
An Approach for Mitigating Potential
Threats in Practical SSO Systems

Menghao Li1,2, Liang Yang1,3, Zimu Yuan1(✉), Rui Zhang1, and Rui Xue1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{limenghao,yangliang,yuanzimu,zhangrui,xuerui}@iie.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 School of Information Engineering, Tianjin University of Commerce, Tianjin, China

Abstract. With the prosperity of social networking, it becomes much more
convenient for a user to sign onto multiple websites with a web-based single sign-
on (SSO) account of an identity provider website. According to the implementa‐
tion of these SSO system, we classify their patterns into two general abstract
models: independent SSO model and standard SSO model. In our research, we
find both models contain serious vulnerabilities in their credential exchange
protocols. By examining five most famous identity provider websites (e.g.
Google.com and Weibo.com) and 17 famous practical service provider websites,
we confirm that these potential vulnerabilities of the abstract models can be
exploited in the practical SSO systems. With testing on about 1,000 websites in
the wild, we are sure that the problem that we find is widely existing in the real
world. These vulnerabilities can be attributed to the lack of integrity protection
of login credentials. In order to mitigate these threats, we provide an integral
protection prototype which help keeping the credential in a secure environment.
After finishing the designation, we implement this prototype in our laboratory
environment. Furthermore, we deploy extensive experiments for illustrating the
protection prototype is effective and efficient.

Keywords: Single Sign-on · Web security · Integrity

1 Introduction

As a convenient and popular authorization method, single sign-on (SSO) is widely
deployed by multiple websites as a way for logging in with a third-party account. For
example, you can easily log into Smartsheet.com and Rememberthemilk.com using your
Google account instead of individual accounts from each of them. It means that your
Google account is authorized to access their resources by both websites. SSO reduces
password fatigue from different username and password combinations and time spent
on re-entering passwords for the same identity.

Thanks to the prosperity of social networking, multiple SSO systems, such as
OpenID [4], Google AuthSub [20], SAML [7], and OAuth [5, 13], have been widely
deployed on commercial websites. The SSO system works through the interactions
among three parties: a client browser (the user), the identity provider (IDP, e.g.

© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 209–226, 2016.
DOI: 10.1007/978-3-319-38898-4_13

Google.com), and service provider (SP, e.g. Smartsheet.com). The security of an SSO
system is expected to prevent an unauthorized client from accessing to a legitimate user’s
account on the SP side. Given the fact that more and more high-value personal data are
stored on the Internet, such as cloud websites, the flaws in SSO systems can completely
expose the private information assets to the hackers. It forces SSO system developers
to try their best to patch the flaws or build up a safer SSO system. However, in recent
years, more and more logic flaws and vulnerabilities have been discovered.

By analyzing many popular commercial websites, we abstract the practical SSO
systems into two categories. The first category of SSO systems is deployed with
OAuth2.0 protocol, which is standardized by RFC 6749 [11] and is used to replace the
previous SSO systems such as OpenID and AuthSub. The previous work on OAuth2.0
mostly focuses on the formal analysis [2, 15, 29] and auto detection of the vulnerabilities
[2, 39]. But they do not come up with practical solutions. We focuses on the practical
OAuth2.0 SSO systems deployed on the commercial websites, such as Google and
Weibo, then extracts the workflows of the practical SSO OAuth2.0 systems. Besides,
we also analyze the independent developed SSO systems. We find that those independent
developed SSO systems follow a simple communication model which has only three
steps. Without doubt, we find that both of these categories of SSO models have vulner‐
abilities.

By rechecking the commercial websites under our built general SSO models, we
find that almost all of them obey the models and the vulnerabilities are similar on each
website. Moreover we also find that some websites deploy SSO systems that mix the
two general model together. This mixed model makes the analysis a bit complex. But
we still find the integrity problems in the mixed model. We give a real world example
of the mixed model SSO system in Sect. 4.

As the vulnerabilities can all be attributed to the lack of integrity protection on the
login credential, we attempt to protect the credential’s integrity with cryptographic
method and try to not affect the original performance of the SSO system. In this paper,
we propose protection prototype in Sect. 5. Our prototype can prevent the attackers from
stealing the victim’s credential and logging into victim’s account with the entire access
rights as the original victim.

Contributions. We first classify current popular SSO systems into two categories and
build two abstract SSO models for analyzing the security of practical SSO systems. Then
we parse the workflow of two kinds of SSO models in depth and find the vulnerabilities
in those models.

Second, we verify that the vulnerabilities which pervasively existing in practical
SSO websites obey the logic vulnerabilities we discovered in the abstract models.

Our third contribution is attempting to design a protection prototype. For mitigating
the vulnerabilities, we focus on the integrity protection of the credentials by binding
them with a protected parameter. As the channel that has the user browser’s participation
is not secure enough, our protection prototype exploit a direct channel (or private
channel) between IDP and SP to deliver the binding parameter. The prototype can guar‐
antee the integrity of the credentials and mitigate the threats from the network attacker

210 M. Li et al.

and web attacker. The evaluation also shows that the overhead of prototype’s
performance is low comparing with the original SSO model.

2 Abstract Models of SSO Protocols

In this section, we discuss about our abstract models which are extracted from the prac‐
tical SSO systems. We parse these practical systems in our research and focus on the
information and data exchange workflows in them. In order to construct the models, we
first investigate those websites that provide SSO login method and parse the login APIs
of these websites with practical login actions. We manually analyze the massive SSO
login documentations and extract the key parameters that should be pay much more
attention during the parse of practical SSO login actions. As a result, we classify our
models into two categories, which are named independent SSO model and standard SSO
model. The independent model reflects the SSO models which the websites developed
independently. The standard model represent those websites who follow the standard
SSO information exchange protocols such as [11].

In our analysis, we summarize that a basic SSO system contains three entities, which
are named IDP (Identity Provider), SP (Service Provider) and Client (Users), and the
communication channels that connect each of the three entities together. The IDP is a
server or a service cloud that stores user’s account and password. It provides authenti‐
cation of the identity of an individual user and authorizes the SP to access user’s account
on the IDP side. The SP, which is also called RP(resource provider) in some previous
researches, is also a server or cloud that provides application services, such as a forum
website, a cloud storage or a news subscription website. The client, in our research,
represents a web browser that is connected to the internet which plays both as a redi‐
rection device and a resource visitor.

Fig. 1. Independent SSO model Fig. 2. Standard SSO Model

2.1 Independent SSO Model

In the independent SSO model, we find that the IDP and SP only exchange data or
messages through the Client (which is specifically a web browser). The Client acts as
redirect party who can get all the messages and data between the IDP and SP. In Fig. 1,
we show the detail workflow of the independent SSO model and the key parameters
delivered in the communication channels. In the model, we mark out three channels in

An Approach for Mitigating Potential Threats 211

3 different colors. We call the 3 channels as SSO-login channel, redirect channel and
IDP-side verification channel. The SSO-login channel is only between the Client and
the SP(the purple part of Fig. 1). It represents the SSO login request and response round
trip in the model, and it stands at the first and last steps in the workflow. The redirect
channel exploits the redirect functionality of the Client’s browser (the green part of
Fig. 1). In this part, the Client works as the redirect device who has the ability to receive
and forward the messages between IDP and SP. The verification channel is used to
deliver the messages between IDP and Client for verifying the user’s identity who is on
the Client-side (the orange part).

Now, we depict the workflow of SSO login and authentication in this model step by
step.

• Step 1: When the Client want to log in the SP using the SSO method, it generates an
SSOlogin.Request and delivers the login request to the SP server through the SSO-
login channel.

• Step 2: When the SP receives this SSO login request, a redirect channel is generated
among IDP, SP and Client. Then the SP redirects Client’s SSO login request to the
IDP through the Client’s browser which acts as a relayed device.

• Step 3: After the IDP gets the redirected SSO login request, The IDP firstly need to
sponsor a verification channel with the Client directly. Then the IDP verifies the
identity of the user by checking the user’s username and password which is supplied
from the Client.

• Step 4: Once the verification is successfully accomplished, the IDP responses a
credential (it could also be a token or a session ID) to the SP using the redirect channel.

• Step 5: After the SP gets the redirected credential, it responses the Client with an
SSOlogin.Response under the SSOlogin channel.

When the user on the Client side receives this SSOlogin.Response, the user is capable
to browse the custom content on the SP server, such as the news subscription.

Security Analysis. First of all, we review the model from the communication entities’
perspective. There are three entities on the inter-connected channels (IDP, SP and
Client), we discuss the security capability of them respectively. As the IDP and SP are
represented as the servers in the model, they could be mass-flowed Internet websites in
the real world, such as Google and NetEase. These websites have large quantity of
sensitive data, which need to be protected, and enough financial investment on the
security part. So the IDP and SP have much stronger security capability than just a
personal PC or laptop. However, on the opponent side, the Client could just be a
computer or smart mobile device. The investment on these personal devices security is
limited, many malwares and Trojans focus on exploiting the personal devices other than
a website.

Next, we review the model from the communication channels’ perspective. With the
TLS/SSL encryption technics used in the Internet communication, it shows that an
encrypted channel are safer than an unencrypted channel. However, our research shows
that only a few practical SSO systems in this model used HTTPS (which supports TLS/
SSL) as one of their communication channels.

212 M. Li et al.

From the security analysis on the two aspects, we can conclude that the messages
which are redirected by the Client on the redirect channels could expose the content into
insecure environment. The key point of the independent SSO model’s security should
be focus on the step 4 of the model’s workflow. In other words, this model’s security
depends on the confidentiality and integrity of the significant parameters, such as
credentials, tokens or sessionIDs in the redirect channel through in step 4.

2.2 Standard SSO Model

The IDP and SP exchange messages not only through the Client as the redirect party,
but also through a direct connection between them. In Fig. 2, we show the detail of this
model’s workflow. Comparing with Fig. 1, it has 4 channels: SSOlogin channel, the
redirect channel, the verification channel and the direct channel. As the first three chan‐
nels have been described in Sect. 2.1, we skip the discussion on them. Here we focus
on the fourth channel – the direct channel (the red part). This channel is built between
the IDP and SP directly without the participation of the Client. The functionality of this
channel is to check whether the credential is generated by the same IDP and exchange
for the second credential– access token.

Now we depict the details of the login workflows in the standard OAuth2.0 SSO
model. The first 4 steps are similar with the independent model, and the step 5 and step
6 shows the additional token exchange in this SSO model.

• Step 1: When the Client starts a login request to the SP using the SSO method, it
generates anSSOlogin.Request and send it to the SP through the SSOlogin channel.

• Step 2: Then the SP redirects Client’s SSO login request to the IDP through the
Client’s browser which acts as a relayed device.

• Step 3: After the IDP gets the redirected SSO login request in step 2, the IDP sponsors
a verification channel with the Client directly. Then the IDP verifies the identity of
the user by checking the user’s username and password which is supplied from the
Client. The step is shown as IDP-login.Request and IDP-login.Response in the
orange part.

• Step 4: Once the verification is successfully accomplished, the IDP responses a
primary credential to the SP using the redirect channel as the response to Redi‐
rect(SSOlogin.request).

• Step 5: When the SP gets the redirected credential, it does not directly response the
Client on the SSOlogin channel. What the SP has to do is to resend the credential
back to the IDP to get the access token on the direct channel, which is used to allow
the user on the Client to access the resources on the SP. This step is shown as the
Token.Request(credential) and Token.Response(access token) in Fig. 2.

• Step 6: After the SP gets the access token, it response the Client with an SSOlogin
response through the firstly established channel.

Now if the user successfully passed all the 6 steps, he should be able to visit the
special subscription recourses on the SP.

An Approach for Mitigating Potential Threats 213

Security Analysis. We still analyze the standard model from two perspectives. From
the perspective of communication entities, the vulnerability in the three entities lies on
the Client side which has the weakest protection technic. From the perspective of
communication channels, the vulnerability exists in the insecure channel. Here it refers
to the redirected channel where the Client takes part in.

Combining these two aspects, our analysis focuses on the Client side and the
communication channels nearby it. It means that the redirect channel is still significant
in our security analysis.

As is shown in Fig. 2, the standard SSO model extends the independent model with
extra credential exchange steps. These steps are used for checking the correctness and
availability of the credential and exchange for the real token. In order to keep these steps
secure, this model uses the private direct connection between the IDP and SP without
the participation of the Client and the redirect channels. It makes the attackers on the
redirect channel environment have no chance to get the access token for login. From
this point, this model is much safer than the independent model.

But when we go further, we find that the standard model still has its vulnerability
which is analogous to the independent model. The integrity of the credential in step 4
is still not well-protected. Even though the following steps provide the direct channel
for the security, the attacker can still stealthily get the content that contains the victim’s
credential on the redirect channel. Neither the SP nor the IDP checks whether the
credential matches the Client’s identity.

3 Adversary Models

We consider two different adversary models called network attacker [2, 29] and web
attacker [21] which have the potential capability to exploit the vulnerabilities of practical
SSO systems.

3.1 Network Attacker

Network attacker can be separated into two categories: active attacker and passive
attacker. The active attacker is capable to intercept and modify the packages in the
channel where it lies. The passive attacker is only capable to eavesdrop the packages on
the channel, but cannot intercept or modify them. We consider man-in-the-middle
attacker as our network attacker model, which belongs to one of the active attacker
patterns. The man-in-the-middle attacker can intercept the messages on the channel
between Client and the IDP or on the channel between Client and the SP. The credentials
redirected by the Client could be intercepted and modified by this attacker.

In practice, for mitigating the threats from the man-in-the-middle attack, many web-
based data transfers are available only under secured channels (for example, HTTPS).
The encrypted channel makes the man-in-the-middle attack becomes unavailable
because the attacker cannot tell which parameter is the correct credential from the cipher
text. However, recent researches have indicated that the encrypted channel cannot
completely stop the man-in-the-middle attack on the Internet. The attacker is able to

214 M. Li et al.

deploy some HTTPS proxies [33–37] on the channel between the Client and Server to
intercept the encrypted data stream and modify them on the proxy. On those proxies,
the messages are decrypted, the attackers can understand the messages and pick out the
credentials in the data stream. The trick of these HTTPS proxies is to pretend to be the
forged server to the real client or forged client to the real server. These proxies just sit
in the middle, decrypting traffic from both sides. Here how to trick the victim to install
these HTTPS proxies is a kind of social engineering attack projects, and it is out of the
scope of our paper.

Figure 3 shows the two roles the attacker is able to play in the communication
between client and server.

Fig. 3. Network Attacker

3.2 Web Attacker

Web attacker refers to those who control a malicious website on the Internet. The web
attacker first lures the victim to visit this malicious website by following a malicious
URI in a hyper-linked image or a malicious link address, such as a misleading link or
image. When victim visits the malicious website, the attacker injects malicious code
into victim’s browser (e.g. XSS attack [30]) or replace victim’s credential with attacker’s
(e.g. CSRF attack [28]). In the SSO login situation, the web attacker can require the
victim delivering the credential to the malicious website under his control (XSS attack)
or pushing the attacker’s credential on the victim’s browser for cheating the victim to
login the SP as the attacker (CSRF attack).

Figure 4 shows the capability of the web attacker.

Fig. 4. Web Attacker

Our practical attack experiments (Sect. 4) and our protection prototype (Sect. 5)
consider the threats under these two adversary models.

An Approach for Mitigating Potential Threats 215

4 Case Study of Practical SSO Websites

In this section, we discuss our practical attack experiments on some of those famous
websites in China, including Google, Weibo [22, 24], Tencent QQ [14], Alipay [17,
27], Taobao [26]. These five websites that we picked out all play the role of the IDP.
Besides the Alipay websites deploys as our independent SSO model, the rest implement
the standard OAuth2.0 SSO model we summarized in Sect. 2. For each IDP, we register
two test account, namely Alice and Bob, and test whether the vulnerabilities work when
logging into a practical SP. In our experiments, we login Bob’s account with Alice’s
username and password by stealthily getting Bob’s credential when Bob starts his login
workflow.

Our experiment environment is as follow. First of all, we build up a local area
network (LAN) to impersonate our test environment and connect two computers to the
LAN. Then we deploy windows 7 as the operating system and play the role of victim
(which means to be Alice) on one of the computers. We deploy Ubuntu14.10 as the
attacker (which means to be Bob). On the Alice’s computer, we install a web debugger
tool – fiddler [9] for analyzing the web packages the victim gets and sends. On the Bob’s
computer, we install mitm-proxy [33], which is able to intercept the HTTPS data stream
traffic on it, to filter the victim’s SSO login messages for intercepting the Alice’s login
credentials.

4.1 Google Account

There are many service provider websites deploy Google account as one of their login
method. In this part, we choose an online project management software – smart‐
sheet.com [23] as our test SP. Although there are some SSO flaws have been reported
in the previous research [3], their research focuses on the logic flaws on the smart‐
sheet.com that the developers do not consider carefully and talks little about the vulner‐
abilities in the SSO protocol which is implemented between Google and Smartsheet.
Besides, when we begin our study, Google has changed its SSO protocol from OpenID
to OAuth2.0. So we cannot directly get experience from the previous research.

Fortunately, our study shows that the Google SSO login model follows our standard
SSO model in Sect. 2.2. In our experiments, we register two new Google accounts, for
example, Alice@gmail.com and Bob@gmail.com, and login smartsheet.com.

We search Alice’s decrypted messages on the proxy and find the credential is named
as code. Then we let Bob intercept Alice’s following data traffic and stealthily keep
Alice’s code value in Bob’s proxy. Now we start Bob’s login workflow and also block
the data stream when Bob gets his own code. Then Bob replaces his own code with
Alice’s, which is cut from her login workflow, and releases the modified redirect data
stream to smartsheet.com. Without doubt, Bob successfully logs into Alice’s account
and controls the whole content of Alice’s. Now Bob can do whatever he want to on the
Alice’s account.

During our impersonated attack, the only protection on this redirect message depends
on the HTTPS protocol. But the integrity of this code is not protected. That is why Bob
can exploit Alice’s account without being detected by either Google or smatsheet.com.

216 M. Li et al.

4.2 Weibo.Com

Weibo.com also depends on standard OAuth2.0 SSO framework. It redirects the login
credential through user’s browser to the SP and it also calls this credential as code.
However, different from the Google SSO login method, Weibo does not implement
encrypted channels among the three abstract entities. Both network attacker and web
attacker can be able to easily steal the victim’s login credential.

In our experiment, we choose Baidu [38], a famous search engine service and cloud
storage service provider in China, as the instance of the SP server. Like what we do in
the Google case, we also register two Weibo accounts, which we still call them Alice
and Bob, and confirm the availability of each account. Then we start our vulnerability
exploit test. We put Bob on the proxy which Alice’s login messages have to go through.
On the proxy, we filter Alice’s traffic data stream and search for the login credential
which Weibo redirects to Baidu. As the channels are not encrypted every network
package on the internet is displayed in plaintext. Bob is able to read Alice’s packages
directly and gets the login code of Alice’s Weibo account.

Weibo redirects the code through a piece of JavaScript code in the response to the
Alice’s browser. The JavaScript code of Alice and Bob are shown as below:

On Alice’s side, the code is as follows:

<script language=`javascript'>
callbackfunc({
http://baidu.com/.../afterauth?mkey=xxx
&code=code-of-alice});
</script>

On Bob’s side, the code is as follows:

<script language=`javascript'>
callbackfunc({
http://baidu.com/.../afterauth?mkey=yyy
&code=code-of-bob});
</script>

Comparing the JavaScript code of two accounts, we find that the only difference of
the redirect URI is the parameters: code and mkey, where the code is the login credential
and the mkey is a ticket for preventing the CSRF attack. On the browsers, we intercept
the redirection of the credentials of both Alice and Bob and replace Bob’s code with
Alice’s. Then we redirect the modified Bob’s URI back to Baidu. As a consequence,
Baidu accepts the modified URI and regards Bob as Alice because Bob gives Baidu
Alice’s credential.

4.3 Alipay.Com

Alipay.com is an online payment and e-commerce management website (like PayPal)
hosted by the Alibaba Group, a very famous Chinese online trade company. In practice,
Alipay accounts can be used to login some other popular websites in China, such as

An Approach for Mitigating Potential Threats 217

Xunlei and Youku. In our test, we choose Xunlei as the test SP and login it with Alipay
accounts. Alice still plays the role of victim and Bob is the attacker.

In our test, we find that the Alipay is not following our standard SSO model, it is
constructed under the independent SSO model which is discussed in Sect. 2.1. The SP
does not resend the credential back to IDP for checking the validity. So we focus on the
credential, which has been redirected through the user’s browser, and detect whether it
could be modified without being known by the SP.

Unfortunately, our test shows that the credential is composed with three parameters
which is very different from the only one parameter in the standard OAuth2.0 model.
These three parameters are User_ID, token and sign.

Although there exist a signature to protect the credential, we still find a way to let
Bob hack into Alice’s Alipay account. We test the Alipay SSO login method a lot of
times, and find that the signature sign only protect the parameter of token.

It means that we can modify the User_ID to any value we want without being
detected by Xunlei.com. Furthermore, we discover that the User_ID is a constant and
plaintext. Each time we login no matter Alice’s account or Bob account, the User_ID is
an invariant. It means that the User_ID is guessable which is similar to the vulnerabilities
in [2, 3, 15]. What the attacker need to do is to follow some rules to guess a legal User_ID.
With this guessed User_ID attacker can log into any legitimate user’s Xunlei account
and get their sensitive data.

The Alipay SSO system also deploy a piece of javascript code as the redirect method.
At the same time, its redirect messages only depend on HTTP which is insecure for
delivering URL and significant parameters. The redirection URI is like: http://
xunlei.com/…/entrance.php?…token=xxx&user_id=USERID&sign=
xxx&…

Unlike the vulnerability in the standard OAuth2.0 SSO model, this vulnerability can
be attributed to the logic flaws when the developers design the entire system. So it only
suit for the Alipay SSO system and is not universal.

4.4 Taobao.Com

Taobao.com [26] is the most famous online shopping website in China. It also provides
SSO login method, which is called AliSSO system. AliSSO system mixes the features
of both independent SSO model and standard model together. From the perspective of
the three entities of IDP, SP and Client, AliSSO follows the independent SSO model.
When the credential is got by the SP, it does not need to send it back to IDP for checking
the validity.

However, the SP does not directly accepts this credential. AliSSO separates the SP
into two parts, in which, one is a resource server and the other is an authentication server.
The resource server stores the user’s data and information and provides services to the
user. The authentication server is in charge of certificating the identity of the legitimate
user. When the SP gets the credential, it firstly generates another access token and redi‐
rects the token to the authentication server through user’s browser after the authentica‐
tion server gets the second access token, it generates a ticket and directly send to the

218 M. Li et al.

resource server without the participation of user’s browser. These steps are much more
like the standard OAuth2.0 SSO model.

In our experiment, we choose weibo as an instance of our SP websites. Then we
register two taobao accounts, namely Alice and Bob, and confirm the availability of
each account. After that we begin our vulnerability exploit test. We suppose Bob as the
attacker and put it on a proxy which Alice has to go through.

When we catch the data stream of Alice between taobao and weibo, we find that it is
hard to modify the credential, which is named as tbp. As this parameter is protected by a
signature, any change of the tbp will not be accepted by weibo. Then we let Alice’s login
workflow continues. After weibo gets the credential tbp and check the signature, it gener‐
ates a second credential and redirects it to the authentication sub-server, login.weibo.com.
This redirection also goes through Alice’s browser, we can catch it on the proxy. When the
sub-server gets the second credential, alt, it directly send alt to resource.weibo.com
following the standard OAuth2.0 SSO model. After resource.weibo.com gets the alt, it
responses Alice with her personal content.

In this login workflow, we find the second credential, alt, is not well protected. As
Bob is on the proxy that Alice has to go through, he can replace his alt with Alice’s and
login Alice’s account on weibo.com without any prevention from either weibo.com or
taobao.com.

We have reported this vulnerability to the technic support group of Weibo, and got
their thanks email in two days. Before we write our paper, this vulnerability has been
patched.

Fig. 5. Classified SSO Models

In practice, we have tested 1,037 websites manually. Most websites, except Google,
in our experiment are located in China because some most famous websites, such as
Facebook and Twitter, cannot visit in China mainland. But this problem does not affect
our research. The conclusion of our tests is that most websites deploy the standard
OAuth2.0 SSO model. The rest are independent SSO model and mixed SSO model (such
as the taobao.com). The mixed model is not a new model, it is just combined from the
two abstract SSO models together. The classified model graph is shown in Fig. 5. Then
we pick up 9 typical SP websites and 5 IDP websites from our tested SSO websites. And
we list the vulnerabilities and flaws of them in Table 1.

An Approach for Mitigating Potential Threats 219

Table 1. SSO threats in real-world websites

SP

IDP

Smart-

sheet

Remember-

themilk

Weibo Baidu Youku Sohu Xunlei Iqiyi JD

Google

Weibo

QQ

Alipay

Taobao

Note: – Standard OAuth2.0 SSO model; – Independent SSO model; – MixedSSO model;

5 Integrity Protection and Threat Mitigation

We can attribute the vulnerabilities we discuss in previous sections to the lack of the
login credentials’ integrity protection. In this section, we give out our prototype scheme
for protecting the login credentials integrity. Our prototype can mitigate the threats from
the network attack and web attack which are under the adversary models in Sect. 3. We
build up our test environment in our lab with a LAN and two servers which play the
roles of IDP and SP. Then we implement our prototype on those two servers and test it
through another computer which acts as the Client. Finally, we compare the performance
of our prototype and the original SSO system. The consequence shows that the perform‐
ance of our prototype is acceptable.

5.1 Prototype Design

Our basic purpose is to avoid web attackers or network attackers stealing the legitimate
user’s login credentials and protect the credentials integrity. In this part, we first describe
how our prototype prevents the web attackers and then we talk about how it prevents
the network attackers. The workflow of our prototype is shown in Fig. 6.

Protection from Web Attackers. We use Same Origin Policy (SOP) [32] and
HTTPOnly Policy [31] on the SP side to perform the protection. This protection can
avoid attacker luring victims to login attacker’s account unconsciously.

On the SP side, we add a parameter, stat, in the SSO redirect URL and set the
browser’s cookie with a parameter, signstat, which is a signature of stat and label this
cookie as HttpOnly. When the IDP gets the redirect URL, it regards the parameter of
stat as a component of the URL and append the credential after it. Then the IDP delivers
it to the Client’s browser. When the redirection URL that contains the credential and
stat comes into the Client’s browser, the browser redirects the credential to the SP with
cookie back. When the SP gets the credential, stat and cookie back, it first computes
whether the signature of stat in the URI matches the signature value in the cookie. If the
signature of stat matches the value in the cookie, it means that this URL is not from the
web attacker. The SP believes the user on the Client is a legitimate user.

220 M. Li et al.

The security of this design of stat depends on SOP and HTTPOnly which need the
participation of the cookie. As the web attacker lures the victim to visit a malicious
website under his control, the attacker prefers to put his own credential as a redirect
URL in the response and send back to victim browser. When the victim gets the redirect
URL that contain attacker credential, the browser wants to send the URL to the SP. If
there is not protection, the attackers credentials would be send to SP and the SP would
regard the victim as the attacker. In case the victim does not notice that he has logged
into a wrong account and upload some significant files in this account, attacker can get
those files a few minutes later just by legally login his account. However, with the help
of SOP and HTTPOnly, this threat is blocked.

Fig. 6. WorkFlow of the Protection Prototype

Protection from Network Attackers. In order to mitigate the threats from network
attackers, we need the participation of both IDP and SP. Besides, we also need two
different channels: one is the redirect channel through the Client, the other is the direct
or private channel between the IDP and SP.

In our adversary models, the network attacker can hack into an encrypted channel
with the help of the SSL-proxy tools (such as mitmproxy). What the attacker need to do

An Approach for Mitigating Potential Threats 221

is to stealthily install a HTTPS proxy certificate on the victim’s computer. But this work
is out of our scope, we do not discuss it in our paper. This strong capability makes the
confidentiality invalid on the HTTPS channels. In this situation, the integrity of the
credential becomes a very significant point in the SSO system. But neither standard
OAuth2.0 framework nor independent developed SSO system protect the integrity very
well. We have easily logged into another user’s account without knowing his or her
username and password (Sect. 4). For mitigating the threats from the network attackers,
we use the direct channel between IDP and SP to deliver a binding parameter, which we
call it tag, for verifying the credential’s integrity. Supposed that this direct channel is
invisible in the attacker’s view. So the tag is delivered securely between IDP and SP.
After IDP delivers the tag directly to SP, it generates a corresponding credential which
is bonded to the tag. And we let the IDP keep the pair of the original (tag, credential)

in its database for checking the integrity of credential that delivered back from the SP.
Then the IDP redirect the credential to Client’s browser. On the SP side, it gets the tag
from the direct channel and gets the credential from the redirect channel. Once the SP
gets the login credential, we call credential’ from the redirect channel, it binds the
credential and the tag with a signature function signsk(credential

′

||tag). The sk is the
secrete key which is negotiated between IDP and SP. It is used for signing the value of
credential

′

||tag. Then SP delivers the signature back to IDP through the direct channel
with the (tag, credential′) pair. Correspondingly, the IDP has a public key pk for veri‐
fying the signature. After the IDP gets the signature and (tag, credential′) pair, it first
searches the database with the value of tag. Then IDP verifies the signature of
signsk(credential

′

||tag) with the verify function verifpk(tag, credential, signak). If the
verification successes (verifpk = 1), it means that the attacker does not modify the
credential when redirecting it. At this time, the IDP sends the access token directly to
the SP, then SP notices the Client it has logged in SP successfully. If the verification
fails, IDP reports an error and drop the (tag, credential) pair in the database.

5.2 Implementation

We deploy two desktop computers to impersonate the real SP and IDP called s-SP and
s-IDP. Both of the computers have an Intel Core i7-3770 3.4 GHz CPU and 4 GB
memory. The operation system is Ubuntu 14.10 LTS. We install the service software,
including PHP 5.5.11, Apache 2.4.9 and MySQL server 5.6, and configure the web
environment on both computers.

In our implementation, we deploy our prototype on the standard OAuth2.0 SSO
framework and we call the login credential as code. In order to simplify the workflow
of the impersonated SSO system, we omit the user’s IDP-login steps. When an SSO
login request comes from s-SP, s-IDP circumvents the verification steps and directly
begins the authorization and login operations. During the authentication and authoriza‐
tion steps, we give s-SP a secrete key, sk, for signing the code with a binding parameter,
tag, which is got through the direct channel from s-SP, and we give s-IDP a public key
pk for verifying the signature of code that is given by the s-SP.

On the s-SP side, we add a parameter, stat, for preventing the attack from a malicious
website. This parameter not only exists in the redirect URL but also has a signature in

222 M. Li et al.

the user browser cookie. With the help of the SOP and HTTPOnly policies, the web
attackers cannot get the signature of stat in the cookie between browser and the real SP.
Once the forged stat is delivered back to s-SP, the server finds that the stat does not
match the signature in the cookie and it will stop the following login workflow. This
parameter can perfectly prevent the CSRF and XSS attacks that are sponsored by the
web attackers.

Another thing need to pay attention on the s-SP is the synchronization of the param‐
eters for generating the signature. Here they refer to tag and code specifically. It should
be careful to handle this problem, because tag and code come from different channels.
The tag comes from the direct channel between the s-IDP and s-SP and it is delivered
to s-SP before the code. But the code comes through the redirect channel which is relayed
from the user’s browser. These two parameters cannot arrive at s-SP at the same time.
If we do not consider the synchronization of these two parameters, s-SP may put Alice’s
code and Bob’s tag together and compute a signature of the mixed-user parameters which
is not correct for the s-IDP for verification. This problem might cause Bob logs into
Alice’s account. Our solution on this problem is simple. We build a concurrence lock
on the s-SP side, which makes the s-SP can only deal with one user’s login request.

5.3 Evaluation

Our implementation is about 100 lines of PHP and JavaScript code. Our evaluation
depends on the execution time of the code. We set two timestamps in the entire login
workflow. The first one is set at the SSO login page, when the user clicks the SSO login
button, we get a timestamp. The second one is set on the login success page, if the user
login successful, we record the second timestamp. The execution time is the difference
of the two timestamps. Then we execute 400 times, and get the average time as the
general execution time. The comparison between the original SSO model and our
protection prototype is shown in Fig. 7.

Fig. 7. Time spending comparison between original SSO model and our protection prototype

For the performance, we compare our prototype with the original SSO model which
do not show any protections on the integrity of the credentials. Averaged 400 inde‐
pendent executions of each model, the overhead of the protection prototype is only

An Approach for Mitigating Potential Threats 223

increased by 0.418 % compared with the original SSO model. It means that the
performance of our prototype is acceptable.

6 Related Work

Many previous works have been done to study the security of SSO systems. Wang et al.
[3] discovered the SSO flaws in OpenID [4] and Flash. The flaws of OpenID cause the
IDP to exclude the email element from the list of element it signs, which is sent back to
the SP through a BRM. When the flaws of OpenID are reported to Google by the authors,
Google replaces OpenID with OAuth2.0 as the SSO system [18, 19]. Armando et al. [10]
studied on SAML-based SSO for Google Apps and gave the formal analysis of SAML
2.0 [6, 7] web browser SSO system. They used formal method to extract the abstract
protocol in SAML 2.0 and built up the formal model of SAML. Somorovsky et al. [1]
did a lot of researches in revealing vulnerabilities in formal SAML SSO systems. They
revealed the threat from XML signature wrapping attacks is a big problem in the systems.

Bansal et al. [15] and Sun et al. [29] discovered the attacks on OAuth2.0 by formal
analysis of the basic document of RFC 6749 [11]. They analyzed the formalized
OAuth2.0 protocol and revealed that the potential threats coming from CSRF attack or
token stolen during the redirection.

Before we finish our work, a vulnerability named Covert Redirect [16, 25] was
reported about the OAuth2.0 on the Internet. It describes a process where a malicious
attacker intercepts a request from an SP to an IDP and changes the parameter called
“redirect_uri” with the intention of causing the IDP to direct the authorization credentials
to a malicious location rather than to the original SP, thus exposing any returned secrets
(e.g. credentials) to the attacker.

Zhou et al. [39] have built an automated SSO vulnerabilities test tool. This tool can
detect whether a commercial website exists popular vulnerabilities, such as access_token
misuse or OAuth credentials leak. But they only deploy the Facebook as the IDP site.

7 Conclusion

In this paper, we disclose the reason of the vulnerabilities that exist in commercial web
SSO systems. We studied the SSO systems on 17 popular websites and classified them
into two abstract models. Then we verify our models on about 1,000 SSO supported
websites in the wild. Most websites follow the standard OAuth2.0 SSO model but there
still some other websites prefer developing their own SSO system that depends on the
independent model. We also elaborate our security analysis on these practical commer‐
cial websites that deploy different SSO models. That is the credentials could be inter‐
cepted by the attackers to log into the SP as the victim. For mitigating the threats focus
on the credential’s integrity, we give our protection prototype on guaranteeing the integ‐
rity of the credentials which is simple and efficient to deploy in practice. It not only fixes
the vulnerabilities of the two abstract SSO models and the mixed model, but also miti‐
gates the threats from the two adversary models mentioned in Sect. 3. However, our
prototype also has its limitation. For example, on the SP side, it does not support

224 M. Li et al.

concurrent SSO requests so far. Our prototype has to deploy on both IDP and SP server-
sides. That is a trivial and cumbersome work. In the future work, we want to improve
our prototype on these two problems and try our best to make our protection prototype
to be a convenient independent third party middle-ware which can be deployed on any
IDP or SP websites.

Acknowledgement. This work is supported by the “Strategic Priority Research Program” of the
Chinese Academy of Sciences, Grants No. XDA06010701, National Natural Science Foundation
of China (No.61402471, 61472414, 61170280), and IIE’s Cryptography Research Project. Thanks
to Wei Yang for helping recording the experiments. Thanks to a number of anonymous reviewers
and Prof. Jian Liu who gave us very useful feedback on a previous version of this paper.

References

1. Juraj, S., Andreas, M., Jörg, S., Marco, K., Meiko, J.: On breaking SAML: be whoever you
want to be. In: USENIX Security (2012)

2. Bai, G., Lei, J., Meng, G., Venkatraman, S.S., Saxena, P., Sun, J., Liu, Y., Dong, J.S.:
AUTHSCAN: automatic extraction of web authentication protocols from implementations.
In: NDSS (2013)

3. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook and google:
a traffic-guided security study of commercially deployed. In: IEEE S&P (2012)

4. OpenID. http://openid.net/
5. OAuth Protocols. http://oauth.net/
6. Technology report SAML protocol. http://xml.coverpages.org/saml.html
7. SAML2.0 Wikipedia. http://en.wikipedia.org/wiki/SAML 2.0
8. Wang, R., Chen, S., Wang, X., Qadeer, S.: How to shop for free online security analysis of

cashier-as-a-service based web stores. In: IEEE S&P (2011)
9. Fiddler–The free web debugging proxy. http://www.telerik.com/fiddler

10. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Abad, L.: Formal analysis of SAML
2.0 web browser single sign-on: breaking the SAML-based single sign-on for google apps.
In: ACM FMSE (2008)

11. OAuth2.0 Authorization Framework. http://tools.ietf.org/html/rfc6749
12. Google Accounts Authentication and Authorization. https://developers.google.com/

accounts/docs/OAuth2
13. OAuth2.0 documentation. http://oauth.net/documentation/
14. Wikipedia Tencent. http://en.wikipedia.org/wiki/Tencent
15. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website authorization

by formal analysis. In: IEEE CSF (2012)
16. Covert Redirect. http://tetraph.com/covert_redirect/
17. AlipayOpenAPI. https://openhome.alipay.com/doc/docIndex.htm
18. Google Accounts authorization and authentication Open ID 2.0 migration. https://

developers.google.com/accounts/docs/OpenID?hl=en-US
19. Google Accounts authorization and authentication Using OAuth2.0 for login (OpenID

Connect). https://developers.google.com/accounts/docs/OAuth2Login?hl=en-US
20. Google AuthSub. https://developers.google.com/accounts/docs/AuthSub
21. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foundation of

web security. In: CSF (2010)
22. Sinaweibo, Wikipedia. http://en.wikipedia.org/wiki/SinaWeibo

An Approach for Mitigating Potential Threats 225

http://openid.net/
http://oauth.net/
http://xml.coverpages.org/saml.html
http://en.wikipedia.org/wiki/SAML
http://www.telerik.com/fiddler
http://tools.ietf.org/html/rfc6749
https://developers.google.com/accounts/docs/OAuth2
https://developers.google.com/accounts/docs/OAuth2
http://oauth.net/documentation/
http://en.wikipedia.org/wiki/Tencent
http://tetraph.com/covert_redirect/
https://openhome.alipay.com/doc/docIndex.htm
https://developers.google.com/accounts/docs/OpenID%3fhl%3den-US
https://developers.google.com/accounts/docs/OpenID%3fhl%3den-US
https://developers.google.com/accounts/docs/OAuth2Login%3fhl%3den-US
https://developers.google.com/accounts/docs/AuthSub
http://en.wikipedia.org/wiki/SinaWeibo

23. Smartsheet.com, one online project management software. https://www.smartsheet.com/
24. Weibo openAPI. http://open.weibo.com/wiki/
25. Covert Redirect Vulnerability Related to OAuth 2.0 and OpenID. http://tetraph.com/

covert_redirect/oauth2_openid_covert_redirect.html
26. Taobao, Wikipedia. http://en.wikipedia.org/wiki/Taobao
27. AlipayWikipedia. http://en.wikipedia.org/wiki/Alibaba_Groupn#Alipay
28. Cross-Site Request Forgery (CSRF), The Open Web Application Security Project (OWASP).

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
29. Sun, S.T., Beznosov. K.: The devil is in the (implementation) details: an empirical analysis

of OAuth SSO systems. In: ACM CCS (2012)
30. Cross-Site Scripting (XSS), The Open Web Application Security Project (OWASP). https://

www.owasp.org/index.php/XSS
31. HttpOnly, The Open Web Application Security Project (OWASP). https://www.owasp.org/

index.php/HttpOnly
32. Same Origin Policy, W3C Web Security. https://www.w3.org/Security/wiki/Same_Origin_

Policy
33. MitmProxy, An interactive console program that allows traffic flows to be intercepted,

inspected, modified and replayed. https://mitmproxy.org/
34. SSL Man in the Middle Proxy. http://crypto.stanford.edu/ssl-mitm/
35. Cloudshark Appliance. https://appliance.cloudshark.org/
36. SSLsplit - transparent and scalable SSL/TLS interception. https://www.roe.ch/SSLsplit
37. Sslsniff, A tool for automated MITM attacks on SSL connections. http://

www.thoughtcrime.org/software/sslsniff/
38. Baidu, Wikipedia. http://en.wikipedia.org/wiki/Baidu
39. Zhou, Y., Evans, D.: SSOScan: automates testing of web applications for single sign on

vulnerabilities. In: 23rd USENIX Security Symposium (2014)

226 M. Li et al.

https://www.smartsheet.com/
http://open.weibo.com/wiki/
http://tetraph.com/covert_redirect/oauth2_openid_covert_redirect.html
http://tetraph.com/covert_redirect/oauth2_openid_covert_redirect.html
http://en.wikipedia.org/wiki/Taobao
http://en.wikipedia.org/wiki/Alibaba_Groupn%23Alipay
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://mitmproxy.org/
http://crypto.stanford.edu/ssl-mitm/
https://appliance.cloudshark.org/
https://www.roe.ch/SSLsplit
http://www.thoughtcrime.org/software/sslsniff/
http://www.thoughtcrime.org/software/sslsniff/
http://en.wikipedia.org/wiki/Baidu

	An Approach for Mitigating Potential Threats in Practical SSO Systems
	Abstract
	1 Introduction
	2 Abstract Models of SSO Protocols
	2.1 Independent SSO Model
	2.2 Standard SSO Model

	3 Adversary Models
	3.1 Network Attacker
	3.2 Web Attacker

	4 Case Study of Practical SSO Websites
	4.1 Google Account
	4.2 Weibo.Com
	4.3 Alipay.Com
	4.4 Taobao.Com

	5 Integrity Protection and Threat Mitigation
	5.1 Prototype Design
	5.2 Implementation
	5.3 Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgement
	References

