ov
2‖2. The

larger the distance between two objects, the greater their diversity.
The aforementioned definitions can be extended to the case of a set of objects.

Given a query q, the relevance of a set of objects O ⊆ U is defined as:

rel(O|q) =
∑

o∈O
rel(o|q) = −

∑

o∈O
d(or,q).

The diversity of a set of objects O is defined as:

div(O) = min
oi �=oj∈O

div(oi,oj) = min
oi �=oj∈O

d(ov
i ,o

v
j).

Given a query q, the score of a set of objects O is the weighted sum of the
set’s diversity and relevance, i.e.,

s(O|q) = α · div(O) + β · rel(O|q)

= α · min
oi �=oj∈O

div(oi,oj) + β ·
∑

o∈O
rel(o|q). (1)

Note that the values α, β should not only reflect the relative weight between
diversity and relevance, but also account for normalization (e.g., in this formula-
tion relevance is the sum of |O| distances, whereas diversity is a single distance).
In the remainder of this paper, we set α = β = 1 to aid readability. All formulas

8 D. Sacharidis and T. Sellis

and algorithms can be trivially extended to arbitrary weight values. Therefore,
the score of O is defined as:

s(O|q) = min
oi �=oj∈O

d(ov
i ,o

v
j) −

∑

o∈O
d(or,q).

We next formalize the diversification and highest diversity gain problems.
Note that given a set of objects O ⊆ U , the notation o �∈ O refers to an object
o ∈ U \ O.

Problem 1 [k-Diversification]. Find a set O∗
k ⊆ U of k objects with the

highest score among all other sets of equal size, i.e.,

O∗
k = argmax

Ok⊆U,|Ok|=k

s(Ok|q).

Problem 2 [Highest Diversity Gain]. Given a query q and a set of objects
O, find an object o∗ �∈ O such that the set O ∪ {o∗} has the greatest score, i.e.,

o∗ = argmax
o �∈O

s(O ∪ {o}|q).

The object o∗ is called the highest diversity gain object, with respect to O
and q. Note that it is possible that more than one objects maximize the score;
to simplify presentation, we assume that o∗ is any of them.

A well-known greedy approach, followed by several works (e.g. [3,8,10]),
for solving the k-diversification problem is to solve k instances of the highest
diversity gain problem as follows. Define a sequence of sets of objects {Oi}, for
0 ≤ i ≤ k. The first term O0 is the empty set. Then, the i-th term Oi includes
the (i − 1)-th term Oi−1 and the highest diversity gain object with respect to
Oi−1 and q, i.e., Oi = Oi−1 ∪ {o∗

i }.

4 Methodology

We present our methodology for solving the highest gain and diversification
problem. Section 4.1 introduces the novelty function and Sect. 4.2 presents impor-
tant observations for eliminating unpromising objects. Then, Sects. 4.3 and 4.4
describe the algorithms for solving the two problems. Section 4.5 discusses the
case of nonidentical relevance and diversity spaces. Table 1 gathers the most
important symbols used throughout this paper.

4.1 The Novelty Function

Given a query q, a set of objects O, we define the novelty of an object o �∈ O as:

n(o|O,q) = min{div(O), min
o′∈O

d(ov,o′v)} + rel(o|q). (2)

The following theorem shows the importance of the novelty function. It
implies that to solve the highest gain problem, it suffices to find the most novel
object, i.e., the one with the largest novelty.

Efficient Identification of the Highest Diversity Gain Object 9

Table 1. Notation

Symbol Definition

U universe of objects

A, Ar, Av set of all, relevance, diversity attributes

o an object

q the query

d(x,y) Euclidean distance (‖x − y‖2)

rel(o|q) relevance of o w.r.t. q

div(o1,o2) diversity of o1 and o2

O a set of objects

rel(O|q) relevance of O w.r.t. q

div(O) diversity of O
s(O|q) score of O w.r.t. q

n(o|O,q) novelty of o w.r.t. O and q

δ diversity of O w.r.t. q

τ a novelty value

oNN nearest neighbor of o �∈ O in O
T , N R∗-Tree indexing the universe, a node of T

n+(N), n−(N) upper, lower bound of novelty of objects in N

Theorem 1. The most novel object is the highest gain object, i.e., for any object
o �∈ O the following holds o∗ = argmaxn(o|O,q) = argmax s(O ∪ {o}|q).

Proof. We prove by contradiction. Let on �= o∗ be the object that has the largest
novelty, so that n(o∗|O,q) < n(on|O,q).

Consider the score of the set O ∪ {o∗} and observe that:

s(O ∪ {o∗}) = min
{

min
oi �=oj∈O

d(ov
i ,o

v
j), min

o′∈O
d(o∗v,o′v)

}

−
(

∑

o∈O
d(or,q) + d(o∗r,q)

)

=n(o∗|O,q) −
∑

o∈O
d(or,q).

Similarly, when the object on is included:

s(O ∪ {on}) = n(on|O,q) −
∑

o∈O
d(or,q).

Since n(o∗|O,q) < n(on|O,q), we obtain that s(O ∪ {o∗}) < s(O ∪ {on}),
which is a contradiction as o∗ maximizes the score.

10 D. Sacharidis and T. Sellis

4.2 Observations

Over the next sections, we assume that diversity and relevance are defined over
the same space, i.e., Ar = Av = A. Therefore, we drop all r and v superscripts.
Later, in Sect. 4.5, we lift this restriction. Also note that for illustration purposes,
all examples assume that A = R

2, i.e., the Euclidean plane.
Moreover, we simplify notation by introducing the following concepts. We

denote by δ the diversity of the set O, i.e., δ = div(O). Given an object o, we
define oNN to be its nearest neighbor within O, i.e., oNN = argmin o′∈Od(o,o′).
Since the set O and query q are fixed, we drop the O,q designation for the
novelty of an object o, and thus Eq. 2 simplifies to:

n(o) = min{δ, d(o,oNN)} − d(o,q). (3)

We present two observations for eliminating objects that have novelty less
than a known value.

Observation 1. Given a set of objects O, a query q, and a known novelty value
τ , any object o �∈ O such that d(o,q) > δ − τ has novelty less than τ .

Proof. The novelty of an object o satisfying this criterion is n(o) = min{δ, d
(o,oNN)} − d(o,q) < min{δ, d(o,oNN)} + τ − δ. Since δ ≥ min{δ, d(o,oNN)},
we obtain n(o) < τ .

Observation 2. Given a set of objects O, a query q, an object o′ ∈ O and a
novelty value τ , any object o �∈ O such that d(o,o′) − d(o,q) < τ has novelty
less than τ .

Proof. For any object o �∈ O and its nearest neighbor oNN within O, it holds
that d(o,o′) ≥ d(o,oNN). Moreover, since d(o,oNN) ≥ min{δ, d(o,oNN)}, the
novelty of object o is n(o) ≤ d(o,o′)−d(o,q). Therefore, any object o satisfying
the criterion must have n(o) < τ .

Note that Observation 2 holds, and is in fact stronger, when we substitute
o′ with o’s nearest neighbor oNN within O.

4.3 Finding the Most Novel Object

This section introduces the Novelty (NOV) procedure for solving the highest gain
problem. The key idea is to use an index in order to direct the search towards
the most promising object while pruning groups of unpromising objects.

We build an R∗-Tree T on the Euclidean space A indexing the universe of
objects U . Each node N corresponds to a disk page, is associated with a rectangle
N.mbr, and contains a number of child nodes. A leaf node N represents an object
o, and thus its rectangle is the point in A corresponding to this object. The
rectangle of an internal node N is the minimum bounding rectangle (MBR) of
(i.e., the smallest rectangle that encloses) all children rectangles.

Efficient Identification of the Highest Diversity Gain Object 11

We say that an object o is in a node N , denoted as o ∈ N , if o is represented
by a leaf node in the subtree rooted at N . Furthermore, given a point x, we
define mindist(N,x) (resp. maxdist(N,x)) to be the smallest (resp. largest)
possible distance to x of any point within the MBR of N .

In the following, we present a set of observations regarding the novelty of
objects in a given non-leaf node.

Novelty Bounds. Given a non-leaf node N , but not the objects within its
subtree, it is possible to compute bounds on the novelty of any object in N .

Lemma 1. Given a set of objects O and a non-leaf node N , the novelty of an
object o in N cannot be more than n+(N) = δ − mindist(N,q) if |O| > 1, and
cannot be more than n+(N) = maxdist(N,o′) − mindist(N,q) if O = {o′}.
Proof. Assume |O| > 1, when δ is defined. Clearly, for any object o ∈ N it holds
that δ ≥ min{δ, d(o,oNN)}. By the definition of mindist and since any object
o ∈ N lies within N.mbr, we have mindist(N,q) ≤ d(o,q). Combining the two
inequalities, we derive n+(N) ≥ n(o) for any object o ∈ N and |O| > 1.

Assume O = {o′}. By the definition of maxdist and since any object
o ∈ N is within N.mbr, we have maxdist(N,o′) ≤ d(o,o′). Also, we have
mindist(N,q) ≤ d(o, q). Combining the two inequalities, we derive n+(N) ≥
n(o) for any object o ∈ N and O = {o′}.

Lemma 1 implies that the non-leaf node with the highest n+() value is more
likely to contain the most novel object, and thus provides the means to direct
the search.

Lemma 2. Given a set of objects O and a non-leaf node N , the novelty of an
object o in N cannot be less than n−(N) = −maxdist(N,q).

Proof. For any object o ∈ N it holds that min{δ, d(o,oNN)} ≥ 0 and d(o,q) ≤
maxdist(N,q). Therefore, its novelty is n(o) ≥ −maxdist(N,q).

Lemma 2 provides a lower bound on the novelty of the most novel object:
n(o∗) ≥ n−(N) for any non-leaf node N .

Applying Observation 1. The following lemma applies Observation 1 for a
node N .

Lemma 3. Given a novelty value τ , a node N contains objects with novelty less
than τ , if mindist(N,q) > δ − τ .

Proof. Any object o ∈ N has d(o,q) ≥ mindist(N,q). From the condition of
the lemma, we obtain d(o,q) > δ−τ . Thus, Observation 1 applies for all objects
o ∈ N .

Applying Observation 2. The following lemmas apply Observation 2 for a
node N .

12 D. Sacharidis and T. Sellis

Lemma 4. Given a novelty value τ , a node N contains objects with nov-
elty less than τ , if there exists an object o′ ∈ O such that maxdist(N,o′) −
mindist(N,q) < τ .

Proof. For any object o ∈ N the following conditions hold: d(o,o′) ≤
maxdist(N,o′) and d(o,q) ≥ mindist(N,q). It also holds that d(o,o′) −
d(o,q) < τ and thus Observation 2 applies for all objects within N .

Algorithm Description. Algorithm 1 presents the pseudocode of the NOV
procedure. NOV takes as input the R∗-Tree T indexing all objects in the universe,
the query q, and the set of objects O, and returns the most novel object o∗ with
respect to O and q.

NOV maintains a novelty value τ , initially set to −∞, which corresponds to
a lower bound of the highest possible novelty. It also computes the diversity of
O and initializes H (line 1). NOV directs the search using the heap H, which
contains nodes sorted descending on their novelty upper bound (Lemma 1).

NOV performs a number of iterations (lines 3–15), where at the end of each
iteration the node Nx at the top of the heap is popped (line 15); for the first
iteration Nx is the root node of T (line 2). NOV terminates when node Nx is a
leaf, in which case the object corresponding to this node is the most novel object
o∗ (line 16).

Assuming that Nx is not a leaf, NOV reads this node from disk (line 4) and
checks if Lemmas 3 and 4 apply for its children (lines 5–14). Particularly, it first
checks if Lemma 3 applies for a child N (lines 7–8). If not, NOV examines all
objects within the set O (lines 9–11). For each such object o′, the algorithm
checks if Lemma 4 (lines 10–11) applies for node N . If neither lemma applies
(lines 12–14), then N is pushed in the heap (line 14), and the novelty value is
appropriately updated (line 13) according to Lemma 2.

Correctness and Optimality. The next theorems prove the correctness and
I/O optimality of NOV.

Theorem 2. The NOV procedure returns the most novel object.

Proof. We show that NOV cannot miss the most novel object o∗. NOV prunes
nodes of the R∗-Tree based on Lemmas 2–4. Therefore, by the correctness of
these lemmas, o∗ cannot be in any pruned node.

NOV terminates when it pops from the heap a leaf corresponding to object
ox. Since the heap contains nodes sorted by the upper bound of Lemma 1, it
holds that n(ox) ≥ n+(N) for all nodes N ∈ H. By the correctness of the lemma,
ox has higher novelty than any object within any of the nodes in the heap.

Intuitively, I/O optimality means that an R∗-Tree-based algorithm only visits
nodes that may contain the most novel object. To formalize this, we introduce
the notion of the search frontier.

Given the most novel object o∗, define the search frontier (SF) to be the part
of the space that contains points with novelty more than n(o∗). Since o∗ has
the highest possible novelty among objects in U \ O, the SF contains no object.

Efficient Identification of the Highest Diversity Gain Object 13

Algorithm 1. NOV
Input: R∗-Tree T ; objects O; query q
Output: o∗ the most novel object
Variables: H a heap with nodes sorted by n+(); novelty value τ

1 τ ← −∞; δ ← div(O); H ← ∅

2 Nx ← Nroot � root node of T
3 while Nx is non-leaf do
4 read node Nx

5 foreach child N of Nx do
6 pruned ← false
7 if mindist(N,q) > δ − τ then � Lemma 3
8 pruned ← true

9 foreach o′ ∈ O do
10 if maxdist(N,o′) − mindist(N,q) < τ then � Lemma 4
11 pruned ← true

12 if not pruned then
13 if n−(N) > τ then τ ← n−(N) � Lemma 2
14 push(H, N)

15 Nx ← pop(H)

16 o∗ ← Nx.mbr

However, it holds that any R∗-Tree-based algorithm, which finds the most novel
object, must access all nodes that intersect the SF. This is true even for a node
N that does not contain o∗; the reason is that the algorithm cannot determine
this containment unless it retrieves the contents of N .

Therefore, I/O optimality means that an algorithm only accesses nodes that
intersect with the SF, and never visits the same node twice.

To prove I/O optimality for NOV, we must ensure that the upper bound on
the novelty of a node is tight. In other words, there must exist a point within the
node’s MBB (not necessarily an object in U) such that its novelty is equal to the
upper bound. The upper bound of Lemma 1 is not tight. However, given a node
it is possible to compute a tight upper bound in an analytical way. The key idea
is to find a point within the node’s MBB that maximizes the novelty function.
This point must be one of the critical points where all partial derivatives of the
novelty function become zero.

Theorem 3. The NOV procedure with a tight upper bound on novelty is I/O
optimal.

Proof. First, NOV never visits the same node twice. The reason is that a node
is only inserted once in the heap, and NOV always removes from the heap the
node it visits.

We next prove that NOV with a tight upper bound on novelty n+() never
accesses a node that does not intersect with the SF, defined by the most novel

14 D. Sacharidis and T. Sellis

Algorithm 2. DIV
Input: R∗-Tree T ; query q
Output: O the k-diversified set of objects
Variables: o∗ current most novel object

1 O ← ∅

2 for i ← 1 to k do
3 o∗ ← NOV(T, O,q)
4 O ← O ∪ {o∗}

object o∗. Assume the contrary, i.e., that NOV visits a node N that does not
intersect with the SF. Since N is outside the SF, for any point (not necessarily
an object in U) p ∈ N it holds that n(p) < n(o∗). By the property of the tight
upper bound, there exists a point p′ ∈ N such that n(p′) = n+(N). Moreover,
since N is visited it must hold that n+(N) > n(o∗). Therefore, n(p′) > n(o∗),
which contradicts the fact that N is outside the SF.

4.4 Solving the Diversification Problem

We next present a simple algorithm, termed DIV, that solves the k-diversification
problem by invoking k times the NOV procedure. Algorithm 2 shows the
pseudocode of DIV. The algorithm takes as input the R∗-Tree T indexing all
objects in the universe, the query q, and returns the k-diversified set of objects O.

DIV initializes the set of diversified objects O to be empty (line 1). Then it
calls k times the NOV procedure (lines 2–4). In each invocation, DIV obtains
the next most novel object o∗ (line 3) and inserts it into the set O (line 4).

4.5 Generalization for Nonidentical Relevance and Diversity Spaces

So far, we have assumed that relevance and diversity are defined over the same
set of attributes. This section discusses the general case when Ar ⊆ A and
Av ⊆ A. Note that the query q takes values only for the relevance attributes
Ar, while an object o takes values on all attributes. To illustrate the concepts, we
assume a three-dimensional example where Ar = {A1, A2} and Av = {A2, A3}.

We define the extension of the query q, denoted by ρ(q), as the set of points
in A such that ρ(q).Ax = q.Ax, for all Ax ∈ Ar, and ρ(q).Ay = [−∞,+∞],
for all Ay �∈ Ar. The extension has the property that for any object o ∈ U , it
holds that rel(o|q) = −d(or,q) = −d(o, ρ(q)), i.e., the relevance of o is given
by the distance between ρ(q) and o computed over all attributes. In our three-
dimensional example, ρ(q) represents a line perpendicular to the A1, A2 plane,
and the relevance of o is its (perpendicular) distance to this line.

Similarly, we define the restriction of an object o, denoted by π(o), as
the set of points in A such that π(o).Ax = o.Ax, for all Ax ∈ Av, and
π(o).Ay = [−∞,+∞], for all Ay �∈ Av. The extension has the property that
for any other object o′ ∈ U , it holds that div(o′,o) = d(o′v,ov) = d(o′, π(o)),

Efficient Identification of the Highest Diversity Gain Object 15

i.e., the diversity of o′ and o is given by the distance between o′ and the restric-
tion of o computed over all attributes. In our three-dimensional example, π(o)
represents a line perpendicular to the A2, A3 plane, and the diversity of o and
another object o′ is the (perpendicular) distance of o′ to this line.

Using the previous transformations and in analogy to Eq. 3, the novelty of
an object o becomes

n(o) = min{δ, d(o, π(oNN))} − d(o, ρ(q)).

More importantly, the two main results of Sect. 4.2 hold, if we substitute q
with ρ(q) and o′ with π(o′). Given the aforementioned transformations, adapt-
ing NOV is straightforward. Observe that all Lemmas 1–4 hold, as long as we
substitute q with ρ(q) and o′ with π(o′).

5 Experimental Evaluation

Section 5.1 describes the setting, while Sect. 5.2 contains the results.

5.1 Setting

Methods. We implement our proposed diversification method DIV, which is
based on the NOV procedure. We also implement the SPP algorithm from [8],
and adapt it to consider at each iteration the same novelty function with DIV.
Recall that SPP requires a module that provides sorted access on the universe
of objects based on their distance from a given location. In our implementation,
this module performs nearest neighbor search using the same R∗-Tree as in DIV.
Furthermore, as a baseline, we implement a greedy algorithm denoted as LIN.
In each iteration, LIN performs an exhaustive linear scan over the universe of
objects to identify the most novel one, and inserts it into the result set. All
algorithms are implemented in C++ and executed on a 2 GHz machine, whose
disk page size is 4096 bytes.

Datasets. We use a real and two synthetic datasets in our evaluation. The
real dataset1, denoted as NE, is a two-dimensional collection of 125,000 postal
addresses in three metropolitan areas, New York, Philadelphia and Boston. The
synthetic dataset UNI contains independent and uniformly distributed random
objects. The synthetic dataset CLU contains objects that are randomly distrib-
uted around 1,000 cluster centers. The probability with which a cluster center
attracts objects is drawn from a Zipfian distribution with degree 0.8.

Parameters and Metrics. We study the effect on the performance of the
algorithms of three parameters: number of objects in the universe, number of
attributes and value of k. Particularly, for the NE dataset, the number of objects
is fixed to |U| = 125K and the dimensionality to |A| = 2. Table 2 shows the

1 Available at http://www.rtreeportal.org.

http://www.rtreeportal.org

16 D. Sacharidis and T. Sellis

-0.015

-0.01

-0.005

 0

 0.005

 0 5 10 15 20 25 30

iteration

Novelty

SPP
DIV
LIN

(a) Highest novelty

0

20K

40K

60K

80K

100K

120K

 0 5 10 15 20 25 30

iteration

Retrieved Objects

LIN
SPP
DIV

(b) Number of retrieved objects

1

10

100

1000

 0 5 10 15 20 25 30

iteration

I/O Operations

SPP
LIN
DIV

(c) I/O cost

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

iteration

Time (msec)

SPP
LIN
DIV

(d) Processing time

Fig. 1. NE, per iteration analysis

range of values examined for each parameter. In each experiment, we vary a
single parameter and set the others to their default values.

To quantify performance, we measure the number of retrieved objects, the
number of I/O operations, and the total processing time. The reported values are
the averages of 10 distinct executions with queries uniformly selected at random
from the space. We emphasize that the objective of this work is to improve the
efficiency of solving the diversification problem, and not on the quality of the
constructed result set. In fact, all implemented methods follow the same iterative
heuristic and thus construct the same result set (save for differences due to ties)
with identical global scores.

Table 2. Parameters

Symbol Values Default

|U| 100K, 500K, 1M, 5M, 10M 1M

|A| 2, 3, 4, 5, 6 2

k [1, 50] 20

Efficient Identification of the Highest Diversity Gain Object 17

5.2 Results

Per Iteration Analysis. In the first experiment, we study the performance of
all algorithms as they iteratively find promising objects. For this setting, we use
the NE dataset and set k = 30. Figure 1 contains the results, where the bold,
regular, dotted line corresponds to DIV, LIN, SPP, respectively.

Figure 1a depicts the novelty value of the most novel object found at each
iteration. Observe that at the first iteration, all methods select the nearest neigh-
bor to the query whose novelty is equal to minus the distance to the query. At
the second iteration, all methods select objects that have the same novelty. How-
ever, these two initial objects may differ among methods, depending on how they
solve ties in novelty. In fact after this point, at each iteration, the selection of
the object among those with equal novelty may affects the best novelty values in
subsequent iterations. This phenomenon is observed in Fig. 1a, where the nov-
elty graphs vary slightly between DIV and SPP, and a bit more with respect
to LIN. The fact that LIN’s highest novelty is significantly lower is attributed
to unfortunate choices when breaking ties. Note that the highest novelty of all
methods decreases because the relevance term of the novelty function dominates
the diversity one, while objects farther from the query are inserted.

Figure 1b shows the number of objects retrieved at each iteration. LIN needs
to scan the entire dataset at each iteration, hence it performs the maximum num-
ber of retrievals (125K). On the other hand, DIV always guides search towards
the most novel object, and thus performs a single retrieval at each iteration.
SPP performs a single retrieval in the first iteration to identify the nearest to
the query object. However, at all other iterations, SPP must examine a very
large set of objects. Even though SPP prunes the search space, it cannot guide
the search towards the non-pruned space. The main reason is that the set of
probing locations remains fixed throughout an iteration.

Figure 1c shows the number of I/O operations performed at each iteration.
LIN retrieves constantly 16 pages from disk. DIV performs 5 I/Os to retrieve the
first object and constantly 6 I/Os to retrieve objects after the seventh iteration.
For iterations 2 and 3 DIV requires more than 100 I/Os to retrieve the most novel
object. The reason is that, in the beginning, the set of retrieved objects is too
small to prune large parts of the space. Regarding SPP, note that except in the
first iteration, it performs I/Os in the order of 1,000. There are two reasons for
this. SPP needs to retrieve a large number of objects (although less than LIN),
and each retrieval may cost up to 5 I/Os due to the nearest neighbor search.
To make matters worse, since SPP initiates multiple NN searches at different
probing locations, it happens that the same object is retrieved at more than one
NN search. This last reason explains why the number of I/Os increases at each
iteration: the number of probing locations also increases.

Figure 1d shows the processing time per iteration. LIN require constant time,
around 60 msec, per iteration. The same holds for DIV after the seventh iteration,
as it requires around 25 msec, per iteration. On the other hand SPP requires more
than 10 s for each iteration after the first.

18 D. Sacharidis and T. Sellis

Per Iteration Analysis with Fixed O. We repeat the first experiment, but
at this time we force DIV and LIN to start each iteration with the same set of
objects as SPP. In other words, for fairness at each iteration, all algorithms solve
an identical instance of the highest diversity gain problem. The lines for LIN and
SPP are not affected in this experiment. The number of I/O operations and the
per iteration processing time of DIV are largely unaffected by the enforcement
of common O accross methods (Fig. 2).

0

20K

40K

60K

80K

100K

120K

 0 5 10 15 20 25 30

iteration

Retrieved Objects

LIN
SPP
DIV

(a) Number of retrieved objects

1

10

100

1000

 0 5 10 15 20 25 30

iteration

I/O Operations

SPP
LIN
DIV

(b) I/O cost

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

iteration

Time (msec)

SPP
LIN
DIV

(c) Processing time

Fig. 2. NE, per iteration analysis, fixed O

In the remainder of the experimental evaluation, we exclude the SPP algo-
rithm due to its high processing cost.

Effect of k. In the next experiment, we vary the k value from 1 up to 50 in incre-
ments of one, while we set the number of objects fixed to |U| = 1M. Figure 3 plots
the results as a function of k. Note that in contrast to the previous experiments,
the reported times are at the end of the algorithms execution and not per iteration.

Figure 3a shows the I/O cost of LIN and DIV for the CLU dataset. Observe
that the I/O cost of LIN grows linearly with k, since the cost per iteration is
constant (see the discussion in the context of Fig. 1). Note that the I/O cost of

Efficient Identification of the Highest Diversity Gain Object 19

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50

k

I/O Operations

LIN
DIV

(a) CLU

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50

k

Total Time (msec)

LIN
DIV

(b) CLU

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50

k

Total Time (msec)

LIN
DIV

(c) UNI

Fig. 3. Effect of k

DIV for k = 1 is minimal, and that it slightly grows with k, so little that the
trend is not apparent in the figure. This is in accordance to our per iteration
analysis, where DIV’s cost for retrieving additional objects is minor.

Figure 3b depicts the total processing time for the CLU dataset. Note that
processing time is shown on a logarithmic axis. The trends that appear in the
previous figure, also show here. DIV is already more than an order of magnitude
faster than LIN for k = 20 and the gap increases with k. Figure 3c presents the
effect of k on processing time for the UNI dataset. The trends are identical to
those for the CLU dataset.

Varing |U|. In this experiment, we vary the number of object in the universe |U|
from 100 K up to 10M, while we set k = 20. Figure 4 depicts the total processing
time as a function of |U|.

Figure 4a shows the processing time of DIV and LIN on the CLU dataset. As
the number of objects increases, it becomes harder to identify the k object with
the highest novelty. Hence the performance of both methods decreases with |U|.
Observe, however that the benefit of DIV over LIN remains constant at more than
one order of magnitude. Similar results hold for the UNI dataset, as shown in
Fig. 4b.

20 D. Sacharidis and T. Sellis

1

10

100

1000

100K 500K 1M 5M

Number of Objects

Total Time (sec)

LIN
DIV

(a) CLU

1

10

100

1000

100K 500K 1M 5M

Number of Objects

Total Time (sec)

LIN
DIV

(b) UNI

Fig. 4. Effect of |U|

Varing |A|. Finally, we increase the number of attributes |A|, i.e., dimension-
ality, from 2 up to 6. Figure 5 depicts the total processing time as a function of
|A|. Figure 5a shows that the performance of both methods deteriorates as the
dimensionality of the CLU dataset increases. Note that the relative benefit of
DIV against LIN takes its highest value at 4 dimensions. The results are similar
for the UNI dataset, as shown in Fig. 5b.

0

200

400

600

800

 2 3 4 5 6

Number of Attributes

Total Time (sec)

LIN
DIV

(a) CLU

0

200

400

600

800

 2 3 4 5 6

Number of Attributes

Total Time (sec)

LIN
DIV

(b) UNI

Fig. 5. Effect of |A|

6 Conclusions

The diversification problem is to retrieve a set of objects such that their rel-
evance, measured by distance, to a given query and their diversity, measured
by pairwise distance, is maximized. Since it is a computationally hard problem,
greedy approaches are typically used. This work introduces the highest diver-
sity gain problem, which is integral in any greedy solution of the diversification

Efficient Identification of the Highest Diversity Gain Object 21

problem. We show that for many diversification problems it is possible to define
a novelty function that assigns score to objects, so that the most novel object
optimally solves the highest diversity gain problem. Based on the study of the
novelty function, we proposes an index-based algorithm that is I/O optimal.
Experiments have shown that our approach is at least an order of magnitude
faster than a recent greedy diversification method, and a simple linear scan.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results.
In: WSDM, pp. 5–14 (2009)

2. Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIGMOD, pp. 781–792
(2011)

3. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for
reordering documents and producing summaries. In: SIGIR, pp. 335–336 (1998)

4. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: DivQ: diversification for key-
word search over structured databases. In: SIGIR, pp. 331–338 (2010)

5. Dou, Z., Hu, S., Chen, K., Song, R., Wen, J.R.: Multi-dimensional search result
diversification. In: WSDM, pp. 475–484 (2011)

6. Drosou, M., Pitoura, E.: Search result diversification. SIGMOD Rec. 39(1), 41–47
(2010)

7. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS (2001)

8. Fraternali, P., Martinenghi, D., Tagliasacchi, M.: Top-k bounded diversification.
In: SIGMOD, pp. 421–432 (2012)

9. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data
graphs. In: SIGMOD, pp. 927–940 (2008)

10. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:
WWW, pp. 381–390 (2009)

11. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum
dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

12. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top- k query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4), 11:1–11:58
(2008)

13. Jain, A., Sarda, P., Haritsa, J.R.: Providing diversity in k-nearest neighbor query
results. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI),
vol. 3056, pp. 404–413. Springer, Heidelberg (2004)

14. van Kreveld, M.J., Reinbacher, I., Arampatzis, A., van Zwol, R.: Multi-dimensional
scattered ranking methods for geographic information retrieval. GeoInformatica
9(1), 61–84 (2005)

15. Mei, Q., Guo, J., Radev, D.R.: DivRank: the interplay of prestige and diversity in
information networks. In: KDD, pp. 1009–1018 (2010)

16. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. VLDB 5(11), 1124–1135
(2012)

17. Ravi, S., Rosenkrantz, D., Tayi, G.: Heuristic and special case algorithms for dis-
persion problems. Oper. Res. 42(2), 299–310 (1994)

22 D. Sacharidis and T. Sellis

18. Sacharidis, D., Deligiannakis, A.: Spatial cohesion queries. In: SIGSPATIAL (2015)
19. Vee, E., Srivastava, U., Shanmugasundaram, J., Bhat, P., Amer-Yahia, S.: Efficient

computation of diverse query results. In: ICDE, pp. 228–236 (2008)
20. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou, M., Srivastava, D.,

Traina Jr., C., Tsotras, V.J.: On query result diversification. In: ICDE, pp. 1163–
1174 (2011)

21. Yu, C., Lakshmanan, L.V.S., Amer-Yahia, S.: It takes variety to make a world:
diversification in recommender systems. In: EDBT, pp. 368–378 (2009)

Dualization on Partially Ordered Sets:
Preliminary Results

Lhouari Nourine1 and Jean Marc Petit2(B)

1 Clermont-Université, Université Blaise Pascal, LIMOS, CNRS,
Aubière, France

2 Université de Lyon, CNRS, LIRIS, INSA, Lyon, France
jmpetit@liris.cnrs.fr

Abstract. The dualization problem on arbitrary posets is a crucial step
in many applications in logics, databases, artificial intelligence and pat-
tern mining.

The objective of this paper is to study reductions of the dualiza-
tion problem on arbitrary posets to the dualization problem on boolean
lattices, for which output quasi-polynomial time algorithms exist. We
introduce convex embedding and poset reflection as key notions to char-
acterize such reductions. As a consequence, we identify posets, which are
not boolean lattices, for which the dualization problem remains quasi-
polynomial and propose a classification of posets with respect to dual-
ization.

As far as we know, this is the first contribution to explicit non-trivial
reductions for studying the hardness of dualization problems on arbitrary
posets.

1 Introduction

The dualization problem in arbitrary finite1 partially ordered sets (poset for
short), is a crucial step in many applications in logics, databases, artificial intel-
ligence and pattern mining and has been intensively studied for years [1–3]. The
dualization problem can be very difficult and the decision problem associated to
dualization is still open, even for lattices. Only a few results exist, mainly dual-
ization is quasi-polynomial whenever (P,≤) is isomorphic to a powerset ordered
under set inclusion (or boolean lattice) [2], which corresponds to the enumeration
of minimal transversal of hypergraph.

The dualization problem on hypergraphs has been studied by many
researchers, among which we quote [1,2] while only a few results exist on dualiza-
tion on other posets [4]. Recently Kante et al. [5] have shown that the enumera-
tion of minimal transversal of an hypergraph is equivalent to the enumeration of
minimal dominating sets of a cobipartite graph. Interestingly, this result brings
the dualization problem to the large graph theory community.

1 It also works for infinite partially ordered sets that are well ordered, i.e. all antichains
are finite.

c© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 23–34, 2016.
DOI: 10.1007/978-3-319-38901-1 2

24 L. Nourine and J.M. Petit

Some theoretical frameworks for pattern mining have studied dualization, for
instance [6–8]. In [8], we introduced the idea of weak representations as sets for pat-
ternmining problems and showedhow the frequent rigid sequencesmining problem
benefits from such representation. The embryo of a reduction for the dualization
problem on arbitrary posets was present but was clearly implicit in [8].

To measure the complexity of enumeration algorithms, we always refer to the
complexity in the size of the input and the size of the output, see [9] for details.

The objective of this paper is to study reductions of the dualization problem
on arbitrary posets to the dualization problem on boolean lattices. On posets,
the dualization problem can be stated as follows:

DualizeOnPoset
Input: A representation of a poset (P,≤), B+ an antichain of P .
Output: B− such that (B+, B−) are dual sets2 in P .

Let us consider the particular instance of this problem:
DualizeOnSet
Input: A finite set E, B+ an antichain of P(E) (the powerset of E).
Output: B− such that (B+, B−) are dual sets in P(E).

As already mentioned, the complexity of DualizeOnSet is known to be quasi-
polynomial while the complexity of DualizeOnPoset is still open in most posets
(for example, lattice) [4]. In this setting, we are interested in studying the reduction
from DualizeOnPoset to DualizeOnSet, i.e. under which conditions Dual-
izeOnSet is at least as hard as DualizeOnPoset. Notice that reductions for the
hardness of enumeration problems are not well established as for decision prob-
lems. In this paper, we consider only polynomial time reduction as explained in
Fig. 1 which is inspired from classical polynomial reduction of decision problems.

Contribution on Dualization: We introduce convex embedding and poset reflec-
tion as key notions to characterize such reductions. As a consequence, we iden-
tify posets, which are not boolean lattices, for which the dualization problem
remains quasi-polynomial and propose a classification of posets with respect to
dualization.

2 Preliminaries

We briefly recall definitions on partial orders, embeddings and borders [8,10].
A partial order is a binary relation ≤ over a set P which is reflexive, anti-

symmetric, and transitive. Let x, y be elements of P , if x ≤ y or y ≤ x, then x
and y are comparable, otherwise they are incomparable. A partial order under
which every pair of elements is comparable is called a chain. A subset of a poset
in which no two distinct elements are comparable is called an antichain. We say
that y covers x if whenever x ≤ z ≤ y then z = x or y = z; we denote by ≺ the
covering relation. For S ⊆ P , ↓ S (resp. ↑ S) is the downward (resp. upward)

2 Dual sets are also known as blocker and anti-blocker or positive and negative borders.

Dualization on Partially Ordered Sets: Preliminary Results 25

Fig. 1. Reduction from DualizeOnPoset to DualizeOnSet

closed set of S under the relation ≤ (i.e. ↓ S is an ideal and ↑ S a filter of (P,≤)).
In case of ambiguity, ↓ S (resp. ↑ S) will be denoted by ↓≤ S (resp. ↑≤ S). A
subset S ⊆ P is convex in P if for all x, y, z ∈ P , x, y ∈ S and x ≤ z ≤ y implies
z ∈ S. We denote by Max≤(S) (resp. Min≤(S)) denotes the maximal (resp.
minimal) elements of S with respect to ≤. When ≤ is clear from context, (P,≤)
(resp. Max≤(S) and Min≤(S)) will be denoted by P (resp. Max (S), Min(S)).

Let (P,≤P) and (Q,≤Q) be posets and f : P → Q a mapping (total function).
f is an embedding if for all x, y ∈ P , x ≤P y iff f(x) ≤Q f(y). The mapping
f is an isomorphism if f is a bijective embedding. In this case P and Q are
said to be isomorphic. f is a convex embedding if f is an embedding and f(P)
is convex in (Q,≤Q). Whenever f is injective but not surjective, there exists
another mapping g : f(P) → P such that g ◦ f = Id, the identity function. A
reflection of a poset (P,≤) is a poset (P,≤′) on the same ground set P such that
for all x, y ∈ P , x ≤′ y ⇒ x ≤ y.

Two antichains (B+,B−) of P are said to be dual if ↓ B+∪ ↑ B− = P and
↓ B+∩ ↑ B− = ∅. The relationship between these dual sets is known as the
dualization, i.e. given B+, compute B− (or inversely). In the sequel, (B+,B−)
will be referred to as a “border”.

Let f : P → Q be a mapping and (B+,B−) a border in P . The border
(E+, E−) in Q is an extension of (B+,B−) with respect to f , if f(B+) ⊆ E+ and
f(B−) ⊆ E−. The extension (E+, E−) is said to be a polynomial extension of
(B+,B−) if |E+| + |E−| is polynomial in |B+| + |B−|.

26 L. Nourine and J.M. Petit

The intuition of the reduction of enumeration problems used in this paper
is based on finding a mapping between posets such that borders are polynomial
preserved, i.e. every border has a polynomial extension.

In the rest of this paper, we assume that a poset is given by an implicit
representation L and we shall denote by (L∗,≤) the poset defined by L. Clearly,
the size of L∗ may be exponential in the size of the representation L. For instance,
the free monoid Σ∗ ordered by sub word is implicitly defined by the alphabet
Σ, and a lattice is implicitly defined by its poset of (join and meet) irreducible
elements [11].

3 Classification of Posets with Respect to Dualization

In this section we describe two properties of posets that lead us to have polyno-
mial time reductions to DualizeOnSet. First we show that a convex embedding
from a poset (L∗,�) to P(E) for some set E is sufficient to re-use algorithms
of DualizeOnSet. Second, we show that the convex embedding is not a neces-
sary condition and introduce the reflection of a poset (L∗,�) to obtain a new
poset (L∗,�′) in which there is a convex embedding. Indeed, a reflection of
a poset (L∗,�) corresponds to an embedding which preserves incomparabili-
ties (or antichains), even if some comparabilities could be lost. The previous
two embeddings introduce extra-elements to the dualization. Whenever these
extra-elements are bounded by a polynomial, the dualization can be polynomial
reduced to DualizeOnSet. To do so, we ask the following questions:

Given a poset of patterns (L∗,�),

– Does there exist a convex embedding of (L∗,�) into (P(E),⊆) for some finite
set E? If not,

– Does there exist a reflection (L∗,�′) of (L∗,�) such that there exists a convex
embedding of (L∗,�′) into (P(E),⊆) for some finite set E?

These two questions and their associated computational costs allow to come
up with new classes of posets with respect to dualization. Figure 2 gives an
illustration with a diagram where posets and borders are placed side by side.

3.1 Convex Embedding

First, let us recall that any poset has an embedding into a boolean lattice.

Proposition 1 [10]. For any poset (L∗,�), there exists an embedding from
(L∗,�) to (P(E),⊆), for some finite set E.

It follows that any poset has a set representation but obviously the dualization
on (L∗,�) may be much more complex than the dualization on (P(E),⊆) [8]. We
define the RAS class as follows:

Definition 1. (L∗,�) ∈ RAS iff (L∗,�) and (P(E),⊆) are isomorphic, for
some finite set E.

Dualization on Partially Ordered Sets: Preliminary Results 27

(L∗,�)

(L∗,�′)

(P(E),⊆)

(B+,B−)

(C+, C−)

(E+, E−)

Reflection

Convex embedding

border

border

border

Fig. 2. Reflection and convex embedding

This class of posets gathers together many patterns such as frequent itemsets
(FIM) [12], functional dependencies (FD) [13], inclusion dependencies (IND) [14].
This class is known as the representation as sets class of pattern mining problems
defined in [6].

Nevertheless, requirements to be in RAS are restrictive, since the poset must
be isomorphic to a boolean lattice, and then its size has to be equal to 2n where
n = |E|. Now we will relax the bijective constraint of RAS but we keep the
convexity property on the set representation. Hence, we extend RAS to a new
class, called XRAS, for conveX RAS.

Definition 2. (L∗,�) ∈ XRAS iff there exists a convex embedding from
(L∗,�) to (P(E),⊆), for some finite set E.

The idea is still to require an isomorphism but just between the poset of
patterns and some subset of P(E), instead of the entire set P(E) (see Fig. 3).
Note also that f is injective since f is an embedding. The following proposition
points out a simple yet important characterization of XRAS problems.

Proposition 2. (L∗,�) ∈ XRAS iff (L∗,�) is isomorphic to (P(E)\(↓ B+
0 ∪ ↑

B−
0),⊆) for some antichains B+

0 ⊆ P(E) and B−
0 ⊆ P(E).

Proof. Let f be a convex embedding from (L∗,�) to (P(E),⊆) and F = f(L∗).
Let us consider F+ = Min(F) and F− = Max(F) two antichains of F .
Moreover, let B+

0 = Max({X ∈ P(E)|X ⊂ Y, Y ∈ F+}) and B−
0 =

Min(P(E) \ (F∪ ↓ B+
0)). Let X ∈ P(E). Then either X ∈↓ B+

0 , or X ∈↑ B−
0

or X ∈ P(E) \ (↓ B+
0 ∪ ↑ B−

0). In the latter case, there exists Y1 ∈ F+, Y2 ∈ F−

such that Y1 ⊆ X ⊆ Y2. Since F is convex, X ∈ F and the result follows.
The other direction holds since P(E) \ (↓ B+

0 ∪ ↑ B−
0) is a convex set

of P(E). ��
Figure 3 gives an illustration of the Proposition 2.
Note that the sets B+

0 and B−
0 can be exponential in the size of E. The next

definition introduces efficient problems of XRAS, called EXRAS.

28 L. Nourine and J.M. Petit

Fig. 3. The class XRAS

Definition 3. (L∗,�) ∈ EXRAS if (L∗,�) ∈ XRAS and |B+
0 ∪ B−

0 | is poly-
nomial in |E|.

The following proposition points out that a polynomial extension of any
border of (L∗,�) exists if (L∗,�) ∈ EXRAS.

Proposition 3. Let (L∗,�) ∈ EXRAS and f : L∗ → P(E) a convex embed-
ding, for some finite set E.
Then for any border (B+,B−) of (L∗,�), (Max(B+

0 ∪f(B+)), Min(B−
0 ∪f(B−)))

is a polynomial extension of (B+,B−) in (P(E),⊆).

Proof. It suffices to notice that (B+,B−) is a border of (L∗,�) iff (f(B+), f(B−))
is a border of (P(E)\(↓ B+

0 ∪ ↑ B−
0),⊆) since (L∗,�) is isomorphic to (P(E)\(↓

B+
0 ∪ ↑ B−

0),⊆). ��

3.2 Polynomial Reflection of Posets

We now consider posets that are not in XRAS. Our idea is to transform the
initial poset to a new poset over the same ground set, in order to get a convex
embedding. As a consequence, two natural question arise:

(1) For a given poset (L∗,�), does there exist a “polynomial reflection” (L∗,�′)
such that (L∗,�′) belongs to EXRAS?

(2) How to quantify the “lost comparabilities” induced by a reflection?

In the sequel, we study poset reflection to give answers to the previous ques-
tions. Since the reflection of a poset induces the lost of some comparabilities in
the original poset, we have to recover them efficiently.

Before that, we consider different examples of posets over sequences.

Dualization on Partially Ordered Sets: Preliminary Results 29

Examples with Different Posets of Sequences. Let us consider sequences
with or without wildcard (denoted �), see e.g. [15].

Let Σ be an alphabet. A sequence is an element of Σ∗ and a rigid sequence
an element of (Σ ∪ {�})∗ of the form P = P [1] · · · P [m] such that P [1] �= � and
P [m] �= �. Let Σ∗

R be the set of rigid sequences and Σ∗ the set of sequences. We
denote by Σn the set of all sequences in Σ∗ of size at most n.

Different partial orders over Σ∗
R and Σ∗ exist. Let us first consider sub-word

(resp. factor and prefix) posets over Σ∗, denoted (Σ∗,≤s) (resp. (Σ∗,≤f) and
(Σ∗,≤p)). Let P [1..m], Q[1..n] ∈ Σ∗. We have:

– P ≤s Q if there exists integers i1 < . . . < im in [1..n] such that P [j] = Q[ij]
for all j ∈ [1..m].

– P ≤f Q if P ≤s Q and ij = ij+1 − 1 for all j ∈ [1..m − 1]
– P ≤p Q if P ≤f Q and im = m.

These different posets are illustrated in Fig. 4 on a simple example.

(a) (b) (c)

Fig. 4. (a) The sub word poset induced by the word w=aaba on Σ = {a, b}; (b) the
factor poset which is a reflection of (a); and (c) the prefix poset which is a reflection
of posets (b) and (a).

In Fig. 4, let us consider the set {aa, ab} for the different posets. Its dual set
is equal to {ba, aab, aaa} for (a) and (b) and {b, aab, aaa, aba} for (c).

Second, we consider two posets for rigid sequences, one similar to the factor
poset and another one to the prefix poset, denoted (Σ∗

R,�) and (Σ∗
R,�1). Let

P [1..m], Q[1..n] ∈ Σ∗
R. We have:

– P � Q if there exists p ∈ [1..n] such that for every i ∈ [1..m], either P [i] =
Q[p + i − 1] or P [i] = �

– P �1 Q if for every i ∈ [1..m], either P [i] = Q[i] or P [i] = �

These two posets are illustrated in Fig. 5, where the poset (b) suggests the
existence of hidden hypercubes in the poset (a).

Now, we claim that the posets (Σ∗,≤s), (Σ∗,≤f), (Σ∗,≤p) and (Σ∗
R,�) do

not have any convex embedding. Consider again the example given in Fig. 4 and
the two following sets: A = {a, b, ab, ba} and A′ = {a, aa, aaa}.

30 L. Nourine and J.M. Petit

)b()a(

Fig. 5. (a) The factor poset of rigid sequences induced by the word w=aaba on Σ =
{a, b}; (b) the prefix poset of rigid sequences which is a reflection of posets (a).

– A is convex in (Σ∗,≤s) (Fig. 4(a)) but its image by any embedding cannot be
convex in (P(E),⊆) since (P(E),⊆) is a lattice. The same reasoning applies
for (Σ∗,≤f) and (Σ∗

R,�).
– A′ is convex in (Σ∗,≤p) but its image by any embedding cannot be convex in

(P(E),⊆) since P(E) cannot contain a convex set which is a chain of length
3.

However, Fig. 5 also shows a reflection that leads to a convex embedding.
Consider (Σn

R,�1). Let f : Σn
R \ {ε} → P(E) be an embedding, for some finite

set E [8,15]: f associates to each letter of a sequence a couple (indice, letter).
For instance, let ab and ba be two patterns. Then f(ab) = {(1, a), (2, b)} and
f(ba) = {(1, b), (2, a)}. It is easy to verify that f(Σn

R \ {ε}) is convex in (P(E),
⊆) [8]. Let us again consider A = {a, b, ab, ba}: we only have a �1 ab, b �1 ba, i.e.
two comparabilities (a ��1 ba, b ��1 ab) are lost, allowing to reach the convexity
constraint.

These examples point out that we have to study poset reflection to be able
to obtain some convex embedding.

3.3 Reaching Convexity by Poset Reflection

As shown in previous examples involving sequences, whenever possible, we have
now to quantify the lost comparabilities induced by a poset reflection.

For a given element of a poset, we define its successors and its predecessors
induced by a poset reflection.

Definition 4. Let (P,≤′) a reflection of a poset (P,≤) and x ∈ P . The lost
predecessors of x in the reflection of (P,≤) to (P,≤′), denoted by LostPred(x),
are defined by:
LostPred(x) = Max≤′{y ∈ P |y ≤ x, y �<′ x}. Similarly, the lost successors are
defined by: LostSucc(x) = Min≤′{y ∈ P |x ≤ y, x �<′ y}.

By extension, we note LostPred(X) =
⋃

x∈X LostPred(x) (resp. LostSucc
(X)) for X ⊆ P .

Dualization on Partially Ordered Sets: Preliminary Results 31

Example 1. Let us consider the reflection (Σn
R,�1) of (Σn

R, �) [8]. Let S ∈ Σn
R.

We have LostPred(S) = {S[i..|S|] | 1 ≤ i ≤ |S|, S[i] �= �} and LostSucc(S) =
{x � . . . �︸ ︷︷ ︸

i

S | 0 ≤ i ≤ n − |S| − 1, x ∈ Σ}.

For instance with n = 5, LostPred(a � ba) = {a � ba, ba, a} and
LostSucc(ba) = {aba, bba, a � ba, b � ba, a � �ba, b � �ba}.

As shown in the following lemma, we can recover the initial poset from any
reduced poset with LostPred and LostSucc.

Lemma 1. Let x ∈ P and (P,≤′) a reflection of (P,≤). Then:

1. ↓≤ x =↓≤′
LostPred(x) and

2. ↑ ≤x =↑ ≤′LostSucc(x).

Proof. (1) Let y ∈↓≤ x. We have either y ≤′ x or y �<′ x. If y ≤′ x, then
y ∈↓≤′

LostPred(x) since x ∈ LostPred(x). If y �<′ x, then there exists z ∈ P
such that y ≤′ z, z ∈ LostPred(x), i.e. y ∈↓≤′

LostPred(x). The same reasoning
applies for (2). ��

Some remarks have to be made: First, for any poset, there always exists
a reflection that has a convex embedding into a boolean lattice. It suffices to
take a reflection which is an antichain, i.e. that deletes all comparabilities. In
this case, the number of lost comparabilities can be exponential in the size of
the description of the poset. Second, we would like to be able to recover lost
comparabilities in polynomial time. This is formalized with the notion of poly-
reflection as follows.

Definition 5. (L∗,�′) is a poly-reflection of (L∗,�) if (L∗,�′) is a reflection
of (L∗,�) and for all x ∈ L∗, LostPred(x) and LostSucc(x) are computable in
polynomial time in the size of the description L.

Example 2. Continuing the previous example, for all S ∈ Σn
R, LostPred(S) is

polynomial in n and for all s � S, there exists s′ ∈ LostPred(S) such that
s �1 s′. Therefore, (Σn

R,�1) is a poly-reflection of (Σn
R,�).

Now we show the relationship between borders in a poset and its reflection.
For a given border on the initial poset, we define its extension in the reduced
poset to take into account lost comparabilities.

Definition 6. Let (L∗,�′) be a poly-reflection of (L∗,�) and (B+,B−)
a border of (L∗,�). The extension of (B+,B−) in (L∗,�′), denoted by
(ext(B+), ext(B−)), is defined by:

ext(B+) = Max≤′{LostPred(x) | x ∈ B+}
ext(B−) = Min≤′{LostSucc(x) | x ∈ B−}.
The “preservation” of borders can now be formally stated.

Proposition 4. Let (L∗,�′) be a poly-reflection of (L∗,�) and (B+,B−) a bor-
der of (L∗,�). Then (ext(B+), ext(B−)) is a polynomial extension of (B+,B−).

32 L. Nourine and J.M. Petit

Proof. We have to show:

1. (ext(B+), ext(B−)) is a border of (L∗,�′) with B+ ⊆ ext(B+) and B− ⊆
ext(B−),

2. |ext(B+)| + |ext(B−)| is polynomial in |B+| + |B−|.
(1) Any reflection preserves all incomparabilities and x ∈ LostPred(x) (resp

x ∈ LostSucc(x)) for all x ∈ L∗. Then B+ ⊆ ext(B+) and B− ⊆ ext(B−).
By definition, ext(B+) and ext(B−) are antichains in (L∗,�′). By Lemma 1,
the result follows.

(2) |ext(B+)| + |ext(B−)| is polynomial in |B+| + |B−| since (L∗,�′) is a poly-
reflection of (L∗,�) since computing LostPred(x) and LostSucc(x) can be
done in polynomial time in the size of the description of L. ��
The notion of poly-reflection allows to define the last class of posets, called

EWRAS, meaning Efficient weak representation as sets. EWRAS is the more
general class ensuring the existence of quasi-polynomial algorithms. It combines
both poly-reflection of posets and EXRAS.

Definition 7. (L∗,�) ∈ EWRAS iff there exists a poly-reflection (L∗,�′) of
(L∗,�) such that (L∗,�′) ∈ EXRAS.

Then, this definition means that if some comparabilities can be forgotten –
up to a polynomial cost to recover them – to get a new poset satisfying the
condition of EXRAS, then the dualization problem on the initial poset can be
reduced to DualizationOnSet.

Example 3. Continuing previous examples, we have (Σ∗
R,�1) is a poly-reflection

of (Σ∗
R,�) and (Σ∗

R,�1) belongs to EXRAS. Then, (Σ∗
R,�) belongs to

EWRAS.

The main result concerning the EWRAS class is now given:

Theorem 1. Let (L∗,�) ∈ EWRAS. Assume that (L∗,�′) is a poly-reflection
of (L∗,�) such that (L∗,�′) belongs to EXRAS, i.e. (L∗,�′) isomorphic to
P(E) \ (B+

0 ∪ B−
0). Then, for any border (B+,B−) of (L∗,�):

– (B+
0 ∪ f(ext(B+)), B−

0 ∪ f(ext(B−))) is a border in (P(E),⊆),
– (B+

0 ∪ f(ext(B+)), B−
0 ∪ f(ext(B−))) is a polynomial extension of (B+,B−),

The following corollary gives the relationship between all the classes intro-
duced so far.

Corollary 1. Let (L∗,�′) be a poly-reflection of (L∗,�) such that (L∗,�′)
belongs to XRAS, i.e. (L∗,�′) isomorphic to P(E) \ (B+

0 ∪ B−
0). We have:

1. (L∗,�) ∈ RAS if (L∗,�) = (L∗,�′) and B+
0 = B−

0 = ∅.
2. (L∗,�) ∈ XRAS if (L∗,�) = (L∗,�′).
3. (L∗,�) ∈ EXRAS if (L∗,�) = (L∗,�′) and the size of B+

0 ∪B−
0 is polynomial

in the size of the description of (L∗,�).
4. (L∗,�) ∈ EWRAS if the size of B+

0 ∪ B−
0 is polynomial in the size of the

description of (L∗,�).

Dualization on Partially Ordered Sets: Preliminary Results 33

3.4 DualizeOnSeq is Equivalent to DualizeOnSet

Recall that we consider rigid sequences only. The dualization problem can be
stated as follows:

DualizeOnSeq
Input: Σ a totally ordered alphabet with a minimal element �, n a positive
integer, B+ a positive border of Σn

R.
output: B− such that (B+, B−) is a border of Σn

R.
We have already showed that DualizeOnSeq is at least as hard as Dual-

izeOnSet in [8]. In the sequel, we point out that DualizeOnSet is at least
as hard as DualizeOnSeq, and therefore the two problems are polynomially
equivalent. Indeed, we show that DualizeOnSet is a particular case of Dual-
izeOnSeq.

Let Σ = {1, 2, ..., n, �} be an ordered alphabet (i.e. � < 1 < 2... < n and
S ∈ Σn. The sequence S is said to be an ordered sequence if for any i, j ∈ [1..n]
such that i < j, S[i] �= � and S[j] �= � we have S[j] − S[i] = j − i. We denote
Σn

O ⊆ Σn the set of all ordered sequences of size at most n. For example, the
sequence 2 � �5 is an ordered sequence but 2 � 5 is not.

The following lemma characterizes ordered sequences.

Lemma 2. Let Σ = {1, 2, ..., n, �} be an ordered alphabet and S ∈ Σn. Then
S ∈ Σn

O iff S does not contain a subsequence of the form i � . . . �︸ ︷︷ ︸
k

j with either

i < j and k �= j − i − 1, or i ≥ j with k ∈ [0..n − 2].

Consider the set B−
0 = {i ∗k j | i ≥ j, k ∈ [0..n − 2]}∪ {i ∗k j | i <

j, k ∈ [0..n − 2], k �= j − i − 1}. For example for Σ = {1, 2, 3, ∗} we have B−
0 =

{11, 1 ∗ 1, 22, 2 ∗ 2, 33, 3 ∗ 3, 21, 2 ∗ 1, 31, 3 ∗ 1, 32, 3 ∗ 2} ∪ {13}.

Lemma 3. Σn\ ↑ B−
0 = Σn

O.

Let V = {1, ..., n} be a set. We define the mapping f : P(V) → Σn such
that for any E ∈ P(V), f(E) = S with S[i] = i if i ∈ E and S[i] = � otherwise.
Without loss of generality, we delete the symbols � that are prefix or suffix of
f(E). Note that f(E)[i] = � means that i /∈ E. For example f({2, 5}) = 2 � �5
and f({}) is the empty sequence.

Proposition 5. Let V = {1, ..., n} be a set. Then the mapping f is a convex
embedding of P(V) into Σn. Moreover f(P(V)) = Σn

O.

Proof. Let P,Q be two sequences that are images of two sets A ⊂ B ⊆ V , i.e.
f(A) = P and f(B) = Q. Clearly f(A) � f(B).

Now suppose there is a sequence S such that P � S � Q.
For every i �= j ∈ [1..n] we have either S[i] �= S[j] or S[i] = S[j] = �, by

definition of the embedding f . Then the set C = {x ∈ V | S[i] = x, i ∈ [1..n]}
is clearly defined. Moreover f(C) = S and A ⊂ C ⊂ B, since for any x ∈ Σ,
x �� �, but � � x.

We have f(P(V)) = Σn
O by construction. ��

34 L. Nourine and J.M. Petit

Theorem 2. DualizeOnSeq and DualizeOnSet are polynomially equivalent.

Proof. We have shown that DualizeOnSeq is polynomially reducible to Dual-
izeOnSet [8]. In Proposition 5, we have shown the existence of a convex embed-
ding from P(V) into Σn. Moreover we have shown that B+

0 = ∅ and according
to Lemma 2 the size of B−

0 is bounded by O(n3). Thus DualizeOnSet is poly-
nomially reducible to DualizeOnSeq. ��

We have shown that the dualization on rigid sequences with wildcard is
equivalent to the dualization on set, i.e. enumerating minimal transversals of a
given hypergraph.

References

1. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

2. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

3. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32, 514–537 (2003)

4. Elbassioni, K.M.: Algorithms for dualization over products of partially ordered
sets. SIAM J. Discrete Math. 23(1), 487–510 (2009)

5. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal
dominating sets and related notions. Revised version submitted (2013)

6. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

7. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.:
Discovering all most specific sentences. ACM Trans. Database Syst. 28(2), 140–174
(2003)

8. Nourine, L., Petit, J.M.: Extending set-based dualization: application to pattern
mining. In: Press, I. (ed.) ECAI 2012, August 2012

9. Elbassioni, K.: Incremental algorithms for enumerating extremal solutions of
monotone systems of submodular inequality and their applications. Ph.D. thesis,
Rutgers, The state university of New Jersey (2002)

10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Press,
New York (1990)

11. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
12. Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items

in massive databases. In: ACM SIGMOD 1993, Washington D.C., pp. 207–216
(1993)

13. Mannila, H., Rih, K.J.: Algorithms for inferring functional dependencies from rela-
tions. Data Knowl. Eng. 12(1), 83–99 (1994)

14. De Marchi, F., Petit, J.M.: Zigzag: a new algorithm for mining large inclusion
dependencies in databases. In: ICDM 2003, USA, pp. 27–34, November 2003

15. Arimura, H., Uno, T.: Polynomial-delay and polynomial-space algorithms for min-
ing closed sequences, graphs, and pictures in accessible set systems. In: SDM, pp.
1087–1098 (2009)

Continuous Top-k Processing
of Social Network Information Streams: A Vision

Abdulhafiz Alkhouli, Dan Vodislav(B), and Boris Borzic

ETIS, ENSEA, University of Cergy-Pontoise, CNRS, Cergy, France
dan.vodislav@u-cergy.fr

Abstract. With the huge popularity of social networks, publishing and
consuming content through information streams is nowadays at the heart
of the new Web. Top-k queries over the streams of interest allow limiting
results to relevant content, while continuous processing of such queries
is the most effective approach in large scale systems. Current systems
fail in combining continuous top-k processing with rich scoring models
including social network criteria. We present in this paper our vision on
the possible features of a social network of information streams, with a
rich scoring model compatible with continuous top-k processing.

Keywords: Information streams · Social networks · Continuous top-k
query processing

1 Introduction

The advent of Web 2.0 technologies has deeply changed the way information is
published and consumed on the Web. Passive readers have become both active
information collectors and producers, while dynamic content generation and con-
sumption has continuously gained importance compared to traditional Web pub-
lishing (of Web pages) and exploring (through bookmarks, search engines and
hyperlink navigation).

Content publishing takes more and more the form of information streams
available through various information channels: RSS/Atom feeds from news-
papers and media, blogs, discussion forums, social networks, etc. Information
streams consist of flows of items, usually short semi-structured text messages,
possibly containing links to some Web resources (images, videos, pages, etc.),
and continuously published through specific diffusion channels. Users may sub-
scribe to several information channels of interest and continuously receive on
it, in real-time, new published content. With the huge popularity of social net-
works and of other information stream sources, this method of publishing and
consuming content is today at the heart of the new Web.

An important dimension in this publish-subscribe (pub/sub) framework is
the relationship between publishers of information streams and subscribers.
This social network dimension varies from no relationship at all in the case of
RSS/Atom feeds, to possible interaction with the published messages on blogs
c© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 35–48, 2016.
DOI: 10.1007/978-3-319-38901-1 3

36 A. Alkhouli et al.

(comments) and discussion forums (reply messages), and to explicit relation-
ships between users playing the double role of publishers and subscribers on
social networks such as Facebook (symmetric “friendship” relations) or Twitter
(asymmetric “following” relations). The social network dimension contributes
not only with providing information streams of interest to end users, but also
comes with criteria to measure this potential interest.

If this pub/sub approach in content dissemination has many advantages in
facilitating the access to continuously delivered, fresh, pertinent information, it
also raises some significant challenges. Maybe the most important one is the huge
amount of information available on today information channels; for a regular
user, the number of potentially interesting information streams combined with
the flow of messages they deliver, leads to overwhelming amounts of informa-
tion. Even if channels are organized by thematic criteria to help users choosing
information streams of interest, not all the published content is useful or equally
useful to them. The first challenge is then to define models for filtering and
ranking content, and to provide easy to use subscription languages and tools for
managing delivered information.

One way to organize the large amounts of stream messages is to define a rank-
ing model based on the importance of a message relative to a given subscription
query. Measuring this importance by a score allows end users to identify and to
focus on the most important messages for them, e.g. those with a score over a given
threshold, or the k most important ones (top-k). The ranking model may depend
on various context factors, among which we emphasize the following ones:

– Content based factors, measuring the adequacy of the message content with
the subscription query. Since textual content is characteristic to information
streams, content-based subscription queries are usually based on sets of terms
of interest, and the importance of a message is evaluated from an information
retrieval perspective, as the relevance of the text message to the query, based
on popular models such as tf-idf [26] or BM25 [17].

– User based factors, measuring the importance of users and of their rela-
tionships in the social network, for instance the importance of the message
publisher and of the relationship between the subscriber and the publisher. In
most cases user-based importance is measured on the social network graph,
by evaluating e.g. node centrality and distance between nodes.

– Interaction based factors, measuring the importance of messages by the reac-
tion they provoked, expressed through actions of other users on that message.
Depending on the social network context, current actions may be likes, com-
ments, forwards, tagging as favorite, etc.

– Time based factors, measuring the decrease of importance for a message as
time goes by. Two main approaches are used to take into account this dimen-
sion: sliding time windows [13], resulting in dropping messages older than
a given duration, and time decay functions [28,29], expressing a continuous
decrease of importance.

Continuous Top-k Processing of Social Network Information Streams 37

Other context factors, that we do not consider here, may contribute to evalu-
ate the importance of messages, such as geographic location or other information
elements specific to the social network and to the pub/sub environment.

The second main challenge in the pub/sub approach for information streams
is the design and implementation of efficient processing models at a very large
scale (millions, up to billions of users and information streams). In the case of
ranking models based on scoring functions, where subscription results are lim-
ited to the most important messages, the main difficulty comes from the need
of continuously (re-)computing the score of every message relative to every sub-
scription query and of subsequently maintaining the lists of subscription results.
The complexity of this task depends not only on the number of messages and
queries, but also on the form of the scoring function.

Two main categories of processing models have been proposed in this context.
The static approach is based on periodic snapshot queries over the set of published
messages to get the list of important messages for each user. The continuous app-
roach handles subscriptions as continuous queries reacting to new messages and to
other events, in order to incrementally maintain the important messages. As illus-
trated by the related work below, if the continuous approach is more efficient, it
also has more difficulties to handle complex scoring functions. To the best of our
knowledge, the continuous methods proposed so far only explored simple scoring
functions, most of the time based on the textual content, eventually combined with
time factors. More complex scoring, including social network factors has been pro-
posed, but only handled through a static approach.

This paper considers, in the general context introduced above, the problem of
continuously computing top-k messages for each subscription query in a very large
information stream pub/sub system, including complex scoring functions corre-
sponding to a social network environment. We describe our vision of this prob-
lem in the context of state-of-the-art related work, and propose a general model of
social network information streams covering many existing cases, a scoring model
in this context including all the importance factors introduced above, and finally
a processing architecture for continuous top-k processing in the defined context.

The rest of the paper is organized as follows: next section presents related work,
Sect. 3 describes the social network model and the scoring function, then Sect. 4
presents an architecture for continuous top-k processing, before concluding.

2 Related Work

Information Stream Filtering. Several approaches have been proposed to
tackle the problem of reducing the amount of information received from streams
by filtering their contents. If the first RSS/Atom feed aggregation tools (Google
Reader, NetVibes1, etc.) did not initially consider filtering, the need for controlling
the volume and for personalizing the content of received information rapidly led
to the introduction of various, complex filtering criteria, such as in Yahoo! Pipes2.
1 http://www.netvibes.com.
2 https://pipes.yahoo.com/pipes/.

http://www.netvibes.com
https://pipes.yahoo.com/pipes/

38 A. Alkhouli et al.

Boolean filtering has been first proposed for information streams, using filters
based on Boolean predicates. Most cases focus on text filtering through Boolean
keyword predicates, in a pub/sub context. Such solutions [15,33] come with
various index structures for fast detection of the subscription queries concerned
by a stream input message, in the context of a large number of subscriptions. In
[7], keyword subscriptions are considered in the context of a micro-blogging social
network and three index structures are proposed; they use three dimensions
(keywords/terms, publishers and followers) to enrich indexing with the structure
of the social network.

The drawback of Boolean filtering is that the number of results may be in
some cases too big or too small. Information retrieval (IR) ranking models, such
as tf-idf [26] or Okapi BM25 [17] provide ranking of results through a relevance
score computed for each message in the context of a given text query. Relevance
scores and ranking allow selecting the best results and adapting their number to
the end user needs.

Twomain approaches have been proposed for filtering streammessages in an IR
ranking context. The first one uses a predefined threshold for the relevance score [6,
25,32,34]. However, finding the right threshold in a given context is a difficult task
and [36] proposes a method for adaptive detection of this threshold. More recent
work [14,21,24,28,29] has adopted the second approach, of top-k computation, by
considering only the k most relevant results in a continuous processing approach.
The additional difficulty in this case, compared to threshold-based ranking, is to
continuously maintain a changing list of top-k results.

We mention here also some work on filtering data (non-textual) streams,
where items are composed of vectors of typed values, numerical in most cases.
Boolean filtering is considered in [1,3,10], where various indexes for Boolean
data predicates from subscription queries are proposed. Ranking for top-k fil-
tering in this context [8,20] is based on multidimensional indexes for numerical
vectors and faces the same problems related to the curse of dimensionality as for
multimedia features indexing, which limits the number of dimensions for which
these structures are efficient.

In this context, our work addresses top-k filtering for information streams in
a social network environment, going beyond text-only messages. The social net-
work parameters and possibly non-textual message components require solutions
which combine IR text ranking methods with specific index structures.

Score Model. In ranking models for information streams, the importance of
a stream message for a subscription query has been generally considered in the
context of text messages and queries, based on IR text relevance models such as
tf-idf and BM25. To this query-dependent score model, some approaches have
also added a global, query independent importance of messages, based on the
PageRank score [22] when messages refer web pages, on information novelty
[12], on source authority [9,16] or on user attention [30].

The social network context has been considered in the scoring models, in order
to improve the relevance of subscription query results by taking into account the
relationships between publishers and subscribers. Social network components are

Continuous Top-k Processing of Social Network Information Streams 39

included in the score model in several approaches, such as the distance in the
social graph [2,35], user actions [18] or spatial information [31].

However, the complexity of these scoring models prevented their use for con-
tinuous top-k processing. Either they are only proposed to provide a better
relevance estimation in social network environments, or, at best, they come with
efficient algorithms for score components computation (e.g. distance in graph)
and with static, snapshot-based algorithms for top-k evaluation [31,35]. To the
best of our knowledge, the only work on continuous top-k processing for informa-
tion streams including a social network component in its score model is [29], but
this is limited to the simplest component, a global, query independent impor-
tance of each message.

In the context of social tagging networks, such as Delicious or Flickr, score
models with social network components have also been proposed. [19,27] consider
score models combining text and social relevance, and provide snapshot-based
algorithms for top-k computation.

However, we do not consider tagging networks as producing information
streams; even if some analogy may be considered between documents/tags in tag-
ging networks and messages/actions in our information stream networks, there
are too many differences between their models to generalize a realistic common
social network model.

In this context, our work aims at proposing a rich score model, including
social network components, providing a good compromise between expressive-
ness and complexity for continuous top-k processing of information streams.

Continuous Top-k Processing. The closest work to our approach concerns
continuous top-k processing models for information streams. [23] is an early
work on probabilistic models for continuous top-k processing with a time sliding
window w (top-k/w publish-subscribe), independently on a scoring model. [21]
proposes a solution for top-k/w publish-subscribe over text message streams
based on classical tf-idf cosine similarity. It uses two inverted text indexes, one
for the most recent messages (in the sliding window) and the second one for
the subscription queries. Top-k processing is based on the Threshold Algorithm
(TA) [11] exploiting the text indexes. However, since messages are indexed, a
high arrival rate results here in expensive index updates.

[14] also tackles top-k/w publish-subscribe on text information streams and
proposes the COL-Filter algorithm and an improved variant POL-Filter. COL-
Filter only indexes subscription queries but uses a score-oriented order for the
inverted lists instead of query-oriented order in [21]. More precisely, a list for a
query term τ indexes queries q containing τ , ordered by the ratio between the
importance of τ in q and the current k-th best score for that q. This allows efficient
top-k processing by using the TA algorithm on the index lists, but suffers from a
relatively high number of updates subsequent to k-th best score changes. Message
exit from the time sliding window also results in updates to the top-k results.

In a similar context, [24] proposes a strategy for sharing effort among queries
in the top-k computation process, based on a covering relationship between

40 A. Alkhouli et al.

subscription queries and an associated graph index, resulting in efficient top-k
processing.

[28] proposes an adaptation of two IR top-k retrieval strategies to information
streams: the document-at-a-time (DAAT) algorithm WAND [4] and the term-
at-a-time (TAAT) algorithm of Buckley and Lewit [5]. Instead of time sliding
windows, an continuous order-preserving decay function is proposed to han-
dle time-dependent scoring, which eliminates the problem of top-k recomputing
upon message expiration.

Unlike the above approaches considering text information streams with
monotonic and homogeneous scoring functions, [29] introduces a simple social
network factor in scoring: a global importance of each message, that may be
based on social network criteria. This results in non-homogeneous scoring func-
tions, where methods proposed by the approaches above are not applicable. They
use a two-dimensional inverted query indexing scheme and explore efficient score
bounds which drastic pruning of the search space. Like for [28], time-dependent
scoring is handled through decay functions.

Excepting the last approach, all these continuous top-k processing techniques
are limited to simple text scoring functions. We aim at extending these tech-
niques to scoring functions including rich social network components.

3 Data Model and Scoring Function

As mentioned above, we consider the problem of continuously computing the k
most important messages for each user in a social network, coming from infor-
mation streams published by other users in the network.

We first propose a general social network model that covers many cases of
popular social network environments. Then, based on this model, we propose a
general scoring function for the importance of a published message relative to a
given user.

3.1 Information Stream Social Networks

Definition 1. An information stream social network S is a tuple S =
(U,R, p, sim, f, s), where:

– U is a set of users.
– R = {(u1, u2)|u1, u2 ∈ U, u1 �= u2} is a set of non-symmetric relations between

users; (u1, u2) ∈ R means that u1 “follows” the messages published by u2.
– p : U → D is a function associating to each user a profile. User profiles and

message contents are both modeled as descriptive documents in D.
– sim : D2 → [0, 1] is a function measuring the similarity between two descrip-

tive documents.
– f : U2 → [0, 1] is a function associating to each couple of users (u1, u2) the

importance of u2 for u1 in the social network.
– s : U → I is a function associating to each user the information stream

generated by that user.

Continuous Top-k Processing of Social Network Information Streams 41

Note that U and R respectively define the nodes and edges of the directed
social network graph. To represent symmetric networks such as Facebook, two
edges must be created between any related nodes u1 and u2: (u1, u2) and (u2, u1).

The structure of descriptive documents in D, which model both user profiles
and message contents, depends on the nature of messages. Intuitively, the profile
document gathers the elements of interest for the user in messages. In the com-
mon case of text messages, where similarity is evaluated through vector models
like tf-idf, a descriptive document d ∈ D may be represented as a vector of terms
belonging to a dictionary T , with a tf-idf weight associated to each term, i.e.
d = {(t, w)|t ∈ T , w ∈ R

+}.
At the same time, a user profile represents the subscription query for that

user. For instance, users are interested in messages whose contents is relevant to
their profiles.

The sim function measures the similarity between descriptive documents.
For a message content mc and a user u, sim(mc, p(u)) measures the interest of
user u (whose profile is p(u)) for message of content mc. For instance, the tf-idf
similarity between documents d1 and d2 is measured by the cosine between their
vectors of weights.

Note that the user relative importance function f is defined for any couple of
users in the network graph, not only for those directly related through R. Like
R, f is asymmetric, generally f(u1, u2) �= f(u2, u1). Depending on the context
and on the design choices, the values of f(u1, u2) may depend on many factors,
such as the paths connecting u1 to u2 in the graph, the similarity of the two user
profiles, the actions of u1 on the messages of u2, etc. Consequently, the values
of f may vary in time, with the creation/deletion of users and relations, with
profile changes, new interactions, etc.

The choice of introducing f as a global function, characterizing any couple
of users, corresponds to our intention to go beyond locality in social network
relationships. While in most social networks one only sees streams published by
“friends” (users to which one is explicitly connected), we aim at providing users
with both a local view (messages from the user’s “community”) and a global one
(from the rest of the network).

The information streams published by users are defined as follows.

Definition 2. An information stream I ∈ I is a couple I = (M,A), where:

– M = {(ts,mc)|ts ∈ TS,mc ∈ D} is a set of messages, where ts is the
timestamp of the message and mc is the descriptive document of the mes-
sage contents.

– A = {(ts, u,m, type, ac)|ts ∈ TS, u ∈ U,m ∈ M, type ∈ AT, ac ∈ D} is a set
of actions on the stream messages. ts is the action’s timestamp, u the user
that realized it, m the target message of the action, type its type among a set
of predefined action types AT , and ac the descriptive document of the action
contents.

Stream messages and actions are implicitly ordered by their timestamps.
Actions are always associated to a message and may have various types. Note

42 A. Alkhouli et al.

that an action is not a message, even if some of them (e.g. comments, retweets)
may be similar to messages in contents and in the way they are produced - all
social networks provide the mechanisms to make this distinction. Examples of
actions in the particular case of Twitter are retweets, replies, favorite marks on
tweets, etc.

3.2 Scoring Function

In the context of an information stream social network S, the ranking of messages
is driven by a scoring function that expresses the importance of a message for
a user. We propose a general form of the scoring function, taking into account
not only content-based factors, but also social network and time factors.

Note that we consider this scoring function in the context of continuous top-k
processing of social network information streams. As shown in Sect. 2, existing
work in the same context only considered simple scoring functions, with practi-
cally no social network components.

We propose here a complex scoring function, including social network factors,
but still adapted to continuous top-k processing. We first present a general form
for the scoring function, then we give in Sect. 4 some hints on how such scoring
functions may be handled for continuous processing.

Definition 3 Scoring function. For a user u ∈ U and a message m published
by another user um ∈ U, um �= u, the scoring function score : M × U → R+

expresses the importance of message m for user u and has the following general
form:

score(m,u) = Fg(CS(m,u), SS(m,u)) (1)

– CS(m,u) expresses the content similarity between the contents of m and the
profile of u. In our information stream social network model, CS(m,u) =
sim(m.mc, p(u)).

– SS(m,u) expresses the importance of message m to user u in the social net-
work context.

– Fg is a monotonic aggregation function combining the content-based and the
social network scores.

The social network scoring component may take into account both user
related and interaction related factors in the social network.

SS(m,u) = Fs(US(m,u), AS(m,u)) (2)

The monotonic aggregation function Fs combines the partial scores given
by the user-related factors (US(m,u)) and by the interaction-related factors
(AS(m,u)).

The user-related scoring function US(m,u) may itself take into account two
kind of factors, related to the message publisher or to the relation between the
publisher and the potential receiver.

US(m,u) = Fu(UI(um), UR(u, um)) (3)

Continuous Top-k Processing of Social Network Information Streams 43

Here, the UI(um) component expresses the global importance of the message
publisher um in the social network, while UR(u, um) measures the importance
of um for u. They are combined through the Fu monotonic aggregation function.
Since in our information stream social network model the relative importance of
users is measured by the f function, we may consider that UR(u, um) = f(u, um).
UI may be based e.g. on measures of influence in the social network, such as the
Klout score.

Similarly, the interaction-related scoring function AS(m,u) has a global part
related to message m and a part giving the importance of the interactions with
m from the perspective of user u.

AS(m,u) = Fa(AI(m), AR(m,u)) (4)

Here, AI(m) expresses the importance of message m coming from the inter-
action it provoked globally in the network. AR(m,u) measures the importance of
the interactions with the message from the perspective of user u. Intuitively, an
action on m is important for u if it is done by a user ua important for u. AI and
AR, combined through the Fa monotonic aggregation function, may be modeled
by various functions, increasing with the number of actions on the message.

If we consider the common case of linear aggregation functions, expressed
as positive weighted sums, Formulas 1–4 result into the following form for the
scoring function, which gives a better overview of its various components:

score(m,u) = αCS(m,u) + β1UI(um) + β2f(u, um) + γ1AI(m) + γ2AR(m,u)
(5)

Note that state-of-the-art proposals for continuous top-k processing only con-
sider the CS component, excepting [29] which also includes the AI and UI
components.

Definition 4 Time dependent scoring function. For a message m published
at time tm, the variation in time of the importance of message m for user u is
expressed by the time-dependent scoring function tscore : M × U × TS → R+

such that for any moment t ≥ tm:

tscore(m,u, t) = score(m,u) · TD(t − tm) (6)

– score(m,u) is the scoring function from Definition 3 and expresses the initial
importance of message m for user u at moment tm.

– TD : R+ → [0, 1] is a decreasing function such that TD(0) = 1. TD
expresses the decrease in time of the importance of message m, by associ-
ating to each time duration since the message publishing, a decrease factor in
[0, 1]. For instance tscore(m,u, tm) = score(m,u) and if t1 > t2 ≥ tm then
tscore(m,u, t1) ≤ tscore(m,u, t2).

We make here the common choice of a message and user independent time
function, which greatly facilitates message query processing, as illustrated in the
next section.

44 A. Alkhouli et al.

Moreover, we only consider order-preserving decay functions for TD, i.e. func-
tions which guarantee that the relative order of message scores is preserved
in time. More precisely, an order preserving decay function TD guarantees
that if at some moment t we have tscore(m1, u1, t) ≤ tscore(m2, u2, t), then
tscore(m1, u1, t

′) ≤ tscore(m2, u2, t
′),∀t′ > t. Order-preserving decay functions

facilitate continuous top-k processing by preserving in time the relative order of
messages in the top-k lists.

In the particular case of a time dependent factor handled by a sliding time
window of size wt, TD(d) = 1 if d ≤ wt and TD(d) = 0 when d > wt. Note
than in this case TD is not order-preserving, a message exiting the sliding time
window becoming less important than any message still in the window.

4 Processing Model

The general scoring function for social network information streams given by
Definition 3 and Formulas 1 to 4, or by its linear expression 5 provides a rich
model for importance evaluation compared to the state-of-the-art methods. The
general function may be instantiated in many ways, with an impact on the
processing method. The description of a complete solution in a specific case
is out of the scope of this paper, but we present here a general approach for
continuous top-k processing with such a scoring model.

Fig. 1. General architecture for continuous top-k processing of information streams

Figure 1 presents the general architecture of continuous top-k processing of
information streams, behaving as an event-based system. The result of such a
process is the set of top-k messages for each user in the social network, con-
tinuously maintained by the system. The event processor handles every input
event that may produce changes to the result lists, computes changes and sub-
sequently updates the result lists. Change computation is based on the data
structures representing the information streams and the social network, and on
the index structures that enable efficient event processing.

In our information stream context, we distinguish two categories of events:

– Continuously handled events, with potentially strong impact on top-k update,
and that must be processed on the spot. We include in this category, the
publication of a new message and the interaction with an existing message.

Continuous Top-k Processing of Social Network Information Streams 45

– Secondary events, with a weaker impact on the top-k lists; they may be accu-
mulated and processed from time to time. We include in this category changes
in the social network that may produce small changes in the scoring parame-
ters.

Evaluating the impact of various categories of events depending on the scor-
ing model is a difficult problem, but continuously reacting to any event that
may change some message score component is not realistic in practice, given
the complexity of our scoring function. The above classification of events is a
necessary trade-off between efficiency and precision.

Figure 2 presents the proposed architecture for continuous top-k processing
of social network information streams with a scoring function such as (1). New
message publishing and actions on messages are the only continuously handled
events. They provoke a lookup in the index structures, composed of a content-
based index and a social index. The result of this lookup is a subset of candidates
for the top-k update. The role of the index is to drop from this candidate list
as many users not impacted by the event as possible, in order to enable efficient
top-k processing.

Fig. 2. Architecture for continuous top-k processing of social network information
streams

Consider the linear form of the scoring function given by Formula 5 and let
us note μ(u) the k-th score in the result list of user u. A new published message
m has null score components for AI and AR (no action yet on m), so the only
users u that must update their top-k list are those with score(m,u) > μ(u), i.e.
with e(u) = αCS(m,u) + β1UI(um) + β2f(u, um) − μ(u) > 0. The design of the
index structure must be based on the form of the e(u) function.

In the case of a new action on message m, only the AI and AR components
of the score change, i.e. Δscore(m,u) = ΔAI(m)+ΔAR(m,u). If for some user
u, this score increase is enough go beyond μ(u) then m will enter the top-k list
of u. The index structure must enable quick detection of users impacted by this
score increase.

Secondary events are identified as social network modifications (new user
relation, new user, profile update, etc.) that may modify the parameters of the
social graph and implicitly of the scoring function, especially the relative impor-
tance function f . We consider that a periodic recomputation of the social network

46 A. Alkhouli et al.

parameters is scheduled by the system. This operation will produce an update
of the data and index structures.

The time-dependent scoring function (6) implies a continuous decrease in
time of message scores, that cannot be handled in continuous top-k processing.
We adopt the approach in [28,29] based on a strictly positive order-preserving
decay functions. Instead of decreasing scores for old messages, order-preserving
allows increasing scores for new messages, without changing the relative order
of scores. By fixing an initial moment t0 in the system, any new message m
published at time tm will have the score multiplied by a “time bonus” of
1/TD(tm − t0), which grows with tm. With this approach scores do not vary
with time anymore, which is compatible with continuous top-k processing.

5 Conclusion

This paper presented our vision on continuous top-k processing over information
streams in a social network context. We proposed a general model of information
streams social networks with a rich scoring function mixing content-based, user-
based, interaction-based and time-based components. A general approach for
continuous top-k processing in this context completes our contribution.

References

1. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching
events in a content-based subscription system. In: PODC 1999, pp. 53–61 (1999)

2. Bahmani, B., Goel, A.: Partitioned multi-indexing: bringing order to social search.
In: WWW 2012, pp. 399–408 (2012)

3. Bianchi, S., Felber, P., Gradinariu, M.: Potop-Butucaru: stabilizing distributed r-
trees for peer-to-peer content routing. IEEE Trans. Parallel Distrib. Syst. 21(8),
1175–1187 (2010)

4. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query eval-
uation using a two-level retrieval process. In: CIKM 2003, pp. 426–434 (2003)

5. Buckley, C., Lewit, A.F.: Optimization of inverted vector searches. In: SIGIR 1985,
pp. 97–110 (1985)

6. Callan, J.: Document filtering with inference networks. In: SIGIR 1996, pp. 262–
269 (1996)

7. Dahimene, R., Du Mouza, C., Scholl, M.: Efficient filtering in micro-blogging sys-
tems: We won’t get flooded again. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012.
LNCS, vol. 7338, pp. 168–176. Springer, Heidelberg (2012)

8. Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc top-k query answering for
data streams. In: VLDB 2007, pp. 183–194 (2007)

9. Del Corso, G.M., Gulĺı, A., Romani, F.: Ranking a stream of news. In: WWW
2005, pp. 97–106 (2005)

10. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Filtering
algorithms and implementation for very fast publish/subscribe systems. SIGMOD
Rec. 30(2), 115–126 (2001)

11. Fagin, R.: Combining fuzzy information: an overview. SIGMOD Rec. 31(2), 109–
118 (2002)

Continuous Top-k Processing of Social Network Information Streams 47

12. Gabrilovich, E., Dumais, S., Horvitz, E.: Newsjunkie: Providing personalized news-
feeds via analysis of information novelty. In: WWW 2004, pp. 482–490 (2004)

13. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Rec. 32(2),
5–14 (2003)

14. Haghani, P., Michel, S., Aberer, K.: The gist of everything new: Personalized top-k
processing over web 2.0 streams. In: CIKM 2010, pp. 489–498 (2010)

15. Hmedeh, Z., Kourdounakis, H., Christophides, V., du Mouza, C., Scholl, M., Travers,
N.: Subscription indexes for web syndication systems. In: EDBT 2012, pp. 312–323
(2012)

16. Hu, Y., Li, M., Li, Z., Ma, W.-Y.: Discovering authoritative news sources and top
news stories. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006.
LNCS, vol. 4182, pp. 230–243. Springer, Heidelberg (2006)

17. Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information
retrieval: development and comparative experiments. Inf. Process. Manage. 36(6),
779–808 (2000)

18. Khodaei, A., Shahabi, C.: Social-textual search and ranking. In: International
Workshop on Crowdsourcing Web Search, Lyon, France, April 17, 2012, pp. 3–
8 (2012)

19. Maniu, S., Cautis, B.: Efficient top-k retrieval in online social tagging networks.
CoRR, abs/1104.1605 (2011)

20. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries
over sliding windows. In: SIGMOD 2006, pp. 635–646 (2006)

21. Mouratidis, K., Pang, H.: Efficient evaluation of continuous text search queries.
IEEE Trans. Knowl. Data Eng. 23(10), 1469–1482 (2011)

22. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford University (1999)

23. Pripužić, K., Žarko, I.P., Aberer, K.: Top-k/w publish/subscribe: Finding k most
relevant publications in sliding time window w. In: DEBS 2008, pp. 127–138 (2008)

24. Rao, W., Chen, L., Chen, S., Tarkoma, S.: Evaluating continuous top-k queries
over document streams. World Wide Web 17(1), 59–83 (2014)

25. Rao, W., Fu, AW.-C., Chen, L., Chen, H.: Stairs: Towards efficient full-text filtering
and dissemination in a dht environment. In: ICDE 2009, pp. 198–209 (2009)

26. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

27. Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X.,
Weikum, G.: Efficient top-k querying over social-tagging networks. In: SIGIR 2008,
pp. 523–530 (2008)

28. Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.: Top-k publish-subscribe for
social annotation of news. Proc. VLDB Endow. 6(6), 385–396 (2013)

29. Vouzoukidou, N., Amann, B., Christophides, V.: Processing continuous text queries
featuring non-homogeneous scoring functions. In: CIKM 2012, pp. 1065–1074
(2012)

30. Wang, C., Zhang, M., Ru, L., Ma, S.: Automatic online news topic ranking using
media focus and user attention based on aging theory. In: CIKM 2008, pp. 1033–
1042 (2008)

31. Wu, D., Li, Y., Choi, B., Xu, J.: Social-aware top-k spatial keyword search. In:
MDM 2014, pp. 235–244 (2014)

32. Yan, T.W., Garcia-Molina, H.: Index structures for information filtering under the
vector space model. In: ICDE 1994, pp. 337–347 (1994)

48 A. Alkhouli et al.

33. Yan, T.W., Garćıa-Molina, H.: Index structures for selective dissemination of infor-
mation under the boolean model. ACM Trans. Database Syst. (TODS) 19(2),
332–364 (1994)

34. Yan, T.W., Garcia-Molina, H.: The sift information dissemination system. ACM
Trans. Database Syst. 24(4), 529–565 (1999)

35. Yin, P., Lee, W.-C., Lee, K.C.K.: On top-k social web search. In: CIKM, pp. 1313–
1316. ACM (2010)

36. Zhang, Y., Callan, J.: Maximum likelihood estimation for filtering thresholds. In:
SIGIR 2001, pp. 294–302 (2001)

Information Discovery

Mining Frequent and Homogeneous
Closed Itemsets

Ines Hilali1,2, Tao-Yuan Jen1, Dominique Laurent1(B), Claudia Marinica1,
and Sadok Ben Yahia2

1 ETIS Laboratory - ENSEA/UCP/CNRS, Cergy-Pontoise, France
ines.hilali@gmail.com, {jen,dlaurent,claudia.marinica}@u-cergy.fr

2 Computer Science Faculty of Tunis, Tunis, Tunisia
sadok.benyahia@fst.rnu.tn

http://www-etis.ensea.fr,

http://www.fst.tn

Abstract. It is well known that when mining frequent itemsets from
a transaction database, the output is usually too large to be effectively
exploited by users. To cope with this difficulty, several forms of condensed
representations of the set of frequent itemsets have been proposed, among
which the notion of closure is one of the most popular.

In this paper, we propose a new notion of closure that takes into
account, not only the support of itemsets, but also their homogeneity
degree with respect to a given taxonomy. To this end, we introduce and
study the notion of frequent and homogeneous closed itemset and we show
in particular that knowing all frequent and homogeneous closed itemsets
along with their supports and homogeneity degrees, allows to know all
frequent and homogenous itemsets. Moreover, we propose a level wise
algorithm for mining frequent and homogeneous closed itemsets.

Keywords: Data mining · Frequent itemsets · Closed itemsets · Simi-
larity measures

1 Introduction

The data mining field appeared with the promise of providing tools and tech-
niques to discover useful and beforehand unknown knowledge in large contexts.
Among these techniques, one of the most known is the discovery of association
rules that allows to find correlations between items appearing in a given context.

First approaches allowing the extraction of association rules were mainly
based on the determination of frequent itemsets. In doing so, these approaches
have two major disadvantages, namely, on the one hand, the very high number
of frequent itemsets incurs a very high extraction cost and, on the other hand,
the overwhelming quantity of derived association rules, among which many are
redundant, makes it impossible for the end user to exploit these rules.

Consequently, extracting condensed representations is a milestone towards
the emerging “knowledge extraction” field. To this end, several approaches were
c© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 51–65, 2016.
DOI: 10.1007/978-3-319-38901-1 4

52 I. Hilali et al.

interested in the extraction of a subset of the whole set of frequent itemsets,
called condensed representation. Among all possible condensed representations,
exact ones are of particular interest, because they allow for a lossless regeneration
of all frequent itemsets, without accessing the underlying transaction set.

In the literature, the most well known exact condensed representations of fre-
quent itemsets are known as closed itemsets [2,9,10,12], non-derivable itemsets
[4] and essential itemsets [5]. In this paper, we focus on closed itemsets assuming
that moreover, items are organized according to a given taxonomy. In this context,
based on a similarity measure defined as in [8], homogeneity is seen as a semantic
interestingness criterion for selecting relevant itemsets, as done in [7]. In our app-
roach, we consider the task of mining frequent and homogeneous itemsets, and we
further restrict this set by defining a new notion of closure that takes into account
frequency and homogeneity of itemsets.

We emphasize that we show in this paper that homogeneity can be seen as
an anti-monotonic constraint on itemsets. Therefore, our work is closely related
to the numerous approaches published so far on mining constraint frequent
itemsets (see [3] for a brief survey of this topic along with the introduction
of more sophisticated constraints that are out of the scope of the present paper).
In these approaches, the authors typically consider the general problem of mining
frequent itemsets satisfying monotonic or anti-monotonic constraints. Contrary
to these approaches where only frequency is associated with a closure, in our
work, each of the two anti-monotonic constraints (namely frequency and homo-
geneity) is associated with its own closure, and these two closures are combined
to produce a new one. This new closure is then shown to provide an exact con-
densed representation of the frequent homogeneous itemsets.

We also note that the notion of itemset homogeneity was already used in our
previous work [6] in the context of association rules built up from non frequent
items. However, to the best of our knowledge, no other work addresses the issue of
mining frequent itemsets under a homogeneity constraint as we do in this paper.
We illustrate our approach using the following example, considered throughout
the paper as a running example.

Example 1. Let I = {a1, a2, a3, n1, s1, s2, v1} be a set of items. We consider that
these items are organized according to the taxonomy shown in Fig. 1. Intuitively,
this means that a1, a2 and a3 are three alcoholic beverages such that a1 is a beer
whereas a2 and a3 are wines, n1 is a non alcoholic beverage, s1 and s2 are two
seafood products and v1 is a vegetable.

Using these items, transactions are pairs of the form (Tid, I) where Tid is
an identifier and I a subset of I. In our example, we consider a fixed set Δ of
six transactions as shown in Table 1, where each row represents a transaction
(Tid, I). For example, the first row of Table 1 displays a transaction τ identified
by t1 and whose items are a1, a2, a3, s1 and s2. As a notational convenience,
subsets of I are denoted by the concatenation of their elements. For instance
the set {a1, a2, a3, s1, s2} is simply denoted by a1a2a3s1s2.

Frequent itemset mining applied to Δ for a support threshold σ = 50%
shows that the itemsets I1 = a1a2 and I2 = a1s2 are frequent since at least three

Mining F-H Closed Itemsets 53

Fig. 1. The taxonomy T for the items in I

Table 1. The set of transactions Δ of the running example

Tid I

t1 a1, a2, a3, s1, s2

t2 a2, n1, s1

t3 a1, a2, a3, s1, s2

t4 a1, a2, n1, v1

t5 a1, a2, n1, s2, v1

t6 s1, s2, v1

transactions contain these sets (t1, t3, t4, t5 contain I1 and t1, t3, t5 contain I2).
However, taxonomy T shows that items of I1 are more similar to each other than
are the items of I2, that is, I1 can be considered as homogeneous, contrary to I2.
Therefore, it is likely that users be more interested in I1 than in I2. �

As earlier mentioned, in order to further reduce the size of the mined set, we
introduce a new closure operator that combines the standard itemset closure [9]
with one associated with homogeneity of itemsets. We show that mining closed
itemsets according to this new closure operator allows to know, without accessing
the dataset, all homogeneous and frequent itemsets. In other words, frequent and
homogeneous closed itemsets form an exact condensed representation of frequent
and homogeneous itemsets.

The paper is organized as follows: In Sect. 2 we first recall the basic notions
related to frequent closed itemsets and then, we define homogeneous itemsets
and their closure. In Sect. 3 we introduce our new notion of closure and then, in
Sect. 4, we give an algorithm for computing all frequent and homogeneous closed
itemsets. Section 5 concludes the paper and suggests future research issues.

54 I. Hilali et al.

2 Formalism and Basic Properties

2.1 Basics of Frequent and Closed Itemsets

In our approach, we assume a set I of items that occur in a transaction table Δ
whose rows are called transactions. A transaction τ is a pair (Tid, I) where Tid
is a transaction identifier and I a subset of I, called an itemset and denoted by
It(τ). We recall from [9] the following basic definition.

Definition 1. Let I be an itemset. The support of I, denoted by sup(I), is
defined by:

sup(I) =
|{τ ∈ Δ | I ⊆ It(τ)}|

|Δ| .

Given a support threshold σ, I is said to be frequent, if sup(I) ≥ σ.
The closure of I with respect to Δ, or the Δ-closure of I, denoted by ΓΔ(I), is
defined by:

ΓΔ(I) =
⋂

τ∈Δ,I⊆It(τ)

It(τ).

If I is such that ΓΔ(I) = I, then I is said to be Δ-closed.

It has been shown in [9] that

1. the support of an itemset I is equal to that of its Δ-closure, i.e., sup(I) =
sup(ΓΔ(I)), and that

2. the Δ-closure of I is the smallest Δ-closed itemset (with respect to set inclu-
sion) that contains I.

As a consequence, for every itemset I, the support of I is equal to the support
of the smallest Δ-closed itemset containing I. As noticed in [9], this property
shows that mining all frequent Δ-closed itemsets and their support allows to
compute all frequent itemsets and their support.

Example 2. In the context of Example 1, for I = a1n1, we have sup(I) = 2
6

(since I ⊆ It(t4) and I ⊆ It(t5)), and ΓΔ(I) = It(t4) ∩ It(t5) = a1a2n1v1.
Therefore, for a support threshold σ = 25%, I is frequent but not Δ-closed.
Moreover, since sup(ΓΔ(I)) = 2

6 , ΓΔ(I) is a frequent and Δ-closed itemset.
On the other hand, for I ′ = a1n1v1, ΓΔ(I) is the least Δ-closed set

containing I ′. Therefore, we know, without any further computation, that
sup(I ′) = 2

6 . �

2.2 Homogeneous Itemsets

As earlier mentioned, interestingness of itemsets can be measured based not only
on their frequency, but also on their homogeneity. Homogeneity is defined based
on a taxonomy that is assumed to be defined over the items in I. More precisely,
we consider in this work that we are given a taxonomy T , a taxonomy being a
tree whose leaves are the items in I.

Mining F-H Closed Itemsets 55

In this setting, we borrow from [11] the similarity measure between items
called Total Relatedness and defined as a combination of two other partial sim-
ilarity measures given next. In order to define these two measures, we assume
that every node ν in T is associated with its level, denoted by λ(ν) and defined
as usual, assuming that the level of the root of T is 0.

Definition 2. Given two distinct items i and i′ in I, let path(i, i′) be the set
of internal nodes of the path in T connecting i and i′. The Highest-Level Relat-
edness and the Node Separation Relatedness are respectively defined as follows:

– The Highest-Level Relatedness of i and i′, denoted by hr(i, i′), is the minimal
level of the nodes in path(i, i′) (or the level of the lowest common ancestor of
i and i′).

– The Node Separation Relatedness of i and i′, denoted by nsr(i, i′), is the
number of nodes in path(i, i′).

Denoting by k the depth of T , the Total Relatedness measure is defined for all
items i and i′ in I by:

sim(i, i′) =

{
1 if i = i′
1+hr(i,i′)
k∗nsr(i,i′) otherwise.

Example 3. In the context of Example 1, and considering the taxonomy over the
items in I shown in Fig. 1, we have k = 4 and:

– hr(a1, a3) = λ(Alcoholic) = 2 and hr(n1, s2) = λ(Item) = 0,
– nsr(a1, a3) = 3 and nsr(n1, s2) = 5.

Therefore, according to Definition 2, we obtain:

– sim(a1, a3) = 1+2
4∗3 = 0.25

– sim(n1, s2) = 1+0
4∗5 = 0.05. �

The notion of homogeneity degree of an itemset is defined as follows.

Definition 3. The homogeneity degree of a given itemset I, denoted by hom(I),
is defined by:

hom(I) =
{
1 if I = ∅
mini,i′∈I(sim(i, i′)) otherwise.

Given a homogeneity degree threshold h, I is said to be homogeneous with respect
to h if hom(I) ≥ h.

It is easy to see that for all i and i′, we have 0 ≤ sim(i, i′) ≤ 1. Hence, for any
similarity threshold h less than or equal to 1, singletons are homogeneous.

The following proposition shows that homogeneity is an anti-monotonic con-
straint on itemsets, in much the same way as frequency.

Proposition 1. For all itemsets I1 and I2 if I1 ⊆ I2 then hom(I1) ≥ hom(I2).

56 I. Hilali et al.

Proof. We first notice that for any itemset I possibly empty, we have ∅ ⊆ I along
with hom(∅) ≥ hom(I). Now, let I1 and I2 be nonempty itemsets such that I1
⊆ I2. If i1 and i′1 are two items in I1 such that sim(i1, i′1) = mini,i′∈I1(sim(i, i′)),
then i1 and i′1 also belong to I2. Hence, sim(i1, i′1) ≥ mini,i′∈I2(sim(i, i′)), entail-
ing that mini,i′∈I1(sim(i, i′)) ≥ mini,i′∈I2(sim(i, i′)) holds. Thus by Definition 3,
we have hom(I1) ≥ hom(I2), and the proof is complete.

Therefore, Proposition 1 shows that homogeneous itemsets with respect to a
given threshold h can be mined using a level wise algorithm such as Apriori ([1]).
Another consequence of Proposition 1 is that the approach of [2] onΔ-closed homo-
geneous itemsets applies in our context. However, we improve upon this work by
introducing a closure related to homogeneity and by combining this closure with
the more standard Δ-closure recalled earlier.

2.3 Itemset Closure with Respect to a Taxonomy

In what follows, we denote by N(T), respectively L(T), the set of all nodes in
T , respectively the set of all parent-child links in T . The closure of an itemset I
with respect to T , or the T -closure of I for short, is defined as follows.

Definition 4. For every itemset I, the closure of I with respect to a taxonomy
T , or the T -closure of I, denoted by ΓT (I), is defined by:

ΓT (I) = {i ∈ I | (∃ν ∈ N(T))(∃i′ ∈ I)((ν, i) ∈ L(T) ∧ (ν, i′) ∈ L(T))}.

If the itemset I is such that ΓT (I) = I, then I is said to be T -closed.

Example 4. Referring back to I1 = a1a3 and I2 = n1s2 of Example 3, we have:

– As a3 is in I1 and since (Wine, a3) and (Wine, a2) are in L(T), a2 is in ΓT (I1).
As a1 has no sibling, we obtain ΓT (I1) = a1a2a3.

– ΓT (I2) contains all siblings of n1 and s2, that is: ΓT (I2) = n1s1s2.

For I3 = a1a2a3n1, we obtain ΓT (I3) = I3. Thus I3 is T -closed. �

According to Definition 4, the T -closure of an itemset I is the set of all siblings
of the items in I (considering that an item i is its own sibling). The following
proposition shows that ΓT , operating over itemsets is a closure operator.

Proposition 2. For all itemsets I and I ′, we have:

1. I ⊆ ΓT (I)
2. If I ⊆ I ′ then ΓT (I) ⊆ ΓT (I ′)
3. ΓT (I) = ΓT (ΓT (I)).

Proof. 1. This point follows immediately from Definition 4.
2. Let i be in ΓT (I). Denoting by ν the node such that (ν, i) is in L(T), by
Definition 4, I contains an item i′ such that (ν, i′) is in L(T). Since I ⊆ I ′, i′ is
a node of I ′, meaning that i is also a node in ΓT (I ′). Thus, ΓT (I) ⊆ ΓT (I ′).

Mining F-H Closed Itemsets 57

3. The previous two points imply that ΓT (I) ⊆ ΓT (ΓT (I)) holds. Now, let i be
in ΓT (ΓT (I)). In this case, denoting by ν1 the node such that (ν1, i) is in L(T),
ΓT (I) contains an item i1 such that (ν1, i1) is in L(T). Applying again the same
argument to i1, denoting by ν2 the node such that (ν2, i1) is in L(T), I contains
an item i2 such that (ν2, i2) is in L(T). Since T is a tree, there exists a single
node ν such that (ν, i1) is in L(T), and so, ν = ν1 = ν2. Hence, i2 is a node
in I such that (ν, i2) and (ν, i) are in L(T). Consequently, i is in ΓT (I), which
implies that ΓT (ΓT (I)) ⊆ ΓT (I). Therefore, the proof is complete.

The following proposition states that the T -closure of a union of two itemsets is
the union of the T -closures of these itemsets.

Proposition 3. For all itemsets I1 and I2, we have:

ΓT (I1 ∪ I2) = ΓT (I1) ∪ ΓT (I2).

Proof. For j = 1, 2, Ij ⊆ I1 ∪ I2 implies that ΓT (Ij) ⊆ ΓT (I1 ∪ I2), by Proposi-
tion 2(2). Thus ΓT (I1) ∪ ΓT (I2) ⊆ ΓT (I1 ∪ I2) holds.

Conversely, if i is in ΓT (I1∪I2), then by Definition 4, I1∪I2 contains an item
i′ and N(T) contains a node ν such that (ν, i) and (ν, i′) are in L(T). Thus, if i′

is in I1 (respectively in I2), then applying again Definition 4, we obtain that i is
also in ΓT (I1) (respectively in ΓT (I2)). Therefore, ΓT (I1 ∪ I2) ⊆ ΓT (I1)∪ΓT (I2)
holds, which completes the proof.

Now, comparing the homogeneity degree of an itemset with that of its T -closure,
we give an example showing that these homogeneity degrees are not always equal.
This is so because, in the context of Example 1, for I = s1, we have hom(I) = 1,
and sim(ΓT (I)) = sim(s1, s2) = 1+2

4∗1 = 0.75.
However, the following proposition states that, when I contains more than

one item, the homogeneity degrees of I and ΓT (I) are equal.

Proposition 4. For every non singleton itemset I, hom(I) = hom(ΓT (I)).

Proof. We first note that the result holds if I = ∅ because in this case, ΓT (I) = ∅
and so by Definition 3, hom(I) = hom(ΓT (I)) = 1.

Assume that I �= ∅ and thus that I contains at least two distinct items. By
Proposition 2(1) and Proposition 1, hom(ΓT (I)) ≤ hom(I). Let i1 and i2 be dis-
tinct items in ΓT (I) such that hom(ΓT (I)) = sim(i1, i2) (these two items exist
because I contains at least two elements i1 and i2 and because sim(i1, i2) ≤
sim(ip, ip) for p = 1, 2). By Definition 4, there exist two nodes ν1 and ν2 in T and
two items j1 and j2 in I such that (ν1, i1), (ν1, j1), (ν2, i2), (ν2, j2) are in L(T).

On the other hand, if i and i′ are distinct sibling items in T then for
every item j we have hr(i, j) = hr(i′, j) and nsr(i, j) = nsr(i′, j), and thus
sim(i, j) = sim(i′, j). Therefore, sim(i1, i2) = sim(j1, j2). As Definition 3
implies that hom(I) ≤ sim(j1, j2), we obtain that hom(I) ≤ sim(i1, i2). Hence
hom(I) ≤ hom(ΓT (I)), which shows that hom(I) = hom(ΓT (I)). Therefore, the
proof is complete.

58 I. Hilali et al.

As a consequence of Proposition 4, knowing all homogeneous T -closed itemsets
along with their homogeneity degrees allows for knowing all homogeneous item-
sets and their homogeneity degrees. Thus, homogeneous T -closed itemsets form
an exact condensed representation of all homogeneous itemsets.

Referring back to Example 4, for I1 = a1a3, as ΓT (I1) = a1a2a3, we
have hom(I1) = hom(a1a2a3). Moreover, for I = a1a2n1, we have ΓT (I) =
a1a2a3n1 = I3. Thus, we know that hom(I) = hom(I3) without any further
computation.

As for mining frequent and homogeneous itemsets or FH-itemsets for short,
based on the fact that the support and homogeneity degree measures are anti-
monotonic with respect to set inclusion (see Proposition 1), it turns out that
FH-itemsets can be mined using a level wise algorithm such as Apriori ([1]).
The corresponding algorithm is out of the scope of the present paper; instead
we focus on a new notion of closure combining the Δ- and T -closures.

3 Frequent Homogeneous Closed Itemsets

3.1 The Problem

We know from the previous section that all frequent Δ-closed itemsets and all
homogeneous T -closed itemsets allow to know all FH-itemsets. Thus, one would
expect that the union of these two exact condensed representations be an exact
condensed representation of the set of all FH-itemsets. However, the following
example shows that this is not case.

Example 5. In the context of Example 1, with σ = 40% and h = 20%, the set
FΔ of pairs (I, sup(I)) where I is a frequent Δ-closed itemset and the set HT of
pairs (I, hom(I)) where I is a homogeneous T -closed itemset are as follows:

FΔ = {(a1a2, 0.66), (a1a2s2, 0.5), (a2, 0.83), (a2n1, 0.5), (a2s1, 0.5), (s1, 0.66),
(s1s2, 0.5), (s2, 0.66), (v1, 0.5)}

HT = {(a1, 1), (a1a2a3, 0.25), (a2a3, 1), (n1, 1), (s1s2, 0.75), (v1, 1)}.

On the other hand, it can be seen that the computation of FH-itemsets gives
the following set FH(Δ) of triples (I, sup(I), hom(I)):

FH(Δ) = {(a1, 0.66, 1), (a1a2, 0.66, 0.25), (a2, 0.83, 1), (n1, 0.5, 1), (s1, 0.66, 1),
(s1s2, 0.5, 0.75), (s2, 0.66, 1), (v1, 0.5, 1)}.

We now argue that finding an exact condensed representation of FH(Δ), based
on FΔ and/or HT is not trivial. Indeed, considering first FΔ ∪ HT is not an
option, because this union is clearly greater in size than FH(Δ). On the other
hand, considering FΔ ∩ HT is not an option either because, in our example, this
would give s1s2 and v1, which does not allow to recover FH(Δ).

Another way to cope with the problem of finding an exact condensed repre-
sentation of FH(Δ) is to consider only those Δ-closed frequent itemsets that are
homogeneous or dually, those T -closed homogeneous itemsets that are frequent.
It has been stated in [2] that the first option is not correct, and in fact it turns
out that the second one is also not correct. This is so in our example because:

Mining F-H Closed Itemsets 59

– a1a2, a2, s1, s1s2, s2 and v1 are the only homogeneous Δ-closed itemsets and
they do not allow to recover FH(Δ), since n1 does not occur;

– a1, n1, s1s2 and v1 are the only frequent T -closed itemsets and they do not
allow to recover FH(Δ), since a2 does not occur. �

3.2 ΔT -Closed Itemsets

In order to define an exact condensed representation of FH-itemsets, we intro-
duce the notion of ΔT -closure as follows.

Definition 5. Let Δ be a transaction table and T a taxonomy over I. For every
itemset I, the ΔT -closure of I with respect to Δ and T , or the ΔT -closure of I
for short, denoted by ΓΔT (I), is defined by:

ΓΔT (I) = ΓΔ(I) ∩ ΓT (I).

If the itemset I is such that ΓΔT (I) = I, then I is said to be ΔT -closed.

Example 6. To illustrate Definition 5, we consider again the context of Exam-
ple 1 in which we compute the ΔT -closures of the itemsets occurring in FH(Δ),
i.e., a1, a1a2, a2, n1, s1, s1s2, s2, and v1. Based on the results of Example 5, we
have:

– ΓΔ(a1) = ΓΔ(a1a2) = ΓΔ(a2) = a1a2, and ΓT (a1) = a1, ΓT (a1a2) = a1a2a3,
ΓT (a2) = a2a3. Thus, ΓΔT (a1) = a1, ΓΔT (a1a2) = a1a2, ΓΔT (a2) = a2.

– ΓΔ(n1) = a2n1, and ΓT (n1) = n1. Thus, ΓΔT (n1) = n1.
– ΓΔ(s1) = s1, ΓΔ(s1s2) = s1s2, ΓΔ(s2) = s2, and ΓT (s1) = ΓT (s1s2) =

ΓT (s2) = s1s2. Thus, ΓΔT (s1) = s1, ΓΔT (s1s2) = s1s2, ΓΔT (s2) = s2.
– ΓΔ(v1) = v1, and ΓT (v1) = v1. Thus, ΓΔT (v1) = v1.

Therefore, all itemsets in FH(Δ) are ΔT -closed. As an example of a non ΔT -
closed itemset, consider I = a3s1. In this case, we have ΓΔ(I) = It(t1)∩It(t2) =
a1a2a3s1s2 and ΓT (I) = a2a3s1s2, and thus ΓΔT (I) = a2a3s1s2. �

The following proposition shows that ΓΔT , operating over itemsets is a closure
operator.

Proposition 5. For all itemsets I and I ′, we have:

1. I ⊆ ΓΔT (I)
2. If I ⊆ I ′ then ΓΔT (I) ⊆ ΓΔT (I ′)
3. ΓΔT (I) = ΓΔT (ΓΔT (I)).

Proof. 1. Since I ⊆ ΓΔ(I) and I ⊆ ΓT (I) both hold, by Definition 5, we have
I ⊆ ΓΔT (I).
2. If I ⊆ I ′ then we have ΓΔ(I) ⊆ ΓΔ(I ′) and ΓT (I) ⊆ ΓT (I ′). Therefore, by
Definition 5, we also have ΓΔT (I) ⊆ ΓΔT (I ′).
3. According to the previous two items, we have that ΓΔT (I) ⊆ ΓΔT (ΓΔT (I)).
On the other hand, by Definition 5, ΓΔT (I) ⊆ ΓΔ(I) and so, ΓΔT (ΓΔT (I)) ⊆

60 I. Hilali et al.

ΓΔT (ΓΔ(I)) holds. Since ΓΔT (ΓΔ(I)) ⊆ ΓΔ(ΓΔ(I)), we obtain ΓΔT (ΓΔT (I)) ⊆
ΓΔ(ΓΔ(I)), that is ΓΔT (ΓΔT (I)) ⊆ ΓΔ(I) (because ΓΔ(ΓΔ(I)) = ΓΔ(I)). As it
can be shown in a similar way that ΓΔT (ΓΔT (I)) ⊆ ΓT (I) also holds, we obtain
ΓΔT (ΓΔT (I)) ⊆ ΓΔT (I), which completes the proof.

We now show that the support, respectively the homogeneity degree, of an item-
set I and the support, respectively the homogeneity degree, of its ΔT -closure
are equal, if I is not a singleton.

Proposition 6. For every itemset I, sup(I) = sup(ΓΔT (I)). Moreover, if I is
a non singleton itemset, hom(I) = hom(ΓΔT (I)).

Proof. Since I ⊆ ΓΔT (I), sup(I) ≥ sup(ΓΔT (I)) and hom(I) ≥ hom(ΓΔT (I))
both hold. On the other hand, as ΓΔT (I) ⊆ ΓΔ(I), sup(ΓΔT (I)) ≥ sup(ΓΔ(I)).
Since sup(ΓΔ(I)) = sup(I) we obtain sup(ΓΔT (I)) ≥ sup(I), and thus, sup(I) =
sup(ΓΔT (I)). Moreover, as ΓΔT (I) ⊆ ΓΔ(I), we also have hom(ΓΔT (I)) ≥
hom(ΓΔ(I)), by Proposition 1. As by Proposition 4, hom(ΓΔ(I)) = hom(I) we
obtain hom(ΓΔT (I)) ≥ hom(I), and thus, hom(I) = hom(ΓΔT (I)). Therefore,
the proof is complete.

As a consequence of Proposition 6, the support and the homogeneity degree of
a non singleton itemset I are respectively equal to the support and the homo-
geneity degree of the smallest ΔT -closed itemset that contains I. As a conse-
quence, the knowledge of frequent homogeneous ΔT -closed itemsets along with
their supports and homogeneity degrees allows for the computation of all FH-
itemsets with their supports and their homogeneity degrees. In other words,
frequent homogeneous ΔT -closed itemsets form an exact condensed representa-
tion of the set of all FH-itemsets. The computation of all frequent homogeneous
ΔT -closed homogeneous itemsets, or FH-ΔT -closed itemsets for short, along
with their supports and homogeneity degrees is the subject of the next section.

4 The Computation of FH-ΔT -Closed Itemsets

4.1 T -Elementary Itemsets

Definition 6. An itemset I is said to be a T -elementary itemset if there exists
a unique node ν in N(T) such that I = {i | (ν, i) ∈ L(T)}.
Example 7. In the context of Example 1, it is easy to see that I = a2a3 is a
T -elementary itemset, because in T , (Wine, a2) and (Wine, a3) are the only links
starting from Wine (see Fig. 1). We also notice that I is a T -closed itemset.

On the other hand, I ′ = a1a2a3 is T -closed but I ′ is not a T -elementary
itemset because (Beer, a1) and (Wine, a2) are links of L(T).

Moreover, I ′′ = a1a2a3s2 is an example of an itemset that is neither T -closed
nor T -elementary. Indeed, the fact that ΓT (I ′′) = a1a2a3s1s2 shows that I ′′ is
not T -closed, and the fact that (Beer, a1) and (Wine, a2) are links of L(T) shows
that I ′′ is not a T -elementary itemset. �

Mining F-H Closed Itemsets 61

It is easy to see that the computation of T -elementary itemsets is linear in the
size of the set of items I. The following proposition shows that T -elementary
itemsets are the basic blocks from which T -closed itemsets are obtained.

Proposition 7. 1. If E is a T -elementary itemset then E is T -closed and for
every subset I of E, ΓT (I) = E.

2. For every itemset I, ΓT (I) is the union of all T -elementary itemsets E such
that I ∩ E �= ∅.

Proof. 1. If E is T -elementary, then, by Definition 6, E is the set of all nodes i
such that (ν, i) is in L(T) for a unique ν in N(T). Therefore, by Definition 4, E
is T -closed. Now, if I ⊆ E, then the items in I are all connected to the node ν,
and so, we have ΓT (I) = E.
2. We first notice that, since T is assumed to be a tree, the set of all T -elementary
itemsets is a partition of I. Consequently, for every itemset I, if E1, . . . , Ek are
all T -elementary itemsets such that I ∩Ej �= ∅, for j = 1, . . . , k, we have I = (I ∩
E1)∪. . .∪(I∩Ek), implying that ΓT (I) = ΓT ((I∩E1)∪. . .∪(I∩Ek)). Moreover, by
Proposition 3, we have ΓT ((I∩E1)∪. . .∪(I∩Ek)) = ΓT (I∩E1)∪. . .∪ΓT (I∩Ek).
Since the previous item implies that ΓT (I ∩Ej) = Ij , for j = 1, . . . , k, we obtain
that ΓT (I) = E1 ∪ . . . ∪ Ek, which completes the proof.

Now, if E is a T -elementary itemset, all items in E have the same level in T ,
say λ. Thus, for all distinct items i and i′ in E, we have sim(i, i′) = 1+(λ−1)

k∗1 , that
is sim(i, i′) = λ/k. Therefore, hom(E) = λ/k, showing that, depending on the
homogeneity threshold h, some T -elementary itemsets may not be homogeneous.
On the other hand, there exists at least one T -elementary itemset Ek whose
elements are at level k (remember that k is the height of T). Thus, hom(Ek) = 1,
meaning that there is at least one homogeneous T -elementary itemset.

Next, we propose an algorithm for computing all triples (I, sup(I), hom(I))
where I is an FH-ΔT -closed itemset; we denote by FHΔT this set.

4.2 An Algorithm for the Computation of FHΔT

Our algorithm relies on the following well-known results regarding Δ-closure
shown in [9].

Given an itemset I, we denote by Tr(I) the set of all transactions τ in Δ
such that I ⊆ It(τ). Considering the equivalence relation whereby two itemsets
I and I ′ are equivalent if Tr(I) = Tr(I ′), the set of all equivalence classes thus
defined is denoted by Cl(Δ). Now, if C is an equivalence class in Cl(Δ), we have:

1. The minimal itemsets in C are called the key itemsets of C. We denote by
K(C) the set of all key itemsets of C.

2. The union of all itemsets in C is also in C, and this union is precisely the
Δ-closure of all itemsets in C. We denote by ΓΔ(C) this Δ-closed itemset.

3. I is in C if and only if there is K in K(C) such that K ⊆ I ⊆ ΓΔ(C).
4. All itemsets in C have the same support, which we denote by sup(C). More-

over, C is said to be frequent with respect to the threshold σ if sup(C) ≥ σ.

62 I. Hilali et al.

Based on equivalence classes as recalled just above and T -elementary itemsets,
ΔT -closed itemsets can be characterized as follows.

Proposition 8. An itemset I is ΔT -closed if and only if there exists C in Cl(Δ)
and T -elementary itemsets E1, . . . , Ep such that the following three items hold:

1. I = (E1 ∪ . . . ∪ Ep) ∩ ΓΔ(C).
2. There exists K in K(C) such that K ⊆ I.
3. For every i = 1, . . . , p, Ei ∩ ΓΔ(C) �= ∅.
Moreover, in case I is ΔT -closed, sup(I) = sup(C) and if I is not a singleton
then hom(I) = hom(E1 ∪ . . . ∪ Ep).

Proof. Let I = (E1 ∪ . . . ∪ Ep) ∩ ΓΔ(C) be an itemset satisfying the items in
the proposition. Then, I is an itemset in C and thus ΓΔ(I) = ΓΔ(C). On the
other hand, as T -elementary itemsets are pairwise disjoint, E1, . . . , Ep are the
only elementary itemsets that have a nonempty intersection with I. Therefore,
by Proposition 7(2), ΓT (I) = E1 ∪ . . . ∪Ep. Thus, ΓΔT (I) = ΓΔ(I)∩ΓT (I) = I,
meaning that I is ΔT -closed. In this case, we have sup(I) = sup(ΓΔ(I)) and by
Proposition 4, if I is not a singleton, hom(I) = hom(E1 ∪ . . . ∪ Ep).

Conversely, let I be a ΔT -closed itemset. Then, there exists a class C such
that I belongs to C, meaning that there exists K in K(C) such that K ⊆ I ⊆
ΓΔ(C). On the other hand, by Proposition 7(2), ΓT (I) is the union of all T -
elementary itemsets E1, . . . , Ep such that Ei ∩ I �= ∅ (i = 1, . . . , p). Therefore,
ΓΔT (I) = ΓΔ(C)∩ (E1 ∪ . . .∪Ep) and for i = 1, . . . , p, Ei ∩ΓΔ(C) �= ∅ (because
I ⊆ ΓΔ(C)). Since I = ΓΔT (I), the three items in the proposition are satisfied
by I, which completes the proof.

In our algorithm for computing FH-ΔT -closed itemsets, shown below as Algo-
rithm 1, we rely on Proposition 8, assuming the following:

1. All homogeneous T -elementary itemsets and their homogeneity degrees have
been computed beforehand. Let HE(T) be the set of all pairs (E, hom(E))
such that E is a homogeneous T -elementary itemset.

2. All frequent equivalence classes of Cl(Δ) have also been computed along with
their associated support. Let FC(Δ) denote the set of pairs (C, sup(C)) where
C is a frequent class of itemsets.

We notice that in order to apply Proposition 8, key itemsets must be known,
and that the approach in [9] does provide them. On the other hand, since the
algorithms in [10] and in [12] do not compute key itemsets, considering one of
these approaches implies extra computations. Whatever the way key itemsets
are obtained, the two basic ideas of our algorithm are the following:

1. By Proposition 7, all homogeneous T -closed itemsets are generated through
all unions of homogeneous elementary itemsets. These candidate unions are
built up in a level wise manner and, thanks to Proposition 1, they are pruned
as in Apriori ([1]) (lines 21 and 28).

Mining F-H Closed Itemsets 63

Algorithm 1. Computation of FH-ΔT -closed itemsets
Input:

• The support threshold σ, the homogeneity degree threshold h, the taxonomy T
• The set HE(T) of all pairs (E, hom(E)) where E is a homogeneous T -elementary
itemset and hom(E) its homogeneity degree
• The set FC(Δ) of all pairs (C, sup(C)) where C = (K(C), ΓΔ(C)) is a frequent
equivalence class in Cl(Δ)

Output: The set FHΔT of all triples (I, hom(I), sup(I)) where I is a frequent homo-
geneous ΔT -closed itemset

1: FHΔT = ∅
2: hom-union = ∅
3: hom-union-candidate = {E | (E, hom(E)) ∈ HE(T)}
4: for all (C, sup(C)) ∈ FC(Δ) do
5: for all E in hom-union-candidate do
6: if E ∩ ΓΔ(C) �= ∅ then
7: hom-union = hom-union ∪ {E}
8: if (∃K ∈ K(C))(K ⊆ E) then
9: if E ∩ ΓΔ(C) is a singleton then

10: hom-degree = 1
11: else
12: hom-degree = hom(E)
13: FHΔT = FHΔT ∪ {(E ∩ ΓΔ(C), hom-degree, sup(C))}
14: first-loop = true
15: while hom-union �= ∅ do
16: hom-union-candidate = ∅
17: // Union candidate generation
18: if first-loop = true then
19: for all (E1, hom(E1)) and (E2, hom(E2)) in HE(T) do
20: if hom(E1 ∪ E2) ≥ h then
21: hom-union-candidate = hom-union-candidate ∪ {(E1 ∪ E2)}
22: first-loop = false
23: else
24: for all U1 and U2 in hom-union do
25: // U1 = E1

1 ∪ . . . ∪ Ek−1
1 , U2 = E1

2 ∪ . . . ∪ Ek−1
2

26: if E1
1 = E1

2 and . . . and Ek−2
1 = Ek−2

2 and Ek−1
1 �= Ek−1

2 then
27: if for every subset I of (U1 ∪ U2) resulting from the union of k − 1 sets

among E1
1 , . . . , Ek−1

1 and E1
2 , . . . , Ek−1

2 , I is in hom-union then
28: hom-union-candidate = hom-union-candidate ∪ {(U1 ∪ U2)}
29: hom-union = ∅
30: // Scan the set FC(Δ) and check the candidates in hom-union-candidate
31: for all (C, sup(C)) ∈ FC(Δ) do
32: for all U = E1 ∪ . . . ∪ Ek in hom-union-candidate do
33: if (∀i = 1, . . . , k)(Ei ∩ ΓΔ(C) �= ∅) then
34: hom-union = hom-union ∪ {U}
35: if (∃K ∈ K(C))(K ⊆ U) then
36: FHΔT = FHΔT ∪ {(U ∩ ΓΔ(C), hom(U), sup(C))}
37: return FHΔT

64 I. Hilali et al.

2. The remaining candidate unions are checked according to the conditions in
Proposition 8, considering the frequent equivalent classes of FC(Δ) (see lines
6-8 and lines 33-35).

Moreover, the following specific remarks are in order regarding Algorithm 1:

– The test line 20 can be performed by simply picking one item i1 in E1 and
one item i2 in E2 and by computing sim(i1, i2). This is so because E1 and E2

are elementary itemsets. This remark also holds in the more general case of a
union of k elementary itemsets, when computing hom(U), line 36.

– The test line 27 allows to consider only homogeneous candidate unions.
– The test line 35 allows to check whether U ∩ ΓΔ(C) belongs to C. Indeed, if

the test succeeds, we have K ⊆ U ∩ ΓΔ(C) ⊆ ΓΔ(C) because K ⊆ ΓΔ(C).
– Line 36, the homogeneity degree hom(U ∩ΓΔ(C)) is equal to hom(U), because

in this case, U ∩ΓΔ(C) is not a singleton. Indeed, U ∩ΓΔ(C) contains at least
one item per elementary itemset occurring in U and in this case U is the union
of at least two elementary itemsets.

As for the complexity of Algorithm 1, we first notice that the number of scans of
FC(Δ) is linear in the size of HE(T). Thus, the number of T -elementary item-
sets clearly impacts the performance: in the worst case where all homogeneous
T -elementary itemsets are singletons, the maximal number of scans of FC(Δ) is
the number of items, and in the best case where we have only one homogeneous
T -elementary itemset, only one scan of FC(Δ) is necessary.

In any case, since computing HE(T) is linear in the size of I, our approach
to restrict itemsets to be frequent, homogeneous and ΔT -closed requires a com-
putation in O(|I| × |FC(Δ)|) (where the notation |E| stands for cardinality of
set E).

Thus, considering that, in general, the size of FC(Δ) is much smaller than
that of Δ, we claim that our approach does not incur a significant increase in
complexity compared with that of mining frequent Δ-closed itemsets, using the
method in [9]. However, it is important to notice that computing FC(Δ) using
the method in [10] or in [12] requires to compute the key itemsets of every
equivalence class. This clearly implies an additional cost whose evaluation is not
considered in this paper.

5 Conclusion

In this paper, we have considered the problem of restricting the set of itemsets
mined from a transaction table, using a semantic criterion based on a homo-
geneity measure for itemsets. In this context, we have introduced a novel notion
of closure for itemsets, called ΔT -closure, that combines the well-known closure
related to the support measure with a closure related to the notion of homo-
geneity degree of an itemset. We then could show that frequent homogeneous
ΔT -closed itemsets form an exact condensed representation of the set of all fre-
quent homogeneous itemsets. An algorithm for mining frequent homogeneous
ΔT -closed itemsets has been proposed.

Mining F-H Closed Itemsets 65

Regarding current and future work, we are implementing Algorithm 1, in
order to assess its performance in terms of computational time as well as of its
capability to actually condense the set of all frequent homogeneous itemsets.
We are also investigating how to design a novel algorithm that would compute
FHΔT , without having to compute FC(Δ) first. Moreover, coupling this app-
roach with that in [6] should provide a mean for deeply analyzing a given data set
by considering frequent and non frequent homogeneous itemsets. This general
issue will be investigated in the next future.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining, pp.
309–328. AAAI-MIT Press, (1996)

2. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: IEEE
International Conference on Data Mining (ICDM), pp. 35–42 (2004)

3. Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining.
In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
pp. 114–124. Springer, Heidelberg (2005)

4. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Elomaa,
T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp.
74–85. Springer, Heidelberg (2002)

5. Casali, A., Cicchetti, R., Lakhal, L.: Essential patterns: a perfect cover of frequent
patterns. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp.
428–437. Springer, Heidelberg (2005)

6. Hilali, I., Jen, T.-Y., Laurent, D., Marinica, C., Ben Yahia, S.: Mining interesting
disjunctive association rules from unfrequent items. In: Kawtrakul, A., Laurent,
D., Spyratos, N., Tanaka, Y. (eds.) ISIP 2013. CCIS, vol. 421, pp. 84–100. Springer,
Heidelberg (2014)

7. Marinica, C., Guillet, F.: Knowledge-based interactive postmining of association
rules using ontologies. IEEE TKDE 22(6), 784–797 (2010)

8. Natarajan, R., Shekar, B.: A relatedness-based data-driven approach to determi-
nation of interestingness of association rules. In: ACM Symposium on Applied
Computing (SAC), pp. 551–552. ACM (2005)

9. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

10. Pei, J., Han, J., Mao, R.: Closet: an efficient algorithm for mining frequent closed
itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp. 21–30 (2000)

11. Shekar, B., Natarajan, R.: A framework for evaluating knowledge-based interest-
ingness of association rules. Fuzzy Optim. Decis. Making 3, 157–185 (2004)

12. Zaki, M.J., Hsiao, C.-J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE TKDE 17(4), 462–478 (2005)

Mining Frequent Itemsets
with Vertical Data Layout in MapReduce

Tao-Yuan Jen, Claudia Marinica(B), and Abir Ghariani

ETIS Laboratory, ENSEA/University of Cergy-Pontoise/CNRS 8051,
Cergy-Pontoise, France

{jen,claudia.marinica}@u-cergy.fr, abirghariani@gmail.com

http://www-etis.ensea.fr/

Abstract. Frequent itemset mining is a Data Mining technique aiming
to generate from a dataset new and interesting information under the
form of sets of items. Several algorithms were already proposed, and suc-
cessfully implemented and used such as Apriori, FP-Growth and Eclat,
along with numerous improvements. These algorithms deal with two
types of data layouts: horizontal and vertical; the former corresponds to
the traditional layout (the individuals as rows and the items as columns)
and it is more used due to its facility, but the latter brings important com-
putation reductions. The standard frequent itemset mining algorithms
have a high computational complexity and, given the available massive
datasets, new approaches were proposed in the literature implementing
mining algorithms in parallel, distributed, and lately Cloud Computing
paradigms.

In order to overcome the drawbacks related to the computational issues,
in this paper, we propose, Apriori V, a new parallel algorithm for frequent
itemset mining from a vertical data layout that was implemented on the
MapReduce platform. Apriori V brings significant improvements related
to (1) the use of the vertical data layout with anApriori-like strategy allow-
ing to reduce the number of operations due to the elimination of several
Apriopri-specific tasks such as the pruning, and (2) decrease of the under-
lying complexity and thus the execution time.

Keywords: Data Mining · Association rules · MapReduce ·
Vertical/Horizontal data layout

1 Introduction

Data Mining is the process of providing interesting, unknown and potentially
useful patterns from data [8]. To this end, different techniques were developed
during the last decades. In this paper, we are interested in one of the most
used techniques, namely the frequent itemset (pattern) mining technique, which
allows the generation of correlations between items in the data.

Several algorithms along with numerous improvements were proposed in
order to extract frequent itemsets from data, such as Apriori [1], FP-Growth [9]
c© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 66–82, 2016.
DOI: 10.1007/978-3-319-38901-1 5

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 67

and Eclat [21]. On the one hand, Apriori, a level-wise algorithm, generates the
complete set of frequent itemsets for a given dataset. When dealing with Big
Data, Apriori encounters important difficulties related mainly to the dimension
of the search space. More precisely, at each level (k+1), the algorithm generates a
huge number of candidate itemsets by joining the frequent itemsets produced at
level k, and this number is growing exponentially. Moreover, at each level, Apri-
ori needs to make one pass through the dataset in order to compute the support
(i.e. the number of occurrences) of the candidate itemsets. On the other hand, a
number of algorithms propose improvements by using different data structures.
Some examples are the use of an FP-Tree structure in the FP-Growth algo-
rithm, and the use of a vertical data layout (instead of the horizontal one used
in Apriori) in Eclat-like algorithms. The vertical data layout has the advantage
of cutting off several costly operations as candidate pruning and itemset support
counting, since (as we will explain later in the paper) these become simple binary
operations.

Despite the numerous existing solutions, in the BigData era, the main lim-
itation of the frequent itemset mining technique is related to the complexity
and the performance. To overcome these limits, new approaches were developed
based on paradigms such as parallel, distributed or Cloud computing (which
combines both parallel and distributed characteristics). Cloud Computing [2]
promises access to unlimited number of resources and thus allows the design
of algorithms that can scale as much as needed and take advantages of these
resources (including CPU, storage and networking).

Cloud Computing brings in and supports different computational paradigms;
one of these is MapReduce [6]. MapReduce provides a rather simple and easy to
follow computational model, which benefits most repetitive computations that
can be performed independently over various computational nodes. Frequent
itemset mining algorithms that use the vertical data layout can be easily trans-
formed to follow the requirements of MapReduce and thus to be executed under
this framework. During the last years, various frequent itemset mining Apriori-
like algorithms have been proposed on MapReduce. All these solutions are based
on horizontal data layout. However they differ by the repartition of the tasks
between the Mapper and the Reducer, and also by the number of MapReduce
phases needed to produce a result.

In this context, this paper introduces a new algorithm, Apriori V, aiming
to reduce the computational complexity. The algorithm works on vertical data
layouts and data are implemented as bitmaps in order to reduce numerous com-
putations in level-wise mining algorithms based on horizontal data layout. To
the best of our knowledge, no other Apriori-like algorithm using the vertical data
layout and the bitmap representations was proposed over MapReduce. Moreover,
we discuss a proposed MapReduce implementation for the new algorithm.

The reminder of the paper is structured as follows. Section 2 details the back-
ground for our problem - discussions about frequent itemset mining, MapReduce
and frequent itemset mining on MapReduce are developed. In Sect. 3 we describe
our algorithm, and we discuss its advantages/drawbacks in Sect. 4. Section 5 con-
cludes our paper and brings up diverse perspectives.

68 T.-Y. Jen et al.

2 Background: Frequent Itemset Mining, MapReduce
and Related Work

2.1 Frequent Itemset Mining

Let Δ = {t1, t2, ..., tn} be a dataset that contains n transactions, each transaction
being composed of a subset of the set of items of the dataset I = {i1, i2, ..., im}.
A transaction ti ∈ Δ is a pair (Tid, I), where Tid is the unique identifier of the
transaction, and I is a set of items, I ⊆ I, called also itemset.

Let X = {i1, i2, ..., ik} be an itemset; to facilitate the reading, we denote X by
X = i1i2...ik. The itemset X is supported by the transaction ti = (Tid, I), if X is
a subset of I, X ⊆ I, or more precisely, if the transaction ti contains the itemset
X. With these elements, we are able to define the support of an itemset.

Definition 1. The support of an itemset X, denoted by sup(X), is the ratio of
transactions containing X over the total number of transactions in the dataset:

sup(X) =
|{ti = (Tid, I) ∈ Δ | X ⊆ I}|

|Δ| .

Definition 2. Given a minimum support threshold, σ, specified by the user, an
itemset X is frequent if its support exceeds the given threshold (sup(X) ≥ σ).

Given these basic notions, the main issue in the frequent itemset mining
research area is to develop algorithms generating all the frequent itemsets from
a dataset given a minimum support threshold. We illustrate our approach using
the following example considered throughout the paper as a running example.

Example 1. Let I = {a, b, c, f,m, p} be a set of items and Δ a dataset of 6
transactions as shown in Table 1.

In this table, each row represents a transaction (Tid, I). For example, the
first row of Table 1 displays the transaction identified by t1 and whose items are
a, c, f , m and p.

Table 1. The set of transactions Δ of the running example.

Tid I

t1 a, c, f, m, p

t2 a, b, c, f, m

t3 b, f

t4 b, c, p

t5 a, c, f, m, p

t6 a, c, f, m

Applying a standard technique to mine frequent itemsets from the transac-
tional table Δ using a minimum support threshold σ = 30%, the itemsets ac and
bc are frequent since at least two transactions contain these sets. However, the
itemset ab is not frequent since only the transaction t2 contains the itemset ab.

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 69

Apriori. One of the most known and used algorithms for frequent itemset
mining is the Apriori algorithm [1], a level-wise algorithm based on candidate
generation. It performs a breadth-first search through the search space of all
itemsets by iteratively generating candidate itemsets Ck+1 of size k +1 from the
frequent itemsets Lk of size k. The anti-monotonicity condition imposes that an
itemset is a candidate if all its sub-itemsets are frequent; then, to validate the
candidate as frequent its support should be computed in the dataset.

More precisely, at first level (k = 1), the algorithm generates the set of
candidates C1 consisting of all the items in I, and then it computes their support
by one pass in the dataset. At level (k + 1), the algorithm generates candidates
Ck+1 in two steps: (1) first, in the join step, the union of two frequent itemsets
of level k produces an itemset; (2) second, in the pruning step, the generated
itemsets are validated as being candidates if they satisfy the anti-monotonicity
property. At the end, the support of all the candidates of level (k+1) is computed
by one pass in the dataset.

2.2 The MapReduce Platform

MapReduce is a platform introduced in 2004 by Dean and Ghemawat from
Google [5] and it showed massive adoption and implementation by both indus-
trial and scientific circles [4,6]. The most prominent implementation of the
MapReduce framework is Hadoop1. Hadoop is the framework we retained for
the implementation of our new algorithm. MapReduce is a rather simple com-
putational framework but converting existing algorithms to MapReduce is not
always a strightforward process. Many times actually new MapReduce-only algo-
rithms should be proposed due to the difficulty of transforming the old ones.

MapReduce is based on the splitting of the given algorithm in two phases;
(1) the Mapper or the Mapping phase and (2) the Reducer or Reducing phase.
All nodes in the MapReduce framework are expected to run the exact same code,
so we can only differentiate the input. In that respect, MapReduce belongs to the
Single Instruction Multiple Data (SIMD) parallel computing class of frameworks.
But before starting the actual MapReduce processing, we have to take a step into
splitting the input adequately and as equally as possible. The latter is required
so that the nodes running the processing for the Mappers will be expected to
finish around the same time, since, according to MapReduce, moving to the
Reduce phase is allowed only after all Mappers have finished and reported their
results. Moreover, during this preprocessing phase, we need to convert the input
to trivial (key, value) pairs, since MapReduce relies on processing as input and
producing as output only (key, value) pairs. How this transformation will take
place depends on the current problem.

After the preprocessing phase, the Mapping phase starts, where usually a set of
semi-processing computations on the input takes place. After the Mapping phase,
a sorting/shuffling takes place in order to prepare the intermediate results pro-
duced by the Mappers for processing by the Reducers. Usually the effort is to pro-

1 https://hadoop.apache.org/.

https://hadoop.apache.org/

70 T.-Y. Jen et al.

vide to the Reducers input that is somehow related, e.g. by using the same key.
Then, the Reducers will do the final computations over the already semi-processed
dataset and produce the final results in the form of new (key, value) pairs.

2.3 Frequent Pattern Mining on MapReduce

During the last decade, an important number of algorithms for frequent pattern
mining have been developed in the literature. As stated previously, due to the
limits of these algorithms related to memory use and computation cost, solutions
were further searched in the parallel and distributed computing, and lately in
Cloud Computing (using specific implementations such as Hadoop or Spark2)
with the development of different approaches [16].

In the following, we will focus on the algorithms for frequent itemset mining
developed on the MapReduce platform and we can classify them in 3 categories
depending on the number of MapReduce phases needed to accomplish the task:
(1) one-phase; (2) two-phases; and (3) k-phases algorithms, where k is the max-
imum length of the frequent itemsets produced by the algorithm.

One-Phase Algorithms. The algorithms in the one-phase category need only
one MapReduce job to accomplish the task. The algorithm proposed in [12]
has a reduced efficiency as it has to produce many redundant itemsets. As a
consequence, while applied on Big Data, the algorithm leads to memory overflow,
high CPU utilization and high execution time.

Algorithm 1. Mapper for the one-phase algorithm in [12]
Input: Si where

Si: Split number i and line = transaction
Output: (Key, 1) where

Key: a candidate itemset
1: for all transactions t in Si do
2: Map(line offset, t)
3: for all itemsets I in t do
4: return (I,1);

For this algorithm, the Mapper is given in Algorithm1 and the Reducer
in Algorithm 2. We can see that, from a given transaction t, each Mapper is
producing all the possible itemsets along with the value 1. Then, for each itemset
generated by the Mapper, the Reducers are computing its occurrence in the
database. At the end, the Reducers are testing each itemset’s support against
the given threshold and returns the frequent item sets with their corresponding
support.

2 https://spark.apache.org/.

https://spark.apache.org/

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 71

Algorithm 2. Reducer for the one-phase algorithm in [12]
Input: (Key2, V alue2) pairs and min sup, where

Key2: a candidate itemset
V alue2: Key2’s occurrence in each split

Output: (Key3, V alue3) pairs, where
Key3: an element of frequent itemsets
V alue3: Key′

3s occurrence in the whole data
1: Sum = 0;
2: while V alue2.hasNext() do
3: Sum+ = V alue2.getNext();
4: if Sum >= min sup then
5: return (Key2, Sum);

Algorithm 3. Mapper for the 1st job of the MRApriori algorithm [18]
Input: Si where

Si: Split number i and line = transaction
Output: (Key, 1) where

Key: a partial frequent k-itemset
V alue: Key’s partial occurence

1: L = apply Apriori on(Si)
2: for all itemsets I in L do
3: return (I, partial count);

Algorithm 4. Mapper for the 1st job of the MRApriori algorithm [18]
Input: (Key2, V alue2) pairs, where

Key2: a partial frequent k-itemset
V alue2: Key2’s occurrence in each split

Output: (Key3, 1) pairs, where
Key3: a global candidate frequent k-itemset
V alue3: 1

1: return (Key2, 1);

Two-Phases Algorithms. The algorithms in this category need at maximum
two MapReduce jobs to find the frequent itemsets and they work as follows:

1. In the first MapReduce job, each Mapper receives as input a part of the
dataset and the goal of the Mapper is to apply on the input the Apriori
algorithm with a minimum support threshold proportional to the dimension
of the input.

Thus, the output of the Mapper is composed of the a partial frequent k-
itemset and its partial count. The Reducer receives as input the Mapper’s
output and generates as output the pair composed of each partial frequent
itemset and the value 1. For this first job, the Mapper is given in Algorithm3
and the Reducer in Algorithm 4.

72 T.-Y. Jen et al.

2. The goal of the second MapReduce job is to compute the exact support for
all the partial frequent itemsets. This second job is composed of the Mapper
given in Algorithm 5 and the Reducer in Algorithm6.

Each Mapper receives the same input as in the first job, but also the com-
plete set of partial frequent itemsets generated by the first phase’s Reducer,
and it will compute the occurrence of all the partial frequent itemsets on the
part of the database received as input. Then, the Reducer is will addition all
the occurrences produced by the Mappers for an itemset in order to produce
the final support.

Algorithm 5. Mapper for the 2nd job of the MRApriori algorithm [18]
Input: Si, Lp

Output: (Key, V alue) where
Key: an element of Lp

V alue: is Key’s partial occurence in the split
1: Read Lp from DistributedCache
2: for all itemset I in Lp do
3: Map(I, Si)
4: count = Count I in Si(I, Si);
5: return (I, count);

Algorithm 6. Mapper for the 2nd job of the MRApriori algorithm [18]
Input: (Key2, V alue2) pairs, where

Key2: a global candidate k-itemset
V alue2: Key2’s occurrence in each split

Output: (Key3, V alue3) pairs, where
Key3: a global frequent k-itemset
V alue3: Key3’s global occurrence in the whole data

1: Sum = 0;
2: while V alue2.hasNext() do
3: Sum+ = V alue2.getNext();
4: if Sum >= min sup then
5: return (Key2, Sum)

The MRApriori algorithm [18] follows the above steps, but it suffers from
redundant count computation between the two phases. Indeed, in the second
phase the authors compute the counts for all the partial frequent itemsets in
all the splits, even for those being frequent in a specific split. More precisely, in
the first phase, an itemset can be frequent in one split, and not frequent in the
others, but this does not mean that it cannot be frequent in the global dataset.

To overcome this drawback, the algorithm IMRApriori [7] proposes to
enhance the performances of the MRApriori algorithm by introducing an efficient
pruning technique based on reducing the number of partial frequent itemsets.
To reduce the overload nodes of the map functions, the IMRApriori prunes in

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 73

the first phase’s Reducer those itemsets that are not declared as frequent by
a minimum number of Mappers. Other improvements for the MRApriori were
proposed in [10,17], the latter introducing a cache layer in order to save the
counting information in the first phase and to access it in the second phase.

k-phases Algorithms. The algorithms in the k-phases category need k MapRe-
duce jobs to generate the frequent itemsets (k is the maximum length of the
frequent itemsets). These algorithms bring different translations of the Apriori
algorithm over the MapReduce platform. The algorithm introduced in [19] inte-
grates at each k-phase a MapReduce job working as follows: (1) the k candidates
are computed; (2) the Mapper receives as input a specific transaction and its
goal is to output the pair composed of the candidate itemset and the value 1,
if the candidate is included in the transaction; (3) the Reducer sums up all the
values for each candidate itemset computing the support of the candidate.

Algorithm 7. Phase-1’s Mapper of SPC and DPC algorithms [14]
Input: transaction ti

database partition Di

Output: (Key, V alue) where
Key: an item in ti
V alue: 1

1: for all transaction ti ∈ Di do
2: for all item i ∈ ti do
3: return (i, 1);

Improvements of the previous algorithm, such as [13,14], were developed, the
latter introducing three algorithms that share the same first two phases:

– In the first phase, the Mapper (Algorithm 7) receives as input a transaction
and it generates the 1-itemsets with the value 1. Based on that, the Reducer
(Algorithm 8) computes the support for the 1-itemsets and prunes the not
frequent ones.

– In the second phase, the Mapper (Algorithm 9) receives as input the same
transaction as in the first phase, but it also has access to the list of frequent
1-itemsets. Based on these information, the Mapper will produce all the can-
didates 2-itemsets which will be verified against the support by the Reducer
(Algorithm 10).

For the third phase and more, the first algorithm, Single Pass Counting
(SPC) (see Algorithm 11), proposes to generate k-itemsets following the same
strategy as in the first two phases. The two other algorithms have a different
approach. On the one hand, an algorithm computes, in a phase grater than 2,
the candidate itemsets of three levels at the same time (e.g. in the phase three,
candidate 3-, 4- and 5-itemsets will be computed). On the other hand, Dynamic
Passes Combined-counting (DPC) algorithm computes, in a phase greater than 2,

74 T.-Y. Jen et al.

Algorithm 8. Phase-1’s Reducer of SPC and DPC algorithms [14]
Input: (Key2, V alue2) pairs, where

Key2: a candidate 1-itemset
V alue2: 1

Output: (Key3, V alue3) pairs, where
Key3: a frequent 1-itemset
V alue3: Key3’s global occurrence in the whole data

1: count = 0;
2: for all v in V alue2 do
3: count+ = v;
4: if count >= min sup then
5: return (Key2, count)

Algorithm 9. Phase-k’s Mapper of SPC and DPC algorithms [14]
Input: transaction ti

database partition Di and Lk−1 (k >= 2)
Output: (Key, V alue) where

Key: a candidate itemset of level k
V alue: 1

1: read Lk−1 from DistributedCache
2: construct a hash-tree for Ck = apriori − gen(Lk−1);
3: for all transaction ti ∈ Di do
4: Ct = subset(Ck, ti)
5: for all candidate c ∈ Ct do
6: return (c, 1);

Algorithm 10. Phase-k’s Reducer of SPC and DPC algorithms [14]
Input: (Key2, V alue2) pairs, where

Key2: a candidate 2-itemset
V alue2: value list for Key2

Output: (Key3, V alue3) pairs, where
Key3: a candidate 2-itemset
V alue3: Key′

3s global occurrence in the whole data
1: count = 0;
2: for all v in V alue2 do
3: count+ = v;
4: if count >= min sup then
5: return (Key2, count)

candidate itemsets of a number of level previously computed using statistics on
nodes’ overload.

3 Apriori V Algorithm

In this section, we introduce the Apriori V algorithm, an Apriori-like algorithm
on vertical data layouts working on the MapReduce platform.

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 75

Algorithm 11. Algorithm SPC [14]
Input: database
Output: List L of frequent itemsets
1: Phase-1: find L1 using the Mapper and the Reducer for Phase-1
2: Phase-2: find L2 using the Mapper and the Reducer for Phase-k where k = 2
3: for all k = 3; Lk−1 not empty set; k + + do
4: Mapper (Phase-k)
5: Reducer (Phase-k)

3.1 Horizontal vs. Vertical Data Layout

In this section, we discuss two principal data layouts to store transactional data:
horizontal and vertical layout. On the one hand, in the horizontal data layout, a
dataset is stored as a set of (Tid, I) pairs. Each transaction is identified by the
transaction identifier Tid and it contains the list I of items. On the other hand,
in the vertical data layout, a dataset is organized as a set of (Item,Bitmap)
pairs, where the Bitmap is a binary representation of the transactions. In the
Bitmap, one bit corresponds to each transaction and is set to 1 if the Item is
contained in that transaction, and to 0 otherwise. For example, the dataset in
Example 1 is presented in vertical data layout in Table 2. The bitmap in the first
line shows that the transactions t1, t2, t5 and t6 contain the item a (value 1 in
the bitmap), and that transactions t3 and t4 do not contain item a (value 0 in
the bitmap). Consequently, the support of a can be computed as the number of
bits of value 1 in the bitmap.

Table 2. The vertical data layout representation of the running example.

Item Bitmap(t1, t2, t3, etc.)

a 110011

b 011100

c 110111

f 111011

m 110011

p 100110

The main advantage of using vertical data layout in frequent itemset min-
ing is to simplify the tasks of pruning and subset-finding when the traditional
level-wise algorithms verify the frequency of the candidate itemsets. More pre-
cisely, frequent itemsets can be counted via the (bitwise) logical AND operation
between bitmaps, instead using complex hash/search tree structures as in the
horizontal approaches. It is also important to outline that in this case candidate
generation and counting tasks take place in a single step. For example, if the
itemsets ab and ac are frequent, mining algorithms on the vertical data layout

76 T.-Y. Jen et al.

can make a logical AND operation on their bitmaps to verify whether abc is a
frequent itemset or not [11]. We will provide more of details related to this point
later in the paper.

In the literature, several frequent itemset mining algorithms using a verti-
cal data layout were proposed such as Eclat [21], Diffset [20], VIPER [15] and
MAFIA [3], and also an implementation of Eclat over the MapReduce plat-
form [22]. In the latter, the authors propose to execute the Eclat algorithm
on each MapReduce node. It is important to outline that Eclat and Apriori
algorithms differ in their (1) input dataset layout and (2) strategy to explore
the search space. For the second point, Apriori uses a breath-first strategy,
while Eclat uses a depth-first strategy. In this paper, our goal is to propose
an algorithm with a vertical data layout input and using a breath-first strat-
egy. The motivation is that this algorithm will allow computational reduction
due to the fact that some operations required in Apriori-like algorithms are not
compulsory when using input data in vertical layout.

3.2 Apriori V Algorithm

In this section, we introduce the Apriori V algorithm, a level-wise algorithm that
mines all the frequent itemsets from a vertical dataset. Since most of datasets
are organized in an horizontal layout, a data transformation from horizontal
to vertical layout is necessary while preparing the dataset for the mining task.
Moreover, verifying that an item is frequent in a vertical dataset equals to count-
ing the number of bits set to 1 in its own bitmap. Hence, we propose to include
the task of computing the frequent itemsets of level k = 1 in the data prepara-
tion phase, and the algorithm starts the MapReduce phases with the mining of
frequent 2-itemsets.

Apriori V algorithm is developed on the MapReduce platform and, in order
to provide all the frequent itemsets, it needs a number of MapReduce jobs equal
to the length of the largest frequent itemset generated minus one. For example,
if from a given dataset, the largest frequent itemset that can be extracted has 5
items, the Apriori V algorithm needs 4 MapReduce jobs to produce the result.
Indeed, as stated above, the 1-itemsets are computed in the preparation phase.
The operations preformed in each MapReduce job are the same and they are
detailed below.

In the following discussion, we will detail the operations performed by the
Mapper and Reducer in order to generate the set of (k + 1)-itemsets; thus, it is
important to recall that we consider that all the itemsets of level less or equal
to k were already generated in the previous k − 1 MapReduce jobs.

The Mapper. At level (k + 1) we consider as known the set Lk of k-itemsets
generated in the previous MapReduce job. In this context, the MapReduce sys-
tem distributes to each Mapper a frequent k-itemset I as well as the list LI

k of
frequent k-itemsets whose (k − 1) prefix is the same as I’s (k − 1) prefix. These
two elements are sent to the Mapper as the Key. At the same time, the system
also sends to each Mapper the corresponding bitmap of I as the V alue of Key.

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 77

Algorithm 12. Mapper of the Apriori V algorithm
Input: Key, V alue where

Key: (a k-itemset I,
the list LI

k of k-itemsets with the same (k − 1) prefix as I)
V alue: the bitmap B of I

Output: a list of (Key′, V alue′) where
Key′: set of candidate (k + 1)-itemsets generated using I - CI

k+1

V alue′: the bitmap B of I
1: CI

k+1 = ∅
2: for all X in LI

k do
3: if X �= I then
4: CI

k+1 = CI
k+1 ∪ {(X ∪ I, B)}

5: return CI
k+1

As shown in Algorithm 12, after receiving the input information, each Mapper
generates the candidate (k + 1)-itemsets using the frequent k-itemset I and,
from left to right, one of the different frequent k-itemsets in LI

k, named here
X. This generation works as the candidate generation in the Apriori algorithm.
For example, if LI

k = {abc, abd, abe} and I = abd, then, in this step, the
Mapper will generate the candidate 4-itemsets {abcd, abde}. The output of the
Mapper consists in the pair (X ∪ I,Bitmap of I), where X ∪ I is the Key and
Bitmap of I the V alue.

The Reducer. Algorithm 13 shows the functioning of the Reducer that is
detailed in the following. For the level (k + 1), each Reducer takes as input
(1) as Key a specific candidate (k +1)-itemset I generated by the Mappers, and
(2) as V alue the two bitmaps generated by the Mappers for the same candi-
date itemset and that correspond to the bitmap of the two itemsets used in the
Mapper to generate I.

Each Reducer executes a logical AND operation on the two bitmaps in order
to set on 1 these transactions containing I. A function Count() counts the num-
ber of bits of value 1 in the resulted bitmap in order to get the support of I. If
I is frequent (support greater or equal to a given threshold), then the Reducer
returns it with the computed bitmap and support to the system for mining the
next level frequent itemsets.

The mining procedure terminates when no frequent itemsets are returned by
Reducers.

Example 2. In Fig. 1, we illustrate the mining process of the frequent 3-itemsets
(minimum support threshold is set to minsup = 30%) from the running example
dataset. In the following, we consider that the set of frequent 2-itemsets, L2, was
generated by the first MapReduce job:

L2 = {ac, af, am, ap, bc, bf, cf, cm, cp, fm, fp, mp}.

As pointed out earlier, first the system distributes to Mapper1 the itemset I =
ac, the list LI

2 = (ac, af, am, ap), and the I’s bitmap 110011. We would like to

78 T.-Y. Jen et al.

Algorithm 13. Reducer for Apriori V
Input: Key, V alue where

Key: a candidate (k + 1)-itemsets I
V alue: B1 and B2, the bitmaps of the two itemsets the Mapper used previously to
generate I

Output: (Key′, V alue′) where
Key′: (I, the bitmap B′ of I)
V alue′: the support Sup of I

1: B′ = AND(B1, B2)
2: // Count() gets the number of bits containing value 1 in B′

3: Sup = Count(B′)
4: if Sup ≥ minsup then
5: return ((I, B′), Sup)
6: else
7: return

mention that all frequent 2-itemsets having the same prefix a are included in the
list LI

2. The Mapper1 generates the candidate 3-itemsets CI
3 = {acf, acm, acp}

by combining I = ac with each 2-itemsets in LI
2 except itself. Moreover, if we

consider that Mapper1, Mapper2, Mapper3 and Mapper4 are dealing with the
same prefix a, then the list LI

2 sent with the itemset I to Mapper1 will also
be sent to the other 3 Mappers with, respectively, the itemsets af , am and
ap. These four Mappers and only these four Mappers generate all candidate
3-itemsets with the prefix a.

The bitmap 110011 of itemset I = ac means that the transactions t1, t2,
t5, and t6 contain the itemset I. With the itemsets in CI

3 , this bitmap will be
sent to different Reducers as it is needed in order to compute the support of
candidate 3-itemsets. In Fig. 1, Reducer1 gets the bitmap 110011 of the itemset
ac and the bitmap 110011 of the itemset af to compute the support of the
candidate itemset acf (we can note that here the two bitmaps are aqual by
simple coincidence). Finally, Reducer1 sends necessary information to the system
for mining the frequent 4-itemsets in the next step since the result bitmap 110011
of the previous computing shows that the transactions t1, t2, t5 and t6 contain
the itemset acf and, hence, acf is a frequent itemset.

If we analyze the Mapper10 and the Mapper11 given in Fig. 1, we can note
that they produce the 3-level item sets with the prefix fm and fp. The Mapper10
will generate the itemset fmp with the bitmap 110011 corresponding to fm,
and the Mapper11 will generate the same itemset with the bitmap 100001 of fp.
The Reducer11 will apply the logical AND operation on these two bitmaps and
compute the support of the fmp itemset.

4 Discussion on Complexity and Performance

In this section, we will discuss the complexity of the Apriori V algorithm in order
to be able to assess its performance. In order to compute the complexity, we recall

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 79

Fig. 1. The frequent 3-itemsets mining in Apriori V with minsup = 30%.

that the algorithm is applied on a dataset with m items and n transactions; also,
we consider that k refers to the current level in the algorithm (as for Apriori), and
max width stands for the length of the largest frequent itemsets. As detailed in
the previous section, the Apriori V algorithm needs max width−1 MapReduce
jobs to generate all frequent itemsets. In the following, we will discuss Mapper’s
and, respectively, Reducer’s complexity at level (k + 1).

Each Mapper receives a k-itemset I, the set of k-itemsets sharing the same
(k − 1) prefix with I, LI

k, and I’s bitmap. It is important to outline that the
maximum cardinality of the Lk set is equal to k-combinations of m elements
Ck

m, the maximum cardinality of the LI
k set is m, as only the last item can

change, and the bitmap of an itemset has n bits. Firstly, we can note that the
best case is met when the number of Mappers is equal to |Lk|, knowing that the
set of frequent itemsets is large at level 2, but after level 2 it starts decreasing.
Secondly, the operations performed by the Mapper should produce the set of
candidates CI

k+1 by combining the itemset I with each itemset in LI
k (except I).

As the cardinality of LI
k is m, then the complexity of the Mapper is equal to

O(m).
Each Reducer receives a candidate from the set Ck+1 and two bitmaps, all

generated by the Mapper. The maximum cardinality of the set Ck+1 is equal
to (k + 1)-combination of m elements Ck+1

m , which implies that the best case
is met when the number of Reducers is equal to |Ck+1|, but, as for the set of
frequent itemsets, the set of candidates decreases also with the level. On the
other hand, the operations performed by the Reducer implies a logical AND
operation between the two bitmaps and then counting the 1 values in order to
provide the support. In consequence, the complexity of Reducer’s operations is
equal to O(n).

80 T.-Y. Jen et al.

As a conclusion, on the one hand, the Mappers and the Reducers have a
linear complexity on m, and respectively, n. On the other hand, to keep the
linearity of the complexity, the number of Mappers and, respectively, Reducers
should be enough to allow the execution of all the Map function in parallel
(the same for Reducer); this issue is less obvious as, at level 2, the number of
candidates/frequent itemsets is important and equal to m ∗ (m − 1)/2, but it’s
decreasing in the next levels.

We decided to compare our algorithm’s complexity with the one of the
algorithm Single Pass Counting (SPC) developed in [14]; we chose SPC algorithm
for comparison as it’s the closest to ours in terms of number of MapReduce jobs
and methodology. In short, the SPC algorithm, outlined in Sect. 2.3, is described
by the following elements at level (k + 1): (i) the Mapper has the complexity
of O(|Lk|) because it checks every candidate against a transaction received in
the input; (ii) the Reducer has the complexity of O(n) because it can receive a
maximum of n entries for a candidate; (iii) the best case is met when the system
has n Mappers and a number of Reducers equal to the number of candidates at
each level.

Given these elements, we can conclude that (i) the Mapper’s complexity of
our algorithm is slightly lower than the one of the SPC algorithm; and (ii) the
number of Mappers needed in our algorithm is bigger than in the SPC algorithm.
Nevertheless, increasing the number of Mappers in a Cloud/MapReduce environ-
ment is an easier task than having to deal with highly demanding computations
in the Mapper.

5 Conclusions and Future Work

In this paper we introduced a new algorithm for mining frequent itemsets,
Apriori V. Apriori V is a level-wise frequent itemset mining algorithm based
on vertical data layout and implemented on MapReduce. The advantages of this
approach is that it does not need an additional structure, such as the tree struc-
ture in depth-first mining algorithms, to guide the mining procedure, and it also
simplifies the pruning and subset-finding tasks.

For the immediate future, we plan to complete the implementation and exper-
imental evaluation of the algorithm using a Hadoop based infrastructure. We
also plan to work on reducing the amount of data transformed in data pre-
processing/distribution step of the MapReduce jobs at the beginning of each
level. Moreover, as the mining task of each level cannot start until the last
level mining work has completely terminated producing some unnecessary wait-
ing time, we plan to introduce a dynamic combination of several phases in one
phase. Finally, we plan to experiment with very large data sets to evaluate the
scalability of the algorithm.

Acknowledgements. We would like to gratefully thank Dimitris Kotzinos (ETIS -
ENSEA/University of Cergy-Pontoise/CNRS 8051) for his contributions and support
during this work.

Mining Frequent Itemsets with Vertical Data Layout in MapReduce 81

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco
(1994)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

3. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent itemset algorithm
for transactional databases. In: Proceedings of the 17th International Conference
on Data Engineering, pp. 443–452. IEEE Computer Society, Washington DC (2001)

4. Chu, C.-T., Kim, S.K., Lin, Y.-A., YuanYuan, Y., Bradski, G.R., Ng, A.Y.,
Olukotun, K.: Map-reduce for machine learning on multicore. In: Advances in
Neural Information Processing Systems 19, Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, Vancouver, 4–7 December
2006, pp. 281–288 (2006)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150. USENIX Association (2004)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Farzanyar, Z., Cercone, N.: Efficient mining of frequent itemsets in social network
data based on mapreduce framework. In: Proceedings of the IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining, ASONAM
2013, pp. 1183–1188. ACM, New York (2013)

8. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Advances in Knowledge Discov-
ery and Data Mining. From Data Mining to Knowledge Discovery: An Overview.
American Association for Artificial Intelligence, Menlo Park (1996)

9. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

10. Huang, D., Song, Y., Routray, R., Qin, F.: Smartcache: an optimized mapreduce
implementation of frequent itemset mining. In: IEEE International Conference on
Cloud Engineering (IC2E) (2014)

11. Jen, T.-Y., Taouil, R., Laurent, D.: A dichotomous algorithm for association rule
mining. In: 15th International Workshop on Database and Expert Systems Appli-
cations (DEXA 2004), with CD-ROM, 30 August–3 September, Zaragoza, pp. 567–
571 (2004)

12. Li, L., Zhang, M.: The strategy of mining association rule based on cloud com-
puting. In: Proceedings of the International Conference on Business Computing
and Global Informatization, BCGIN 2011, pp. 475–478. IEEE Computer Society,
Washington DC (2011)

13. Li, N., Zeng, L., He, Q., Shi, Z.: Parallel implementation of apriori algorithm
based on mapreduce. In: 2012 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel Distributed Comput-
ing (SNPD), pp. 236–241, August 2012

14. Lin, M.-Y., Lee, P.-Y., Hsueh, S.-C.: Apriori-based frequent itemset mining algo-
rithms on mapreduce. In: Proceedings of the 6th International Conference on Ubiq-
uitous Information Management and Communication, ICUIMC, pp. 76:1–76:8.
ACM, New York (2012)

82 T.-Y. Jen et al.

15. Shenoy, P., Haritsa, J.R., Sudarshan, S., Bhalotia, G., Bawa, M., Shah, D.:
Turbo-charging vertical mining of large databases. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2000, pp.
22–33. ACM, New York (2000)

16. Singh, S., Garg, R., Mishra, P.K.: A comparative study of association rule min-
ing algorithms on grid and cloud platform. International Assoc. Sci. Innov. Res.
(IASIR) 2 (2014)

17. Wang, L., Feng, L., Zhang, J., Liao, P.: An efficient algorithm of frequent itemsets
mining based on mapreduce. J. Inf. Comput. Sci. 11, 2809–2816 (2014)

18. Yahya, O., Hegazy, O., Ezat, E.: An efficient implementation of apriori algorithm
based on hadoop-mapreduce model. Int. J. Rev. Comput. 12, 59–67 (2012)

19. Yang, X.Y., Liu, Z., Yan, F.: Mapreduce as a programming model for associa-
tion rules algorithm on hadoop. In: 3rd International Conference on Information
Sciences and Interaction Sciences (ICIS), pp. 99–102, June 2010

20. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD, pp. 326–335. ACM, New York (2003)

21. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-
covery of association rules. Technical report, Rochester, NY, USA (1997)

22. Zhang, Z., Ji, G., Tang, M.: Mreclat: an algorithm for parallel mining frequent
itemsets. In: Proceedings of the International Conference on Advanced Cloud and
Big Data, CBD 2013, pp. 177–180. IEEE Computer Society, Washington DC (2013)

Knowledge Management Applications
on the Web and the Cloud

Webble World 3.0

In the Borderland Between Being a User or a Developer

Micke Kuwahara(✉) and Yuzuru Tanaka

Meme Media Laboratory, Hokkaido University, Sapporo, Japan
{mkuwahara,tanaka}@meme.hokudai.ac.jp

Abstract. Webble World 3.0 is the latest and most advanced and accessible of
the meme media implementations, which allow users to fully participate in the
process of building the next generation of the Web. Allowing the users of the
World Wide Web to design and develop interactive building blocks for wrapping
web resources, which then anyone may combine and use in any way imaginable.
One important goal is to put the mainly passive web user in the driving seat and
with this tool make him or her feel empowered to actively engage in building the
web of our shared need and joy, but also to attract skilled web developers to work
in a more modeled and collaborative environment.

Keywords: Webble · Meme media objects · Customize · Configure · Web · Share ·
Distribute · Resource · Interact · Participate · Federation · HTML5 · Tool · Software
development

1 Introduction

Webbles are based on the philosophy of memes [3, 4], that every thought and knowledge
shared by humans may collide with other thoughts and knowledge and then reproduce
or mutate, all in favor of survival and adaptation. The meme is a paraphrase which is
supposed to make us see that human knowledge and cultural expressions are like genes
in the way they evolve.

1.1 IntelligentPad

The idea of the meme has stimulated the research on how to make human digital knowl‐
edge fit the meme description so that creativity may easier spread, evolve and enhance
in a shared environment. One of these attempts was done by Tanaka and his group at
Hokkaido University which gave us the theoretical as well as the practical creation of
the IntelligentPad [1, 2, 5–7]. The purpose of this IntelligentPad, this meme media, is
to work as smart containers of digital knowledge that may freely be connected and
disconnected in arbitrary ways to form any imaginable compound object. Such an object
can be anything digitally available in a computer today, from simple web blocks of
images and textboxes to more complex gadgets and even full featured applications.

© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 85–96, 2016.
DOI: 10.1007/978-3-319-38901-1_6

1.2 History

During the 1990s several IntelligentPad implementations were made, even one devel‐
oped by the Japanese company Fujitsu. The latest were developed in the early 2000 and
goes by the name ‘Plexware’ and is still in use in some commercial projects in Japan.
All these systems were limited to desktop pc only though and possibilities to share pads
were very limited.

In the beginning of 2008 began the development of a new type of IntelligentPad
system that would be accessible online via an ordinary web browser. The end result saw
the light of day around 2010, now under a new name called ‘Webble World’ and the
pads were now Webbles. This version was developed using the early version of Micro‐
soft Silverlight and required a free browser plugin provided by Microsoft to work. But
it was very powerful in comparison to previous versions, especially when it came to
form, shape and design of the individual Webbles.

The Silverlight plugin evolved and increased in power so in order to keep up, in 2012
Webble World 2.0 followed, and soon thereafter 2.5, together with a wide range of
Webbles to help users and developers to create tools, games and web applications. This
version is still available and actively used, though no longer maintained and improved upon.

But the Silverlight plugin had many faults. The first and foremost problem was the
fact that it was a plugin and required users to install it before Webble World could work,
something which could not be done satisfyingly on Mac, not at all on Linux and never
on smart phones or tablets. Alongside with that, Silverlight became less and less main‐
tained by Microsoft and the eminent feeling that it would be deprecated became more
and more apparent to the community of Silverlight users.

Therefore in the summer of 2013, the development began to solve all these problems,
by creating a new version of Webble World, version 3.0.

1.3 A Webble Under the Hood

Before getting into detail of what Webble World 3.0 is and what it can do, let’s clarify
what a ‘Webble’ really is.

The Concept. A Webble is the latest-generation Meme Media object, available inside a
web-browser. It can be developed by a programmer within ordinary software develop‐
ment restrictions. When it has been deployed to the web it can be downloaded into the
browser via a specialized web site by any Internet user together with other Webbles and
combined together to form new compound Webbles which the user can configure so that
they may solve some tasks, or present some content the user wants to share. Many such
compound Webbles can also be combined as a larger and more complex Webble applica‐
tion. Webbles evolves step by step every time it gets reused and republished. Advanced
web application development can be done, without additional programming, directly in the
browser with these building blocks of ‘meme Lego’, called Webbles [8–10].

The Design. The Model-View-Controller structure is an essential part of the internal
design of the Webble and fully supported by current (latest) implementation. In the
previous version this was implemented by creating a separate model-module which was

86 M. Kuwahara and Y. Tanaka

more a virtual model than a real one, while in this version we exploit the natural design
of the AngularJS framework we use (see Sect. 2.2 – Client Side) which separates the
controller into a JS-file (named controller.js) and the View which, naturally, is the HTML
file (with support of CSS) named view.html. The model is the internal variables and the
core code which the system inserts in each Webble, with main focus on slot management
(see below).

A Webble can be or contain anything its creator wants, but in order to be called a
Webble there are two things it must be able to have; relationships and slots.

Parent - Child relationship is how you structure the Webbles together. A child can
only have one parent but a parent can have unlimited children.

Slots are where a Webble store its properties which can be configured and shared.
The name slot is pointing out, that the outside world and other Webbles can plug into
the value for various purposes (Fig. 1).

Fig. 1. Simplicity is the main focus in Webble design

With these basic features the Webble can be used to create complex applications
within Webble World.

2 Webble World 3

Webble World 3 is a web-based federation of Webbles, which comes as building blocks,
software tools, applications and entertainment widgets that can be used, configured,
combined, altered, disassembled and improved etc. by any user at will.

Webble World 3.0 87

2.1 Main Features

What we want to achieve with Webble world is a platform where users finds software,
tools and interactive data the same way one would “Google” for information today. But
also, within the same environment, allows the user to add, build, change and improve
upon the system and the repository, with minimal skill-requirements. By the power of
re-usage and shared resources, as well as the Webble’s power to wrap most web content
we hope that web apps can be built at a much more higher rate and less effort and also
by ordinary people with little or no programming skills.

As a developer one can interact either by building core Building blocks (known as
templates) with traditional web scripting, directly in the browser, or by building Webble
software with the Webble World Interface by combining and configuring those
mentioned building blocks with no scripting or programming.

Webble World has high focus on sharing and collaboration, in order to make each
piece of development faster and easier.

Webble World 3 runs everywhere, without any plugin or installation, directly in any
browser of your choice and on any device you currently use. Webble World also use
secure transfer with SSL and https, making everything you do in Webble World as safe
and private as basic online communication can be. An additional supportive security
feature within the site itself which we call ‘Trust’ [11] allows users to create a circle of
trust in order to safer control which Webbles to use. Sharing is a key element of Webble
World, but sometimes one would like to know where specific Webbles come from and
who you collaborate with. Higher security and trust-like features have been a request
from previous possible industry partners whom have considered using our system for
some of their software development.

We believe that with the Webble World approach to software development and user’s
self-improvement and configuration possibilities we minimize the distance and bridge
the gap between traditional users and trained developers to eventually make them one
and the same.

2.2 Under the Hood

Webble World 2.5 and earlier versions were dependent on the Silverlight plugin and
Microsoft technology to work but the new version has been developed in order to, as
far as possible, eliminate any form of 3rd party dependencies and limitations by using
the most open, free and standardized technology available.

Server Side. The underlying technology and engine which drives the system of the
Webble World server is built with node.js (a JavaScript syntax developing language for
server side development). All data managed by the server, like Webbles and users etc.
are stored and managed with mongoDB, a very fast non-SQL document database engine.

By choosing node.js and MongoDB the server side is extremely easy to maintain
and scale up, as well as to deploy and replicate on any machine with any OS, which is
why these particular technologies were chosen, even though others were considered.

88 M. Kuwahara and Y. Tanaka

For most people this information is completely irrelevant though, since there is no
need to set up your own server. All Webble development is done on the client side via
the Webble World site deployed by Hokkaido University.

Client Side. Webble World 3 is all HTML5 driven. With ‘HTML5’ we mean a combi‐
nation of latest HTML, CSS3 styles and JavaScript.

The main work horse is a JavaScript library called AngularJS, developed by Google
which is the nerve system of our creation and the key part to the MVC structure. Java‐
Script is powerful, though unruly, but with AngularJS, one gets much more structure
and control. AngularJS may be seen as 3rd part library of course, but it is deeper
embedded and Webble World is not dependent on future changes of the library outside
our control, like was the case with MS Silverlight. AngularJS was not the only frame‐
work considered initially, but it was by far, the most powerful and innovative as well as
user-friendly once the basic foundation of the framework was understood.

As a Webble template developer, one is not demanded to use AngularJS, but it will
definitely empower and simplify your coding. One of AngularJS major strengths is the
genius separation of the DOM and the application logic. Tutorials on how to master
AngularJS may be found online. Webble World also fully supports JQuery for those
who are familiar with and fond of that library. Any other JavaScript library or code that
exists can be added and used in individual Webbles at the discretion of the developer.
No limits.

All configurations and current state of a Webble is stored as JSON data. This is the
main file for any Webble because it tells us how a specific Webble is glued together and
what parts it needs. The choice to use JSON was primarily made due to its natural
connection with JavaScript, node.js and MongoDB. XML was also considered since
previous Webble implementations had used it, but was eventually regarded slower in
parsing and larger in transfer-size in comparison.

2.3 Core System Description

The features available in Webble World aims to help people design and create their own
web experience and tools and easily share it with the rest of the world, all with a minimum
of advanced computer skills. Below follows a description of how that is pursued and
achieved.

Server Side. There is little one need to know about the server since all its work is
automated and all its needed interfaces are moved to the client side, but among its tasks
is of course to manage and maintain all Webbles in the system. It also keeps track of
individual user’s all specific connections to its accounts, groups, Webbles, Workspaces
etc., all which is managed via the client or automatically by server-side sensors.

Client Side. When the Webble World 3.0 web site is first loaded the user see a blank
work area with a top main menu. In the top right corner, the user can register and/or
login, which is a requirement before one can create and save one’s own Webbles,
but not needed for just loading and using Webbles. User accounts can also be linked

Webble World 3.0 89

to social media accounts for easier access and future interaction and sharing of
Webbles to the outside world.

The top menu has five sections; Workspace, Webbles, Edit, View and Help, where
Webbles and Edit are the most important. Under ‘Webbles’ the user can open the Webble
Browser where one can search for Webbles for specific purposes, like text Webbles,
Image Webbles, Chart Webbles, Window Webbles etc. The search is conducted upon
key words, names, descriptions and developer. When a Webble of interest is found the
user can load it into the work area via the load button or drag and drop its image (Fig. 2).

Fig. 2. The Webble Browse and search interface.

Webbles may also be loaded directly as JSON files from the local computer or remote
servers, without using the Webble browser, if such files exist.

When one or more Webbles have been loaded, the user can begin to interact with
them. There are basically two ways of Webble interaction available.

One is the most obvious, by using the Webble, its intended way as we are taught by
previous web software experience, meaning select something in a list, press a button or
type text in the text box. This is the common way of interacting with the web with or
without Webbles and the result of such interaction depends on the Webble. This
approach would be the way to go if one is looking for a specific tool or application and
have found such in the Webble browser and now intend to use it as declared.

90 M. Kuwahara and Y. Tanaka

The other way is to edit, configure and combine the Webble in order to create a new
tool or web application, one that maybe does not yet exist in the Webble browser or,
one that could be made much better. To do so the Edit part of the main menu will be of
use, as well as the Webble’s own menu, and if the Execution mode of Webble World 3
is set to ‘Developer’, which is recommended, also by the use of the Webble attached
interaction balls, activated by double click.

The common workflow when creating a new Webble by configuration and combi‐
nation of existing Webbles is to load the required Webbles into the work surface and
then save it as a personal workspace.

A workspace can be saved and loaded via the Workspace section in the menu and
will contain those Webbles included by the user. A workspace helps the user to separate
Webble projects and applications in personal and private setups and for easy access
during development. A workspace can also be easily shared with other Webble users,
for collaborative development or real time communication. Changes to a workspace are
immediately communicated to all other users in real time. Using a workspace is not
required but it simplifies the work, especially when one is working on several Webble
projects.

Webble Configuration. As the requested Webbles are loaded the user can begin configure
and shape it to his/her current need and also combine them accordingly. For that the
‘Edit’, Webble pop-up menu or Webble interaction balls are invoked (Fig. 3).

Fig. 3. Webble World 3.0 web interface, with a few different Webbles loaded.

Besides the self-explanatory Webble interactions like ‘Delete’ and ‘Duplicate’ the
user can edit the Webble properties or slots via the ‘Properties’ form. There the user can
alter any slot value available for wanted effect. Some control the inner logic, while others
control the appearance.

If the Webble lacks a slot according to the user, he/she can then add one or more
custom slots. There are three types of custom slot available. Either a basic value slot

Webble World 3.0 91

which only has a name and a value (of any type), or a CSS related slot whose value will
affect some part of an element of the Webble, or the final one which is called a merged
combo slot. A merged combo slot is a slot which carries the values of two or more other
slots in one container. This is useful when a Webble needs to communicate several of
its values through the chain of relatives. For avoidance of complex connections which
is hard to oversee and follow, Webbles can only communicate one slot value to each
Webble it is related to. A lot of the time that is sufficient, but in some cases one need to
communicate more values, and then the possibility to create a single slot that holds
multiple values is very useful.

In order to be able to communicate slot values between Webbles they need to be
related in a parent child connection. That is easily done via the Webble menu and a
mouse click. When a Webble is connected with another, the user can configure slot
communication between them via the child Webble. Via the Webble menu one opens
the slot communication form and there select what slot value in the parent and what in
the child should communicate and in what direction. If a combo slot is used one can also
channel the internal slots of the combo. Many Webbles have a default slot communi‐
cation that gets enabled as soon as a relationship is created, this is to simplify and speed
up default behavior, but the user can change that easily via the Webble menu.

There is another form of relationship and communication available as well which is
called ‘shared model duplicate’. When that is selected in the Webble menu a duplicate
is created of the selected Webble which is not related as a child or parent but still share
all its slot values with its origin. In the properties form the user can enable or disable
which slot values should be shared between shared model duplicates, but the default is
all, except position. This feature is not that commonly used but can be very powerful at
times (Fig. 4).

Fig. 4. Load Webbles, configure its slot properties, connect to other Webbles and configure slot
communication. Building a paint web app without any code in 15 min.

92 M. Kuwahara and Y. Tanaka

These fairly simple steps are all it takes; slot value editing, perhaps adding custom
slots, parent child connection and slot communication configuration, and perhaps a
shared model setup. By using these techniques via simple mouse operations and straight
forward keyboard inputs the user can create any complex application or Webble Widget
for any type of use (regarding that there are proper Webble templates available).

Webble Deployment. When a Webble is finished, content and behavior wise, the user
may want to package and polish the Webble before it is published online. One way to
do that is to enable a set of protection flags on the Webble in order to adjust the Webble
for its intended use. Such things like locking a Webble from being moved or deleted or
showing popup menu can be an important part of getting the Webble to be more user-
friendly. The user can also wrap all the contained Webble templates in a bundle in order
to hide the internal parts of the Webble. The Bundling process also allows the user to
select which slots should be visible and usable from outside to those who load the
Webble.

Since Webble world is an open collaborative environment, any protection flag or
bundling can always be undone by any other user who wants to experiment or understand
the inner workings of a Webble, but for those who do not care for that, they will find a
bundled Webble to be much more accessible and user-friendly and easy to use.

The last step is of course to publish the Webble to the online server for others to find
in the Webble browser. That process is as simple as all previous ones. Select Publish in
the Webble menu, fill in some descriptive data about the Webble to be easy to find and
make it look tempting to use and click the submit-button and a second later the world
can rejoice in the latest Webble crafting available.

User Management and Support. The user account allows the user to be connected and
anonymously identified as the developer of the Webbles he/she have created. It also
helps in collaboration between other Webble users as well as in sharing of ones work.
The Webble user account can be connected to other social media sites and simplify login
and prepare for sharing of posts and Webble updates, though the latter is not fully
implemented yet.

An important security feature of Webble world is the concept of groups and trust.
Groups are organizations, companies and such which can have additional sub groups
which users can join and be a part of and use as a platform which through Webbles are
shared and published from. This makes these Webbles not only the responsibility of the
developer but also a responsibility of the group. Groups are created and controlled by
appointed administrative group managers and not by every user. Users can then select
a group and mark it as ‘trusted’, in order to help the user to select safe and trustworthy
Webbles when using Webble World. Trusted Webbles are highlighted in the Webble
browser for easy search and Webble World will clearly show and warn the user when a
Webble which originates from an untrusted source is present in a Webble compound
[11]. Groups also allow member users to share API keys and software licenses used
within that group’s Webble development.

In the help menu the user will find manuals, support contact info, FAQ and devel‐
opment packages which contains all needed references and information for any form of

Webble World 3.0 93

Webble development and Webble template creation. There is also a real-time chat
available for direct access to other users currently online for fast response and
community shared support.

Webble Template Development. In order for Webble World to be really effective and
useful for the average Web user there is a need for having many basic Webble building
blocks available in the Webble browser, so called Webble templates. These are the
smallest parts, the atoms, of Webble World, and they are created with code. One cannot
directly see the difference between Webble templates or a compound Webbles in the
Webble browser, but the basic concept is that a template Webble is a non-configured
and non-combined Webble who cannot be broken apart into smaller parts. It has only
been created with ordinary web scripting using JavaScript, CSS and HTML.

Template Webbles are created by web programmers inside the Template Editor
section of Webble World, either from scratch or by creating a base foundation from an
existing Webble.

Anyone that knows basic JavaScript and HTML can create their own Webble
templates, and with the help of the carefully commented default code that is auto gener‐
ated with each new Webble created and the downloadable reference and development
support package, it should be fairly easy for most to learn how to master the process.
Users can also benefit from other developers work by creating a template copy based
from an already existing Webble, via the ‘About’ section in the Webble menu. That will
minimize the risk of reinventing the wheel as well as making sure Webbles evolve in a
more natural way.

In the Template Editor the user can then write the necessary code for the Webbles
to be created following the simple guidelines. When a Template is saved it can be loaded
into the work surface via the top menu as a ‘sandbox-Webble’, a Webble which is not
yet published and only available to the template developer. A sandbox Webble can still
interact with any other Webble the user chose to load for testing and debugging. When
the template feels finished and working, the user publish the sandbox Webble the same
way he/she would publish any other Webble and make it available to the world in the
Webble browser.

In the earlier stages of Webble World 3.0, it will be more common that Webble users
will find that the Webble template they need is not yet created, and that is when a new
template hopefully will be designed and added, so that future users will less and less
often need to include some template development within their Webble project.

Personal Investigation and Webble Application Examples. The best way to fully
understand the content of this paper is of course by personal experience and by visiting
Webble World 3, and maybe also the older previous version of 2.5, and load interesting
Webbles that tickles ones curiosity and use them and maybe even break them apart to
see how they were put together.

Since the new version is still very young it does not yet has a large amount of
Webbles, especially of the more complex kind, but such can be found and experimented
with in the 2.5 version just for reference and understanding. There are all form of

94 M. Kuwahara and Y. Tanaka

widgets, applications, editors, tools and games available; all accessible online by
googling Webble World (Fig. 5).

Fig. 5. A multiple range of applications created for Webble World 2.5, soon also in 3.0

When one is ready to start developing one’s own Webbles, one will quickly notice
that the time needed to create a Webble application in comparison to a traditional Web-
or desktop application is highly reduced, and the more stand-alone parts that becomes
available the quicker the development will be.

3 Summary

Webble World 3.0 is a web top development and visualization tool based on meme media
architecture that view all web content and its peripheral infrastructure as standalone
objects which can be manipulated, rearranged and personalized as easy as one would
edit a text document with basic mouse operations and simple keyboard inputs. It is
available online, open and free for anyone who wants to try, individuals or organizations,
at the following web address: https://wws.meme.hokudai.ac.jp/.

Webble World 3.0 aims to make software application development a more globally
shared effort that involves people also outside the realm of programmers and to minimize
the time and workload of making software due to the capabilities to adapt, adjust, modify
and combine freely already fully working and available building blocks.

Webble World 3 is reaching to bridge the distance between those who use the web
and those who develop it and make them work closer together in a worldwide collabo‐
ration between both friends and strangers, and maybe even making them become one
and the same.

The current version of Webble World is designed based on a combination of original
theoretical concepts of IntelligentPad and Meme Media architecture, modern web tech‐
nology practices, frameworks and libraries together with unofficial user queries. No
official user survey has yet been done for any version of Webble World.

Software users have often been very frustrated of the fact that they are in the hands
of developers who do not fully understand the need of the user, and developers are often

Webble World 3.0 95

https://wws.meme.hokudai.ac.jp/

forced to develop systems they do not care for, just because they have programming
skills. With Webble World 3.0 we believe that much of that frustration can be cured.
Those who have the skill for coding can write the building blocks and templates that
tickle their interest, focusing on the technical details and narrowed down problem of
their fancy, while the classic software users can then on their own put together their own
personal applications, tweaked and configure exactly as they want without having to
learn how to write computer code or sit in long development meetings trying to commu‐
nicate a vision they already see so clearly.

References

1. Tanaka, Y., Imataki, T.: IntelligentPad: a hypermedia system allowing functional
composition of active media objects through direct manipulations. In: Proceedings of the IFIP
11th World Computer Congress, San Francisco, pp. 541–546 (1989)

2. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for Editing,
Distributing and Managing Intellectual Resources. IEEE Press & Wiley-Interscience,
Los Alamitos (2003)

3. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)
4. Blackmore, S.: The Meme Machine. Oxford University Press, Oxford (1999)
5. Fujima, J.: A Unified Framework for Organizing, Accessing, and Federating Web Resources.

Hokkaido University, Sapporo (2006)
6. Tanaka, Y.: Knowledge federation over the web based on meme media technologies. In:

Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.) Federation over the Web. LNCS
(LNAI), vol. 3847, pp. 159–182. Springer, Heidelberg (2006)

7. Tanaka, Y.: Meme media and a world-wide meme pool. In: Proceedings of the Fourth ACM
International Conference on Multimedia, pp. 175–186. ACM (1996)

8. Kuwahara, M., Tanaka, Y.: Advanced “Webble” application development directly in the
browser by utilizing the full power of meme media customization and event management
capabilities. In: ICME 2012, IEEE International Conference on MULTIMEDIA AND EXPO,
TEMPEKU Workshop: Tangible Edutainment Media for Playful Evolution of Knowledge
and Understanding, Melbourne, pp. 211–216, July 2012

9. Kuwahara, M.: The power of Webble world and how to utilize it. In: Arnold, O., Spickermann, W.,
Spyratos, N., Tanaka, Y. (eds.) WWS 2013. CCIS, vol. 372, pp. 31–55. Springer, Heidelberg (2013)

10. Kuwahara, M., Tanaka, Y.: The mindset of a Webble world citizen: developing applications
in a meme media environment. In: Arnold, O., Spickermann, W., Spyratos, N., Tanaka, Y.
(eds.) WWS 2013. CCIS, vol. 372, pp. 56–65. Springer, Heidelberg (2013)

11. Georgalis, Y., Tanaka, Y.: Towards trusting user-generated content in web applications.
In: ASE BigData/SocialInformatics/PASSAT/BioMedCom Conference 2014, Harvard
University, 14–16 December 2014. ISBN:978-1-62561-003-4

96 M. Kuwahara and Y. Tanaka

Cloud Based Processing Services
Based on Linked Data

Elias Grinias3(B) and Dimitris Kotzinos1,2

1 ETIS Laboratory ENSEA UCP CNRS UMR 8501,
Department of Computer Science,

University of Cergy-Pontoise, Cergy-Pontoise, France
Dimitrios.Kotzinos@u-cergy.fr
2 Institute of Computer Science,

Foundation for Research and Technology–Hellas (FORTH-ICS), Hellas, Greece
3 Department of Civil Engineering, Surveying Engineering and Geoinformatics,

Technological Educational Institute of Central Macedonia, Serres, Greece
grinias@teiser.gr

Abstract. Cloud computing is providing a computing infrastructure to
facilitate storage and processing of massive amounts of information (Big
Data). Processing of massive datasets becomes more and more impor-
tant since the data becoming available to us increase every day in volume,
variety, speed of change and (potentially) quality. Processing these data
becomes more and more difficult under traditional computing platforms
since we need the ability to compute and scale at the same time.Under
this context, for this work we describe the design and implementation of
a responsive and user driven processing service. This is a geoprocessing
service that operates on geospatial datasets and provides geostatistical
interpolation (a specific variant called Kriging). This service is based
on existing service implementation standards in the geospatial domain
(namely WPS standard from OGC). Additionally our service can query
and retrieve information that is integrated following the Linked Open
Data (LOD) initiative. This is a unique capability that allows the ser-
vice to rely on data, besides the existing ones and the ones provided by
the user, that can be retrieved from the integrated information space that
is being built on the web. In this paper we present the design and imple-
mentation of the service on a Linked Data store and discuss capabilities,
issues and future research.

1 Introduction

Geoprocessing is considered a rather complex and computationally demanding
processing activity regardless of the exact type of computation it involves; mainly
we refer to statistical geoprocessing including various types of interpolation, that
are of interest in this work. Given also the fact that geoprocessing refers to
processing of geodatasets, which are usually of high volume, one can assume
that this kind of processing is complex due to both computational complexity
and data volume reasons.
c© Springer International Publishing Switzerland 2016
D. Kotzinos et al. (Eds.): ISIP 2014, CCIS 497, pp. 97–112, 2016.
DOI: 10.1007/978-3-319-38901-1 7

98 E. Grinias and D. Kotzinos

On the other hand cloud computing promises scalable and elastic resources
both for processing and storage of data. This has made many researchers to
consider the cloud as one perfect match for solve complex geoprocessing prob-
lems that also need to be applied on large geospatial datasets. Many interesting
works in this area exist already. One could reference the work of [17,18] and
by [12] where a discussion takes place on how cloud computing can be used and
shaped by the spatial sciences. Works like [16,19] shape the ground for a more in
depth look into the algorithmic or technical needs of the geospatial cloud based
applications. A very interesting comparison of various cloud based geospatial
solutions can be found at [17]; although the authors are focused on Windows
Azure and Google Application Engine platforms, the works compared are rather
comprehensive and the conclusions can be extended to other cloud platforms like
Amazon Web Services (AWS)1, which is the one used for the work presented in
this paper. In this respect our proposal is similar and complementary of those
efforts, since (as we detail in Sects. 2, 3 and 4) we provide a standards based
geoprocessing implementation and infrastructure.

At the same time an effort is underway to create more interconnected data
sets; it has been evident that data published on the web cannot be fully exploited
if they remain stored in information silos where no one but the owner will have
access to. This effort claims better results if our data are created, published and
re-used as Linked Data (LD), i.e., data that are inter-linked with each other
and can be uniquely identified based on unique URIs. LD and the technology
supporting them not only enables their re-use and interconnection but also allows
for combining them on the fly, which adds value to the data and highlights and
promotes their potential. In fact, nowadays, a great amount of LD is actually
freely available and open on the web, thus leading to the Linked Open Data
(LOD) concept. Such data are available for various areas either in raw RDF
form or via SPARQL endpoints. The work presented on this paper provides
geoprocessing facilities for Linked Open Data stored in an RDF triplestore in
the cloud. Thus to the best of our knowledge is the only work, which actually
retrieves and processes Linked Open GeoData by keeping both the data and the
processing in the cloud.

The paper is organized as follows: Sect. 2 describes the preliminaries for the
understanding of the Web Processing Service standards; Sect. 3 discusses the
theoretical part of the specific geoprocessing algorithm used for statistical inter-
polation of values, called Kriging; Sect. 4 describes the implementation of Krig-
ing/geoprocessing services according to the standards while Sect. 5 details the
Linked Open Data (LOD) infrastructure and capabilities. In Sect. 6 the client
that has been implemented to provide geoprocessing capabilities on Linked Open
geodata is presented. The paper concludes with some conclusions and pointers
for future work in Sect. 7.

1 http://aws.amazon.com/.

http://aws.amazon.com/

Cloud Based Processing Services Based on Linked Data 99

2 Open Geospatial Consortium Web Processing Service

Web services are defined as software systems that allow the interaction between
machines over a network. In such systems, there is often a machine-readable
description of the operations offered by the service and the other systems com-
municate with the service using messages formatted in markup languages such
as XML.

Web Processing Service (WPS) [7] is an Open Geospatial Consortium
(OGC)2 standard, which provides rules for standardizing the implementation
of geographic calculations (“processes”) as a web service. More specifically, the
standard

– describes inputs and outputs (requests and responses) for invoking geospatial
processing services, as a Web service,

– defines the way that a client can request the execution of a process, and how
the output from the process is handled and

– defines an interface that facilitates the publishing of geospatial processes and
clients discovery of and binding to those processes.

The Web Processing Service (WPS) standard defines three operations:

– GetCapabilities that returns metadata describing the service capabilities,
– DescribeProcess that returns a description of a process including its inputs

and outputs and
– Execute, which returns the output(s) of a process.

In practice, WPS operations are invoked by submitting XML to the URL of the
service. When requesting an Execute operation the HTTP request identifies the
inputs, the name of process to be executed, and the form of output to be provided
after execution. Data are often embedded in process execution input/output
XML, although references to web-accessible data inputs/outputs are supported
as well.

Input/output data required by the WPS can be delivered across the network
or they can be available at the server. Three types of data are defined by the
standard, namely:

– Complex Data such as imagery, XML, CSV, and custom (or proprietary)
data structures,

– Literal Data for numerical values or strings and
– Bounding Box Data type for the geographic coordinates of a rectangular

area.

3 Geoprocessing

3.1 Preliminaries

Kriging is a geostatistical method, which relies on the fact that as distance
between points increases, the similarity, defined by the covariance or correlation
2 http://www.opengeospatial.org/.

http://www.opengeospatial.org/

100 E. Grinias and D. Kotzinos

between points, decreases. Kriging predicts the unknown value Z(x0) at a loca-
tion in question x0 based on the data values in a neighborhood of this location.
Similarly to other well known interpolation techniques, the calculation of the
unknown value is based on a weighted sum of the locations with known values
in the neighborhood of point x0:

Ẑ(x0) =
n∑

i=1

wi(x0)Z(xi) (1)

where weight wi(x0) is the contribution of value Z(xi) and n = N(x0) is the
number of neighbors involved in predicting the unknown value. Unlike the deter-
ministic interpolation methods, in Kriging the input data values are considered
to be the realization z(x) of a random field Z(x) which consists of a trend m(x)
and a residual R(x):

Z(x) = m(x) + R(x)

or
R(x) = Z(x) − m(x)

Kriging estimates the residual R(x) as the weighted sum of the residuals at
adjacent positions around the location point x. Weights wi(·) of Eq. (1) are
derived from the covariance or the semivariance of known values and therefore
semivariance modeling should statistically characterize the residual component.

The three basic variations of Kriging, namely Simple, Ordinary and Univer-
sal (or with trend), arise from the assumptions made about the trend compo-
nent of input data as being known and constant (Simple), unknown and locally
constant (Ordinary) and spatially or functionally varying (Universal Kriging),
respectively. Both Simple and Ordinary techniques may be considered sub-cases
of Universal Kriging. In addition, if the trend of Universal Kriging is not a func-
tion of spatial coordinates, then other known Kriging interpolation variants arise,
such as Kriging with External Drift. Finally, if prediction refers to the average
of the measured values in a particular area rather than to single points, we have
the so-called Block Kriging.

3.2 Ordinary Kriging Method Analysis

Kriging interpolation consists of two steps, namely:

1. covariance, or semivariance modeling based on the set of locations with known
values and

2. prediction of values for a number of points in question.

Semivariance Modeling. Kriging uses semivariance to express the degree of
relationship between points on a surface. The empirical semivariance is half the
variance of the differences between all possible points spaced a constant distance
(lag) h apart:

γ̂(h) =
1

2n(h)

n(h)∑

i=1

(z(xi) − z(xi + h))2 (2)

Cloud Based Processing Services Based on Linked Data 101

Semivariogram plots (empirical) semivariance values against lags h of distance.
In practice, instead of the often noisy semivariance measurements which are
obtained using Eq. (2) on the points with known values, a semivariance model,
or function of the three parameters, Range, Sill and Nugget defined below, is
used to compute the semivariance of point pairs according to their distance.

In theory, the semivariance value at the origin (h = 0) should be zero. If
it is significantly different from zero for distances very close to zero, then this
minimum semivariance value is referred to as the Nugget (Fig. 1). As points
are compared to increasingly distant points, the semivariance increases. Beyond
some distance, called Range, the values of any points on the surface are statis-
tically uncorrelated. The semivariance value at h = Range is called Sill.

Fig. 1. Semivariogram and Range, Nugget, Sill (from ArcGIS Help 10.1: Semivari-
ogram and covariance functions).

Prediction. Prediction may involve the overall set, or a subset of points with
known values. In the first case we have global prediction. In the second case,
a subset of points with known values is defined in an area of an acceptable,
user-given radius (SearchRadius) around the point in question and only this
subject is used for prediction (local neighborhood prediction). Furthermore, if
the cardinality of this subset is less than a user-given value MinNum, no pre-
diction is made (“bulls eyes” effect) and if exceeds a user-given value MaxNum,
then only the MaxNum points, which are closest to the point in question will
be used in prediction. Furthermore, MaxNum can be used on its own, without
using search radius at all.

The steps taken to predict the unknown value at a specific location x0, given
the set of points with known values are as follows:

1. First, distances between point x0 and each point with known value are com-
puted.

102 E. Grinias and D. Kotzinos

2. Based on those distances, semivariance values between x0 and each one of
the points with known values are computed, using the semivariance model.

3. Given the semivariance values, a series of linear equations is solved in order
to get the predicted value for the location in question.

In case of using local neighborhood prediction, the steps above involve only the
points that are placed in the local neighborhood of x0.

Furthermore, in most cases, interpolation refers to the prediction of values in
locations of a grid that includes the points with known values. The parameters for
grid construction, namely, grid extent in each dimension and grid cell size, may be
given by the user or (grid extent for example), could be extracted automatically
from the locations of points with known values.

3.3 Suitability for a Cloud Environment

As noted earlier, the cloud offers scalable unlimited (but not free) processing
capabilities. From the discussion so far on Kriging prediction, one can notice
that although the solving of linear equations is not complex, the execution time
easily increases when a large set of points (or a large area in geospatial terms) is
involved in the computation. In nowadays environments this can easily happen
since we have both areas with very dense measurements (points) and large areas
(e.g. Europe) where we need to perform interpolation computations.

As seen though in this work, we should also consider an additional factor for
the increased demand: if this is a publicly available service we have literally no
control on what kind of and how big datasets the users will upload in order to
perform their calculations. Given also the fact that we might encounter situations
where many concurrent users might want to use the service at the same time
we could phase situations where a significant number of computations will take
place at the same time but also on demand. These situations match perfectly
the computational model of the cloud and thus make these services suitable for
cloud based implementation.

4 Design and Implementation of a Geoprocessing Cloud
Based Service

4.1 Open Source Kriging Implementations

In what follows, we refer to open source libraries or executable programs that
provide Kriging interpolation implementations.

SAGA and SEXTANTE. The geospatial analysis library SAGA (System for
Automated Geoscientific Analyses) [2] is implemented in C++ and includes
processing modules for modeling the variograms as well as for performing Ordi-
nary and Universal Kriging. The SEXTANTE (Sistema EXtremeño de ANálisis
TErritorial) [13] library (coded in Java) includes the same functionality with
SAGA, considering Kriging interpolation.

Cloud Based Processing Services Based on Linked Data 103

geoR. geoR [11] is a package of the open source, statistical processing envi-
ronment R [10]. geoR includes modules for variogram modeling, as well as for
applying Simple, Ordinary, Universal and external drift Kriging interpolation.
The package is used by the v.Krige function of GRASS GIS [4], for applying
Kriging techniques on input vector data.

HGPL. The HPGL (High Performance Geostatistics Library) library [5] (imple-
mented in Python and C++) includes functions for variogram modeling and for
applying simple, ordinary and generalized Kriging interpolation in the form of
locally variable means. Data input as well as output results are stored in grids, as
Eclipse Property or GSLIB [3] text files. Furthermore, the algorithms are applied
on the Cartesian grid (IJK-grid) and the linear equations of Kriging techniques
are solved using LAPACK solvers [1].

Gstat. Gstat [8] is a program dedicated to multivariable geostatistical model-
ing, prediction and simulation. It consists of a broad range of functionalities,
which permit the efficient development of Kriging interpolation techniques. It
was originally (1997) developed in ANSI C but, since 2003, its functionalities
are available as an R package as well [9].

4.2 Servers and OGC-WPS Implementation

Among the many open source implementations of Kriging prediction available
on the web, we selected the R [10] implementation of the Gstat [8] library (R-
Gstat)[9] for performing Ordinary Kriging. Considering interpolation, R-Gstat
supports

– Simple, Ordinary, Generalized as well as Block based Kriging prediction,
– global or local-neighborhood prediction,
– prediction on non-projected data using great circle distance between known

points and
– fast enough prediction, since its main functionality is coded in C and local-

neighborhood prediction is based on a fast neighborhood search algorithm.

WPS Ordinary Kriging process has been implemented using only open source
software written in Java. The basic components of the overall system at server
side (Fig. 2) are the Web Java Server and a WPS Java Container (imple-
mentation) installed in server’s workspace, which provides the necessary func-
tionality to handle responses to clients’ requests for WPS processes’ descrip-
tion/execution, according to the OGC-WPS standard. This way, developers are
free to implement and publish web processes without having to worry about
client/server interface and WPS processes’ input/output issues.

Kriging process has been implemented as a Java class in a Linux machine,
using Apache Tomcat3 Web Java Server and the 52 North WPS4 3.1.1 implemen-
tation of OGC-WPS 1.0.0 standard [7]. Ordinary Kriging is applied on input data
3 http://tomcat.apache.org/.
4 http://52north.org/communities/geoprocessing/wps.

http://tomcat.apache.org/
http://52north.org/communities/geoprocessing/wps

104 E. Grinias and D. Kotzinos

Fig. 2. Server configuration of WPS Kriging Implementation.

using R Gstat package. The interconnection between the Java module located at
the WPS Container and R is handled by the TCP/IP server Rserve [15]. Rserve
forwards to R the Java-R Interface (JRI) [14] instructions of the Java Kriging
module and sends back to the module the returned output of each R instruc-
tion (if such an output exists), as it is depicted in the inner frame Kriging
Execution of Fig. 5.

4.3 Geospatial Interpolation Process Implementation

The input of the process is handled by the WPS Container and consists of:

1. The input vector data (or layer) in the form of

[x, y, feature1, feature2, ..., featureM]

tuples, where x = (x, y) are the locations of vectors.
2. The field (featurej) upon which Ordinary Kriging will be applied. It has to

be a feature with arithmetic (real or integer) values.
3. The semivariance model that will be used. Corresponds to one of the vari-

ogram models supported by R Gstat.
4. The Nugget, Sill and Range values.
5. The SearchRadius value, measured in kilometers for non-projected input

data and in meters otherwise.
6. The MinNum and MaxNum values.
7. The cell size that will be used for constructing the grid with predicted values.

Cell size should be given in meters for projected data and in degrees otherwise.

Cloud Based Processing Services Based on Linked Data 105

The Coordinate Reference System (CRS) of input vector data is assumed
to be included in input data and if not, CRS EPSG:4326 (WGS84) is used by
default. Grid extent is automatically computed by the extent of the correspond-
ing input data.

The results of Kriging are three files, accessible as temporary links. The first file
includes the kriging predictions in tab separated values (tsv) format, the second
one is an image preview of Kriging predictions in PNG format and the third is a
tsv file of the input data in [x, y, featurej] format. The first file includes Kriging
predictions in the form [x, y, predicted value, prediction variance] which (as it is
depicted in the inner frame Kriging Execution of Fig. 5) after Gstat execution

1. are returned as R object in the opposite direction from R to the Java module
through Rserve,

2. they are converted to Java arrays and
3. are written in the tsv file.

The second file is created by a plot function of R and is returned to the Java
Server as well, using the file transfer capabilities of Rserve. The third file is
constructed by the WPS at the Java Server side using the input data of the
process. The OGC-WPS output XML (i.e. the response of Execute operation),
which includes the three temporary links is then asynchronously returned to the
client by the WPS Container.

5 Linked Open Geodata on the Cloud

There have been only limited efforts to publish Linked Open Geodata on the
cloud. [6] provide a comparison among different efforts of publishing linked geo-
data on the cloud platforms and provide the description of an elastic and scalable
service based infrastructure for providing Data-As-A-Service capabilities to any
platform wishing to extend its application in Linked Data environments. The
Linked Data Management API proposed in [6] carries very promising capabili-
ties and allows for a seamless integration of the available Linked Data in various
applications; its main architecture is depicted in Fig. 3.

One of the applications built on top of the LOD Management System is
the Geoprocessing service, which has been described above, that retrieves data
from the RDF Triplestore through the Linked Data API. Data are returned in
RDF/XML format and then processed through the appropriate methods of the
Geoprocessing Web Service. Querying the RDF Triplestore has been seamless
and we had no actual trouble in retrieving the information in this format. Linked
Data offer the opportunity to the geoprocessing module to combine data coming
from different sources but refer to the specific area of interest. In that respect
data coming from diverse sources can be easily integrated without the need of
expensive (and most of the times incomplete) integration. The geoprocessing
service will also use the Linked Data triplestore to store users own data that
(s)he needs to upload in order to provide more input for better calculations.
These data if described correctly using the appropriate ontology (-ies) can then

106 E. Grinias and D. Kotzinos

Fig. 3. The architecture of the LOD management system [6].

be linked with other data about the same area, allowing the scientists to draw
better and more educated conclusions.

Up to its current implementation the service exploits the cloud only by allow-
ing spawning of more instances in cases the load of the geoprocessing server
becomes too big. Thus we use the standard AWS load balancer to account for
high traffic or exceeding computational requirements (especially in cases of very
complex statistical computations).

6 Client Application

For testing the WPS process and demonstrating its usage, a web client5 has been
implemented by modifying the open source 52 North Openlayers WPS Client6.
In Fig. 5, the sequence diagram of client-server interaction is depicted in order to
perform Kriging on Linked Open geodata using the web process implemented.
In accordance with that Figure, the sequence of actions is as follows:
5 http://portal.ingeoclouds.eu/sitools/client-user/Geoprocessing/project-index.html.
6 https://wiki.52north.org/bin/view/Processing/52nOpenLayersWPSClient.

http://portal.ingeoclouds.eu/sitools/client-user/Geoprocessing/project-index.html
https://wiki.52north.org/bin/view/Processing/52nOpenLayersWPSClient

Cloud Based Processing Services Based on Linked Data 107

User Access. When the user navigates to the URL of client, (s)he sees the
central html page built using styles and JavaScript (JS) libraries.

WPS Description. A panel has been developed as Openlayers control for giv-
ing the ability to the user to select input layer and Kriging parameters. To con-
struct the panel, an HTTP GET request is send to the WPS container issuing the
description of Kriging web process in terms of data inputs and parameters required
for its execution (DescribeProcess operation). The response to that request is
the OGC-WPS XML description file, which, after its asynchronous arrival at the
client, is parsed in order to construct the panel (Fig. 4). WPS description step is
executed upon loading of the main html page, and may be ignored in the case of
a WPS with only one process. However, having available a mechanism of dynami-
cally constructing the panel based on the DescribeProcess operation of OGC-WPS
standard, leads to a highly extendable WPS client (e.g. in case of changing para-
meters of an already implemented process or of publishing new WPS processes).

Fig. 4. User friendly Openlayers panel for giving Ordinary Kriging prediction input
parameters.

Vector Layer Loading on Map. In current implementation, the user selects
predefined queries, which are treated as “vector layers” of the Openlayers7

library. Each time the user selects to load on the map a layer of that kind (using

7 http://openlayers.org/.

http://openlayers.org/

108 E. Grinias and D. Kotzinos

Fig. 5. Sequence diagram of client/server and server/R interconnections.

the JS control unit depicted in Fig. 6), a SPARQL8 query is sent to Virtuoso9

Server as HTTP POST request. The response is the result-set of the query which

1. is (asynchronously) sent back to Openlayers in GeoJSON10 format,
2. is then transformed to an Openlayers layer and this layer is displayed on the

Openlayers map and

8 http://www.w3.org/TR/rdf-sparql-query/.
9 http://virtuoso.openlinksw.com/.

10 http://geojson.org/.

http://www.w3.org/TR/rdf-sparql-query/
http://virtuoso.openlinksw.com/
http://geojson.org/

Cloud Based Processing Services Based on Linked Data 109

Fig. 6. Panel for loading vector layers on map. The user is given the ability to load
(1) his own data in excel format, (3) linked geodata fetched from Virtuoso server using
fixed SPARQL queries and (4),(5) linked geodata fetched from Virtuoso server using
partially parameterized SPARQL queries. In addition, the user can create new vector
layers using the rectangle box tool (2).

3. the corresponding entry of WPS panel with the layers that may be used as
input data for Kriging is properly updated with the layer just loaded on the
map.

Other sources of data could be used as well. Current implementation supports
the loading on map of user data stored in Excel format. The procedure followed
in that case is exactly the same: Excel data are first transformed to GeoJSON
format and are then rendered on map as Openlayers vector layers. Furthermore,
a tool has been implemented that permits the selection of features in a rectangle
box. Using this tool the user can create new (Openlayers vector) layers from
already loaded (on map) ones.

Kriging Execution. First, the user selects one of the loaded layers as the
input data layer of the process and gives Kriging specific parameters. Then, the
Openlayers layer is transformed to a format acceptable by 52 North OGC-WPS
Java implementation (GML 2.0 in current implementation). The OGC-WPS
input XML is then constructed, using the input data and Kriging parameters
and is forwarded to the process through an HTTP POST request (Execute
operation). The output XML is parsed using JavaScript and, after all, the user is
given the ability by the user-interface to download the output files as described
in the Temporary Links Download inner frame of the sequence diagram.
In Fig. 7(b), the preview PNG image is shown, as it is returned by the WPS

110 E. Grinias and D. Kotzinos

(a)

(b)

Fig. 7. (a) Selected input layer (yellow points) and (b) preview of final interpolation
result returned by the WPS process. Black crosses in (b) correspond to input data
points. (Color figure online)

Ordinary Kriging interpolation process, applied on the selected input layer of
Fig. 7(a).

7 Conclusions and Future Work

In this paper we introduced a Cloud based Processing Service that uses a Linked
Open Data repository to retrieve its data and store user provided datasets. The
service operates on a cloud environment and exploits the elasticity and scalability
of the cloud mainly in the form of provision of more instances for processing when
needed (scalability) and of storing the users datasets. The service uses Linked
Open Data on the cloud, which is a unique feature of this work.

In the future we would like to explore techniques like Map Reduce that
allow for distributed geoprocessing, something that in the case of Kriging for

Cloud Based Processing Services Based on Linked Data 111

example would considerably improve its performance. Additionally we would
like to expand the service in order to provide geoprocessing on data that are
automatically retrieved through their links on the web. Finally we would like
to add more geoprocessing algorithms running in a cloud environment and run
benchmarks to determine the differences in performance, scalability, elasticity
and reliability between existing solutions and the cloud based one.

Acknowledgements. This work was partially supported by the INGEOCLOUDS
project (Project reference: 297300) under the CIP-ICT-PSP.2011.4.1.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J.,
Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.:
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 3rd edn.
SIAM, Philadelphia (1999)

2. Böhner, J., McCloy, K.R., Strobl, J. (eds.): SAGA - Analysis and Modelling Appli-
cations, vol. 115. Verlag Erich Goltze GmbH, Göttingen (2006)

3. Deutsch, C.V., Journel, A.G.: GSLIB : Geostatistical Software Library
and User’s Guide. Oxford University Press, New York, Oxford (1992).
http://opac.inria.fr/record=b1101614

4. GRASS Development Team: Geographic Resources Analysis Support System
(GRASS GIS) Software. Open Source Geospatial Foundation (2012). http://grass.
osgeo.org

5. HPGL Development Team: High Performance Geostatistics Library (HPGL) User
Guide (2010). http://sourceforge.net/projects/hpgl

6. Kritikos, K., Rousakis, Y., Kotzinos, D.: Linked open geodata management in the
cloud. In: Proceedings of the 2nd International Workshop on Open Data, WOD
2013, pp. 3: 1–3: 6 (2013)

7. OGC: OpenGIS Web Processing Service 1.0.0 (2007), openGISStandard, OGC05–
007r7. http://www.opengeospatial.org/standards/wps

8. Pebesma, E., Wesseling, C.G.: Gstat: a program for geostatistical mod-
elling, prediction and simulation. Comput. Geosci. 24(1), 17–31 (1998).
http://dx.org/10.1016/s0098-3004(97)00082-4

9. Pebesma, E.J.: Multivariable geostatistics in S: the gstat package. Comput. Geosci.
30, 683–691 (2004)

10. Development Core Team, R.: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN3-
900051-07-0. http://www.R-project.org/

11. Ribeiro Jr., P., Diggle, P.: geoR: a package for geostatistical analysis. R-NEWS
1(2), 15–18 (2001). http://cran.R-project.org/doc/Rnews

12. Schäffer, B., Baranski, B., Foerster, T.: Towards spatial data infrastructures in
the clouds. In: Painho, M., Santos, M.Y., Pundt, H. (eds.) Geospatial Thinking.
LNGC, pp. 399–418. Springer, Berlin, Heidelberg (2010)

13. SEXTANTE development team: Sextante project official website (2011). http://
www.sextantegis.com

14. Urbanek, S.: rJava: Low-level R to Java interface (2011). http://CRAN.R-project.
org/package=rJava, r package version 0.9-3

http://opac.inria.fr/record=b1101614
http://grass.osgeo.org
http://grass.osgeo.org
http://sourceforge.net/projects/hpgl
http://www.opengeospatial.org/standards/wps
http://dx.org/10.1016/s0098-3004(97)00082-4
http://www.R-project.org/
http://cran.R-project.org/doc/Rnews
http://www.sextantegis.com
http://www.sextantegis.com
http://CRAN.R-project.org/package=rJava
http://CRAN.R-project.org/package=rJava

112 E. Grinias and D. Kotzinos

15. Urbanek, S.: Rserve: Binary R server (2011). http://CRAN.R-project.org/
package=Rserve, r package version 0.6-6

16. Wang, Y., Wang, S., Zhou, D.: Retrieving and indexing spatial data in the cloud
computing environment. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Com-
puting. LNCS, vol. 5931, pp. 322–331. Springer, Heidelberg (2009)

17. Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., Bambacus, M.,
Fay, D.: Spatial cloud computing: How can geospatial sciences use and help shape
cloud computing. Int. J. Digit. Earth 4(4), 305–329 (2011)

18. Yang, C., Raskin, R., Goodchild, M., Gahegan, M.: Geospatial cyberinfrastructure:
Past, present and future. Comput. Environ. Urban Syst. 34(4), 264–277 (2010)

19. Yue, P., Gong, J., Di, L., Yuan, J., Sun, L., Sun, Z., Wang, Q.: Geopw: Laying
blocks for the geospatial processing web. Trans. GIS 14(6), 755–772 (2010)

http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve

Author Index

Alkhouli, Abdulhafiz 35

Borzic, Boris 35

Ghariani, Abir 66
Grinias, Elias 97

Hilali, Ines 51

Jen, Tao-Yuan 51, 66

Kotzinos, Dimitris 97
Kuwahara, Micke 85

Laurent, Dominique 51

Marinica, Claudia 51, 66

Nourine, Lhouari 23

Petit, Jean Marc 23

Sacharidis, Dimitris 3
Sellis, Timos 3

Tanaka, Yuzuru 85

Vodislav, Dan 35

Yahia, Sadok Ben 51

	Preface
	Organization
	Contents
	Information Management
	Efficient Identification of the Highest Diversity Gain Object
	1 Introduction
	2 Related Work
	3 Definitions
	4 Methodology
	4.1 The Novelty Function
	4.2 Observations
	4.3 Finding the Most Novel Object
	4.4 Solving the Diversification Problem
	4.5 Generalization for Nonidentical Relevance and Diversity Spaces

	5 Experimental Evaluation
	5.1 Setting
	5.2 Results

	6 Conclusions
	References

	Dualization on Partially Ordered Sets: Preliminary Results
	1 Introduction
	2 Preliminaries
	3 Classification of Posets with Respect to Dualization
	3.1 Convex Embedding
	3.2 Polynomial Reflection of Posets
	3.3 Reaching Convexity by Poset Reflection
	3.4 DualizeOnSeq is Equivalent to DualizeOnSet

	References

	Continuous Top-k Processing of Social Network Information Streams: A Vision
	1 Introduction
	2 Related Work
	3 Data Model and Scoring Function
	3.1 Information Stream Social Networks
	3.2 Scoring Function

	4 Processing Model
	5 Conclusion
	References

	Information Discovery
	Mining Frequent and Homogeneous Closed Itemsets
	1 Introduction
	2 Formalism and Basic Properties
	2.1 Basics of Frequent and Closed Itemsets
	2.2 Homogeneous Itemsets
	2.3 Itemset Closure with Respect to a Taxonomy

	3 Frequent Homogeneous Closed Itemsets
	3.1 The Problem
	3.2 T-Closed Itemsets

	4 The Computation of FH-T-Closed Itemsets
	4.1 T-Elementary Itemsets
	4.2 An Algorithm for the Computation of FHT

	5 Conclusion
	References

	Mining Frequent Itemsets with Vertical Data Layout in MapReduce
	1 Introduction
	2 Background: Frequent Itemset Mining, MapReduce and Related Work
	2.1 Frequent Itemset Mining
	2.2 The MapReduce Platform
	2.3 Frequent Pattern Mining on MapReduce

	3 Apriori_V Algorithm
	3.1 Horizontal vs. Vertical Data Layout
	3.2 Apriori_V Algorithm

	4 Discussion on Complexity and Performance
	5 Conclusions and Future Work
	References

	Knowledge Management Applications on the Web and the Cloud
	Webble World 3.0
	Abstract
	1 Introduction
	1.1 IntelligentPad
	1.2 History
	1.3 A Webble Under the Hood

	2 Webble World 3
	2.1 Main Features
	2.2 Under the Hood
	2.3 Core System Description

	3 Summary
	References

	Cloud Based Processing Services Based on Linked Data
	1 Introduction
	2 Open Geospatial Consortium Web Processing Service
	3 Geoprocessing
	3.1 Preliminaries
	3.2 Ordinary Kriging Method Analysis
	3.3 Suitability for a Cloud Environment

	4 Design and Implementation of a Geoprocessing Cloud Based Service
	4.1 Open Source Kriging Implementations
	4.2 Servers and OGC-WPS Implementation
	4.3 Geospatial Interpolation Process Implementation

	5 Linked Open Geodata on the Cloud
	6 Client Application
	7 Conclusions and Future Work
	References

	Author Index

