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Abstract. Since public clouds are untrusted by many consumers, it is
important to check whether their remote data keeps intact. Sometimes,
it is necessary for many clients to cooperate to store their data in the
public clouds. For example, a file needs many clients’ approval before it is
stored in the public clouds. Specially, different files need different client
subsets’ approval. After that, these stored remote data will be proved
possession by the verifier. In some cases, the verifier has no ability to
perform remote data possession proof, for example, the verifier is in the
battlefield because of the war. It will delegate this task to its proxy.
In this paper, we propose the concept of proxy provable data posses-
sion (PPDP) which supports a general access structure. We propose the
corresponding system model, security model and a concrete PPDP pro-
tocol from n-multilinear map. Our concrete PPDP protocol is provably
secure and efficient by security analysis and performance analysis. Since
our proposed PPDP protocol supports the general access structure, only
the clients of an authorized subset can cooperate to store the massive
data to PCS (Public Cloud Servers), and it is impossible for those of an
unauthorized subset to store the data to PCS.

Keywords: Cloud computing · Provable data possession · Proxy cryp-
tography · Access control

1 Introduction

Cloud computing is an emerging technology where the client can rent the storage
and computing resource of cloud computing servers. The client only needs a
terminal device, such as smart phone, tablet, etc. Cloud computing servers have
huge storage space and strong computation capability. In order to apply for
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data storing or remote computing, the end clients can access cloud computing
servers via a web browser or a light weight desktop or mobile application, etc. In
cloud computing, cloud servers can provide three types service: Infrastructure
as a Service, Platform as a Service and Application as a Service. The end nodes
are some capacity-limited electronic facilities, for example, personal computer,
tablet, remote desktop, mini-note, mobile. These end nodes can access the cloud
computing networking to get computing service by via a web browser, etc.

Generally, cloud computing can be divided into three different types: public
cloud, private cloud and hybrid cloud. Public cloud service may be free or offered
on a pay-per-usage model. The main benefits of public cloud service can be listed
as follows: easy and inexpensive set-up due to the reason that the corresponding
costs are covered by the provider; better scalability; cheaper due to pay-per-usage
model; etc. Public clouds are external or publicly available cloud environments
that are accessible to any client, whereas private clouds are internal or private
cloud environments for particular organizations. Hybrid clouds are composed of
public clouds and private clouds. More security responsibilities for the clients
are indispensable to cloud service providers. It is more critical in public clouds
for their own properties.

Public clouds’ infrastructure and computational resources are owned and
operated by outside public cloud service providers which deliver services to the
general clients via a multi-tenant platform. Thus, the clients can not look into
the public cloud servers’ management, operation, technical infrastructure and
procedures. This property incurs some security problems due to the reason that
the clients can not control their remote data. For the clients, one of the main
concerns about moving data to a public cloud infrastructure is security. Specially,
the clients need to ensure their remote data is kept intact in public clouds. It is
important to study remote data integrity checking since the public cloud servers
(PCS) may modify the clients’ data to save the storage space or other aims.
Or, some inevitable faults make some data lost. Thus, it is necessary to design
provable data possession protocol in public clouds.

1.1 Motivation

We consider the application scenario below.
In a big supermarket, the different managers will move the massive data

to the public clouds. The data has to do with sale, capital, staff member, etc.
These different data needs to get different approvals before they are moved to the
public clouds. Such as, before sale data is moved, these data must be approved
by salesman and sales manager; before staff member data is moved, these data
must be approved by human resource manager and the chairman; capital data
will have to be approved by the salesman, the chief financial officer and the
chairman before they are moved to public clouds, etc.

There exist many application scenarios that the data must be approved by
multi clients before they are moved to the public clouds. Since different data
needs different client subset’s approval, it is necessary to study provable data
possession protocol which supports a general access structure. In order to ensure
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their data security, the verifier has to check their remote data possession at reg-
ular intervals. In some situations, the verifier is restricted to access the network,
e.g., in prison because of comitting crime, in the battlefield because of the war,
etc. Thus, the verifier has to delegate its remote data possession proof task to
the proxy. After that, the proxy will perform the remote data possession proof
protocol based on their warrant. This real social requirement motivates us to
study proxy provable data possession with general access structure in public
clouds.

1.2 Related Work

It is important to ensure the clients’ remote data integrity since the clients do
not control their own data. In 2007, a provable data possession (PDP) model was
proposed by G. Ateniese et al. [1]. PDP is a lightweight probable remote data
integrity checking model. After that, they proposed dynamic PDP model and
designed the concrete dynamic PDP scheme based on symmetric cryptography
algorithm [2]. In order to support data insert operation, Erway et al. proposed
a full-dynamic PDP scheme from authenticated skip table [3]. F. Sebe et al.
designed a provable data possession scheme by using factoring large numbers
difficult problem [4]. Wang proposed the concept of proxy provable data posses-
sion [5]. After that, identity-based provable data possession were proposed [6,7].
In order to ensure critical data secure, some clients copy them and get their
replications. Then, they move these original data and replicated data to multi
PCS. In this case, client must ensure its remote data intact on multi PCS, i.e.,
multi-replica provable data possession [8–11]. At the same time, as a stronger
remote data integrity checking model, proofs of retrievability (PORs) was also
proposed [12]. After that, H. Shacham gave the first PORs protocol with full
security proofs in the strong security model [12,13]. It can be also applied into
the fields, pay-TV [14], medical/health data [15], etc. Some research results have
been gotten in the field of PORs [16–19]. Provable data possession is an impor-
tant model which gives the solution of remote data integrity checking. At the
same time, it is also very meaningful to study special PDP models according to
different application requirements.

1.3 Private PDP and PPDP

From the role of the PDP verifier, it can be divided into two categories: private
PDP and public PDP. In the CheckProof phase of private PDP, some private
information is needed. On the contrary, private information is not needed in the
CheckProof phase of public PDP. Public PDP provides no guarantee of privacy
and can easily leak information. Private PDP is necessary in some cases.

A supermarket sells goods every day and stores the sale records in the pub-
lic clouds. The supermarket can check these sale records integrity periodically
by using PDP model. It would not like other entities to perform the checking
task. If the competitors can perform the integrity checking, they can get the sale
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information by performing many times integrity queries. Without loss of gen-
erality, we assume that the queried block sequence is {ms1 ,ms2 , · · · ,msc

}. The
symbols s1, s2, · · · , sc denote the queried block indices where s1 ≤ s2 ≤ · · · ≤ sc.
By making sc bigger gradually until the PCS can not reply valid response, the
competitors can get the biggest number ŝc. Making use of block size and ŝc,
the competitors can get the supermarket’s sale record data size. Then, they can
evaluate its sale volume for every day. It is dangerous for the supermarket. In
this case, private PDP is necessary.

In private PDP, when the verifier has no ability to perform PDP protocol,
it will delegate the PDP task to the proxy according to the warrant. Thus, it is
important and meaningful to study PPDP with the general access structure.

Table 1. Notations and descriptions

Notations Descriptions

A General access structure

Ai Valid subset to move the file to PCS

Ujl the l-th member in the subset Aj

(xjl , Xjl) Private/public key pair of Ujl

(y, Y ) Private/public key pair of PCS

(z, Z) Private/public key pair of dealer

(mi, Ti) Block-tag pair

Σ ordered collection of tags

F = {m1, · · · , mn} Stored file

G1,G2 two multiplicative groups

ê the bilinear map from G1 to G2

q the order of G1 and G2

π pseudo-random permutation

H, h cryptographic hash function

f, Ω two pseudo-random functions

chal = (c, k1, k2) the challenge, i.e., c denotes the size of the challenged block
set, k1, k2 are two different random numbers

(ω , cert) warrant-certificate pair

PCS public cloud server

PPDP proxy provable data possession

1.4 Our Contribution

In this paper, we propose the concept, system model and security model of PPDP
protocol with general access structure. Then, by making use of the n-multiinear
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pairings and some difficult problems, we design a concrete and provably secure
PPDP protocol which supports general access structure. Finally, we give the
formal security proof and performance analysis. Through security analysis and
performance analysis, our protocol is shown secure and efficient.

1.5 Organization

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries. Section 3 describes our PPDP protocol with general access structure,
the formal security analysis and performance analysis. Finally, Sect. 4 gives a
conclusion.

The notations throughout this paper are listed in Table 1.

2 Preliminaries

In this section, we propose the system model and security model of PPDP with
general access structure. Then, the bilinear pairing, multilinear map and some
corresponding difficult problems are reviewed in this section.

2.1 System Model and Security Model

The system consists of four different network entities: Client, PCS, Dealer,
Proxy. They can be shown as the following.

1. Client, who has massive data to be stored on PCS for maintenance and com-
putation, can be either individual consumer or organization, such as desktop
computers, laptops, tablets, smart phones, etc.;

2. PCS, which is managed by public cloud service provider, has significant stor-
age space and computation resource to maintain client’ massive data;

3. Dealer is delegated to store multi-clients’ data to PCS where the multi-client
subset belongs to the concrete general access structure. It is trusted by all
the clients.

4. Proxy, which is delegated to check Client’s data possession, has the ability to
check Client’s data possession according to the warrant ω.

In the system model, there exists a general access structure A = {A1,A2, · · · ,
An′}. In order to store some special files, all the clients in some subset Aj

cooperate to approve and move the special files to PCS via the entity Dealer.
The clients no longer store the special files locally. The clients can perform the
remote data possession proof or delegate it to the proxy in special cases.

We start with the precise definition of PPDP with general access structure,
followed by the formal security definition. Before that, we define the general
access structure in our PPDP protocol.
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Definition 1 (General Access Structure). For the client set U =
{U1, U2, · · · , Un}, the clients in U ’s subset Aj = {Uj1 , Uj2 , · · · , Ujnj

} can coop-
erate to approve and store the file F to PCS where j = 1, 2, · · · , n′ and Aj ⊆ U .
Denote A = {A1,A2, · · · ,An′}. Then, A is regarded as the general access struc-
ture.

Without loss of generality, suppose the stored file F is divided into n blocks,
i.e., F = {m1,m2, · · · ,mn}.

Definition 2 (PPDP with General Access Structure). For general access
structure, PPDP is a collection of six polynomial time algorithms (SetUp,
TagGen, CertVry, CheckTag, GenProof, CheckProof) among PCS, Client,
Dealer and Proxy such that:

1. SetUp(1k) → (sk, pk) is a probabilistic polynomial time key generation algo-
rithm. Input a security parameter k, it returns a private/public key pair for
every running. Every client Ujl ∈ Aj can get its private/public key pair
(xjl ,Xjl). PCS can also get its private/public key pair (y, Y ). On the other
hand, the client set Aj also prepares the warrant ωj and the corresponding
certificate certj, where ωj points out the restriction conditions that the Proxy
can perform the remote data possession checking task. The warrant-certificate
pair (ωj, certj) is sent to the Proxy.

2. TagGen(xjl ,Xjl , Y,mi, Ujl ∈ Aj) → Ti is a probabilistic polynomial time
algorithm that is run by all members of Aj and Dealer to generate the block
tag Ti. Input the private/public key pair (xjl ,Xjl) for all the Ujl ∈ Aj, PCS’s
public key Y and a file block mi, this algorithm returns the block tag Ti.

3. CertV ry(ωj , certj) → {“success”, “failure”} is run by the proxy in order to
validate the warrant-certificate pair. If the pair is valid, it outputs “Success”
and accepts the pair ; otherwise, it outputs “failure” and rejects the pair.

4. CheckTag(mi, Ti, y,Xjl , Y, Ujl ∈ Aj) → {“success”, “failure”} is a deter-
mined polynomial time algorithm that is run by the PCS to check whether the
block-tag pair (mi, Ti) is valid or not. Input the block-tag pair (mi, Ti), PCS’s
private/public key pair (y, Y ) and the clients’ public key Xjl for all Ujl ∈ Aj,
the algorithm returns “success” or “failure” denoting the pair is valid or
not respectively.
Notes: CheckTag phase is important in order to prevent the malicious clients.
If the malicious clients store invalid block-tag pairs to PCS, PCS will accept
them if CheckTag phase does not exist. When the malicious clients check these
data’s integrity, PCS’s response will not pass the verification. The malicious
clients will require PCS to pay compensation. Thus, PCS’s benefits will be
harmed.

5. GenProof(Xjl , y, Y, F,Σ, chal, Ujl ∈ Aj) → V is a polynomial time algo-
rithm that is run by the PCS in order to generate a proof of data integrity,
where Σ = {T1, T2, · · · , Tn} is the ordered collection of tags. Input the public
keys (Xjl , Y, Ujl ∈ Aj), an ordered collection F of blocks, an ordered collection
of tags Σ and a challenge chal. Upon receiving the challenge from the proxy,
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it returns a data integrity proof V for some blocks in F that are determined
by the challenge chal.

6. CheckProof(Xjl , Y, chal, V, auxiliary data, Ujl ∈ Aj) → {“success′′,
“failure′′} is a polynomial time algorithm that is run by the proxy in order
to check the PCS’s response V . Input the public keys Xjl , Y for Ujl ∈ Aj,
a challenge chal, PCS’s response V and some auxiliary data, this algorithm
returns “success” or “failure” denoting whether V is valid or not for the
data integrity checking of the blocks determined by chal.

For the general access structure, in order to ensure that PPDP protocol is
secure and efficient, the following requirements must be satisfied:

1. For the general access structure, the PPDP protocol only be performed by
the clients or the delegated proxy.

2. Dealer should not be required to keep an entire copy of the files and tags.
3. The protocol should keep secure even if the PCS is malicious. If the PCS has

modified some block tag pairs that are challenged, the response V can only
pass the CheckProof phase with negligible probability. In other words, PCS
has no ability to forge the response V in polynomial time.

According to the above security requirements, for general access structure,
we define what is a secure PPDP protocol against malicious PCS (security prop-
erty (3) ) below. Without loss of generality, suppose the stored file is F and it is
grouped into n blocks, i.e., F = {m1,m2, · · · ,mn}. Let the general access struc-
ture be A = {A1,A2, · · · ,An′}. Suppose the subset Aj = {Uj1 , Uj2 , · · · , Ujnj

} ∈
A has the right to approve to store the file F to PCS.

Definition 3 (Unforgeability).For general access structure, PPDP protocol
is unforgeable if for any (probabilistic polynomial time) adversary A the proba-
bility that A wins the following PPDP game is negligible. For the general access
structure, the PPDP game between the challenger C and the adversary A can be
shown below:

1. SetUp: C generates system parameters params, clients’ private/public key
pairs (xjl ,Xjl) for all Ujl ∈ Aj, the proxy’s private/public key pair (z, Z) and
PCS’s private/public key pair (y, Y ). Then, it sends (params,Xjl , Y, y, Z, z,
Ujl ∈ Aj) to the adversary A. C keeps (xjl , Ujl ∈ Aj) confidential and sends
y, z to A, i.e., y, z are known to A. It is consistent with the real environment
since the adversary A simulates PCS or the collusion of PCS and the proxy.

2. First-Phase Queries: A adaptively makes a number of different queries to C.
Each query can be one of the following.
– Hash queries. A makes Hash function queries adaptively. C responds the

Hash values to A.
– Tag queries. A makes block tag queries adaptively. For a query m11 queried

by A, C computes the tag T11 ← TagGen(xjl , y, z,Xjl , Y, Z,m11 , Ujl ∈ Aj)
and sends it back to A. Without loss of generality, let {m11 ,m12 , · · · ,m1i ,
· · · ,m1|I1|} be the blocks which have been submitted for tag queries. Denote
the index set as I1, i, e., 1i ∈ I1.
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3. Challenge: C generates a challenge chal which defines a ordered collection
{j1, j2, · · · , jc}, where {j1, j2, · · · , jc} � I1 is a set of indexes and c is a
positive integer. C is required to provide a data integrity proof for the blocks
mj1 , · · · ,mjc .

4. Second-Phase Queries: Similar to the First-Phase Queries. Without loss of
generality, let {m21 ,m22 , · · · ,m2i , · · · ,m2|I2|} be the blocks which have been
submitted for tag queries. Denote the index set as I2, i, e., 2i ∈ I2. The restric-
tion is that {j1, j2, · · · , jc} � I1 ∪ I2.

5. Forge: A returns a data integrity checking response V for the blocks indicated
by chal.

We say that A wins the above game if CheckProof(Xjl , Y, chal, V, auxiliary
data, Ujl ∈ Aj) → “success” with nonnegligible probability.

Definition 3 states that, for the challenged blocks, a malicious PCS cannot
produce a valid remote data integrity checking response if some challenged block
tag pairs have been modified. It is a very important security property. On the
other hand, if the response can pass the proxy’s verification, what is the prob-
ability of all the data keeps intact ? The following definition states clearly the
status of the blocks that are not challenged. In practice, a secure PPDP protocol
also needs to guarantee that after validating the PCS’s response, the proxy can
be convinced that all of his outsourced data have been kept intact with a high
probability. This observation gives the following security definition.

Definition 4 ((ρ, δ) Security). For general access structure, a PPDP protocol
is (ρ, δ) secure if PCS corrupted ρ fraction of the whole blocks, the probability
that the corrupted blocks are detected is at least δ.

In order to explain the definition 4, we give a concrete example. Suppose
PCS stored n̈ block-tag pairs. The instrument troubles or malicious operations
make l̈ block-tag pairs lost for PCS. Then, the corrupted fraction of the whole
blocks is ρ = l̈

n̈ . Suppose the clients query c̈ block-tag pairs’ integrity checking.
If the probability that the corrupted blocks can detected is at least δ, we call
this scheme satisfies the (ρ, δ) security.

2.2 Bilinear Pairings, Multilinear Map and Difficult Problem

Let G1 and G2 be two cyclic multiplicative groups with the same prime order q.
Let ê : G1 × G1 → G2 be a bilinear map. The bilinear map ê can be constructed
by the modified Weil or Tate pairings [20,21] on elliptic curves. The group G1

with such a map ê is called a bilinear group. The Computational Diffie-Hellman
(CDH) problem is assumed hard while the Decisional Diffie-Hellman (DDH)
problem is assumed easy on the group G1 [22]. We give their expression below.

Gap Diffie-Hellman Problem (GDH). Let g is the generator of G1. For instance,
given unknown a, b, c ∈ Z∗

q and g, ga, gb, gc ∈ G1, it is recognized that there exists
an efficient algorithm to determine whether ab = c mod q by verifying ê(ga, gb) =
ê(g, g)c in polynomial time (DDH problem), while no efficient algorithm can
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compute gab ∈ G1 with non-negligible probability within polynomial time (CDH
problem). An algorithm A is said to (t, ε)-break the CDH problem on G1 if A’s
advantage is at least ε in time t, , i.e.,

AdvCDH
A = Pr[A(g, ga, gb) = gab : ∀a, b ∈ Z∗

q ] ≥ ε

The probability is taken over the choice of a, b and A’s coin tosses.
A group G1 is a (t, ε)-GDH group if the DDH problem on G1 is efficiently

computable and there exists no algorithm can (t, ε)-break the CDH problem
on G1.

We say that G1 satisfies the CDH assumption if for any randomized polyno-
mial time (in k) algorithm A we have that AdvCDH

A (k) is a negligible function.
In this paper, our multi-client PDP protocol come from the GDH group G1.

Next, we give the definition of an n-multilinear map. Multilinear map was
proposed in the Ref. [23]. Many experts have proposed the concrete implemen-
tation [24,25]. We view the groups G1 and Gn as multiplicative groups.

Definition 5. A map ên : Gn
1 → Gn is an n-multilinear map if it satisfies the

following properties:

1. G1 and Gn are groups of the same prime order q;
2. If a1, · · · , an ∈ Z∗

q and g1, · · · , gn ∈ G1 then

ên(ga1
1 , · · · , gan

n ) = ên(g1, · · · , gn)a1a2···an

3. The map ên is non-degenerate in the following sense: if g ∈ G1 is a generator
of G1 then ên(g, · · · , g) is a generator of Gn.

Multilinear Diffie-Hellman Problem. Given g, ga1 , · · · , gan+1 in G1, it is hard
to compute ên(g, · · · , g)a1···an+1 in Gn.

n-multilinear map has been used in the encryption, key management, hash
function etc. [26–28].

3 Our Proposed PPDP Protocol with General Access
Structure

3.1 Construction of PPDP Protocol with General Access Structure

First, we introduce some additional notations which will be used in the construc-
tion of our PPDP protocol with general access structure. Let g be a generator
of G1. Suppose the stored file F (maybe encoded by using error-correcting code,
such as, Reed-Solomon code) is divided into n blocks (m1,m2, · · · ,mn) where
mi ∈ Z∗

q , i.e., F = (m1,m2, · · · ,mn) . The following functions are given below:

f : Z∗
q × {1, 2, · · · , n} → Z∗

q

Ω : Z∗
q × {1, 2, · · · , n} → Z∗

q

π : Z∗
q × {1, 2, · · · , n} → {1, 2, · · · , n}

H : {0, 1}∗ → Z∗
q

h : Z∗
q × Z∗

q → G∗
1
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where f and Ω are two pseudo-random functions, and π is a pseudo-random
permutation, H and h are cryptographic hash functions. For general access
structure, PPDP protocol construction consists of six phases: SetUp, TagGen,
CertVry, CheckTag, GenProof, CheckProof.

SetUp: PCS picks a random number y ∈ Z∗
q as its private key and com-

putes Y = gy as its public key. The proxy picks a random number z ∈ Z∗
q

as its private key and computes Z = gz as its public key. Suppose there
are n̄ clients U = {U1, U2, · · · , Un̄}. Let the general access structure be A =
{A1,A2, · · · ,As}, where Aj = {Uj1 , Uj2 , · · · , Ujnj

} ⊆ U , 1 ≤ j ≤ s. For
every Aj , the dealer picks a random uj ∈ G1 as Aj ’s public key. For any
client Ui ∈ U , it picks a random xi ∈ Z∗

q as its private key and computes
Xi = gxi as its public key. Aj ’s warrant consists of the description ωj of the
constraints for which remote data possession proof is delegated together with
a certificate certj . certj is the multi-signature on ωj of all the clients in Aj by
using the concrete algorithms [29,30]. Once delegated, the proxy can perform the
data possession proof by using its private key z and warrant-certification pair
(ωj , certj). The clients send (ωj , certj) to the proxy. The system parameter set
is params = {G1,G2,Gnj+1, ênj+1, ê, f, Ω, π,H, h, q, uj ,Xi,Aj ∈ A, Ui ∈ U}.

TagGen(xjl , F, i, Ujl ∈ Aj): Suppose the valid client subset Aj generates the cor-
responding tags for the file F = (m1,m2, · · · ,mn). Denote the set Ājl = Aj/Ujl .
For every block mi, the clients {Uj1 , Uj2 , · · · , Ujnj

} in Aj and the dealer gener-
ate the tag Ti. In Aj , all the clients cooperate to generate the multi-signature
certj on the warrant ωj . The warrant-certification pair (ωj , certj) are sent to
the proxy. For Ujl ∈ {Uj1 , Uj2 , · · · , Ujnj

}, it performs the following procedures:

1. Ujl computes

tj = H(ênj+1(Xj1 , · · · ,Xjl−1 ,Xjl+1 , · · · ,Xjnj
, Y, Z)xjl , ωj)

Wi,j = Ωtj (i), Ti,jl = (h(tj ,Wi,j)umi
j )xjl ;

2. Ujl sends the block-tag pair (mi, Ti,jl) and the corresponding warrant ωj to
dealer.

After receiving all the block-tag pairs (mi, Ti,jl), where mi ∈ F, Ujl ∈ Aj , the
dealer computes Ti =

∏

Ujl
∈Aj

Ti,jl . Then it uploads the block-tag pair (mi, Ti) and

the corresponding warrant ωj to PCS. When the above procedures are performed
n times, all the block-tag pairs (mi, Ti) are generated and uploaded to PCS for
1 ≤ i ≤ n.

CertVry({(ωj , certj),Xji , Uji ∈ Aj}): Upon receiving the clients’ warrant-
certification pair (ωj , certj), the proxy verifies its validity. If it is valid, the
proxy accepts ωj ; otherwise, the proxy rejects it and queries the Clients for new
warrant-certification pair.
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CheckTag((mi, Ti), 1 ≤ i ≤ n): Given {(mi, Ti), 1 ≤ i ≤ n}, for every i and
Aj ∈ A, PCS computes

t̂j = H(ênj+1(Xj1 , · · · ,Xjnj
, Z)y, ωj), Ŵi,j = Ωt̂j

(i)

Then, it verifies whether the following formula holds.

ê(Ti, g) ?= ê(h(t̂j , Ŵi,j)umi
j ,

∏

Ujl
∈Aj

Xjl)

If it holds, PCS accepts it; otherwise, it is rejected.

GenProof(pk, F, chal,Σ): Let F, chal,Σ denote F = (m1,m2, · · · ,
mn), chal = (c, k1, k2), Σ = (T1, · · · , Tn) where chal is the proxy’s challenge.
In this phase, the dealer asks the PCS for remote data integrity checking of c
file blocks whose indices are randomly chosen for each challenge. It can prevent
the PCS from anticipating which blocks will be queried in each challenge. The
number k1 ∈ Z∗

q is the random key of the pseudo-random permutation π. The
number k2 ∈ Z∗

q is the random key of the pseudo-random function f . On the
other hand, the proxy sends (ωj , certj) to PCS. PCS verifies whether the signa-
ture certj is valid. If it is valid, PCS compares this ωj with its stored warrant
ω′

j . When ωj = ω′
j and the proxys query complys with the warrant ωj , PCS

performs the procedures as follows. Otherwise, PCS rejects the proxys query.

1. For 1 ≤ r ≤ c, PCS computes ir = πk1(r), ar = fk2(r) as the indexes and
coefficients of the blocks for which the proof is generated.

2. PCS computes T =
∏c

r=1 T ar
ir

, m̂ =
∑c

r=1 armir .
3. PCS outputs V = (T, m̂) and sends V to the proxy as the response to the

chal query.

CheckProof(chal,Xjl , V, Ujl ∈ Aj): Upon receiving the response V from
PCS, the proxy performs the procedures below:

1. For 1 ≤ r ≤ c, the proxy computes

tj = H(ênj+1(Xj1 , · · · ,Xjnj
, Y )z, ωj)

vr = πk1(r), ar = fk2(r), Wvr,j = Ωtj (vr)

2. The proxy checks whether the following formula holds.

ê(T, g) ?= ê(
c∏

r=1

h(tj ,Wvr,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl)

If the above formula holds, then the proxy outputs “success”. Otherwise the
proxy outputs “failure”.

Notes: In the subset Aj , any client Ujl can also perform the phase CheckProof
since the following formula holds:

ênj+1(Xj1 , · · · ,Xjl−1 ,Xjl+1 , · · · ,Xjnj
, Y, Z)xjl

= ênj+1(Xj1 , · · · ,Xjnj
, Y )z

Thus, Ujl can also calculate tj and finish CheckProof.
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3.2 Correctness Analysis and Security Analysis

The correctness analysis and security analysis of our proposed PPDP protocol
can be given by the following lemmas and theorems:

Theorem 1. If Client, Dealer, and PCS are honest and follow the proposed
procedures, then the uploaded block-tag pairs can pass PCS’s tag checking.

Proof. In the phases TagGen and CheckTag, for all Ujl ∈ Aj ,

t̄j = H(ênj+1(Xj1 , · · · ,Xjnj
, Z)y, ωj)

= H(ênj+1(g, · · · , g, g)
yz

∏

Ujl
∈Aj

xjl

, ωj)
= tj
= t̂j

Then, we can get Wi,j = W̄i,j = Ŵi,j . By using TagGen, we know that

ê(Ti, g) = ê(
∏

Ujl
∈Aj

(h(tj ,Wi,j)umi
j )xjl , g)

= ê(h(tj ,Wi,j)umi
j , g

∑

Ujl
∈Aj

xjl

)
= ê(h(tj ,Wi,j)umi

j ,
∏

Ujl
∈Aj

Xjl)

Theorem 2. If the proxy and PCS are honest and follow the proposed proce-
dures, the response V can pass the proxy’s data integrity checking, i.e., our PPDP
protocol satisfies the correctness.

Proof. Based on TagGen and GenProof, we know that T =
∏c

r=1 T ar
ir

. Thus,

ê(T, g) = ê(
∏c

r=1 T ar
ir

, g)
= ê(

∏c
r=1 (h(tj ,Wir,j)u

mir
j )ar ,

∏

Ujl
∈Aj

Xjl)

= ê(
∏c

r=1 h(tj ,Wir,j)aru
∑c

r=1 armir

j ,
∏

Ujl
∈Aj

Xjl)

= ê(
∏c

r=1 h(tj ,Wir,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl)

Lemma 1. Let (G1,G2) be a (T ′, ε′)-GDH group pair of order q. Let Aj

be the tag generating subset. Then the tag generation scheme TagGen is
(T, qS , qH , qh, ε)-existentially unforgeable under the adaptive chosen-message
attack for all T and ε satisfying ε′ ≥ ε

(qs+1)e and T ′ ≤ T +cG1(qh+2qS)+cênj
qH ,

where cG1 is the time cost of exponentiation on G1, cênj
is the time cost of nj-

linear map. Here e is the base of the natural logarithm, and qS , qH , qh are the
times of Tag query, H-query and h-query respectively. nj is the cardinal number
of the tag generating subset Aj.

Proof. It is similar with Ref. [5]. We omit the proof procedures due to the page
limits.
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Lemma 2. Let the challenge be chal = (c, k1, k2). Then, the queried block-tag
pair set is {(mπk1 (i)

, Tπk1 (i)
), 1 ≤ i ≤ c}. If some block tag pairs are modified, the

grouped block tag pair (m̂, T ) can pass the proxy’s verification only with negligible
probability.

Proof. We will prove this lemma by contradiction. It is assumed that the forged
block tag pair (m̂, T̂ ) can pass the dealer’s integrity checking, i.e.,

ê(T̂ , g) = ê(
c∏

r=1

h(tj ,Wir,j)arum̂
j ,

∑

Ujl
∈Aj

Xjl)

We prove this lemma from two cases.
Case 1, PCS makes use of the modified block tag pair to generate the grouped

block tag pair and the block indexes satisfy the challenge requirements:

ê(
c∏

r=1

T̂ ar
ir

, g) = ê(
c∏

r=1

h(tj ,Wir,j)aru
∑c

r=1 arm̂ir

j ,
∏

Ujl
∈Aj

Xjl)

where ar = fk2(r) and ir = πk1(r) are pseudo random, 1 ≤ r ≤ c. Then,

c∏

r=1

ê(T̂ ar

m̂ir
, g) =

c∏

r=1

ê(h(tj ,Wir,j)u
m̂ir
j ,

∏

Ujl
∈Aj

Xjl)
ar

Let the generator of G2 be d, and

ê(T̂ir , g) = dŷr

ê(h(tj ,Wir,j)u
m̂ir
j ,

∏

Ujl
∈Aj

Xjl) = dyr

Then we can get
d
∑c

r=1 ar ŷr = d
∑c

j=1 aryr

c∑

r=1

arŷr =
c∑

r=1

aryr

c∑

r=1

aj(ŷr − yr) = 0 mod (q − 1) (1)

According to Lemma 1, a single block Tag is existential unforgeable. So, there
exist at least two different indexes r such that ŷr 
= yr. Suppose there are s ≤ c
pairs (ŷr, yr) such that ŷr 
= yr. Then, there exist qs−1 tuples (a1, a2, · · · , ac)
satisfying the above Eq. (1). Since (a1, a2, · · · , ac) is a random vector, the proba-
bility that the tuple satisfies the Eq. (1) is not greater than qs−1/qc ≤ qc−1/qc =
q−1. This probability is negligible.

Case 2, the PCS substitutes the other valid block-Tag pairs for modified
block-Tag pairs:
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To the challenge chal = (c, k1, k2), PCS can get queried block tag pairs index
set {i1, i2, · · · , ic}. Without loss of generality, we assume s block tag pairs are
modified and their index set is {i1, i2, · · · , is} where s ≤ c. PCS substitutes s
valid block tag pairs for the s modified pairs. Without loss of generality, suppose
the s valid block tag pairs indexes are V = {v1, v2, · · · , vs}. PCS computes the
grouped block tag pair as follows:

T =
c∏

r=s+1

T ar
ir

∏

v∈V
T av

v , m̂ =
c∑

r=s+1

armir +
∑

v∈V
avmv

where ar = fk2(r) for all 1 ≤ r ≤ c and avi
= ai for 1 ≤ i ≤ s.

Assume the forged group block tag pair can pass the dealer’s checking, i.e.,

ê(T, g) = ê(
c∏

r=1

h(tj ,Wir,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl)

Since some block tag pairs are valid, i.e., for s + 1 ≤ r ≤ c,

ê(Tir , g) = ê(h(tj ,Wir,j)u
mir
j ,

∏

Ujl
∈Aj

Xjl)

We can get the following formula:

ê(
∏

v∈V
T av

v , g) = ê(
∏s

r=1 h(tj ,Wir,j)aru

∑

v∈V
avmv

j ,
∏

Ujl
∈Aj

Xjl) On the other hand,

ê(
∏

v∈V
T av

v , g) = ê(
∏

v∈V
h(tj ,Wv,j)avu

∑

v∈V
avmv

j ,
∏

Ujl
∈Aj

Xjl)

Thus,
ê(

∏s
r=1 h(tj ,Wir,j)aru

∑
v∈V avmv

j ,
∏

Ujl
∈Aj

Xjl)

= ê(
∏

v∈V h(tj ,Wv,j)avu
∑

v∈V avmv

j ,
∏

Ujl
∈Aj

Xjl)

We can get
∏s

r=1 h(tj ,Wir,j)ar =
∏

v∈V h(tj ,Wv,j)av . The probability that
the above formula holds is q−1 because of h is hash oracle. It is negligible.

Based on Case 1 and Case 2, the forged group block tag pair can pass the
dealer’s checking with the probability no more than q−1. It is negligible.

Lemma 1 states that an untrusted PCS cannot forge individual tag to cheat
the proxy. Lemma 2 implies that the untrusted PCS cannot aggregate fake tags
to cheat the dealer.

Theorem 3. According to our proposed PPDP protocol with general access
structure, if some queried block tag pairs are modified, PCS’s response can
only pass the proxy’s CheckProof phase with negligible probability based on the
assumption that the CDH problem is hard on G1.
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Proof. Suppose the stored blocks set is {m1,m2, · · · ,mn}. We denote the chal-
lenger as C and the adversary as A. Let the public parameters be params =
{G1,G2, ê, f, Ω, π,H, h, q}. Input (g, ga, gb), the goal of C is to compute the value
gab. Let the client subset that can generate tag is Aj . First, C picks random
zjl ∈ Z∗

q , uj ∈ G1 and calculates Xjl = (ga)zjl for all Ujl ∈ Aj . uj can be
regarded as the public parameter of the access subset Aj . Let Xjl be the client
Ujl ’s public key. The corresponding private key is unknown to C. The challenger
maintains three tables TH , Th, T which are initialized empty. PCS picks a ran-
dom y ∈ Z∗

q and computes Y = gy. Let (y, Y ) be the PCS’s private/public key
pair. PCS picks a random z ∈ Z∗

q and computes Z = gz. Let (z, Z) be the
proxy’s private/public key pair. Then, C answers all the queries that A makes.

H-Oracle, h-Oracle, Tag-Oracle are the same as the corresponding procedures
in the Lemma 1.

We consider the challenge chal = (c, k1, k2). Assume the forged aggregated
block-tag pair (m̂, T ) can pass the dealer’s data integrity checking, i.e.,

ê(T̂ , g) = ê(
c∏

r=1

h(tj ,Wir,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl) (2)

where aj = fk2(j) are random, 1 ≤ j ≤ c.
According to Lemmas 1 and 2, we know that if some queried block-tag pairs

are corrupted, the verification formula (2) holds with negligible probability. Thus,
our propose multi-client PDP protocol is provably unforgeable in the random
oracle model.

Theorem 4. For the general access structure, the proposed PPDP protocol is
( d

n , 1− (n−d
n )c)-secure. The probability PR of detecting the modification satisfies:

1 − (
n − d

n
)c ≤ PR ≤ 1 − (

n − c + 1 − d

n − c + 1
)c

where n denotes the stored block-tag pair number, d denotes the modified block-tag
pair number, and the challenge is chal = (c, k1, k2).

Proof. It is similar with the Ref. [5]. We omit it due to the page limits.

3.3 Performance Analysis

In this section, we analyze the performance of our proposed PPDP protocol in
terms of computation and communication overheads.

Computation: In our proposed PPDP protocol, suppose there exist n message
blocks and the tag generating client subset is Aj which comprises nj clients. In
the TagGen phase, the clients need to perform nj nj-linear map, nj exponenti-
ations on the group Gnj+1 and 2nnj exponentiations on the group G1. On the
other hand, the proxy needs to perform 1 nj-linear map, 1 exponentiations on
the group Gnj+1, 2nnj bilinear pairings. In the CheckTag phase, PCS has to
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compute 1 nj1 -linear map, 1 exponentiations on the group Gnj+1, 2n bilinear
pairings and n exponentiations on the group G1. In the GenProof phase, PCS
needs to perform c exponentiations on the group G2. In the CheckProof phase,
the proxy can perform 1 nj-linear map (it can be pre-computed and stored in
the TagGen phase), 2 bilinear pairings, and c + 1 exponentiations on G1. Com-
pared to the pairings and exponentiation, other operations, such as hashing,
permutation, multiplication, etc., are omitted since their costs are negligible.

Communication: The communication overhead mostly comes from the PPDP
queries and responses. In PPDP query, the proxy needs to send log2 c bits and 2
elements in Z∗

q to PCS. In the response, the PCS responds 1 element in G1 and
1 element in Z∗

q to the proxy. Thus, our PPDP protocol has low communication
cost.

Notes: Our proposed PPDP protocol is a general remote data integrity checking
method with the general access structure. The idea is motivated by the applica-
tion requirements which has been given in the subsection 1.1. The existing PDP
protocols can only be applied for single client. It is not enough because the multi-
client PDP and proxy PDP are also indispensable in some application fields. Of
course, single client PDP is only the special case of our protocol when the size
of the valid subset is 1 and the proxy is omitted. In general access structure, the
PPDP protocol is proposed for the first time. It can be used in many application
fields.

4 Conclusion

In this paper, we proposes a PPDP protocol with general access structure. We
give its concept, security model, formal security proof and performance analysis.
It is shown that our PPDP protocol is provably secure and efficient. It can be
used in the public clouds to ensure remote data integrity.
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