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Abstract. SIMON is a family of lightweight block ciphers publicly
released by the NSA. Up to now, there have been many cryptanalytic
results on it by means of differential, linear, impossible differential, inte-
gral, zero-correlation linear cryptanalysis and so forth. At INDOCRYPT
2014, Wang et al. gave zero-correlation attacks for 20-round SIMON32,
20-round SIMON48/72 and 21-round SIMON48/96. We investigate the
security of whole family of SIMON by using zero-correlation linear crypt-
analysis in this paper. For SIMON32 and SIMON48, we can attack one
more round than the previous zero-correlation attacks given by Wang
et al. We are the first one to give zero-correlation linear approximations
of SIMON64, SIMON96 and SIMON128. These approximations are also
utilized to attack the corresponding ciphers.

Keywords: SIMON · Zero-correlation linear approximation ·
Cryptanalysis

1 Introduction

Lightweight primitives aim at finding an optimal compromise between efficiency,
security and hardware performance. Lightweight ciphers have been used in many
fields, such as RFID tags, smartcards, and FPGAs. The impact of lightweight
cipher is likely to continue increasing in the future. In recent years, many
lightweight ciphers have been developed, including KATAN [10], KLEIN [11],
LED [12], Piccolo [15], PRESENT [8] and TWINE [17].

SIMON [6] is a family of lightweight block ciphers publicly released by the
National Security Agency (NSA) in June 2013. NSA has developed three ciphers
to date, including SIMON, SPECK and Skipjack. SIMON has been optimized for
performance in hardware implementations, while its sister algorithm, SPECK [6],
has been optimized for software implementations. SIMON and SPECK offer
users a variety of block sizes and key sizes for different implementations.

Many cryptanalytic results have been published on SIMON. The first
differential cryptanalysis on SIMON was presented by Abed et al. in [1].
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Then, Biryukov et al. improved the differential cryptanalysis of SIMON32,
SIMON48 and SIMON64 by searching better differential characteristics in [7].
Based on the differential distinguisher shown by Biryukov et al., Wang et al.
improved the key recovery attacks on SIMON32, SIMON48 and SIMON64 [18].
In [18], Wang et al. gave the attack on 21-round SIMON32, which is still the
best attack up to now. In addition, Sun et al. identified better differential dis-
tinguisher for SIMON with MILP models in [16]. Impossible differential attack
against SIMON was firstly presented in [2], then the improved impossible differ-
ential attacks on SIMON32 and SIMON48 were given in [19], which had been
further improved by Boura et al. in [9].

For the integral attack, Wang et al. proposed the attack on 21-round
SIMON32 in [19] based on a zero-sum integral distinguisher for 15-round
SIMON32, which was obtained experimentally.

Zero-correlation linear attack is one of the recent cryptanalytic methods
introduced by Bogdanov and Rijmen in [3]. This kind of attack is based on the
linear approximation with correlation zero (i.e. the linear approximation with
probability exactly 1

2 ). The idea of multiple zero-correlation cryptanalysis was
developed in recent years in [4] by Bogdanov and Wang. They proposed a new
distinguisher by using the fact that there are numerous zero-correlation approxi-
mations in susceptible ciphers. In [5], a more powerful distinguisher called multi-
dimensional zero-correlation distinguisher was introduced. Wang et al. also gave
the zero correlation linear approximations for SIMON32 and SIMON48 in [19].
They employed these approximations to attack 20-round SIMON32, 20-round
SIMON48/72 and 21-round SIMON48/96.

In this paper, we investigate the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. For SIMON32 and SIMON48, by using
the technique of equivalent-key, our cryptanalysis can attack one more round
than the previous zero-correlation attacks in [19]. We are the first ones to give
zero-correlation linear approximations of SIMON64, SIMON96 and SIMON128.
These approximations are also utilized to attack the corresponding ciphers.

Our Contributions. In this paper, we investigate the security of whole family
of SIMON by using zero-correlation linear cryptanalysis. Our contributions can
be summarized as follows:

– Based on the 11-round zero-correlation distinguisher for SIMON32 and
12-round zero-correlation distinguisher for SIMON48, we use the equivalent-
key technique (i.e. by moving the subkey into the left-side of round func-
tion) to improve the key recovery attack on SIMON32 and SIMON48. Finally,
we can attack 21-round SIMON32, 21-round SIMON48/72 and 22-round
SIMON48/96. The equivalent-key technique has been widely used in various
key-recovery attacks. This technique aims at reducing the number of guessed
subkey by using equivalent subkeys to replace the original subkeys used in
the cipher. This technique had been used in [13] by Isobe. But there exists a
little difference. Because the subkey is XORed after non-linear function, the
condition in [13] that some parts of plaintext should be fixed can be canceled.
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– We provide 13-, 16- and 19- round zero-correlation linear approximations of
SIMON64, SIMON96 and SIMON128, respectively. We also use them to analy-
sis the security of the corresponding ciphers. We are the first one to give the
zero-correlation linear cryptanalysis for SIMON64, SIMON96 and SIMON128.

Our results along with the previous zero-correlation attacks on SIMON32 and
SIMON48 are listed in Table 1.

Table 1. Summary of zero-correlation attacks on SIMON

Cipher Rounds Time (ENs) Data (KPs) Memory (Bytes) Ref.

SIMON32 20 259.9 232 241.4 [19]

SIMON32 21 259.4 232 231.0 Sect. 4.1

SIMON48/72 20 259.7 248 243.0 [19]

SIMON48/72 21 261.9 248 243.0 Sect. 4.2

SIMON48/96 21 272.6 248 246.7 [19]

SIMON48/96 22 280.5 248 243.0 Sect. 4.2

SIMON64/96 23 290.4 264 254.0 Sect. 4.3

SIMON64/128 24 2116.8 264 254.0 Sect. 4.3

SIMON96/144 28 2141.0 296 285.0 Sect. 4.3

SIMON128/192 32 2156.8 2128 2117.0 Sect. 4.3

SIMON128/256 34 2255.6 2128 2117.0 Sect. 4.3

KP: Known Plaintext; EN: Encryption.

Outline. The remainder of this paper is organized as follows. Section 2 gives a
brief description of SIMON and a general introduction of zero-correlation linear
cryptanalysis. Section 3 presents the zero-correlation linear distinguishers used in
the following attacks. Section 4 covers the zero-correlation attacks on the whole
family of SIMON. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Brief Description of SIMON

SIMON [6] is a family of lightweight block ciphers publicly released by the
National Security Agency (NSA) in June 2013. SIMON offers users a variety
of block sizes and key sizes for different implementations. Table 2 lists the dif-
ferent block and key sizes, in bits, for SIMON.

SIMON is a two-branch balanced Feistel network which consists of three
operations: AND (&), XOR (⊕) and rotation (≪). We denote the input of the
i-th round by (Li, Ri), i = 0, 1, . . . , r − 1. In round i, (Li, Ri) is updated to
(Li+1, Ri+1) by using a function F (x) = (x ≪ 1)& (x ≪ 8) ⊕ (x ≪ 2) as
follows:
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Table 2. SIMON parameters

Block size Key size

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

<<< 1

<<< 8

<<< 2

&

rki

Li Ri

Li+1 Ri+1

Fig. 1. Round function of SIMON

Li+1 = F (Li) ⊕ Ri ⊕ rki,

Ri+1 = Li.

The output of the last round (Lr, Rr) is the ciphertext. An illustration of the
round function is depicted in Fig. 1.

The key schedule of SIMON uses an LFSR-like procedure to generate r sub-
keys rk0, rk1, . . . , rkr−1. SIMON processes three slightly different key schedule
procedures, depending on the number of word (ω) included in the master key.
The first ω subkeys rk0, rk1, . . . , rkω−1 are initialized by the master key. The
remaining subkeys are generated as follows:

rki+m = c ⊕ (zj)i ⊕ rki ⊕ Ym ⊕ (Ym ≫ 1),

Ym =

⎧
⎨

⎩

rki+1 ≫ 3 if ω = 2
rki+1 ⊕ (rki+2 ≫ 3) if ω = 3
rki+1 ⊕ (rki+3 ≫ 3) if ω = 4.

Here, the value c is constant 0xff. . .fc, and (zj)i denotes the i-th bit from one
of the five constant sequences z0, z1, z2, z3 and z4. The master key can be derived
if any sequence of ω consecutive subkeys is known. For more information, please
refer to [6].

2.2 Zero-Correlation Linear Cryptanalysis

Zero-correlation linear attack is one of the recent cryptanalytic methods intro-
duced by Bogdanov and Rijmen in [3]. This kind of attack is based on the linear
approximation with correlation zero (i.e. the linear approximation with probabil-
ity exactly 1

2 ). The idea of multiple zero-correlation cryptanalysis was developed
in recent years in [4] by Bogdanov and Wang. They proposed a new distinguisher
by using the fact that there are numerous zero-correlation approximations in sus-
ceptible ciphers. In [5], a more powerful distinguisher called multidimensional
zero-correlation distinguisher was introduced.

Even though multiple zero-correlation cryptanalysis and multidimensional
zero-correlation cryptanalysis perform better than zero-correlation linear crypt-
analysis for various ciphers, we have to claim that they are not appropriate
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for SIMON. Multiple zero-correlation cryptanalysis and multidimensional zero-
correlation cryptanalysis are more appropriate for word-level ciphers, such as
AES, Skipjack and CAST-256.

The following Theorem is useful for computing the success probability of
zero-correlation linear cryptanalysis.

Theorem 1 ([3, Proposition 3]). The probability that the correlation value is 0
for a non-trivial linear approximation of a randomly drawn n-bit permutation
can be approximated by 1√

2π
2

4−n
2 for n ≥ 5.

Based on the linear approximation of correlation zero, a technique similar to
Matsui’s Algorithm 2 [14] can be used for key recovery. Let the adversary have
2n plaintext-ciphertext pairs and a zero-correlation linear approximation α → β
for a part of the cipher. The linear approximation is placed in the middle of
the attacked cipher. Let E and D be the partial intermediate states of the data
transform at the boundaries of the linear approximations (See Fig. 2). Then the
key can be recovered using the following approach:

1. Guess the bits of the key needed to compute E and D. For each guess:
(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts

up to the boundaries of the zero-correlation linear approximation α → β.
(b) Estimate the correlation c of the linear approximation α → β for the

key guess using the partially encrypted and decrypted value E and D
by counting how many times 〈α,E〉 + 〈β,D〉 is zero over 2n plaintext-
ciphertext pairs.

(c) Perform a test on the estimated correlation c to tell of the estimated
values of c is compatible with the hypothesis that the actual value of c is
zero.

Plaintext P

Ciphertext C

E

D

Round covered by 
zero-correlation

linear approximation

Partial
encryption

Partial
decryption

Check for zero-
correlation

Fig. 2. Key recovery in zero-correlation linear cryptanalysis
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Fig. 3. Zero-correlation linear approximation of 11-round SIMON32. (Color figure
online)

2. Test the surviving key candidates against a necessary number of plaintext-
ciphertext pairs.

3 Zero-Correlation Linear Distinguishers of SIMON

3.1 Zero-Correlation Linear Distinguisher of SIMON32

For SIMON32, we use the 11-round zero-correlation linear distinguisher in [19],
which is shown in Fig. 3. The input mask is (0x0001,0x0000) and the output
mask is (0x0000,0x0080). The ‘0’ at bottom left and the ‘1’ at top right (in red)
constitute the contradiction that ensures zero correlation.

3.2 Zero-Correlation Linear Distinguisher of SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher in [19],
we can mount the key recovery attacks on 21-round SIMON48/72 and
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Fig. 4. Zero-correlation linear approximation of 12-round SIMON48. (Color figure
online)

22-round SIMON48/96. The distinguisher used in the following attacks is shown
in Fig. 4. The input mask is (0x000001,0x000000) and the output mask is
(0x000000,0x000002). The ‘0’ at bottom left and the ‘1’ at top right (in red)
constitute the contradiction that ensures zero correlation.
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3.3 Zero-Correlation Linear Distinguishers of SIMON64,
SIMON96 and SIMON128

In order to attack SIMON64/96/128, we first construct 13-, 16- and 19-round
zero-correlation linear approximations for SIMON64, SIMON96 and SIMON128
by applying miss-in-the middle technique, which are shown in Figs. 5, 6 and 7,
respectively.

Fig. 5. Zero-correlation linear approximation of 13-round SIMON64.

Fig. 6. Zero-correlation linear approximation of 16-round SIMON96.
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Fig. 7. Zero-correlation linear approximation of 19-round SIMON128.

4 Zero-Correlation Linear Cryptanalysis of SIMON

In this section, we investigate the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. We use 11- and 12-round zero-correlation
linear approximations of SIMON32 and SIMON48 in [19] to present the key
recovery attacks on 21-round SIMON32, 21-round SIMON48/72 and 22-round
SIMON48/96. We also utilize the distinguishers presented in Sect. 3.3 to attack
SIMON64, SIMON96 and SIMON128.

4.1 Zero-Correlation Linear Cryptanalysis of SIMON32

In this section, we use the 11-round zero-correlation linear distinguisher (See
Fig. 3) in [19] to attack 21-round SIMON32. As shown in Fig. 8, we can add five
rounds before the distinguisher and append five rounds after the distinguisher
(i.e. the zero-correlation distinguisher starts from the 5-th round and ends at
the 15-th round, with round number starting from 0). In this way, we can attack
21-round SIMON32.

Equivalent-Subkey Technique. The equivalent-subkey technique has been
widely used in various key-recovery attacks. This technique aims at reducing
the number of guessed subkey bits by replacing the equivalent subkeys with the
original subkeys. This technique had been used in [13] by Isobe. But there exists
a little difference. Because the subkey is XORed after non-linear function, the
condition in [13] that some parts of plaintext should be fixed can be canceled.

In order to reduce the number of guessed subkey bits in the key recovery
process, we move the subkey rki of the i-th round to the (i + 1)-th round,
(i = 0, 1, 2, 3, 4), to get the equivalent subkey Ki, see Fig. 8 (a). For example,
K0 in Fig. 8 (a) is equal to rk0, and K1 is equal to (rk0 ≪ 2) ⊕ rk1 and so forth.
Note that K4 is located in the distinguisher and doesn’t need to be guessed. In
Fig. 8 (a), we only list the guessed bits for Ki, 0 ≤ i ≤ 3. Similarly, we can move
the subkey rki of the i-th round to the (i − 1)-th round, (i = 16, 17, 18, 19, 20),
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to get the equivalent subkey Ki, see Fig. 8 (b). Again, K16 is located in the
distinguisher and doesn’t need to be guessed. In Fig. 8 (b), we only list the
guessed bits for Ki, 17 ≤ i ≤ 20.

Fig. 8. Key recovery attack on 21-round SIMON32.

Key Recovery Process for SIMON32. In the following, Ri denotes the
output of the i-th round. Ri,{j} denotes the j-th bit of the Ri. Li,{j} is defined
in a similar way. Note the bit position starts from ‘0’.

Firstly, we guess a part of the equivalent subkeys K17, K18, K19 and K20

(the concrete guessed key bits are shown in Fig. 8 (b)) and partially decrypt
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the ciphertext up to the state R16,{7}. Next, we guess a part of the equivalent
subkeys K0, K1, K2, K3 (the concrete guessed key bits are shown in Fig. 8
(a)) and partially encrypt the plaintext to the state L5,{0}. We count the num-
ber of occurrences of the event that L5,{0}‖R16,{7} is equal to “00” or “11”. If
the occurrence number is exactly equal to 231, we can keep the guessed 58-bit
subkey as a possible subkey candidate, and discard it otherwise. To this end,
58-bit subkey is already guessed, which includes K0

{0,2−7,9−14}, K2
{4−6,8,11−15},

K3
{0,6,7,13,14}, K4

{8,15}, K17
{6,15}, K18

{4,5,7,13,14}, K19
{2−6,11−13,15} and K20

{0−5,7,9−14}.
From Theorem 1, the probability that a wrong subkey guess is kept after

the above procedure can be approximated by 1√
2π

2
4−32

2 ≈ 2−15.33. Thus, 258 ×
2−15.33 = 242.67 subkey candidates will be left. After that, we guess 6-bit subkey
K0

{1,8,15}‖K1
{0,1,2} and obtain 29 remaining bits of K1

{3,7,9,10} ‖ K2
{1−5,8−12,15} ‖

K3
{0−7,9−14} by solving the linear equations with Gaussian elimination. At last,

we can compute all bits of the master key by inverting the key schedule, and
check the correctness by using at most two plaintext-ciphertext pairs. We express
this procedure in Algorithm 1.

Algorithm 1. Key Recovery Attack of SIMON32
1 Represent K20

{0−5,7,9−14}‖K19
{2−6,11−13,15}‖K18

{4,5,7,13,14}‖K17
{6,15} by

K0‖K1‖K2‖K3, and get 29 linear equations
2 for all 242.67 subkey candidates getting from the subkey recovery procedure (See

Table 3) do
3 for all values of K0

{1,8,15}‖K1
{0,1,2} do

4 Get 29 linear equations with respect to
K1

{3,7,9,10}‖K2
{1−5,8−12,15}‖K3

{0−7,9−14}
5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.

Complexity of Attack. The data complexity for the attack on SIMON32 is
232 known plaintexts.

In this attack, the dominant term for the memory complexity is the term
used to store 231 8-bit counters T0[X32

1 ], which makes the memory complexity
be 231 bytes.

The time complexity of each step in subkey recovery procedure is listed in
Table 3. Overall, the time complexity in subkey recovery procedure is 259.42

21-round SIMON32 encryptions. In master key recovery phase, solving 29 lin-
ear equations with 29 variables by using Gaussian elimination needs about
1
3 · 293 ≈ 8130 bit-XOR operations, which can be measured by 8130

16·4·21 ≈ 22.60

21-round SIMON32 encryptions (Note that there are three XOR operations and
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Table 3. Procedure of subkey recovery for SIMON32

Step Input state Guessed subkey (�Bits) Computing (�Bits) Counter (size) Time complexity

0 X32
0 K20

{0−5,7,9−14}
K19

{2−6,11−13,15}
K18

{4,5,7,13,14}
K17

{6,15}(29)

R16,{7} (36)* T0[X
32
1 ](31) 232·229· 1+3+6+10+16

16×21
≈255.78

1 X32
1 None(0) L1,{0,2−14} (14) T1[X

32
2 ](25) 231·229· 14

16×21 ≈255.41

2 X32
2 K0

{0,3,5,7,10,12,14}(7) L2,{4,6,8,11,13,15} (6) T2[X
32
3 ](24) 225·236· 6

16×21 ≈255.19

3 X32
3 K0

{4,6,11,13}(4) L2,{5,12,14} (3) T3[X
32
4 ](20) 224·240· 3

16×21 ≈257.19

4 X32
4 K0

{2,9}(2) L2,{10} (1) T4[X
32
5 ](17) 220·242· 1

16×21 ≈253.61

5 X32
5 K1

{6,8,13,15}(4) L3,{0,7,14} (3) T5[X
32
6 ](15) 217·246· 3

16×21 ≈256.19

6 X32
6 K1

{5,12,14}(3) L3,{6,13} (2) T6[X
32
7 ](13) 215·249· 2

16×21 ≈256.61

7 X32
7 K1

{4,11}(2) L3,{12} (1) T7[X
32
8 ](10) 213·251· 1

16×21 ≈255.61

8 X32
8 K2

{0,7,14}(3) L4,{8,15} (2) T8[X
32
9 ](8) 210·254· 2

16×21 ≈256.61

9 X32
9 K2

{6,13}(2) L4,{14} (1) T9[X
32
10 ](5) 28·256· 1

16×21 ≈255.61

10 X32
10 K3

{8,15}(2) L5,{0} (1) T10[X
32
11 ](2) 25·258· 1

16×21 ≈254.61

Input State: input state of each step (See Table 4 for its concrete meaning);

Guessed Subkey: guessed subkey bits in each step;

Computing: state bits to be computed in each step;

Counter: counters to be constructed in each step;

Time Complexity: measured in 21-round SIMON32 encryption.
∗ : To compute R16,{7}, we also need to compute R17,{5,6,15}, R18,{3−5,7,13,14}, R19,{1−6,11−13,15}
and R20,{0−15}, which are in total 36 bits.

Table 4. Explanation of symbols used in subkey recovery of SIMON32

Symbol Meaning

X32
0 L0,{0−15}‖R0,{0,2−14}‖L21,{0−15}‖R21,{0−15}

X32
1 L0,{0−15} ‖ R0,{0,2−14} ‖ R16,{7}

X32
2 L1,{0,2−14}‖R1,{4−6,8,10−15}‖R16,{7}

X32
3 L2,{4,6,8,11,13,15}‖L1,{0,2−4,6−14}‖R1,{5,10,12,14}‖R16,{7}

X32
4 L2,{4−6,8,11−15}‖L1,{0,2,6−9,12−14}‖R1,{10}‖R16,{7}

X32
5 L2,{4−6,8,10−15}‖R2,{0,6,7,12−14}‖R16,{7}

X32
6 L3,{0,7,14}‖L2,{4,5,8,10−12,14,15}‖R2,{6,12,13}‖R16,{7}

X32
7 L3,{0,6,7,13,14}‖L2,{4,8,10,11,14,15}‖R2,{12}‖R16,{7}

X32
8 L3,{0,6,7,12−14}‖R3,{8,14,15}‖R16,{7}

X32
9 L4,{8,15}‖L3,{0,6,12,13}‖R3,{14}‖R16,{7}

X32
10 L4,{8,14,15}‖R4,{0}‖R16,{7}

X32
11 L5,{0}‖R16,{7}

one AND operation in the round function of SIMON. For simplicity, we approxi-
mate them as four XOR operations in our analysis), thus the time complexity of
master key recovery phase can be approximated as 242.67 × 25 × 22.60 + 242.67 ×
25 × (1 + 2−32) ≈ 250.49 21-round SIMON32 encryptions. Thus, the total time
complexity of this attack is about 259.42 21-round SIMON32 encryptions.
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4.2 Zero-Correlation Linear Cryptanalysis of SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher (See Fig. 4)
in [19], we can mount key recovery attacks on 21-round SIMON48/72 and
22-round SIMON48/96.

Key Recovery Attack on 21-Round SIMON48/72. As shown in Fig. 9,
we can add five rounds before the distinguisher and append four rounds after
the distinguisher. In this way, we can attack 21-round SIMON48/72. We only
list the guessed subkey bits in Fig. 9. The detailed attack procedure is proceeded
in Algorithm 2.

The data complexity for the attack on SIMON48/72 is 248 known plaintexts.

Fig. 9. Key recovery attack on 21-round SIMON48/72.
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Algorithm 2. Key Recovery Attack of SIMON48/72
1 Represent K3

{16,23}‖K18
{0,17}‖K19

{9,15,16,22,23}‖K20
{0,1,7,8,13−15,17,20−22} by

K0‖K1‖K2, and get 20 linear equations.
2 for all 230.67 subkey candidates getting from the subkey recovery procedure (the

concrete subkey recovery procedure is listed in Table 5) do
3 for all values of K0

{0−3,7,9}‖K1
{1−5,8−11,15,17,18} do

4 Get 20 linear equations with respect to K1
{22}‖K2

{0−7,9−13,16−20,23}.
5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.

Table 5. Procedure of subkey recovery for SIMON48/72†

Step Input State Guessed Subkey(�Bits) Computing(�Bits) Counter(Size) Time Complexity

0 X48,72
0

K18
{0,17}‖K19

{9,15,16,22,23} R17,{1} (24)* T0[X
48,72
1 ](43) 248·218· 1+3+7+13

24×21
≈261.61

K20
{0,1,7,8,13−15,17,20−22}(18)

1 X48,72
1 None(0) L1,{0,4−6,8,10−23} (19) T1[X

48,72
2 ](33) 243·218· 19

24×21
≈256.27

2 X48,72
2 K0

{5,6,8,10,12,13,15−17,19,20,22,23}(13) L2,{0,6,7,13,14,16,18,20,21,23} (10) T2[X
48,72
3 ](26) 233·231· 10

24×21
≈258.34

3 X48,72
3 K0

{4,11,14,18,21}(5) L2,{12,19,22} (3) T3[X
48,72
4 ](21) 226·236· 3

24×21
≈254.61

4 X48,72
4 K1

{0,7,14,21}(4) L3,{8,15,22} (3) T4[X
48,72
5 ](17) 221·240· 3

24×21
≈253.61

5 X48,72
5 K1

{6,12,13,16,19,20,23}(7) L3,{0,20−22} (4) T5[X
48,72
6 ](11) 217·247· 4

24×21
≈257.02

6 X48,72
6 K2

{8,14,15,21,22}(5) L4,{16,22,23} (3) T6[X
48,72
7 ](5) 211·252· 3

24×21
≈255.61

7 X48,72
7 K3

{16,23}(2) L5,{0} (1) T7[X
48,72
8 ](2) 25·254· 1

24×21
≈250.02

Input State: input state of each step (See Table 6 for its concrete meaning);
Guessed Subkey: guessed subkey bits in each step;
Computing: state bits to be computed in each step;
Counter: counters to be constructed in each step;
Time Complexity: measured in 21-round SIMON48 encryption.

* : To compute R17,{1}, we also need to computeR18,{0,17,23}, R19,{1,9,15,16,21−23} and
R20,{0,1,7,8,13−15,17,19−23}, which are in total 24 bits.

† : The false positive probability of this attack is 1√
2π

2
4−48

2 ≈ 2−23.33 from Theorem 1.

The number of remaining subkey candidates is 254 · 2−23.33 ≈ 230.67 as we guess 54 subkey
bits in total.

In this attack, the dominant term for the memory complexity is the term used
to store 243 8-bit counters T0[X

48,72
1 ], which makes the memory complexity be

243 bytes.
From Table 5, the time complexity for subkey recovery is about 261.87

21-round SIMON48/72 encryptions. In Algorithm 2, it will proceed Gaussian
elimination process for 230.67 ·218 = 248.67 times, which can be ignored compared
to 261.87 21-round encryptions. After that, the time complexity of checking the
correctness of guess using two plaintext-ciphertext pairs also can be ignored com-
pared to 261.87 21-round encryptions. Thus, the total time complexity is about
261.87 21-round SIMON48/72 encryptions.
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Table 6. Explanation of symbols used in subkey recovery of SIMON48/72

Symbol Meaning

X48,72
0 L0,{0−23}‖R0,{0−23}‖L21,{0−23}‖R21,{0−23}

X48,72
1 L0,{0,2−23}‖R0,{0,4−6,8,10−23}‖R17,{1}

X48,72
2 L1,{0,4−6,8,10−23}‖R1,{0,6,7,12−14,16,18−23}‖R17,{1}

X48,72
3 L2,{0,6,7,13,14,16,18,20,21,23}‖L1,{0,4,8,10,11,14,15,17,18,20−22} ‖R1,{12,19,22}‖R17,{1}

X48,72
4 L2,{0,6,7,12−14,16,18−23}‖R2,{0,8,14,15,20−22}‖R17,{1}

X48,72
5 L3,{8,15,22}‖L2,{6,12,13,16,18−20,22,23}‖R2,{0,14,20,21}‖R17,{1}

X48,72
6 L3,{0,8,14,15,20−22}‖R3,{16,22,23}‖R17,{1}

X48,72
7 L4,{16,22,23}‖R4,{0}‖R17,{1}

X48,72
8 L5,{0}‖R17,{1}

Fig. 10. Key recovery attack on 22-round SIMON48/96.
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Algorithm 3. Key Recovery Attack of SIMON48/96
1 Represent K17

{0,17}‖K18
{9,15,16,22,23}‖K19

{0,1,7,8,13−15,17,20−22}‖K20
{0,5−7,9,11−23} by

K0‖K1‖K2‖K3, and get 36 linear equations.
2 for all 248.67 subkey candidates getting from the subkey recovery procedure (the

concrete subkey recovery procedure is listed in Table 7) do
3 for all values of K0

{0−3,7,9}‖K1
{1−5,8−11,15,17,18,22}‖K2

{0−4} do

4 Get 36 linear equations with respect to
K2

{5−7,9−13,16−20,23}‖K3
{0−15,17−22}.

5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.

Table 7. Procedure of subkey recovery for SIMON48/96†

Step Input State Guessed Subkey(�Bits) Computing(�Bits) Counter(Size) Time Complexity

0 X48,96
0

K17
{0,17}‖K18

{9,15,16,22,23}
R17,{1} (43)* T0[X

48,96
1 ](43) 248·236· 43

24×22
≈280.38

K19
{0,1,7,8,13−15,17,20−22}
K20

{0,5−7,9,11−23}(36)

1 X48,96
1 None(0) L1,{0,4−6,8,10−23} (19) T1[X

48,96
2 ](33) 243·236· 19

24×22
≈274.20

2 X48,96
2 K0

{5,6,8,10,12,13,15−17,19,20,22,23}(13) L2,{0,6,7,13,14,16,18,20,21,23} (10) T2[X
48,96
3 ](26) 233·249· 10

24×22
≈276.28

3 X48,96
3 K0

{4,11,14,18,21}(5) L2,{12,19,22} (3) T3[X
48,96
4 ](21) 226·254· 3

24×22
≈272.54

4 X48,96
4 K1

{0,6,7,13,14,20,21}(7) L3,{8,14,15,21,22} (5) T4[X
48,96
5 ](14) 221·261· 5

24×22
≈275.28

5 X48,96
5 K1

{12,16,19,23}(4) L3,{0,20} (2) T5[X
48,96
6 ](11) 214·265· 2

24×22
≈270.96

6 X48,96
6 K2

{8,14,15,21,22}(5) L4,{16,22,23} (3) T6[X
48,96
7 ](5) 211·270· 3

24×22
≈273.54

7 X48,96
7 K3

{16,23}(2) L5,{0} (1) T7[X
48,96
8 ](2) 25·272· 1

24×22
≈267.96

Input State: input state of each step (See Table 8 for its concrete meaning);
Guessed Subkey: guessed subkey bits in each step;
Computing: state bits to be computed in each step;
Counter: counters to be constructed in each step;
Time Complexity: measured in 22-round SIMON48 encryption.

* : To compute R17,{1}, we also need to computeR18,{0,17,23}, R19,{1,9,15,16,21−23},
R20,{0,1,7,8,13−15,17,19−23} and R21,{0,1,5−7,9,11−23}, which are in total 43 bits.

† : The false positive probability of this attack is 1√
2π

2
4−48

2 ≈ 2−23.33 from Theorem 1.

The number of remaining subkey candidates is 272 · 2−23.33 ≈ 248.67 for we guess 72 subkey
bits in total.

Key Recovery Attack on 22-Round SIMON48/96. As shown in Fig. 10,
we can add five rounds before the distinguisher and append five rounds after the
distinguisher. In this way, we can attack 22-round SIMON48/96. We only list
the guessed subkey bits in Fig. 10. The detailed attack procedure is proceeded
in Algorithm 3.

The data complexity for the attack on SIMON48/96 is 248 known plaintexts.
In this attack, the dominant term for the memory complexity is the term used

to store 243 8-bit counters T0[X
48,96
1 ], which makes the memory complexity to

be 243 bytes.
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Table 8. Explanation of symbols used in subkey recovery of SIMON48/96

Symbol Meaning

X48,96
0 L0,{0−23}‖R0,{0−23}‖L22,{0−23}‖R22,{0−23}

X48,96
1 L0,{0,2−23}‖R0,{0,4−6,8,10−23}‖R17,{1}

X48,96
2 L1,{0,4−6,8,10−23}‖R1,{0,6,7,12−14,16,18−23}‖R17,{1}

X48,96
3 L2,{0,6,7,13,14,16,18,20,21,23}‖L1,{0,4,8,10,11,14,15,17,18,20−22} ‖R1,{12,19,22}‖R17,{1}

X48,96
4 L2,{0,6,7,12−14,16,18−23}‖R2,{0,8,14,15,20−22}‖R17,{1}

X48,96
5 L3,{8,14,15,21,22}‖R2,{0,20}‖L2,{12,16,18,19,22,23}‖R17,{1}

X48,96
6 L3,{0,8,14,15,20−22}‖R3,{16,22,23}‖R17,{1}

X48,96
7 L4,{16,22,23}‖R4,{0}‖R17,{1}

X48,96
8 L5,{0}‖R17,{1}

From Table 7, the time complexity for subkey recovery is about 280.54

22-round SIMON48/96 encryptions. In Algorithm 3, it will proceed Gaussian
elimination process for 248.67 ·224 = 272.67 times, which can be ignored compared
to 280.54 22-round encryptions. After that, the time complexity of checking the
correctness of guess using two plaintext-ciphertext pairs also can be ignored com-
pared to 280.54 22-round encryptions. Thus, the total time complexity is about
280.54 22-round SIMON48/96 encryptions.

4.3 Zero-Correlation Linear Cryptanalysis of SIMON64, SIMON96
and SIMON128

We can use the zero-correlation linear approximations showed in Figs. 5, 6 and 7
to attack SIMON64, SIMON96 and SIMON128, respectively. Since the attack
procedures for them are similar, we only list the attack results in Table 9.

Table 9. Summary of ZC linear attack results on SIMON

Cipher ZC linear Attacked Total Time Data Memory
distinguisher rounds rounds (ENs) (KPs)

SIMON64/96 13 23(5+13+5)* 42 290.4 264 254 bytes

SIMON64/128 13 24(6+13+5) 44 2116.8 264 254 bytes

SIMON96/144 16 28(6+16+6) 54 2141.0 296 285 bytes

SIMON128/192 19 32(7+19+6) 69 2156.8 2128 2117 bytes

SIMON128/256 19 34(8+19+7) 72 2255.6 2128 2117 bytes

KP: Known Plaintext; EN: Encryption.
∗ : For (a + b + c), a is the number of rounds before the distinguisher, b is the
length of the distinguisher and c is the number of rounds after the distinguisher.
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5 Conclusion

In this paper, we study the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. We improved the previous zero-correlation
attacks for SIMON32 and SIMON48. Moreover, we present the 13-, 16- and
19-round zero correlation linear approximations of SIMON64, SIMON96 and
SIMON128, respectively, and use them to attack the corresponding ciphers. We
are the first one to give the zero-correlation linear cryptanalysis for SIMON 64,
SIMON96 and SIMON128.
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