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Abstract. Recently, in [6] Gomez et al. presented algorithms to recover
a decomposition of an integer N = rA2 + sB2, where N, r, s are posi-
tive integers, and A, B are the wanted unknowns. Their first algorithm
recovers two addends by directly using rigorous Coppersmith’s bivariate
integer method when the error bounds of given approximations to A and

B are less than N
1
6 . Then by combining with the linearization technique,

they improved this theoretical bound to N
1
4 . In this paper, we heuristi-

cally reach the bound N
1
4 with experimental supports by transforming

the integer polynomial concerned in their first algorithm into a modular
one. Then we describe a better heuristic algorithm, the dimension of the
lattice involved in this improved method is much smaller under the same
error bounds.

Keywords: Sum of squares · Lattice · LLL algorithm · Coppersmith’s
method

1 Introduction

Coppersmith’s method to solve univariate modular polynomial [5] and bivari-
ate integer polynomial [4] enjoys prevalent cryptographic applications, such as
breaking the RSA crypto system as well as many of its variant schemes
[1,12,14,16,18–20], cracking the validity of the multi-prime Φ-hiding assump-
tions [9,21], revealing the secret information of kinds of pseudorandom generators
[2,6,10], and analyzing the security of some homomorphic encryption schemes
[22]. The essence of this famed algorithm is to find integer linear combinations of
polynomials which share a common root modulo a certain integer. These derived
polynomials possess small coefficients and can be transformed into ones hold-
ing true over integers. Thus one can extract the desired roots using standard
root-finding algorithms.
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A noted theorem of Fermat addresses those integers which can be expressed
as the sum of two squares. This property relies on the factorization of the inte-
ger, from which a sum of two squares decomposition (if exists) can be efficiently
computed [8]. Recently, Gutierrez et al. [7] gave an algorithm to recover a decom-
position of an integer N = rA2 + sB2, where r, s are known integers, and A,B
are the wanted unknowns. When approximations A0, B0 to A,B are given, their
first algorithm can recover the two addends under the condition that the approx-
imation errors |A − A0|, |B − B0| are no bigger than N

1
6 .

In this paper, we first illustrate a method to solve a certain bivariate modular
polynomial fN (x, y) = a1x

2 + a2x + a3y
2 + a4y + a0 based on Coppersmith’s

method. The trick to solve this kind of polynomial can be directly used to recover
the two addends A,B of N = rA2+sB2 from their approximations with an error
tolerance N

1
4 . The least significant bits exposure attacks on A and B can also be

quickly executed by applying the method to solve this certain type polynomial.
Next, we present a better method for recovering A,B from its approximations
A0, B0. This improved approach transforms the problem into seeking the coor-
dinates of a certain vector in our built lattice. The problem of finding these
coordinates can be reduced to extracting the small roots of a different bivariate
modular polynomial f ′

N (x, y) = b1x
2 + b2x+ b3y

2 + b4y + b5xy + b0. The derived
error bound is N

1
3 in this way.

The rest of this paper is organized as follows. In Sect. 2, we recall some
preliminaries. In Sect. 3, we first describe the method to solve fN (x, y) = a1x

2 +
a2x + a3y

2 + a4y + a0 and then give our deduction on error bound N
1
4 as well

as the least significant bits exposure attacks on A,B, both of which are based
on finding the small roots of fN (x, y). In Sect. 4, we elaborate a better method
for recovering the addends of a sum of two squares. The theoretical error bound
derived by this approach is N

1
3 . Finally, we give some conclusions in Sect. 5.

2 Preliminaries

2.1 Lattices

Let b1, . . . ,bω be linear independent row vectors in R
n, and a lattice L spanned

by them is

L = {
ω∑

i=1

kibi | ki ∈ Z},

where {b1, . . . ,bω} is a basis of L and B = [b1
T , . . . ,bω

T ]T is the corresponding
basis matrix. The dimension and determinant of L are respectively

dim(L) = ω,det(L) =
√

det(BBT ).

For any two-dimensional lattice L, the Gauss algorithm can find out the reduced
basis vectors v1 and v2 satisfying

‖v1‖ ≤ ‖v2‖ ≤ ‖v1 ± v2‖
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in polynomial time. One can deduce that v1 is the shortest nonzero vector in L
and v2 is the shortest vector in L \ {kv1 | k ∈ Z}. Moreover, there are following
results, which will be used in Sect. 4.

Lemma 1 (See Gómez et al., 2006 [6], Lemma 3). Let v1 and v2 be the
reduced basis vectors of L by the Gauss algorithm and x ∈ L. For the unique
pair of integers (α, β) that satisfies x = αv1 + βv2, we have

‖αv1‖ ≤ 2√
3
‖x‖, ‖βv2‖ ≤ 2√

3
‖x‖.

Lemma 2 (See Gómez et al., 2006 [6], Lemma 5). Let {u,v} be a reduced
basis of a 2-rank lattice L in R

r. Then we have

det(L) ≤‖ u ‖‖ v ‖≤ 2√
3
det(L).

The reduced basis calculation in two-rank lattices is far from being obtained
for general lattices. The subsequently proposed reduction definitions all have
to make a choice between computational efficiency and good reduction perfor-
mances. The distinguished LLL algorithm takes a good balance, outputting a
basis reduced enough for many applications in polynomial time.

Lemma 3 [17]. Let L be a lattice. In polynomial time, the LLL algorithm out-
puts reduced basis vectors v1, . . . ,vω that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , 1 ≤ i ≤ ω.

2.2 Finding Small Roots

Coppersmith gave rigorous methods for extracting small roots of modular uni-
variate polynomials and bivariate integer polynomials. These methods can be
heuristically extended to multivariate cases. Howgrave-Graham’s [11] reformula-
tion to Coppersmith’ s method is widely adopted by researchers for cryptanalysis.

Lemma 4 [11]. Let g(x1, x2) ∈ Z[x1, x2] be an integer polynomial that consists
of at most ω nonzero monomials. Define the norm of g(x1, x2) =:

∑
bi1,i2x

i1
1 xi2

2

as the Euclidean norm of its coefficient vector, namely,

‖g(x1, x2)‖ =
√∑

bi1,i2
2.

Suppose that

1. g(x(0)
1 , x

(0)
2 ) = 0 (mod N), for |x(0)

1 | < X1, |x(0)
2 | < X2;

2. ‖g(X1x1,X2x2)‖ < N√
ω
.

Then g(x(0)
1 , x

(0)
2 ) = 0 holds over integers.
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Combining Howgrave-Graham’s lemma with the LLL algorithm, one can
deduce that if

2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i <
N√
ω

,

the polynomials corresponding to the shortest i reduced basis vectors hold over
integers. Neglecting the low order terms which are independent on N , the above
condition can be simplified as

det(L) < Nω+1−i. (1)

After obtaining enough equations over integers, one can extract the shared roots
by either resultant computation or Gröbner basis technique.

We need the following assumption through our analyses, which is widely
adopted in previous works.

Assumption 1. The Gröbner basis computations for the polynomials corre-
sponding to the first few LLL-reduced basis vectors produce non-zero polynomials.

3 Recovering the Addends from N = rA2 + sB2

In this section, we first describe the trick for finding the small roots of polyno-
mial fN (x, y) = a1x

2 + a2y
2 + a3x + a4y + a0. Next, we address the problem

of recovering the decomposition of a given number N = rA2 + sB2 only from
its approximations to its addends A,B, where N , r, s are public positive inte-
gers. Then, we discuss how to achieve A and B when the least significant bits
of them are revealed. Both of these two attacks can be transformed into solving
the studied polynomial fN (x, y).

3.1 Solving Polynomial fN(x, y)

Without loss of generosity, we assume a1 = 1 since we can make it by multiplying
fN with a−1

1 mod N . If this inverse does not exist, one can factorize N . Set

f(x, y) = a−1
1 fN (x, y) mod N.

Next, we find the small roots of f(x, y) by Coppersmith’s method. Build shifting
polynomials

gk,i,j(x, y) = xiyjfk(x, y)Nm−k,

where i = 0, 1; k = 0, ...,m − i; j = 0, ..., 2(m − k − i). Obviously,

gk,i,j(x, y) ≡ 0 mod Nm.

Construct a lattice L using the coefficient vectors of gk,i,j(xX, yY ) as basis
vectors. We sort the polynomials gk,i,j(xX, yY ) and gk′,i′,j′(xX, yY ) according
to the lexicographical order of vectors (k, i, j) and (k′, i′, j′). In this way, we can
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Table 1. Example of the lattice formed by vectors gk,i,j(xX, yY ) when m = 2. The
upper triangular part of this matrix is all zero, so omitted here, and the non-zero items
below the diagonal are marked by ∗.

1 y y2 y3 y4 x xy xy2 x2 x2y x2y2 x3 x4

g0,0,0 N2

g0,0,1 Y N2

g0,0,2 Y 2N2

g0,0,3 Y 3N2

g0,0,4 Y 4N2

g0,1,0 XN2

g0,1,1 XY N2

g0,1,2 XY 2N2

g1,0,0 * * * * X2N

g1,0,1 * * * * X2Y N

g1,0,2 * * * * * X2Y 2N

g1,1,0 * * * * X3N

g2,0,0 * * * * * * * * * * * * X4

ensure that each of our shifting polynomials introduces one and only one new
monomial, which gives a lower triangular structure for L. We give an example
for m = 2 in the following Table 1.

Then its determinant can be easily calculated as products of the entries on
the diagonal as det(L) = XSX Y SY NSN as well as its dimension ω where

ω =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

1 = 2m2 + 2m + 1 = 2m2 + o(m2).

Sx =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

(2k + i) =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

Sy =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

j =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

SN =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

(m − k) =
2
3
m(2m2 + 3m + 1) =

4
3
m3 + o(m3).

Put these relevant values into inequality det(L) < Nmω. After some basic
calculations, we gain the bound

XY < N
1
2 .

When X = Y , which means the two unknowns are balanced, the above result is

X = Y < N
1
4 .

We summarize our result in the following theorem.
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Theorem 1. Let N be a sufficiently large composite integer of unknown fac-
torization. Given a bivariate polynomial fN (x, y) = a1x

2 + a2x + a3y
2 + a4y +

a0 mod N , where |x| ≤ X, |y| ≤ Y . Under Assumption 1, if

XY < N
1
2 ,

one can extract all the solutions (x, y) of equation fN (x, y) ≡ 0 (mod N) in
polynomial time.

3.2 Recovering a Decomposition from Approximations

In this subsection, we describe the method to recover A,B of N = rA2 + sB2

from their approximations.
Supposing that positive integers r and s are given. Set N = rA2+sB2, where

A,B are balanced addends, and A0, B0 are the approximations to A,B, that is
A = A0 + x and B = B0 + y, where x, y are bounded by Δ. Then, one can
recover A and B according to Theorem 1 when

Δ < N
1
4 .

The concrete analysis is as follows. Note that

N = r(A0 + x)2 + s(B0 + y)2, (2)

which gives rise to a bivariate modular polynomial

f1(x, y) = rx2 + sy2 + 2A0rx + 2B0sy + rA2
0 + sB2

0 ≡ 0 mod N,

this is exactly the same type of the polynomial we discussed in Sect. 3.1. So
we gain the result Δ < N

1
4 simply by substituting both X and Y appeared in

Theorem 1 to Δ.
The experimental results to support the above analysis is displayed in Table 2,

which matches well with the derived theoretical bound.

Table 2. Experimental results for error bound Δ = 1
4

with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 5 61 0.227 12.901 15.631

6 85 0.230 49.172 606.360

7 113 0.233 187.076 517.549

8 145 0.235 566.471 3204.339

9 181 0.236 1512.586 5538.002

10 221 0.237 3430.463 out of memory
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Table 3. Experimental results for Remark 1 with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 4 28 0.130 0.842 0.265

5 36 0.132 3.806 0.842

6 45 0.133 14.914 1.420

8 66 0.135 143.349 11.532

Table 4. Experimental results for different modulus with 1024 bit N

N (bits) M m dim logNΔ LLL (seconds) Gröbner (seconds)

1024 N − 1 6 85 0.23 582.258 144.005

2N − 1 6 85 0.23 587.046 145.440

N2 − 1 6 85 0.23 5917.165 1159.431

Remark 1. Gutierrez et al. discussed the same problem in [7]. They arranged
Eq. (2) to a bivariate integer polynomial as follows,

f ′
1(x, y) = rx2 + sy2 + 2A0rx + 2B0sy + rA2

0 + sB2
0 − N. (3)

By directly applying Coppersmith’s theorem [3], their derived error bound is
only N1/6. We do experiments for their method, part of the results are displayed
in Table 3. The experimental results show that our method works much better.

Coppersmith’s original method [3] for solving bivariate integer polynomial is
difficult to understand. Coron [13] first reformulated Coppersmith’s work and
the key idea of which can be described as follows, choosing a proper integer R,
and transforming the situation into finding a small root modulo R. Then, by
applying LLL algorithm, a polynomial with small coefficients can be found out,
which is proved to be algebraically independent with the original equation.

Our approach described above also transforms the integer equation into a
modular polynomial. The difference between our method and Coppersmith’s
theorem [3] lies in the construction of shifting polynomials. We take use of the
information of the power of the original polynomial. Although we didn’t prove
that the obtained polynomial with small coefficients is algebraically independent
with the original polynomial, which is true in most cases during the experiments.

Remark 2. We studied different situations to transform Eq. (3) into modular
ones as the modulus varies. For instance q(x, y) = f1(x, y)+M ≡ 0 mod (N+M).
The experimental results for different M are shown in Table 4.

Specifically, we also consider non-constant modular polynomial

f2(x, y) = rx2 + sy2 + 2A0rx + 2B0sy ≡ 0 mod (N − rA2
0 − sB2

0). (4)

In this way, the corresponding theoretical error bound for recovering the
addends from their approximations is N1/6( please refer to Appendix A for
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the detailed analyses). However, the experimental results show a much better
performance, which is displayed in Table 5.

3.3 Recovering a Decomposition from Non-approximations

Actually, the most significant bits exposure attack of A and B can be viewed
as a special case of the above problem (recovering a a sum of two squares from
its approximations). In this subsection, we consider the case when the least
significant bits of A,B are leaked.

Given r, s are positive integers, set N = rA2 + sB2, where A,B are balanced
addends. When half bits of A and B in the LSBs are intercepted, one can recover
A,B according to Theorem 1.

Suppose A = xM + A0, B = yM + B0, where M,A0 and B0 are the gained
integers, and x, y refers to the unknown parts. Then we have the following rela-
tion

N = r(xM + A0)2 + s(yM + B0)2,

which can be expanded to a bivariate modular polynomial

f3(x, y) = rM2x2 + sM2y2 + 2rA0Mx + 2sB0My + rA2
0 + sB2

0 ≡ 0 mod N.

Set the upper bound for x and y as Δ1 and put it into Theorem 1, we get
Δ1 < N

1
4 . Since

M =
A − A0

x
>

A − A0

N
1
4

≈ A

N
1
4

≈ N
1
2

N
1
4

= N
1
4 ,

From these analyses, we get that half information from A and B can reveal
the whole knowledge of both addends, no matter the leaked bits are LSBs or
MSBs.

Table 5. Experimental results for Remark 2 with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 2 12 0.16 0.001 0.001

3 24 0.19 0.016 0.14

4 40 0.20 0.406 1.888

5 60 0.21 2.558 45.490

7 112 0.22 57.954 2028.294
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4 A Better Method for Recovering the Addends

In this section, we reduce the problem of recovering a sum of two squares decom-
position to seeking the coordinates of a desired vector in a certain lattice. Then
we can find these coordinates by applying Coppersmith’s method to solve a type
of modular polynomials where the concerned monomials are x2, y2, xy, x, y and
1. Dealt this way, the theoretical error tolerance can be improved to N1/3, and
the involved lattices in this approach possess much smaller dimensions compared
to the ones in Sect. 3.

4.1 The Reduction of Recovering the Addends

From the initial key relation N = r(A0 + x)2 + s(B0 + y)2 we have

2rA0x + 2sB0y + rx2 + sy2 = N − rA2
0 − sB2

0 . (5)

Hence, the recovery of vector

e := (X1,X2,X3) = ((r + s)Δx, (r + s)Δy, rx2 + sy2)

solves the problem. Here Δ represents the upper bound for x and y. It is not
hard to see that vector e is in a shifted lattice c+S, c = (c1, c2, c3) ∈ Z

3, where
( c1
(r+s)Δ , c2

(r+s)Δ , c3) is a particular solution of (5) and S is a two-dimensional
lattice (

(r + s)Δ 0 −2A0r
0 (r + s)Δ −2B0s

)
.

According to Minkowski’s theorem [15], when ||e|| <
√

2
√

det(S), one can
recover e by solving the closet vector problem. Further, the norm of e satis-

fies ||e|| ≤ √
3(r + s)Δ2, and det(S) ≥ 2(r + s)Δ

√
min(r,s)∗N

2 with condition

min(r, s) ∗ N ≥ 4
√

NΔ(r3/2 + s3/2). These constraints give rise to the error
bound Δ < N1/6, as discussed in [7].

Next, we present our analysis for the case when Δ > N1/6. Here, we tag
f = ((r + s)Δf1, (r + s)Δf2, f3) as the output of the CVP algorithm on S, and
use {u = ((r+s)Δu1, (r+s)Δu2, u3),v = ((r+s)Δv1, (r+s)Δv2, v3)} to denote
the Gauss reduced basis for S. Then e = f + αu + βv, where α, β represent the
corresponding coordinates of vector e− f in lattice S. Thus, the problem is con-
verted to finding the parameters α and β, which satisfy equation

2A0r(f1 + αu1 + βv1) + 2B0s(f2 + αu2 + βv2)

+ r(f1 + αu1 + βv1)2 + s(f2 + αu2 + βv2)2 + rA2
0 + sB2

0 − N = 0.
(6)

We first derive the upper bounds for the unknowns α, β. Since e−f = αu+βv,
from Lemma 1, we get

||αu||||βv|| ≤ 2√
3
||e − f || ≤ 4(r + s)Δ2.
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Thus, |α| ≤ 4(r+s)Δ2

||u|| , |β| ≤ 4(r+s)Δ2

||v|| . Further, according to Lemma 2, there is
det(S) ≤ ||u||||v|| ≤ 2√

3
det(S). Then we have

|α||β| ≤ 4(r + s)Δ2

det(S)
≤ c1Δ

3/2N−1/4,

where c1 = 27/4(r + s)1/2min(r, s)−1/4 is a constant.
Notice that Eq. (6) can be arranged to

(ru2
1 + su2

2)α
2 + (rv2

1 + sv2
2)β

2 + 2(ru1v1 + su2v2)αβ + 2(A0ru1

+ B0su2 + rf1u1 + sf2u2)α + 2(A0rv1 + B0sv2 + rf1v1 + sf2v2)β

+ 2A0rf1 + 2B0sf2 + rf2
1 + sf2

2 + rA2
0 + sB2

0 ≡ 0 mod N,

(7)

which represents a certain type of modular polynomials consisting of monomials
x2, y2, xy, x, y and 1. Next, we describe our analysis for solving such polynomials.

4.2 Solving a Certain Type of Modular Polynomials

Let f ′
N (x, y) = b1x

2 + b2y
2 + b3xy + b4x + b5y + b0 mod N. Assume b1 = 1,

otherwise, set
f ′(x, y) = b−1

1 f ′
N (x, y) mod N.

If the inverse b−1
1 mod N does not exist, one can factorize N . Next, we use

Coppersmith’s method to find the small roots of this polynomial. Build shift-
ing polynomials hk,i,j(x, y) which possess the same roots modular Nm with
f ′(x, y) ≡ 0 mod N as follows:

hk,i,j(x, y) = xiyjf ′k(x, y)Nm−k,

where i = 0, 1; k = 0, ...,m − i; j = 0, ..., 2(m − k) − i.
Construct a lattice L′ using the coefficient vectors of hk,i,j(xX, yY ) as basis

vectors. We sort the polynomials hk,i,j(xX, yY ) and hk′,i′,j′(xX, yY ) according
to lexicographical order of vectors (k, i, j) and (k′, i′, j′). Therefore, we can ensure
that each of our shifting polynomials introduces one and only one new monomial,
which gives a triangular structure for L′.

Then the determinant of L′ can be easily calculated as products of the entries
on the diagonal as det(L′) = XSX Y SY NSN as well as its dimension ω where

ω =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

1 = 2m2 + o(m2),

SX =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

(2k + i) =
4
3
m3 + o(m3),

SY =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

j =
4
3
m3 + o(m3),

SN =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

(m − k) =
4
3
m3 + o(m3).
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Put these relevant values into inequality det(L′) < Nmω. After some basic
calculations, we gain the bound

XY < N
1
2 .

We summarize our result in the following theorem.

Theorem 2. Let N be a sufficiently large composite integer of unknown factor-
ization and f ′

N (x, y) = b1x
2 + b2x+ b3y

2 + b4y + b5xy + b0 mod N be a bivariate
modular polynomial, where |x| ≤ X, |y| ≤ Y . Under Assumption 1, if

XY < N
1
2 ,

one can extract all the solutions (x, y) of equation f ′
N (x, y) ≡ 0 (mod N) in

polynomial time.

Next, we use the above method to solve Eq. (7), and then recover the
unknown addends.

4.3 Recover the Addends

Notice that Eq. (7) is exactly the same type of polynomial discussed in Sect. 4.2.
Put the derived upper bounds for |α||β| in Sect. 4.1 into Theorem 2,

|α||β| ≤ c1Δ
3/2N−1/4 ≤ N1/2.

Solve this inequality, omit the constant terms, and we obtain the optimized
bound for the approximation error terms

Δ < N
1
3 . (8)

Compared to Sect. 3, this method performs much better in practice since the
dimensions of the involved lattices are much smaller when the error bounds are
the same. We present the comparison results in Table 6, where one can see a
remarkable improvement in the performing efficiency.

Remark 3. As in Sect. 3, we also analyzed the case when transforming Eq. (6)
into a non-constant modular polynomial. The corresponding error bound is
then N1/4. Table 7 is the experimental results for this situation. Please refer to
Appendix B for the detailed analysis.

5 Conclusions and Discussions

We revisit the problem of recovering the two addends in this paper. Our first
algorithm improves Gutierrez et al.’s first result N1/6 to N1/4 by transforming
the derived polynomial into a modular one. Then we improve this bound to
N1/3 in theory by reducing the problem of recovering a sum of two squares
decomposition to seeking the coordinates of a desired vector in a certain lattice.
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Table 6. A comparison between Sect. 4 (the left part datas) and Sect. 3 (the right part
datas)

N (bits) logN Δ m dim LLL (seconds) Gröbner (seconds) m’ dim’ LLL’ (seconds) Gröbner’ (seconds)

1024 0.19 1 6 0.016 0.001 2 13 0.047 0.031

0.20 2 15 0.187 0.109 3 25 1.248 0.406

0.21 2 15 0.172 0.109 3 25 1.030 0.967

0.22 2 15 0.187 0.140 4 41 14.383 3.416

512 0.23 4 45 6.334 11.591 6 85 49.172 606.360

0.235 5 66 47.612 68.391 8 145 566.471 3204.339

0.236 6 91 229.789 579.091 9 181 1512.586 5538.002

0.237 7 120 949.094 3410.151 10 221 3430.463 out of memory

0.238 7 120 855.868 1696.823 − − − -

0.239 8 153 2852.619 out of memory − − − -

Table 7. Experimental results for Remark 3 with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 2 14 0.21 0.031 0.016

3 27 0.22 0.328 0.187

6 90 0.23 180.930 188.434

J.Gutierrez et al. did similarly in [7], and their optimized bound is N1/4. Our
second approach performs much better than the first one since the dimension of
the required lattice is much smaller when the same error bounds are considered.
The tricks to solve the derived polynomials in Sects. 3 and 4 are similar, both
of which transform integer relations to modular polynomials. We study four
kinds of modular polynomials in our work (two types are discussed in Remarks 2
and 3). The tricks for solving these polynomials may find other applications in
cryptanalysis.

We do experiments to testify the deduced results. The tests are done in
Magma on a PC with Intel(R) Core(TM) Quad CPU (3.20 GHz, 4.00 GB RAM,
Windows 7). These datas well support our analyses, however, as the error terms
go larger, the dimensions of the required lattices are huger. The time, memory
costs also increase greatly, which stops our experiment at a not good enough
point. Hope people who are interested in this problem can bring us further
supports for the experiments.
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A Analysis for Remark 2

In this part, we give the details to show that when dealing with Eq. (3) as a
non-constant modular polynomial (4), the corresponding error bound is N1/6.

First, we display the trick for finding the small roots of f2(x, y) = rx2 +
sy2 + 2A0rx + 2B0sy ≡ 0 mod (N − rA2

0 − sB2
0). Set M = N − rA2

0 − sB2
0 as

the modulus. The shifting polynomials for this equation can be constructed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1k,i(x, y) = yiMm,

i = 1, ..., 2m;

g2k,i(x, y) = xjyifk
3 (x, y)Mm−k,

k = 0, ...,m − 1; j = 1, 2; i = 0, ..., 2(m − k − 1);

Suppose |x| ≤ X = N δ, |y| ≤ Y = N δ, then M ≈ N
1
2+δ. Similarly, the coeffi-

cients of g1(xX, yY ), g2(xX, yY ) can be arranged as a lower triangular lattice
L1, whose determinant can be easily calculated as det(L1) = XSX Y SY MSM ,
where

ω = 2m2 + 2m = 2m2 + o(m2).

SX =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

SY =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

SM =
1
3
m(4m2 + 9m − 1) =

4
3
m3 + o(m3).

Put these values into inequality det(L1) ≤ Mmω, we obtain δ ≤ 1
6 , which means

that the error bound derived by this method is

Δ ≤ N
1
6 ,

a poorer bound compared to N
1
4 . The experimental results in Table 5 show that

this method works much better in practice than in theoretic analysis, although
still weaker than the result in Sect. 3.2.

B Analysis for Remark 3

Notice that the problem of finding coordinates for vector e − f can also be
transformed into solving a non-constant modular equation

q(α, β) = (ru2
1 + su2

2)α
2 + (rv2

1 + sv2
2)β

2 + 2(ru1v1 + su2v2)αβ

+ (2rf1u1 + 2sf2u2 − u3)α + (2rf1v1 + 2rf2v2 − v3)β

≡ 0 mod (N − 2rA0f1 − 2sB0f2 − rf2
1 − sf2

2 − rA2
0 − sB2

0)
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Set M = |N − 2rA0f1 − 2sB0f2 − rf2
1 − sf2

2 − rA2
0 − sB2

0 | as the modulus.
Then the problem reduced to solving

q′(x, y) = x2 + b2y
2 + b3xy + b4x + b5y ≡ 0 mod M.

Here we assume that q′(x, y) is a monic irreducible polynomial, since we can make
it satisfied by multiplying the modular inverse term. We apply Coppersmith’s
method to solve this polynomial. The shifting polynomials can be constructed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1k,i(x, y) = yiMm,

i = 1, ..., 2m;

g2k,i(x, y) = yiq′k(x, y)Mm−k,

k = 1, ...,m, i = 0, ..., 2(m − k);

g3k,i(x, y) = xyiq′k(x, y)Mm−k,

k = 0, ...,m − 1, i = 0, ..., 2(m − k) − 1;

From the former analysis, we know that |x|, |y| ≤ Δ3/2N−1/4 = X = Y , and
M ≈ Δ2. Similarly, the coefficients of g1(xX, yY ), g2(xX, yY ) and g3(xX, yY )
can be arranged as a lower triangular lattice L2, whose determinant can be easily
calculated as det(L2) = XSX Y SY MSM , where

ω = 2m2 + 3m = 2m2 + o(m2).

SX =
2
3
m(2m2 + 3m + 1) =

4
3
m3 + o(m3).

SY =
2
3
m(2m2 + 3m + 1) =

4
3
m3 + o(m3).

SM =
1
6
m(8m2 + 15m + 1) =

4
3
m3 + o(m3).

Put these values into inequality det(L2) ≤ Mmω, we gain the corresponding
error bound

Δ ≤ N
1
4 .
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